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RESUMO 

Durante os últimos séculos, o sucesso da medicina moderna tem consistentemente aumentado a 

esperença média de vida da humanidade. Esta maior longevidade é acompanhado por uma 

mudança de paradigma: multimorbidade, causada pela acumulação de doenças relacionadas com 

o envelhecimento, é agora a nossa principal preocupação, ao invés das doenças fatais imediatas 

(por exemplo infeções) do passado. As populações envelhecidas presentemente observadas nos 

países desenvolvidos, já estão a ter repercussões negativas no ideal do estado social e é esperado 

que estas se alastrem para o resto do mundo. A solução científica para este problema assenta em 

desenvolver terapias anti-envelhecimento. 

Nas décadas recentes, o conceito de envelhecimento como um processo biológico fixado foi 

desafiado e indubitavelmente refutado. Atualmente, conhecem-se mais de um milhar de genes 

que modificam a longevidade em organismos modelo, e simples modificações no estilo de vida 

como uma dieta de restrição calórica prolongam a esperança de vida em primatas não-humanos. 

Infelizmente, as descobertas até hoje realizadas estão ainda para ser traduzidas em terapias anti-

envelhecimento com impacto em seres humanos. Neste trabalho nós oferecemos várias 

contribuções científicas para ajudar a mitigar a iminente crise da população envelhecida. 

A nossa contribuição mais proeminente é a criação da base de dados DrugAge 

(http://genomics.senescence.info/drugs/). Este recurso sem paralelo congila sistematicamente 

informação relativa a ensaios de envelhecimento de drogas que aumentaram a longevidade em 

organismos modelo. DrugAge é grátis, está curada manualmente e é composta por 1316 entradas 

representando 418 substâncias diferentes provenientes de estudos conduzidos em 27 organismos 

modelo. Usámos a informação presente na DrugAge para: treinar um algoritmo para estimar o 

potencial anti-envelhecimento de novos compostos; realizar o enriquecimento funcional de 

DrugAge; comparar DrugAge com os genes anti-envelhecimento conhecidos; revelar que género 

não influencia a performance the compostos anti-envelhecimento em organismos modelo. 

Um capítulo independente é dedicado a aplicar a reutilização de drogas para acelerar a descoberta 

de drogas anti-envelhecimento em humanos. Depois de fazer a correspondência entre um meta-

repositório de interações droga-gene e os genes anti-envelhecimento de organismos modelo, 

encontrámos 16 compostos com um considerável potencial para afetar o processo de 

envelhecimento. Duas combinações de drogas são sugeridas para serem testadas em organismos 

modelo.  

http://genomics.senescence.info/drugs/
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ABSTRACT 

Over the last few centuries, the success of modern medicine has consistently increased the average 

life expectancy of mankind. This extended longevity came a paradigm-shift: multimorbidity is now 

our top concern, instead of the immediate fatal diseases (e.g. infections) of the past. The aged 

populations currently observed in developed countries, are already having negative recursions in 

the social state ideal and are expected to spread to the rest of the world. The scientific solution to 

this predicament lies in developing anti-aging therapies. 

In the recent decades, the idea that aging is not a fixed biological process was challenged and 

thoroughly refuted. There are now more than a thousand different genes known to alter lifespan in 

model organisms, and simple lifestyle interventions like a caloric restriction diet prolong the lifespan 

of non-human primates. Unfortunately, the discoveries made so far are yet to be translated into 

meaningful human anti-aging therapies. In this work, we offer several scientific contributions to 

help mitigate the looming aging crisis. 

Our most prominent contribution is the creation of the DrugAge database 

(http://genomics.senescence.info/drugs/). This unparalleled resource systematically compiles 

information regarding drug lifespan assays that increased the lifespan of model organisms. 

DrugAge is free, manually curated and is composed of 1316 entries featuring 418 different 

compounds from studies across 27 model organisms. We used the information provided on 

DrugAge to: train an algorithm for the prediction of the anti-aging potential of new compounds; 

conduct the functional enrichment of DrugAge; compare DrugAge with the known anti-aging genes; 

show that gender does not influence the performance of anti-aging compounds in model 

organisms. 

A separate section is dedicated to applying drug repurposing to accelerate the discovery of anti-

aging drugs in humans. After matching a meta-repository of drug-gene interactions with the known 

anti-aging genes in model organisms, we found 16 drugs with significant potential to affect the 

aging process. Two drug combinations are suggested to be tried in model organisms. 

  

http://genomics.senescence.info/drugs/
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1.1. AGING 

The aging phenomenon and its omnipresence in our life lead to us intuitively think that it is a 

“natural part of life” and not much can be done about it. While this might not be true for all 

animals[1]–[6], it surely seemed to be the case with humans. Therefore until recently 

Biogerontology did not enjoy mainstream popularity as an academic discipline. This situation 

changed dramatically when the severe underpinnings of an increasingly older world population 

started to be felt, and scientific progress showed us that the rate at which organisms age is 

everything but set in stone. 

1.1.1. SOCIOECONOMIC PERSPECTIVE 

In developed countries it is clear that humans are living longer[7] (falling mortality rates and 

increased longevity) while reproducing less[8] (falling fertility rate), resulting in population aging. 

Contrary to conventional believe the latter cause seems to be the main driver[9] of population 

aging. Forecasts indicate that population aging is expected to continue[10], [11] and extend 

globally[12]. 

Total fertility rate, calculated as the average number of children per woman implied by current 

women of all ages in a given year, is below the replacement rate of 2.1 for two-thirds of the countries 

(Figure 1.1). 
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Figure 1.1: World map of total fertility rates (2005-2010). From[11]. 

 

An aged population increases the demand for public spending on pensions and healthcare[13], 

calling into question the very foundations of the welfare state and posing a risk of creating inter-

generational conflict. Several policies and approaches have been aimed to address this 

“demographic deficit”[14] (Figure 1.2) such as encouraging increases in the fertility and 

immigration rates[15] and making the population work for longer[9]. 

 

 

Figure 1.2: Organization for Economic Cooperation and Development (OECD) demographic deficit (2000-2030). Observed and 
projected size of the incoming (20–24) and outgoing (60–64) working-age cohorts in OECD countries From [11]. 
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The rise in the total amount of people suffering from illnesses or even disability, caused by the 

increase in longevity[16], is so worrisome and prevalent that it has been termed “epidemic of 

frailty”[17]. The signature of this epidemic is the health status being compromised by complex 

chronic long-term diseases, instead of acute infections. The present work has implications for this 

so-called “chronic disease burden”[18], [19]. 

1.1.2. BIOLOGICAL PERSPECTIVE 

As mention previously, there was a paradigm shift, from the scientific point-of-view, that propelled 

the study of the aging process - Gerontology – to the mainstream of scientific research[20]. This 

turn of event was the discovery that the aging rate is extremely malleable, and it can be exemplified 

by the now classic study headed by Cynthia Kenyon, that showed that a single genetic mutation 

doubled the average lifespan of Caenorhabditis elegans[21]. Since then, several genetic[22], 

pharmacological[23] and lifestyle[24] interventions (Figure 1.3) were discovered to influence 

lifespan drastically in a plethora of distinct model organisms. The volume of scientific research and 

interest was such that a new subfield of gerontology was born – Biogerontology - dedicated primarily 

to achieving healthy old age (extending healthspan) accompanied by improved longevity (increased 

lifespan). 
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Figure 1.3: Rhesus monkey appearance in old age. A and B - Photographs of a typical control animal at 27.6 years of age (about 
the average life span). C and D - Photographs of an age-matched animal on caloric restriction. From [25]. 

 

Although it is easy to empirical distinguish between the phenotype of an adult and senior citizen, 

aging is among the most complex biological processes[26]. Broadly defined, aging is characterized 

by a progressive loss of physiological integrity, leading to impaired function and increased 

vulnerability to death. Worth rephrasing, namely because it goes unnoticed by the general public, 

is the fact that aging is an independent primary risk factor for major human pathologies including 

cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders[27]. 

Biological theories of aging abound[28]–[35], but there is nil consensus over which one of them is 

superior and if even any one of them manages to encapsulate the entire aging-associated 

phenomena[36]. To briefly outline the biological basis of aging we decided to be agnostic in relation 

to biological theories of aging. Instead, we followed the categorization based on the hallmarks of 

aging[27] (but taking into consideration recent results not available to the authors at the time), 
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which helps to conceptualize its essence and underlying mechanisms in an evidence-based 

manner. 

There are currently nine hallmarks (emphasis on mammalian aging) guiding the biogerontology 

field (Figure 1.4). The hallmarks are treasured from a pragmatic standpoint due to the criteria that 

must be fulfilled in order to be considered a “hallmark” (especially the second and third requisites): 

(i) a hallmark should manifest itself during normal aging; (ii) its experimental aggravation should 

accelerate aging; and (iii) its experimental amelioration should retard the normal aging process 

and, hence, increase healthspan. 

 

 

Figure 1.4: The hallmarks of aging and their functional interconnections. The proposed nine hallmarks of aging are grouped into 
three categories. Top - Those hallmarks considered to be the primary causes of cellular damage. Middle - Those deemed to be 
part of compensatory or antagonistic responses to the damage. These reactions initially mitigate the damage, but eventually, if 
chronic or exacerbated, they become deleterious themselves. Bottom - Integrative hallmarks that are the result of the previous two 
groups of hallmarks and are ultimately responsible for the functional decline associated with aging. From [27]. 

 

Genomic Instability 

The very existence of complex networks of DNA repair mechanisms can only be explained in 

evolutionary terms if the integrity of DNA molecules is continuously challenged throughout life[37]. 

Unfortunately, the genetic lesions are minimized but not completely dealt with, resulting in the slow 

accumulation of genetic damage. 

Premature aging diseases (also called progeroid syndromes), such as Werner syndrome and Bloom 

syndrome, partially resemble normal aging and are the consequence of increased DNA 
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damage[38]. Furthermore, experimental reinforcement or debilitation of DNA repair mechanisms 

delays or accelerates aging, respectively[39]. Of notice ii that in addition to nuclear DNA, 

mitochondrial DNA may contribute to aging, at least in accelerating it[40]. 

Another source of genomic damage is genomic instability caused by defects in the nuclear lamina. 

The nuclear lamina is a dynamical architecture that plays a role in genomic maintenance by 

providing a scaffold for tethering chromatin and protein complexes that regulate genomic stability. 

Not only does nuclear lamina suffers changes in its constitution with normal aging[41], [42], 

mutations in genes associated with it cause accelerated aging syndromes such as the Hutchinson-

Gilford[43], [44] and the Néstor-Guillermo[45] progeria syndromes. 

Telomere Attrition 

Telomeres are the chromosomal regions corresponding to the terminal ends of linear DNA 

molecules. Most mammalian somatic cells do not express telomerase (the only DNA polymerase 

with the capacity to completely replicate telomeres) and telomeres exhaustion ultimately leads to 

their senescence and/or apoptosis[46], [47]. 

In humans, telomerase deficiency is associated with a higher risk of developing diseases that 

involve the loss of the regenerative capacity of different tissues, such as pulmonary fibrosis, 

dyskeratosis congenita and aplastic anemia[48]. 

In model organisms, the causality of telomere length in organismal aging is firmly established, 

genetically modified mice displaying shortened or lengthened telomeres exhibit decreased[49], 

[50] or increased lifespan[51], respectively. 

Epigenetic Alterations 

Similar to genetic instability, epigenetic instability (epigenetic alterations) is so robustly associated 

with aging that the most accurate biological clock is based exclusively on epigenetic marks[52]. 

Among histone modifications, the gene SIRT6 is the most important hallmark in mammals. 

Through histone H3K9 deacetylation it regulates genomic stability, NF-κB signaling and glucose 

homeostasis[53]–[55]. Mutant mice deficient or overexpressing Sirt6, display accelerated aging or 

longer lifespan, respectively. 

Furthermore, gain- and loss-of-function studies have confirmed that transcriptional alterations of 

miRNAs[56] and chromatin alterations[57]–[59] causally modulate aging in invertebrates. 

The attractiveness of the epigenome is that its age-related changes are not irreversible. This 

universe of opportunities for designing anti-aging therapies is already showing promising 

results[60]. 
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Loss of Proteostasis 

Even in the hypothetical condition that the genome was completely error-free, if the mechanisms 

providing quality-control and assurance to the proteome (proteostasis) lose their efficacy with time, 

aging would still occur, with the only difference being that the process would initiate downstream 

of the genome, at the proteome level. Indeed proteostasis is affected by aging[61] and chronic 

expression of aberrant proteins contributes to the development of some age-related pathologies, 

such as Alzheimer’s disease, Parkinson’s and cataracts[62]. 

Two types of biological processes are involved in proteostasis: chaperone-mediated protein folding 

and proteolytic systems; conceptually (in a simplified manner) the first works as a protein quality-

check and repair point and the second as a group of aberrant protein clearance pathways. 

