
Food Research International 90 (2016) 25–32

Contents lists available at ScienceDirect

Food Research International

j ourna l homepage: www.e lsev ie r .com/ locate / foodres

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM
Probiotic-loaded microcapsule system for human in situ folate
production: Encapsulation and system validation
Philippe E. Ramos a,⁎, Luís Abrunhosa a, Ana Pinheiro a,b, Miguel A. Cerqueira c, Carla Motta d,
Isabel Castanheira d, Maria V. Chandra-Hioe e, Jayashree Arcot e, José A. Teixeira a, António A. Vicente a

a CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2781-901 Oeiras, Portugal
c International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
d Department of Food Safety and Nutrition, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
e Food Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
⁎ Corresponding author.
E-mail address: phramos@ceb.uminho.pt (P.E. Ramos)

http://dx.doi.org/10.1016/j.foodres.2016.10.036
0963-9969/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 July 2016
Received in revised form 21 October 2016
Accepted 23 October 2016
Available online xxxx
This study focused on the use of a new system, an alginate|Ɛ-poly-L-lysine|alginate|chitosan microcapsule
(APACM), able to immobilize a folate-producing probiotic, Lactococcus lactis ssp. cremoris (LLC), which provides
a new approach to the utilization of capsules and probiotics for in situ production of vitamins. LLC is able to pro-
duce 95.25±26 μg·L−1 of folate, during 10 h, andwas encapsulated in the APACM. APACMproved its capacity to
protect LLC against the harsh conditions of a simulated digestion maintaining a viable concentration of
6 log CFU·mL−1of LLC. A nutrients exchange capacity test, was performed using Lactobacillus plantarum UM7,
a high lactic acid producer was used here to avoid false negative results. The production and release of 2 g·L−1

of lactic acidwas achieved through encapsulation of L. plantarum, after 20 h. The adhesion of APACM to epithelial
cells was also quantified, yielding 38% and 33% of capsules adhered to HT-29 cells and Caco-2 cells, respectively.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Malnutrition is a problem that still affects one in three people in the
world (International Food Policy Research Institute, 2015). There are
different reasons explaining this problem, although the lack of some
micronutrients, such as folate, can be associated with malnutrition in
pregnant women, children, elderly people and in people consuming a
limited diet (World Health Organization, 2012, 2014a, b). A possible
reason for the occurrence of this problem in elderly people is the decline
of the presence of bifidobacteria in their gastrointestinal system, that
are responsible for the production of essential group of B vitamins,
such as folate (vitamin B9) (LeBlanc et al., 2013). Folate is a vitamin
with extreme importance because it is involved in cells' regulatory pro-
cesses (Jacob, 2000). Considering its importance in the human diet, it
has been introduced in food in its synthetic form, folic acid, in order to
accomplish the recommended daily intake of 330 μg for adults and
600 μg for pregnant women (European Food Safety Authority, 2014).
However, fortification with synthetic forms has been studied and
some studies mention that there are some disadvantages in the utiliza-
tion of this form (Bailey & Ayling, 2009; de Meer et al., 2005; Morris &
.

Tangney, 2007). Considering this, it is clear that there is a need for forti-
fication by a natural form of folate, so that these problems are avoided
and the bioavailability of this vitamin is increased. Some probiotic
bacteria, such as Lactococcus lactis ssp. cremoris (LLC), Streptococcus
thermophilus, Bifidobacterium lactis, Bifidobacterium breve,
Bifidobacterium infantis and Bifidobacterium animalis are capable of pro-
ducing large amounts of natural folate (Crittenden, Martinez, & Playne,
2003; Sybesma, Starrenburg, Tijsseling, Hoefnagel, & Hugenholtz,
2003). These bacteria mainly produce the most common natural form
that is 5-methyltetrahydrofolate (5-MeTHF), the form that is naturally
assimilated by human cells (Scott, 1999). As mentioned before there
are some bacteria capable of producing different folate forms, although
other characteristics are important considering the direct utilization of
these bacteria in the gut, such as their capacity to produce and excrete
the vitamin. There are some bacteria able to produce high amounts of
extracellular folate (N40 μg·L−1) such as: Lactobacillus amylovorus CRL
887 (68.3 μg·L−1) (Emiliano et al., 2014), Lactobacillus plantarum SM
39 (397 μg·L−1) (Hugenschmidt, Schwenninger, Gnehm, & Lacroix,
2010), Lactobacillus delbrueckii ssp. bulgaricus 863 (86.2 μg·L−1), L. lactis
ssp. cremoris SK 110 (41 μg·L−1), and Propionibacterium freudenreichii
ssp. shermanii B365 (41 μg·L−1). However, this production is influenced
by the incubation conditions and is totally dependent of the species and
strains (Lin & Young, 2000). Generally, these probiotics are used in a free
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state andmainly for industrial production of folate, that is conventional-
ly produced by chemical processes (Hugenschmidt, Schwenninger, &
Lacroix, 2011).

