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Abstract

One of the most important bits of every search engine is
the query interface. Complex interfaces may cause users
to struggle in learning the handling. An example is the
query language SQL. It is really powerful, but usually re-
mains hidden to the common user. On the other hand the
usage of current languages for Internet search engines is
very simple and straightforward. Even beginners are able
to find relevant documents.

This paper presents a hybrid query language suitable
for both image and text retrieval. It is very similar to those
of a full text search engine but also includes some exten-
sions required for content based image retrieval. The lan-
guage is extensible to cover arbitrary feature vectors and
handle fuzzy queries.

INTRODUCTION

After several years of research the idea of content based
image retrieval (CBIR) (Eakins JISCTAP 1999) [1] (Renz
OTDGI 2000) [2] is still not established in daily life. Cur-
rently most effort in CBIR is put into closing the seman-
tic gap between simple visual features and the real im-
age semantics. The work done in this area is very im-
portant to allow untrained users to work with image re-
trieval systems. A survey about such systems is available
from Liu (Liu PR 2007) [3]. None of the systems anal-

ysed there is really capable of closing the gap completely.
Either the solutions are far too specific or require much
human attention. Liu concludes with the demand for ”a
CBIR framework providing a more balanced view of all
the constituent components”. The most important open
tasks identified are ”query-language design, integration of
image retrieval with database management system, high-
dimensional image feature indexing” and ”integration of
salient low-level feature extraction, effective learning of
high-level semantics, friendly user interface, and efficient
indexing tool” [3].

The cross-language image retrieval campaign Image-
CLEF (Clough AMIR 2006) [4] (Clough EMMIR 2007)
[5] aims to evaluate different approaches of text and con-
tent based retrieval methods. The focus is set on a (natu-
ral) language independent solution for image retrieval ex-
ploiting both textual annotations as well as visual features.
This effort also shows quite clearly the need for a power-
ful image retrieval system.

This paper introduces one approach to solve some of
the claims stated above. It describes a query language
which is designed to be reasonably user friendly and al-
lows the integration of high-level semantics and low-level
feature extraction in a single query.

Taking a look at current full text retrieval engines re-
veals the main differences to CBIR engines. Image re-
trieval inevitably contains fuzzy aspects. A search based



on image features usually produces a list of results with
decreasing similarity. In contrast, a full text search can
determine separate hit and miss lists, even if some fuzzi-
ness is added by language analysis (e.g. ignoring word
endings).

Such a language must tackle the tasks of synthesizing
simple result sets with fuzzy sets (Fagin PODS 1996) [6]
as well as keeping the final result in a maintainable size.
The latter requirement is important because every similar-
ity above 0.0 is somehow part of the hits.

At the same time, query composing in CBIR environ-
ments is often much more difficult as there are no key-
words for low-level features. The query language pre-
sented in this paper is rooted in the established area of
text retrieval and is extended by essential CBIR related
additions.

RELATED WORK

This section surveys some related research dealing with
query composing in information retrieval and different
ways of describing content.

Query Language

The Lucene Query Language (Apache Lucene 2006) [7]
is a full text retrieval language. The Lucene library in-
cludes a parser which converts a query string into a query
object. This object represents all query details and the
search engine generates the result based on it. This lan-
guage is not suitable to handle fuzzy results out of the
box, but provides a simple and clear structure. It allows
boolean and nested queries as well as the definition of
document fields. These fields hold some meta informa-
tion (i.e. title, content, author, ...) and can be used to
compose reasonably complex queries.

With the development of object-oriented DBMS
the ODMG-93 (Cattell SIGMOD 1994) [8] standard
emerged. The OQL query language (Alashqur VLDB
1989) [9] has been created. It combines SQL syntax with
the OMG object model. An interesting extension to this
language is called FOQL (Nepal ICDE 1999) [10]. This
language extension tries to capture fuzzy aspects which
are required for CBIR applications. The FOQL approach

is to attach a set of matching-methods to each stored ob-
jects. These methods are used to match any two objects of
the same kind in a specific way. The resulting similarity is
somewhere between 0.0 (no similarity) and 1.0 (identity).
The newly introduced data type is called Fuzzy-Boolean.
In addition, the result can be limited by a threshold defin-
ing the minimum similarity.

Another query language is OQUEL (Town CBAIVL
2001) [11] (Town IVC 2004) [12] which is designed to
be user friendly. It is based on a simplified natural lan-
guage and an extensible ontology. The system extracts a
syntax tree from the query to retrieve images.

Data Description
The feature vector paradigm states a plain list of several
float values to create a vector. But looking at any random
technique reveals, that features may be composed in many
different ways, containing probably complex data struc-
tures. These structures need to be mapped to the query
language.

The language MPEG-7 (Martinez IEEEMM 2002) [13]
is rather a multimedia description than a query language.
It is an emerging standard used in multimedia archives,
often containing high-level semantic information. Using
an XML based language for typed queries appears to be
very unhandy and overly complex.

A possible alternative is the minimalistic approach in
JSON. This sub set of JavaScript is an important part of
the current Ajax technology. JSON is intended to be a
simple data interchange format with minimal overhead.

METHODOLOGY
The proposed query language is based on the Lucene
Query Parser [7] which defines a common language for
full text search. It is intentionally chosen to provide be-
ginners with a simple and familiar syntax. The language
allows queries similar to those used in traditional search
engines and the parser is generated by JavaCC.

This approach tries to merge the design principles
of different languages. Some are like OQUEL (Town
CBAIVL 2001) [11] where queries are kept as simple and
natural as possible. Others like SQL define a strict gram-
mar to be highly machine readable.



There are two changes made to the Lucene grammar to
fit the requirements of an extensible feature vector based
query language: fuzzy related operators and a nested two-
layer grammar.

The previous boost parameter for terms has been ex-
tended to multiple TermParams allowing additional con-
trol of fuzzy result sets.

To provide a high extensibility the grammar is split into
two different layers.

The basic layer (see ) is parsed and interpreted by the
search engine directly. Here the grammar is predefined
and fixed. Users may specify which meta information
should be searched for by using fields. Images hold other
fields than normal text documents, typically EXIF and
IPTC information. In the near future, this information
may be replaced by the XML based XMP (Riecks IPTC
2005) [14]. Additionally, a CBIR environment provides
one or multiple feature vectors holding low-level informa-
tion about the pixels. These feature vectors can be added
by plug-ins, each one having a unique identifier which is
the field name for content based queries. The difficulty
now lies in specifying how the query feature vector is en-
tered. There are at least three different ways possible:

• ID of an image stored in the repository

• URI of a query image

• specification of the feature vector itself

The simplest way is to use an existing image for a
query (query-by-example). Images already in the repos-
itory have the prepared feature vector available. Spec-
ifying the URI of an image requires the engine to load
the image and to extract the feature vector. The most ad-
vanced and complicated way is to let the user specify a
feature vector in detail.

As a custom feature vector may contain any kind
of proprietary data, offering an all-embracing lan-
guage is not possible. Thus a second layer is added
to the query language. A Term may contain the string
<FEATURE START> [<FEATURE CONTENT>]
<FEATURE END>. The parenthesized part
<FEATURE CONTENT> is extracted by the search
engine and passed to the responsible plug-in. The plug-in
is fully responsible for parsing and interpreting this string
to return the object representation of the feature vector.

