
Training Feedforward Neural Networks using Orthogonal Iteration of
the Hessian Eigenvectors

Andrew Hunter

Department of Computing and Engineering Technology

University of Sunderland, St+Peter’s Campus, Sunderland, Tyne and Wear, England.

Andrew.Huntcr@sundcrland.ac.uk

Introduction

Training algorithms for Multilayer Perceptions optimize the set of Wweights and biases, w, so as to minimize au
error t%nction,E, applied to a set of N training patterns. The well-known back propagation algorithm combines an
efficient method of estimating the gradient of the error function in weight space, AE=g, with a simple gradient
descent procedure to adjust the weighb, Aw = –qg. More efficient algorithms maintain the gradient estimation
procedure, but replace the update step with a faster non-linear optimization strategy [1].

Efficient non-linear optimization algorithms are based upon second order approximation [2]. When sufficiently
close to a minimum the error surface is approximately quadratic, the shape being determined by the Hessian matrix.
Bishop [1] presents a detailed discussion of the properties and significance of the Hessian matrix. In principle, if
sufficiently close to a minimum it is possible to move dwectly to the minimum using the Newton step, - K1g.

In practice, the Newton step is not used as K1 is very expensive to evaluate; in addition, when not sufficiently close
to a minimum, the Newton step may cause a dkastmusly poor step to be taken. Second order algorithms either build
up an approximation to H-l, or construct a search strategy that implicitly exploits its structure without evaluating iu
they also either take precautions to prevent steps that lead to a deterioration in error, or explicitly reject such steps.

In applying non-linear optimization algorithms to neural networks, a key consideration is the high-dimensional
nature of the search space. Neural networks with thousands of weights are not uncommon. Some algorithms have
0(W2) or O(#) memory or execution times, and are hence impracticable in such cases. It is desirable to identify
algorithms that have limited memory requirements, particularly algorithms where one may trade memory usage
against convergence speed.

The paper describes a new training algorithm that has scalable memory requirements, which may range horn O(W)
to O(W2),although in practice the useful range is limited to lower complexity levels. The algorithm is based upon a
novel iterative estimation of the principal eigen-subspace of the Hessian, together with a quadratic step estimation
procedure.

It is shown that the new algorithm has convergence time comparable to conjugate gradient desceng and maybe
preferable if early stopping is used as it converges more quickly during the initial phases.

Section 2 overviews lhe principles of second order training algorithms. Section 3 introduces the new algorithm.
Second 4 discusses some experiments to confirm the algorithm’sperformance; section 5 concludes the paper.

Overview of Second Order training concepts

Second order training algorithms are based upon a local quadratic approximation of the error surface [21.Given a
quadratic error function, the error surface has hyper-ellipsoid contours of equal error. The axes are aligned with the
eigenvectors of the Hessian, ej, with the length of each axis inversely proportional to the comespon~lng eigenv~ue,
~, Gradient descent is unacceptably slow since the grtilent vector, -g, tends to point across the hyper-ellipsoid in
the direction of axes with large eigenwdues, and convergence speed is limited by the condition number of the
Hessian, & /Aw. In contrast to the gradient vector, the Newton direction, –Hg, points directly to the minimum,

0-7695-0619-4/00/$10.00 (C) 2000 IEEE
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/55643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Quasi-Newton methods [3] explicitly build up an approximation to the inverse Hessian and line search in the
direction of the estimated Newton step. Quasi-Newton algorithms are very effective, but have 0(W2) memory
requirements. This sugges~ using approximations that require less storage. For example, the Limited Memory
Quasi-Newton algorithm uses only O(W)storage but maintains a relatively poor approximation [1]. Saito and
Ryohei[4]recentlysuggestedamodificationthatallowstheamountofmemoryusedintheapproximationtobe
seated arbitmrily.

