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Abstract. A hierarchical self-organising neural network is described for the 
detection of unusual pedestrian behaviour in video-based surveillance systems. 
The system is trained on a normal data set, with no prior information about the 
scene under surveillance, thereby requiring minimal user input. Nodes use a 
trace activation rule and feedforward connections, modified so that higher layer 
nodes are sensitive to trajectory segments traced across the previous layer. Top 
layer nodes have binary lateral connections and corresponding “novelty 
accumulator” nodes. Lateral connections are set between co-occurring nodes, 
generating a signal to prevent accumulation of the novelty measure along 
normal sequences. In abnormal sequences the novelty accumulator nodes are 
allowed to increase their activity, generating an alarm state.  

 
 
1   Introduction 
 
To help CCTV surveillance operators maintain adequate attention levels, the next 
generation of automated visual surveillance systems will be attention-focussing filters 
that restrict events presented to the operator to those that fall outside of some 
definition of normality [1]. The novelty of an observed trajectory can be measured by 
building probabilistic descriptions of the relationship between trajectory segments [2], 
[3]. Neural networks have been used to create distributions of full length trajectories, 
or partial trajectories of significant length, where trajectory segments are weighted 
relative to their temporal position in the sequence [4], [5]. 

 The system described in this paper uses a hierarchical network of self-organising 
layers to represent trajectory segments, and a top layer of nodes with binary lateral 
connections and novelty accumulator nodes to measure the novelty of sequences of 
trajectory segments. Rather than requiring the completed trajectory to be submitted to 
the network, novelty is measured as trajectories are traced across the input layer, so an 
alarm can be generated while the event is occurring. 

The neural network is one component of a hybrid system, which uses a temporal 
low-pass filter to construct a background image, and segments moving objects by 
background differencing. Existing objects are assigned to the segmented connected 
components by a minimum-distance match across feature vectors. Short-term novelty 
such as local erratic motion is detected by a self-organising map [6], which operates 
alongside the network described in this paper, which detects long-term novelty. 
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2   Hierarchical Self-Organising Network Structure 
 
Self-organisation in a hierarchical structure is the basis for many powerful models, 
from the strictly computational [7], [8], to those that model specific biological 
networks [9], [10]. Our basic architecture is shown in figure 1.  

Each node uses a trace activation rule, which was first hypothesised as a means by 
which the higher visual cortices may learn object invariance [11], and was used to that 
effect in [10] for learning invariant recognition of objects subject to spatial 
transformations. The feedforward nodes have overlapping receptive fields, except in 
layer 1, where the nodes simply partition the 2D image plane into fixed width cells. 
The final layer nodes have modifiable binary lateral connections and novelty 
accumulator nodes. 
 

 
Fig. 1.  General architecture, with trace activation illustrated as a decrease in greyscale value of 
nodes participating in the trace (for clarity, only a subset of nodes are shown) 

 
2.1   Learning 
 
Training is partitioned such that modification of feedforward connections to layer k is 
completed before training begins at layer k+1. Subsequently, lateral weights between 
top layer nodes are modified to reflect normal co-occurrences of top layer nodes.  

The object tracker passes the centroid of the tracked object to the first layer of the 
hierarchical network. The activity of layer 1 nodes signals the recent presence of the 
tracked object within their receptive fields by the following activation rule: 
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Where xi is the activity of first layer node i, γ is the trace rule decay constant, 
[r(t),c(t)] is the centroid of the tracked object at time t and Ri is the receptive field. 
Activity of nodes in higher layers is calculated as follows: 
 

                                                 �
∈

=
iRj

jiji txtwta )()()(                                                (2) 

 

CCTV 
image 

Layer 1 
Layer 2 

Layer 3 



 

 

                                   
�
�
�

<−
=

=
)1(      otherwise *)1(

))((max)(       1
)(

γγtx
tata

tx
i

nni
i

                                       (3) 

 

Where ai is the weighted sum of the inputs to node i, Ri is the receptive field of node i, 
xj is the activity of input node j, wij is the synaptic weight between node j and i, xi is 
the trace activity of node i and γ is the decay constant. The winning node has its 
activity set to 1, while all other node activities decay according to the trace rule (1).  
The localised receptive fields and trace activation allow nodes to integrate inputs 
across a small spatio-temporal window. 

Learning only occurs at the winning node at each iteration, and follows the general 
Hebb rule for synaptic modification [11]. In general, 
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Where xi is the post-synaptic activity, xj is the presynaptic activity and α is a 
learning rate. The sum of the weights impinging on a post-synaptic node is 
normalised to 1. Learning “chunks” normal trajectory segments into progressively 
larger segments at higher layers. Synaptic modification is completed in layer 2, before 
learning begins in layer 3. 

Each layer 3 feedforward node has a corresponding “novelty accumulator” (NA) 
node, which is silent during learning, and is used in novelty detection. Each layer 3 
node has binary lateral connections to all NA nodes in the layer, as shown in figure 2. 

