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Abstract. This paper addresses the problem of solving mixed-integer
nonlinear programming (MINLP) problems by a multistart strategy that
invokes a derivative-free local search procedure based on a filter set
methodology to handle nonlinear constraints. A new concept of com-
ponentwise normalized distance aiming to discard randomly generated
points that are sufficiently close to other points already used to invoke
the local search is analyzed. A variant of the Hooke-and-Jeeves filter
algorithm for MINLP is proposed with the goal of interrupting the ite-
rative process if the accepted iterate falls inside an ε-neighborhood of an
already computed minimizer. Preliminary numerical results are included.
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1 Introduction

In this paper, we address the problem of solving mixed-integer nonlinear pro-
gramming (MINLP) problems by a multistart strategy and a derivative-free local
search procedure. Nonlinear inequality and equality constraints are handled by
a filter set methodology. The MINLP problem has the form

min f(x, y)
subject to gj(x, y) ≤ 0, j = 1, . . . ,mg

hi(x, y) = 0, i = 1, . . . ,mh

x ∈ Γx, y ∈ Γy

(1)
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where f : Rn → R is the objective function, g : Rn → Rmg and h : Rn → Rmh

are the constraint functions. The continuous variables are represented by the
vector x, with Γx ⊂ Rnc being the set of simple bounds on x:

Γx = {x ∈ Rnc : lx ≤ x ≤ ux} ,

with lx, ux ∈ Rnc . The integer variables are represented by the vector y, where
Γy ⊂ Zni is the set of simple bounds on y:

Γy = {y ∈ Zni : ly ≤ y ≤ uy} ,

with ly, uy ∈ Zni , and the parameter n = nc +ni represents the total number of
variables.

MINLP problems combine the combinatorial difficulty of optimizing over dis-
crete variable sets with the challenge of handling nonlinear functions. When all
functions involved in the problem are convex, the problem is a convex MINLP
problem; otherwise it is a nonconvex one. The feasible region is in general non-
convex and multiple minima may appear. Furthermore, if some of the involved
functions are nonsmooth then finding a solution to the MINLP problem is a
challenging issue. For example, when the objective and constraints are provided
as black-boxes, the MINLP is a nonsmooth and nonconvex problem. Convex
MINLP problems are much easier to solve than nonconvex ones and therefore
likely to be tractable, at least in theory. New techniques for MINLP can be
found in [1,2,3,4,5]. The recent work presented in [6] is a detailed literature re-
view and contains theoretical contributions, algorithmic developments, software
implementations and applications for MINLP. The area of nonconvex MINLP
has deserved a lot of attention from researchers working with heuristics, like
genetic algorithm [7], ant colony [8], evolutionary algorithms [9], pattern search
algorithms [10], multistart Hooke-and-Jeeves algorithm [11,12] and differential
evolution [13].

The two major issues to be addressed when solving nonsmooth and nonconvex
MINLP problems are: i) the integrality of some variables, ii) lack of smoothness
and convexity of the involved functions. The issue of locating multiple solutions
of MINLP problems by using a multistart method [14], the Hooke-and-Jeeves
(HJ) algorithm [15,16] for the local search, and a filter set methodology [17] to
handle inequality and equality constraints has been addressed in the past (see
[11]). The HJ algorithm has been extended to define a special pattern of points
spread over the search space for the integer variables and continuous variables
separately. Furthermore, a filter methodology [10,17,18] to assess objective func-
tion and constraint violation function separately in order to promote convergence
to feasible and optimal solutions has been incorporated.

The present study is an extension of the work presented in [11] in two aspects.
First, the multistart algorithm is modified in a way that randomly generated
points in the search space that are sufficiently close to other already generated
and used points are discarded. This strategy aims to improve the diversification
attribute of the multistart strategy, since points too close to other already used



points would be starting points (to the local search) that would converge to al-
ready computed minimizers. To check closeness, the concept of componentwise
normalized distance is presented. A new stopping condition for the new multi-
start algorithm is also proposed. The condition joins the probability of a point
being generated in the area of the search space not yet covered and the proba-
bility of finding a new minimizer after the decision of invoking the local search.
Second, the HJ filter based algorithm [11] is further explored by incorporating a
methodology that goals the interruption of the HJ iterations when an accepted
trial iterate enters an ε-neighborhood of an already computed minimizer.