Probiotics, that are live microorganisms, which when administered
in adequate amounts confer a health benefit to the host (Food and
Agriculture Organization of the United Nations/World Health
Organization, 2001) and have been used to improve human health but
two problems have been identified regarding its utilization, which are:
i) the low survival rate through passage in the stomach and ii) the low
residence time in the gut (Gardiner et al., 2004; Gueimonde &
Salminen, 2006; Klingberg & Budde, 2006). Regarding the first problem,
several studies have indicated the efficiency of microcapsules on the
protection of probiotics against these harsh conditions, wherematerials
such as alginate (Chandramouli, Kailasapathy, Peiris, & Jones, 2004;
Mokarram, Mortazavi, Najafi, & Shahidi, 2009) and chitosan (De
Prisco, Maresca, Ongeng, & Mauriello, 2015; Graff, Hussain, Chaumeil,
& Charrueau, 2008) can be used. The second problem is related with
the relatively low residence time that probiotics have in the human
gut. Probiotic colonization and consequent adhesion to the intestinal
mucosa, a characteristic that has been better understood in recent
times, indicating that a probiotic stays no longer than 5–8 days in the
human gastrointestinal system (Rattanaprasert, Roos, Hutkins, &
Walter, 2014; Wolf, Garleb, Ataya, & Casas, 1995), eventually with a re-
sidual activity in the latter stages of this period.

To overcome these two problems on probiotics utilization, encapsu-
lation systems that are able to immobilize thesemicroorganisms can be
an interesting solution. These systems are able to protect probiotics, to
promote the controlled release of some micronutrients and to adhere
to the mucus layer (Brun-Graeppi, Richard, Bessodes, Scherman, &
Merten, 2011; Takeuchi et al., 2005). They can be constituted by hydro-
philic polymers that typically havemuco-adhesive properties (Gombotz
& Wee, 1998). These hydrophilic polymers have charged functional
groups that are able to form hydrogen bonds with mucosal surfaces
(Dhawan, Singla, & Sinha, 2004; Khutoryanskiy, 2011). Some of these
materials are alginate, poly-L-lysine and chitosan, and have been used
to increase the residence time of some microcapsules by adhesion to
the intestinal mucus layer (Gombotz & Wee, 1998; Ma et al., 2015).

Probiotics encapsulation foresee the total release of these microbes
into the gut, in order to achieve a direct contact of itwith the epithelium.
In the other hand, there are immobilization systems that have been
used to encapsulate microorganisms, such as bacteria or yeast, in
order to create a microreactor able to host and maintain the microor-
ganism in a continuous active state (Callone, Campostrini, Carturan,
Cavazza, & Guzzon, 2008). With this, a high diffusion rate through the
microcapsule is necessary to ensure the adequate exchange rate of con-
sumed nutrients and produced metabolites (Genisheva, Teixeira, &
Oliveira, 2014). Immobilization systems are more frequently used in
biomedical applications, more specifically for tissue reconstruction.
These systems are usually used in gastrointestinal or intravenous ad-
ministration (Uludag, De Vos, & Tresco, 2000). In both cases, an adhe-
sion of the microcapsule to the correct site and continuous release of
the encapsulated cells is expected (Zhang, Xie, Koh, & James Lee,
2009). However, these systems were not explored considering the in
situ production of vitamins by probiotics.

In a first work, a microcapsule was developed and characterized to
be applied in the present work. This structure is an alginate encapsula-
tion system, smaller than 100 μm, with a rationally designed coating
created through layer-by-layer assembly: an alginate|Ɛ-poly-L-lysine|
alginate|chitosan microcapsule (APACM) (Ramos et al., 2015). Unlike
other works using alginate|poly-L-lysine|alginate (APA)microcapsules,
APACM has another coating, such as chitosan, that has two main func-
tions, the protection against the harsh conditions of the stomach and
to promote the adhesion to the epithelial cells. Therefore, APACM is a
new system with unique characteristics and functions (Ramos,
Cerqueira, Vicente, & Teixeira, 2016), because of that no other system
(e.g. APA) was used in this work to compare its performance. This
research focused on the use of the developed system for the encapsula-
tion of probiotics with a high capacity of producing extracellular folate.
The aim of this workwas to test this system in terms of its capacity to: i)
host probiotic bacteria; ii) pass through the gastrointestinal system; iii)
adhere to the intestinal mucus layer; and iv) exchange nutrients and
products (probiotic activation) in the intestine, by changing theporosity
of a membrane induced by pH, whilst retaining probiotics. This ap-
proach was aiming at: i) increasing the residence time of probiotics in
the intestine; ii) avoiding, or at least reducing, possible inflammatory
responses from the organism due to direct contact with new bacteria;
iii) producing natural folate inside the gut where it will be assimilated
by the human organism (i.e., the intestine).