 

 
 
Fig. 2.  Inhibition and lateral excitatory connections at the top layer of the network 
 

The lateral binary connections are modified when feedforward learning has been 
completed. With lateral weights set initially to zero, the training set is submitted to the 
feedforward section of the network, which produces sequences of winning nodes at 
the top layer. Binary lateral connections are set, subject to an ordered co-occurrence 
rule, shown below: 

                                                 
��

�
�
�

−

>
=

otherwise  )1(
][        1

)(
tl

tl
ij

ji
ij

ττ                                           (5) 

Where lij is the binary weight between pre-synaptic node j and post-synaptic node i, τj 
and τi are the onset times of pre- and post-synaptic activity. A connection is set if the 
onset time of the post-synaptic node activity occurs after the onset of pre-synaptic 
node activity, during a normal trajectory. Therefore, the binary weights will be set 
between any given node and any other nodes that have followed it in any trajectory in 
the training set. The binary connections give a simple indication of the co-occurrence 
of top layer nodes subject to an ordering constraint. 
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2.2   Novelty Detection 
 
To classify the observed trajectory, the NA nodes at the top layer are switched on and 
activity traces are propagated through the network. The winning node at the top layer 
has its activity set to 1, and the non-winning node and NA node activities are 
calculated as follows: 
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Where ak is the activity of top layer node k, nk is the corresponding NA node, i is the 
index of the winning node and ∆n is an arbitrary non-zero value. The NA nodes are 
reset at the beginning of every new trajectory. 

The winning node i sends a signal through the binary lateral connections to retard 
the increase of NA node activity at nodes that are expected to follow in the sequence. 
An unusual trajectory will produce combinations of nodes dissimilar to sequences in 
the normal training set, and some NA nodes will not receive a retardation signal 
through the lateral connections, allowing them to increment their activity (eq. 7). 
Hence, at each time step, the value of the NA node corresponding to the winning node 
gives a novelty measure of the current point in the sequence. 

It should be noted that the number of top layer nodes active in a sequence is 
relatively small. Due to the similar widths of the convergent receptive fields at each 
layer, a node in the top layer can receive a signal from a large area of the input. The 
progressive “chunking” of trajectory segments that occurs as we progress higher up 
the network means that, at the top layer, an entire sequence may be represented by as 
few as 4 or 5 nodes. 

 
3  Training and Results 
 
The network structure and list of learning parameters are shown in table 1. The 
network was trained with 311 normal trajectories, recorded from a CCTV scene over 
a period of five days. A human operator examined the data set to remove any unusual 
trajectories generated by tracking failure or genuinely novel behaviour. A set of 20 
normal trajectories and 16 unusual trajectories were obtained for testing. 

The classification results are shown in table 2 and a selection of trajectories are 
shown in figure 3. All unusual trajectories were correctly classified, three examples of 
which are shown in figs. 3a-c. Figure 3a illustrates the unusual occurrence of a 
pedestrian leaving one vehicle and entering another, while figs. 3b and 3c are novel 
due to the co-occurrence of trajectory segments never observed in the same sequence 
during learning. 

Figs. 3d-f show the three false positives. Upon examination of the normal test set, 
the trajectory in fig. 3d was found to have no similar trajectories among the training 
data, due to pedestrians typically favouring a more direct route out of the car-park 
(towards the bottom left of the surveillance image). Figs. 3e and 3f show trajectories 



 

 

assigned to the normal data set, but which nevertheless show high curvature not found 
in any other normal examples. 

 
Table 1.  Network parameters.  Note: Training only occurs at the fan-in connections to layers 2 
and 3, layer 3 does not need an activity trace and layer 1 receptive fields are non-overlapping 
 

Layer, 
n 

Layer 
Size 

Receptive 
field width 

Trace 
decay, γn 

Learning 
rate, αn 

Training 
epochs 

1 72 x 54 9 (pixels) 0.8 —— —— 
2 23 x 32 11 (nodes) 0.8 0.01 100 
3 7 x 12 11 (nodes) —— 0.008 100 

 
Table 2.  Classification results.  Note: The 17 correctly classified normal trajectories are not 
shown, i.e. trajectories with no novel points 
 

 Classification 
Data Normal Unusual 

Normal 17 3 
Unusual 0 16 

 

(a) (b) (c)

(d) (e) (f)
 

Fig. 3. Trajectories with points classified as normal (white) or unusual (black). White arrows 
indicate direction of motion 

 
4   Discussion 
 

As described in section 2.2, a “retardation” signal through the binary lateral 
connections prevents the NA nodes which correspond to normal sequences of winning 
nodes, from accumulating non-zero activity, which is the measure used to classify 



 

 

trajectories as novel. Due to the converging feedforward receptive fields and relative 
sparsity of top layer activation, the generality of the “expected” sequences expressed 
by the binary lateral connections is quite broad. In fact, the system was able to 
correctly classify a normal test set, previously unseen by the network. 

The main advantage of this system compared with other “global” novelty detectors 
is the continuous nature of the classification, it is not necessary to wait for an entire 
trajectory, or a significant portion, to be completed before it is submitted for 
classification. This is important for surveillance applications where crime prevention 
requires alarm reporting as the event is developing. The NA nodes effectively express 
the consistency of the current node with preceding nodes in the sequence, with the 
binary lateral connections giving an indication of an “expected” forward path that 
may be taken across the top layer. 

The misclassified normal trajectories shown in table 2 highlight one of the main 
problems with self-organising systems, that of sensitivity to the sample distribution of 
the training data. When such false positives are encountered, the trajectory may 
simply be added to the normal training set and the system retrained. Future work will 
address such issues, particularly the matter of incremental learning, so that previously 
unseen normal behaviour can be learned without needing to retrain the entire network. 
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