The remaining part of the paper is organized as follows. In Section 2, the
new multistart algorithm is presented and discussed and Section 3 describes
the interrupted HJ filter local search methodology. Section 4 reports on the
preliminary numerical experiments and the paper is concluded in Section 5.

2 An Efficient Multistart Method

The multistart algorithm is a stochastic strategy that repeatedly applies a local
search procedure starting from sampled points, i.e., points randomly generated
inside the search space, aiming to converge to a solution of the optimization
problem. The goal of the local search procedure is to deeply exploit around the
starting sampled point. When a problem has a multimodal objective function,
the multistart algorithm is capable of converging to the multiple solutions, al-
though some or all of them may be found over and over again.

In this section, we present a multistart algorithm that incorporates two im-
portant concepts. One is concerned with the componentwise normalized distance
of the current sampled point to other previously used sampled point, and the
other is related with the region of attraction of a minimizer X∗, herein repre-
sented by A(X∗).

When the componentwise normalized distance of the current sampled point
to other previously used sampled points is used, the algorithm avoids using a
sampled point that is sufficiently close to other sampled points already used
to start the local search, by discarding it and generating another one. This
strategy aims to improve efficiency and increase the diversification capacity of
the algorithm when points are randomly generated in the search space Γx × Γy.

Using regions of attraction, the algorithm avoids invoking a local search pro-
cedure starting from a sampled point when the probability of converging to an
already detected minimizer is high. This way the algorithm avoids convergence
to minimizers over and over again. A region of attraction of a minimizer is a pop-
ular concept to avoid convergence to previously computed solutions by defining
prohibited regions around them [14,19]. Each time a sampled point falls inside
that prohibited region, it will be discarded since the implementation of a local
search procedure will produce one of the previously computed solutions. Thus,
the efficiency of the algorithm improves since the number of calls to the local
search procedure is reduced. Clustering techniques are sophisticated variants of
the multistart method that use a typical distance concept and a gradient cri-



terion to decide which point is used to start a local search. They define a set
of points that are believed to belong to the region of attraction of a particular
minimizer, also denoted as a cluster [20].

Hereafter, the following notation is used: X = (x, y)T represents the vector
of the n variables, L = (lx, ly)T and U = (ux, uy)T represent the lower and upper
bound vectors on the variables. In a multistart context, to randomly generate a
point with nx continuous variables and ny integer variables, in [L,U ], we proceed
as follows:

xi = (lx)i + λi((ux)i − (lx)i) for i = 1, . . . , nx
yj = (ly)j + τj for j = 1, . . . , ny

(2)

where the notation (lx)i represents the component i of the vector lx (similarly
for (ux)i, (ly)j , (uy)j), λi is a number uniformly distributed in [0, 1] and τj is a
number randomly selected from the set {0, 1, . . . , ((uy)j − (ly)j)}.

The componentwise normalized distance of the current sampled point (x, y)
to another already used sampled point X̄ = (x̄, ȳ)T depends on the (component-
wise) size of the search space, the number of already used sampled points, trand,
and is computed for the continuous and integer variables separately as follows:

Dx(x, x̄) =

nx∑
i=1

(xi − x̄i)2

(diavg)
2

and Dy(y, ȳ) =

ny∑
i=1

(yi − ȳi)2

(dnx+i
avg )2

(3)

where each component of the vector davg = (d1avg, . . . , d
n
avg)

T represents the
average distance between two different points and is defined by

diavg =
(ux)i − (lx)i
(trand + 1)

, i = 1, . . . , nx and dnx+i
avg =

(uy)i − (ly)i
(trand + 1)

, i = 1, . . . , ny.

The use of the normalized distance aims to take into account different variable
and search domain scaling. Furthermore, separate Dx and Dy values allow the
use of different continuous and integer distance tolerances. The proposed multi-
start algorithm uses both distances Dx(x, x̄) and Dy(y, ȳ) to check if the current
sampled point X is sufficiently close to an already used sampled point X̄, in
which case the point is discarded since that region has been already explored
and the local search procedure applied to X is likely to converge to an already
detected minimizer. The herein implementation of the normalized distances aim-
ing to discard a sampled point X that is sufficiently close to X̄ uses the following
criteria and tolerances:

Dx(x, x̄) ≤ 1 and Dy(y, ȳ) ≤ 1. (4)

This strategy also goals the diversification of the sampled points by effectively
using points that are far apart.