2. Materials and methods

2.1. Materials

Sodium alginate Protanal 8133, Protanal 8223 and Protanal LFR 5/60
were obtained from FMC BioPolymer (Brussels, Belgium). Calcium chlo-
ride (CaCl2) was purchased from Panreac (Barcelona, Spain). Ɛ-poly-L-
lysine (Ɛ-PLL,MW. 30 kDa)was purchased fromHandary (Brussels, Bel-
gium). Chitosan (MW. 5–10 kDa) was obtained from Golden-Shell Bio-
chemical Co. Ltd. (Yuhuan, China)with a degree of deacetylation of 95%.
Corn oil, Tween 80, rhodamine B isothiocynate (RITC), 1-ethyl-3-(-3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC), N,N-
dimethylformamide and folic acid were purchased from Sigma (St.
Louis, USA). M17 and de Man, Rogosa and Sharpe (MRS) were pur-
chased from Oxoid (Hampshire, England). M17 and MRS agar and glu-
cose were purchased from Merck (Munich, Germany). potassium
chloride (KCl), monopotassium phosphate (KH2PO4), sodium bicarbon-
ate (NaHCO3), sodium chloride (NaCl), magnesium chloride hexahy-
drate (MgCl2(H2O)6), ammonium carbonate ((NH4)2CO3), calcium
chloride dihydrate (CaCl2(H2O)2), sulfuric acid (H2SO4), L-Lactic acid
(C3H6O3), hydrogen chloride (HCl), sodium citrate (Na3C6H5O7), phos-
phate-buffered saline (PBS), formic acid, acetonitrile and sodium hy-
droxide (NaOH) were purchased from Sigma-Aldrich (St. Louis, USA).
To perform the gastrointestinal simulation pepsin (from porcine, car
no. SLBL2143V, 3616 U·mg−1), pancreatin (from porcine, cat no.
SLBL3953V, 6.1 U·mg−1) and bile salts (from porcine, cat n°
SLBK9078V, 164 mM) were purchased from Sigma-Aldrich. Internal
standard of 13C folic acid and 13C of 5-methyltetrahydrofolate (5-
MeTHF), as the standards of the same forms, were purchased from
Schircks (Switzerland), as the other folate forms such as tetrahydrofo-
late (THF), 5-formyltetrahydrofolate (5-FoTHF), 10-methyltetrahydro-
folate (10-MeTHF) and 10-formyltetrahydrofolate (10-FoTHF). To
perform the adhesion tests with cell culture the following materials
were used: fetal Bovine Serum (FBS), penicillin, Dulbecco's Modified
Eagle Medium (DMEM), glutamax, Dulbecco's phosphate buffered sa-
line (DPBS) and hank's balanced salt solution (HBSS), all from
Invitrogen (Sydney, Australia). Fluorodish dishes (35 mm) were pur-
chased from World Precision Instruments (Sydney, Australia). Caco-2
and HT-29 cells (sourced from American Type Culture Collection, Ma-
nassas, USA)were a gift from the Lowy Cancer Research Centre (Univer-
sity of New South Wales, Sydney, Australia). The probiotics used in this
work were Lactococcus lactis ssp. cremoris SK 110 obtained from Nizo
(Nizo Food Research, Ede, The Netherlands) and L. plantarum UM7 iso-
lated from cow milk and obtained from our private collection of lactic
acid bacteria.

2.2. Bacterial growth and preparation of cell suspensions

Probiotic bacteria Lactococcus lactis ssp. cremoris (Nizo Food Re-
search, Ede, The Netherlands). Probiotic LLCwas cultured and propagat-
ed, overnight, in 200 mL of M17 broth at 30 °C (Certomat H, GCC,
Singapore), in a 500 mL flask with a stopper, under anaerobic condi-
tions. The cells of bacteria were collected by centrifugation at 2000g
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for 5 min (Heraeus Megafuge 1.0R, Buckinghamshire, England), and
washed twice in PBS (pH 7.4). Bacteria was then suspended in PBS solu-
tion to be used in each experiment. The same protocol was used for L.
plantarum UM7 although MRS broth was used, instead of M17 broth.
To perform the tests in aseptic conditions the polymeric solutions
were filtered through a 0.2 μm filter (Acro, Pall, San Diego, USA) and
the other solutions and material used were sterilized.

2.3. Microcapsules production and probiotic microencapsulation

Microcapsules were produced according to themethod described by
Sheu and Marshall (1993). These first tests were performed without
bacteria to facilitate the characterization of the coated microcapsule, al-
though for the subsequent tests LLC was mixed with the alginate solu-
tion. The microcapsules were produced by dropwise addition of 20 mL
of a sodium alginate solution, with a concentration of 1.5%, into a
100 mL solution of vegetable oil with a concentration of 0.2% of Tween
80. The mixture was then stirred for 10min at 200 rpm. After this, a so-
lution of 200mL of CaCl2 (0.05mol·L−1)was gently added over 20 s and
themixture stirred at 200 rpm for 20min. After hardening, the solution
was passed through a decanting funnel, where it remained for 30 min.
After this, the liquid (oil and water) was gently removedwith a pipette.
The residual volume containing the microcapsules was then filtered
through a 100 μm nylon filter (GVW, Millipore, Jaffrey, USA) using
water to remove the residual oil. After filtration, the microcapsules
that passed through the filter (smaller than 100 μm – because capsules
smaller than 100 μm do not create a gritty sensation when added into
food) were centrifuged for 5 min at 600 rpm (Heraeus Megafuge 1.0R,
Buckinghamshire, England) and the supernatant was removed.