Grammar
Conjunction ::= [ <AND> | <OR> ]

Modifiers ::= [ <PLUS> | <MINUS> | <NOT> ]

Query ::= ( Conjunction Modifiers Clause )*

Clause ::=
[ LOOKAHEAD(2)
( <TERM> <COLON> | <STAR> <COLON> )
]
( Term | <LPAREN> Query <RPAREN> [TermParams]
)

Term ::=
(

( <TERM> | <STAR> | <PREFIXTERM> |
<WILDTERM> | <NUMBER> | <URI> )

[ <FUZZY_SLOP> ]
[ TermParams [ <FUZZY_SLOP> ] ]
| ( <RANGEIN_START>

( <RANGEIN_GOOP>|<RANGEIN_QUOTED> )
[ <RANGEIN_TO> ]
( <RANGEIN_GOOP>|<RANGEIN_QUOTED> )
<RANGEIN_END> )

[ TermParams ]
| ( <RANGEEX_START>

( <RANGEEX_GOOP>|<RANGEEX_QUOTED> )
[ <RANGEEX_TO> ]
( <RANGEEX_GOOP>|<RANGEEX_QUOTED> )
<RANGEEX_END> )
[ TermParams ]

|
( <FEATURE_START>
[ <FEATURE_CONTENT> ]
<FEATURE_END> )
[ TermParams ]

| <QUOTED>
[<FUZZY_SLOP> ]
[ TermParams ]

)

TermParams ::=
(
<CARAT> boost (
([ <HASH> maxCount ] [ <AT> threshold ])

| ([ <AT> threshold ] [ <HASH> maxCount ])
)

| <HASH> maxCount (
([ <CARAT> boost ] [ <AT> threshold ])

| ([ <AT> threshold ] [ <CARAT> boost ])
)

| <AT> threshold (
([ <CARAT> boost ] [ <HASH> maxCount ])

| ([ <HASH> maxCount ] [ <CARAT> boost ])



)
)

Operators
The main difficulty of combining sub results from a CBIR
system is the fuzzy nature of the results. Some simple
features with filtering character (e.g. keywords) deliver a
rather clean set of hits. But it is essential to have a a fuzzy
model for merging these with highly similarity based fea-
tures. Those results are usually a sorted list (Fagin PODS
1996) [6] (Ramakrishna ADC 2002) [15].

The approach by Fagin (Fagin PODS 1996) [6] inter-
prets results as graded sets, which are lists sorted by sim-
ilarity and set characteristics. He uses the basic rules de-
fined by Zadeh (Zadeh WSPC 1996) [16]:

• Conjunction:
µA∧B(x) = min{µA(x), µB(x)} (AND)

• Disjunction:
µA∨B(x) = max{µA(x), µB(x)} (OR)

• Negation:
µ¬A(x) = 1− µA(x) (NOT)

The text retrieval concept of boosting single terms by
any float value is adapted to the extended engine. Before
merging sub results, the similarities are boosted as speci-
fied to shift the importance into the desired direction.

An additional acknowledgement to the fuzzy nature is
the use of additional set operators to keep the results at
a reasonable size. The minimum similarity is a value be-
tween 0.0 and 1.0 and forces the engine to drop all results
below this similarity threshold. As the efficiency of the
threshold highly depends on the available images and fea-
tures, a maximum size parameter limits the result to the
specified size.

Plug-Ins
The plug-in concept of the retrieval framework described
in (Pein ICCS 2007) [17] allows the definition of any new
feature. To make such a plug-in available in this language,
only a few requirements need to be met.

The plug-in needs an identifier which is automatically
used as a term field. With this information it is already

possible to formulate queries containing an example im-
age (either by internal id or URI).

The tricky part is to develop a syntax for user defined
feature vector information embedded in a query. As fea-
tures can be arbitrarily complex, it is intended to support
a simple default language like JSON. Otherwise the em-
bedded data string of a query is forwarded directly to the
feature plug-in where it needs to be converted into a valid
feature object.

Wildcards and Ranges

Wildcards and ranges can be used to express uncertainty
or to allow the search engine to be less strict during re-
trieval. The meaning of those concepts depends on the
described feature. Some features may well benefit, but
for others they may not be required.

In text retrieval, wildcards stand for letters in a word
that don’t have to match an explicit query. In the example
case of a RGB mean value, a wildcard can express, that
a certain colour channel does not need to be considered.
For spatial features it can be useful to define regions of
interest as well as regions of non-interest.

Ranges are an intermediate concept between concrete
queries and wildcards. They are used to specify a cer-
tain space where parameters can be matched. Searching
for images with a creation time stamp is only feasible, if a
range can be specified. It is very unlikely, that the searcher
knows the exact time, especially when it is extremely ac-
curate (i.e. milliseconds). In such a case, usually a time
span is provided (e.g. “between 03/06/08 and 10/06/08”
or “within the last week”). Analogous, image features
such as the trivial RGB mean could specify a tolerance
range for each colour channel.

Unfortunately, these definitely useful concepts cannot
be fully generalized. At this point, the plug-in developer
needs to decide how to address them. Taking the RGB
means of an image, the user could specify an array like
”[36, 255, *]”. In this case the results should contain
some red and dominant green. The rate of blue does not
matter at all. Putting some more effort into the feature
abstraction, a more convenient query like ”some red and
very much green”is also possible. This lies in the respon-
sibility of the plug-in developer.



Examples
The following examples demonstrate the use of different
language constructs, where the ”keywords” field is the
only text based one.

1. IPTC keyword:
keywords:oystercatcher

2. external image, similarity at least 95%:
histogram:”file://query.jpg”@0.95

3. wavelet of three images by internal ID:
wavelet:(3960 3941 3948)

4. two histograms, maximum of 10 results each and the
first one boosted by 2.0:
histogram:3963#10ˆ2.0 OR histogram:3960#10

5. spatial histogram without the 50 most similar images
to image 190:
spatial histo:5456 -histogram:190#50

6. mean colour with embedded feature and filtering
keyword:
rgb mean:($[200, 50, *]$) +keywords:car

Example query 1 is a simple text based query based on
the IPTC meta information. It works exactly like every
common full text retrieval. The field keywords is derived
directly from the IPTC data and other fields such as title,
author or createdate are also available.

More interesting in this context are queries allowing
CBIR relevant features. The fields are picked by the fea-
ture identifier and processed in the plug-ins.

Number 2 searches for similarities based on a his-
togram plug-in that implements a feature proposed by
Al-Omari and Al-Jarrah (Al-Omari DKE 2005) [18]. An
URI to an image is specified which is used for query-by-
example. The engine loads the image and extracts the re-
quired query feature. The final result is limited to images
with at least 95% similarity.

Query 3 calls the wavelet plug-in which is an imple-
mentation of a feature by Jacobs et al. (Jacobs ACS 1995)
[19]. The query contains three internal image IDs. The
engine performs three parallel sub retrievals and merges
the three result lists by default with OR. Using the IDs
shortens the query string itself and allows the engine to

load the prepared feature vectors directly from the persis-
tence.

Because of the fuzziness in CBIR it is not clear how
many results are returned when giving a similarity thresh-
old. Dependent on the quality of the feature implemen-
tation and the repository size, many thousands of images
could have a similarity above a given threshold. This is
usually a waste of resources because users want the result
to appear in the first few hits, say the first result page.

Query 4 presents the second way to keep the result size
tight. Here the result set of each term is cut off after a
maximum of 10 results. This restricts the maximum result
size to 10 + 10 = 20 images. Additionally the first term
is boosted by factor 2, giving it a higher weight than the
second term.