Transgenic flies[63], worms[64] and mice[65] that overexpress chaperones live longer, whereas 

mutant mice deficient in a co-chaperone belonging to the heat-shock family exhibit accelerated 

aging phenotypes[66]. 

Regarding proteolytic systems: chemical inducers of autophagy (autophagy-lysosomal system) 

extend lifespan in yeast[67], flies[68], worms[69], [70] and mice[71], [72]; and increasing 

ubiquitin-proteosome activity is known to extend lifespan in yeast[73] and nematodes[74], [75]. 

Deregulated Nutrient Sensing 

The fact that dietary restriction (Figure 1.3) increases lifespan and/or healthspan in all the 

eukaryote species investigated so far[25], [76], [77] is a statement of the importance of nutrient-

sensing in the aging process. 

The most researched nutrient-sensing pathway is the “insulin and insulin-like grow factor (IGF-1)” 

pathway, which participates in glucose-sensing. An initial observation of its role creates a paradox: 

on the one hand, the activity level of this pathway experiences a decline in aged humans, as well 

as mouse models of premature aging[78]; on the other hand further attenuation of its signaling 

intensity, through multiple genetic interventions, in worms, flies and mice robustly prolongs 

lifespan[79]–[81]. The solution lies in considering that these genetic manipulations extend longevity 

because insulin and IGF-1 pathway (IIS) signaling leads to lower rates of cell growth and 

metabolism, hence culminating in lower rates of cell damage; and assuming that, for the same 

reason, aged organisms naturally decrease IIS activity in an attempt to maximize survival. It would 

logically follow that minimizing IIS activity would maximize lifespan in the same proportion. 

However, this is contradicted by evidence. In reality, low but not extremely low levels of IIS signaling 

are optimal for an aged organism[82]. 
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Another intensively studied nutrient-sensing system is the mammalian target-of-rapamycin (mTOR), 

and it senses amino-acid concentrations. Genetic downregulation of mTORC1 (one of the 

complexes of which mTOR kinase is part of) extends lifespan in several model organisms[83], [84]. 

What’s more, rapamycin is considered the most robust lifespan-extending pharmacological 

intervention in mammals[85]. 

Mitochondrial Dysfunction 

It is no surprise that the classical theory of aging – the mitochondrial theory of aging[86] – finds a 

culprit in mitochondria if we note that: life is based on energy flow, and the cellular “power plants” 

are the mitochondria; it is known that their efficacy diminishes with aging[87]. 

The mitochondrial theory of aging proposes that global cellular damage is the consequence of a 

positive feedback loop between mitochondrial dysfunction and production of reactive oxygen 

species. The suggested paradigm was recently superseded by the mitohormesis concept, 

supported by experimental evidence showing that increased production of reactive oxygen species 

prolongs lifespan[88]–[91] in model organism instead of accelerating aging and that antioxidants 

fail to extend lifespan[92], [93]. 

The mitohormesis paradigm states that mild exposure to toxic factors triggers defensive responses 

that end up overcompensating for the damage, resulting in a superior cellular fitness in the pos- 

versus pre-exposure states[94]. 

Cellular Senescence 

The amount of senescent cells (cells exhibiting irreversible cell cycle arrest coupled to stereotyped 

phenotypic changes) increases with aging[95]. It is not known if this accumulation is due to an 

increased rate of generation of senescent cells and/or a decrease in their rate of clearance. 

Nonetheless, new evidence unambiguously establishes a causal link between the aging phenotype 

and senescence cell population size[96]. 

The belief in the potential of directly targeting cellular senescence as an anti-aging intervention is 

exemplified by the definition and exploration of a new functional class of drugs termed 

senolytics[97]. 

Stem Cells Exhaustion 

Adult organisms retain several stem cell niches that are responsible for tissue regeneration 

throughout their lifetime. 
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Almost by definition, the regenerative potential of tissues diminishes with aging. Experimentally, it 

is found that functional attrition of stem cells is ubiquitous across cell populations[98]–[100]. 

Although the deficient proliferation of stem cells is detrimental to healthy aging, an excessive 

proliferation rate, which translates into niche depletion, leads to premature aging in flies[101]. 

Parabiosis experiments, in which and old and young mice share one circulatory system, have 

shown that the old mice experience a reversal in stem cell functional decline coupled with increased 

health- and lifespan[102], consistent with the view of stem cells exhaustion as an integrated 

hallmark. This experimental evidence suggests that stem cell rejuvenation therapies might be 

feasible and with benefic repercussions at the organism level[103]. 

Altered Intercellular Communications 

Aging-associated changes are present not only at the individual cell level but also on how cells, 

tissues, and organs interact with one another. Altered intercellular communications are the most 

holistic hallmark of aging. An old cell might communicate differently with its neighbors and the 

aggregated effect of miscommunicating aged cells is the general deregulation of neurohormonal 

signaling characteristic of aged organisms. 

Among the types of aging-associated changes in intercellular communications, one can count 

chronic inflammation[104] and immunosenescence[105], but from a therapeutic perspective the 

most interesting is, arguably, “contagious aging”. 

Contagious aging is the spatial propagation of aging, in which an aged cell, tissue or organ, leads 

to aging-specific deterioration of another cell, tissue or organ. For example, senescent cells induce 

senescence in neighbor cells via chemical signaling[106].  Therapeutic significance does not lie in 

contagious aging per se, but instead in the experimental validation of its corollary consisting in the 

inversion of the concept; in other words, anti-aging interventions targeting a particular tissue can 

have the side-effect of slowing or halting the aging process in other tissues[51], [107]. 

1.1.3. ANTI-AGING THERAPIES 

Lifespan-extending interventions can be one of three natures: pharmaceutical; genetic; or lifestyle 

modification. 

The main lifestyles changes that are shown to increase healthspan or thought to extend lifespan 

are physical exercise and dietary modifications, namely caloric restriction (Figure 1.3). 

Physical exercise does not extend lifespan, but it improves healthspan[108]. Exercising guidelines 

have long been a recommendation of health-concerned organizations from all over the world, and 
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rightly so[109]. Nonetheless, exercise alone cannot make up for the modern society lifestyle. The 

increasingly sedentary lifestyle negates or attenuates many of the health benefits conferred from 

physical exercising, independently of the physical activity level (exercise intensity)[110]. 

A calorie restricted diet, which consists in reducing the daily caloric intake by up to 40%, 

consistently extends healthspan and lifespan in many model organisms[111] and improves 

diseases risk factors in humans[112]. Unfortunately, its benefits of delaying the majority of age-

associated diseases come at the price of disrupting the homeostatic state of the adult human body, 

for example, it leads to menstrual irregularities, loss of libido and slower wound healing[113]. The 

clear failure in translating the potential of caloric restriction to humans resulted in two refinements 

of the concept: fasting-mimicking diets and caloric restriction mimetics. 

Fasting-mimicking diets aim to maximize the upsides and minimize the side-effects of purely 

restricting calories, by imposing their limitation in the time domain. They come in the form of: time-

restricted feeding, which imposes a daily time window for the feeding period; intermittent fasting, 

which features ad libitum days followed by days without food or with a very low-calorie daily intake; 

or cycling relatively extended periods of normal dieting and calorie restricted dieting[114]. The 

initial results of fasting-mimicking diets do seem to improve the applicability of the caloric restriction 

concept to humans[115], although only studies using cohorts of small sizes are available. Another 

limiting factor in using fasting-mimicking diets as anti-aging interventions is that due to their 

multifactorial nature many variables still need to be optimized and tailored to special populations. 

As a case in point, old mice are negatively affected by a 4-day mimicking-fasting diet, but not by 

the same diet when this is restricted to just three days[116]. 

Caloric restriction mimetics[117] are small compounds that when ingested trigger phenotypic 

changes akin to the ones elicited by following a calorie restricted diet. The ultimate goal is to design 

a pill that would be taken daily by anyone and improve the healthspan and lifespan of the individual, 

akin to the canonical anti-aging miracle pill. 

The mere existence of research focused on finding caloric restriction mimetics as a perfection of a 

calorie restricted diet brings to surface two crucial facts: that there is enough evidence suggesting 

that such compounds might actually exist (otherwise we would not see any scientific endeavor on 

this facet, especially since alternatives, like fasting-mimicking diets, are showing promising results); 

and that pharmacological interventions are more desired than their lifespan modification 

counterparts (in which poor compliance is a common issue). 
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More than a thousand genetic interventions are known to result in lifespan extension of model 

organisms[22]. However, this otherwise mighty potential is betrayed by the ethical and technical 

challenges associated with the application of gene therapy in humans. The ethical factor (notice 

that we are referring to intervention in adult humans and not germline editions) is a limitation 

secondary to the technical challenges. If there were no safety issues with gene therapy, we believe 

that gene therapy would become widely adopted and even ordinary. 

In the technical front, the discovery of the CRISPR technology, the technology with the fastest 

adoption rate in history[118], is revolutionizing gene therapy. It does so because it is cheaper, 

highly-customizable (due its modular structure) and more efficient in gene editing (including knock-

ins) than the competing techniques. As a potential anti-aging intervention, it could be used to target 

the genome and epigenome[119], and be administered by gene vectors or to stem cells that would 

then be transplanted into the patient[120]. 

The unprecedented rate of progress of the CRISPR technology has not yet arrived at the point in 

which the rate of off-target mutations is not larger than the rate of spontaneous mutation in the 

human genome. Until then, the usefulness of gene therapy for anti-aging interventions remains at 

a distance. 

The last type of anti-aging intervention left to discuss is pharmacological interventions. 

For virtually every single chronic disease for which an oral pharmaceutical treatment is viable, they 

are the option of choice. The hassle-free administration mode allows the patient to adhere to the 

doctor’s orders, maximizing the success of the treatment. 

For the first time in humanity’s history there exists enough scientific knowledge and evidence to 

support an anti-aging clinical trial. This pioneer clinical trial is not the fruit of chance but a 

culmination of years of dedication in fighting aging. 

Several years ago the National Institutes of Health recognized that aging could be targeted and 

established the National Institute of Aging Interventions Testing Program.(ITP) This program is 

conducted at multiple centers and tests potential anti-aging interventions in genetically 

heterogeneous (outbred) mice. After its successful results in ITP, metformin is now going to be 

subjected to a randomized, controlled clinical trial[121]. 

Even though the landscape of aging research provides reasons for being optimistic, it is worth 

noticing that metformin is just a single compound, and a single compound intervention is always 

theoretically suboptimal in manipulating a multifactorial process such as aging. Biogerontologists 
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are well aware of this short-coming and are searching and exploring other potential life-extending 

compounds[122]. 

1.2. MACHINE LEARNING 

The human brain is a fascinating organ. Through millions of years of evolution, it became expert in 

pattern recognition, abstract thinking, and language[123]. Unfortunately, its organic nature sets 

rigid limitations in the volume of information that it can process[124] and makes it only adept to 

the simplistic modeling of the world[125]. 

The alternative that bypasses the constraint of an organic computational architecture is to use 

computers to store information and appropriately extract meaningful knowledge from it, or, in one 

word, to learn. Machine learning is the field of study that is centered in giving computers the ability 

to learn without being explicitly programmed by static instructions[126]. The learning capabilities 

of machine learning applications have benefited greatly from Moore’s law and progresses in applied 

mathematics, statistics, and computer science. They are the only available avenue for inference in 

highly nonlinear systems of unprecedented scale exhibiting a rich landscape of interactions[127]. 

1.2.1. CLASSIFICATION TASK 

The tasks that machine learning is applied to can be categorized accordingly to the type of output 

desired from the machine-learned system. The task faced in the current work is called 

classification, and it consists of the model outputting a class label given an example as input. In 

our case, we will be doing binary classification since there are only two possible classes that a 

given sample instance can be assign to: or it belongs to group X or it doesn’t. 

An additional way of categorizing machine learning tasks is based on the nature of the learning 

“signal” or “feedback” available to the learning system[128]. Categorized in this way our binary 

classification task belongs to the “supervised learning” realm. It does so because we are going to 

use labeled examples to teach the learning system a mapping of their features to their class 

memberships. 

An interesting concept useful in a classification task, and that we are going to take advantage of is 

to program the learning system to output not only the class label that it classifies a given sample 

to belong to but the probability of it belonging to each of the available classes. For example, a 

system trained to predict the gender of a person by using as input the individuals' height, instead 

of outputting just “Male” or “Female”, it would output “0.35 chance of Male and 0.65 of Female”. 
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The last type of output is usually referred to as “class probabilities” and it reflects the degree of 

confidence with which the system classified each sample. 

1.2.2. ALGORITHMS 

A machine learning algorithm can be loosely defined as the set of formalized instructions that one 

takes to build a machine learning system. 

There are thousands of algorithms available to choose from, so the choice should be tailored to 

the specific problem and objectives at hand. For our binary classification task, we seek an algorithm 

capable of state-of-art performance in datasets of similar nature to ours. Ideally, it should also 

naturally output class probabilities. As it turned out, our classification task has two additional 

special traits that need to be taken into consideration: the existence of class imbalance and the 

fact that the number of predictors far exceeds the number of observations available to train the 

algorithm. 

