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“Life is a series of experiences, each one of which make us bigger, 

even though sometimes it is hard to realize this. 

For the world was built to develop character, and we must learn 

that the seatbacks and grieves which we endure help us 

in our marching onward.”  

 

- Henry Ford 
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ABSTRACT 

Currently it has been given more clinical relevance to visual disturbances that affect the 

performance of people in everyday activities, especially in low lighting conditions. In fact, vision quality 

is related with the resulting intraocular straylight from light scattering on optical means, the intrinsic 

aberrations of each subject and un-corrected refractive errors. All this can degrade the vision quality 

by perceiving dysphotopsias around light sources. There are several photic phenomena (like halos and 

starburst) associated to light distortion limiting the visual performance, especially in low luminance 

conditions, such as night driving. The association between intraocular light scattering and high-order 

aberration with visual quality and performance is well known and it is already taken into account in 

clinical practice for pathological situations, surgical and other visual treatments. It is known how 

defocus can influence the visual performance related to visual acuity, contrast sensitivity, reading and 

shapes and patterns recognition. However the increase on light distortion with defocus and its 

differences between myopes and hyperopes has not been yet studied. Therefore, it is relevant to study 

the impact of defocus in light distortion measures and how it is perceived, and any additional factors 

that may influence the visual quality along with the blur caused by non-corrected refractive errors as 

well, namely the action of accommodation, corneal surface regularity and symmetry and pupil size. 

In this cross-sectional study involving 20 healthy subjects the size and irregularity of light 

distortion surrounding a bright source of light against a dark background were evaluated with the Light 

Distortion Analyzer (LDA) under low luminance levels with positive and negative induced defocus of 

1.00D, before and after the instillation of a cycloplegic drug. From this study we observed that there 

was a relevant increase on light distortion with both types of defocus (positive and negative) and both 

types of induced defocus produced similar values of light distortion in size and irregularity. The 

spherical-like HOA was the ocular aberration that most influenced light distortion measures, mainly its 

size, but the pupil by itself did not show to have a significant influence. Besides, the topographic 

indexes SRI and SAI showed to be predictors of visual quality by being positively related with light 

distortion size. The same it was not verified for the simulated PSF with the psychophysical measure 

from LDA in both positive and negative induced defocus. 

Given the results, we verified that despite the neural capacity of the binocular system to 

attenuate the monocular effects, the importance and need to correct low refractive errors should not 

be dismissed, not only for a matter of improvement of visual acuity but also visual quality under dim 

light conditions.   
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RESUMO 

Atualmente a importância clínica dos distúrbios visuais que afetam a performance das 

pessoas em atividades do quotidiano, nomeadamente em condições de baixa iluminação, tem 

merecido relevo pela comunidade científica. De facto, a qualidade visual está relacionada com a 

dispersão da luz nos meios óticos, as aberrações oculares intrínsecas de cada sujeito e de erros 

refrativos não corrigidos. Tudo isto pode degradar a qualidade visual através da perceção distorcida 

de fenómenos luminosos (como halos e estrelas à volta das luzes) que limitam a performance visual 

dos sujeitos, nomeadamente em condições de baixa iluminação, como é o caso da condução 

noturna. A relação das aberrações oculares e da dispersão da luz intraocular com a qualidade e 

performance visual é já bem conhecida e tida em conta na prática clínica em situações patológicas, 

cirúrgicas e outros tratamentos. Sabe-se de que forma o desfocado pode influenciar a performance 

visual em termos de acuidade visual, sensibilidade ao contraste, velocidade de leitura, 

reconhecimento de formas e padrões. No entanto, não se conhece de que forma o desfocado 

aumenta a distorção luminosa e se difere ou não entre míopes e hipermétropes. Assim, torna-se 

relevante conhecer de que forma o desfocado tem impacto em medidas de distorção luminosa e 

como é percebida, bem como quais os fatores adicionais que poderão influenciar a qualidade visual 

juntamente com o desfocado provocado pela não correção de erros refrativos.  

Neste estudo transversal utilizou-se o Light Distortion Analyzer (LDA) para medidas do 

tamanho e irregularidade da distorção luminosa em situações de baixa iluminação aquando da 

simulação de desfocado positivo e negativo de 1,00D, após a atuação de um fármaco cicloplégico. 

Este estudo mostrou haver um aumento relevante da distorção luminosa perante a presença dos dois 

tipos de desfocado, sendo que ambos desfocados hipermetrópico e miópico produziram valores 

semelhantes de distorção, tanto em tamanho como irregularidade. A aberração esférica de alta 

ordem foi a aberração que mais influenciou as medidas de distorção, mas a pupila por si só não 

mostrou ter influência. Além disso, os índices topográficos SRI e SAI mostraram ser preditores de 

qualidade ótica ao relacionarem-se positivamente com o tamanho da distorção. O mesmo não se 

verificou entre a simulação da PSF e a medida psicofísica do LDA para ambos os desfocados 

positivos e negativo.  

Face aos resultados, verificamos que apesar da capacidade psicofísica do sistema binocular 

de atenuar os efeitos monoculares, não se deve descartar a importância e a necessidade de corrigir 

os baixos erros refrativos, não só por uma questão de melhoria da acuidade visual mas também de 

qualidade visual.  
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1. LITERATURE REVIEW 

The human eye is a complex and imperfect optical system. Nowadays, the evaluation of 

visual quality goes beyond the measurement of visual acuity and the compensation of the 

refractive error. The image quality of the human eye is affected not only by the uncorrected 

refractive error and caused diffraction, but also by optical wavefront aberrations and light 

scattering that may produce a decrease on visual quality. Halos, starburst and scattering are 

some phenomena produced by the ocular wavefront aberrations, uncorrected refractive errors 

and other factors that degrade the optical eye quality when observing a bright light source, 

resulting on a distorted light image. The Light Distortion Analyzer (LDA) is a device that measures 

and quantifies the size and shape of this light distortion. In this literature review we will address 

topics and issues related to visual quality, since the characteristics of the retinal image quality, 

the factors that contribute for its degradation and how defocus may influence the light distortion 

and degrade de visual quality. 

 

1.1 Characteristics of optical and retinal image quality of the human eye 

1.1.1 Retinal Image Quality 

The quality of the retinal image depends on the intraocular scattering, low- and high-order 

wavefront aberrations and uncorrected refractive errors. These phenomena are the main 

responsible for the degradation of optical quality and each one of them has its contribution on 

retinal image formation. [1-7] In this chapter it will be described which components are most 

important and have impact on the quality of the retinal image and which metrics are most used 

in order to classify them. 

1.1.1.1 Ocular Scattering 

Light scattering is a physical phenomenon in which light rays are deflected and deviated 

from the theoretical straight trajectory due to optical irregularities or non-homogeneities. These 

irregularities are characterized by variations on media’s refractive index and the presence of 

small particles of different sizes and foreign bodies, inducing the combination of light diffraction, 

refraction and reflection. [1 8-10] Therefore, in the specific case of human optical system, ocular 
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scattering is most usually due to changes on refractive index of the different structures of the eye 

(cornea, iris, sclera, crystalline lens, vitreous humor and retina). [1 3 10-21] Light scattering effect is 

also described as the angular distribution of the light intensity in the retina.[1 2]  

There are two kinds of ocular scattering: the backward scatter, which is the amount of 

scattered light widespread out of the eye,[22] and the forward scatter, which is the light spread at 

low angles over the retina.[1 2] The backscattered light allows evaluating the quality of ocular 

tissues, so the most important component capable of compromise the retinal image by straylight 

is the forward intraocular scattering.[1 10 23 24]  

Some authors suggest that the straylight in the retina increase with age in normal eyes 

due to transparency loss of ocular media, namely lens opacities. Straylight tend to double with 

the age compared to young healthy subjects. [3 10 11 19 23 25-27] Intraocular scattering affect the retinal 

image quality by decreasing the retinal image contrast when a bright light source is presented. [2] 

When the transparency of the ocular media and the organization of the histological structure are 

compromised, the intraocular scatter becomes more relevant, creating a decrease on retinal 

image contrast. Many ocular conditions can compromise the transparency and organization of 

the tissues, like corneal dystrophies, cataracts, vitreous changes, diabetic retinopathy and age-

related macular degeneration.[3 10-19] So, in general terms, when any ocular condition decreases the 

transparency of the ocular tissues, it is accompanied by an increase in intraocular scattering and 

a consequent decrease of image contrast.[1 17]  

 

1.1.1.2 Wavefront Aberrations 

Such as scattering, wavefront aberrations change the trajectory of light rays propagation, 

but in a different way. The wavefront aberrations are defined as the wavefront deviation from a 

reference ideal optical system due to irregularities in the shape of optical surfaces. Aberrations 

can be described as chromatic – the defect occurs for different wavelength - and monochromatic 

- the defect only occurs for one wavelength.  

The monochromatic aberrations are the type of aberrations that can cause the 

degradation of the retinal image by the straylight of a bright light source. On healthy eyes, where 

the transparency of ocular media is not compromised, the scattering quantity is almost irrelevant, 
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which means that the ocular wavefront aberrations are the responsible for image degradation. 

These irregularities are mainly originated from cornea and crystalline lens, wherein the 

aberrations from crystalline lens compensates a proportion of aberrations from cornea.[3] 

Wavefront aberrations are described by mathematical expansion series named Zernike 

polynomials that extract the components of the wavefront error.[4 28-32] Zernike polynomials (or 

coefficients) are organized into a pyramid by different orders, with one or more terms in each 

order (Figure 1.1) represented by Zn
m, where n is the order of the term and m is its frequency, 

and expressed in microns (µm). [28 32-34]The value of the total wavefront aberration is calculated by 

the root mean square (RMS) which is the square of the sum of the squares of each Zernike 

coefficient. The higher the coefficient value, the greater the impact on the total RMS wavefront 

error, leading to a decrease in the optical performance. [29 35] 

Figure 1.1 Zernike polynomials pyramid up to the 6th order with the correspondent order, frequency and 

name. Image reproduced from Specialistica, L. (2010).[36] 

Aberrations are grouped into low- and high-order aberrations (LOA and HOA, 

respectively). LOA includes 0 to 2nd order Zernike terms and it refers to the tilts, prism and to the 

conventional refractive error (defocus and astigmatism). The 2nd order aberrations (defocus and 

astigmatism) are the main responsible for blurred retinal images and are the only ones that are 

routinely corrected with spectacles or soft contact lens.[37] Defocus and astigmatism are the most 

predominant wave aberrations accounting approximately 90% of the total wave aberrations of the 
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normal eye.[38] Zernike terms from the 3rd order and above are included in the HOA group. 

Although HOA have a small contribution on the total eye’s aberrations, their effect on image 

quality has been reported once their correction could significantly improve visual performance, 

particularly in eyes with corneal diseases, by ameliorating the retinal image quality.  [4 39-43]  

The amount and distribution of wave aberrations tend to be smaller with the increasing 

order and vary among the population. In general, the magnitude of HOAs tends to be around 

zero, except for 3rd order coma-like (horizontal trefoil, vertical and horizontal coma and oblique 

trefoil) and 4th order spherical aberrations.[7 33 38 44] In normal eyes, spherical (Z4
0) and 3rd order coma 

aberrations tend to be slightly positive and oblique trefoil (Z3
3) tend to take negative values. Even if 

their magnitudes are low, these aberrations have a negative influence on retinal image quality 

and in healthy eyes they may be the most responsible for night vision complaints.  

Figure 1.2 illustrates how these three aberrations can distort individually an image. The 

total magnitude of coma and spherical aberrations are the result from the magnitude of these 

aberrations on the cornea that the crystalline lens does not offset. [3 7 44-47]  

Figure 1.2 Simulation of an image distorted by coma-like (A) and spherical-like (B) HOA. Image 

reproduced from Maeda (2009). [30] 

Of all the HOAs, the wavefront aberration that clinicians give more attention is the 

spherical aberration. This is because in normal healthy eyes the spherical-like HOA tends to be 

more positive values and with a major magnitude than the other HOA and because increases 

with the pupil dilatation. [7] Total Spherical-like HOA normal RMS was found to be approximately 

0,15µm for a 6mm pupil diameter in subjects between 20 and 29 years old. [48]  

Many factors can induce changes in normal wavefront aberrations including ageing [30 48 49], 

accommodation [50 51], changes in tear-film volume and dynamics [52], contact lens [53], corneal 

pathologies [54 55], surgical and non-surgical corneal treatments [56 57] and cataracts. [30 58] This issue it 
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will be addressed in subsection 1.2.1., as the relationship between refractive error/defocus and 

wavefront aberrations in subsection 1.3.2..  

 

1.1.2 Metrics and Methods for Evaluating the Visual Quality 

As referred before, intraocular forward scattering, eye aberrations and diffraction are the 

responsible for the imperfection of the optical system. When evaluating the quality of vision by 

analyzing the effect of scattering and wavefront aberrations, there are several 

metrics/parameters that allow us to get a sense of how the retinal image is affected; for example, 

an aberrated eye produces a more extended and asymmetric retinal image. The most common 

metrics used to estimate the deterioration on image quality beyond the RMS are the point-spread 

function (PSF), the modulation transfer function (MTF) and the Strehl ratio (SR).  

The PSF is the light distribution of a point object at the retinal image and it is limited by 

the straylight/intraocular forward scattering and by the wavefront aberrations of the eye at the 

exit pupil. [1-3 16 59-61] This parameter defines the way a certain amount of light is redistributed and 

how it looks after passes through an optical system.[62] In practical terms, the PSF corresponds to 

the light distribution surrounding a bright spot light when seen against a dark background. [63]  Its 

outer part, which goes beyond 1º of its distribution, is called straylight and it is the cause of 

disability glare and other visual complaints.[1 16] While the external contour of the PSF corresponds 

to the scattering effect – straylight -, which strongly declines with the increasing angle, the central 

area is mainly affected by ocular aberrations. [1 63] The effect of aberrations on PSF is based on the 

magnification of the straylight and reduction in contrast of the retinal image. Each wavefront 

aberration can be represented by its own PSF [60 62]: for example, Figure 1.3 illustrates the PSF of 

optical effect induced by Z4
0 aberration. Some studies show that PSF influence the patients’ night 

visual complaints and is a reliable method for their validation.[62 63] The MTF and the Strehl ratio 

are derived from the PSF and provide quantitative data to evaluate the impact of aberrations in 

visual quality. 
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Figure 1.3 Simulation of a PSF obtained by the effect of spherical-like HOA. Image reproduced from Mello 

et al. (2012).[60] 

The MTF is an optical metric of image quality for grating objects representing contrast 

information of an image.[62] This function describes the variation of image contrast with the spatial 

frequency by measuring the contrast losses produced by an aberrated optical system.[1 3 33 59-62] The 

MTF differs with grating orientations and its values may vary from 0 to 1, where 1 indicates that 

the image contrast was 100% maintained from the object and describes an eye without any 

imperfection in the optical system– a perfect ideal eye – and 0 means that the image contrast 

was completely degraded so that the grating cannot be distinguished.[33 62] So, the lower the MTF 

values, the lower the contrast of the image and the poorer the retinal image quality.  Once MFT is 

directly related to the decreasing contrast with the increasing spatial frequency, it is usual to 

associate it with the contrast sensitivity function (CSF) which represents a psychophysical 

measure of the contrast perception as a function of spatial frequency. These two metrics, MTF 

and CSF, are associated with NTF (retinal brain function) so that CSF depends on MTF and NTF. 

For example, after an ocular surgery, if there were not changes in NTF, the functional vision 

(CSF) will be proportional to the optical quality (MTF). Marcos et al. (2001)[64] found that a 

decrease in MTF was accompanied by a decrease in CSF in post-LASIK myopic patients. 