Having access to multiple feature plug-ins opens an in-
teresting new field to composing CBIR queries. Differ-
ent features often mean very different result sets. The
NOT modifier in query 5 shows an example how to re-
move unwanted content from the result. First the engine
searches for the feature spatial histo, which is a histogram
with additional information about spatial colour distribu-
tion (Pein IKE 2006) [20]. As this query might return sev-
eral images which do not correspond to the wanted con-
text, a NOT term filters out the 50 highest results similar
to an unwanted result which are hopefully very similar in
the simpler histogram space.

Finally the conjunction of the two different worlds is
done by example 6. The first term searches for the content
based rgb mean. The embedded part within the brackets
is interpreted by the simple rgb mean plug-in, where the
three values stand for red, green and blue. The desired
values for red and green are defined and the blue colour
does not matter at all. Because this low-level feature is far
too simple for efficient retrieval, a second term is spec-
ified. In this example the keywords field is mandatory
(AND) and has a filtering effect. Only images containing
the keyword ”car” are allowed to be in the result.

System Design
In order to test the new language in a meaningful context,
it has been attached to the previously developed CBIR
prototype (Pein 2008) [21]. This program was lacking a
flexible interface to process complex queries. It was only
capable of processing queries containing a set of weighted
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features. Concepts such as boolean joins were impossi-
ble to formulate. Plus, the interface required the use of
some proprietary query objects. Adding a query language
opened up a range of new possibilities.

Most retrieval systems follow a simple workflow cycle
(fig. 1) (Pein CIT 2008) [22]. A successful retrieval is
performed as follows. Users submit a query to the en-
gine to trigger a search and receive a set of results. Those
results may be satisfying and the user finds the required
information. If not, the user may navigate through the re-
sults and eventually refines the previous query to trigger a
new search. In this paper, the stages from the query to the
results are examined in more detail (fig. 2).

At a very high abstraction level, a simple retrieval sys-
tem receives a query from the user, parses it somehow to
understand the meaning, gathers the most relevant doc-
uments and finally returns them. This workflow is very
common and can be offered by a generic framework,
which simply offers all the basic functionality required.
Those framework components do not have to be special-
ized. They only need to understand basic input and gener-
ate basic output. All the details and optimizing are meant

to be implemented in exchangeable plug-ins.

IMPLEMENTATION

The design proposed in sections and has been imple-
mented in Java. The prototype uses a modified version
of the original Lucene Query Parser. The parser analy-
ses an input string and converts it into the corresponding
Query object. Dependent on the terms given, the Query is
composed of different clauses, such as an array of boolean
clauses or may be even nested.

For the new parser, some amendments are required. A
block for additional term parameters and the encapsula-
tion of arbitrary strings have been added. In the current
version, the parser ignores everything between the open-
ing brackets “($” and the corresponding closing ones “$)”.
This part of the query is stored in a special sub query ob-
ject as a simple string. At a later stage, this string gets
parsed by the corresponding module to create an object
instance, that can be used for the partial retrieval itself.

Query Objects

The retrieval software works internally with well defined
query objects rather than a query string. This ensures that
the query can be easily processed and does not contain
syntactic errors.

In the Lucene library, queries are composed of differ-
ent object types. The basic class is the abstract Query.
It contains a boost parameter and either a simple Term
(TermQuery) or a nested Query. A commonly used imple-
mentation of the nested query is the BooleanQuery, which
contains a list of clauses. Each Clause instance wraps
a query and an occurrence parameter (MUST, SHOULD,
MUST NOT).

The proposed query language requires a set of addi-
tional classes to express the special needs of CBIR. Op-
posing to normal terms, the new classes are able to store
information such as URLs, IDs or a FeatureVector in-
stance. The latter needs to create the feature information
from the embedded string. To achieve this, it calls the
parsing method of the corresponding plug-in.



Parse Trees
Based on the grammar, the parser generates a hierarchy
of sub queries wrapped up in a single root query object.
By traversing the tree, the sub results can be merged ac-
cordingly. This section shows the decomposition on a rel-
atively complicated query. The images used in this exam-
ple are part of the Caltech-101 collection (Fergus CVPR
2003) [23].

(
(
histogram:"file://query.jpg" OR
rgb_mean:($[200, 50, *]$)ˆ2.0
)@0.8
-wavelet:(89 244 345)@0.9
+keywords:airplane

)#100

Verbally, this query can be read as follows:

“Find me images, that have a similar his-
togram as the sample image query.jpg OR have
a mean colour close to 200 red and 50 green.
The blue channel can be anything. Rank the
mean colour twice as high as normal. Both sub
results should have at least a similarity value of
0.8. Please remove any result, that has a mini-
mum wavelet similarity of 0.9 to the images 89,
244 and 345. Every result must be annotated
with the keyword airplane. Give me not more
than 100 results in total.”

After parsing, the query string is converted into a parse
tree that contains all of the relevant concepts (fig. 3). The
root node is represented by a Query, which is the single
data object that is processed by the retrieval core. Each
leaf is a Term, representing a partial search, which gener-
ates a sub result. The tree structure in between represents
the rules how to merge the sub results into a final one.

The search engine then traverses the tree and generates
the answer to this particular request. At this point, it is
advisable to integrate a query optimizer to reduce the re-
sponse time. In the current prototype, some straightfor-
ward query optimizing already takes place.

First, the MUST clauses are processed, then the
SHOULD and finally the MUST NOT clauses. This al-
lows for an early reduction of the search space, which is

especially of importance, if no or only a slow index is
available for certain features. Depending on the availabil-
ity of indexes, certain other term could also be pre-drawn.
The optimization strategy should always be aimed at an
early reduction of search space as well as preferring the
use of fast indexes. The strategy used in this cases uses a
strict definition of MUST and MUST NOT. If an image is
not part of all the MUST clauses or part of a MUST NOT
clause, it is removed from the final result. This approach
is considered to be a useful trade-off between a perfect
fuzzy algebra and speed optimizations.

In this case, the first term to be processed is “key-
words:airplane”. This triggers a keyword search, which
is backed by a fast and efficient index, resulting in a list
of matching images. As the parent BooleanClause is
flagged as MUST, the final results of the query can only
be amongst those sub results. Assuming, that only about
1% of the repository is related to the keyword “airplane”,
every subsequent linear search time can also be reduced
to only 1% of the otherwise total scan time.

The second branch to be processed is the SHOULD
clause on the left, that is split into a nested boolean query.

One leaf contains a UrlTerm, pointing at an external
query image and requesting a comparison based on its his-
togram. To process this part, the engine reads the image
from the URL and extracts the histogram automatically.
This search only needs to compare the query histogram
with the stored histograms from the previous sub result.

The other leaf contains a FeatureVectorTerm. The
string embedded between the “($” “$)” brackets is parsed
by the rgb mean plug-in. In this case, the string stands
for the three mean colour values red (200), green (50)
and blue (“don’t care” wildcard) of an image. Again, the
search space is drastically reduced by the first sub result.

After both terms have been processed, the sub results
are merged into a single one. Their combined similarity
must be at least 0.8, otherwise the image is removed from
the result set. There is no “best” rule to merge the sub
results. In the current prototype, the combined similarity
is calculated by determining the weighted and normalized
sum of the sub similarities. In this case, the rgb mean
branch has a weight of 2.0 and thus gains a higher impor-
tance in the merged result.

The last main branch is flagged as MUST NOT and
requires a minimum combined similarity of 0.9. All of
the three clauses contain a plain IdQuery with an IdTerm.