2.4. Layer-by-layer assembly

After production,the microcapsules were immersed in a 0.01% Ɛ-PLL
solution (10 mL), with constant stirring at 200 rpm during 15 min, cre-
ating the coated microcapsules with a single coat. After that, the solu-
tion was again centrifuged in the same conditions as described in
Section 2.3. The next step was the immersion of the coated microcap-
sules into a sodium alginate solution (0.1%, 10 mL) for 15min, followed
by centrifugation (600 rpm, 10 min). The recovered coated microcap-
sules (now double coated)were then immersed into a chitosan solution
(0.01%, 10 mL). After that, another centrifugation step separated the
now triple coated microcapsules (APACM) from the chitosan solution.

2.5. Chitosan labelling with rhodamine B

Chitosan-[RITC] was prepared bymixing 100mL of 1% chitosanwith
50 mg RITC and 20 mg EDC at 4 °C for 1 day. The residual free dye was
then dialyzed off (molecular weight cut-off 3500Da; Cell-Sep. H1, Spec-
trum, Rancho Dominguez, USA) with double distilled water for four
weeks (Chang, Lee, Wu, Yang, & Chien, 2012). The solution was stirred
overnight and isolated by freeze-drying (Kleinberger, Burke, Dalnoki-
Veress, & Stöver, 2013).

2.6. Confocal microscopy analyses during harmonized in vitro gastrointes-
tinal simulation

For the study of chitosan adhesion during the gastrointestinal simu-
lation tests, confocal images were taken in the beginning and at the end
of the gastric and intestinal digestion steps of the harmonized in vitro di-
gestion protocol. All samples were analyzed by confocal microscopy
(Olympus BX61, Model FluoView 1000, Munich, Germany).

2.7. Harmonized in vitro gastrointestinal simulation

For the gastrointestinal simulation the protocol presented by
Minekus et al. (2014a)was usedwith somemodifications. The solutions
used were Simulated Salivary Fluid (SSF) - KCl 15.1 mM·L−1, KH2PO4

3.7 mM·L−1, NaHCO3 13.6 mM·L−1, MgCl2(H2O)6 0.15 mM·L−1,
(NH4)2CO3 0.06 mM·L−1, CaCl2(H2O)2 1.5 mM·L−1 and HCl
1.1 mM·L−1, Simulated Gastric Fluid (SGF) - KCl 6.9 mM·L−1, KH2PO4

0.9 mM·L−1, NaHCO3 25 mM·L−1, NaCl 47.9 mM·L−1, MgCl2(H2O)6
0.12 mM·L−1, (NH4)2CO3 0.5 mM·L−1, CaCl2(H2O)2 0.15 mM·L−1

and HCl 15.6 mM·L−1 and Simulated Intestinal Fluid (SIF) - KCl
6.8 mM·L−1, KH2PO4 0.8 mM·L−1, NaHCO3 85 mM·L−1, NaCl
38.4 mM·L−1, MgCl2(H2O)6 0.33 mM·L−1, CaCl2(H2O)2 0.6 mM·L−1

and HCl 8.4 mM·L−1. These solutions were warmed-up at 37 °C before
the experiment started.

The protocol started with the addition of 5 g of sample (PBS solution
with the microcapsules, with or without LLC) in a 50 mL Falcon tube
with 4 mL of SSF. This mixture was incubated for 2 min at 37 °C (all
the incubation steps were performed at this temperature and shaking
conditions). In the next step 8 mL of SGF was added into a calculated
volume of porcine pepsin in water (an exact volume to achieve a
2000 U·mL−1 in the final mixture) and adjusted to pH 2 (using an HCl
1M solution). Themixturewas incubated for 2 h. After this, a pancreatin
suspension (an exact volume to achieve a 200 U·mL−1 in the final mix-
ture), a certain volume of bile solution (an exact volume to achieve a
final concentration of 10 mmol·L−1) and 8 mL of SIF were added. The
samples were incubated for 2 h. Samples were removed every 30 min
during the gastric and intestinal simulations. All the samples were test-
ed at least in triplicate and in order to performmore practical pH adjust-
ments, one replicate test tube with 5 mL of each sample was pre-
prepared and the NaOH and HCl volumes used were kept along the di-
gestion protocol as initial reference.

2.8. Viability study of the encapsulated LLC on the APACM during the gas-
trointestinal simulation tests

To study the viability of microencapsulated LLC, samples were taken
every 30 min during the stomach and intestinal simulations. After that
each sample was mixed with a 10 mL sodium citrate solution (0.1%,
w/v) and stirred for 30min for total destruction of the coatedmicrocap-
sules, afterwhich a sample of 1mLwas retrieved and serially diluted be-
fore being plated onto a M17 agar.