However, if MTF do not suffer changes, any improvements on CSF will be proportional to 

increases on NTF by neural adaptation.[65] Because of this proximity between the two metrics 

(MTF and CSF), the MTF can be obtained by the direct measuring of the CSF with sinusoidal 

fringes as the ratio between the conventional CSF and the interferometrical CSF - this was how 

the MTF was early obtained.[3]  

Although the Strehl ratio (SR) metric is useful to describe the PSF of an eye [33], it can be 

also obtained from MTF. The SR is defined as the ratio between the actual peak intensity of an 

eye’s PSF with aberrations and the peak intensity of a diffraction-limited (aberration-free) PSF, or 
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equivalent, as the ratio between the volume of the actual MTF and the volume of a diffraction-

limited MTF. This comparison is also taken for the same pupil size.[1-3 33 59-62] Its values range from 0 

to 1, wherein 1 corresponds to a perfect optical aberration-free system.[33 60] This means that the 

higher the values of the Strehl ratio, the lower the values of RMS and the better the retinal image 

quality. It is usually considered a SR higher than 0.8 for a diffraction-limited system [3 33 61] and for 

lower levels of SR the extent and shape of the external contour of the PSF becomes more 

important than its peak value degrading the image quality.[59]  

Different methodologies have been proposed and described in order to quantify the 

retinal image quality through the visual quality metrics described above, but only a few were 

approved and validated. The procedures could be from psychophysical to optical approaches. In 

optical methods, the Double-pass (DP) system and the Hartmann-Shack Wavefront Sensor 

(HSWS) are the methods used to objectively quantify the visual performance by ocular scattering 

and wavefront aberrations. The devices may be based in one of them or in both together. The DP 

system records the retinal image after a beam double-pass through the ocular media and reflects 

on the retina. The DP system provides information about the PSF, its external contour and limited 

to small angles, and the MTF can be calculated from the images obtained.[1 3] Relative to HSWS, 

this optical method is mostly used to measure the ocular aberrations and provide their Zernike 

polynomials magnitude but can also provide information about the MTF. [60 66 67] However, the MTF 

obtained by the DP system overcomes the one obtained by the HSWS system because the DP 

system is more sensible to the scatter than the HSWS one, producing a more accurate 

description of the optical quality.[1 7 68] The Compensation Comparison method is the most relevant 

psychophysical procedure to measure the intraocular forward scattering and it is the basis of the 

development of a commercially available device, the C-Quant. This psychophysical procedure is a 

2-alternative forced-choice method in which the subject should compare and equalize the two 

stimulus presented in the two halves of a central ring while a flickering stimuli (that use glare) is 

presented in a peripheral ring. The results are provided in a psychometric curve for the 

magnitude of forward scattering in log units, [1 23 69] so the higher the logarithm of scattering, the 

higher the intraocular forward scattering.[1 70 71] 

Like ocular scattering and wavefront aberrations, the PSF, MTF and Strehl ratio can 

suffer changes due to media’s transparency loss and changes in the structure of the ocular 
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elements. There are several studies founding changes in these visual quality metrics, proving the 

affectation of vision (see subsection 1.2.1). 

1.1.3 Influence of Luminance and Pupil Size 

The human eye is a complex optical system and relies on the optical quality and 

transparency of its components. Besides the ocular scattering, eye aberrations and diffraction the 

quality of vision also depends on the luminance of the background and on the pupil's aperture.  

Luminance is a photometric measure that describes the amount of light passing through 

a defined area and reaches a particular solid angle by measuring the luminous intensity per unit 

area of light in a given direction. Its International System unit is candela per square meter 

(cd/m2). [72] In the optics domain, the luminance conditions of a specific scene can be classified in 

photopic (10 to 108 cd/m2), mesopic (10-3 to 100.5 cd/m2) or scotopic (10-6 to 10-3 cd/m2) 

luminance levels. [72 73]  

It is well known the relationship between the luminance and the pupil diameter. The iris 

muscle controls the pupil size in order to control the amount of light entering the eye. [38] So, for 

higher amounts of luminance (photopic levels) the iris muscle constricts decreasing the pupil 

aperture, leading to a minor amount of light reaching the retina. The opposite happens to the 

pupil diameter when the luminance decreases. In these terms, pupil size and luminance are 

always related and they should have been taken into account in every clinical and experimental 

situation. 

Usually in the routine clinical examination the visual acuity is only measured under 

optimal conditions, which means a high luminance background and contrast targets. However, 

under mesopic and scotopic conditions the visual acuity tends to be worse than that on optimal 

visual conditions. [74-76] Johnson & Casson (1995) [76] found that the LogMAR visual acuity increases 

linearly as the logarithmic luminance decreases, which means that the visual acuity decrease 

with the decreasing luminance. Besides, they also found that when contrast and luminance are 

reduced the visual acuity is degraded by a greater amount than that produced by only one of 

these factors alone and that when there are a few factors influencing the visual acuity they 

appear to have an additive influence. However, Simpson et al. (1986)[77] found that with low 

luminance levels the effect of blur on visual acuity is lower than with high luminance levels.  
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The visual performance it is also dependent on the Stiles-Crawford effect (SCE) – 

phenomena where the light passing through the edge of the pupil does not appear as bright as 

light passing through its centre (Stiles & Crawford, 1933) [78]. This effect reduces the effective 

retinal luminance but, as suggested by many authors [79-81], it can improve spatial vision with large 

pupils by attenuating the influence of defocus and aberrations on vision.  

The pupil diameter considered to provide the best resolution is around 3mm because it 

is the pupil size which balances the contribution of the HOA and diffraction producing a minor 

degraded image. However, this depends on subject’s wavefront aberrations distribution and on 

the wavelength. Several studies shows that the retinal image quality decreases most often under 

scotopic or mesopic conditions when the pupil reaches its maximum diameter. [48 76 82-85] As the 

pupil size increases so does the ocular aberrations (Figure 1.4) and the external contour of the 

PSF (Figure 1.5) reducing the retinal image quality by the increased blurring effect. The opposite 

happens with the Strehl ratio that becomes lower as the pupil becomes bigger. [60 86] Spherical-like 

HOA (4th and 6th order) are among those that degrade the image quality in a more significant 

manner as the pupil dilates. Therefore, they become increasingly important at low luminance 

levels which is particularly important in subjects who underwent refractive surgeries.[85 87]  

Figure 1.4  Changes in Total HOA RMS magnitude as function of age for different pupil diameters fitted 

with an exponential function. Image reproduced from Applegate et al. (2007). [48]  

 

Nevertheless it cannot be admitted that the image quality is better for smaller pupils. For 

a pupil size below 3mm the image quality is less influenced by aberrations due to the diffraction 

effect which predominate above aberrations. Decreasing the pupil diameter can also degrade the 

image quality by restriction of the amount of available light although it allow the depth of focus to 
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increase.[2 3 7 38 60 87] On Figure 1.5 are represented the changes in PSF with the pupil diameter of an 

aberrated eye, demonstrating how diffraction and HOAs can distort a light spot. 

Figure 1.5 PSF as function of pupil diameter in an aberrated eye. As the pupil increase the higher the 

effect of HOA in PSF, but for smaller pupils the effect of diffraction increases. Image reproduced from 

Mello et al. (2012). [60] 

 

1.2 Light Distortion and Night Visual Disturbances 

Nowadays the number of people going to an ophthalmology/optometry appointment with 

complaints of how the light of the cars bothers them when driving at night have been grown. 

These complaints are not only perceived by normal healthy subjects, but almost for the entire 

population, especially those who undergone ocular surgeries, have transparency loss, 

uncorrected refractive errors and others. According to Jabbur et. al (2004) [88] the most subjective 

complaints of dissatisfied patients after a refractive surgery were blurred distance vision (59.0%), 

glare and night vision disturbances (43.5%). In fact, the image quality degradation is due to the 

summation of intraocular scattering, ocular aberrations and uncorrected refractive errors. In 

healthy eyes these factors reduce the image quality due to the distorted light reaching the retina, 

leading to a perceived blurred and distorted image and glare. This happens mainly at night when 

pupil is physiologically dilated and when images are viewed against a dark background. In this 

section it will be described the photic phenomena causing light distortion related to subjects 

complaints at night and the factors causing the disturbances, as well as the most recent methods 

of evaluating the light distortion. 
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1.2.1 Photic phenomena (starburst, halos and glare) 

Many people complaints about poor night vision due to photic phenomena caused by 

light distortion. The photic phenomena of light distortion described in literature are glare, 

starburst, haloes, hazy vision, monocular diplopia and polyopia and defocus. [62 87-96] These 

phenomena are also known as dysphotopsias. Jabbur and his co-workers (2004) [88] reviewed the 

complications of dissatisfied patients who undergone refractive surgery and they found that the 

most common complaints were blurred vision, glare and night vision problems, such as halos, 

multiple images and hazy vision. 

To better understand these complaints there is a need of defining the terms. Images 

from the QoV [91] are used to exemplify each photic phenomenon. 

In general, glare (Figure 1.6A) refers to a light source appearing bright and intense and it 

is caused by scattered rays in light path from media opacities.[92 97] Glare phenomena can be 

divided into discomfort glare and disability glare.[15 25 87] The first one is a subjective discomfort 

sensation induced by a bright light source without causing significant losses in visual 

performance [15 25] while disability glare is associated to a functional impairment affecting the 

retinal image contrast.[23 25 26 87]  

Halos (Figure 1.6B) and Starburst (Figure 1.6C) are night visual disturbances 

phenomena that degrade the size and shape of a light source. Halos are among the most 

reported phenomena next to glare and can occur with or without starburst. This light disturbance 

is perceived as circular shadow surrounding a light source and it is caused by refractive 

phenomena. Usually they are assumed to be a consequence of the contribution of the spherical 

high-order aberration, especially when in refractive surgeries the treated optical area is smaller 

than the pupil diameter in mesopic and scotopic conditions.[87 93] Starburst is a radial or regular 

radiating scatter of light from a point source affecting its size and regularity. This phenomenon 

might be explained by the diffraction of light at the crystalline lens suture lines formed by the 

union of their fibers. [98] It is commonly described as a star image for almost every people, even 

the ones who wear glasses and contact lens, especially when they are under-corrected or not 

corrected at all.[87 92 93]  
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Other photic phenomena are hazy vision (Figure 1.6D) and blurred or defocused vision 

(Figure 1.6E) and they are usually confused. Hazy vision is usually caused by loss of 

transparency of the ocular media and it is defined by a reduced visibility with contrast losses. 

Patients used to report complaints of foggy vision such as when looking through a foggy window. 

Defocused vision is caused by an uncorrected refractive error and the limits of images sharps 

seem to not be clearly. 

Monocular diplopia and polyopia (Figure 1.6F) are normally associated to ocular diseases 

but in this case can be a consequence of light distortion. Also known as ghosting, this 

phenomenon is perceived as a partial troubled faint or a double/multiple images that overlap.[92]  

Figure 1.6 Pictures from the Quality of Vision (QoV) questionnaire of the night visual symptoms and photic 

phenomena. Image reproduced from McAlinden et al. (2010). [91] 

All the described night vision disturbances are mainly reported by people with ocular 

pathologies, corneal changes and subjects submitted to refractive treatments (surgical and non-
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surgical) – see subsection 1.2.2 - but can also be reported from subjects with uncorrected 

refractive errors (section 1.3) or even well corrected patients. 

 

1.2.2 Disturbing factors and complaints 

In healthy young subjects, the night visual complaints are due to the magnitude of the 

intrinsic ocular aberrations of each subject. The night visual complaints have implications on 

quality of life and in many living activities. Driving at night is one of the living activities which 

performance can be diminished due to the visual disturbances caused by light distortion. [15 25 74 75 89 

99-103]   

Whenever there is a change in the optical components of the eye, the quality of the 

image on the retina can be changed and usually reduced. As seen in anterior sections the 

transparency loss of the optical components of the eye, ocular aberrations and changes in the 

refractive index of the different ocular components can alter the light path by dispersion and 

scattering, culminating into light distortion perception. Having this into account, whenever there 

is an ocular pathology changing the media transparency or the propagation of light rays, the light 

reaching the retina will be distorted and the retinal image will not be clearly perceived.  

There are many studies that evaluate the image quality changes due to different 

pathologies, conducting to a light distortion. There are many studies relating changes in 

intraocular straylight and wavefront aberrations due to ocular pathologies, such as cataract [11 15 19 23 

25 70 99 104 105], age-related macular degeneration [86 106], keratitis [86 106 107] and keratoconus [3 12 17 23]. In these 

studies it is reported an increase in intraocular scattering due to the changes in media 

transparency or due to changes in ocular aberrations resulting from corneal changes. In general 

they found a decreased in contrast sensitivity at almost all the frequencies tested, a decreased 

MTF, lower values of Strehl ratio, less intense and more spread PSF and a higher light distortion 

disturbance perceived by subjects affected with the mentioned conditions. So, at some point the 

straylight and light distortion evaluation can be an important method to assess and classify the 

severity level of the pathological conditions. [10 12 15 30 60 97 105 108] 

Other interesting factor affecting straylight, and by consequence increase light distortion, 

is the wear of contact lens due to the induced edema. Elliot et al (1993)[109] found about 50% of 
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increased straylight induced by 10% of corneal swelling related with hydrophilic contact lens 

wear. However, the straylight values decline linearly with time as the corneal swelling decreased 

after contact lens removal. [53 60 109]  

Not only pathologies alter the media’s transparency and the refractive index. Nowadays, 

refractive surgeries have a great impact on visual quality due to the changes in the ocular 

wavefront aberrations. There are many reports of night visual disturbances complaints among 

subjects that undergone a refractive surgery with LASIK [56 62 71 84 85 87 88 93-95 97 101 110-115] and PRK [116 117]. 

Among others, Ortokeratology is a refractive non-surgical treatment that also changes the ocular 

aberrations and increases the light distortion.[85 115 118-120] All these refractive treatments were found 

to increase the light distortion due to an increase in high order ocular aberrations, especially in 4th 

order spherical aberration, which in myopic ablation it is positively induced.[121] This consequently 

increases the halo size compared with the halo without any invasive refractive treatment. In these 

refractive treatments the haloes complaints are usually associated to a larger pupil diameter 

compared with the optical treatment zone.[84 87 94 110] However, some authors do not consider that 

the pupil size is a predictor of the night visual complaints.[95 111 112 114] Once again most of the studies 

about the increase on night visual complaints and light distortion also report decreases on 

contrast sensitivity MTF and Strehl ratio, such as in pathologic conditions. Reinstein et al. 

(2012)[122], Schallhorn et al. (2009)[101] and Oshika et al. (2006)[56] found that the subjects 

undergoing LASIK with wavefront-guided technique had less night visual complaints than subjects 

submitted to conventional LASIK. Other common refractive treatment that could cause night 

visual disturbances complaints are the implantation of intraocular lens. [101 123-131] This is especially 

important for multifocal and diffractive lenses implantation for presbyopia correction. While some 

authors [126 127] found the performance with refractive multifocal IOLs to be comparable with 

monofocal IOLs, Brito and his coworkers (2015) [129] found an increased light disturbance although 

the good functional visual performance with diffractive multifocal IOLs. Besides Vega et al. (2015) 

[125] found differences in optical quality, through-focus performance and halo of four diffractive 

multifocal IOLs. 

Castro et al. (2014) [82] evaluated the influence of alcohol consumption on the retinal 

image quality and night vision performance under conditions of low illumination. They found that 

the alcohol levels deteriorated the retinal image quality and the visual performance at night, being 

the deterioration positively associated with high alcohol levels consumption. 
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The influence of refractive errors on light distortion will be discussed on section 1.3. 

In summary, besides diffraction, light distortion also depends on the summation effect of 

intraocular scattering and high order aberrations. As seen above, in cataractous eyes the 

intraocular scattering is more relevant on light distortion and night visual complaints than the 

ocular aberrations, but when the corneal optical integrity is altered the ocular aberrations are the 

main responsible for the night visual disturbances.  