Our dataset is class imbalanced because one of the classes as significantly more samples than the 

other. If a static rule that outputted the majority class label independently of the input sample were 

created, it would achieve an accuracy proportional to the class imbalance of the dataset without 

actually doing any learning. The disregard for class imbalance might lead to use algorithms that 

bias toward the majority class, in other words, they fail to predict the minority class. In our case, 

this consideration has additional weight since the minority class is the targeted class of interest. 

When the number of predictors is much larger than the number of samples (also called “� ≫ �”) 

we are dealing with a high-dimensional dataset[129]. The danger is that there are more ways to 

separate data samples (subset the high-dimensional sample space) than there are samples. In this 

setting the algorithms overfit (find ways to explain the noise of the data), losing generalization 

capabilities. 

Random Forest 

Taking into consideration the characteristics of our dataset, we choose to base our classifier on the 

random forest algorithm[130]. 

It is called “forest” because its outputted prediction results from the aggregation (e.g. using the 

majority vote or the average of class probabilities) of the output of several independent instances 

of a decision tree algorithm (Figure 1.5). The “random” part originates from the fact that each 

decision tree only as access to a random fraction of the available data[130]. This source of 
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randomness gives “biodiversity” to the forest and therefore it is also the source of the robustness 

of the random forest algorithm. 

 

 

Figure 1.5: Decision tree. A decision tree is a hierarchical structure and the basic unit of the random forest algorithm. Each 
internal node stores a split (or test) function to be applied to the incoming data. Each leaf stores the final answer (predictor). Here 
we show an illustrative decision tree used to figure out whether a photo represents an indoor or outdoor scene. From [131]. 

 

Notice that because the decision trees are grown independently, with only the aggregation step 

requiring information from all of them, the random forest algorithm is renowned for its scaling 

properties. 

Random forest can handle binary/categorical and continuous input features simultaneously since 

all types of inputs are easily partitioned by a decision tree (anything can be converted into a binary 

logic test). 
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Ensemble learners, that is methods that are based on the aggregation of many independent 

classifiers, and, more particularly, random forests hold the state of art results in high-dimensional 

datasets[132], [133]. 

Class imbalance deteriorates the performance of virtually all algorithms[134]. Nonetheless, in a 

large scale comparison of the most popular algorithms in ten imbalanced experimental datasets, 

random forest outperformed all the other models[135]. 

1.3. MOTIVATION AND FRAMEWORK 

The contributions of the present dissertation are discussed in detail in chapters 2 and 3. Although 

they can be read in an almost independent fashion, both are guided by one unifying working 

framework. 

We have commented upon the enormous burdens that aging poses at the population and individual 

levels. We have also enumerated its known underlying biological mechanisms and malleability. 

From the last two statements, we can logically derive the motivation of this work: the aging process 

itself should be the direct target of potential therapeutic interventions. We even go further: aging-

ameliorating interventions should be a top priority of medical research given its unique potential in 

stopping the impending social disaster. 

Allocation of funds to aging-specific research is the fairest among all possible choices of public 

spending in medical research if we consider that, not the majority, but every single member of 

society will directly benefit from it (we will all be old eventually). Furthermore, it is also the choice 

that maximizes return-on-investment, since age is the primary risk for nearly every major cause of 

mortality in developed nations[136]. Lastly, and more important, when people were surveyed about 

if they wished to live longer given that their healthspan would also increase, the result was a 

resounding “yes”[137]. 

The classical paradigm of biomedical research is focused on the treatment of individual diseases. 

This disease-centric tradition as made profound contributions to human health, helping people live 

longer than ever before. However, longer lives without access to successful therapies in preventing, 

ameliorating, or postponing the aging process, culminate, paradoxically, in a longer undesirable 

life stage that continuously accumulates multiple disabilities and morbidities. In lay terms: we are 

living longer, but also dragging out suffering. 

The chosen working framework is grounded on a contrastingly different paradigm: that directly 

targeting and slowing the aging process delays the onset and progression of all aging-related 



29 

  

diseases. The clinical importance of this “longevity dividend” cannot be overstated, as even 

maximum success in curing a single chronic illness is insufficient to halt a multimorbidity state 

(and sometimes it even aggravates the other co-morbidities). 

An alternative view of our working paradigm is that it is focused on prevention rather than treatment. 

This hypothesis considers that increasing healthspan (compressing morbidity) is the best choice 

to face the otherwise unmanageable chain of events that cause aging before it even starts. 

We mentioned before that anti-aging genetic interventions have not reached technological maturity 

yet and explained why pharmacological interventions dominate their lifestyle modification analogs, 

therefore therapies of the pharmacological type have the largest likelihood of being adopted post-

haste on a global scale. 

1.4. OBJECTIVES 

Biogerontology’s focus is on efforts to understand, prevent, cure or minimize age-related 

impairments, and the contributions of the current work belong to its domain. 

Working from the framework exposed in the previous subsection, the specific objectives of this 

thesis are: 

Objective 1: Investigate if there are drugs significantly enriched in interactions with human 

homologs of experimentally verified lifespan-extending genes. 

Objective 2: If the answer to Objective 1 is affirmative, prioritize the obtained drugs for further 

lifespan testing in model organisms. 

Objective 3: Create a database dedicated to lifespan assays of drugs known to prolong lifespan 

in model organisms. 

Objective 4: Conduct initial analyses based on the information provided by the database created 

in Objective 3. 

Objective 5: Compile biological and chemical information on drugs that have their lifespan effect 

known in C. elegans, and train and optimize a classifier so that it can be used for readily assessing 

the anti-aging potential of an unexplored compound, in future works. 

1.5. CONTRIBUTIONS 

Motivated by the arguments above and set on the objectives enumerated in the previous sub-

section, we contribute to our field of study in the following ways: 
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Contribution 1: We examined thousands of drugs present in a meta-database of drug-gene 

interactions and found that 16 of them have a significant number of meaningful connections with 

human homologs of model organisms’ lifespan-extending genes. 

Contribution 2: We analyzed the conceptual viability of the top candidate anti-aging drugs and 

ended up suggesting two distinct drug combinations that should be tested in model organisms. 

Contribution 3: We curated almost all the existing literature regarding anti-aging drugs assayed 

in model organisms and present the resulting effort in the form of a new resource: “DrugAge: 

Database of Aging-Related Drugs”. DrugAge is free to use, and it is open to the scrutiny of the 

scientific community at http://genomics.senescence.info/drugs/. 

Contribution 4: We show evidence reinforcing the notion that the more complex an organism is, 

the smaller the relative magnitude of average and maximum lifespan extension achieved by 

pharmaceutical interventions. 

Contribution 5: Through the use of two distinct statistical methodologies we clearly show that, in 

general, sexual dimorphism is not a concerning factor affecting the performance of anti-aging drugs 

in model organisms. 

Contribution 6: We show that there is a statistically significant strong correlation between mean 

lifespan changes and maximum lifespan changes in drug lifespan assays. 

Contribution 7: We contrasted, for the first time, anti-aging interventions of the pharmacological 

and genetic types by comparing the functional analysis and genetic overlap between DrugAge and 

GenAge. 

Contribution 8: We successfully trained and optimized a classifier for gauging the anti-aging 

potentiality of untested chemical compounds. 

  

http://genomics.senescence.info/drugs/
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CHAPTER 2: DRUG REPURPOSING FOR AGING 
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2.1. INTRODUCTION 

Having previously mentioned the rationale for the need to tackle the aging process and to ideally 

do so through interventions of the pharmaceutical type, the challenge being considered now is: 

what is the best way to go about it. 

The straightforward approach would be to design de novo drugs specifically targeting the aging 

process. Nonetheless, even assuming that we ignore the complexity and uncertainty wrapping the 

aging process, the drug research and development (R&D) process itself is full of obstacles. 

Even with the rate of technological progress following Moore’s law, bafflingly, every nine years the 

cost of drug development doubles (Figure 2.1)[138]. To make matters more worrisome, this 

increase in the cost of drug development is not compensated by the increase in the number of 

newly approved drugs entering the market. In fact, the latter rate as remained flat since the 

1950s[139]. Such a depressing state of affairs is forecasted to lead to the stagnation of investment 

in drug R&D projects[138]. In actuality, the market sentiment regarding the potential financial 

returns of the pharmaceutical sector is so negative, that the only viable solution relies on the direct 

application of securitization techniques to improve its risk-to-reward profile[140], [141]. 

 

 

Figure 2.1: The number of new drugs approved by the US Food and Drug Administration (FDA) per billion US dollars 
(inflation‑adjusted) spent on R&D has halved roughly every nine years. From [138]. 

 

From a technical perspective, the disappointing results of a candidate drug journey from bench to 

bedside mainly originate from issues with clinical side effects and tolerability[142], [143]. 
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Drug repurposing allows bypassing the drug industry R&D bottlenecks by trying to re-apply 

compounds that were found to be safe and tolerable in human clinical trials to treat health 

conditions that are not their original intended target. Notice that it is of no importance if the drug 

being repurposed was successfully approved for its primary target. As long as it is deemed safe, a 

compound can be subjected to a new therapeutic hypothesis, and its efficacy promptly evaluated 

in a new clinical trial. 

One case of successful drug repurposing is azidothymidine. This compound was deliberately 

developed as an anti-cancer agent and shown to inhibit oncogenic viruses (and tumor 

proliferation)[144]. Failure in treating cancer did not stop it from being approved as an anti-HIV 

therapy, with its previously known antiviral activity convincingly inhibiting HIV replication[145]. 

Two clear advantages are unique to the drug repurposing paradigm: 

 it is a financial free lunch (the investment to develop, register and fully test the compounds 

has already been made) with potential applications only limited by the scientific community 

ingenuity; 

 most of the 17 years period that it takes to translate research findings into clinical 

practice[146] can be skipped by immediately testing the hypothesis at the clinical trial 

stage. 

Compelled by the advantages of the drug repurposing paradigm and inspired by its previous 

achievements, it is the goal of this section to apply a bioinformatics approach to gauge the lifespan-

extension potential of already developed compounds. If compounds with considerable potential are 

to be found, they will be ranked (and therefore prioritized) in an effort of advancing drug repurposing 

in biogerontology. 

2.2. METHODS 

Any drug repurposing project starts by defining the library of compounds to be screened. We find 

an ideal repository of drugs in the Drug-Gene Interaction Database (DGIdb)[147]. DGIdb is the 

largest meta-database of drug-gene interactions, updated weekly, publicly available, and it 

considers information from ongoing clinical trials. Its goal is to “provide users with the most current 

knowledge of clinically actionable drug–gene interactions”[147]. 

Together with using DGIdb as the source of candidate lifespan-extending drugs and their respective 

drug-gene interactions, we also made use of the GenAge Database of Aging-Related Genes[22] to 

gather gene targets for anti-aging therapies. GenAge is also the perfect resource for our purpose 
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because it is the most complete database of genetic interventions that influence lifespan in model 

organisms. 

Version 2.22 of DGIdb was downloaded and imported into RStudio[148] (version 0.99.879) running 

R[149] (version 3.2.3). The base file contained 3158 human genes establishing 29708 interactions 

with 11636 unique compounds. 

Build 18 of GenAge was downloaded and imported into Microsoft Excel 2013. With this step, we 

obtained information regarding 2242 manipulated genes in model organisms. GenAge is a 

repository of genetic experiments that affect lifespan in model organisms, but we are only interested 

in the subset, of 1184 genes, that extend lifespan when intervened upon. Furthermore, it is crucial 

to take into consideration the type of genetic manipulation that when applied to each gene 

culminates in lifespan extension. This consideration subsets the life-extending genes into two 

categories: 

 One group of lifespan-extending GenAge genes which increase longevity when they are 

knockdown or knockout (reduced levels of gene expression) and are called “anti-longevity” 

genes; 

 Another group of genes which only prolongs lifespan when they are over-expressed or 

knock-in (increased gene activity) and are defined as “pro-longevity” genes. 

After data cleaning, we found 988 and 175, anti-and pro-longevity lifespan-extending animal genes, 

respectively. 

We used the dbOrtho web service of bioDbnet[150] (version 2.1) to convert the two subsets of 

GenAge lifespan-prolonging genes into human orthologues. The two resulting subsets of 995 and 

198 unique human orthologues were then imported to RStudio. Due to the orthologue conversion 

58 genes were common to both subsets of human genes and removed as their nature as anti- or 

pro-longevity is ambiguous. Of our 1077 total non-redundant human orthologues of GenAge 

lifespan-extending genes, 140 were pro-longevity genes and 937 were anti-longevity genes. 

Of the 1077 non-redundant human orthologues, 357 (59 and 298, pro- and anti-longevity genes 

respectively) were present in DGIdb, interacting with 2064 distinct drugs. 
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Table 2.1: Categorization of DGIdb´s drug-gene interactions according to their effect on gene expression levels. 