The region of attraction of a minimizer, X∗ = (x∗, y∗)T , associated with a
local search procedure L, is defined as

A(X∗) ≡ {X ∈ [L,U ] : L(X) = X∗} , (5)



which means that if a point X is randomly selected from the set [L,U ] and
belongs to the region of attraction A(X∗), then X∗ is obtained when L is invoked
starting from X [14]. The regions of attraction are used to check if the sampled
point does not belong to any of the regions of attraction of already computed
minimizers or, equivalently, to the union of those regions of attraction (since
they do not overlap). In this case, the local search procedure may be invoked to
converge to a minimizer not yet detected. Since the region of attraction A(X∗)
is difficult to compute in practice, the probability, p, that the sampled point
X will not belong to the union of the regions of attraction of the previously
computed minimizers is used instead. This probability is easily estimated by the
probability that X will not belong to the region of attraction of the nearest to
X minimizer, X∗o ,

p = Prob[X /∈ ∪si=1A(X∗i )] =

s∏
i=1

Prob[X /∈ A(X∗i )] ≈ Prob[X /∈ A(X∗o )]

where o is the index of the nearest to X minimizer and s is the number of the
already computed minimizers. Furthermore, Prob[X /∈ A(X∗o )] is approximated
by Prob[X /∈ B(X∗o , Ro)] where B(X∗o , Ro) is the closed n-ball of radius Ro and
center X∗o . For any i, the maximum attractive radius of the minimizer X∗i [14],
denoted by Ri, is defined by

Ri = max
j

{∥∥X̄j −X∗i
∥∥
2

}
, (6)

where X̄j is the sampled point j that has already converged to the minimizer
X∗i after invoking the local search procedure, being the distance between X (the
current sampled point) and the minimizer X∗i given by di = ‖X −X∗i ‖2. Then
if di < Ri, the point X is likely to be inside the region of attraction of X∗i
and the local search procedure ought not to be invoked since the probability of
converging to the minimizer X∗i is high. However, if the direction from X to X∗i
is ascent, i.e, the objective function increases if one goes from X to X∗i , then X is
likely to be outside the region of attraction of X∗i and the local search procedure
ought to be invoked, starting from X, since a new minimizer could be detected
with high probability [14]. Thus, p is set to 1 if di ≥ Ri or if di < Ri but the
direction from X to X∗i is ascent; otherwise 0 < p < 1 and we set simply as a
fraction of di/Ri.

Algorithm 1 displays the steps of the proposed multistart algorithm. The
set ∆∗, empty at the beginning of the iterative process, contains all different
computed minimizers. The condition X∗ ∈ ∆∗ is represented by the following
conditions

|f(X∗)− f(X∗l )| ≤ γ∗ and ‖x∗ − x∗l ‖2 ≤ γ∗ and ‖y∗ − y∗l ‖2 = 0 (7)

for any l ∈ {1, . . . , s} and a small γ∗ > 0, and means that the minimizer X∗ has
been previously detected.

Although the basic multistart algorithm is easily perceived and simple to
code, it requires an adequate stopping rule to be effective. The goal of the stop-
ping rule is to make the algorithm to stop when all minimizers have been located



and it should not require a large number of calls to the local search procedure
to decide that all minimizers have been found.

Algorithm 1 Efficient multistart algorithm

Require: L, U , ξ > 0, 0 < δ < 1, Kmax, set ∆∗ = ∅, s = 1, tlocal = 1, trand = 1,
k = 1;

1: Randomly generate X ∈ [L,U ] (sampled point), set X̄1 ← X;
2: Compute X∗

1 = L(X), R1 = ‖X −X∗
1‖2, set r1 = 1, ∆∗ = ∆∗ ∪X∗

1 ;
3: repeat
4: Randomly generate X ∈ [L,U ] (sampled point);
5: if Dx(x− x̄i) > 1 ∨Dy(y − ȳi) > 1 for all i ∈ {1, . . . , trand} then
6: Set trand = trand + 1, set X̄trand = X;
7: Set o = arg minj=1,...,s dj ≡ ‖X −X∗

j ‖2;
8: if do < Ro then
9: if the direction from X to X∗

o is ascent then
10: Set p = 1;
11: else
12: Set p = δ(do/Ro);
13: end if
14: else
15: Set p = 1;
16: end if
17: if rand(0, 1) < p then
18: Compute X∗ = L(X), set tlocal = tlocal + 1;
19: if X∗ ∈ ∆∗ then
20: Update Rl = max{Rl, ‖X −X∗

l ‖2}, rl = rl + 1;
21: else
22: Set s = s+1, X∗

s = X∗, rs = 1, ∆∗ = ∆∗∪X∗
s , compute Rs = ‖X−X∗

s ‖2;
23: end if
24: else
25: Update Ro = max{Ro, ‖X −X∗

o‖2}, ro = ro + 1;
26: end if
27: end if
28: Set k = k + 1;