 

1.2.3 Methods of evaluating Light Distortion 

Nowadays, light distortion is currently taken into account on a clinical examination. In 

order to assess how patients perceived a bright light spot in low luminance levels and to 

understand how their quality of vision are affected by scattering, high-order aberrations and 

other factors, many researches created different methods of evaluating the visual performance 

and light degradation. In this study we will only refer the ones seems more relevant and more 

used in the scientific community. 

There are psychophysical and optical methods to measure and quantify the straylight. In 

psychophysical procedures the evaluation depends on the subject’s response and performance 

while in optical procedures this is not an issue. However, the psychophysical procedures allows 

to have more meaningful results because translate the actual visual function of the subjects 

and the optical procedure have the disadvantage of being limited in the angular domain, which 

make it less functional.[1]  

The optical methods most commonly used are the Optical Quality Analysis System 

(OQASTM, Visiometrics S.L., Terrassa) and Hartmann-Shack Wavefront sensor. The OQAS is based 

on a double-pass system for the analysis of the PSF of the retinal image and is capable of 

calculating the MTF, always considering the scattered light and the high-order aberrations.[1 18 19 70 86 

106 132] Hartmann-Shack sensor is most commonly used to measure the ocular aberrations in a 

single direction, not being sensitive to the dispersed light and underestimating the visual quality 

in high glare situations.[1 67 68]  
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One of the most frequent psychophysical methods for the measurement of straylight is 

the compensation comparison method – the C-Quant Straylight Meter (Oculus Optikgeräte 

GmbH, Wetzlar-Dutenhofen, Germany). In this method the subject has to compare two central 

stimuli flickering in counter-phase and decide which flickers more strongly, while a peripheral 

flickering stimulus is presented in order to induce scattering. This is a two-alternative forced-

choice method so the subject has to answer even when do not perceive differences.[1 17 23 26 63 71 105 111 

133 134] Other psychophysical methods of evaluating light distortion are based on a central high-

luminance stimulus inducing glare over a dark background and the subject has to detect a 

luminous peripheral stimulus around the central one. The instruments are Halo v1.0 software 

(Laboratory of Vision Sciences and Applications, University of Granada, Spain) [82 96 102], Starlights 

system (Novosalud, Valencia, Spain)[94 114] and Light Distortion Analyzer (LDA, CEORLab, University 

of Minho, Braga, Portugal)[119 129 135 136]. The difference between LDA and the other two instruments 

(Halo v1.0 and Starlights) is that LDA allows “to measure the light distortion under more realistic 

conditions using hardware with physical LEDs”[136] while the Halo v1.0 and Starlights use a 

computer screen display with projected light spots for the generation of glare and peripheral 

stimuli.[82 94 96 102 114] For that reason in this study we will use the Light Distortion Analyzer to evaluate 

and quantify the size and irregularity of light distortion. The instrument will be described in 

section 3.3.6. 

There are many other instruments referred in the literature to quantify light distortion, or 

straylight, and evaluating how it degrades the retinal image with psychophysical and optical 

principles.[15 87 97 105 108 127 128 137 138] 

Apart from these, McAlinden and its coworkers (2010) [91] developed a different way of 

measure the subjective quality vision by an inquiry. They called him Quality of Vision (QoV) 

questionnaire. The QoV Questionnaire consists on a Rasch-model test linearly scaled with ten 

items with three questions each, providing a quality of vision score for symptoms’ frequency, 

severity and bothersome, resulting in a questionnaire with thirty item in total.[91] This questionnaire 

is already validated and requires an authorization of the corresponding author to calculate the 

score.  
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1.3 Impact of defocus on visual quality 

Uncorrected refractive errors are one of the leading causes of visual impairment, in a 

significant proportion of the general population, even in developed countries, either if they are 

undiagnosed or inadequately corrected. [139-143] These refractive errors generate blurred/defocused 

retinal images, reducing the contrast of the images and inflict a lower limit to visual perception. [2 5 

74] The defocus produced by the non-correction of the refractive errors reduces the visual 

performance of young and elder people on almost every visual task. Many studies [74 75 100] shows 

that the induced defocus have a detrimental impact on driving performance, especially at night. 

Cohen and coworkers (2007)[103] investigated the relationship between night myopia and the 

number of driving accidents in a group of professional drivers and they found that when subjects 

presented night myopia over 0.75D they are more likely to be involved in driving accidents at 

night. Certain levels of blurred vision can also influence the athletic and reading performances.[144 

145] 

1.3.1 Defocus and wavefront aberrations 

In section 1.1.1.2 the conventional refractive errors (defocus and astigmatism) were 

already classified as being part of the low-order ocular aberrations. These 2nd order aberrations 

are considered the most prevalent aberration of the human eye, being predominant over the 

high-order aberrations, and they are the only ocular aberrations that can be neutralized by 

ophthalmic correction. However, even when the eye is free of refractive error the produced retinal 

image it is not perfect because of the small contribution of HOA [2], especially at mesopic and 

scotopic conditions, as seen previously. Usually, a total HOA RMS of 0.25µm for a 5mm pupil is 

approximately equivalent to a defocus of 0.25D in young healthy eyes.[2] Both defocus induced by 

uncorrected refractive errors and HOA decrease the visual acuity and the contrast sensitivity.[7 111]  

Cheng et al. (2003)[47] found no correlation between HOA and myopic and hyperopic 

refractive errors. Additionally they did not found differences between the magnitude of spherical-

like HOA from the ametropic eyes and from the emmetropic ones. The same was verified by 

Rossi and his coworker (2007)[37] between emmetropes and low myopes, and by Kingston et al. 

(2013)[46] in individual with similar ages from different continents. Many other authors [7 40 46 59 60 146 147] 

refer the existence of an interaction between LOA and HOA, mainly between the ametropia or 

defocus and the spherical-like HOA. Guirao et al. (2003)[59] explored the impact of HOA on 
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subjective refraction and they concluded that HOA influence the amount of spherical and 

cylindrical refraction required for correction once the mean absolute error in spherical equivalent 

increased with the increase on HOA. 

Several studies evaluated HOA as function of myopic refractive error, showing a tendency 

for a worsened visual quality in higher myopia degrees.[3 7 148 149] Marcos et al. (2000) [149] observed 

an increasing in corneal and internal HOA but a non significant change in total HOA with myopia. 

The positive increase in corneal spherical-like HOA is associated to a positive increase in corneal 

asphericity with myopia but this is usually compensated by the internal spherical-like HOA which 

increase in the opposite direction. However, they thought that the main responsible for the 

degradation in visual quality in myopia would be an increase in coma-like and other HOA. A study 

from Llorente et al. (2004) [146] compared the ocular aberrations between two groups of hyperopic 

and myopic eyes matched in age and absolute refractive error and they found higher positive 

amounts of total spherical-like HOA in the hyperopic group. Besides Thibos et al. (2002) [147] found 

a moderate positive correlation between defocus and spherical aberration in subjects between 22 

and 35 years old with corrected refractive errors and paralyzed accommodation. So, in general 

terms, these studies demonstrate that the interaction and contribution of the spherical-like HOA 

with the defocus (spherical refraction) should be taking into account. 

In addition to these findings, the influence of pupil size should not be forgotten, especially 

at low luminance conditions. Even for a fixed pupil size the blurred retinal image can be 

expanded by the increasing defocus caused by ametropia. The same happen when ametropia 

does not change but the pupil size increase, which magnifies HOA expression, mainly spherical-

like aberration. In this context, some authors [35 37 40 60] believe that the adaptive optics correction of 

HOA can improve the visual quality due to a shift in subjective best focus of the image.  

 

1.3.2 Impact of defocus in Visual Acuity and contrast sensitivity 

The relationship between defocus and the loss of visual acuity it is studied since very 

early. Both spherical and astigmatic refractive errors affect the visual acuity. A defocus of 0.25D 

(negative or positive) may not have a great impact on visual acuity but for larger values of 

spherical or cylindrical defocus, VA tends to drop quickly. [2]  
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Many studies report losses of visual acuity due to the presence of defocus. [76 104 145 150-154] In 

order to study the additive influence of luminance, contrast and blur on visual acuity, Johnson 

and his coworkers (1995) [76] found a reduction at about 0.40 LogMAR units in VA with a induced 

blur of +1.00D on the best distance correction for a 97% contrast letters in subjects between 26-

43 years old. Besides, they found that the VA decline was more abrupt for levels of blur up to 

+2.00D, being more gradually decreased for dioptric blur greater than +2.00D. They also found a 

significant reduction in contrast with the increasing positive defocus and reported that “low 

contrast targets appear to be more greatly affected by small amounts of blur than are high 

contrast targets”. Wood et al. (2008) [104] reported a 0.28±0.05 LogMAR VA decrease and a 

significant reduction in contrast sensitivity induced by a certain non-described quantity of positive 

induced blur. 

Figure 1.7 shows LogMAR visual acuity as function of induced defocus two pupil 

diameter obtained by Villegas et al. (2002) [150] with the accommodation paralyzed. Both curves 

show that the VA decreased with both negative and positive defocus but the VA loss is higher with 

the positive defocus (at about a 6/9 loss). The same is seen on defocus curves obtained by 

Sheppard and his coworkers (2013) [124]. However, it is important to have in account that besides 

defocus and the magnitude of HOA, the level of luminance and the pupil size can also influence 

VA and contrast sensitivity values. When in low luminance levels and/or low contrast, the VA 

tends to worse in a major magnitude than in optimal luminance and contrast levels. [2 76 104 155]  

Figure 1.7 Visual acuity as function of defocus for 3mm (black circles) and 5mm (white circles) pupil 

diameter with cycloplegia. Image reproduced from Villegas et al. (2002). [150] 
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Other aspect to have in account is the blur adaptation. Some studies [153 155] reported that 

the visual performance after a period of blur adaptation can be improved by changes in visual 

acuity and contrast sensitivity. These studies observed an improvement in VA and contrast 

sensitivity after a period of blur exposure and showed that myopes are more tolerant to retinal 

defocus compared to emmetropes. This tolerance can be explained by their daily experience with 

blurred images. 

 

1.3.3 Impact of Defocus on light distortion 

There are not many reports of what are the normal values of light distortion in a healthy 

subject. Puell et al. (2013)[156] developed a study in order to determine the normal halo size in 

147 healthy subjects in a large ages range (20 to 77 years) and to evaluate the repeatability of 

the Vision Monitor (MonCv3; Metrovision, Pérenchies, France). They found the normal halo size 

to be 36.5±28.8mm, considering a wide range of age.  

As the ocular aberration and intraocular scattering, the uncorrected refractive errors can 

distort the retinal image which produces a decrease on visual acuity and contrast sensitivity and, 

at mesopic and scotopic conditions, can origin night visual disturbances produced by the 

distorted light reaching the retina. So, at night, the combination of HOA, intraocular scattering 

and defocus produced by uncorrected refractive errors decrease the visual quality and 

performance due to light distortion, producing the perception of photic phenomena in the 

presence of a bright light source. It is known how HOA increase the perceived size and shape of 

a light source by itself, especially the spherical-like aberration, and that defocus from uncorrected 

refractive error also produce higher values of light distortion. However, there are not many 

studies evaluating the differences between positive and negative defocus on light distortion.  

Gutierrez and his co-workers (2003) [96] developed a system (Starlights halometer 

(Novosalud, Valencia Spain)) to quantify the presence of halos in subjects and their results did 

not show differences between emmetropic and ametropic with positive and negative refractive 

status in light distortion. Besides, Villa et al. (2007) [94] evaluated the disturbance index with the 

same referred device and they found an increase on this index correlated with corneal HOA only. 

However, Villegas et al. (2002) [150] studied the existence of a correlation between optical and 
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psychophysical parameters as a function of defocus and found that the double-pass retinal image 

increased with both positive and negative induced defocus (Figure 1.8). But, as seen in Figure 

1.8 there are quite small differences between the disturbances on double-pass retinal image 

obtained by positive and negative defocus, although the Strehl ratio between both types of 

defocus was not significantly different.  

Figure 1.8 Double-pass images (PSF) for different types and levels of defocus obtained with a 3mm pupil. 

Image reproduced from Villegas et al. (2002). [150] 

 

Artal et al. (2011) [70] used the OQAS system to assess the given objective scatter index 

(OSI) and they referred that this parameter can be affected by uncorrected refractive errors 

besides HOA. They showed that the OSI values significantly increase for values over +1.00D of 

defocus. A pilot study conducted in Portugal by Amorim-de-Sousa et al. (2014) [157] evaluated the 

variation on monocular light distortion with the increasing positive spherical and astigmatic 

defocus with the LDA (described in section 1.2.3). They access to a size index of light distortion 
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size (LDI) and they found an increase with the increasing induced spherical and astigmatic 

defocus, being more significant over +1.00D for the spherical defocus, included (Figure 1.9). 

Figure 1.9 Changes in LDI, a size parameter of light distortion from LDA, with positive induced defocus 

without cycloplegia. Image reproduced from Amorim-de-Sousa et al. (2015). [157] 
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2. HYPOTHESIS AND OBJECTIVES OF THE STUDY 

2.1 Problem formulation  

It is already known how uncorrected refractive errors can reduce the VA and the contrast 

sensitivity and that at low luminance levels the ocular aberrations are the main responsible for a 

decreased visual performance. However, there are no reports of how uncorrected refractive 

errors influence the perception of light distortion under low environmental lightning conditions. In 

this study it will be induced two different types of spherical defocus under cycloplegic conditions 

in order to investigate if there are differences on the perceived light distortion between a positive 

and negative defocus. 

 

2.2 Hypothesis 

The hypothesis of this thesis is that the defocus alters the light distortion perception and 

that the positive defocus increases the light distortion more than the negative defocus does due 

to the action of accommodation in normal healthy young eyes. 

 

2.3 Objectives 

The main goals of this thesis are: 

1. Investigate the impact of positive and negative defocus on the perceived light distortion. 

2. To understand how HOAs can affect the light distortion.  

3. To analyze how topographic parameters such as SAI, SRI and Q can influence the light 

distortion. 
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3. MATERIAL AND METHODS 

3.1 Study design 

This was a cross-sectional study which intended to determine the impact of spherical 

defocus and high-order aberrations in light distortion measures around a LED (light emitting 

diode) light source. 

The research was conducted in the Clinical and Experimental Optometry Research Lab 

(CEORLab) at the University of Minho (Braga, Portugal). All the instruments used in this study 

were available in the CEORLab. The protocol of the study was reviewed and approved by the 

Subcomité de Ética para as Ciências da Vida e da Saúde / Ethics Subcommittee for Health and 

Life Sciences (SECVS) of the University of Minho. Following the guidelines of the Declaration of 

Helsinki, all subjects signed a Consent Form (Attachment 1 on Appendix) once the objectives and 

procedures of the study were fully explained to them. 

 

3.2 Participants and Sample Size  

Sample size was calculated by GPower 3.1 software. To ensure an 80% power for a 

dependent comparison of means of light distortion between different levels of defocus, a sample 

size of 28 subjects was needed for a 0.05 level of significance.    

In order to recruit participants for this study, it was sent an email to all academic 

community of the University of Minho. The inclusion criteria for this thesis project were subjects 

between 18 and 40 years of age, a spherical refractive error between +2.00 and -3.00D, with 

astigmatism below 1.50D and less than 1.00D of anysometropia. It was required transparent 

ocular media, no ocular pathology or surgery, and taking no ocular or systemic medications with 

ocular affectation. Subjects should present a best corrected VA of 0.00 LogMAR units or better in 

each eye, and the difference in VA between both eyes must be less than 0.1 LogMAR units.  

Thirty-one (31) subjects answered the email and came to an initial consultation, however 

one (1) of them was unable to complete the experimental session. Thirty (30) subjects completed 

the study protocol. All subjects that volunteered to participate underwent a full optometric 

examination to assess suitability to enter the study and the required measurements were done at 
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the Clinical and Experimental Optometry Research Lab (CEORLab) of the Center of Physics at 

University of Minho following the procedures described in the next section.  

