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Abstract. The problem herein addressed is a parameter estimation
problem of the α-pinene process. The state variables of this bioengi-
neering process satisfy a set of differential equations and depend on a set
of unknown parameters. A dynamic system based parameter estimation
problem aiming to estimate the model parameter values in a way that
the predicted state variables best fit the experimentally observed state
values is used. A numerical direct method, known as direct sequential
procedure, is implemented giving rise to a finite bound constrained non-
linear optimization problem, which is solved by the metaheuristic firefly
algorithm (FA). A MatlabTM programming environment is developed
with the mathematical model and the computational application of the
method. The results produced by FA, when compared to those of the
fmincon function and other metaheuristics, are competitive.

Keywords: α-pinene isomerization, parameter estimation, direct sequen-
tial procedure, Firefly algorithm

1 Introduction

Bioinformatics expertise is usually required to address some issues related with
slow and expensive processes from the biotechnology area. This type of skills may
be used to understand the behavior of certain organisms or biochemicals, such
as the case of the parameter estimation problem on the α-pinene isomerization
dynamic model. A parameter estimation problem aims to find the parameter
values of a mathematical model that gives the best possible fit with existing
experimental data [1]. Thus, in a dynamic model based parameter estimation
process, an objective functional that gives the mean squared error between the
model predicted state values and the observed values (within a fixed time inter-
val) is minimized, subject to a set of differential equations. In a dynamic system,
the parameter estimation concept may lead to confusion since the parameters
are not usually time-dependent in the mathematical model. Nevertheless, in a
problem like this, the parameters are the decision variables of the optimization
process, although they are constant throughout the entire simulation process.
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The general form of a first order ordinary differential equation (ODE) is
given by

dy

dt
= g(t, y) (1)

where t is the independent variable (here, it is assumed that t represents time)
and y ≡ y(t) is the dependent variable. The equation is called ODE since the
unknown function depends on a single independent variable and the order of the
ODE is defined by the highest derivative order that appears in the equation. The
equation is called linear if the function g(t, y) is linear on y. Further, a solution
of the ODE is a function y(t) that satisfies the equation (1) for all values of
t in the domain of y. Most of the time, we are not interested in all solutions
to a differential equation, but only in a particular solution satisfying an extra
condition. If the extra condition provides the value of y at the initial instant of
time, the problem is called ‘initial value problem’. Hereinafter the more compact
notation y′(t) = dy/dt is used.

Numerical methods for solving ordinary differential equations are discretiza-
tion methods that compute approximations to the solution y(t) at a finite set of
points t0, t1, t2, . . . , tn of the independent variable interval ti ≤ t ≤ tf , where ti
and tf are the initial and final values of the interval, respectively. A variety of
numerical methods for solving a system of ODEs is available in the literature,
being the most known the Euler’s method, the Runge-Kutta method and the
backward differentiation formula [2].

A dynamic mathematical model emerges when the optimization and control
of industrial bioprocesses [3] are carried out. The construction of the model in-
volves several stages. First, the objectives are defined based on theoretical and/or
empirical knowledge of the process under study. In general, the mathematical
model depends on a set of unknown parameters that require to be investigated.
Second, the values for the parameters are estimated based on experimental data,
assuming that the mathematical model simulates the process the best possible
way. The goal of the parameter estimation problem is to calibrate the model
so that it can reproduce the experimental results as close as possible. This is
performed by minimizing an objective function that measures the goodness of
the fit. Finally, the model with the estimated parameter values may be vali-
dated [4,5].

In general, the mathematical modeling of bioprocess engineering problems
involves nonlinear dynamic equations as constraints and a nonlinear objective
function to be optimized, giving the so called dynamic optimization (DO) prob-
lem. Nonconvex and multimodal functions frequently arise in DO. Moreover,
some kind of noise and/or discontinuities may be present making the problem
even more complex. Therefore, robustness and efficiency are crucial properties
of an optimization solver so that it is capable of computing a good approxima-
tion to a global solution to the DO problem without an excessive computational
effort.

Gradient-based local methods are generally very efficient to solve finite-
dimensional constrained nonlinear programming (NLP) problems, although they



can only deal with problems where the objective function and the constraint
functions are continuously differentiable [6]. In general, they may lead to subop-
timal solutions if multiple local optima are present.