Conjugate gradient methods conduct a series of line searches along “non-interfering” directions that are constructed
to exploit the Hessian structure without explicitly storing it; they consequently have O(W) storage requirements.
However, they tend to be somewhat slower than Quasi-Newton,

Moller [5] suggested a modified conjugate gradient descent algorithm that exploits an interesting face the line
search is used to calculate the step length, for which there is an analytic formula involving the Hessian. The Hessian
enters this formula only in the form Hdj.An efficient modification of the Back Propagation algorithm, the %{.)
operator technique [6], calculates the product of the Hessian and any vector in O(W)operations, without having to
explicitly store or evaluate H. Moller uses this to generate a step size in a single operation, avoiding the line search.

The EQUAL algorithm

The algorithm described in this paper uses quadratic estimation in a very direct way. To introduce it, it is helpful to
discuss Fahlmarm’sQuick Propagation [7] algorithm.

Consider optimization of a quadratic function in one dimension, w. Evaluate the gra&ent goat point wO,then move a
smatl distance AWO(typically using the gradient descent formulation, –hgo) and evatuate a second grtilen~ g], at
WZ=WO+AWO.By linear interpolation of the gradients, the minimum is found at w1+AwI,Dwj=AwO.gJ(go-gJ.

This formula can be modified to produce an iterative update step for minimization of a non-linear function, as
follows: Awi=Awi.l.gi(gi-~–gi). Once sufficiently close to the minimum, this formula converges extremely quickly,
although some additional checks are required to prevent numerical problems on a poorly behaved curve.

In quick propagation, the formula is applied separately to each weight in the neural network, amounting to an
assumption that the weights are independent (i.e. that the principal axes of the hyper-ellipsoids of the error surface
are aligned with the weights). This suggests modifying the algorithm to operate along the eigenvectors, rather than
along the weights. The eigenvectors could in principle be calculated using standard techniques such as Householder
reduction and the QR algorithm [8]; however, this requires O(w) operations and 0(W2) storage.

The approach taken in this paper is to iteratively estimate the leading subset of the eigenvectors. The size of this
subset is user-configurable, and can reflect available memory. The quick propagation formula is applied along the
axes of this estimated eigen-subspace, and a separate step is made in the orthogonal subspace.

The estimated eigen-subspace is calculated using the Orthogomd Iteration technique [8]. An initial estimate is
formed using the original gradient, go,as the first eigenestimate, eo,with subsequent eigenestimates el,. .e, formed
using the standard Gram-Schmidt orthogonalization procedure with the standard unit vectors, uj. On subsequent
iterations, the estimated eigenvectors are multiplied by the Hessian, then re-orthogonalized using Gram-Schmidt.
The Hejarecalculated using 9({.} operator technique [1,2,6].

Orthogonal iteration isolates the eigenvectors corresponding to the kwgesteigenvalues: that is, the eigenvectors
aligned across the narrow part of the hypcr-ellipsoid. These are precisely the directions that most limit the search
step size, and so isolating even one can significantly improve convergence speed. Al first the approximations will be
relatively poor, and as the Hessian changes on anon-linear error surface, they may take time to settte down.
However, an arbitrary rotation of the original axes does not cause a deterioration in quick propagation’s
performance, so we can expect the algorithm at least to match that level of performance, even before the
eigenestimates are stabilized.

As with atl second-order algorithms, poor steps maybe generated. A simple model-trust procedure is therefore
applied the step generated by the algorithm is accepted only if it causes a reduction in the error; otherwise, a
standard gradient descent step (with a low learning rate) is substituted. The algorithm (call EQUAL, for
Eigenvector-based QUAdratic Learning) is described in detail in figure 2. The Gram-Schmidt orthogonalization
procedure is described in any introductory linear algebra text(e.g.[91).

0-7695-0619-4/00/$10.00 (C) 2000 IEEE
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)

Terms

Aw(t)
Aw(t)E,Aw(t-w
Al%’(tp[ei]

~
g(t)
Eb(ej]

Uj

CVi,Vj>

GSN(E)

The weight update vector at time t.
Weight update in/orthogonal to eigen-subspace
Component of AW(,)Ealong vector e,
The learning rate to kick off search, =0.01
The gradient of the error function at time t
The set of V“eigenestimate” vectors
A standard unit vector (1 inj’th component Oin others)
The dot product of two vectors
Apply the Gram-Schmidt procedure to E, then normalize all ej