( ( histogram:"file://query.jpg" OR rgb_mean:($[200, 50, *]$)^2.0 )@0.8 -wavelet:(89 244 345)@0.9 +keywords:airplane)#100
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Figure 3: Parse Tree of a complex Query

They require a retrieval on the wavelet feature and use
sample images from the repository by stating the image
id directly. Again, the search space is already limited,
not only by the MUST branch, but also by the SHOULD
branch. It is only necessary to check the images contained
in the previously retrieved sub result. The sub results of
the middle branch are merged accordingly and cropped at
a minimum similarity of 0.9.

To generate the final answer, the MUST NOT results
are removed from the temporary sub result. The last step
required is to cut the sorted list after the 100 best hits.

Alternative Data Representation

The string representation of a query can be manipulated
directly by users. This query string can be edited in every
basic text editor without the need for any extended user
interface. It also allows experienced users to access every
aspect of the search engine directly.

As the query language is based on the Lucene tool kit,
it always has an object representation of the whole query.
This query object could also be created by a suitable front
end. Such a tool eliminates parsing errors, because the
query structure would always be bound to the compo-

nents.

XML The parse tree containing a query (section ) can
be directly mapped to an XML hierarchy. Plug-ins could
also specify their feature conversion into XML and back
to. This allows for consistent XML files and simplifies the
use of the MPEG-7. Below, the XML structure matching
the example parse tree (section ) is shown:

<boolean-query max-count="100">

<boolean-clause occur="SHOULD">
<boolean-query threshold="0.8">

<boolean-clause occur="SHOULD">
<url-query>
<url-term>
<field>histogram</field>
<url>file://query.jpg</url>

</url-term>
</url-query>

</boolean-clause>

<boolean-clause occur="SHOULD">
<feature-vector-query boost="2.0">
<feature-vector-term>
<field>rgb_mean</field>



<string-data>
[200, 50, *]

</string-data>
<data>
<red>200</red>
<green>50</green>
<blue>*</blue>

</data>
</feature-vector-term>

</feature-vector-query>
</boolean-clause>

</boolean-query>
</boolean-clause>

<boolean-clause occur="MUST_NOT">
<boolean-query threshold="0.9">

<boolean-clause occur="SHOULD">
<id-query>

<id-term>
<field>wavelet</field>
<id>3960</id>

</id-term>
</id-query>

</boolean-clause>

<boolean-clause occur="SHOULD">
<id-query>

<id-term>
<field>wavelet</field>
<id>3941</id>

</id-term>
</id-query>

</boolean-clause>

<boolean-clause occur="SHOULD">
<id-query>

<id-term>
<field>wavelet</field>
<id>3948</id>

</id-term>
</id-query>

</boolean-clause>

</boolean-query>
</boolean-clause>

<boolean-clause occur="MUST">
<term-query>

<term>
<field>keywords</field>
<text>airplane</text>

</term>
</term-query>

</boolean-clause>

</boolean-query>

This XML data contains the same information as the
example query string. Clearly, this format is much more
verbose than the suggested query language. Being prob-
ably less readable for humans, its advantage is the stan-
dardized format. The XML code does not require a spe-
cial parser to be processed or validated by any program.

One example of generic and specialized data represen-
tation is contained in the XML query above. The feature-
vector-term for the rgb mean plug-in shows two alter-
natives. In the generic case, the string-data is left un-
touched. This is the output generated by the main parser.
To extract the real meaning of the data string, it needs to
be processed by the corresponding plug-in. The result-
ing data tag would then contain each piece of feature data
separately.

<feature-vector-term>
<field>rgb_mean</field>
<string-data>

[200, 50, *]
</string-data>
<data>

<red>200</red>
<green>50</green>
<blue>*</blue>

</data>
</feature-vector-term>

Visual Query A clearly structured query language like
the proposed one can optionally be mapped to a visual
representation to guide the user. The resulting graphical
user interface helps to assemble queries that are syntacti-
cally correct, displays query images, provides a canvas for
query-by-example and may also support to adjust feature
plug-in specific parameters.

Figure 4 shows the visual query composer of the proto-
type, where the example query has been assembled from
multiple clauses. Every clause of the parse tree is mod-
elled by a window. Each clause window contains several
options to choose the occurrence, the added parameters,
a field name and the query type. Textual queries usually
contain a generic term with one ore multiple keywords.

Queries for CBIR can manage a query URL, a specified
feature, the id to an existing image or a canvas to draw



Figure 4: Visual Query Composer



a query image. Clause windows specifying a query im-
age can directly display a small preview image to provide
feedback what is going to be searched. Windows contain-
ing a feature description can either show the data fields
directly (e.g. red, green, blue) or a convenient editor (e.g.
a colour chooser).

TESTING

Language Features
There are only a few query languages which try to tackle
the task of merging aspects of full text and CBIR re-
trieval. These languages need to address the requirements
of fuzzy decisions between hit and miss. In section , sev-
eral important features are discussed. Below, some lan-
guages are checked against them. Additionally, the pro-
posed query language is tested against some synthetic re-
trieval tasks to evaluate its expressiveness in a reasonably
realistic environment.

Test Repository The testing repository consists of 6480
images from three different sources. Each source contains
several photographs with certain topics. The level of an-
notation for each source is varying. As the images were
from German sources, most image annotation is in Ger-
man.

The first set of 415 images contains images from the
cities of Dublin and Liverpool. There are many build-
ings and bird views as well as scenes from a football sta-
dium, without any annotation. The only textual hints can
be taken from the file names and paths.

The second set contains 5399 images and is by far the
largest part of the repository. Apart from 417 photographs
from a botanical garden and some large animals, the main
content is birds. Most images contain a bird in the centre
part and the background is dominated by water, grass or
sky. Almost every photograph contains IPTC annotation
with the name of the depicted animal. Some keywords
also denote the location where the photograph was taken.

In the third set there are 666 images from 4 different lo-
cations, Beijing, Shanghai, Dubai and the USA. The im-
ages have an average of 3 keywords describing the loca-
tion and the content. Similar to the first set, most pictures
show buildings or landscapes.

Single Feature Test Cases

To assess the retrieval quality of single features, two im-
age series from the repository are chosen. In these se-
ries there are several images with similar content as well
as some more difficult changes. Each feature plug-in is
tested by taking some of the images and afterwards preci-
sion and recall are determined on the results.

Testing Sets The first testing set contains 14 closeup
views from Highland cattle (figure 5). The images are
dominated by the typical auburn fur and some water in
the background. In human perception there are no other
images with similar content in the repository.

The second testing set containing 57 images of a
meadow pipit (figure 6) is much more challenging. More
than 50 percent of the repository images show birds. This
image set consists of 7 different sceneries. The feature
vectors should at least be able to find the images of the
same series. As none of the implemented feature vector
plug-ins is capable of identifying a small bird in the cen-
tral part of images, it is expected that all of them will get
to serious issues to find images depicting the same bird
from another series.

Queries For testing some of the images from the image
sets are taken as query. For the first set only one image
(figure 5(a)) is used, because of the relative high similar-
ity within the set. From the second set always the first
image of each series is chosen as query except from the
single one (6(b)) are used for the query. Sometimes the
first image is obviously not the best choice but these test
cases try to capture real and maybe unclear conditions.

Multi Feature Language Test Cases

In this testing series it is attempted to create queries which
are more efficient than the simple queries from section
. To allow a “natural” progress of query composing and
refining, the IDs of the other related images are treated
as unknown. Each related ID needs to be present in a
previous result set in order to be used in the next query.
Each retrieval starts with the query image.