Anti Neutral Pro 

antagonist n/a activator 

antagonist, antibody binder agonist 

antagonist, inhibitor modulator agonist, modulator 

antagonist, inhibitor, competitive antibody agonist, partial agonist 

antagonist, inhibitory allosteric modulator other/unknown chaperone 

antagonist, multitarget allosteric modulator cofactor 

Antisense multitarget inducer 

antisense oligonucleotide ligand partial agonist 

binder, antagonist agonist, antagonist partial agonist, agonist 

Blocker antagonist, partial agonist potentiator 

Cleavage vaccine product of 

competitive, inhibitor adduct stimulator 

Inhibitor partial agonist, antagonist   

inhibitor, antagonist immunotherapy 

inhibitor, competitive antagonist, agonist 

inhibitory allosteric modulator positive allosteric modulator 

inverse agonist agonist, inhibitor 

multitarget, antagonist   

negative modulator 

partial antagonist 

Suppressor 

 

Previously we made the distinction between pro-longevity and anti-longevity genes. This distinction 

is relevant now that we have gathered all the gene interactions because it is time to select the ones 

that we can assume that would influence lifespan. 

A drug that inhibits pro-longevity gene is not expected to extend lifespan because this interaction 

would only be meaningful (for our purposes) if it was an interaction that would increase the 

expression of the gene. Several other possible cases of drug-gene interaction could be considered 

with the variables being the nature of a longevity gene (anti or pro) and the type of interaction 

between a drug and that gene. In order to focus exclusively on the drug-gene interactions that 

prolong lifespan we assigned all sorts of drug-gene interactions present in DGIdb to the 

categories ( 
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Table 2.11): 

 “Anti” - types of drug-gene interactions that might extend lifespan if an anti-longevity gene 

is being considered; 

 “Pro” - interactions that increase gene expression (or similar magnification of gene 

influence) and therefore should be taken into account when we are dealing with a pro-

longevity gene; 

 “Neutral” - interactions that couldn’t be included in neither of the other categories because 

they are ambiguous (case-specific) or non-informative. 

Some of the cases related to some interaction types were manually checked to assure the quality 

of our analysis. Of these 2064 drugs, only 489 had interactions in a meaningful way, that is, the 

interaction type was the required for a specific gene to exert its anti-aging effects. 

 

Table 2.2: Summary of the 16 chemical compounds found to be significantly enriched. 

Drug Primary Name AdjPvalue SuccSample FailSample SuccPop FailPop 

Dacinostat 7.07E-13 10 0 98 3050 

Givinostat 7.07E-13 10 0 98 3050 

Abexinostat 7.07E-13 10 0 98 3050 

Belinostat 7.51E-12 10 1 98 3049 

Vorinostat 7.51E-12 10 1 98 3049 

Pivanex 7.01E-10 8 0 100 3050 

Sodium phenylbutyrate 7.01E-10 8 0 100 3050 

Panobinostat 2.42E-08 10 8 98 3042 

Valproic acid 3.18E-07 10 12 98 3038 

Romidepsin 2.05E-05 5 0 103 3050 

CHR-3996 6.21E-04 4 0 104 3050 

Roflumilast 6.21E-04 4 0 104 3050 

Entinostat 3.01E-03 4 1 104 3049 

Ipatasertib 1.85E-02 3 0 105 3050 

MK2206 1.85E-02 3 0 105 3050 

Ibudilast 1.98E-02 4 3 104 3047 

 

Next, we measured the statistical enrichment of relevant lifespan-extending interaction for each 

drug through the one-sided Fisher’s exact test, using the “exact2x2” R package (version 
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1.4.1)[151] , with null hypothesis being that a drug has the same proportion of interactions with 

lifespan-extending genes (of the type required to prolong lifespan) as the proportion present when 

the entire dataset (DGIdb) is considered. After correcting for multiple hypotheses using Holm’s 

correction[152](� = Ͳ.Ͳͷ), we found 16 compounds significantly enriched in correctly oriented 

directed edges with human orthologues of lifespan-extending GenAge genes (Table 2.2). 

2.3. RESULTS AND DISCUSSION 

The results of the current methodology are part of a manuscript that is currently in the final phase 

of the peer review process for publication in the scientific journal “Human Molecular Genetics”. 

We follow with the analysis and discussion of the results from two perspectives: the drugs obtained, 

and the gerontologic information of the genes by which they exert their effects. It is our believe that 

the second adds valuable insights to the first, namely in developing a contextualization for the 

expected magnitude of their potential anti-aging clinical effects. 

2.3.1. ENRICHED DRUGS 

A first contemplation of the list of enriched drugs and all of the genes that they target reveals that 

all the implicit drug-gene interactions belong to the anti-longevity category, in other words, the 

candidate compounds shall delay aging solely by inhibiting the expression of anti-longevity genes. 

We do not have any explanation that justifies why pro-longevity drug-gene interactions were not 

enriched. 

We can cluster our statistically enriched drugs into three broad classes accordingly to the lifespan-

extending genes that they target (Table 2.3): 

 histone deacetylases inhibitors (dacinostat, givinostat, abexinostat, belinostat, vorinostat, 

pivanex, sodium phenylbutyrate, panobinostat, valproic acid, romidepsin, CHR-3996, 

entinostat); 

 Akt signaling inhibitors (ipatasertib and MK-2206); 

 phosphodiesterase inhibitors (roflumilast and ibudilast). 

Dacinostat[153] is still an experimental drug, and as yet to reach clinical trials. 

Givinostat has reached the phase II of clinical trials a few times. Unfortunately, it causes 

thrombocytopenia[154], which excludes its application as a candidate anti-aging therapy. 
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Abexinostat is a pan-HDAC inhibitor that mostly targets HDAC1. Its common side effects, which 

include thrombocytopenia, neutropenia, fatigue and anemia[155], do not justify the trade-off 

between quality of life and potential lifespan-extending effects that would be subjacent to its usage. 

 

 

Table 2.3: Enriched drugs and their respective gene targets. 
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ABAT                 X               

AKT1                           X X   

AKT2                           X X   

AKT3                           X X   

HDAC1 X X X X X X X X X X X   X       

HDAC10 X X X X X     X                 

HDAC2 X X X X X X X X X X X   X       

HDAC3 X X X X X X X X X X X   X       

HDAC4 X X X X X X X X X X             

HDAC5 X X X X X X X X X               

HDAC6 X X X X X     X                 

HDAC7 X X X X X X X X X               

HDAC8 X X X X X X X X X X X   X       

HDAC9 X X X X X X X X X               

OGDH                 X               

PDE4A                       X       X 

PDE4B                       X       X 

PDE4C                       X       X 

PDE4D                       X       X 

 

As in the two previous drugs, Belinostat’s clinical side effects (among them one can count anemia, 

thrombocytopenia, dyspnea, and neutropenia[156]) also exclude it as a desirable anti-aging 

intervention. 

Vorinostat is another unattractive candidate anti-aging compound. It causes hematological toxicity, 

mainly in the form of thrombocytopenia[157]. 
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Pivanex is relatively well-tolerated for a compound of the HADC-inhibiting class. Its only side effects 

are nausea and dysgeusia[158]. 

Sodium phenylbutyrate is used to treat urea cycle disorders. It is deemed very safe and tolerable, 

for example, in a phase II clinical study applying it to treat amyotrophic lateral sclerosis it was 

tolerated in all dosages tested (including at a dosage of more than double the suggested therapeutic 

dosage) and histone acetylation was decreased by half[159]. 

Panobinostat is a broad-spectrum HDAC-inhibitor. We disregard its feasibility as an anti-aging 

intervention because it is administered intravenously (which would raise compliance issues) and it 

causes the side effects typical of its functional drug class: thrombocytopenia, fatigue, and 

neutropenia[160]. 

Valproic acid is the outlier in our group of enriched HDAC inhibitors as it also inhibits the OGDH 

(oxoglutarate decarboxylase)[161] and ABAT (4-aminobutyrate aminotransferase)[162], [163] 

genes. It was first approved in 1967 as an anticonvulsive drug and therefore its long-term chronic 

effects are well-studied. Its chronic ingestion leads to significant weight gain and if it were to be 

applied as an anti-aging intervention, platelet, and hepatic functions would have to be closely 

monitored mainly for the risk of thrombocytopenia (which has an incidence of 12%)[164]. 

Romidepsin mostly inhibits HDAC1 and HDAC2. It severely compromises healthspan by causing 

extremely fatigue[165] along with the expected toxicities: nausea, vomiting, fatigue, and transient 

thrombocytopenia and granulocytopenia[166]. 

For the treatment of solid tumors, CHR-3996 display a favorable toxicological profile, but the same 

cannot be said for the treatment of aging, as it caused atrial defibrillation even in the lowest dosage 

in a phase I clinical trial[167]. 

Entinostat is a potent inhibitor of HADC1 and HADC3. Its adverse events reported in several clinical 

trials included anorexia, nausea, hypoalbuminemia, hypophosphatemia, fatigue, headache, 

diarrhea, neutropenia, thrombocytopenia and leukopenia. These are all reversible, but because an 

anti-aging pharmacological intervention is continuous in nature, its toxicological profile is 

unacceptable[168]. 

Ipatasertib is a highly selective pan-Akt inhibitor. It is currently undergoing phase II clinical trials for 

prostate (clinicaltrials.gov NTC01485861) and gastric cancer (clinicaltrials.gov NTC01896531). 

Initial studies seem to indicate that it is relatively well-tolerated for a cancer drug, but it causes 

diarrhea, fatigue and hyperglycemia[169]. 
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MK-2206 is also a highly selective pan-Akt inhibitor and it was the first allosteric small molecule 

inhibitor of Atk to enter clinical development[170]. It has and still is being tested in multiple phases 

I and II clinical trials. Rashes tend to be the only reported common side effect and are observed in 

a dose-dependent manner[171]. 

Roflumilast is a highly selective phosphodiesterase-4 inhibitor approved for the treatment of chronic 

obstructive pulmonary disease. In contrast to the majority of drugs for treating chronic obstructive 

pulmonary disease, it is not inhaled but instead taken orally, a once a day. The only clinical side 

effects observed with its administration are diarrhea (in a few instances leading to hospitalization) 

and weight loss (an average of 2kg and more relevant in obese patients)[172], [173]. The intestinal 

distress might be attenuated by the titration of the dose up to the recommended dosage[174]. 

In Japan, ibudilast has been approved as a daily treatment of asthma for more than two decades. 

It is a non-selective phosphodiesterase inhibitor, and therefore it causes moderate gastrointestinal 

adverse effects. However, it should be noted that this is the only common side-effect and that it 

disappears after 2-4 days[175]. Highly encouraging and emphasizing its safety and tolerability is 

the fact that in a recent systematic study of drug repurposing for secondary progressive multiple 

sclerosis (a disease requiring long-term treatment, just like in anti-aging therapies) ibudilast was 

one of the few selected lead candidates for clinical evaluation[176]. 

2.3.2. BIOGERONTOLOGY OF THE TARGETED GENES 

4-aminobutyrate aminotransferase 

The 4-aminobutyrate gene is a newly aging-associated gene, and therefore its role in aging is still 

unknown. Its deletion in yeast extends mean chronological lifespan by 15-50%[177]. 

AKT serine/threonine kinases 

The AKT serine/threonine kinase 1 (AKT1) gene isoform was studied in several human genome-

wide association studies. In Caucasian populations the results are mixed, some studies find SNPs 

in AKT1 significantly associated with longevity[178]–[180], while others do not[181]–[183]. In a 

Han Chinese population, two AKT1 haplotypes were significantly represented in long-lived 

individuals[184]. 

Haploinsufficiency of Akt1 (the mouse homolog of AKT1) extends mean lifespan by 8% in males 

and 15% in females when compared to wild-type. The mutant mice had the same weight but less 

body fat. In C. elegans, the same studied reported that inhibition of akt1 (the worm homolog of 
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AKT1 and AKT3 isoforms) extends lifespan[185], which is consistent with previous literature that 

also used RNA interference to inhibit akt1[186]. 

Deletion of Saccharomyces cerevisiae’s SCH9 (the yeast orthologue of all the three AKT human 

isoforms) more than triples its mean chronological lifespan[187]–[189]. 

It must be mention that, contrary to what the deletion experiments in yeast might suggest, maximal 

reduction of AKT expression should not be a therapeutic goal as AKt1, AKt2 or AKt3 null mice are 

all viable but display severely compromised healthspan[190], [191]. 

Histone deacetylases 

The human HDAC1 gene has a homolog in the gene Rpd3 of D. melanogaster. A decrease in Rpd3 

gene expression mimics caloric restriction, and there is sexual dimorphism in the magnitude of 

lifespan extension that it induces. Males heterozygous for hypomorphic or null mutation of Rpd3 

have a lifespan extension of 33% and 41-47%, respectively. While females heterozygous for a 

hypomorphic allele have a 52% increase in lifespan, and those carrying a null mutation, do not 

display median lifespan extension.[192] 

In yeast, there are two homologs of human HDAC genes: HDA1 is a homolog of HDAC4, HDAC5, 

HDAC6, HDAC7 and HDAC9; and RPD3 is a homolog of HDAC2, HDAC3, and HDAC8. Only the 

HDAC1 is considered to be a homolog of both of the yeast genes.  