29: until
trand

k

s

tlocal
≤ ξ or tlocal > Kmax

A simple stopping rule [21] uses an estimate of the fraction of uncovered
space, s(s+1)/(tlocal(tlocal−1)) ≤ ξ where s represents the number of (different)
computed minimizers, tlocal represents the number of local search calls and ξ is
a small positive constant. Previous experiments show that this condition might
not be efficient since a large number of sampled points may be required to start
a local search procedure (making tlocal to increase) although the search ends up
by locating a previously identified minimizer (and s is not increased).

In this paper, we propose a different and yet simple rule to reflect a reason-
able coverage of the search space. To check if the diversification procedure was



able to cover all the search space and detect all minimizers, the product of the
probability that a good sampled point is found (in the area of the search space
not yet covered), by the probability that a different minimizer is found when
the local search is invoked (noting that invocation itself follows the region of
attraction concept) is required to be small:

trand
k

s

tlocal
≤ ξ,

for a small ξ > 0. The parameter trand represents the number of effectively used
sampled points and k is the total number of generated points; s and tlocal have
the same meaning as above. Alternatively, the multistart algorithm stops when
the number of local search calls exceeds a maximum value Kmax.

3 The ‘Interrupted HJ-filter’ Method for MINLP

In this section, we address the issue related with the local search procedure
invoked inside the multistart algorithm, represented by L in Algorithm 1. A
derivative-free pattern search method that is prepared to handle inequality and
equality constraints by means of a filter methodology is used. Furthermore, the
algorithm has been extended to be able to handle continuous and integer vari-
ables simultaneously. Thus, the proposed algorithm relies on the HJ approach,
as outlined in [15], for solving a MINLP problem. This is an extension of the
work presented in [11,12] in the sense that multiple solutions of problems like
(1) are computed using a multistart algorithm that invokes a modified HJ filter
based local search.

The herein proposed ‘Interrupted HJ-filter’ local search algorithm is an ite-
rative process that is applied to a sampled point X = (x, y)T in order to provide
a trial point X+ = (x+, y+)T that is a global or a local minimizer of the pro-
blem (1). At each iteration, an acceptable trial point is obtained by searching
around a central point. The term acceptable point means that the point is not
dominated by any other point that belongs to a filter set.

Two stopping conditions are used to terminate the ‘Interrupted HJ-filter’
algorithm. When it is not possible to find an acceptable trial point in a very
small neighborhood of the central point of the search, the iterative process can
be terminated with the central point as final solution. When the acceptable trial
point falls inside an ε-neighborhood of a previously computed minimizer, the
iterative process is interrupted since the likelihood that the process will converge
to that minimizer is high. This strategy aims to improve efficiency by avoiding
convergence to previously detected solutions.

Thus, the most relevant issues addressed by the ‘Interrupted HJ-filter’ algo-
rithm are the following. The algorithm

– accommodates two different pattern of points to be able to handle simulta-
neously continuous and integer variables, when generating trial points;

– uses a projection onto the search space [L,U ] when generated trial points
violate the bound constraints during exploratory and pattern moves;



– incorporates the filter set methodology to handle equality and inequality
constraints by accepting trial points that improve feasibility or optimality;

– interrupts the iterative search process when a trial point is accepted as the
new iterate and is inside an ε-neighborhood of a previously computed mini-
mizer;

– terminates the iterations when the step size αx for the continuous variables
falls below a pre-specified small tolerance αmin.

Using a filter methodology [7,10,17,18], problem (1) is reformulated as a bi-
objective optimization problem

min [f(x, y), θ(x, y)]
subject to x ∈ Γx, y ∈ Γy

(8)

where θ(x, y) = ‖g(x, y)+‖22 + ‖h(x, y)‖22 is the nonnegative constraint violation
function and v+ = max{0, v}. The concept of nondominance, borrowed from
the multi-objective optimization, aims to build a filter set that is able to accept
trial points if they improve the constraint violation or the objective function
value. The filter F is defined as a finite set of points (x, y), corresponding to
pairs (θ(x, y), f(x, y)), none of which is dominated by any of the others. A point
(x, y) is said to dominate a point (x′, y′) if and only if θ(x, y) ≤ θ(x′, y′) and
f(x, y) ≤ f(x′, y′).