 

3.3 Experimental Procedure 

3.3.1 Clinical Examination Routine 

Once the subjects were recruited to participate in this study, an informed consent was 

signed in order to alert the subjects to the application of a cycloplegic solution (described in 

section 3.3.3). The experimental procedure started with the subjective refractive exam followed 

by the registration of high and low contrast distance LogMAR visual acuity and topographic 

measures. Then, aberrometry and light distortion measures were carried out with a natural 

mesopic pupil size measured in light distortion measurements luminance conditions. Light 

distortion measurements were first taken with the best distance correction only. Thirty minutes 

after the instillation of two drops of a cycloplegic solution, high and low contrast visual acuity, 

aberrometry and light distortion were re-evaluated. Aberrometry and light distortion were taken for 

a 5mm limited pupil diameter. In cycloplegic conditions light distortion was measured for the best 

distance correction and with the induction of a positive and negative defocus of 1.00D. All 

measures were made in one visit only. 

 

3.3.2 Visual Acuity 

High contrast (100%) (Figure 3.1A) and low contrast (10%) (Figure 3.1B) distance visual 

acuity (HCDVA and LCDVA, respectively) were measured with the Logarithmic Visual Acuity Chart 

EDTRS (Precision Vision. IL) at 4 meters (as recommended by the manufacturer). This visual 

acuity chart is constituted by 14 lines with 5 letters each and measure VA between 1.00 LogMAR 

units and -0.30 LogMAR units (that is equivalent to 0.10 and 2.00, respectively, in decimal 

scale). The line of 20/20 (or 1.0 in decimal scale) is equivalent to 0.00 (zero) in LogMAR scale. 

Each letter read means -0.02 LogMAR units and so VA is better if it is more negative or less 

positive. VA was evaluated under high (100%) (CAT No 2110) and low (10%) contrast (CAT No 

2153) conditions using the Cabinet Illuminator No 2425.  
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Figure 3.1 ETDRS chart for HCVA (A) and LCVA (B) measurement. 

The VA was always monocularly and binocularly evaluated in the referred conditions with 

a room luminance at photopic levels (85cd/m2) under non-cycloplegia and cycloplegia. The 

LCDVA was evaluated with the best distance visual correction, as the HCDVA, and with +1.00D 

and -1.00D lens. 

 

3.3.3 Topography 

Topographic measures were obtained with a corneal topographer (Medmont E300, 

Medmont Pty.Ltd, Melbourne, Australia) in order to evaluate how topographic quality parameters 

are related to light distortion. The topographic parameters registered were the corneal asphericity 

(Q-value), Surface Asymmetry Index (SAI) and Surface Regularity Index (SRI) once some authors 

[120 158-161] referred these as being predictors of the optical image quality. For the measurement, the 

subject was comfortably set in the chin up of the instrument and the mires focused (>95%) and it 

was instructed to blink and maintain the eye wide open. The measures were taken before the 

cycloplegic instillation and were recorded three measures, being considered their mean.  

 

3.3.4 Cycloplegia  

To know the mechanism behind the relationship between defocus and light distortion, it 

was necessary the use of a cycloplegic solution to avoid the effect of accommodation. The 

cycloplegia was obtained by the instillation of Tropicil top 10mg/ml eyedrop. The active 

substance of this eye solution is tropicamide, which is an anticholinergic drug that blocks the 

sphincter muscle and the ciliary body. This eyedrop has mydriatic and cycloplegic functions, 
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being used on ophthalmic examinations and as therapeutical agent. To the required cycloplegia’s 

effect it was instilled a dose of two drops of Tropicil top 10mg/ml on the conjunctival bag with a 

5 minutes interval, and data collection was done 30 minutes after the second drop application, 

as recommended by the manufacturer.  

 

3.3.5 Aberrometry 

Aberrometry was measured using the IRx3 Hartmann-Shack aberrometer (ImaginEyes, 

France). Ocular high order aberrations (HOAs) were recorded under mesopic conditions before 

and after cycloplegic instillation. On each condition three measures were recorded for each eye. 

During HOAs measurement the subjects were asked to fixate on a red light spot on the “E” letter 

inside the aberrometer and to blink several times, maintaining the eye wide open after that in 

order to take a good quality measure. The aberrometer gave the total HOA values expressed as 

Zernike polynomials up to the sixth order (from Z3
-3 to Z6

6).  The aberrations considered for this 

study were Total HOA RMS (from from Z3
-3 to Z6

6), Spherical-like HOA RMS (including Z4
0 and Z6

0) 

and Coma-like HOA RMS (including Z3
-1, Z3

1, Z5
-1 and Z5

1). All the aberrations were calculated for the 

natural pupil size from each subject under the measurement of light distortion in non-cycloplegic 

conditions and for a 5mm pupil diameter in cycloplegic conditions. The magnitude of each 

Zernike polynomial obtained by the aberrometer and then we calculated the Total, Spherical-like 

and Coma-like HOA RMS using Microsoft Excel spreadsheet (Microsoft Office 2010, Microsoft). 

 

3.3.6 Light Distortion 

Light distortion quantification was obtained from Light Distortion Analyzer (LDA, 

CEORLab, University of Minho, Braga, Portugal), a device validated by Ferreira-Neves et al. 

(2015) [136], under non-cycloplegic and cycloplegic conditions. This device measure the light 

distortion under more realistic and consistent conditions due to its physical LEDs.[136] LDA is 

constituted by a central LED surrounded by others 240 smaller LEDs distributed over 24 

semimeridians with an angular separation of 15degrees. [119 135] According to Linhares et. al (2013) 

[135] the central LED has a maximum luminance of 2800 cd/m2, with a radiance of 0.0751 W m-2 

sr-1 at its maximum intensity, and 6 cd/m2 for the surrounding LEDs, with a radiance of 
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0.000423 W m-2 sr-1 in the same conditions. The intensity drops 50% at a view angle of 50º in the 

central LED and at 120º in the surrounding LEDs. Their color is in the ∆E*
ab range of 2.6 and 

0.23, respectively.  

For each examination, the software system derives different metrics: 

 The distortion area (DA) is the sum of the areas of all sectors formed by each pair of 

semimeridians under analysis, in mm2. 

 The Light distortion index (LDI) is the percentage of the total tested area that is not visible 

because of impairment by the light distortion phenomena. It is given by the ratio of the 

area missed by the subject and the total area explored, expressed in percentage (%). 

Higher values of LDI are interpreted as the lower ability to discriminate surrounding small 

stimuli that are by the central source of light. 

  Best fit circle radius (BFCRad) is a circle that best fits the DA whose radius, expressed in 

mm, is equal to the average length of the distortion along each semimeridian under 

evaluation. 

  Best fit circle center coordinates (XCoord and YCoord) are defined as the Cartesian 

coordinates (x, y) in mm from the center of the display. 

 Orientation of best fit circle center (BFCOrient) is the angle of BFC center from the origin 

of coordinates (0,0) (center of the display), expressed in degrees. 

 DA irregularity (BFCIrreg) is the sum of the deviations between the actual DA and the 

BFC outer perimeter along all the semimeridians tested. It is a sum of positive and 

negative values as the limit of the distortion is in or out of the BFC perimeter and is 

expressed in mm. 

 SD of the BFC irregularity (BFCIrregSD) is the sum of the differences squared and 

divided by the number of semimeridians tested (n), expressed in mm. Higher values of 

BFCIrregSD means a more irregular distortion.[136] 

In this study it was used an in-out 30º routine exam. In this examination routine the 

peripheral LEDs are presented from the center to the periphery in 12 of the 24 semimeridians 

with a separation of 30º between them. First, and after a demonstration pre-test, it was evaluated 

the light distortion under non-cycloplegic conditions with the best distance visual correction. 

Under cycloplegia, subjects’ light distortion was randomly measured monocularly and binocularly 

with the best distance visual correction and with a positive and negative defocus of 1.00D. A 



Impact of defocus in the Measurement of Light Distortion: Simulation and Experimental Measures   
Mestrado em Optometria Avançada 47 

diaphragm of 5mm was used to standardize the pupil size of all subjects under cycloplegia, even 

in binocular conditions. In this study were used two metrics to quantify the size of the distortion 

(the LDI and the BFCRad) and two metrics to evaluate the irregularity of the distortion (BFCIrreg, 

BFCIrregSD). 

All light distortion measures were taken under low room illumination (0.913±0.017LUX) 

measured with a Minolta T-10 luminanciometer. 

 

3.3.7 PSF Simulation 

In order to compare the psychophysical measures of light distortion size obtained with 

LDA with an optical metric, we simulated for each subject the monocular PSF. For the PSF 

simulations we used the MATLAB (The MathWorks, Inc., USA), having in account the wavefront 

aberrometry of the randomized eyes, the best distance refraction, the pupil size and the positive 

and negative induced defocus of 1.00D. We compared the BFCRad values (LDA size parameter) 

with the size of the PSF in arcmin reproduced by MATLAB for both positive and negative induced 

defocus in cycloplegic conditions. Besides we also simulated the PSFs for different levels of 

positive and negative defocus (since -1.50D to +1.50D in 0.50D steps) with the best distance 

correction for three situations: 1) without cycloplegia and the mean natural pupil size in mesopic 

conditions; 2) with cycloplegia and a 5mm pupil not allowing any degree of accommodation; 3) 

with cycloplegia and a 5mm pupil allowing a maximum accommodation of 0.50D (assuming that 

tropicamide did not totally stopped the accommodation). 

 

3.4 Statistical Analysis 

Statistical analysis was performed with SPSS Statistic software version 23.0 (SPSS Inc, 

Chicago, IL). The descriptive data are presented in terms of mean±standard deviation. The 

normality of all variables was evaluated using the Kolmogorov-Smirnov test, since the sample was 

equal to 30. In the normality test, if the parameter of statistical significance (p) was less than 

0.050, the null hypothesis was rejected, meaning that there were significant statistical 

differences in the distribution of the sample compared to a sample with normal distribution. If the 
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alternative hypothesis was accepted, is because there are no differences to the normal 

distribution and the variable in question has a normal distribution. When 2 variables were 

compared, for example the comparisons between light distortion parameters with a positive and 

a negative defocus, the Paired Samples T-Test was used for variables with normal distribution 

and Wilcoxon for those who do not fulfill this assumption of normality. The majority of the 

variables had a non-parametric distribution, so almost all the comparisons were made by using 

the paired Wilcoxon test. Whenever are presented differences, the values refers to the difference 

between the first condition (non-cycloplegic or without defocus or with positive defocus) minus 

the second condition (cycloplegic or with any type of defocus or negative defocus). 

The correlations were performed by Pearson test if the variables had a normal 

distribution; otherwise the Spearman correlation was used. The correlations were considered 

strong if >0.800, moderately strong if between 0.500 and 0.800, fair if between 0.300 and 

0.500 and poor if <0.300. [162]  

The level of significance of the study was set at α=0.050. 
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4. RESULTS  

In order to know if both eyes (right and left) would be considered for the statistical 

analysis for the purpose of this study, it was firstly made a statistical analysis to know the 

differences between the two eyes. From the results obtained by comparing the right and left eye 

(Table 9.1 from Attachment 2 on appendix) in non-cycloplegic and cycloplegic conditions is 

observed that the differences between the two eyes are very low and have no statistical 

significance (p >0.050 for all parameters). Figure 4.1 represents the differences between both 

eyes for the refractive components and shows that the differences are very small, being almost 

identical for M and J0.  

M, J0 and J45 in dioptries (D) 

Figure 4.1 Magnitude of the refractive components (M, J0 and J45) from the right and left eyes. 

 

Besides, both eyes were in general strongly and significantly correlated. This analysis led 

us to randomize the choice of only one eye per subject to deal with the monocular findings and 

so, from here, we only refer to monocular values considering the randomization process. 
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4.1 Sample Characteristics  

The characteristics of the sample are presented in Table 4.1 for non-cycloplegic conditions. 

 

Table 4.1 Demographic characteristics of the sample expressed in Mean±SD. 

Parameter Description 

n 30 

AGE (years) 23.28±3.61 

GENDER 
21 female (70%) 

9 male (30%) 

M (D) -0.56±0.92 
J0 (D) 0.07±0.17 
J45 (D) -0.02±0.13 

Pupil Size at mesopic 
conditions (mm) 

5.64±0.65 

Qmean 0.28±0.11 
SIM Kmean (mm) 43.90±1.44 
IS index (D) -0.21±0.47 

SRI 0.48±0.15 
SAI 0.60±0.17 

M: Equivalent Sphere; J0: differences on dioptric power between 
the horizontal and vertical meridians; J45: oblique astigmatism; 
All the parameters are expressed as mean±SD, except the sample 
size (n) and the gender. 

 

4.2 Visual Acuity 

The visual acuity was measured under non-cycloplegic and cycloplegic conditions and for 

different high and low contrast with the best distance correction. Low contrast distance visual 

acuity with the best distance correction was also measured with an additional positive and 

negative induced defocus of 1.00D. The LogMAR values for each condition and the significance 

between the non-cycloplegic and cycloplegic conditions are presented in Table 4.2. 
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Table 4.2 Monocular and binocular LogMAR visual acuity (Mean±SD) measured in non-cycloplegic and 

cycloplegic conditions for four different conditions.  

 
HCDVA LCDVA LCDVA+1D LCDVA-1D 

MONOCULAR CONDITIONS 

WITHOUT CYCLOPLEGIA -0.15±0.08 0.02±0.06 0.42±0.13 0.05±0.10 
WITH CYCLOPLEGIA -0.09±0.07 0.13±0.09 0.41±0.24 0.29±0.19 

p <0.001+ <0.001* 0.927+ <0.001+ 

BINOCULAR CONDITIONS 
WITHOUT CYCLOPLEGIA -0.19±0.07 -0.03±0.06 0.30±0.11 -0.01±0.08 
WITH CYCLOPLEGIA -0.14±0.07 0.08±0.07 0.41±0.13 0.28±0.12 

p 0.003* <0.001+ <0.001+ <0.001+ 
HCDVA: high contrast visual acuity with the best distance correction; LCDVA: low contrast visual acuity with the best 
distance correction; LCDVA+1D: low contrast visual acuity with the best distance correction and a positive induced 
defocus of +1.00D; LCDVA-1D: low contrast visual acuity with the best distance correction and a negative induced 
defocus of -1.00D; Statistically significant differences are presented in bold; (*) Wilcoxon Signed Ranks Test; (+) 
Paired Samples T-test. 

 

All subjects had a monocular and binocular high contrast VA (HCDVA) ≤ 0.00 LogMAR 

with the best distance visual correction for non-cycloplegic and cycloplegic conditions. The 

binocular VA was always higher than the monocular VA under all conditions. Comparing the VA 

without cycloplegia with the VA with cycloplegia it is observed that the differences are statistical 

significant (p<0.010) under all conditions, except for the monocular condition of the low contrast 

visual acuity with a positive +1.00D of induced defocus (LCDVA+1D) (p>0.050, Paired samples 

T-test). In general, all the VA measurements are lower (more positive LogMAR values) after the 

cycloplegic instillation. 
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Table 4.3 Monocular and binocular differences (Mean±SD) between the four conditions tested (LogMAR 

scale) measured without and with cycloplegia.  