The alternative to compute a global optimal solution to a NLP problem is to
use a global optimization method [1,7,8,9,10]. There has been a growing inter-
est in developing algorithms that converge to the global optimal solution. Global
search algorithms often emerge from the modifications introduced in local search
algorithms. A common practice is to introduce some stochastic components to
force the algorithm to diversify the search for other solutions and explore the
search space. Then, they become stochastic algorithms. The stochastic compo-
nent can be introduced in various form, such as for example, a simple random
generation of solutions in the search space, and the use of random numbers to
define the path of solutions. Most stochastic algorithms are also known as meta-
heuristics since they combine random components with historical knowledge of
previous search in regions that have been explored and are in the neighborhood
of local solutions. This is an important issue since premature convergence to local
optimal solutions can be avoided. Metaheuristics are approximate methods or
heuristics that are designed to search for good solutions, known as near-optimal
solutions, with less computational effort and time than the more classical algo-
rithms. Algorithms that simulate the behavior of animals in nature have been
widely used to solve complex mathematical problems. Classical examples of this
type of algorithms are the particle swarm optimization [11] and more recently
the firefly algorithm (FA) [12].

Deterministic global optimization techniques have also been used to find
a global solution that best reconciles the model parameters and measurements
[13,14,15]. Although the convergence to the global optimal solution is guaranteed,
a deterministic method is only feasible for a small number of decision variables.
Since stochastic methods are able to converge rapidly to the vicinity of the global
solution, although they are very expensive to locate a global solution with high
quality, hybrid methods that combine global and local strategies have recently
become very popular [16].

Since the problem of estimating the parameters of dynamic models of com-
plex biological systems is becoming increasingly important, the contribution of
the present study is focused on the implementation of the metaheuristic FA to
solve the finite NLP problem that arises from using a numerical direct approach
to locate a global optimal solution of a specific DO problem - the parameter
estimation problem on the α-pinene isomerization. A powerful direct method
that transcribes the dynamic model parameter estimation problem in a small
finite-dimensional optimization problem through the discretization of the deci-
sion variables only is used.

The remaining part of this paper is organized as follows. In Section 2, we
describe the α-pinene isomerization problem and in Section 3 we present the
selected methodology for solving the α-pinene problem. Section 4 presents the
results of the numerical experiments and comparisons and Section 5 contains the
conclusions of the present study.



2 Isomerization of α-pinene

The α-pinene isomerization was studied in 1973 by Box, Hunter, MacGregor
and Erjavec in [17] and goals the estimation of a set of five velocity parameters
p1, . . . , p5 of a homogeneous chemical reaction. The reaction scheme for this
chemical reaction that describes the thermal isomerization of α-pinene, y1, to
dipentene, y2, and allo-ocimen, y3, which in turn produces α- and β-pyronene,
y4, and a dimer, y5, is shown in Fig. 1.

Fig. 1. α-pinene isomerization mechanism (adapted from [18]).

Fuguitt and Hawkins, in [19], observed the concentrations of the reactant
and the four products in eight time instants of the interval [0, 36420]. After the
chemical reaction orders having been defined, the formulation of the mathemat-
ical model describing the concentration of each compound over time may be set.
In [20], a first order kinetics is assumed and the following system of first order
ODEs to describe the dynamics of the concentration of the compounds over time
is proposed: 

y′1 = −(p1 + p2)y1
y′2 = p1y1
y′3 = p2y1 − (p3 + p4)y3 + p5y5
y′4 = p3y3
y′5 = p4y3 − p5y5

(2)

for t ∈ [0, 36420], with the initial conditions

y1(0) = 100, y2(0) = 0, y3(0) = 0, y4(0) = 0, y5(0) = 0. (3)

The velocity parameters p1, . . . , p5 are unknown but can be estimated through
the minimization of an objective functional which measures the distance between
the experimental observed values and the model predicted values over the entire



time interval. Thus, the formulation of α-pinene isomerization problem is the
following:

min
p

J(p) ≡
∫ tf

0

(y(t)− yobs(t))T (y(t)− yobs(t))dt

subject to y′(t) = g(t, y(t), p) ODEs listed in (2)
pL ≤ p ≤ pU
y(0) = (100, 0, 0, 0, 0)

(4)

where y(t) denotes the vector (y1(t), y2(t), y3(t), y4(t), y5(t)) of the state variable
functions (predicted by the model), J is the objective functional to be minimized,
p is the vector that contains the parameters to be estimated, also referred to as
the vector of the decision variables, yobs contains the experimentally observed
values of the state variables, pL and pU represent the vectors with the lower and
upper bounds on the parameters, respectively, and y(0) is the vector with the
initial conditions. This type of parameter estimation problem belongs to a class
of DO problems where the decision variables are not time-dependent.