A search by keywords would result in the correct small
subset of 14/57 images. Using CBIR on the remaining



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Figure 5: Cattle Images

(a) 6 images (b) 1 image (c) 13 images (d) 17 images (e) 8 images

(f) 9 images (g) 3 images

Figure 6: Selected Meadow Pipit Images



images would be pointless for testing. The impact of key-
words is examined in the user survey below (section ).

The basic search strategy is as follows: First the query
image is used with every basic single feature. Only the
first 50 hits are browsed for found relevant images. Start-
ing with the best performing feature, the IDs of all rele-
vant images are used in new queries. Other images found
are also used for querying. If still some images are miss-
ing, the same procedure is repeated with the other avail-
able features. The found images are then combined in a
single query and optimized for a high recall. In difficult
cases the results are browsed in depth and the approximate
ranking of the related images is determined.

If other image series with a high similarity clutter the
results, it is attempted to filter them out with a NOT term.
The final query containing all targeted images is then cut
to the minimum size possible.

User Survey
A first small-scale user survey has been carried out to
evaluate the language in the context of the related master
thesis (Pein 2008) [21]. For this survey, the same repos-
itory as described above is used. It has been carried out
with 5 testers with at least basic experience in comput-
ing sciences. The testing prototype only offered a plain
HTML page with a single input line for textual queries.
The visual query composer was not available at that time.

Each tester got a short introduction into the query lan-
guage and some technical basics of the different available
features. During the procedure the testers were allowed
to ask for further advice concerning the system abilities
and usage. It is important that the direct influence of the
test supervisor is kept as low as possible. He must not
give direct hints how to solve a task. The only support al-
lowed is to mention basic technical possibilities available
or workarounds to avoid bugs.

Tasks

The tasks demand both CBIR and keyword based ap-
proaches. The basic tasks were: retrieving images based
on a textual description or visual examples, tracking a
given example image, optimizing queries (high Preci-
sion/Recall) for a specific content and ascertain the name
of birds from given images.

The first task is starting simple to let the testers get
used to the search engine. First some blue images need
to be found. This could be easily done by using the RGB
Mean plug-in and the word “blue” or alternatively the
RGB value [0,0,255]. The second subtask is basically the
same with “white” or [255,255,255]. The two remaining
subtasks are not trivial, because no query-by-sketch mod-
ule is available. The testers need to find examples directly
from the repository and then use them for querying. It is
expected that a random search produces a suitable query
image and that the Spatial Histogram feature or promising
keywords are used.

The second task is to spot predefined images. All of
them have some keyword annotation. One image (a Chi-
nese stop sign) is very easy to find. The keywords “stop”,
“sign” and “china” all narrow down the search space dras-
tically. Additionally a search for red content can be help-
ful. The other images require to use less obvious key-
words and maybe CBIR. In one case, some background
knowledge in ornithology was beneficial. Testers know-
ing that a “great crested grebe” was depicted, could find
this image by keyword. Others need to browse a bit more
and do some CBIR.

Task 3 is similar to the previous one. The difference
is that instead of a specific image, several similar images
need to be found. The first image was one of 441 “oys-
tercatcher” images in the repository. Knowing the name
is already very helpful, but from the remaining images
the ones with the highest similarity need to be found. A
combination of keywords and one of the CBIR features
returns a nicely sorted list. The second image was much
harder to find. It shows a brown cathedral, that has been
photographed from several different angles and distances.
The keyword “liverpool” reduces the search space to 315
images. This city name could be found by recognizing the
building or by looking at the keywords of random results.

After having collected some experience with the sys-
tem, the testers are challenged to do some query optimiz-
ing in the fourth task. The first subtask to find pictures of
the Great Wall of China was trivial when using the key-
words. Alternatively a CBIR query could be composed
based on random results. The second one requests images
from a desert is more difficult, because the real keyword
was “sandy-desert” (in German “Sandwüste” instead of
the more general “Wüste”) and requires the use of a wild
card or the correctly spelled keyword. Alternatively, the



retrieval by yellow content or less specific keywords like
“Dubai” lead to success. The final sub task was to find city
skylines. The search for the “city” only returns pictures
from the “forbidden city” in Beijing. Here it is advisable
to either use known city names from the repository or by
picking random images.

The final task was a bit tricky. The testers are supplied
with a small image of a certain bird. Either they know
the name or they need to do some retrieval work. There
are several ways to find the images. This required some
kind of freestyle retrieval with no best solution or short
cut (except from knowing the bird names).

RESULTS

Language Features

Table 1 compares some query languages and lists which
important requirements are met. Each language addresses
all of the fuzzy aspects. They only differ in “comfort func-
tions”. The language proposed here lacks a user-defined
sorting and the direct implementation of high-level con-
cepts. FOQL is very expressive, but is very verbose in
comparison. OQUEL is a very high-level language and
its abilities ultimately depend on the ontology used.

Single Feature Test Cases

The results of the testing is summarized in tables 2 and 3.
Table 2 shows the recall values for a result set of 50 im-

ages. This size is chosen because it is assumed that 50 re-
sults are reasonably displayable at the same time. Some-
times a couple of relevant images still show up in later
positions, but these may be already ignored by an impa-
tient user (in fact, the user survey revealed, that single hits
are often overlooked when scrolling quickly through the
results). The query image is always at the first position
and is deducted from the recall. A recall of 1.0 means that
all expected images could be successfully retrieved. The
value 0.0 however indicates a complete failure.

Table 3 lists the similarity values of the 50th image in
the result. This value indicates how satisfactorily a fea-
ture is capable to avoid a false positive. The more images
gain a high similarity, the more difficult it is to do the final
ranking in a right way. In the end, the similarity is sim-

ply an indicator for the manner how the results should be
sorted. The quality itself is determined by the ranking.

Multi Feature Language Test Cases

In this section a possible progress of query refining is
listed. Each query image from the tests above is used as
initial query to find all the other ones from the related se-
ries. It is aimed to gain the highest recall possible with
the final query. During optimization, usually the hard lim-
itation of images has been chosen (#) to indicate the final
result set size. In a repository that is assumed to be chang-
ing, it is recommended to use the more flexible similarity
(@) restriction. Otherwise, hits may be pushed out by
new false positives.

Search for Image Series 5(a) The best results are
achieved by using the simple RGB mean feature. This
query already returns 12 of the 14 possible images among
the 50 highest ranked results. Only two images are miss-
ing. To find them, the other images found are used for
querying. With only two additional queries all 14 im-
ages are successfully retrieved, resulting in the optimized
query:

(
fv_mean:4833#40
fv_wavelet:4839#5
fv_wavelet:4843#5

)#42

Search for Image Series 6(a) The second task is trivial,
as the wavelet feature is almost perfect to solve it:

fv_wavelet:6424#10

Search for Image Series 6(c) Similar to the previous
one this image series is easily found by a single feature:

fv_stochastic:6431#37

Yet, some of the false positives can be removed by
defining some NOT terms cutting away some of the un-
wanted content. Three NOT clauses already suffice to
narrow down the result set from 37 to 21 images. No-
tably the last clause needs to be restricted to a total of 600
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Table 1: Languages Compared

5(a) 6(a) 6(c) 6(d) 6(e) 6(f) 6(g)

RGB Mean 0.85 0.0 0.83 0.13 1.0 0.0 0.0
Histogram 0.23 0.8 1.0 0.19 0.29 0.0 0.0
Spatial Histogram 0.0 0.0 0.0 0.19 0.14 0.13 0.0
Wavelet 0.23 1.0 0.83 0.13 0.0 0.25 0.0