 
HCDVA LCDVA+1D LCDVA-1D 

MONOCULAR CONDITIONS 

WITHOUT 
CYCLOPLEGIA 

LCDVA 
-0.17±0.06 

<0.001* 
-0.40±0.13 

<0.001* 
-0.03±0.07 

0.062* 

LCDVA+1D - - 
0.37±0.15 

<0.001 

WITH 
CYCLOPLEGIA 

LCDVA 
-0.26±0.12 

<0.001* 
-0.35±0.19 

<0.001* 
-0.20±0.16 

<0.001* 

LCDVA+1D - - 
-0.14±0.21 

0.004+ 
BINOCULAR CONDITIONS 

WITHOUT 
CYCLOPLEGIA 

LCDVA 
-0.16±0.06 

<0.001* 
-0.33±0.10 
<0.001+ 

-0.01±0.06 
0.266+ 

LCDVA+1D - - 
0.32±0.13 
<0.001+ 

WITH 
CYCLOPLEGIA 

LCDVA 
0.12±0.08 
<0.001+ 

0.38±0.16 
<0.001+ 

0.30±0.13 
<0.001+ 

LCDVA+1D - - 
-0.08±0.18 

0.001+ 
HCDVA: high contrast visual acuity with the best distance correction; LCDVA: low contrast visual acuity with the 
best distance correction; LCDVA+1D: low contrast visual acuity with the best distance correction and a positive 
induced defocus of +1.00D; LCDVA-1D: low contrast visual acuity with the best distance correction and a negative 
induced defocus of -1.00D; Statistically significant differences are presented in bold; (*) Wilcoxon Signed Ranks 
Test; (+) Paired Samples T-test. 

 

In Table 4.3 are presented the differences between the conditions of monocular and 

binocular VA measured for both cycloplegic conditions. It can be observed that the LCDVA was 

significantly (p<0.010) lower (more positive LogMAR values) than the HCDVA under all conditions 

by more than one VA line. LCDVA+1D and LCDVA-1D were always worse than the LCDVA. With 

the positive induced defocus the mean LCDVA was lower than with the negative induced defocus. 

The differences were statistically significant (p<0.010) for all the measurements, except for the 

monocular and binocular VA values between the LCDVA and LCDVA-1D without cycloplegia.  
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4.3 High Order Aberrations  

 
Table 4.4 Total HOA, Spherical and Coma RMS aberrations (Mean±SD) under non-cycloplegic and 

cycloplegic conditions with the respective pupil size during the measurements. 

 
TOTAL HOA 
RMS (µm) 

SPHERICAL HOA 
RMS (µm) 

COMA HOA 
RMS (µm) 

MONOCULAR CONDITIONS WITHOUT CYCLOPLEGIA 
NATURAL MESOPIC 
PUPIL (5.64±0.65MM) 

0.269±0.144 0.095±0.077 0.152±0.135 

5MM PUPIL 0.190±0.061 0.066±0.045 0.099±0.061 

MONOCULAR CONDITIONS WITH CYCLOPLEGIA 
5MM PUPIL 0.191±0.060 0.065±0.041 0.109±0.058 

 

 

(*) Differences were statistically significant with Wilcoxon Signed Ranks Test 

 
Figure 4.2 Distribution of high order aberrations (spherical-like, coma-like and total RSM up to 6th order) for the 

two pupil sizes considered when measured and analyzed the light distortion. Mesopic natural pupil refers to the 

average pupil size of the sample (5.64±0.65mm). 

 

The distribution of the HOA is variable between the participants. In this sample the 

comatic HOA was always higher than the spherical HOA at both non-cycloplegic and cycloplegic 

conditions (Table 4.4). The differences between the non-cycloplegic and cycloplegic values for the 

HOA were only statistically significant when compared with different pupil size (Table 4.5). For a 

5mm pupil the differences between HOA in non-cycloplegic and cycloplegic conditions were not 

statistically significant. In Figure 4.2 it can be observed that all the HOA increased with the 

increase of pupil size, once the mesopic natural pupil size is approximately 0.64mm larger than 

the 5mm pupil size limited by a diaphragm for cycloplegic measurements. 
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 Table 4.5 Differences in Total HOA, Spherical-like and Coma-like RMS aberrations (Mean±SD) between non-

cycloplegic and cycloplegic measures for the respective pupil sizes.  

 
TOTAL HOA SPHERICAL HOA COMA HOA 

 
Difference±SD 

p 

 
5MM PUPIL WITH CYCLOPLEGIA 

WITHOUT 
CYCLOPLEGIA 

NATURAL 
MESOPIC PUPIL 

0.078±0.123 0.031±0.049 0.044±0.105 

0.001* 0.003* 0.037* 

5MM PUPIL 
-0.001±0.051 0.001±0.018 -0.010±0.044 

0.898+ 0.616* 0.141* 
Statistically significant differences are presented in bold; (*) Wilcoxon Signed Ranks Test; (+) Paired Samples T-test. 

 

4.4 Light Distortion Analysis 

4.4.1 Comparison between monocular and binocular measures 

The light distortion parameters were recorded from LDA for monocular and binocular 

conditions under cycloplegic and non-cycloplegic conditions. Figure 4.3 represents the graphical 

results from the differences between monocular and binocular light distortion parameters measured. 

Barplots A and B refer to light distortion size parameters and barplots C and D to light distortion 

irregularity parameters.  
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(*) Differences were statistically significant with Wilcoxon Signed Ranks Test. 

Figure 4.3 Mean±SD light distortion size (barplots A and B) and irregularity (barplots C and D) monocular 

and binocular measures. Statistical differences were found between the monocular and binocular 

measures for all conditions on light distortion size parameters (LDI and BFCRad). 

 
From Figure 4.3 it s observed that monocular values were always higher than the binocular 

values for all parameters, in all the conditions measured. This was always true except for BFCIrreg 

under cycloplegic conditions with an induced defocus of -1.00D and for BFCIrregSD at cycloplegia only 

with the best distance correction. It was found differences statistically significant for LDI and BFCRad 

(barplots A and B) (all p<0.050, Wilcoxon) between monocular and binocular measures in the four 

conditions presented (without cycloplegia, with cycloplegia, with cycloplegia and a positive and 

negative induced defocus of 1.00D). For the irregularity light distortion parameters (barplots C and D) 

no statistically significant differences (p>0.050, Wilcoxon) between monocular and binocular 

measures were found, except for the BFCIrreg in non-cycloplegic condition (p<0.010, Wilcoxon). In 

addition, the correlations between monocular and binocular measures were significantly positive and 

moderatly strong or strong for size parameters (r>0.500, p<0.010, Spearman correlation) and non-

significantly low for irregularity parameters (see Table 9.2 from Attachment 2 on appendix). 

  

C 
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4.4.2 Comparison between non-cycloplegic and cycloplegic measures 

In order to study if the cycloplegic has influence on light distortion perception, we 

compared the LDA parameters in both cycloplegic conditions (without and with cycloplegia) with 

the best distance correction. In Figure 4.4 are represented the results from the mean and 

standard deviation of the monocular and binocular light distortion values in non-cycloplegic and 

cycloplegic conditions in plotbars.  

 

(*) Differences were statistically significant with the Wilcoxon Signed Ranks Test); (+) Differences were statistically 
significant with the Paired samples T-test. 

Figure 4.4 Comparison between monocular and binocular light distortion size (barplots A and B) and irregularity 

(barplots C and D) between non-cycloplegic and cycloplegic measures.  

 

From Figure 4.4 it can be observed that both monocular and binocular LDA values with 

cycloplegia tend to be more elevated than without cycloplegia. All the differences were statistically 

significant (p<0.050, Wilcoxon and T-test), except for the monocular measures of BFCIrreg and 

BFCIrregSD (p>0.050, Wilcoxon). It was also observed that once again there are positive 

moderatly strong and significant correlations between the LDI without and with cycloplegia in 

both monocular (r=0.793, p<0.001, Spearman)  and binocular (r=0.618, p<0.001, Spearman) 

conditions. The same it was observed for the BFCRad correlation between non-cycloplegic and 

 Without cycloplegia With cycloplegia 
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cycloplegic values for monocular (r=0.753, p<0.001, Pearson) and binocular (r=0.635, p<0.001, 

Pearson) conditions (see Table 9.3 from Attachment 2 on appendix). 

From the same figure we can also observe if there is a relatioship between the pupil size 

and light distortion measures, once the pupil size were different in non-cycloplegic 

(5.64±0.65mm) and cycloplegic (5mm limited pupil) conditions.  

According with these results, under cycloplegia the amount of light distortion perceived is 

always major than without cycloplegia, incresing its size and irregularity. 

 

4.4.3 Impact of defocus on Light Distortion measures 

 

Figure 4.5 shows the monocular and binocular results of light distortion for each 

parameter evaluated by LDA in cycloplegic conditions with a limited pupil size of 5mm, and the 

three comparisons (1. No induced defocus vs. +1.00D induced defocus; 2. No induced defocus 

vs. -1.00D induced defocus; 3. +1.00D induced defocus vs. -1.00D induced defocus). Table 9.4 

from Attachment 2 (on appendix) represents the Mean±SD differences values, correlations and 

significances for each parameter in monocular and binocular conditions for each compared pairs. 
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Monocular  Binocular  

(*) Differences were statistically significant with Wilcoxon Signed Ranks Test. 

Figure 4.5 Comparison between monocular and binocular LDA size (A and B) and irregularity (C and D) 

values (Mean±SD) represented in barplots for negative, zero and positive (-1.00D, 0.00D and +1.00D, 

respectively) induced spherical defocus in cycloplegic conditions for a 5mm pupil. 

As in section 4.4.1 we can observe that the binocular values of light distortion were 

always lower than the monocular one, being the differences statistically significant for LDI and 

BFCRad (p<0.01, Wilcoxon) (see Table 9.2 from Attachment 2 on appendix). However, here we 

can better observe that the BFCIrregSD suffered minor changes between monocular and 

binocular measures. 

Both negative and positive induced defocus increased size parameters of light distortion 

(graph A and B from Figure 4.5) compared to the values observed with no induced blur (0.00D of 

induced defocus). However, the same did not happen for irregularity parameters. BFCIrreg 

obtained in the situation with negative induced defocus did not change comparing to the situation 

with no induced blur and BFCIrregSD had slightly decreased. 

Comparing the results obtained for each level of induced blur, it can be observed that the 

higher light distortion was achieved by the induction of a positive defocus of +1.00D for all the 

parameters evaluated (LDI, BFCRad, BFCIrreg and BFCIrregSD). When simulated a +1.00D 

defocus the perceived light distortion was larger than with no level of induced defocus and with 
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-1.00D defocus. The differences were statistically significant (p<0.050, Wilcoxon) for the 

monocular and binocular LDI and BFCRad between the situation with no induced defocus with 

the positive and negative induced defocus situations, except for the comparison of the binocular 

LDI between no level of defocus and negative induced defocus (p=0.056, Wilcoxon). For the 

BFCIrreg and BFCIrregSD parameters the differences were never statistically significant 

(p>0.050, Wilcoxon). When compared the positive induced defocus with the negative induced 

defocus the differences were not statistically significant (p>0.050, Wilcoxon) for any light 

distortion parameters.  

The LDI without induced defocus situation was significantly and moderately to strongly 

correlated with the LDI with positive (r=0.752, p<0.001, Spearman correlation) and negative 

(r=0.560, p=0.001, Spearman correlation) induced defocus situations under monocular 

conditions. Under binocular conditions the correlation was also significant and moderately strong 

(see Table 9.4 from Attachment 2 on appendix). The same was observed for the BFCRad. On the 

comparison of the light distortion parameters between the positive and negative induced defocus 

situation, the LDI and the BFCRad had a significant moderately strong correlation (r>0.500, 

p<0.010, Spearman correlation) for monocular and binocular conditions (see Table 9.4  from 

Attachment 2 on appendix). For the BFCIrreg and BFCIrregSD parameters the correlations were 

not statistically significant (p>0.050, Spearman correlation). 

 

4.5 Impact of High Order Aberration on Light Distortion 

On figures 4.6 and 4.7 are represented the graphical correlations of the high order 

aberrations with LDA parameters. Figure 4.6 represents the relationship of LDI (graph A) and BFCRad 

(graph B) with the spherical-like high order aberration (spherical-like HOA RMS) without cycloplegia 

(5.64±0.65mm pupil) and Figure 4.7 represents the relationship of BFCIrregSD with the total HOA 

(graph A) and the coma HOA RMS (graph B) with cycloplegia (5mm pupil). Only the statistically 

significant (p<0.050, Spearman correlation) correlations are graphically presented (see Table 9.5 

from Attachment 2 on appendix for remaining correlations). 

 



 
Mestrado Optometria Avançada 60 

(◊) Spearman correlation  

Figure 4.6 Correlations of spherical-like high order aberration with light distortion index (LDI) and best 

fit circle radius (BFCRad) (graph A and B, respectively) without cycloplegia. 
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(◊) Spearman correlation  

Figure 4.7 Correlations of total and coma high order aberrations with best fit circle irregularity standard 

deviation (graph A and B, respectively) with cycloplegia. 

 

Under non-cycloplegic conditions the size parameters (LDI and BFCRad) were 

significantly and fairly (r>0.300, p<0.050, Spearman correlation) correlated with the spherical 

aberration. In these non-cycloplegic conditions, any other high order aberration was correlated 

with any other light distortion parameter. In graphs from Figure 4.6 we noticed the existence of 

an outlier. After removal the subject with the highest value of spherical-like HOA the correlation 

coefficient reduced slightly in some cases but the correlations remained fair and statistically 

significant so that the conclusions of the work do not change because of this subject with a 

somewhat atypical behaviour and that seemed, at first glance, to alter the linear correlation 

coefficient. The same applies to other parts of the results. 
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On the other hand, with cycloplegia and with no induced defocus the BFCIrregSD, an 

irregularity parameters of light distortion, showed a fairly significant correlation (r>0.300, 

p<0.050, Spearman correlation) with total and coma high order aberrations, being their values 

very similar. There were no other statistically significant correlations between other parameters 

(see Table 9.5 from Attachment 2 on appendix for further detail). 

Table 4.6 Correlations between the high order aberrations (for a 5mm pupil) and the changes on light 

distortion parameters with cycloplegia. The changes in light distortion parameters are between no induced 

defocus and positive induced defocus, and no induced defocus and negative induced defocus. Statistically 

significant correlations are highlighted in bold. 

 LDI BFCIRREG BFCIRREGSD BFCRAD 

WITH THE CHANGES ON LIGHT DISTORTION WITH +1,00D 

TOTAL HOA 
-0.137 
0.688◊ 

-0.243 
0.453◊ 

0.190 
0.330◊ 

-0.139 
0.685◊ 

SPHERICAL 
HOA 

-0.181 
0.937◊ 

-0.147 
0.204† 

0.007 
0.972◊ 

-0.230 
0.806◊ 

COMA HOA 
-0.078 
0.938◊ 

-0.187 
0.475◊ 

0.244 
0.294◊ 

-0.051 
0.747◊ 

WITH THE CHANGES ON LIGHT DISTORTION WITH -1,00D 

TOTAL HOA 
0.113 

0.656◊ 
-0.003 
0.988† 

0.160 
0.450◊ 

0.076 
0.690† 

SPHERICAL 
HOA 

0.391 
0.017◊ 

0.326 
0.060◊ 

0.035 
0.490◊ 

0.312 
0.039◊ 

COMA HOA 
0.189 

0.667◊ 
-0.263 
0.201◊ 

0.140 
0.460† 

0.088 
0.645† 

Statistically significant correlations are presented in bold and the underlined values refers to a fairly correlation 
(r>0,300); (◊) Spearman correlation; (†) Pearson correlation. 

 

Table 4.6 shows the correlations between high order aberrations and the changes on light 

distortion parameters with the two types of defocus (positive and negative) under cycloplegic 

conditions. In general, the correlations are very poor and with no statistical significance. However, 

spherical aberration showed a fairly positive and significant correlation with LDI (r=0.391, p=0.017, 

Spearman correlation) and BFCRad (r=0.312, p=0.039, Spearman correlation) when the change on 

light distortion with the negative defocus is considered. Figure 4.8 represents both LDA size parameter 

changes correlations with the spherical aberration. 
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(◊) Spearman correlation  

Figure 4.8 Correlation graphs between spherical high order aberration magnitude and the change on LDI 

(A) and BFCRad (B) when induced a negative defocus under cycloplegia. Aberrations report to the naked 

eye and not the combination of the inherent aberrations of the eye and defocus induced. 