Deletion of RPD3 extends replicative lifespan by 41%[193], [194] and, corroborating the results 

obtained in flies; there was no additive effect with caloric restriction. Deletion of HDA1 has no 

effect[194] or a very moderate one[67] of its own on longevity but acts synergistically with caloric 

restriction to increase life span. 

Oxoglutarate dehydrogenase 

The human oxoglutarate dehydrogenase gene (OGDH) is a homolog of the C. elegans, S. cerevisiae, 

and S. pombe; odgh-1, KGD1, and SPBC3H7.03c genes, respectively. 

In worms, RNA interference of odgh-1 extended lifespan by 79%[195], a result congruent with the 

increase in lifespan observed when SPBC3H7.03c suffers deletion in fission yeast[196]. Curiously, 

in baker’s yeast, KGD1 deletion halves the lifespan in two different studies[177], [197]. 

Phosphodiesterase 4 isoforms 

All the four human phosphodiesterase isoforms (PDE4A, PDE4B, PDE4C, and PDE4D) have the 

dunce gene of D. melanogaster as a homolog. Cyclic adenosine monophosphate 
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phosphodiesterase-deficient dunce mutants enjoyed a maximum lifespan extension of about 

70%[198]. 

2.3.3. RECOMMENDED DRUG COMBINATIONS 

Aging is a multifactorial debilitation, even at the genetic level, so it makes sense that a 

pharmaceutical intervention with it as a therapeutic target should benefit from a composite set of 

drugs that individually target each of its contributing factors. 

We can attempt to suggest combinations of this kind based on the targets of our enriched drugs 

(Table 2.3) and their side effects. These combinations can then be tested in model organisms and 

evaluated using lifespan and healthspan endpoints. 

We shall give priority to tolerability and safety criterions for two reasons: the lifespan-extending 

effects of the obtained drugs are still unknown, and so they cannot be taken into consideration; 

and that for an intervention that it is likely going to be chronic, healthspan concerns acquire 

increased importance. 

Of the histone deacetylases inhibitors cluster, sodium phenylbutyrate presents the most attractive 

toxicological profile, and it is our recommendation. 

MK-2206 has, arguably, slightly less unpleasant common side effects (rashes) than ipatasertib 

(which might cause fatigue and hyperglycemia), and, therefore, it is the AKT-inhibitor that we prefer 

for a long-term intervention. 

Both, roflumilast and ibudilast, have a safe history of treating long-term conditions. They also share 

similar toxicological profiles, which imply that either of them could be used for our purposes. 

Of notice, is that two classes of enriched drugs have gastrointestinal distress as a side effect, so 

an addictive aggravation of the same is to be expected when applied to humans (and this will 

probably elude lifespan assays in lower animals). 

In sum, our recommended drug cocktail, targeting lifespan extension without hindering healthspan, 

is composed of sodium phenylbutyrate and MK-2006 plus either roflumilast or ibudilast. Ideally, 

both versions would be experimentally tested. 
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CHAPTER 3: DRUGAGE 
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3.1. INTRODUCTION 

Common sense and the evidence presented in the introductory chapter support the notion that 

pharmaceutical interventions are the preferred type of interventions to ameliorate the aging 

phenotype, which, by its turn, would make it the kind with the potentially widest and fastest 

socioeconomic impact. 

In order to develop an evidence-based anti-aging intervention we naturally started by searching for 

a tool that systematizes the results from drug lifespan assays performed so far. For our surprise 

no such resource existed, and therefore creating one became our priority. 

In the rest of this chapter, we will enumerate the steps taken to create the “DrugAge: Database of 

Ageing-Related Drugs”. DrugAge is a free online resource (available at 

http://genomics.senescence.info/drugs/) driven by feedback from the scientific community. The 

underlying data is the result of an ongoing manual curation effort, with all entries referencing to 

their corresponding PubMed record. The interface is intuitive, fast and responsive. The integration 

of summary tables, clear graphic displays, and annotations using third-party databases allows the 

user to develop additional insights without ever having to leave DrugAge. The database is free to 

download on the website, and we encourage feedback and further data submission. 

We will also analyze and discuss: 

 the statistical analysis of several of the insights that are, for the first time, revealed thanks 

to the wealth of data available in DrugAge; 

 its statistical and functional enrichment analysis; 

 the genetic overlap between DrugAge and GenAge (a database of ageing-related genes); 

 and build a machine learning classifier that estimates the probability of a new compound 

resulting in lifespan extension (namely in C. elegans). 

3.2. STATE OF THE ART 

A biogerontologist looking for genomic information has at his disposal the “Human Ageing Genomic 

Resources”[199]. This online resource integrates information into three freely available databases: 

“GenAge” - a curated database of candidate human ageing-related genes and genes associated 

with longevity and/or aging in model organisms.; “GenDR”[200] - a curated database of genes 

related to dietary restriction in model organisms either from genetic manipulation experiments or 

http://genomics.senescence.info/drugs/
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gene expression profiling; and “LongevityMap”[201] – a database of human genetic variants 

associated with longevity. 

This wealth of aging-related genetic information is in absolute contrast with the lack of resources 

regarding pharmaceutical assays and longevity, which would leave our not so hypothetical 

biogerontologist to his means, destined to personally mine and curate the hundreds of drug 

lifespan-assays available in the scientific literature. 

One of the first aging-related databases is the Aging Genes and Interventions Database[202].  

However, this resource is largely outdated, which reminds us that a resource that it is not regularly 

maintained and updated to reflect the latest scientific findings is bound to become completely 

useless, and in a relatively short time frame. This crucial insight will be kept with us for the rest of 

this chapter. 

AgeFactDB[203] is a recent meta-database that collects aging factors and their lifespan data 

focusing primarily on the integration of existing aging databases (with the pharmaceutical ones 

being all outdated or abandoned). New data is added to AgeFactDB through automated data-mining 

of research paper abstracts and homology analysis, which although valuable, lacks the confidence 

associated with experimentally validated data. 

We can, therefore, feel the urgent need for aging-related databases dedicated to pharmaceutical 

interventions, which are actively and consistently maintained to a high standard. 

3.2.1. GEROPROTECTORS.ORG 

The youngest aging-related database is “Geroprotectors.org”[23]. It takes special consideration not 

only because the author of this dissertation is one of its co-authors, but mainly due to having been 

developed at the same time as DrugAge and representing an improvement over the aforementioned 

state of the art in many ways. 

Geroprotectors.org is a manually curated database of geroprotectors freely available online 

(http://geroprotectors.org/). A “geroprotector” is any intervention that aims to increase longevity, 

or that reduces, delays or impedes the onset of age-related pathologies by hampering aging-

associated processes, repairing damage or modulating stress resistance. This broad definition 

implies that, for example, magnesium is considered a geroprotector based only on correlational 

evidence, between its dietary intake and mortality in adults at high risk of cardiovascular disease, 

originated from an epidemiological study[204]. The infeasibility of conducting lifespan assays in 

humans means that correlation analyses and interventions that ameliorate biomarkers of aging are 

http://geroprotectors.org/
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preferred, although one cannot scientifically prove that interventions using evidence of this nature 

actually extends human lifespan. 

Although the first database of geroprotectors is of utmost importance for any physician and 

biogerontologist, its focus is distinct from DrugAge. Geroprotectors.org features a wider scope, 

more relevant from a translational/clinical perspective, rather than a pure science paradigm, for 

example, it considers epidemiological studies, clinical trials, drug human approval status, side 

effects and toxicological information. DrugAge, as we will soon see, will focus strictly on compiling 

drug lifespan assays in model organisms and in doing so with the ideal goal of exhaustively 

collecting all the literature available so far. The attempt to fulfill this audacious goal will culminate 

in DrugAge featuring more than double the number of lifespan assays relative to 

Geroprotectors.org. It must also be mention that DrugAge is going to be integrated into the Human 

Ageing Genomic Resources (HAGR), creating a one-stop online resource for biogerontologists’ 

pharmacological and genomic needs. 

A wise scientist will take advantage of the complementarity between the two databases. An ideal 

pharmaceutical intervention would maximize the translational potential of a compound based on 

Geroprotectors.org, with its credibility and expected magnitude of longevity effects based on 

experimental evidence, carried in model organisms, as indicated on DrugAge (and the rest of 

HAGR). Only the full information should be considered a robust indicator of a compound’s feasibility 

to meaningfully extend lifespan and healthspan in humans. 

3.3. TOOLS 

With the current reproducibility crisis overshadowing more than 70% of the scientific results[205], 

it is essential to take deliberate measures to lessen its disgraceful effects. 

Almost all the software used in this thesis is freeware, and the full source code is indiscriminately 

available upon request (requests should be addressed to diogog.barardo@gmail.com). We shall be 

revealing our software choices along the way with the exception of the ClueGO software, which 

demands a longer explanation. 

3.3.1. CLUEGO 

As announced before, we are going to be conducting functional enrichment analyses. A functional 

enrichment analysis consists in two steps. 

file:///C:/Users/diogo_000/AppData/Roaming/Microsoft/Word/diogog.barardo@gmail.com
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First, we enumerate the biological entities present in our sample and map them to a curated bio-

ontology. A bio-ontology is a schematic that incorporates biological entities into one or several 

concepts (e.g. pathways) and depicts the relation between these concepts[206]. The second step 

is the statistical analysis of the obtained concepts, against a reference background, to check the 

rarity/significance of each of them. 

By far, the largest bio-ontology is Gene Ontology™ (GO)[207]. This ontology is updated daily by the 

Gene Ontology Consortium, which is supported by an open bioinformatics community. Virtually all 

the statistical enrichment analysis software packages are built upon this ontology. The next 

question is: “Which software to choose?”. We continue with the sharing of our experience in this 

regard, which culminates in ClueGO being our tool of choice. The goal is to expose our rationale to 

the scrutiny of the reader. 

Our first choice was to use PANTHER tools[208], which is an online web resource that allows, 

among other analyses, to do functional enrichment analysis. It is actively maintained (an important 

key attribute taking into reflection the high frequency of GO updates) and offers additional 

information based on protein evolutionary clustering (PANTHER™ is an acronym for “Protein 

Analysis Through Evolutionary Relationships”[209]). 

 

 

Figure 3.1: Actual screenshot showing some of the output of PHANTER tools' statistical overrepresentation test analysis of data 
coming from an alpha version of DrugAge. 

 

Figure 3.1 depicts an example of results of an overrepresentation statistical test using PHANTER’s 

“Gene List Analysis” (http://www.pantherdb.org/). The more indentation a GO term has, the 

higher it is located on the hierarchical level; for instance: “protein metabolic process” is a 

subcategory of “primary metabolic process”. We can observe that “cellular process” is a GO term 

http://www.pantherdb.org/
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tremendously enriched, and that as it is decomposed into more specific/lower level GO terms, the 

magnitude of the statistical significance decreases. The decline of significance accompanying 

further decomposition is what is expected to happen since fewer elements in a subset imply that 

the p-value range loses granularity. Even in this typical case, we already can appreciate that the 

enriched results should be corrected for a hierarchical structure. Otherwise, the vast majority of 

the strongest enriched terms would be too general to allow any biological insight. 

The need for weighting the structure of the ontology in the enrichment test is even more 

pronounced in the case of the decomposition of “metabolic process” into “nitric oxide biosynthetic 

process”. The top level, “metabolic process”, is more enriched than the second, “nitrogen 

compound metabolic process”, in a typical manner. However, confusion settles in when we 

consider the p-value of the lowest level. It is clearly more significant than its parent, tempting us to 

immediately rationalize that its signal is so strong that it offsets the hierarchical structure bias. 

Such justification would be correct if its significance would be the highest of the decomposition, 

but this is not the case: “metabolic process” still is the term manifesting the highest statistical 

significance. We are now left in a grey zone: the lowest level is more meaningful from an annotation 

standpoint, and considerable enriched (enough to partial offset the hierarchical structure bias), and 

simultaneously, the maximum enrichment is exhibited by the most general term, which is 

uninformative, but shouldn’t be ignored for ad-hoc reasons. The only resource that we found that 

empower us to solve dilemmas of this kind while still using the latest version of GO is ClueGO. 
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Figure 3.2: GO term fusion example. A - The test gene list and the total number of corresponding GO terms. Selection criteria 
applied in ClueGO. B - GO terms selected under the specified selection criteria. C - Fusion criteria. It applies to GO terms in parent-

child relation, with similar associated genes. The most representative parent or child term is preserved. The terms are organized 
based on their mean level specificity (up: general terms with low specificity, down: specific terms). D - GO terms maintained after 

fusion (colored in blue). Colored arrows show the fusion criteria used (concordance with step C). 

