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1 INTRODUCTION

This document presents supplementary results to paper [2], excluded
from that paper for reasons of brevity.

Results are presented on three data sets: Ionosphere, Credit and
Sonar. All are originally sourced from the UCI Machine Learning
Repository [1] – the versions used for these experiments are avail-
able from http://www.andrew1.hunter/durham.ac.uk/LogPoly/. Re-
sults summarize algorithm performance and consistency.

2 EXPERIMENTAL TECHNIQUE

The Niched Pareto Genetic Algorithm described in [2] was run 10
times, with parameters shown in table 1. All classifiers generated
were stored for analysis. The Non-Dominated Set across all runs was
extracted by taking the union of all generated populations, and check-
ing for ROC domination. The result of this process is theoverall
non-dominated set. The final non-dominated set of a particular run is
a subset of this overall non-dominated set.

Table 1. GA Settings

Population 100
Non-dominated set size 25
Tournament size 2
Dominance group size 10
Generations 100
Crossover rate 0.3
Mutation rate 0.3

The classifiers’ performance is compared with two alternative ap-
proaches: a logistic regression model, which is equivalent to a first
order logistic polynomial and therefore acts as a “vanilla” baseline;
and an RBF neural network, a non-linear model which performs well
on most data sets.

The logistic regression is a standard form using all input variables,
optimized by Quasi-Newton. The RBF network has sufficient hidden
units to model well, the precise number depending on the data set.

Training was conducted by splitting the data into training and test
subsets. The same split was used for all experiments. There are sev-
eral reasons for this choice. First, computational complexity makes it
extremely difficult to conduct multiple experiments that also include
resampling (it takes approximately one day to conduct each set of
experiments). Second, the performance of the induction algorithm,

in selecting models on the basis of performance measures, is not
fundamentally changed by improvements in the reliability of those
measures, if performance is indeed reduced to a single characteris-
tic measure. Performance could be altered, and perhaps improved,
by considering confidence limits on performance in the definition of
non-dominance, but that would add significant new concepts to the
work. Keeping the same sample at least removes between-sample bi-
ases.

The overall non-dominated set was also reduced to a smaller “es-
sential non-dominated set”. This contains solutions such that, given
the definition of ROC equivalence from the paper (i.e. ROC curves
within 5% of one another), every member of the non-dominated
set has a solution of the same complexity and equivalent ROC per-
formance in the essential non-dominated set. The essential non-
dominated set is not unique (i.e. it is possible to construct multiple
valid essential non-dominated sets); nonetheless, it is useful in char-
acterizing real diversity in the solutions found.

It is extremely difficult to characterise the performance of the algo-
rithm analytically. The algorithm attempts to find a range of solutions
distributed across the Pareto-front. However, the search space is ex-
tremely large — if polynomials of any order are considered, it is ac-
tually infinite; however, even if we consider only the low-order poly-
nomials, where we expect the Pareto-front to be confined, the size
is daunting. ForN variables, there are

PP
j=1

N !
(N−j)!

terms of order
P . For example, with ten variables, there are 10 linear, 55 quadratic,
and 175 cubic terms, and therefore2240 possible polynomials of or-
der up to cubic. We cannot exhaustively evaluate the search space
for any meaningfully large data set, and consequently cannot judge
directly how close the algorithm comes to the true Pareto-front. Our
experiments discovered good performance models up to fifth order.

In an attempt to give some indication of the algorithm’s conver-
gence onto the Pareto-front, we instead measure consistency; i.e. the
proportion of runs that discover “equivalent” solutions, where equiv-
alent implies of the same complexity and performance. We gener-
ally get extremely good consistency on trees with up to three-five
nodes (i.e. usually simple one-three term models), with variable con-
sistency thereafter. For example, at11 nodes40% of the Ionosphere
runs discovered equivalent solutions.

We also ask the more rigorous question: are there identical so-
lutions in each run? At this point we must note that on occasions
Quasi-Newton optimisation may produce different coefficients for
polynomials with the same terms, and will routinely produce small
numerical discrepancies. We therefore define solutions asidentical
if they have the terms, and coefficients whose absolute difference is
less than a small threshold,ε = 0.01; we define them asstructurally
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identical if they have the same terms, but with significantly different
coefficients.

Against this harder test, consistency is much lower; for example,
at 11 nodes none of the Ionosphere solutions represented in the over-
all non-dominated set is present in more than one run – the con-
sistent runs all find different, but equivalent performance, solutions.
A particular run often finds several structurally identical solutions
with different coefficients. However, breaking things down further,
we do find that certain terms are broadly represented, albeit in differ-
ing polynomials (e.g. there are many terms involvingx1x3 in Iono-
sphere). This indicates a complex structure in the search space, with
certain particularly significant terms being separately discovered, so
that there is some consistency at the “gene” level, while there are
multiple equivalent performance models, making it impossible to ex-
pect the algorithm to find identical models (there is no selective pres-
sure to do so). The high level of performance consistency does sug-
gest that the algorithm may be successfully locating solutions along
that section of the Pareto front.