 

The correlation between the changes on high order aberrations magnitude and the 

changes on light distortion values without and with cycloplegia were also studied (Table 4.7). The 

change of each HOA and light distortion parameters can be observed on Table 4.5 and Table 9.3 

from Attachment 2 on appendix (in monocular conditions), respectively. The results suggested 

that there were no statistically significant correlations between the change of HOA and the 

change on light distortion between non-cycloplegic and cycloplegic situations. 
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Table 4.7 Correlations between the changes on high order aberrations and the changes on light distortion 

parameters. The changes are between non-cycloplegic values and cycloplegic values. No statistically significant 

correlations were found.  

 
LDI BFCRad BFCIrreg BFCIrregSD 

TOTAL 
HOA 

-0.051 
0.911◊ 

0.004 
0.981† 

0.048 
0.800† 

-0.269 
0.140◊ 

SPHERICAL 
HOA 

-0.124 
0.514† 

0.014 
0.941† 

-0.034 
0.759◊ 

-0.089 
0.641† 

COMA HOA 
-0.055 
0.883◊ 

-0.023 
0.906† 

0.167 
0.377† 

-0.265 
0.158† 

(◊) Spearman correlation; (†) Pearson correlation. 
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4.6 Light Distortion and Topographic quality parameters  

According to the results obtained and presented on Table 9.6 from Attachment 2 (on 

appendix) the corneal asphericity (Q) was not correlated with light distortion parameters under 

natural conditions (without cycloplegia). On the other hand, were found some significant 

correlations for SRI and SAI with BFCRad, a size light distortion parameters under non-cycloplegic 

conditions, that are graphically presented in Figure 4.9. 

(◊) Spearman correlation 

Figure 4.9 Correlation graphs of the BFCRad with SRI (A) and with SAI (B). The equation of the linear 

adjusted line is presented, as well the coefficient of correlation and its significance. 

SRI had a moderately strong positive and significant correlation with BFCRad without 

cycloplegia (Figure 4.9A). SAI presented a moderately strong significant positive correlation with 

the BFCRad (Figure 4.9B) and fairly significant correlation with the BFCIrreg (r=0.371, p=0.044, 

Spearman correlation) (see Table 9.6 from Attachment 2 on appendix). 
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4.7 Relationship between Light Distortion and Visual Acuity 

Table 4.8 represent the monocular changes on LCDVA associated to the changes on light 

distortion parameters with the induced defocus used in this study under cycloplegia. A mean 

decrease on LCDVA of 0.35±0.19 LogMAR with the induced defocus of +1.00D is associated to 

an increase on light distortion size (at about of 1.80±3.68% in LDI and 2.75±5.06mm in 

BFCRad) and irregularity (0.37±1.16mm and 0.31±2.45mm on BFCIrreg and BFCIrregSD, 

respectively). With a induced defocus of -1.00D the LCDVA decreased on average by 0.20±0.16 

LogMAR, being associated to an increase in LDI and BFCRad too, but in a lower level than with 

the positive defocus (0.64±2.44% and 1.38±4.26mm, respectively), and to a decrease on 

BFCIrreg and BFCIrregSD (-0.03±0.78mm and  -0.24±2.40mm, respectively). All the referred 

changes are presented in Table 4.3 and Table 9.4 from Attachment 2 (on appendix) and they 

were statistically different for all the parameters.  

 

Table 4.8  Monocular differences on LCDVA and light distortion parameters in their own units with the 

positive and negative defocus, in cycloplegic conditions. 

 

  

 
CHANGES ON LIGHT DISTORTION PARAMETERS 

CHANGE ON LCDVA 
(LogMAR) 

LDI (%) BFCRad (mm) BFCIrreg (mm) BFCIrregSD (mm) 

WITH POSITIVE INDUCED DEFOCUS 
-0,35±0,19 -1,80±3,68 -2,75±5,06 -0,37±1,16 -0,31±2,45 

WITH NEGATIVE INDUCED DEFOCUS 
-0,20±0,16 -0,64±2,44 -1,38±4,26 0,03±0,78 0,24±2,40 
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y = 3.3054x + 0.6656 
r = 0.292◊ (p=0.450) 

y = -0.7646x + 0.8326 
r= 0.033◊ (p=0.830) 
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Figure 4.10 Correlation of the changes on LCDVA with the changes on LDI with the positive (green) and 

negative (red) induced defocus. The results show poor and non-significant correlations. 

 

No significant correlations were found between the changes on LCDVA with the positive 

and negative defocus in cycloplegic conditions and the changes on light distortion parameters 

with cycloplegia with positive and negative induced defocus. Besides all the correlations were 

poor (all r<0.300, p>0.050, Spearman and Pearson correlations) (see Table 9.7 from 

Attachment 2 on appendix). Figure 4.10 represents the correlations above described where it can 

be seen the poor adjustment of the points to the linear correlation line in both positive and 

negative induced defocus situations for LDI parameter.  
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4.8 Light distortion size and PSF 

 Figure 4.11 represents the relationship between the BFCRad (mm), a size parameter of 

light distortion given by LDA, and the simulated PSF (arcmin) generated with a MATLAB program. 

Both graphs show a poor and non-significant correlation (r<0.300, p>0.050, Spearman 

correlation) between the two variables. 

 (◊) Spearman correlation 

Figure 4.11 Correlation between the radius of the best fit circle adjusted (BFCRad (mm)) to light distortion 

and the simulated projection of the PSF (arcmin) with positive (A) and negative (B) induced defocus of 

1.00D in cycloplegia conditions. 
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5. DISCUSSION 

The impact of spherical defocus on psychophysical measures of light distortion was not 

studied before. In this thesis project we will discuss our results and compare them to others 

author findings with different purposes. The discussion of the present thesis will be subdivided in 

topics, as done in the presentation of the results, in order to be easier to be followed by the 

reader. In the beginning of each topic it will be present a short summary of the most important 

findings with some guidelines, followed by the discussion of the results in light of the previous 

results obtained by other authors. 

 

5.1 Visual Acuity 

In the present study visual acuity under different (high and low contrast distance visual 

acuity, low contrast distance visual acuity with positive and negative induced defocus of 1.00D) 

were compared in non-cycloplegic and cycloplegic conditions for young subjects.  

Both binocular and monocular VA were superior to 0.00 LogMAR. The binocular VA was 

always better than the monocular VA under all conditions. This is in agreement with other studies 

[163-165] reporting better visual performance with both eyes simultaneously (binocular conditions) 

instead of one eye (monocular conditions). These results support the binocular summation effect. 

[163-168]  

The differences between both non-cycloplegic and cycloplegic situations were always 

statistically significant and worse with cycloplegia. Indeed this was already expected since the 

tropicamide usage not only paralyzes the accommodation but also dilates the pupil as well. This 

may potentially revealing hyperopic refractive errors as the tonic accommodation is lost, but also 

because of the increase in higher order aberrations as the pupil dilates. This is evident if we 

observe that the loss of visual acuity is more important under low contrast (about 1 or 2 lines) 

when compared with the high contrast (about half line), what suggests a loss of image quality 

with cycloplegia by diminished contrast sensitivity as low contrast conditions are more sensitive 

to higher order aberrations. Besides, the smaller HCDVA loss compared with LCDVA loss may be 

due to the spherical-like HOA interaction with the defocus. 

When comparing the HCDVA with the LCDVA we found a difference of 0.17±0.06 

LogMAR units, being the HCDVA higher than LCDVA. This is in agreements with other studies 

reports. [39 76 104] For example, Johnson et al. (1995) [76] found a loss at about 0.20 LogMAR units in 
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VA when the contrast of letters dropped from 97% to 12%, while studied how luminance, contrast 

and blur influenced the visual acuity. Li and her coworkers (2009) [39] found 0.80 LogMAR and 

0.24 LogMAR units for HCDVA and LCDVA, respectively, with the best distance correction.  

Other relevant finding of this study is that both positive and negative induced spherical 

defocus decreased the LCDVA, such as expected. Under non-cycloplegic conditions the loss on 

LCDVA was significantly higher with the positive blur, while with the induction of negative defocus 

the loss is around one letter only, not being significant (see Table 4.3 in section 4.2). Without 

cycloplegia this was already expected, since a positive lens relaxes the accommodation while a 

negative lens stimulates the accommodation. But with cycloplegia both LCDVA with induced 

defocus worsen similarly, although with positive defocus the LCDVA was still slightly worse than 

with the negative defocus. This difference between LCDVA with +1.00D and LCDVA with -1.00D 

with cycloplegia may be explained by the fact that the cycloplegic may not be at its maximum 

effect, allowing the subjects to slightly accommodate. Johnson et al. (1995) [76] found similar 

results but they used positive induced blur only. They found a decline at about 0.30 LogMAR in 

visual acuity of 12% contrast with a induced +1.00D blur in non-cycloplegic conditions, while in 

our study we found a slightly higher decrease (0.35±0.19 LogMAR) under 10% contrast visual 

acuity in both non-cycloplegic and cycloplegic conditions. This finding confirms in the this study 

that low contrast VA is a better predictor of vision quality than the high contrast visual acuity, 

which might be more relevant at low luminance levels, where contrast sensitivity is more effected 

by changes in optical quality. 
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5.2 High Order Aberrations  

Ocular wavefront aberrations were measured with and without cycloplegia. Its values 

were recorded for a mesopic pupil size for each subject and a 5mm pupil without cycloplegia and 

for 5mm pupil size with cycloplegia. This was because the light distortion measurement were 

taken with the natural mesopic pupil size of each subject without cycloplegia, and with 

cycloplegia the pupil size of every subject was limited to 5mm by a diaphragm.  

The distribution of HOA was shown to be very variable between the participants. Having 

in account the standard deviation of total, spherical-like and coma-like HOA RMS the variability is 

remarkable. This is especially true for COMA and TOTAL HOA RMS without cycloplegia. The three 

values of HOA RMS values are within the normal range  [169], being the Spherical-like HOA slightly 

positive for all the participants (0,095±0,077µm), but higher than reported by the literature in 

normal young subjects aged 20 to 29 years old for a 5mm pupil diameter (0,065±0,057µm). [48] 

However, contrary to the literature in this study the most prominent HOA was the coma-like HOA 

having higher values than the spherical-like HOA. [7 39 46] In this study we found the RMS values 

under cycloplegic conditions to be lower than without cycloplegia because the natural mesopic 

pupil size is slightly higher than the standardized pupil diameter of 5mm with cycloplegia (see 

Table 4.1 and Table 9.1 from Attachment 2 on appendix). This was already expected since the 

natural mesopic pupil size was about 0.64mm larger than 5mm and is in agreement with the 

literature which reports higher HOA RMS values for higher pupil diameter. [48 60 85] 

No differences were found between the non-cycloplegic and cycloplegic HOA RMS when 

considered the same pupil size (5mm), as expected. This means that the measures are very 

similar and are minimally influenced by accommodation in the non-cycloplegic condition. This is 

in concordance with Miranda et al. (2009)[170] who found that IRx3 aberrometer is reliable and 

with a good repeatability. However, in this study some repeatability problems may be due to 

subjects’ fixation errors, micro-fluctuations in accommodation, small eye movements, tear film 

instability or tear film disorganization due to cycloplegic instillation. All these factors cause 

changes in the ocular aberrations, affecting more the horizontal and vertical coma.[53] Despite this, 

these effects seem to have minor impact on the reliability in the context of the present study. 
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5.3 Light Distortion Analysis 

In this section the light distortion results are discussed separately for the comparison 

between monocular and binocular LDA values, the impact of defocus and the comparison 

between non-cycloplegic and cycloplegic LDA measures. 

 

5.3.1 Comparison between monocular and binocular measures 

Monocular and binocular light distortion measures for size and irregularity parameters 

were compared in both non-cycloplegic and cycloplegic conditions. According to the results on 

section 4.4.1, the monocular results of light distortion were always worse than the binocular 

ones. Our findings suggest an improvement on light distortion perception when under binocular 

conditions resulting in an attenuation on the binocular light distortion compared to the light 

distortion obtained for each eye separately, even in healthy eyes. This suggests that there is a 

neural capacity to reduce the light distortion under binocular conditions, which consequently 

improves the optical quality, being consistent with other studies showing similar results in post-

surgical eyes. [165] In addition to Jiménez et al. (2006) [165] findings, there are clinical experiments [163 

164 166-168] demonstrating that in healthy subjects the binocular visual performance is superior to the 

monocular one and a binocular summation occurs in subjects with similar visual acuities in both 

eyes and with decreased interocular differences on image quality, particularly at low illumination 

levels. Plainis et al. (2010) [168] studied the effect of several levels of induced positive defocus on 

the measurement of the pattern reversal visual evoked potential and on visual acuity. In the 

context of the binocular summation, they found that binocular vision attenuates the effect of 

defocus what might be explained by the activation of a major number of neurons at close-to-

threshold detection when in binocular stimulation. The effect of binocular summation was already 

referred on the discussion of the visual acuity results (section 5.1). 

Although in general both size and irregularity parameters were worse in monocular than 

in binocular conditions, we observed that the irregularity parameters of light distortion did not 

present statistically significant differences between monocular and binocular measures, except 

under non-cycloplegic conditions. This might suggest that the irregularity of the perceived light 

distortion might not be significantly changed from monocular to binocular vision due to the 

interocular wavefront aberration simetry. This might be different in eyes with monocularly 

assymetric distortions as in corneal ectasic disease, but this needs to be investigated in the 
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future. Overal, the present study suggests that the size of the light distortion is more affected 

than the irregularity parameters when comparing monocular and binocular vision. 

 

5.3.2 Impact of defocus on light distortion 

For the assessment of the impact of defocus on light distortion, we induced a positive 

and negative defocus of 1.00D over the best distance correction. The device was at 2.00 meters 

from the subject. However we did not considered the accommodative response of 0.50D for non-

cycloplegic conditions once Ferreira-Neves et al. (2015) [136] found no differences between LDA 

parameters with and without spherical compensation to the measuring distance +0.50D. We 

compared the results from each situation (no defocus, positive defocus and negative defocus) in 

cycloplegic conditions, with a limited and standardized pupil size of 5mm. Although it could be 

expected that the lack of compensation to the examination distance would result in a 0.50 

hyperopic defocus that will worsen light distortion, this in fact is not the case. This might be 

explained by the small accommodative effort that the patient needs to do to compensate for it 

and that might be even present under tropicamide that allows a small residual accommodation to 

be performed. 

We found the mean best fit circle radius of the distortion/halo to be 14.18±4.19mm and 

12.83±3.99mm for monocular and binocular situations, respectively. These results are lower 

than the ones found by Puell et al. (2013) [156] which found a mean radius of the halo in healthy 

subjects to be 36.5±28.8mm. Different methodologies used in both studies, the larger and 

brighter glare stimulus and the limited meridians studied by the instrument used by the other 

authors, might explain this difference. Furthermore, in their study the sample included older 

subjects and it is known that age is a predictor of the increased intraocular scattering and 

consequently increased light distortion. Besides they used a device with a monitor that simulated 

less real glare conditions than LDA. 

In the present study, both positive and negative induced defocus increased the 

perception of light distortion, particularly its size. This is in agreement with the optical findings of 

Villegas et al. (2002) [150] which found the double-pass images to have a larger light spread around 

the central point with different levels of positive and negative induced defocus, increasing with the 

level of defocus. In addition, Santolaria et al. (2015) [119] found an increase in LDA parameters in 

subjects undergoing Orto-K after one day of treatment. However, besides the differences on light 
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distortion parameters were not statistically significant between positive and negative defocus, we 

observed that negative defocus induced a smaller disturbance than the positive one. This might 

be due to the tropicamide effect not being fully achieved, allowing a small amount of 

accommodative stimulus (about 0.50D once the device was at 2.00 meters from the subjects) 

and a partial compensation of the negative defocus. In order to verify this, we simulated the PSF 

in three cycloplegic conditions (see Figure 5.1) with positive and negative levels of defocus. We 

observed that when subjects are allowed to accommodate (situations 1 and 3 from Figure 5.1) 

we verified that the PSFs obtained with the negative defocuses are more contained in the external 

part of the PSF than with the positive defocuses. So, the fact that the tropicamide did not reach 

its maximum effect allowed the subjects to slightly accommodate.  