 

ClueGo[210] is a free plug-in for the freeware Cytoscape[211], developed to easily annotate a list 

of genes backed by several distinct ontologies. In our case, we were particularly interested in the 

“GO Term Fusion” feature. This option takes advantage of the stratified nature of GO and uses it 

to remove redundancy through the fusion of related GO terms that have similar genes, namely: the 

terms in parent-child relationship that share similar genes (identical, or with one gene difference) 

are assessed, and the most representative parent or child term is retained (Figure 3.2). Praxis 

show us that GO terms fusion is sufficient to account for the hierarchical noise. 

3.4. CURATION 

The literature mining for DrugAge, which is focus entirely on lifespan-extending compounds, came 

from three sources: freely submitted data by the scientific community and mining of pre-existing 

aging-related databases and PubMed. 
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Among the pre-existing databases that were thoroughly analyzed were: AgeFactDB; 

Geroprotectors.org; and the Aging Genes and Interventions Database. 

We adopted the following search term in the manual mining of PubMed literature: "increases 

lifespan" OR "lifespan increase" OR "lifespan extension" OR "prolongs lifespan" OR "antiaging 

agent" OR "extends lifespan"; and restricted the query to literature published before the year 2016. 

All literature mined was manually curated and subjected to quality-control. Exclusion of research 

papers or some of their assays (partial exclusion) were based on the following criteria: 

 assays without a control group or statistical analysis of the results (exceptions were left to 

the curator’s (the author of this thesis) discretion in order to include some research papers 

that contained information deemed essential for DrugAge, e.g. a large-scale assay; 

 assays that used disease or short-lived strains (relative to the reference strain); 

 lifespan assays based on abnormal diets, e.g. high-fat diets; 

 experiments in which animals were kept in non-standard environmental conditions, e.g. 

high-temperature; 

 experiments that used paper-specific mutant strains, e.g. strains resulting from the 

knockout of one very particular gene; 

 research articles that were not available in the English language; 

 additionally, in the case of data submitted by the community, only data originated from 

research papers indexed by PubMed were considered. 

In the end, data belonging to 325 distinct research articles passed the quality-control stage and 

were therefore included. Efforts were also made to include data that contradicted the purported 

lifespan-extending results already included in DrugAge, with the aim of reflecting the potential 

controversy associated with each compound (although we do not claim an almost exhaustive 

compilation of contrary evidence, as this is not easily defined by search terms). 

DrugAge offers unprecedented scope, comprising 1316 lifespan assays using 418 distinct lifespan-

extending compounds on 27 unique model organisms, including 71 individual strains (Figure 3.3). 

When used in reference to DrugAge data the terms “drug” or “compound” (as we will be doing in 

the next sections) are slightly imprecise. DrugAge includes well-defined chemical compounds such 
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as resveratrol, but also complex substances like apple flesh. The reader is advised to keep such 

consideration in mind. 

3.5. WEB INTERFACE 

DrugAge is freely available at http://genomics.senescence.info/drugs/index.php. From the 

DrugAge home page, some basic search functionality allows the main dataset to be quickly 

accessed and filtered according to keywords e.g. the experimental drug or organism. 

 

 

Figure 3.3: Partial screenshot of the "DrugAge Summary" tab (full page available at 
http://genomics.senescence.info/drugs/visualisation.php). 

 

The user-friendly data browsing interface provides the basic means to search across all DrugAge 

fields and to retrieve drugs based on a range of lifespan effect values. Besides the key experimental 

parameters recorded for each assay, each entry is properly referenced with links to the original 

PubMed record and to any associated GenAge genes that the drug is known to interact with (Figure 

3.4), and a considerable amount of entries even include crucial additional information in the form 

of curator’s (this thesis’ author) annotations (under the “Notes” field). 

http://genomics.senescence.info/drugs/index.php
http://genomics.senescence.info/drugs/visualisation.php
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Figure 3.4: Screenshot of a DrugAge browsing experience. 

 

The hyperlinks on the data browser, as depicted in Figure 3.4, also accept specific drugs and 

organisms to be retrieved separately and in more depth, permitting a more detailed investigation 

of the results associated with a specific drug or organism. These pages allow the data to be 

visualized and explored on a per drug or organism basis, such as how species impact on lifespan 

effect for a given drug. 

The contribution of the current thesis’ author in regards to the development of the web interface 

was limited to providing feedback as an alpha- and beta-tester (he played no part in the 

programming of this resource). This subsection is present in this dissertation only for the sake of 

completeness, as we feel that otherwise the full relevance of DrugAge as a scientific resource (and 

therefore the practical value of our contributions) would not be explicitly demonstrated. We invite 

the reader to experience DrugAge personally to discover several unmentioned capabilities, which 

include integration of DGIdb and STITCH drug targets. 

We must quickly mention that in the web interface and for the rest of this section, we will loosely 

use the field/term “average lifespan” to encompass average and median lifespan changes. 

3.6. STATISTICAL ANALYSES 

Under this subsection, we will present exploratory and statistical analyses of the wealth of 

information compiled on DrugAge. When these are based on only a subset of DrugAge, for example, 
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a limited number of species, it is because we excluded the rest of strata due to insufficient sample 

size. 

Our first inquiry was to observe the shape of the distribution of average and maximum lifespan 

changes across distinct model organisms. We found that the magnitude of average life expectancy 

changes per assay is highly species-dependent, and it appears to be inversely correlated with 

organism complexity (Figure 3.5). 

 

 

Figure 3.5: Violin plot based on the average lifespan changes reported on 42 S. cerevisiae, 653 C. elegans, 357 D. melanogaster 
and 63 M. musculus lifespan assays. 

 

The extent of maximum lifespan changes are more modest and not as dissimilar across species 

(Figure 3.6). We could only make use of data referent to three species because this metric is widely 

underreported. 
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Figure 3.6: Violin plot of the maximum lifespan changes obtained in 140 C. elegans, 74 D. melanogaster, and 27 M. musculus 
lifespan assays 

 

In the entire DrugAge, only 326 assays simultaneously reported average and maximum lifespan 

changes. We noted an extremely significant Pearson's product-moment correlation (two-tailed test 

done in R) of around 0.85 (95 percent confidence interval ranged from 0.82 to 0.88), between 

these metrics (Figure 3.7). 
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Figure 3.7: Scatter plot of average lifespan change (horizontal axis) and maximum lifespan change (vertical axis) from assays that 
measured both. Linear correlation p-value < 2.2e-16 (the assumed alternative hypothesis is that true correlation is not equal to 0). 

 

We also focused on assays for males and females, more concretely we used two different statistical 

analysis to determine if gender is a key factor influencing the magnitude of lifespan changes in 

model organisms. 

First, we noticed that two of the species, Mus musculus, and Drosophila melanogaster, have a 

sufficient amount of assays reporting gender-specific average lifespan effects to allow to test if 

exists sexual dimorphism in the general response to a pharmaceutical intervention aimed to extend 

average life expectancy. Using the “dgof” R package, we obtained a p-value of the two-sided 

Kolmogorov-Smirnov test, with the null hypothesis being that the data of both genders originated 

from the same distribution, of 0.9948 and 0.4794, for mice and fly, respectively. Therefore, we 

conclude that sexual dimorphism does not seem to be a significant factor regarding pharmaceutical 

interventions to extend lifespan in Mus musculus or Drosophila melanogaster (Figure 3.8), as the 

distributions of the magnitude of average life expectancy changes are not statically different across 

genders of the two species in consideration. 
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Figure 3.8: Violin plot of the average lifespan change in lifespan assays that displays gender-specific statistics for mice (p-
value>0.99) and flies (p-value>0.47). It aggregates information from 133 and 164 lifespan assays using female and male flies, 
respectively; and from 25 and 30 lifespan assays in female and male mice. 

 

Secondly, we also undertook an alternative analysis of sexual dimorphism by considering data from 

all species in DrugAge and manually curating it so that only lifespan assays that were conducted 

in the same experimental conditions and measured gender-specific endpoints were contemplated. 

This method as the advantage of generating enough data for also assessing the role of gender on 

the magnitude of maximum lifespan changes. Through the application of the same workflow as 

before on curated data obtained from 11 species of model organisms, we obtained statistical 

significant (p-value< ʹ.ʹ × ͳͲ−16) Pearson’s product-moment correlations of approximately 0.88 

(95 percent confidence interval ranging from 0.83 to 0.91) and 0.90 (95 percent confidence 

interval from 0.84 to 0.94) for the magnitude of average and maximum lifespan changes across 

genders, respectively (Figure 3.9). 
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Figure 3.9: Side-by-side display of average (n=140) and maximum (n=65) lifespan changes among gender-paired lifespan assays. 

 

3.7. ENRICHMENT FUNCTIONAL ANALYSES OF DRUGAGE 

In order to discover enriched Gene Ontology terms in targets of compounds in DrugAge, we used 

DGIdb 3 to obtain a list of gene interacting partners for all drugs in DrugAge. To optimize the 

number of hits, we endeavored in manual curation, to ensure that the compound name field in 

DrugAge matched PubChem synonyms. From the set of 418 compounds/substances present in 

DrugAge, 90 were found to have a corresponding record in DGIdb, which translated into 411 

distinct interacting genes composing the genes list that is going to be our input for the statistical 

functional enrichment analysis. 

Statistical functional enrichment analyses require defining a background dataset, which was taken 

as the 3090 distinct Ensembl Gene Ids found in the DGIdb. 

The DrugAge interactors list was passed as input to Cytoscape (version 3.3.0) plug-in ClueGO 

(version 2.2.5) to compute functionally enriched GO Terms. ClueGO used information from all four 

available GO ontologies (08.04.2016) and InterPro (10.04.2016) and matched 3050 entries from 

our background list. We are aware that ClueGO offers other ontologies, including Reactome[212] 

and WikiPathways[213], nonetheless, internal experimentation taught us that the extra annotations 

obtained by selecting these databases (even when we made use of ClueGO’s clustering based on 

GO functional groups) is not enough to compensate for the loss of interpretability (the other 
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databases do not have a hierarchical schema, and therefore the GO term fusion algorithm cannot 

be applied). 

The parameters chosen for the ClueGO analysis were “Use GO Term Fusion” and the entire “GO 

Tree Interval”. We imposed no threshold on the “GO Term/Pathway Selection”. There were 3044 

annotated DrugAge interacting genes. The statistical enrichment was evaluated through a right-

sided mid-P-value hypergeometric test with Bonferroni step-down (Holm-Bonferroni method), 

corrected against the reference set which was the list of DGIdb genes. We decided on this 

background so that our enrichment results reflect DrugAge and not DGIdb, in other words, we 

eliminated the bias that results from having to use DGIdb as an intermediary step in our workflow. 

At the significance threshold chosen (corrected mid-p-value < 0.01), we detected 182 enriched GO 

terms (Table 3.1) out of a universe of 4830 fused GO terms. 

 

Table 3.1: Top-15 enriched GO terms and their statistical significance (corrected mid-p-value). 

GO Term Term statistical significance 

regulation of blood circulation 1.6E-14 

glutathione derivative biosynthetic process 3.4E-14 

blood circulation 1.7E-13 

regulation of system process 2.3E-13 

calcium channel complex 3E-13 

calcium ion transmembrane transport 1.3E-12 

heart contraction 4.1E-12 

glutathione metabolic process 4.7E-12 

voltage-gated calcium channel complex 5.4E-12 

calcium ion transport 1E-11 

regulation of heart contraction 3.7E-11 

inorganic ion transmembrane transport 4.7E-11 

response to xenobiotic stimulus 6.6E-11 

cellular detoxification 6.8E-11 

xenobiotic metabolic process 7.7E-11 

3.8. COMPARATIVE ANALYSIS VERSUS GENAGE 

We also wanted to explore the overlap between DrugAge interacting genes and genes previously 

associated with aging. The rationale behind such analysis is to determine if the known genetic and 

pharmaceutical anti-aging interventions in model organisms, represented by GenAge and DrugAge, 

respectively, are acting upon the same genetic targets. 
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The overlap analysis was based on the 1124 human orthologues of genes that extend lifespan in 

model organisms according to the GenAge database. 

Of the 1124 genes, 287 (25.5%) were known to interact with drugs in DGIdb. Of these, 65 (29.3%) 

were also DrugAge interacting genes (Figure 3.10). 

 

 

Figure 3.10: Venn diagram displaying the number of unique and shared DGIdb genes between DrugAge-interacting genes and 
human orthologues of GenAge lifespan-extending genes. The overlap has 27 more genes than expected by chance. 

 

The statistical overlap between human genes mapped to DrugAge and in GenAge was evaluated 

by Blaker’s Exact Test using the “exact2x2” R package[151]. The background chosen was the set 

of 3090 DGIdb genes. Genes counted as “DrugAge” in Figure 3.10 are all 411 DrugAge-interacting 

genes in DGIdb (originated from the previous subsection). We identified a statistically significant (p-

value= ͸.ͲʹͶ × ͳͲ−6) degree of overlap between the genes arising from the two databases. 