2.9. Folate production by LLC

Bacterial folate production tests were performed in 250 mL vessels,
with 200 mL of M17 medium. The bacteria were introduced in order
to achieve an initial concentration of at least 8 log CFU·mL−1. The ex-
periments were performed at 30 °C under anaerobic conditions. Sam-
ples were taken at 5, 10, 23 and 48 h, 5 mL, and were centrifuged at
6000 rpm, during 10 min, and washed/re-suspended with PBS. The
quantification of LLC was performed by measuring the optical density
at 600 nm (ELISA, Bio-tek, Winooski, USA) using a calibration curve
(number of bacterial cells vs optical density). The experiments were
performed in triplicate.

2.10. Folate quantification by UPLC

All folate produced by LLC test samples, 1 mL of each, were
suspended into 10 mL of a bicarbonate buffer 0.5 mmol·L−1 with 0.5%
of dieritrotietol (DTT) and 1% of ascorbic acid, at pH 7.2 (with internal
standard of 100 ng·mL−1 of 13C folic acid and 13C 5-MeTHF). After
that, all samples were submitted to boiling for 10 min and cooled
down in ice at the end. After that the samples were centrifuged in an
Amicon filter (5 kDa), at 13,000g, during 50 min at 4 °C.

To quantify the amount of folate produced, different standards were
used, such as folic acid, THF, 5-MeTHF, 5-FoTHF, 10-MeTHF and 10-
FoTHF. To perform this experiment an Ultra performance liquid chro-
matography - tandemmass spectrometer (UPLC -MS/MS, Thermo Fish-
er, Waltham, USA), an AcQuity UPLC-TQD with an AcQuity HSS T3



Fig. 1. APACM with chitosan as the last coating (chitosan labelled with rhodamine) after
the in vitro gastrointestinal simulation.
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1.8 μm2.1 × 150mm column at 45 °Cwas used (Waters, Milford, USA).
The gradientmobile phasewas 0.1% of formic acid (A) and 99% of aceto-
nitrile (B) at 0.4 mL·min−1 (Motta, 2015).

2.11. Assessment of lactic acid production by the system

The low production of folate, by LLC, or even lactic acid, required the
utilization of a probiotic able to produce in amounts high enough to
quantify. Because of that L. plantarum UM7 was used considering its
probiotic characteristics and its high capacity to produce lactic acid in
high amounts. Fermentationwasperformedusing L. plantarumUM7en-
capsulated by emulsification,with theAPACM system. TheAPACMwere
filtered in a sterile Millipore filter, with a 10 μm cut-off. After that, the
APACM was introduced into MRS broth (200 mL) and incubated at
30 °C, without aeration and at an agitation rate of 130 rpm. The same
amount of L. plantarumUM7whichwas encapsulated before, was intro-
duced as free bacteria into another flask with MRS broth (200 mL).
These tests were performed in triplicate during 44 h; samples were col-
lected at 0, 4, 20, 27 and44h. The samplingwas performed in two steps:
in the first step each sample was filtered with a 10 μm cut-off filter (to
retain the APACM) and this filter was suspended into a sodium citrate
solution (0.1%, w/v) for bacterial viability quantification (Section 2.8);
in step two the filtered sample was centrifuged, where the pellet was
used for bacteria viability quantification (Section 2.8) and the liquid
was analyzed on a high performance liquid chromatography (HPLC)
to quantify lactic acid and glucose. With the experiment using free L.
plantarum UM7, just step two was performed.

2.12. HPLC quantification of glucose and lactic acid

The quantification of glucose and lactic acid was performed by HPLC
using a system that comprised of a Jasco 880-PU pump, a Jasco AS2057
Plus autosampler, a RI Jasco RI-1530 detector and a SFD 05–015 oven
(Easton, USA). The chromatographic separation, was performed with a
20min isocratic run on aMetaCarb 67H column (300 × 7.8mm, Agilent
technologies, Santa Clara, USA). Eluent was 0.005 mol·L−1 H2SO4 fil-
tered and degassed with a 0.2 μm membrane filter (GHP, Gelman, Pall,
NewYork, USA). The flow ratewas set to 0.7mL·min−1 and the column
temperature to 60 °C. The injection volume was 20 μL. L-Glucose and L-
lactic acidwere identified by retention time (9 and 17min, respectively)
and quantified by comparing peak areas with respective calibration
curves (L-glucose – y = 11.634x − 0.2288 (R2 = 0.999); L-lactic acid
– y = 5038.8x − 261.45 (R2 = 0.999)).