 

Figure 5.1 Representation of simulated PSFs for different levels of defocus (from +1.50D to -1.50D) in 

three different cycloplegic situations. 

 

Nevertheless the coupling effect of defocus with the HOA must be also considered. 

Contrary to our results Cheng et al. (2004) [51] observed visual improvement by adding spherical 

defocus of the same sign as the spherical-like HOA. However, some studies [35 41 171] reported that 

the combination between the positive spherical-like HOA and the induction of negative defocus 

(contrary signs) may improve the visual performance. Cheng et al. (2003) [47] found the negative 

induced defocus to attenuate the spherical-like HOA effect, producing less positive RMS values of 

spherical-like HOA.  So, the combination between positive spherical-like HOA of the participants 
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of this thesis project and the negative defocus may have produced a lower light disturbance 

compared with the positive defocus of the same level with a spherical-like HOA of the same sign.  

 

5.3.3 Comparison between non-cycloplegic and cycloplegic measures 

We compared the light distortion measures with cycloplegia and without cycloplegia in 

order to understand the influence of pupil size and aberrations on the size and irregularity of light 

distortion. 

Our results showed that all size and irregularity parameters increased in cycloplegic 

conditions. On one hand, this is contrary to what we expected once a smaller pupil size and 

consequently lower values of HOA should produce a smaller perception of light distortion than 

with a larger pupil size and consequently higher magnitude of HOA. Our findings may be 

explained by the uncorrected latent hyperopic refractive error as the tonic accommodation is lost, 

increasing the straylight reaching the retina. However, although LCDVA and light distortion 

parameters did not show to be correlated in this study, the reduction on LCDVA with cycloplegia 

is in agreement with the increased light distortion phenomena because both are affected by the 

increase on HOA magnitude.[3 4 29 35 39 42 46 47] 

 

5.4 Impact of High-Order Aberration on Light Distortion 

In this experimental study we also observed the impact and relationship from total 

(corneal and internal) HOA and light distortion. This analysis was made by correlating the HOA 

with light distortion parameters without cycloplegia and a 5.64±0.65mm pupil, correlating the 

changes on light distortion parameters and HOA values with cycloplegia (5mm pupil) and 

correlating the changes on light distortion parameters with the changes on HOA with cycloplegia. 

In the literature are reported correlations of light distortion with corneal HOA. [94 114 119] For 

example, Villa et al. (2007) [94] found a significantly fair correlation between the halo disturbance 

index from Starlights v1.0 and the Total, coma and spherical-like RMS of the corneal HOA in 

subjects before and after LASIK surgery, accompanied by an increase in light distortion with 

corneal HOA. However, in this study we used the total (corneal and internal) HOA in order to 

evaluate their correlation with the psychophysical values obtained from LDA parameters. 

We found significantly positive fair correlations between size parameters (LDI and 

BFCRad) of light distortion without cycloplegia and total spherical-like HOA. This suggests that for 
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higher spherical-like HOA RMS the perceived disturbance area would be increased. By another 

hand, we also found statistically significant positive fair correlations for BFCIrreg parameter with 

total and coma-like HOA in cycloplegic conditions with no induced defocus, but not for the size 

parameters as without cycloplegia. These findings suggest that the increasing in total and coma-

like HOA RMS decreases the regularity of light distortion. In graphs from Figure 4.6 we noticed 

the existence of an outlier. After removal the subject with the highest value of spherical-like HOA 

the correlation coefficient reduced slightly in some cases but the correlations remained fair and 

statistically significant so that the conclusions of the work do not change because of this subject 

with a somewhat atypical behaviour and that seemed, at first glance, to alter the linear 

correlation coefficient. 

The discussion of our results from the comparison of light distortion under non-

cycloplegic and cycloplegic conditions and the relationship between total HOA and light distortion 

would not be complete if we did not pay attention to the role of the pupil. Our results show that 

the light distortion increased when in cycloplegic conditions, wich in pupil terms represents an 

increase on light distortion accompainied by a decrease on the pupil size once the non-

cycloplegic pupil was larger than the cycloplegic where we limited the dilated pupil size by an 

artificial diaphragm. Besides when considering the ocular aberrations there is a need to have in 

account the pupil size. As discussed before we expected light distortion to maintain or decrease 

with cycloplegia (5mm pupil), but the opposite happened. So our results suggest that despite the 

association between pupil size and HOA referred in the literature the pupil diameter it is not a 

significant contributor for light distortion when considered by itself. This is in agreement with 

other authors findings. [93 94 111 112 114] However, when considering the pupil size associated to HOA 

these are related to the night visual disturbances. 

 

5.5 Light Distortion and Topographic quality parameters 

We measured the corneal asphericity value (Q-value), SRI and SAI in order to understand 

if there was any relationship between the light distortion perceived by each subjects in natural 

mesopic conditions (without cycloplegia) and their own topographic quality values.  

As it is known, the cornea is the optical element with a major dioptric power contribution 

to the eye and consequently has a great influence on vision quality, mainly due to the ocular 

aberrations. [158 172 173] Studies proved that the corneal natural state is not spherical but rather 
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prolate, flattening from its center to the periphery, influencing the corneal spherical ocular 

aberration.[172] This corneal shape it is called asphericity and it is referred as the Q-value and 

ranges between -0.03 and -0.33 in normal healthy young eyes. The Q-value can be considered as 

an optical quality predictor but some authors do not support this statement because the 

asphericity values obtained by topography have a larger variability than the spherical aberration 

obtained by aberrometers.[158 172 173] The SRI parameter is a predictor of the optical quality of the 

central cornea characterized by local fluctuations in corneal power. Its normal values range 0.0 

to 0.56. The lower the SRI value, smoother the corneal surface, so increased values correspond 

to major central corneal irregularity.[159] SRI magnitude is based on a comparative analysis of 

dioptric powers of adjacent points in 256 hemi-meridians in the 10 central-rings [160], being 

characterized by the average of the value of its rectilinear neighbors over the central 4mm chord 

area. The corneal asymmetry with respect to the visual axis is given by the SAI value. Its value is 

calculated by power differences between corresponding points located 180 degrees apart of the 

same chord measured in 4 central rings. If the cornea were a perfect sphere, SAI values would 

be zero and would increase when the corneal power distribution becomes more asymmetrical. 

Instead, as the cornea is an aspherical prolate surface, SAI normal values ranging between 0.10 

and 0.42. This topographic index is sensible to changes in corneal symmetry, which can be very 

useful in detecting irregular astigmatisms and off-center keratoconus.[159 160] 

The values of the topographic parameters (Q, SRI and SAI) in our sample are within the 

normal range stated by the literature [158-161 173], but SAI has a slightly more positive values. In this 

study it was not found any relationship between Q and light distortion which suggests that 

asphericity do not influence the night vision quality. This might be explained by asphericity 

influence the corneal spherical-like HOA but not the total spherical-like HOA.[172] However this 

parameter is very important and needs to be considered in refractive surgeries once changes in 

asphericity induce changes in corneal spherical-like HOA. [166] On the another side, we found 

moderately strong and significant correlation for SRI and SAI with BFCRad. Our findings are in 

agreement with Kojima et al. (2010) [120] which found very similar correlation values for SRI 

(r=0.52, p<0.01) and SAI (r=0.41, p<0.05) with glare score after one month of ortokeratology 

treatment. We also found a fair significant correlation between SAI and BFCIrreg. We did not 

expect to find this in a normal (non-treated) cornea, but these results might reflect that the 

instrument used is sensitive to detect minor differences in light distortion even for values of 

topographical parameters within normal range of non-treated corneas. These findings may 



 
Mestrado Optometria Avançada 78 

suggest that SRI and SAI can be predictors of the visual quality in mesopic conditions, which 

highlights the corneal irregularity for the assessment of night vision performance in patients with 

corneal changes by pathologies or refractive treatments. [56 83 84] 

 

5.6 Relationship of Visual Acuity with Light Distortion 

We investigated if the losses in low contrast visual acuity were related to the increases in 

light distortion by comparing their changes with both types of induce defocus with cycloplegia. In 

fact we found a decrease in LogMAR LCDVA with both positive and negative induced defocus with 

cycloplegia accompanied by an increase on the perception of light distortion. The decrease on 

LCDVA and the increase on light distortion with the negative induced defocus were lower than 

with the positive defocus, which suggest that positive defocus causes more straylight and retinal 

image disturbance than a negative defocus. However, the correlation between the two variables 

for both type of induced defocus was poor and non-significant which might propose that LCDVA it 

is not directly associated to light distortion phenomena. Besides, it is necessary to take into 

account the sample size which for the visual acuity differences and comparisons with other 

variables should be larger. 

 

5.7 Light distortion size and PSF 

To understand if the optical metric (PSF) was related to the size of the perceived light 

distortion (psychophysical measure) we compared both values (real values of the BFCRad and 

simulated values of PSF) for each subject with the two types of defocus used along this project. We 

found a poor and non-significant between the psychophysical and optical metrics which suggest that 

the objective estimations of the simulated PSF it was not reflected on the psychophysical measures. 

However this might be an interesting start-point to analyze this relationship for an extent object instead 

a punctual one. 
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6. CONCLUSIONS 

From the current study, the following conclusions have been derived: 

- The measurement of LCDVA reflects the optical quality of the eye once is affected in 

cycloplegic condition by the induction of the two types of defocus.  

 

- There is a binocular attenuation of the light distortion compared with the monocular 

measures in normal healthy eyes. This implies a neural capacity for a binocular 

summation which produces an improvement on visual quality by decreasing the 

perception of disturbed light. 

 

- Both types of defocus increased the perceived light distortion compared to no induced 

defocus measures with cycloplegia. In addition, positive and negative defocus produces 

a similar light disturbance. 

 

- The increase on total spherical-like HOA was associated to an increase on light 

distortion size, while coma-like and Total-like HOA were associated to increases in light 

distortion irregularity. 

 

- The pupil by itself did not affect the light distortion perception but becomes relevant 

when associated with high-order aberrations.  

 

- The corneal asphericity (Q) did not influence the light distortion in normal healthy 

subjects. However, SRI and SAI showed to be good predictors of visual quality by 

correlate with light distortion size. 

 

- Positive and negative induced defocus decrease the visual quality (LCDVA and light 

distortion) in a similar way. Despite LCDVA showed to be a good predictor of optical 

quality, it was not correlated with the psychophysical light distortion measures.  

 

- There were no relationship between the psychophysical measure from LDA and the 

simulated optical metric PSF. 
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7. FUTURE WORK 

 
- Study the impact of defocus on light distortion with real uncorrected myopes and hyperopes. 
 
- Include a larger sample to evaluate the impact of lower uncorrected spherical and cylindrical 

refractive errors on light distortion between different levels. 
 

- Assess the influence of accommodation on light distortion. 
 
- Compare the measures of light distortion obtained with LDA and other similar devices. 
 

- Future works can be done with induced and real astigmatic refractive errors non-corrected to 
assess its impact on light distortion. 

 

- Psychophysical measurement of light distortion should be integrated in pre- and post- 
surgical evaluation routine in order to evaluate the vision quality before and after the 
treatment. 

 

- The study of the relationship between the psychophysical and optical metrics should be 
analyzed more carefully on future works. 
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9. APPENDIX 

Attachment 1 Consent Form signed by every participant in this thesis project. 
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Attachment 2 Tables of values described throughout the dissertation project. 

Table 9.1 Differences and correlations between the right and left eyes for all the measurements. 

 RIGHT EYE 
(Mean±SD) 

LEFT EYE 
(Mean±SD) 

Difference±SD 
p 

Correlation (r) 
p 

SPHERICAL REFRACTION (D) -0.38±0.81 -0.38±0.96 
0.00±0.35 

0.804* 
0.839 

<0.001◊ 

CYLINDRICAL REFRACTION (D) -0.49±0.39 -0.43±0.26 
-0.06±0.32 

0.518* 
0.714 

<0.001◊ 

M (D) -0.56±0.88 -0.56±0.99 
0.00±0.33 

0.931* 
0.841 

<0.001◊ 

J0 (D) 0.09±0.22 0.08±0.16 
0.02±0.17 

0.732* 
0.567 

0.001◊ 

J45 (D) -0.05±0.11 0.01±0.15 
-0.06±0.21 

0.066* 
-0.202 
0.284◊ 

PUPIL SIZE IN MESOPIC 
CONDITIONS (mm) 

5.60±0.70 5.66±0.68 
-0.05±0.36 

0.421+ 
0.869 

<0.001† 

Qsteep -0.17±0.09 -0.16±0.10 
-0.01±0.10 

0.483+ 
0.489 

0.006† 

Axis of the Qsteep (degrees) 92±23 88±22 
4±34 

0.681* 
-0.459 
0.011◊ 

Qflat -0.41±0.14 -0.38±0.13 
-0.02±0.10 

0.217* 
0.752 

<0.001◊ 

Axis of the Qflat (degrees) 74±77 64±75 
10±116 
0.504* 

0.130 
0.493◊ 

Sim Ksteep (mm) 44.31±1.48 44.35±1.42 
-0.04±0.37 

0.518+ 
0.969 

<0.001† 

Axis of the SimKsteep (degrees) 93±16 90±20 
3±27 

0.853* 
-0.457 
0.011◊ 

Sim Kflat (mm) 43.33±1.34 66.33±77.12 
-23.00±77.37 

0.382* 
-0.219 
0.246◊ 

Axis of the SimKflat (degrees) 63±76 43±1 
20±76 
0.629* 

0.071 
0.710◊ 

IS index (D) -0.22±0.56 -0.21±0.55 
0.00±0.43 

0.990+ 
0.696 

<0.001† 

SRI 0.50±0.17 0.51±0.17 
-0.01±0.16 

0.782+ 
0.552 

0.002† 

SAI 0.63±0.22 0.64±0.24 
-0.02±0.27 

0.694* 
0.490 

0.006◊ 

WITHOUT CYCLOPLEGIA 

HCDVA (LogMAR) -0.14±0.06 -0.15±0.08 
0.01±0.05 

0.238* 
0.714 

<0.001◊ 

LCDVA (LogMAR) 0.04±0.07 0.03±0.06 
0.01±0.06 

0.332* 
0.516 

0.004◊ 
LCDVA WITH +1.00D 
INDUCED DEFOCUS (LogMAR) 

0.44±0.13 0.40±0.20 
0.04±0.16 

0.445+ 
0.639 

<0.001† 
LCDVA WITH -1.00D INDUCED 
DEFOCUS (LogMAR) 

0.06±0.11 0.04±0.08 
0.02±0.10 

0.436* 
0.590 

0.001◊ 

RMS TOTAL HOA (µm) 0.279±0.143 0.274±0.152 
0.005±0.079 

0.371* 
0.856 

<0.001◊ 
RMS SPHERICAL ABERRATION 
(µm) 

0.092±0.077 0.101±0.088 
-0.010±0.031 

0.072* 
0.832 

<0.001◊ 

RMS COMA ABERRATION (µm) 0.161±0.133 0.158±0.132 
0.003±0.073 

0.974* 
0.739 

<0.001◊ 

LDI (%) 2.75±1.71 2.68±1.72 
0.07±0.70 

0.666* 
0.849 

<0.001◊ 
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BFCRad (mm) 13.00±3.97 12.84±3.98 
0.16±1.71 