3.9. APPLIED MACHINE LEARNING 

This subsection is dedicated to the training and optimization of random forests for the classification 

of new compounds according to their estimated likelihood of having anti-aging effects. The output 

of our algorithm is going to be class probabilities, and we intend to make use of these as a proxy 

for anti-aging potential. 

A toy example showcasing the usefulness of class probabilities can go as follow: if “compound A” 

is classified as 0.65 likely of being anti-aging (and therefore 0.35 likely of not having anti-aging 

effects) and “compound B” is assigned a 0.90 probability of being an anti-aging substance (and 

hence 0.10 probability of not causing anti-aging outcomes), everything being equal, compound B 
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should be prioritized over compound A for lifespan experiments in model organisms (especially 

Caenorhabditis elegans, for reasons that will become clear later in this subsection). 

To train the classifier, we need a dataset of labeled samples and features that vary among these 

samples. When we were curating the literature for DrugAge, we noticed that the majority of lifespan 

assays belonged to C. elegans and concomitantly started to search the literature for drugs that 

failed to extend lifespan (this includes chemical compounds that have no effect on or decrease 

lifespan) in worms. Our decision to compile a dataset that is based specifically in C. elegans is 

grounded on two considerations: 

 C. elegans has by far the largest representation on DrugAge (Figure 3.3) and it is also the 

only species that we found a considerable amount of compounds that failed to prolong 

lifespan; 

 had we considered the entire DrugAge data; we would have to face the challenge of how 

to select and organize biological features across species, for example, information and 

chemical reactions in a biological pathway might flow differently, contrarily or even be 

inexistent in some model organisms. 

The raw dataset mined from the literature contained 283 anti-aging chemicals and 1272 that did 

not cause lifespan prolongation. The list of compounds was then sent to an external collaborator 

that curated the dataset for redundancy and annotated it for chemical features. The next paragraph 

enumerates the steps taken in the chemoinformatics workflow only succinctly as it is not the area 

of expertise of this thesis’ author. 

The simplified molecular-input line-entry system (SMILES) codes of the drugs were extracted (and 

checked for duplicates) from PubChem[214], [215] and ChemSpider[216], both of which are free 

online chemical repositories. Then the Molecular Operating Environment[217] (MOE), version 

2013v0.8, was used to desalt the chemicals and minimize the structure for the posterior 

calculation of molecular descriptors. Another check for duplicates and errors was done using the 

desalted minimized SMILES outputted by MOE. Chemical descriptors for the compounds were 

calculated from two software MOE and Advanced Chemical Development and any descriptor with 

zero variance or with more than 98% constant values were removed. The chemical curation was 

then considered complete. A dataset comprised of 229 DrugAge drugs that prolong lifespan in C. 

elegans (from here forward denominated as “positive set”) and 1163 compounds that didn’t reveal 

anti-aging effects in worms (henceforth referred to as “negative set”) for which chemical features 

were found was returned to us. 
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In 11 of the 268 chemical descriptors, some drugs (never more than twelve per chemical 

descriptor) had missing values (there were 98 such values in total). Instead of discarding these 

drugs, we decided to proceed with the imputation of these values. To this end, we selected the 

“missForest” R package (version 1.4)[218]. MissForest is a state of the art truly nonparametric 

imputation method that makes no assumptions regarding the data, requires no tuning, avoids the 

need to holdout data for an imputation testing set, is computationally efficient and is capable of 

handling high-order non-linear interactions among variables even in high-dimensional datasets. All 

these impressive characteristics are accomplished in a quite uncomplicated way, as the method 

consists simply in a well-defined algorithm that iteratively repeats two steps: it fits a random forest 

to the observable data, and then it predicts the missing values. The performance of the imputation 

is assessed, for our continuous chemical descriptors, by comparing the absolute difference 

between true imputation error and out-of-bag imputation error estimate in all simulation runs (for 

greater detail, please see the original paper[218]). 

We took care to remove the class membership variable (a categorical feature that reveals whether 

a given drug belongs to the positive or the negative set) of our dataset of drugs from the matrix that 

missForest used as input because we do not want to create an optimistically biased classifier due 

to some information regarding the true class label of the drugs in the testing sets being somehow 

present in the imputed value. When missForest reached the stoppage criterion, the normalized 

mean root square error[219] was less than 0.069. 

The biological features of our dataset were generated in the following way: 

1. We acquired genes that interact with the drugs in the dataset by mining all DGIdb drug-

gene interactions and the drug-protein interactions in the STITCH 4.0 database[220] with 

a confidence score larger than 0.450 (which the authors of STITCH define as confidence 

of medium strength) and limited to only the top-100 protein-drug interactions with the 

highest STITCH confidence score for each compound. This threshold was set in order to 

restrict the influence of the 479 proteins, out of the possible 11352, that were judged 

outliers for having interactions with more than 100 distinct compounds; 

2. We annotated the mined biological drug-interacting entities to GO terms using ClueGO, 

with the same parameters that were used in the enrichment analysis of DrugAge except 

that the background was the built-in Homo sapiens reference set. We decided on using 

human-centered annotations because not only is the GO of C. elegans very poor in 

comparison, but also due to our ultimate objective being the prediction of drugs anti-aging 
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potential in human beings. By mapping drugs to genes/proteins to GO terms, we are 

indirectly bridging drugs and their respective GO terms. Using the GO Term Fusion allows 

diminishing the dimensionality of our final dataset as only non-redundant GO terms are 

going to be considered biological features. 

The 10757 outputted GO terms were interpreted as categorical biological features. We were unable 

to find biological features for all the drugs present in our dataset. Drugs for which no biological 

descriptor could be found were eliminated, with our final dataset consisting of 190 and 783 

compounds belonging to the positive and negative set, respectively. 

Our dataset is imbalanced, but we expect that the actual probability distribution of lifespan-

extending compounds in the known chemical universe to be even more imbalanced. Supporting 

evidence is found in the largest high-throughput assay for lifespan-extending drugs to date (the best 

proxy for the underlying probability distribution currently available). The authors screened 88000 

compounds in C. elegans and found that only 115 extended lifespan[221]. This rarity implies that 

the magnitude of class imbalance properly approximates the real class membership probability 

distribution. 

The algorithm optimization and training were carried using the “mlr” R package (developer version 

2.9), which is a general machine learning interface that works as a wrapper for a plethora of 

learning algorithms available in distinct R packages. We are going to train random forests that the 

mlr package imports from the “ranger” R package[222]. 

We optimized the random forest algorithm for four versions of our dataset: one featuring only 

chemical features; another featuring only biological features; a third version featuring both, 

chemical and biological, types of features; and a fourth version using only chemical features but 

applied to the (larger) dataset of drugs that were present before we discarded the compounds for 

which no biological features could be found. 

The parameters of the random forest algorithm that we tuned were the number of trees in the 

forest and the number of variables to possibly split at in each node (routinely called “mtry” in the 

machine learning field). It is ordinary to tune the number of trees when optimizing a random forest 

algorithm, but tuning the mtry parameter is rare, as a case in point, just one of the articles 

considered in a recent review of the application of the random forest algorithm in the life sciences 

proceeded to do so[223]. We followed the formula to obtain possible parameter values from the 

cited research article[224], which means that three values for the mtry parameter are going to be 

evaluated: the square root of the number of features in the dataset and half and double this value. 
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In setting the number of trees parameter in a random forest there are no consensus or rules-of-

thumb to guide us, therefore, after reading the literature that applied random forests to similar 

classification tasks, we decided to cover a relatively wide range of typical values: {ͳͲͲ,͵ͲͲ,ͷͲͲ,͹ͲͲ,9ͲͲ}. 
We used a nested cross-validation with grid search for tuning. Grid search consists in evaluating 

the performance of every possible configuration of parameters. The nested cross-validation had ten 

folds in each inner loop and ten folds in the outer loop. 

Another crucial aspect in any optimization is deciding on the metric to be optimized. Because there 

is no metric that is superior to all the others; we opted to optimize the algorithms separately for 

three distinct metrics: area under the curve (AUC); F1 measure; and the geometric mean of recall 

and specificity (Gmean). The increased computational cost is more than compensated by having 

three metrics, each capturing distinct components of the performance, guiding our choice of 

parameters. 

Recapitulating, each of the random forests, applied to the four different datasets, for all the 

combinations of values in the optimization grid, was also optimized for each of the three 

performance metrics: AUC, F1 and Gmean. 

We compared the performance of each tested configuration of the random forest algorithm by 

calculating the median rank of the ranked median inner loop out-of-sample performances across 

all 10-folds of the outer loop of the nested cross-validation. 

The summary of the performances obtained for the dataset with only the chemical features and for 

the dataset in which both types of features were used uncontroversially indicate the optimal values 

for the parameters of the random forest algorithm, as there is an agreement for all the different 

metrics utilized as optimization endpoints (Table 3.2). Coincidently, for both datasets, the 

combination of the largest values for each parameter is the one displaying the most robust 

performance. 
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Table 3.2: Performance summary of optimizations run on the dataset with both types of features and on the one that used just 
chemical descriptors. The numbers in a colored background are the relative median rank performances, lower values (greener 
background) are better. Values in colorless background correspond to values taken for the number of trees and mtry parameters. 
In bold and colored blue is the performance of the parameters configuration that we considered best, for each dataset. 

Biological and chemical 
features 

Just the chemical 
features 

AUC 52 105 210 AUC 8 16 33 

100 11,5 12 12,5 100 9 9 7 

300 11,5 8 7 300 11,5 8,5 6 

500 9 5,5 6 500 6,5 8 8 

700 8 4,5 6,5 700 11,5 8 5,5 

900 7 5,5 4,5 900 7 8,5 5,5 

            

Gmean 52 105 210 Gmean 8 16 33 

100 9 7 2,5 100 9 4 5 

300 7,5 4 2 300 4,5 7 3 

500 9 5 2 500 4 5 7,5 

700 9 5 3 700 8 3 4 

900 8 5,5 2 900 4,5 8,5 3 

            

F1 52 105 210 F1 8 16 33 

100 7,5 3,5 3 100 8,5 4,5 5,5 

300 8,5 4 1 300 6,5 7,5 3,5 

500 7 6 3,5 500 4 4,5 8 

700 7 5,5 4 700 9 2,5 5 

900 7 6 3 900 4 7,5 2,5 

 

The situation is not as clear for the dataset that used all drugs (before deleting drugs for which no 

biological features could be obtained) and for the dataset that used only features of the biological 

type (Table 3.3). So much so, that we decided on testing a pair of combinations of values for each 

dataset. 
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Table 3.3: Performance summary of optimizations run on the dataset version with both types of features and on the one that used 
just chemical descriptors. The numbers in a colored background are the relative median rank performances, lower values (greener 
background) are better. Values in colorless background correspond to values taken for the number of trees and mtry parameters. 
In bold and colored blue are the performances of the parameters configurations that we considered superior, for each dataset. 

Just chemical features 
using drugs available 

before deletion 

Just the biological 
features 

AUC 8 16 33 AUC 52 104 207 

100 11,5 4 6 100 6,5 8 11,5 

300 14 6,5 5 300 3 8 11 

500 8 9,5 9 500 5,5 6,5 11,5 

700 10 5 7 700 6 7 11,5 

900 12 5,5 5,5 900 5,5 7 12 

          

Gmean 8 16 33 Gmean 52 104 207 

100 9 2,5 4,5 100 8 3,5 3,5 

300 5,5 8,5 2 300 8,5 5 4 

500 3,5 5 8,5 500 7,5 5 3 

700 8,5 2 4,5 700 8 4 3 

900 6 9 2 900 7,5 4 2,5 

          

F1 8 16 33 F1 52 104 207 

100 9 3 6 100 8 6 2 

300 5,5 9 3 300 8 4 2,5 

500 2 5,5 8 500 7,5 4 3 

700 8,5 2,5 6 700 7 4 3 

900 5,5 9 2,5 900 7,5 3 2,5 

 

The performances of the optimal random forests for each dataset version were contrasted through 

the median AUC in the outer 10-fold cross validation loop (Table 3.4). We opted for optimizing the 

AUC because it is the more commonly reported performance metric in the literature[132]. 

 

Table 3.4: Summary of the performance of random forests optimized for each version of our dataset. In bolded blue is our best 
model. 

Dataset  Number of trees mtry median AUC 

Biological and chemical features 900 210 0.8 

Chemical features before deletion 
100 16 0.781 

700 16 0.774 

Just the biological features 
300 52 0.716 

900 207 0.707 

Just the chemical features 900 33 0.675 
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3.10. DISCUSSION 

The foremost contribution of this section (and thesis) is the creation of DrugAge, a database of 

compounds and drugs experimentally proven to extend average and/or maximum lifespan in model 

organisms. Only compounds, drugs, and substances experimentally shown to extend lifespan in a 

statistically significant manner in at least one experiment were included. Conflicting and negative 

results were then added to provide a balanced literature survey of the effects of each compound 

or drug. 