Every time the local search procedure is invoked inside the multistart algo-
rithm, the filter is initialized to F = {(θ, f) : θ ≥ θmax}, where θmax > 0 is an
upper bound on the acceptable constraint violation.

We now discuss the implemented ‘Interrupted HJ-filter’ local search algo-
rithm with pseudo-code shown in Algorithm 2. Like the classical HJ, the HJ-
filter search procedure comprises both the exploratory and the pattern moves.
The exploratory move starts by generating a set of n possible trial points along
the unit coordinate vectors ei ∈ Rn with a fixed step size αx ∈ (0, 1] for the
continuous variables and a unitary step for the integer ones:

x+ = x̄± αxDei, i = 1, . . . , nx, and y+ = ȳ ± ei, i = nx + 1, . . . , n, (9)

where (x+, y+) is a trial point, (x̄, ȳ) is the central point of the search and
D ∈ Rnx×nx is a weighting diagonal matrix. The initial central point of the
current iteration is the sampled point (x, y). If one of the following conditions

θ(x+, y+) < (1− γθ) θ(x̄, ȳ) or f(x+, y+) ≤ (1− γf ) f(x̄, ȳ) (10)

holds, for fixed constants γθ, γf ∈ (0, 1), and (x+, y+) is acceptable by the filter,
then the point (x+, y+) is accepted and replaces (x̄, ȳ). We note that if a sequence
of trial points is feasible, the condition (10) guarantees that the trial approx-
imation (x+, y+) must satisfy the second condition in order to be acceptable.
This way the optimal solution is guaranteed. Whenever a point is acceptable,
the point is added to the filter F , and all dominated points are removed from
the filter. The search then selects the most nearly feasible point, (xinf , yinf ),
among all the accepted trial points.



If (xinf , yinf ) 6= (x, y), the iteration is successful and a pattern move is car-
ried out through the direction (xinf , yinf )− (x, y). A new set of n possible trial
points along the unit coordinate vectors is generated, as shown in (9), replac-
ing (x̄, ȳ) by (xinf , yinf ) + ((xinf , yinf ) − (x, y)) (as central point). If the most
nearly feasible point, selected among the trial points, is acceptable, (xinf , yinf )
is accepted as the new iterate, replaces (x̄, ȳ), and the pattern move is repeated.

Algorithm 2 Interrupted HJ-filter algorithm

Require: X (sampled point), αmin and computed minimizers X∗
i , i ∈ {1, . . . , s};

1: Initialize the filter;
2: Set central point X̄ = X, set k = 0;
3: repeat
4: Generate n possible trial points around central point;
5: Check feasibility and optimality conditions of trial points;
6: if trial points are acceptable by the filter then
7: Update the filter;
8: Choose the most nearly feasible point (xinf , yinf );
9: Set X̄ = (xinf , yinf )T ;

10: while (xinf , yinf ) is a non-dominated point do
11: (pattern move) Make a pattern move and define new central point;
12: Generate n possible trial points around the central point;
13: Check feasibility and optimality conditions of trial points;
14: if trial points are acceptable by the filter then
15: Update the filter;
16: Choose the most nearly feasible point (xinf , yinf );
17: Set X̄ = (xinf , yinf )T ;
18: else
19: Recuperate X̄;
20: end if
21: end while
22: else
23: (restoration phase) Recuperate the most nearly feasible point in the filter as

central point;
24: Generate n possible trial points around the central point;
25: Check feasibility and optimality conditions of trial points;
26: if trial points are acceptable by the filter then
27: Update the filter;
28: Choose the most nearly feasible point (xinf , yinf );
29: Set X̄ = (xinf , yinf )T ;
30: else
31: Recuperate X̄;
32: Reduce αx;
33: end if
34: end if
35: Set k = k + 1;
36: until αx ≤ αmin or (mod(k, 5) = 0 ∧ ∃i ∈ {1, . . . , s} : ‖x̄− x∗i ‖2 ≤ ε ∧ ||ȳ − y∗i ||2 ≤ 1)



However, when (xinf , yinf ) = (x, y), the iteration is unsuccessful and a
restoration phase is invoked. In this phase, the most nearly feasible point in
the filter, (xinfF , yinfF ), is recuperated and a set of n possible trial points along
the unit coordinate vectors is generated, as shown in (9), replacing (x̄, ȳ) by

(xinfF , yinfF ) as the central point. If a non-dominated trial point is found, then
it will become the central point for the next iteration. Otherwise, the iteration
remains unsuccessful, the search returns back to the current (x̄, ȳ), the step size
αx is reduced, and a new search consisting of exploratory moves and pattern
moves is repeated taking (x̄, ȳ) as the central point [11,12].