Table 2: Single Features Recall
Recall for the first 50 hits

5(a) 6(a) 6(c) 6(d) 6(e) 6(f) 6(g)

RGB Mean 0.9939 0.9997 0.9992 0.9997 0.9975 0.9992 0.9992
Histogram 0.9936 0.9837 0.9862 0.9972 0.9947 0.9971 0.9926
Spatial Histogram 0.9943 0.9877 0.9880 0.9951 0.9969 0.9834 0.9937
Wavelet 0.7190 0.7044 0.7809 0.7569 0.7094 0.7626 0.7951

Table 3: Single Features Similarity
Similarity for the 50th rank



images. Otherwise this term would contain a relevant im-
age and thus cut it away. The others default to a maximum
of 1000 hits:

(
fv_stochastic:6431#37
-fv_wavelet:4280#1000
-fv_mean:4345#1000
-fv_wavelet:5461#600

)#21

Search for Image Series 6(d) This one is the first chal-
lenging task. For this reason, all search iterations are de-
scribed. The four available features all return some rele-
vant images but they differ. In the first iteration, the user
gets in 7 different hits in total:

fv_mean:6444 3 hits

fv_stochastic:6444 4 hits

fv_stoch_quad:6444 4 hits

fv_wavelet:6444 3 hits

Because the Wavelet feature does not add much
new content the three other features are combined by
SHOULD clause. The result is promising and contains
12 hits. Compared to the previous simple queries 6 new
images are retrieved. In this series only 5 other images are
missing:

fv_mean:6444
fv_stochastic:6444
fv_stoch_quad:6444

Playing around a bit with NOT clauses reveals more
images. This simple addition already caused a 15th image
to appear:

fv_mean:6444
fv_stochastic:6444
fv_stoch_quad:6444
-fv_wavelet:1476#1000

Some exhaustive testing with lengthy queries finally re-
vealed all 17 relevant images. Each NOT clause is first
checked for positive hits. If it contains some irrelevant

images and no relevant one, it is simply added to the
query. The new query should now generate fewer results
and still contain all previous relevant images. Else, the
NOT clause is simply cut down to a smaller size:

fv_mean:6444 fv_stochastic:6444
fv_stoch_quad:6444
-fv_wavelet:1476 -fv_wavelet:2753#50
-fv_stochastic:2765#200
-fv_wavelet:2003#800
-fv_stochastic:5154#400
-fv_mean:2588#500

Based on the retrieved images each feature is tested
with the other images for query. In this case a combi-
nation of three SHOULD-clauses proves to be highly ef-
ficient. Among the 17 hits only two false positives are
contained. The optimized and reasonably compact query
retrieves all 17 target images within 19 hits:

(
fv_wavelet:6460@0.75
fv_wavelet:6457@0.7
fv_stoch_quad:6444@0.995

)#19

Search for Image Series 6(e) Again this task is very
easily solved by a single feature, but further optimization
is possible. All 8 images are already among the first 50
results. Taking another image for querying shows that the
7 other images of the series are very closely related. The
Wavelet feature easily retrieves all of the required images
with a perfect precision. Only the initial query image can-
not be found again without big effort. To get the perfect
result set, the Wavelet feature is used to find the 7 closely
related images and the single one is directly retrieved by
id. If there would be more images similar, a feature should
be used instead:

(id:6461 fv_wavelet:6466@0.75)#8

Search for Image Series 6(f) Here the best result to
start with is achieved by the Spatial Histogram. The first
3 relevant hits are in good ranks. The other images are too
dark to be retrieved directly and the next relevant image
appears at rank 390. Assuming that the user is persistent,
he might have tracked the missing image and find its ID.



Based on this ID the remaining images are very easily
found by a single feature, in this case the Wavelet. Hav-
ing this information at hand, the final query is short and
concise. The precision is also very good and all 9 relevant
images are contained in a result of only 10 hits.

(
fv_wavelet:6469@0.8
fv_wavelet:6472

)#10

Search for Image Series 6(g) The final retrieval task
completely failed with the available features. As already
visible in the previous section , none was able to find a
single relevant image. An analysis of the result set showed
that the best ranked image was by RGB Mean at position
800. The other features performed even worse.

User Survey
The survey was carried out with 5 volunteers aged be-
tween 20 and 40 years old. A questionnaire indicates that
all of them were experienced computer users. Their ex-
pertise in digital photography and image processing was
mostly slightly below average. A remarkable result is that
all of them were very comfortable with Internet search
engines, about average with local search engines and had
almost no experience with CBIR engines. It was further
revealed in the questionnaire, that no one has a very spe-
cific knowledge of any of the images stored in the repos-
itory. Only a single person declared that he knows more
than average from China. These preconditions are quite
useful, because it is not very likely that all of the testers
succeed by only using the keyword search.

After a short training time, most testers were able to use
both textual and content aspects in their queries. Mostly
understandable features (colour mean, histogram) were
used in combination with the query image IDs and the
wavelet plug-in was often ignored. The simple rgb mean
with its 3 values was a preferred feature. In some cases
even the detailed histogram specification was tried out.
As it was not allowed to draw query images, a popular
approach was the use of random images to start with.

Most tasks were solved by the testers within less than
10 query iterations, but in some cases the available in-
formation and tools were not sufficient to ensure a quick

success. The testers requested additional tools for query-
by-sketch and complex feature composing.

Tasks

This section briefly describes the different approaches
the testers chose. Except from single constellations, the
testers succeeded in most tasks. Sometimes the search
engine returned unexpected results. The testers learned
the basic syntax very quickly.

The first two subtasks were solved by all testers in a
single attempt. Interestingly some users chose the natu-
ral language and others chose to type in the appropriate
RGB values. The remaining tasks were difficult without
the ability to submit a query image. Some testers endeav-
oured to find suitable images by keywords, but failed be-
cause of missing annotation. Finally the random search
combined with the Spatial Histogram was the most used
approach.

The “stop” sign was nearly almost found immediately
by a keyword search containing “stop” or “sign”. One
tester chose to use the RGB Mean in combination with the
changing keywords “beijing”, “china”, and finally “sign”.
He succeeded after he set the keyword clause mandatory.
Finding the second image, a lotus pond, turned out to be
very challenging. The query with the RGB Mean to find
green images returned hundreds of green images with the
target image at rank 457. No one attempted to browse the
results to this point. One person tried to filter out irrele-
vant images by keyword, but the annotation was simply
too sparse. Only the hint that it might be a plant from
china helped the testers to succeed very quickly. The
“great crested grebe” was found very quickly. Either the
testers knew the bird or they found it by a random search
followed by a direct keyword search.

The “oyster catcher” series was found by either random
search or the RGB Mean to find green images in combi-
nation with the folder name to narrow down the search
space. Finding the cathedral from different angles took
a long time. Using the RGB Mean to find the brownish
building with the blue sky did not succeed, but sometimes
it was helpful to find out the city’s name faster than by
random search. Having pinpointed a single image, it was
used for relatively successful CBIR queries.

At task 4, everybody had an immediate success in find-
ing the Great Wall of China by entering the correct key-



words. The next subtask of finding images of a desert
turned out to be more difficult. When entering the key-
words a simple “desert” was not enough (see section ).
One tester made use of wild cards and found all relevant
images. Some other ones tried to find the images by RGB
Mean and the parameter “yellow”, which not immediately
returns correct results. One user tried to alter the RGB
parameters manually. After a few queries all of the users
found the useful keyword “Dubai”. To find city images,
three users simply typed “city” and found the “forbidden
city”. Based on these images they either used different
features with an adequate query image or they used the
keyword “beijing”. The other two testers exploited their
previous results. One chose the keyword “dubai” and the
other one picked some images for pure CBIR queries.