2.13. Adhesion experiments

HT-29 cells were routinely grown inMcCoy's growthmedium (with
10% (v/v) of FBS and 1% (v/v) of penicillin). Caco-2 cells were routinely
grown in DMEM (with 10% (v/v) of FBS, 1% (v/v) of glutamax and 1% (v/
v) of penicillin). Both were incubated in a humidified 5% CO2 atmo-
sphere, at 37 °C for 15 and 21 days (Model 5.3A, VWR, Radnor, USA).
These conditions are according to theATCC protocol. The testswere per-
formed by the utilization of Fluorodishes where a density of 5.5 × 10-
4 cells·cm−2 was used and left to grow until differentiation (15–
20 days), as was done in other studies (Chen, Cao, Ferguson, Shu, &
Garg, 2012; Garcia-Fuentes, Prego, Torres, & Alonso, 2005). To perform
in vitro tests the growth medium of the dishes was gently removed
and 2mL of APACM (where the chitosan coating was labelled with rho-
damine B), was suspended in HBSSwith a concentration of 2mg·mL−1,
and placed on the top of the cells. The dishes were incubated in a hu-
midified 5% CO2 atmosphere, at 37 °C during 1 h. After 1 h the HBSSme-
dium was removed and the cells were washed twice with DPBS. After
that, the dishes were analyzed by confocal microscopy (Olympus
FV1200, Tokyo, Japan) where 10 pictures were taken of different areas
in each dish to count the adhered APACM.With these results and know-
ing the number of APACM placed in each dish at the beginning of the
experiment, it was possible to quantify the amount of APACM at the
end of each test.

2.14. Statistical analyses

Statistical analyses were performed using the analyses of variance
(ANOVA) procedure with SigmaPlot 11.0 software for Windows
(SigmaPlot 11.0, Systat, San Jose, USA), where a p b 0.05 was considered
to be statistically significant.

3. Results and discussion

3.1. The stability of APACM during in vitro gastrointestinal simulation

Gastrointestinal conditions are harsh for probiotics and bacteria in
general, as mentioned before. Because of that, it was important to un-
derstand how the coatings, once applied to the microcapsule, will be-
have after their passage through the stomach and intestine, allowing
to evaluate the performance of this encapsulation system. Fig. 1 shows
APACM after the gastrointestinal digestion simulation where the chito-
san coating is presented in red, due to its labelling with rhodamine B.
Results proved that even after the gastrointestinal digestion simulation
the APACMwas stable with the last coating still attached. As mentioned
before, the stability of these materials used as coatings in gastrointesti-
nal simulations tests was also proven by other authors (Cui, Goh, Kim,
Choi, & Lee, 2000; Kamalian, Mirhosseini, Mustafa, & Manap, 2014;
Krasaekoopt, Bhandari, & Deeth, 2006a; Tam et al., 2011), although it
was never performed with three coatings and with this specific combi-
nation of materials.

3.2. Viability of microencapsulated LLC in a gastrointestinal simulation

The results of the viability of free and encapsulated LLC are present-
ed in Fig. 2. The experiment of free LLC showed an instantaneous death
of most of the LLC already in the first moments of the gastric phase of
the digestive process. The same results were also achieved by other au-
thors where an immediate death of most, or even all free bacteria
happens during the stomach simulation test, that is a consequence of
the low pH of the medium (Cook, Tzortzis, Charalampopoulos, &
Khutoryanskiy, 2011; García-Ceja, Mani-López, Palou, & López-Malo,
2015; Gbassi, Vandamme, Ennahar, & Marchioni, 2009; Iyer, Phillips, &
Kailasapathy, 2005; Krasaekoopt, Bhandari, & Deeth, 2004; Lee, Cha, &
Park, 2004; Sohail, Turner, Coombes, Bostrom, & Bhandari, 2011). Chito-
san coating has a considerable positive effect on the protection of
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encapsulated probiotics, but a high number of coatings and combina-
tions of materials tested did not bring significant advantages for
probiotics protection (Cook et al., 2011; García-Ceja et al., 2015; Iyer &
Kailasapathy, 2005; Krasaekoopt et al., 2004; Lee et al., 2004; Mi, Su,
Fan, Zhu, & Zhang, 2013; Sohail et al., 2011). The presence of three coat-
ings on APACMhas different purposes, asmentioned in a previouswork
focused on the design of this system (Ramos et al., 2015), having all the
materials to prove their capacity for probiotic protection in gastrointes-
tinal simulation tests (Annan, Borza, & Hansen, 2008; Iyer &
Kailasapathy, 2005; Krasaekoopt et al., 2004; Mokarram et al., 2009a).
After the first hour the viability of free LLC decreased to b-
4 log CFU·mL−1, whilst no viable free LLC were present after 90 min.
The viability of encapsulated LLC also decreased during thefirst hour, al-
though it remained stable until the end of the experiment at a value of
6 log CFU·mL−1. These results show that the APACM is capable of
protecting LLC during the gastrointestinal digestion simulation.

3.3. Folate production by free LLC

As mentioned in other studies, natural folate production by bacteria
implies the utilization of a high concentration of microorganisms with
optimal conditions for folate production. For this, a minimal concentra-
tion of 8 log CFU·mL−1 was used at 30 °C under anaerobic conditions
(Fig. 3).