When αx is reduced within an unsuccessful iteration, it may fall below a
sufficiently small positive tolerance, αmin, thus indicating that no further im-
provement is possible and a solution is found. For the interruption issue of the
HJ-filter algorithm, an acceptable trial point X is considered to be in the ε-
neighborhood of an already computed minimizer X∗i , for some i ∈ {1, . . . , s}, if
the distance to the minimizer verifies

||x− x∗i ||2 < ε and ||y − y∗i ||2 ≤ 1, (11)

where ε is a small positive tolerance. In this case, the likelihood that the search
will converge to the minimizer X∗i is high and the local search is interrupted.
We remark that conditions (11) are tested only every five iterations.

4 Numerical Results

In this section, we aim to analyze the performance of the proposed multistart
method based on the ‘Interrupted HJ-filter’ local search procedure. Four small
problems are selected for these preliminary experiments. The results were ob-
tained in a PC with an Intel Core i7-2600 CPU (3.4GHz) and 8 GB of memory.
The parameters of the multistart and ‘Interrupted HJ-filter’ algorithms are set
after an empirical study as follows: Kmax = 20, ξ = 0.1, δ = 0.5, γ∗ = 0.005,
γθ = γf = 10−8, θmax = 102 max{1, θ(x̄, ȳ)}, αmin = 10−4 and ε = 0.05. A
solution is considered feasible when θ(x, y) ≤ 10−8. Due to the stochastic nature
of the multistart algorithm, each problem was solved 30 independent times and
the results correspond to average values.

This section presents the full description of the problems, the results obtained
by the proposed algorithm and a comparison with the work presented in [11].

Problem 1. (Example 1 in [22]) with 2 known solutions (1 global and 1 local)

min −x− y
subject to xy − 4 ≤ 0,

0 ≤ x ≤ 4, y ∈ {0, . . . , 6}

In [11] two solutions were detected. The global solution was found in all the
30 runs and the local in 24. The new Algorithm 1 based on the ‘Interrupted
HJ-filter’ local search produces the global solution in all runs and the local in 18
out of 30. An average of 34 iterations were carried out and the average number
of local solver calls was 9.1.



Problem 2. (Example 11 in [22]) with 2 known solutions (1 global and 1 local)

min 35x0.61 + 35x0.62

subject to 600x1 − 50y − x1y + 5000 = 0
600x2 + 50y − 15000 = 0
0 ≤ x1 ≤ 34, 0 ≤ x2 ≤ 17, y ∈ {100, . . . , 300}

When solving this problem, [11] detected two optimal solutions, one global
and one local. The global was located in all runs and the local only in two out
of the 30 runs. The herein presented Algorithm 1 detected the global in all runs
and the local solution in four out of 30 runs, after an average of 21 iterations
and 12.5 local search calls.

Problem 3. (Example 21 in [22]) with 2 known solutions (1 global and 1 local)

min x0.61 + y0.61 + y0.42 − 4y2 + 2x2 + 5y3 − y4
subject to x1 + 2x2 − 4 ≤ 0

y1 + y3 − 4 ≤ 0
y2 + y4 − 6 ≤ 0
−3x1 + y1 − 3x2 = 0
−2y1 + y2 − 2y3 = 0
4x2 − y4 = 0
0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 2, y1, y2 ∈ {0, . . . , 4}, y3 ∈ {0, 1, 2}, y4 ∈ {0, . . . , 6}

Two optimal solutions, one global and one local, were found in [11]. The
global was located in all runs and the local in 22 out of 30 runs. The new
Algorithm 1 located the global in all runs and the local in four, after an average
of 32 iterations and 20 local search calls.