The last task turned out to be the most challenging one.
Because no one knew any of the birds, there was no indi-
cation on how to begin. The favourite solution in all three
cases was to start with a random search. Based on images
with a promising content the testers massively used the
CBIR features. With some luck the correct bird appeared
in a result set and the name could be verified. Sometimes
the result set reduction by NOT clauses was helpful. A
captivating way to success was chosen by two users. In-
stead of giving up at this point, they used an external pro-
gram to determine the mean colour values of the desired
images and used them in a well directed RGB Mean query.

Tester Comments

The most wanted addition was tool support for query-by-
sketch or to upload example images. Also the keyword
quality was often criticized. They were often far too spe-
cific or too general to be of real use.

In general the query language was accepted due to the
prototype status of the system. However, the wish for a
more comfortable user interface was obvious.

Observations

Throughout the tests it was observed that the searcher
sometimes simply missed relevant images in the result set.
In some cases the relevant image was already visible on
the screen, but not noticed.

Concerning the available features, an aversion against
the more complicated features is obvious. Actually only a

single person used the Wavelet feature. Most testers pre-
ferred the RGB Mean for simple tasks and the Histogram
for more complex ones. The offer with the natural lan-
guage in the RGB Mean feature was generally accepted.
In two cases, the testers opened an external program to
determine the exact mean values of an example query im-
age. Only two persons attempted to enter the 12 rather
cryptic values for the Histogram.

The boost parameter was only used by a single person.
The other parameters for result set restriction were not
even tried out. This could be explained by the fact, that
in most cases, the basic functionality was sufficient. Only
the optimization task required its use, but the testers were
hardly motivated to optimize their results further.

DISCUSSION

Language Features

The language presented in this paper represents the mid-
dleware of the previously described retrieval framework
(Pein ICCS 2007) [17]. It is easily parseable and allows
composition of any query that is supported by the frame-
work. New feature plug-ins extend the language automat-
ically by adding a new field. Currently the language does
not inherently support high-level concepts. A plug-in for
semantics could surely be implemented with some effort
by collecting pre-defined queries with low-level features.

FOQL appears to be too complex and thus unsuitable
for untrained users. Nevertheless many concepts like
Fuzzy-Booleans and Fuzzy-Sets are valuable. It is pos-
sible to add any kind of feature by defining an appropriate
method for object comparison. Due to its complexity and
sorting ability the language is adequate in SQL like envi-
ronments.

A closer view to OQUEL reveals some interesting fea-
tures. The language itself has been designed to be easy
to use. Users only need to specify the desired features in
simple words (e.g. ”people in centre”) (Town IVC 2004)
[12]. It is very close to a natural language, however the
ambiguity of these requires additional attention and a well
designed ontology. Concepts of this language help creat-
ing a convenient user interface.



Single Feature Test Cases
The results in table 2 may seem confusing at the first
glance. The performance of most queries is very poor.
One reason is that there are many images in the reposi-
tory which are actually really similar to the queries but
which are not contained in the related set for evaluation.
If the query results would be judged by humans by asking
which results are acceptable, they would often perform
much better.

It is remarkable that the simplest feature of all, the RGB
mean proves to be very efficient in some cases where more
detailed ones completely failed. In return the similarity
values always remain on a very high level (table 3) leaving
not much space to avoid false positives.

Queries

Query 5(a) Starting with the cattle, this image series
contains several different images compared to the query
image. The only advantage is, that the repository does
not contain other images with semantically similar con-
tent. From an algorithmic point of view the changes of
the background are challenging. Sometimes there is blue
water visible and sometimes not. Interestingly the RGB
Mean performs very well. The impact of the blue wa-
ter is too small to cause trouble. Also the amount of this
brownish shade of red seems to be not too prominent in
the database.

The Spatial Histogram is very weak in this case. Only
very few images of the relevant part are actually com-
posed similarly. While three quarters on the left side are
dominated by the animal, the right margin is dominated
by water. Yet many greenish or brownish images with
a brindled texture have been retrieved. The impact of
colours should have been higher.

Query 6(a) In this case the Wavelet can play out its
strengths. Every single image has been found, even if the
lighting and the waves on the water changed. The feature
vector seems to be very robust against these changes. The
Histogram also performed very well, but it missed out the
image with the strongest change in lighting. The two other
features seem to have stumbled over the lack of difference
in the similarity. Both ranked other images way too high.
This query is not very specific about the bird in the cen-

ter. Instead, most of the image is featureless background
showing a water surface. Taking the Spatial Histogram,
about 40 results in the first 50 hits actually show birds
surrounded by water.

Query 6(c) Here three of the four feature vectors were
obviously suitable. They are very robust against the slight
changes in the images. Especially the Histogram feature
was able to find all relevant images. The only feature with
not a single hit is again the Spatial Histogram. Most of the
retrieved results contain much blue and a darker, brown-
ish central part. Again the ranking is blinded by the other
possible matches. The modifications in the image compo-
sition seem to be too strong to be caught.

Query 6(d) At this point the retrieval gets wrong with
all four features even if each one is able to find some of
the related images. Each feature actually finds different
images of the targeted ones. For the Spatial Histogram the
shifting perspective remains the main problem. In general
the image colours from many images are similar.

Query 6(e) The bird sitting in the green grass is a very
captivating query. The image is dominated by the grass
and with a closer look the grass pattern of the query im-
age is indeed different from the other ones. Taking this
into account it is not very surprising that features focus-
ing on the spatial information fail. In this case the Wavelet
feature is the only one with no results. The RGB Mean
obviously benefits from the fact that most images contain
different shades of green.

If another image of the series is selected for query, all
features are capable of retrieving most images correctly.

Query 6(f) This series again contains two differently il-
luminated sub series. In the query one of the lighter set
is used. Under those conditions the most detailed features
Spatial Histogram and Wavelet are at least able to pick
the correct sub series. The two simpler features fail be-
cause they rank too many wrong images too high. In this
case a feature robust to the change of lighting seems to be
appropriate.

Query 6(g) The last query is indeed very challenging.
None of the feature plug-ins was able to find even a single



match of the series (figure 7). In the human perception
these three images are actually quite similar, but the im-
plemented features obviously did not capture the relevant
information to achieve good ranking results.

Conclusion

The analysis of the different features acknowledges that
each feature vector has certain strengths and weaknesses.

The remarkably good performance of the RGB Mean
in special cases is surprising. At least it is very robust
against several changes in the image composition as long
as the colour does not change very much. Of course this
feature gets very weak as soon as there are other images
with similar colours.

The lighting of the scene has a visible impact on the
retrieval. Under these circumstances a feature with a high
robustness against it is required. It should be based on
shapes or maybe also wavelets without colour informa-
tion. Conceivably also a region based approach would be
beneficial in many cases.

Multi Feature Language
Testing the multi feature ability revealed many advantages
compared to the single feature search. Nevertheless there
is still much work to do.

Using the query language with boolean clauses some-
times helps to improve the result. Especially searching for
the third bird series (fig. 6(d)) was much more efficient by
using three SHOULD clauses with different features. Of
course the following optimisation effort by adding sev-
eral NOT clauses does not seem to be very realistic in
daily use, but it showed that a directed filtering may in-
deed help. It needs to be pointed out that it is advisable to
use different features for NOT clauses to avoid that cor-
rect hits are removed.