DrugAge is a freely-available manually curated database offering several tools in an easy browsing 

experience. Its sheer scope and meticulous curation are unmatched, establishing it as a crucial 

resource for the scientific community, which was in great need of a database of anti-aging drugs.  

The practical impact of DrugAge data was demonstrated in the rest of this section, with all the 

analyses and methodologies using DrugAge as an information source. 

Common sense in the gerontology field tells us that the biological complexity of an animal is 

inversely proportional to the relative malleability of its aging phenotype. Actual evidence supporting 

this assumption, in the context of anti-aging pharmaceutical interventions, is finally revealed by us 

(Figure 3.5). This discrepancy is particularly evident when one compares yeast and mice, the two 

extremes of biological complexity in the considered species. 

Likewise considered common knowledge is the fact that the magnitude of maximum lifespan 

changes is generally more modest than changes in average lifespan. Once again with found 

scientific evidence corroborating empirical knowledge (Figure 3.6). Of unclear importance, we also 

noticed that the distribution of maximum lifespan changes is not as dissimilar across species as 

the distribution of the magnitudes of average/median lifespan effects. 

We shall now take the opportunity to bring attention to a reality: the maximum lifespan effects are 

severely under-reported. There is hardly any excuse for this state of affairs since measuring 

maximum lifespan is free (in a financial sense, as no additional investment has to be made[225]) 

and a panoply of freeware that is already going to be used in the statistical testing of 

median/average lifespan changes has tools dedicated specifically to this end. 

Based on 326 lifespan assays simultaneously reported average and maximum lifespan changes 

and we calculated a highly significant strong linear correlation of around 0.85 (Figure 3.7). The 

fact that, in general, pharmaceutical interventions that prolong average life expectancy extend 

maximum lifespan in a proportional manner is fascinating. 
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Let us recall that some anti-aging intervention, such as physical exercise, extend lifespan but have 

no repercussions on maximum lifespan[226]. This anti-aging profile is attributed (empirically) to a 

reduced rate of incidence of certain mid-life diseases. On the contrary, interventions that increase 

maximum lifespan are ascribed to a slowing down of the “fundamental process of aging”. 

Our results indicate that: or drugs exert their anti-aging effects by simultaneously reducing the rate 

of developing mid-life diseases and targeting the fundamental aging process, or that such 

conceptualizations are irrelevant/artificial in the generality of anti-aging interventions of the 

pharmaceutical type. A practical implication of the high linear correlation between average and 

maximum lifespan changes is that for a high-throughput screen searching for anti-aging chemical 

compounds, either one of the lifespans can be the sole endpoint used without increasing the 

chance of false negatives. 

We proceeded to investigate the possible causal influence of gender on the magnitude of the anti-

aging effects of pharmaceutical interventions. We did so by using two distinct methodologies. 

The first species-centered analysis is especially relevant for biologists that work with M. musculus 

and D. melanogaster. We show that for each of these two species (the only species that we deemed 

to contain enough data points to permit meaningful conclusions) the distribution of 

average/median lifespan changes is not statistically different across genders (Figure 3.8). 

The second analysis aims for a more general view and considers lifespan results from all DrugAge 

species as long as they have a paired assay conducted in the opposite gender (in the exactly same 

experimental conditions). In other words, we sacrifice the accuracy gained by controlling for 

species, in the hopes of increasing our dataset size (and therefore inference power). We were 

successful in our endeavor, as data originated from 11 different species of model organisms 

formed a larger dataset that even allowed us to test the potential role of gender in maximum 

lifespan changes. 

We obtained exceptionally significant linear correlations of approximately 0.88 and 0.90, for the 

magnitude of average and maximum lifespan changes across genders, respectively (Figure 3.9). 

The agreement between the results of the two analyses that discredits the existence of sexual 

dimorphism in the response to anti-aging drugs must not lead to hastily conclude that the same 

applies to humans. It is crucial to remember that humans are unique in this aspect, with one of 

the genders (females) known to have a ubiquitous survival advantage[227]. 

This set of holistic analyses of anti-aging interventions are a new contribution to our field of study, 

and they would not have been possible without DrugAge. 
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The functional statistical enrichment analysis of DrugAge drugs actually consisted in gauging the 

functional enrichment of GO terms of DGIdb genes that interact with DrugAge drugs relative to all 

the genes in the DGIdb database. The enrichment was carried in the ClueGO software because it 

deals with possible interpretability issues by fusing redundant GO terms. At the chosen significance 

threshold (multiple hypotheses corrected mid-p-value < 0.01), we detected 182 enriched GO terms 

from a total of 4830 fused GO terms. As a reference to the reader, the GO term "aging" is 

associated with a corrected mid-p-value of 0.0056. 

Exhaustive inspection of the set of statistically enriched terms allowed us to extract biologically 

meaningful patterns (Table 3.5). 

 

Table 3.5: Conceptual clustering of enriched GO terms and their statistical significance. *p-value is actually multiple hypotheses 
corrected mid-p-value. 

 

 

The hormesis paradigm is severely enriched in the GO terms resulting from the functional 

enrichment of DrugAge, with both xenobiotic and reactive oxygen species related terms. More 

closely it can be observed that all the reactive oxygen species terms significantly enriched belong 

to the positive regulation type, that is, their increase/activation. In other words, all of the opposite 

terms implying a decrease in free radicals abundance, remain insignificant (although being present 

in the universe of possible fused GO terms). Such observation might suggest that for lifespan 

extension, reactive oxygen species should be analyzed from the hormesis paradigm[94], which is 

contrary to the classical view of reactive oxygen species as purely nocive[86]. 

Categories Sub-categories GO term p-value

positive regulation of reactive oxygen species biosynthetic process 5.10E-04

positive regulation of reactive oxygen species metabolic process 2.30E-03

reactive oxygen species biosynthetic process 5.90E-05

regulation of reactive oxygen species biosynthetic process 2.50E-04

reactive oxygen species metabolic process 2.20E-03

regulation of reactive oxygen species metabolic process 4.80E-03

response to xenobiotic stimulus 6.60E-11

xenobiotic metabolic process 7.70E-11

glutathione derivative biosynthetic process 3.40E-14

glutathione metabolic process 4.70E-12

glutathione peroxidase activity 2.90E-08

glutathione binding 6.30E-04

histone deacetylase complex 2.20E-03

NAD-dependent histone deacetylase activity 5.30E-03

histone H3 deacetylation 5.30E-03

sulfur compound metabolic process 7.90E-06

sulfur compound biosynthetic process 2.10E-04

Hormesis

Glutathione

Histone deacetylation

Sulfur compoudns

General ROS terms

Positive ROS regulation

Xenobiotics
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In line with previous works showing that glutathione levels decrease in aged humans[228] and 

manipulations that increase them extend lifespan in flies[229], glutathione-associated terms are 

another strongly enriched process. 

Two other processes are supported by several enriched terms and are known to be implicated in 

aging: histone deacetylation (namely histone H3 deacetylation[230]) and sulfur compound[231] 

involving-processes. 

To examine the possible overlap among genetic and pharmaceutical types of anti-aging 

interventions, we compared the set of human homologs of GenAge lifespan-prolonging genes 

present in DGIdb with DrugAge-interacting DGIdb genes (Figure 3.10). Blaker’s test assigned a p-

value of ͸.ͲʹͶ × ͳͲ−6 for the statistical significance of the overlap between the two lists of genes. 

The results imply that there is a statistically significant number of anti-aging genes that were the 

common target of pharmaceutical and genetic manipulations. While highly statistically significant, 

the overlap is modest in relation to the total number of genes target by either type of interventions. 

We speculate that experts on one kind of interventions should benefit from seeking inspiration from 

colleagues specialized in the other type of manipulations. Interdisciplinarity holds untapped 

potential regarding candidate anti-aging therapies. 

Setting ourselves for screening large libraries of chemical compounds in the search for candidate 

anti-aging chemicals, we trained and optimized the random forest algorithm in a dataset of drugs 

that are known to successfully or unsuccessfully prolong lifespan in C. elegans. We characterized 

each drug by using molecular descriptors and biological features (GO terms annotated in drug-

interacting genes). The random forest trained on a dataset containing both, biological and 

chemical, types of features obtains a median AUC in a 10-fold cross validation of 0.8 (the highest 

that we were able to achieve) which is sufficient for our purposes (Table 3.4). This trained model 

is the one that we are deploying for predicting the class membership of compounds in large-scale 

drug screens for new candidate anti-aging compounds. 

We must also comment that taking advantage of both kinds of features was preferable to using just 

one, even if fewer data samples are available. Such fact stresses the superiority of interdisciplinary 

research among chemo- and bioinformaticians. 

We are currently finishing a manuscript focused on introducing the DrugAge database to the 

scientific community. The majority of the analyses examined in this section are also included to 

showcase the practical utility of DrugAge. The author of this dissertation is a co-first author in said 
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manuscript (the other co-first author is the person responsible for developing the DrugAge web 

interface). 
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CHAPTER 4: CONCLUSIONS AND FUTURES PERSPECTIVES 
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4.1. CONCLUSIONS 

We have made the case for tackling the imminent social crisis, caused by an aged population, 

through the superior means of translational biogerontology. We demonstrated that pharmaceutical 

interventions are the preferred choice to undertake this endeavor and the only viable option with 

potentially real application in the near-term future. Although the theoretical advantages of this 

paradigm are evident, much is yet to be translated to praxis. Our contributions shorten this gap. 

In chapter 2, we crossed information regarding life-extending genes with the drugs targeting them 

in an effort to use drug repurposing to delay the intrinsic mechanisms of aging. More concretely, 

we mapped the human homologs of lifespan-extending genes of model organisms, which are 

curated by GenAge, to the compounds of a meta-database of drug-gene interactions, DGIdb. Sixteen 

compounds, which interact with nineteen anti-longevity human genes, were determined statistically 

enriched. Two anti-aging drug combinations were then suggested after considering the enriched 

drugs clinical profile and potential redundancy in their targeted genes. 

In Chapter 3, we developed DrugAge and applied the information wherein contained in several 

methodologies. 

DrugAge is a new database of life-extending compounds and drugs in model organisms that 

accurately reflects the current knowledge of pharmacological manipulations of aging. Exploratory 

analyses of DrugAge data suggests that maximum and average lifespan changes are linearly 

correlated in a strong fashion and that gender does not affect them. 

We gained some biological insights from the functional enrichment of DrugAge, namely that anti-

aging drugs should be analyzed through the lens of the hormesis paradigm in detriment of free-

radical damage theories. 

Assuming that GenAge and DrugAge are the best proxies for the scientific knowledge regarding 

genetic and pharmaceutical anti-aging therapies in model organisms, respectively, we strove to 

understand the relation between these two categories of potential anti-aging treatments. The study 

of the possible overlap between human orthologues of GenAge lifespan-prolonging genes present 

in DGIdb and DrugAge-interacting DGIdb genes concluded that there is statistically significant 

overlap, nonetheless very modest in magnitude when this is measured in the relative number of 

overlapping genes. 

In preparation of further advancing the paradigm that biogerontology is the best way to face the 

impending social crisis, we trained and optimized a random forest algorithm for high-throughput in 
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silico screen of drug libraries with the aim of discovering and prioritize new candidate anti-aging 

chemical compounds. The optimal configuration of the algorithm performed at more than sufficient 

level for the intended task and therefore we are fully ready to move to the screening stage (work 

that we are undertaking at the moment). 

In sum, we hope to have accelerated the present and future development of biogerontology as The 

pure science on which translational medicine stands. 

4.2. FUTURES PERSPECTIVES 

Regarding section 2, much still needs to be done. We hope to follow on it by confirming the lifespan-

extending potential of the enriched drugs and suggested drug combinations through lifespan assays 

in model organisms. 

Since we already made full use of the currently available knowledge regarding lifespan-extending 

genes, the only way to improve our bioinformatics approach would be to use more chemicals, in 

other words, use several repositories as the sources of drug-gene interactions. We encourage our 

colleagues to advance our methodology, as the drug repurposing paradigm as the potential to 

accelerate the bench-to-bedside transition by more than a decade. 

Concerning DrugAge, we intend to keep it a first-line resource for biogerontologists. The author, as 

DrugAge’s official curator, vows to keep it up-to-date and is already curating information for the 

next update. 

We envision and encourage cheminformaticians, bioinformaticians, biologists, clinicians and even 

the nutraceutical industry to use DrugAge to create a world with less suffering. 

Any application of machine learning can always be improved upon, and the author has intentions 

to do so in the immediate future. Four straightforward refinements are: to screen and optimize a 

vast library of distinct machine learning algorithms; to create a methodology that weights drugs in 

proportion to the magnitude of their lifespan prolongation effects; to tune a given algorithm 

parameters using meta-algorithms[232] instead of grid search; to set the classification task in the 

Bayesian paradigm, including setting a prior for the class probability membership based on a meta-

review of high-throughput screens for anti-aging compounds. 
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