Problem 4. (Example 13 in [22], f1 in [7]) with 2 known solutions (1 global and 1
local)

min 2x+ y
subject to 1.25− x2 − y ≤ 0

x+ y − 1.6 ≤ 0
0 ≤ x ≤ 1.6, y ∈ {0, 1}

In [11] two solutions were detected, one global and one local. The global was
located in all runs and the local was located only in two runs. In the present
study, and after an average of 12 iterations and 2.1 local search calls, Algorithm 1
produces the global solution in all runs and the local in one out of the 30 runs.

The results presented in Table 1 aim to compare the efficiency of the Algo-
rithm 1 based on the ‘Interrupted HJ-filter’ strategy with the multistart (MS)
HJ-filter based algorithm in [11]. For each problem, the table shows averaged
values over the 30 runs – the average overall number of function evaluations of
a run, ‘Nfeavg’; the average overall time of a run (in seconds), ‘T avg’; the aver-
age number of local search calls, tavglocal; and for each identified global and local
solution, the average of the best f values obtained during the runs where the
solution was located, ‘favg’; the average number of function evaluations required
by the HJ local search while converging to those best solutions, ‘Nfeavglocal’; and



the success rate (the percentage of runs that found that particular solution at
least during one local search), ‘SR’.

Table 1. MS ‘HJ-filter’ [11] vs Algorithm 1 based on the ‘Interrupted HJ-filter’

Problem
Method Solution 1 2 3 4

MS with ‘HJ-filter’ Nfeavg 11513 13109 79892 4199
(in [11]) T avg 33 113 477 36

tavglocal 16.5 9.2 20.5 8.1
global favg -6.666394 189.29356 -13.401916 2.000250

Nfeavglocal 590 1495 4929 458
SR (%) 100 100 100 100

local favg -5.000000 291.75820 -4.258899 2.236262
Nfeavglocal 519 2122 2986 527
SR (%) 80 6.7 73.3 6.7

Algorithm 1 with Nfeavg 3110 9193 14596 628
‘Interrupted HJ-filter’ T avg 6 42 36 4
(ε = 0.05) tavglocal 9.1 12.5 20.0 2.1

global favg -6.662584 189.29714 -13.401973 2.003090
Nfeavglocal 318 712 762 297
SR (%) 100 100 100 100

local favg -5.000000 291.02098 -4.258890 2.236161
Nfeavglocal 450 1327 480 372
SR (%) 60 13.3 13.3 3.3

Algorithm 1 with Nfeavg 3759 12894 17479 628
‘Interrupted HJ-filter’ T avg 8 59 44 4
(ε = 0.01) tavglocal 9.6 15.5 21 1.9

global favg -6.655440 189.29836 -13.401970 2.002982
Nfeavglocal 372 793 781 325
SR (%) 100 100 100 100

local favg -5.000000 291.69833 -4.258890 2.236149
Nfeavglocal 427 990 559 464
SR (%) 60 10 23.3 6.7

Based on the results of the table, it can be concluded that the herein pro-
posed multistart algorithm with the ‘Interrupted HJ-filter’ local search wins on
efficiency when compared with the MS HJ-filter algorithm, in the sense that re-
ductions on Nfeavg, T avg and tavglocal are notorious. The algorithm was also tested
with the smaller value ε = 0.01 (the neighborhood radius on the continuous vari-
ables for the HJ interruption strategy, see (11)). From the corresponding results
shown in Table 1, we may conclude that the algorithm is able to locate the local
solutions more often but at a cost of more function evaluations, time and HJ
local search calls.



5 Conclusions

The strategy of discarding randomly generated points that are sufficiently close
to other generated and already used points, coupled with the interruption of the
HJ-filter local search, for solving MINLP problems, have shown to be effective.
The proposed stopping rule of the new multistart algorithm is able to detect
multiple solutions without requiring a large number of local search calls. On
the other hand, interrupting the local search procedure when an iterate that
falls inside an ε-neighborhood of an already detected solution is found has also
improved the overall efficiency of the algorithm.

The preliminary numerical results presented in this paper show that the
combination of the componentwise normalized distance and region of attraction
concepts in the multistart algorithm, as well as the interruption of the HJ-
filter iterative search, make the derivative-free based multistart framework more
competitive.

Future developments will be directed to the implementation of other mixed-
integer point distance concepts, as well as the most popular Euclidean distance.
Large-dimensional benchmark problems in the context of engineering applica-
tions will also be used to test the effectiveness of the proposed algorithm.
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