Another issue when combining two features is the dis-
crepancy of similarities. The normalisation to a the range
from 0.0 to 1.0 is only part of the solution. In addition the
calculation needs to be calibrated to be efficient. Some
features return many results with a similarity above 0.99
(especially RGB Mean), while others have a much lower
similarity even for images from the same set. The Wavelet
implementation often returned similarities of about 0.75.
Merging the two subsets is very inefficient because the

less distinctive features are dominant. Altering the boost
for single terms can be used as a workaround to reduce
the problem.

The effort of constructing a well performing query may
be too high in many retrieval scenarios if the user only
wants to find a certain image. In other scenarios, the opti-
mised query can be seen as some kind of classificator for
a certain type of images.

Retrieval Hints

Using the advanced capabilities of the query language re-
quires deeper understanding and some experience with
the underlying ranking system. For this prototype some
default techniques should be used.

If a fuzzy retrieval is performed, the clauses in a
boolean query should be used normally, i.e. they are best
joined by SHOULD. This ensures that no relevant docu-
ment is cut away from the result set.

Having a more specific query with a high separability
between hit and miss, the MUST clause is helpful to effi-
ciently restrict search space.

Finally the MUST NOT clause needs to be used care-
fully. It is useful for removing a certain image series com-
pletely from the result set, if it is annotated and the wanted
results are not. Using it for a fuzzy search term may be
dangerous, because all of the documents contained in the
sub result are removed. In this case the size of the MUST
NOT clause should be restricted by appropriate parame-
ters.

Recommended Tools

Optimising queries is already possible with the current
user interface but it is a tedious task. Some additional
tools seem to be beneficial.

It should be possible to mark all desired images. Then
the engine may check whether single documents are miss-
ing when performing a refined query. Especially when
adding MUST and MUST NOT terms, a warning message
could be generated.

Especially for MUST NOT clauses it might be helpful
to see a preview which documents are going to be filtered
out. This helps to tune the restriction parameters and to
control the size of the filtered out documents.



(a) (b) (c)

Figure 7: Meadow Pipit Series 6

In a productive environment the similarity could be
spread by a power-law function analogous to the gamma
correction known from image processing. Based on a
set of reference images the parameters could be tuned to
achieve a sound calibration.

User Survey
In general the testers behaved as expected and solved the
tasks. Additional knowledge of certain image content
(e.g. bird names) sometimes sped up the retrieval dras-
tically. Where no or insufficient annotation was available,
the search took much longer.

Some of the main critics were actually intentionally
built into the repository. Especially the demand for bet-
ter keywords clearly shows that a sound annotation is a
very important factor for retrieval systems. Extending the
current keyword search to a more powerful semantic en-
vironment like topic maps could boost the quality. An
internal substitution mechanism of very specific words to
more general ones could be the first step.

What needs to be done as soon as possible is to create
a simple user interface where queries can be easily com-
posed and images can be uploaded. Also an integrated
drawing tool seems to be beneficial. Especially the fea-
tures which are difficult to understand could profit by a
stronger integration and by hiding the complexity.

Further the testers had almost no problems in under-
standing the query language and the boolean operators.
During the first testing sessions a small bug in the rank-
ing system caused strange effects. Fortunately a simple
workaround in the query was enough to avoid serious
problems and the bug could be fixed soon. The three dif-
ferent operators MUST, SHOULD and MUSTNOT were
accepted by all testers.

All testers are quite professional computer users and
have some experience in searching. But no one had expe-

(a) Original Image (b) Drawn Query Image

Figure 8: Query-by-Example

rienced a CBIR system before and the user interface was
very basic. Keeping that in mind, this is still a remarkable
success for the query language.

Addendum At the time of the main survey, the user
interface only consisted of a simple HTML web page.
Queries had to be typed manually into a single text field.
Many problems were caused by syntax errors. In the be-
ginning, it usually took a couple of attempts to formulate a
valid query. After a while, they got accustomed to the lan-
guage and were able to create more complex ones. This
quick learning was surely affected by the fact, that most
testers were used to programming languages.

In the current prototype, a visual query composer has
been added. For evaluation purposes, a testing person
with no programming experience performed the same
survey with the new interface and the ability to upload
drawn query images. Due to the fact, that there was only
a single tester, this second survey was absolutely non-
representative. Nonetheless, it indicated, that the visual
composer can be a helpful tool. The tester clearly pre-
ferred the visual composer to the plain text field but still
understood the language itself. The new functionality to
specify an external query image was considered helpful.
In one case, the drawn query 8(b) was good enough to



retrieve the requested image 8(a) at the first position.

CONCLUSION
Achievements The proposed query language has a sim-
ple structure and is very similar to a full text search en-
gine while also allowing fuzzy terms. Further it is easily
extensible and allows arbitrary constructs for individual
features. Complex queries are possible but not necessary,
giving experts the chance to fine tune all parameters as re-
quired. Normal users could either enter simple queries or
generate them with a graphical user interface.

One interesting feature of boolean queries is the ability
to reduce the search space. Setting the occurrences of the
clauses restrictively, it provides a way to cut the retrieval
time drastically, even if the CBIR terms require a linear
scan.

Further the language can be easily mapped to machine
readable formats like objects or XML.

Problems Remaining Providing a basic parser like
JSON only simplifies the low-level query information. To
support higher abstractions it is necessary to fully under-
stand the feature itself, which is impossible for a generic
language. For this reason, keeping the language simple is
the task of the feature developers. They need to design ap-
propriate sub languages which contain all feature specific
information and remain as readable as possible.

Another issue is the naming of feature vector based
fields. Currently the prototype compares each field name
in the query with the list of available feature plug-in iden-
tifiers. If the field name does not match a feature iden-
tifier, the term is handled by the underlying Lucene en-
gine, executing a “classical” full text search on the field.
Otherwise the term is forwarded to the corresponding fea-
ture plug-in. Having overlapping feature identifiers, basic
search fields could be hidden. It is necessary to formu-
late naming conventions like reserved words or a prefix
for each feature identifier.

Future Work Unlike FOQL/SQL the language does not
support user defined sorting like ORDER BY but sorts re-
sults by an overall similarity. It is to decide whether this
extension is relevant for retrieval issues or not.

Depending on the combining functions and feature vec-
tors used, query processing can be sped up drastically. A
heuristic approach to query optimizing has been evaluated
by Ramakrishna (Ramakrishna ADC 2002) [15].

The currently implemented indexing structures for the
plug-ins are merely a proof-of-concept. A set of generic
indexing structures (such as for multidimensional vectors)
is planned to support standard types of features directly.

Another crucial topic is the merging strategies. Es-
pecially for iterative search, additional work needs to be
done. Until now, the engine always returns the optimal re-
sult by checking all features and keeping the whole result
in the memory. An approach to get page-wise additional
results as requested is planned.

The query language proposed in this article does not
yet support query-by-example directly. This requires to
encode pixel images in a string, which may be done by
mime encoding.

The support of high-level concepts is not realized yet.
This could be a feature of the language itself by introduc-
ing constructs like define in FOQL which substitute cer-
tain terms by a pre-defined low level term. Alternatively
the retrieval engine itself could be extended by high-level
plug-ins which map semantics to predefined low level re-
quests. Developing such feature plug-ins is a very com-
plex task. A lot of testing is required to capture meaning-
ful feature vectors information which represents seman-
tics.
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