We also determine the generation on which final non-dominated
solutions are first discovered, and plot the proportion of the non-
dominated set found by each generation. As the algorithm converges,
we would expect to see the curve plateau.

We have not attempted to optimise the control coefficients of the
algorithm (e.g. mutation and crossover rates), simply due to the huge
computational cost which would be involved in their optimisation.

The classifiers were optimised using Quasi-Newton in the maxi-
mum likelihood framework. We did not optimise against one of the
measures that take into account both classifier performance and com-
plexity (e.g. MDL – Minimum Description Length) as our objec-
tive is to achieve diversity across performance and complexity, and
such a measure would introduce an unwanted bias against more com-
plex models. It is worth noting that the performance criterion used in
Quasi-Newton optimisation (cross entropy error on selection set) is
not identical to the performance measure (ROC curve) used in the
model selection algorithm.

3 IONOSPHERE

For this experiment the first 10 variables from the standard Iono-
sphere data set (UCI Machine Learning Repository) were used. The
first 200 cases were used for training, and the balance of 151 for test.

Tree sizes varied from 1–35 nodes, number of terms from 2–38
(including the constant as a term), order from first to fifth. The tree
size is quite compact in terms of typical GP performance, indicating
that the algorithm controls bloat extremely successfully.

The overall non-dominated set contains 51 distinct classifiers, 41
structurally distinct. The essential non-dominated set contains 44 dis-
tinct classifiers, 41 structurally distinct. We thus conclude that the
non-dominated set contains the same structurally distinct solutions
as the essential non-dominated set, and the seven solutions present
in the non-dominated set, but not the essential non-dominated set,
are structurally identical solutions to members of the essential non-
dominated set with different coefficients but equivalent performance.

Figure 4 shows the ROC curves for the essential non-dominated
classifiers. Further discussion of the results on this data set is con-
tained in [2].

4 SONAR

For this experiment the first 20 variables from the standard Sonar
data data (UCI Machine Learning Repository) were used. The cases

were randomly shuffled, with 104 used for training and 104 for test.
This data set proves to have quite unusual characteristics. A sin-

gle variable,x11, provides an extremely good logistic model on its
own, and the non-dominated set contains only this model, plus two
higher order models which also containx11 as a key component. The
non-dominated set contained only three structurally distinct classi-
fiers (ax11 +b, ax11 +bx5 +c andax11 +bx5 +cx20 +d), although
a range of different coefficients for the latter two were found, result-
ing in 30 distinct classifiers in the non-dominated set. The essential
non-dominated set contains3 classifiers, one at each of the repre-
sented complexity levels. The simpler two classifiers are discovered
in all 10 runs; the most complex one in40% of the runs, indicat-
ing a quite high level of consistency. One might be suspicious that,
given the dominance of classifiers containingx11, the algorithm may
have prematurely converged, and then failed to explore more com-
plex classifiers. In fact, the convergence is quite sharp, but the algo-
rithm continues to generate higher complexity solutions throughout
the run. Figure 1 shows the average and maximum complexity levels
of solutions during one run of the algorithm. There is a sharp initial
convergence as the more complex solutions are rapidly purged, then
a steady situation where most solutions are variations on the basic
three, with a constant reintroduction of some higher-complexity so-
lutions by mutation. Figure 2 shows the ROC curves for the three
members of the essential non-dominated set.
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Figure 1. Sonar, Population Complexity
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Figure 2. Sonar, Essential non-dominated set
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5 CREDIT

This experiments uses 8 input variables from the standard UCI credit
database. After removal of cases with missing values in any variable
there are three numeric variables (x1–x3), and five binary variables
(x4–x8 — two of the latter were three-state nominals in the original
data set, but removal of missing values eliminated one class in each).
There are 518 cases, which are divided into 259 for training and 259
for test (randomly selected).

There are thirty-two structurally distinct classifiers in the overall
non-dominated set, with complexity levels ranging up to21 nodes,
up to eight terms (using all available variables), and up to “seventh”
order. The order of the more complex classifiers is deceptive, how-
ever – it includes powers of variablesx5–x8, which are binary; con-
sequently, powers have no effect. The real order does not exceed
five. This is still quite high, but probably partially reflects the fact
that multiplying indicator variables models a logical AND opera-
tion, which may be quite useful and does indicate high curvature so
much as model decomposition. The highest order discounting indi-
cator variables is cubic.

Performance of the logistic regression and radial basis classifiers
is very similar. A relatively complex RBF network was required to
perform well on this problem (with 100 hidden units). Performance
of the logistic polynomials is variable, but the second model (3.8x6−
1.02x7− 0.847) appears to have closely comparable performance to
the full logistic regression; the most complex model (a seven term
fifth-order model) appears slightly better than the benchmark models
along most of the ROC curve. See figure 5 for ROC curves of all
members of the essential non-dominated set.

Once again, front coverage is good on the simple models, but
sparse on the higher order models; see figure 3.
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Figure 3. Credit – Front coverage
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Figure 4. Ionosphere, Essential non-dominated set
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Figure 5. Credit – Essential non-dominated set
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