I First iteration I
Aw[o) = –Izg[o)

el = –g(o) ej=uj, Vl<j SV
E = GSN(E)

All other iterations

E = GSN(EH) calculateEH using 9?{.}, each ej

Aw[,)~[ej] = QP(c Aw(,_L)~,ej>,< g(,.l)~,ej >,< g(t)~,ej >) Aw(t)~=~Aw(,).[ejl
~

Aw(f-l)El =Aw(t_,) -~< Aw(t.,),ej ~j
J

EL!(t-l)EL = !J(,-l)E – , < g (t-l) y Je.>ej

g(,)fl= g(,)E-~<g(t),ej Yej

1°uick-mo~a~ation stet) I

I lAw(i-l)g(f-:%‘tieWise
Figure 1: The EQUAL Algorithm

0-7695-0619-4/00/$10.00 (C) 2000 IEEE
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)

Experiments

The algorithm has been tested on two network%The first is for Fischer’sclassic Iris data set, with Sepal Length
omitted. The network has three inputs, two hidden units and three outputs: a total of 17 weights (biases included);
there are 150 cases. The second is for Sigillito’sIonosphere problem [10]. It has 33 inputs, 15 hidden units and one
outpu~ a total of 477 weights; there are 351 cases. Logistic activation functions and sum-squared error function
were used: all inprm were normalized into the range [0,11.All cases were used for training with both data sets and
no cross-verification was performed, as we are purely interested in optimization speed, not prevention of over-
fitting.

The standard quick propagation and conjugate gradient descent algorithms were used a benchmarks. Versions of
EQUAL were run with the dimension of the eigen-subspace set to 1,5 and 17 (in the case of the first problem, the
last of these implies a full eigen-decomposition of the search space). Each algorithm was executed twenty times, and
the results shown are the mean across these runs. As any of the algorithms may converge to significantly inferior
solutions on some occasions, up to two test runs were omitted from each average. Although insufficient runs were
conducted to reach a reliable conclusion on the issue, conjugate gradient decent and EQUA.IWseem to be more
prone to hit local minima than the simpler algorithms.

The computational requirements of the algorithms are best expressed using the number of propagations, expressed
below as n props. Executing a network on each patterns costs one prop, and evaluating the gradient requires two
(one forward and one backward). A single prop has O(WV)cost.

An iteration of quick propagation requires 2 props. An iteration of conjugate gradient descent has variable
requirements, depending on the length of the line search: the average is 12 props per iteration.

An iteration of EQUAL requires 2Vprops (the gradient calculation ca be combined with the first X {.] operator
application). There is also an overhead in the application of Gram-Schmidt. This has O(W2) costs, and hence
becomes significant unless V2<c N. In both the test problems, which have a relatively small number of cases, this
implies that Gram-Schmidt contributes marginally to the requirements of EQUALIT,and can be ignored for
EQUAL5and EQUAL1,The figures used are 2 props/iteration, 10 props/iteration and 37 props/iteration for
EQUAL1,EQUAL5and EQUALITrespectively.

Figure 2 shows the performance of the algorithms on the Iris test set. Initial convergence speed is faster with the
simpler algorithms, with EQU-% being particularly effective. Terminal convergence is superior in the conjugate
gradient descent and EQUALU algorithms, with quick propagation proving noticeably inferior to the others. In the
mid-range, the EQUAL1 and EQUAL5algorithms develop a noticeable lead on the others.

0.55

0.45

0,35

0.25

0.15

0.05
0 400 800 1200 1600 2000 2400 2800 3200 3600

Number of Propagations

Figure 2: Algorithm performance on Iris data set

— EQLJAL1

--- EQUALS

EQUALI 7

--- CGD

--- QUICKP

0-7695-0619-4/00/$10.00 (C) 2000 IEEE
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)

EQUAL1 EQUALS EQUA147 CGD QuickProp

0.0943 0.0947 0.0933 0.0923 0.0990

Table 1: Average final error after 4000 props, Iris problem

The results indicate that the performance of EQUAL1and EQUALSis superior to that of quick propagation. It is also
comparable with that of conjugate gradient descent, although somewhat inferior during terminal convergence.
However, we note that it is common practice to halt training algorithms before full minimization on the training set
occurs, as this commonly leads to over-fitting, and EQUAL’s fast early and mid-range convergence coincides with
the stage in tminiug when halting is likely. In practice, EQUAL’s convergence speed maybe better than that of
conjugate grfllent descent. The results on the Ionosphere data set were comparable.