0.619+ 
0.908 

<0.001† 

BFCIrreg (mm) 0.31±0.38 0.36±0.32 
-0.05±0.50 

0.424* 
-0.089 
0.640◊ 

BFCIrregSD (mm) 2.26±1.49 2.30±1.43 
-0.04±1.69 

0.957* 
0.383 

0.037◊ 

WITH CYCLOPLEGIA 

HCDVA (LogMAR) -0.10±0.06 -0.10±0.06 
0.00±0.06 

0.922* 
0.573◊ 
0.003◊ 

LCDVA (LogMAR) 0.16±0.08 0.15±0.08 
0.01±0.06 

0.411* 
0.695 

<0.001◊ 

RMS TOTAL HOA (µm) 0.193±0.058 0.198±0.066 
-0.005±0.056 

0.614+ 
0.605 

<0.001† 
RMS SPHERICAL ABERRATION 
(µm) 

0.062±0.041 0.068±0.039 
-0.006±0.026 

0.206* 
0.637 

<0.001◊ 

RMS COMA ABERRATION (µm) 0.111±0.059 0.115±0.064 
-0.004±0.061 

0.715+ 
0.501 

0.005† 

LDI (%) 3.36±2.32 3.37±1.98 
-0.01±1.12 

0.674* 
0.844 

<0.001◊ 

BFCRad (mm) 14.25±4.63 14.41±4.14 
-0.16±2.30 

0.610* 
0.831 

<0.001◊ 

BFCIrreg (mm) 0.58±0.67 0.61±0.82 
-0.03±0.77 

0.943* 
0.088 

0.646◊ 

BFCIrregSD (mm) 2.82±1.60 2.89±1.59 
-0.06±1.73 

0.631* 
0.398 

0.029◊ 

WITH CYCLOPLEGIA AND AN INDUCED DEFOCUS OF +1.00D 

LCDVA AND +1.00D INDUCED 
DEFOCUS (LogMAR) 

0.55±0.18 0.52±0.17 
0.03±0.15 

0.366+ 
0.623 

0.001† 

LDI (%) 4.74±4.15 5.17±4.50 
-0.42±1.69 

0.160* 
0.937 

<0.001◊ 

BFCRad (mm) 16.44±6.50 17.07±6.99 
-0.63±2.57 

0.161* 
0.943 

<0.001◊ 

BFCIrreg (mm) 0.80±0.90 0.97±1.08 
-0.17±0.98 

0.337* 
0.430 

0.018◊ 

BFCIrregSD (mm) 3.12±1.54 3.34±1.67 
-0.22±1.75 

0.215* 
0.404 

0.027◊ 

WITH CYCLOPLEGIA AND AN INDUCED DEFOCUS OF -1.00D 

LCDVA AND -1.00D INDUCED 
DEFOCUS 

0.34±0.15 0.36±0.13 
-0.02±0.14 

0.545+ 
0.543 

0.005† 

LDI (%) 3.69±1.79 4.12±2.25 
-0.43±1.40 

0.051* 
0.869 

<0.001◊ 

BFCRad (mm) 15.25±3.61 16.02±4.17 
-0.78±2.36 

0.081+ 
0.826 

<0.001† 

BFCIrreg (mm) 0.55±0.51 0.54±0.63 
0.00±0.64 

0.846* 
0.375 

0.041◊ 

BFCIrregSD (mm) 2.66±1.65 2.87±1.77 
-0.21±1.60 

0.372* 
0.529 

0.003◊ 
Statistically significant differences are presented in bold and the underlined values refers to a strong correlation 
(r>0.800); (*) Wilcoxon Signed Ranks Test; (+) Paired Samples T-test; (◊) Spearman correlation; (†) Pearson correlation. 
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Table 9.2 Differences and correlations between the monocular and binocular light distortion parameters. 

Statistical significant differences and correlations are highlighted. 

Statistically significant differences and correlations are presented in bold and the underlined values refers to a 
moderately strong and strong correlation (r>0,500 and r>0,800 respectively); (*) Wilcoxon Signed Ranks Test; (◊) 
Spearman correlation. 
 

 

 

 
MONOCULAR 
(Mean±SD) 

BINOCULAR 
(Mean±SD) 

Difference±SD 
p 

Correlation (r) 
p 

WITHOUT CYCLOPLEGIA 

LDI (%) 2.70±1.69 1.94±1.55 
0.76±0.78 
<0.001* 

0.736 
<0.001◊ 

BFCRad (mm) 12.88±3.94 10.81±3.87 
2.07±2.09 
<0.001* 

0.738 
<0.001◊ 

BFCIrreg (mm) 0.42±0.38 0.15±0.18 
0.26±0.42 

0.004* 
0.001 

0.997◊ 

BFCIrregSD (mm) 2.30±1.30 1.50±1.53 
0.80±2.14 

0.059* 
-0.204 
0.280◊ 

WITH CYCLOPLEGIA 

LDI (%) 3.27±2.10 2.70±1.69 
0.57±1.24 

0.009* 
0.808 

<0.001◊ 

BFCRad (mm) 14.18±4.19 12.83±3.99 
1.35±2.44 

0.011* 
0.788 

<0.001◊ 

BFCIrreg (mm) 0.58±0.56 0.48±0.37 
0.10±0.62 

0.554* 
0.273 

0.145◊ 

BFCIrregSD (mm) 2.88±1.52 2.90±0.87 
-0.02±1.77 

0.699* 
0.050 

0.792◊ 

WITH CYCLOPLEGIA AND AN INDUCED DEFOCUS OF +1,00D 

LDI (%) 5.07±4.40 3.53±2.83 
1.54±2.13 
<0.001* 

0.839 
<0.001◊ 

BFCRad (mm) 16.93±6.87 14.53±5.36 
2.40±2.69 
<0.001* 

0.919 
<0.001◊ 

BFCIrreg (mm) 0.95±1.07 0.61±0.56 
0.34±1.04 

0.115* 
0.265 

0.156◊ 

BFCIrregSD (mm) 3.19±1.69 2.91±1.22 
0.28±1.73 

0.409* 
0.191 

0.311◊ 

WITH CYCLOPLEGIA AND AN INDUCED DEFOCUS OF -1,00D 

LDI (%) 3.91±2.32 3.15±1.44 
0.77±1.33 

0.001* 
0.881 

<0.001◊ 

BFCRad (mm) 15.56±4.29 14.11±3.24 
1.45±2.17 

0.001* 
0.877 

<0.001◊ 

BFCIrreg (mm) 0.55±0.63 0.58±0.61 
-0.04±0.77 

0.428* 
0.087 

0.649◊ 

BFCIrregSD (mm) 2.63±1.83 2.64±1.51 
-0.01±2.08 

0.926* 
0.324 

0.081◊ 
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Table 9.3 Differences between light distortion parameters without and with cycloplegia in monocular and 

binocular conditions, with the best distance correction. Statistical significant differences and correlations 

are highlighted.  

 

WITHOUT 
CYCLOPLEGIA 

(Mean±SD) 

WITH 
CYCLOPLEGIA 

(Mean±SD) 

Difference±SD 
p 

Correlation (r) 
p 

MONOCULAR CONDITIONS 

LDI (%) 2.70±1.69 3.27±2.10 
-0.57±1.28 

0.014* 
0.793 

<0.001◊ 

BFCRad (mm) 12.88±3.94 14.18±4.19 
-1.30±2.86 

0.019+ 
0.753 

<0.001† 

BFCIrreg (mm) 0.42±0.38 0.58±0.56 
-0.16±0.72 

0.289* 
-0.116 
0.541◊ 

BFCIrregSD (mm) 2.30±1.30 2.88±1.52 
-0.57±2.00 

0.141* 
-0.006 
0.973◊ 

BINOCULAR CONDITIONS 

LDI (%) 1.94±1.55 2.70±1.69 
-0.76±1.42 

0.001* 
0.618 

<0.001◊ 

BFCRad (mm) 10.81±3.87 12.83±3.99 
-2.01±3.36 

0.001* 
0.635 

<0.001◊ 

BFCIrreg (mm) 0.15±0.18 0.48±0.37 
-0.32±0.42 

0.001* 
-0.074 
0.696◊ 

BFCIrregSD (mm) 1.50±1.53 2.90±0.87 
-1.40±1.61 

<0.001* 
0.191 

0.312◊ 
Statistically significant differences and correlations are presented in bold and the underlined values refers to a 
moderately strong correlation (r>0,500); (*) Wilcoxon Signed Ranks Test; (+) Paired Samples T-test; (◊) Spearman 
correlation; (†) Pearson correlation. 
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Table 9.4 Differences and correlations between light distortion parameters in monocular and binocular 

conditions between the different levels of induced spherical defocus, always with the best distance 

correction. Difference values refer to “second condition – first condition”. Statistical significant differences 

and correlations are highlighted.  

Statistically significant differences and correlations are presented in bold and the underlined values refers to a moderately 
strong correlation (r>0,500); (*) Wilcoxon Signed Ranks Test; (◊) Spearman correlation. 

  

LEVELS OF 
DEFOCUS 

COMPARED 

0.00D vs. +1.00D 0.00D vs. -1.00D +1.00D vs. -1.00D 
Difference±SD 

p 
Correlation (r) 

p 
Difference±SD 

p 
Correlation (r) 

p 
Difference±SD 

p 
Correlation (r) 

p 

MONOCULAR CONDITIONS 

LDI (%) 
1.80±3.68 

0.002* 
0.752 

<0.001◊ 
0.64±2.44 

0.049* 
0.560 

0.001◊ 
-1.16±4.00 

0.279* 
0.512 

0.004◊ 

BFCRad (mm) 
2.75±5.06 

0.003* 
0.760 

<0.001◊ 
1.38±4.26 

0.038* 
0.582 

0.001◊ 
-1.37±6.13 

0.344* 
0.543 

0.002◊ 

BFCIrreg (mm) 
0.37±1.16 

0.120* 
-0.099 
0.604◊ 

-0.03±0.78 
0.804* 

0.096 
0.615◊ 

-0.40±1.27 
0.094* 

0.019 
0.920◊ 

BFCIrregSD (mm) 
0.31±2.45 

0.845* 
-0.138 
0.466◊ 

-0.24±2.48 
0.405* 

-0.064 
0.736◊ 

-0.55±2.09 
0.154* 

0.307 
0.099◊ 

BINOCULAR CONDITIONS 

LDI (%) 
0.83±2.20 

0.020* 
0.637 

<0.001◊ 
0.44±1.42 

0.056* 
0.551 

0.002◊ 
-0.39±2.42 

0.732* 
0.476 

0.008◊ 

BFCRad (mm) 
1.71±3.85 

0.020* 
0.681 

<0.001◊ 
1.28±3.34 

0.038* 
0.562 

0.001◊ 
-0.43±4.58 

0.613* 
0.527 

0.003◊ 

BFCIrreg (mm) 
0.13±0.65 

0.304* 
0.106 

0.576◊ 
0.11±0.60 

0.622* 
0.337 

0.068◊ 
-0.02±0.87 

0.674* 
-0.080 
0.676◊ 

BFCIrregSD (mm) 
0.01±1.37 

0.697* 
0.100 

0.600◊ 
-0.25±1.62 

0.489* 
0.183 

0.332◊ 
-0.26±1.65 

0.632* 
0.244 

0.193◊ 
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Table 9.5 Correlations between light distortion parameters in monocular conditions with the three types of 

high order aberrations evaluated (Total, Spherical and Coma HOA). Statistical significant correlations are 

highlighted.  

 
TOTAL HOA SPHERICAL HOA COMA HOA 

 

Correlation (r) 
p 

WITHOUT CYCLOPLEGIA (MESOPIC NATURAL PUPIL: 5.64±0.65MM) 

LDI (%) 
0.173 

0.360◊ 
0.463 

0.010◊ 
-0.034 
0.859◊ 

BFCRad (mm) 
0.168 

0.376◊ 
0.459 

0.011◊ 
-0.040 
0.832◊ 

BFCIrreg (mm) 
-0.100 
0.599◊ 

-0.049 
0.796◊ 

-0.028 
0.882◊ 

BFCIrregSD (mm) 
-0.193 
0.307◊ 

-0.141 
0.458◊ 

-0.200 
0.290◊ 

WITH CYCLOPLEGIA (5MM LIMITED PUPIL) 

LDI (%) 
-0.001 
0.997◊ 

0.134 
0.480◊ 

0.002 
0.993◊ 

BFCRad (mm) 
-0.039 
0.837† 

0.230 
0.221† 

-0.036 
0.848† 

BFCIrreg (mm) 
0.012 

0.950◊ 
0.358 

0.052◊ 
-0.180 
0.342◊ 

BFCIrregSD (mm) 
0.376 

0.040◊ 
-0.004 
0.983◊ 

0.372 
0.043◊ 

WITH CYCLOPLEGIA AND AN INDUCED DEFOCUS OF +1.00D (5MM LIMITED PUPIL) 

LDI (%) 
0.044 

0.818◊ 
0.279 

0.135◊ 
-0.041 
0.832◊ 

BFCRad (mm) 
0.043 

0.820◊ 
0.268 

0.153◊ 
-0.047 
0.807◊ 

BFCIrreg (mm) 
0.243 

0.195◊ 
0.147 

0.438◊ 
0.187 

0.321◊ 

BFCIrregSD (mm) 
0.001 

0.994◊ 
0.092 

0.628◊ 
0.028 

0.885◊ 

WITH CYCLOPLEGIA AND AN INDUCED DEFOCUS OF -1.00D (5MM LIMITED PUPIL) 

LDI (%) 
-0.150 
0.430◊ 

-0.104 
0.583◊ 

-0.141 
0.458◊ 

BFCRad (mm) 
-0.148 
0.434◊ 

-0.098 
0.606◊ 

-0.138 
0.466◊ 

BFCIrreg (mm) 
0.248 

0.187◊ 
-0.143 
0.452◊ 

0.274 
0.143◊ 

BFCIrregSD (mm) 
0.061 

0.750◊ 
<0.001 
0.999◊ 

0.054 
0.776◊ 

Statistically significant correlations are presented in bold and the underlined values refers to a fairly 
correlation (r>0,300); (◊) Spearman correlation. 
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Table 9.6 Correlations between topographic parameters of corneal quality and light distortion measures at 

different conditions of measurement of the light distortion. The highlighted values respect the significant 

correlations found.  

 

Q 
Correlation (r) 

p 

SRI 
Correlation (r) 

p 

SAI 
Correlation (r) 

p 

WITHOUT CYCLOPLEGIA 

LDI (%) 
0.204 

0.279† 
0.224 

0.233† 
0.159 

0.400† 

BFCRad (mm) 
0.073 

0.700◊ 
0.519 

0.003◊ 
0.502 

0.005◊ 

BFCIrreg (mm) 
0.036 

0.851◊ 
0.242 

0.198◊ 
0.371 

0.044◊ 

BFCIrregSD (mm) 
0.132 

0.488◊ 
0.308 

0.098◊ 
0.178 

0.347◊ 

Statistically significant correlations are presented in bold and the underlined values refers to fairly 
(r>0.300) and moderately strong (r>0.500) correlations; (◊) Spearman correlation; (†) Pearson 
correlation. 
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Table 9.7 Correlations between the variation on monocular LCDVA with a positive and negative defocus and the 

variation on monocular light distortion parameters in cycloplegic condition with positive and negative defocus. 

No statistically correlations were found. 

Variation on LCDVA with cycloplegia and induced defocus of +1.00D 
Correlation (r) 

p 

LDI (%) 
0.292 

0.450◊ 

BFCRad (mm) 
0.262 

0.372◊ 

BFCIrreg (mm) 
-0.157 
0.682◊ 

BFCIrregSD (mm) 
0.079 

0.797◊ 

Variation on LCDVA with cycloplegia and induced defocus of -1.00D 
Correlation (r) 

p 

LDI (%) 
0.033 

0.830◊ 

BFCRad (mm) 
-0.054 
0.799† 

BFCIrreg (mm) 
0.081 

0.887◊ 

BFCIrregSD (mm) 
-0.024 
0.911† 

 (◊) Spearman correlation; (†) Pearson correlation. 

 