3 Methodology

The α-pinene isomerization problem (4) consists of estimating a set of five pa-
rameters (p1, . . . , , p5) in a way that the state variables y1, y2, y3, y4, y5 that sat-
isfy the system of ODEs shown in (2), with initial conditions (3), best fit the
experimentally observed state values. This dynamic system based parameter
estimation problem is solved by a numerical direct method and the resulting
finite bound constrained nonlinear programming (BCNLP) problem is solved to
global optimality by a metaheuristic, known as FA. In the remaining part of this
section, the numerical direct approach is briefly described and the main ideas
behind the FA are presented.

3.1 A Direct Sequential Approach

To solve the dynamic system based parameter estimation problem, a numeri-
cal direct method is used. This type of method discretizes the problem (4) and
applies nonlinear programming techniques to the resulting finite-dimensional op-
timization problem. Methods for solving DO problems like (4) can be classified
into indirect methods and direct methods [21]. Indirect methods use the first
order necessary conditions from the Pontryagin’s Minimum Principle to refor-
mulate the problem as a two-point boundary value problem. Although this is a
widely used technique, the resulting boundary value problems may become dif-
ficult to solve specially if the problem contains state variable constraints [22,23].
In direct methods, the optimization (4) is performed directly. Depending on
whether the system of ODEs are integrated explicitly or implicitly, two different
approaches emerge, the direct sequential approach and the direct simultaneous
approach, respectively. In the direct sequential approach, also denoted by single-
shooting or control vector parametrization (specially if the decision variables



are time-dependent), the optimization is carried out in the space of the input
variables only. Given a set of values for the decision variables, the system of
ODEs are accurately integrated (over the entire time interval) using specific nu-
merical integration formulae so that the objective functional can be evaluated.
Thus, the differential equations are satisfied at each iteration of the optimization
procedure [22,23,24]. This is the main characteristic of the sequential approach,
also coined as ‘feasible path’ approach. The strategy may lead to a slow conver-
gence process since the differential equations are solved again and again. On the
other hand, the direct simultaneous approach (orthogonal collocation, complete
parametrization or full discretization) is computationally less expensive since an
approximation to the solution of the ODEs is used instead. The optimization
itself is carried out in the full space of discretized inputs and state variables
leading to a large-dimensional finite NLP problem, in particular if a fine grid of
points is required to obtain high level of integration accuracy. Furthermore, the
number of time stages and collocation points as well as the position of the collo-
cation points have to be chosen before using the NLP solver. Thus, efficient NLP
solvers are crucial when solving the finite optimization problem. The ODEs are
satisfied only at a finite number of time instants in the interval (at the solution
of the optimization problem), which is why it is called ‘infeasible path’ approach
[21,22].

To summarize, the advantages of the direct sequential approach over the
direct simultaneous are highlighted as follows:

– the NLP problem is relatively small-dimensional;
– an error control mechanism within the numerical integration formula is able

to enforce the accuracy of the state variable values;
– the ODEs are satisfied at each iteration of the NLP algorithm, although this

may lead to a computationally demanding process.

It is recognized that a direct sequential framework is easily constructed and
may link reliable and efficient ODEs numerical integration and NLP solvers.
However, its implementation requires repeated numerical integration of the ODEs.
In the context of solving the herein studied optimization problem, the ODEs
(model (2)) with the initial conditions (3) are solved by the MatlabTM3 function
ode15s. This function implements a variable order method for solving stiff differ-
ential equations and is appropriate since the equations include some terms that
might lead to dramatic changes and oscillations in the solutions, in a small time
interval, when compared to the interval of integration. The direct sequential op-
timization process can be described schematically as shown in Fig. 2. Therefore,
the direct sequential approach transcribes the problem (4) into a small finite-
dimensional BCNLP problem through the discretization of the decision variables
p1, . . . , p5 only, while the system of ordinary differential equations is embedded
in the NLP problem.

The experimental data provided by [19] in the interval t ∈ [0, tf ] consider
the set of eight time instants {1230, 3060, 4920, 7800, 10680, 15030, 22620,

3 Matlab is a registered trademark of the MathWorks, Inc.



Fig. 2. Direct sequential process.