Conclusion

The paper describes EQUAL, a novel second order training algorithm for feedforward neural networks. The
algorithm iteratively builds up an estimate of the leading eigen-subspace of the Hessian matrix, by applying the
X{. } operator method to perform the orthogonal iteration algorithm. A simple quadratic estimation procedure is then
applied along the axes of the eigen-subspace. The standard quick propagation procedure is applied to the portion of
the gradient orthogonal to this subspace, and then added to the subspace delta. By exploiting the independence of the
quadratic function along eigenvectors, the algorithm accelerates convergence in comparison to quick propagation.

In comparison with the conjugate gradient descent algorithm EQUAL has superior performance in the early and
middle stages of convergence, but inferior performance during terminal convergence. However, we not that the
latter stage is irrelevant in small- to medium-sized data sets, where excessive optimization on the training set merely
invites over-learning.

The algorithm is noteworthy in being scalable in terms of memory requirements - the dimension of the eigen-
subspace can be arbitrarily selected. Increasing the dimensionality reduces initial convergence, while improving
terminal convergence, which invites selection of a good “trade-off’ dimension. However, the algorithm has an
unfortunate drawback in that the Gram-Schmidt orthogonalization procedure needs to be perfonm.d on each
iteration, and the computational efficiency of thk scales with the square of the dimension. Hence, the procedure is
efficient only for a fairly small subspace.

EQUAL presents a very novel approach to optimization, which maybe developed further to produce alternative
improved algorithms. For example, although quadratic estimation is natural in the eigen-subspace, it maybe
possible to exploit a different technique in the orthogonal subspace. A particularly compelling possibility is to use
Quasi-Newton in the orthogonal subspace, as this algorithm benefits greatly from even very modest reductions in
dimensionality (each removed dimension halves the space requirements), and EQUAL is particularly efficient if a
small number of dimensions are used. This will be the subject of further research.

Finally, we note that the eigenestimates stabilize overtime. Consequently, the algorithm could be modified to search
for a single eigenestimate per epoch, progressively adding more as they stabilize. This variation would require only
2 props per iteration, and might combine EQUAL1’Sfast initial convergence with the superior terminal convergence
of the higher order versions.

0-7695-0619-4/00/$10.00 (C) 2000 IEEE
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)

References

[1] Bishop, C. (1995), Neural Networks for Pattern Recognition. Oxford University Press.

[2] Shepherd, A.J. (1997). Second-Order Methodsfor Neural Networks. New York, Springer.

[3] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical Recipes in C: The Art of
Scientzjic Computing (Seconded.). Cambridge University Press.

[4] Saito, K. and Ryohei, N. (1996). Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer
Neural Networks, Neuron Computation 9 (1), 123-141.

Moller, M (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (4), 525-
533.

[6]Perlmutter, B.A. (1994). Fast exact multiplication by the Hessian. Neural Computation 6(1), 147-160.

[7] Fahlmann, S.E. (1988). FasEr-learning variations on back-propagation: an empirical study. In D. Touretsky, G.E,
Hintorzand T.J. Sejnowski (Eds.), Proceedings of the 1988 Connectionist Models Summer School, 38-51. San
Mateo, CA Morgan-Kaufmazm.

[8] Golub, G.H. and Van Loan, C.F. (1989). Matrix Computations. John Hopkins University Press, Baltimore.

[9] Anton, H. and Rorres, C. (1994). Elementary Linear Algebra, ft’ Edition, Wiley, New York.

[10]. Sigillito, V.G., Wing, S.P., Hutton, L.V. and Baker, K.B. (1989). Classification of radar returns from the
ionosphere using neural networks. John Hopkins APL Technical Digest, 10, 262-266.

0-7695-0619-4/00/$10.00 (C) 2000 IEEE
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)