LLC is an important industrial microorganism for cheese production
and has a GRAS status (Jeong et al., 2006; Kilstrup & Hammer, 2000). As
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Fig. 3. Continuous production of folate by LLC during 48 h; the black line represents the
produced folate, specifically 5-MeTHF, and the black broken line represents LLC
concentration.
mentioned before this microorganism has the capacity of producing fo-
late and excreting it, which are important functions considering the
purpose of APACM. Fig. 3 shows the production of folate by LLC during
48 h inM17 broth. According to these results just 5-MeTHFwas present
in all samples, being the only folate formproduced by LLC. Results are in
agreement with literature sources where this folate form is commonly
associated with microbial strains producing this vitamin (Lin & Young,
2000; Scott, 1999). Considering the form of folate produced by LLC, it
was also interesting to observe that the highest amount achieved by cu-
mulative quantification attained at 10 h was 95.25 ± 26 μg·L−1. These
data are in accordance with tests performed with other bacteria able
to produce folate, where the maximum folate production was achieved
after 6–10 h, after which a decrease happens due to its consumption by
the bacteria (Holasová, Fiedlerová, Roubal, & Pechacová, 2002; Laiño,
Leblanc, & Savoy de Giori, 2012; Lin & Young, 2000).

3.4. Validation of the exchange of nutrients in APACMs

This test was performed to validate APACM as a system capable of
activating the immobilized probiotics by allowing the entrance of essen-
tial nutrients, and releasing nutrients produced by the immobilized
probiotics. These two events are referred to as the APACM's nutrients
exchange capacity.

In order to show the APACM's nutrients exchange capacity it would
be interesting to encapsulate LLC bacteria, introduce these capsules into
M17 broth and quantify the folate that would be produced and released
to themedium. However, the amount of folate produced by LLC, as dem-
onstrated before, was 95.25 ± 26 μg·L−1 with an initial LLC concentra-
tion of 8 log CFU·mL−1which was easily achieved when this test was
performed with free bacteria. When the test needs to be performed
with encapsulated bacteria an inherent limitation is the encapsulation
efficiency of the capsules' production technique. In fact, the encapsula-
tion efficiency (EE) is only 30 ± 2% LLC and after the filtration process,
that allows keeping only the capsules smaller than 100 μm, an LLC EE
of 1 ± 0.5%. This led to an initial encapsulated LLC concentration of b-
7 log CFU·mL−1, which was not sufficient to allow quantification of
any form of folate (this was tried using UPLC, but without success – re-
sults not shown).

After these results, it was clear that other probiotic bacteria that
were able to produce enough folate to be able to be quantified were
needed. L. plantarum UM7, also a probiotic, was used once as it is able
to produce high amounts of lactic acid (Belicová, Mikulášová, &
Dušinský, 2013; Ramos, Thorsen, Schwan, & Jespersen, 2013), although
this L. plantarum UM7 does not have the capacity to produce vitamins.
Therefore, L. plantarumUM7was just used in this work to prove the nu-
trients exchange capacity of the system, being the other tests presented
before developed with LLC, a folate producer.

Therefore L. plantarum UM7 was encapsulated in APACM and a nu-
trients exchange capacity validation was performed by the quantifica-
tion of glucose and lactic acid, the carbon source and the fermentation
product, respectively. These tests were performed in MRS broth, and
the results were compared with those of a test with free L. plantarum.
All samples were analyzed using the HPLC and the results are presented
in Figs. 4 and 5.

According to the results presented in Fig. 4 it is possible to conclude
that L. plantarum UM7 is capable of a high production of lactic acid,
achieving a total consumption of glucose in approximately 30 h. At
that stage, a cell concentration of 9 log CFU·mL−1 was achieved and
the bacteriawere totally dedicated to the fermentation process, produc-
ing 5 g·L−1 of lactic acid in 7 h (between 20 h sample and 27 h sample).
The maximum production rate of free L. plantarum UM7 was achieved
between 4 and 20 h, being the production rate of lactic acid per bacteria
(YP/B) of 8.71 × 10−9 mg·bacteria−1, during that period of time.

Comparing Fig. 4with Fig. 5 it is possible to see that the consumption
of glucose and consequent production of lactic acid was slower in the
encapsulated L. plantarum UM7 experiment (Fig. 5) than with the free
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L. plantarum UM7 experiment (Fig. 4). Fig. 5 shows that a total con-
sumption of glucose was achieved and that the same amount of lactic
acid was produced as reported in Fig. 4 (app. 30 g·L−1). During the
tests reported in Fig. 5 it is important to mention that, even if all the L.
plantarum UM7 were encapsulated in the beginning of the experiment,
during the 30 h of test some bacteria were released. The amount of free
L. plantarum, mainly after the 27 h of the test, prevents us from drawing
conclusions regarding the performance of encapsulated bacteria during
that period. Nevertheless, conclusions can bemade from thefirst 20 h of
the experiment, duringwhich approximately 2 g·L−1 of lactic acidwere
produced; at that point the amount of free L. plantarum UM7 was just
3 log CFU·mL−1 and the amount of encapsulated L. plantarum UM7
was of 8 log CFU·mL−1. Using data from Fig. 4, specifically the value
of YP/B of the free L. plantarum, it is possible to conclude that the existing
concentration of free bacteria (3 log CFU·mL−1) in the encapsulated L.
plantarumUM7experiment could only produce 7.3 × 10−9 g·L−1 of lac-
tic acid. Thismeans that the 2 g·L−1 of lactic acid obtained in this exper-
iment were mostly produced by the encapsulated L. plantarum.

These results let us conclude that the exchange of nutrients on the
APACM actually occurs, which allows validating the system's behaviour
considering its main goals of hosting a probiotic bacterium, activating it
and allowing the release of the products.

Another conclusion is that evenwith a partial release of L. plantarum
UM7 during the test, an important concentration of cells was kept en-
capsulated and maintained its viability throughout the experiment.
This fact allows concluding that the APACMwas also able to immobilize
the encapsulated L. plantarum UM7 at 30 h.

3.5. Adhesion experiments

This last section evaluates the capacity of APACM to adhere to live
cells, mimicking the adhesion in an intestinal environment.
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As discussed before, elderly people have significant problems re-
garding the loss of essential microflora that might lead to malnutrition.
A possible justification for that problem is the loss of mucus on the in-
testinal epithelium surface during ageing (Patel, Singh, Panaich, &
Cardozo, 2014; Tiihonen, Ouwehand, & Rautonen, 2010). Caco-2 and
HT-29 cells were used as models to predict how the intestine of an el-
derly person, with loss of mucus, would react regarding the adhesion
of a capsule. Caco-2 cells are not producers of mucus whilst HT-29
cells are partial producers of mucus, therefore being interesting models
of the intestinal epithelium (Huet et al., 1995). An important function of
APACM would thus be their capacity to adhere to the epithelium, or
more specifically to amucus-deficient epithelium. Testing such capacity
would provide information about how this system could serve as a solu-
tion for the increase of folate production in situ. To accomplish that, the
APACMdesignwas planned using onlymucoadhesivematerials, such as
alginate, Ɛ-PLL and chitosan (Chen et al., 2012; George & Abraham,
2006; Ghersd, Jolliffe, Hampson, & Dettmar, 1998; Gombotz & Wee,
1998; Luo & Wang, 2014; Ma et al., 2015; Matsumura, Nakajima,
Sugai, & Hyon, 2014; Sarmento et al., 2007; Sinha et al., 2004). The
main idea was that, even if the APACM lost some of its coating, the
other coatingswould be able to adhere properly to the epithelium struc-
ture. APACM were tested on Caco-2 and HT-29 cells, with 15 and
21 days of differentiation, thus testing four independent conditions as
shown in Fig. 6. The results show that there were no significant differ-
ences between the results obtained with cells having 15 and 21 days
of differentiation (p b 0.05). The study of APACM adhesion to the cells
showed that the coated capsules are capable of adhering to epithelial
cells, with an adhesion to 38% HT-29 cells and to 33% of Caco-2 cells
(Fig. 7). This difference might be due to the production of mucin by
the HT-29 cells, which may have increased the adhesion to these cells.

These results are in agreement with those of chitosan-coated cap-
sules where a percentage of adherence of 38% (Chen et al., 2012) was
achievedwithHT-29MTX cells. Other examples in literaturewith chito-
san-coated liposomes, where a 45% of adhesion was achieved was in an
in vivo study performed in rats (Takeuchi et al., 2005).

4. Conclusions

The main conclusions of this work are the APACM's stability evi-
denced on the protection of the LLC bacteria. In vitro experiments dem-
onstrated the capacity of APACM to protect and host LLC in different
media simulating the human gastrointestinal conditions. Even with
the LLC's capacity to produce folate, the amounts produced were insuf-
ficient to study the APACM's exchange of nutrients capacity. However,
the utilization of L. plantarum UM7 allowed demonstrating that the
APACM has the capacity to be permeable to the entrance of nutrients
and to the release of bacterial products. These results proved that
APACM has the capacity to host probiotics, allow their activity and con-
tinuous production of lactic acid. Finally, adhesion characteristics of the
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Fig. 6. Adhesion tests of APACM to HT-29 and Caco-2 cells, on cells with 15 and 21 days of
differentiation.
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Fig. 7. APACM on Caco-2 and HT-29 cells (A and B, respectively), confocal images (10× lens magnification). The white arrows indicate some examples of adhered APACM.
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APACM to intestinal epithelium cells were also shown, thus indicating
its potential to increase the residence time in an intestinal environment.
These results demonstrated themain APACMdesign characteristics that
indicate that it might be an option to attain a continuous production of
essential nutrients in situ (i.e., in the intestine), in order to increase their
bioavailability.
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