36420} and the corresponding observed concentrations of the reactant and the
four products (yobs1,i , y

obs
2,i , y

obs
3,i , y

obs
4,i , y

obs
5,i , i = 1, . . . , 8) are shown in Table 1. Thus,

based on the information herein presented, the α-pinene isomerization parameter
estimation problem is formulated as

min
p

J(p) ≡
5∑
j=1

8∑
i=1

(
yj(ti)− yobsj,i

)2
subject to y′(t) = g(t, y(t), p) ODEs listed in (2)

pL ≤ p ≤ pU
y(0) = (100, 0, 0, 0, 0) .

(5)

Table 1. Experimental values of the concentration of the reactant and the four prod-
ucts, for eight time instants.

1230.0 3060.0 4920.0 7800.0 10680.0 15030.0 22620.0 36420.0

yobs1 88.35 76.4 65.1 50.4 37.5 25.9 14.0 4.5

yobs2 7.3 15.6 23.1 32.9 42.7 49.1 57.4 63.1

yobs3 2.3 4.5 5.3 6.0 6.0 5.9 5.1 3.8

yobs4 0.4 0.7 1.1 1.5 1.9 2.2 2.6 2.9

yobs5 1.75 2.8 5.8 9.3 12.0 17.0 21.0 25.7

3.2 The Firefly Algorithm

In order to avoid the convergence to a local solution of a BCNLP problem with-
out providing a good initial approximation, a global optimization (GO) method
is usually selected [8,9]. There are deterministic and stochastic methods for GO
[25,26]. Stochastic methods have been showing to be robust alternatives to the



deterministic and exact methods. The stochastic alternatives to solve GO prob-
lems are usually general-purpose, population-based and are normally referred to
as evolutionary algorithms since they are motivated by biological evolution [27].
The genetic algorithm [28,29] is the most known evolutionary strategy, although
other swarm intelligence based algorithms [30,31,32,33] are common in the lit-
erature. A recent strategy successfully used in biological and engineering appli-
cations is the FA [34].

The FA [12] is a stochastic approach for GO that is inspired by the collective
behavior of fireflies, specifically in how they attract each other. Several variants
of FA have been designed so far, but the main simple rules that define the firefly
movement are the following [35]:

– all fireflies are unisex, meaning that any firefly will be attracted to other
fireflies regardless of their sex;

– the brightness of a firefly is determined by the value of the objective function;

– attractiveness of a firefly is proportional to their brightness; thus for any two
fireflies, the less brighter will move towards the brighter one; the attractive-
ness is directly proportional to the brightness but decreases with distance.

Hereafter, to represent the position of the firefly i the following vector notation
is used pi = (pi1, . . . , p

i
5). Initially, the positions of the population of m fireflies

are randomly generated in the search space defined by the bound constraints on
the decision variables, as follows

pis = pLs + randi(pUs − pLs ), for s = 1, . . . , 5 and i = 1, . . . ,m (6)

where i stands for the firefly i in the population of m fireflies, s represents the
component of the vector, pL and pU are the vectors of lower and upper bounds on
the decision variables, and randi is a vector of random numbers from a uniform
distribution on the interval [0, 1].

The movement of firefly i, in direction to a brighter firefly j is defined by

pi = pi + β(pj − pi) + α randi,j (7)

where 0 ≤ α ≤ 1 is the randomness parameter and randi,j is a vector of uni-
formly distributed numbers in the range [−1, 1], and β is given by:

β = β0e
−γ||pi−pj ||v for v ≥ 1, (8)

being β0 the attraction when the distance is zero. The parameter γ ∈ [0,∞)
characterizes the variation of the attractiveness and it is crucial to determine
the algorithm convergence speed. When γ → 0, attractiveness is constant which
means that the brightness of the firefly can be seen from any position of the
space. On the other hand, when γ → ∞ the attractiveness is almost zero and
each firefly moves randomly. Note that, in the movement described by (7), the
second term is due to the attraction and the third term is due to randomization.



4 Numerical Experiments

In this section, the practical performance of the metaheuristic FA for solving the
BCNLP problem that emerges from the implementation of the direct sequential
procedure to the α-pinene isomerization problem, is analyzed. The mathematical
model was coded in the Matlab programming language and the computational
application of the direct sequential procedure with the FA was developed in
Matlab programming environment. The computational tests were performed on
a PC with a 2.7 GHz Core i7-4600U and 8 Gb of memory.

4.1 FA Parameter Tuning

First, an experimental study was conducted to tune some of the FA parameters,
in the context of the α-pinene problem. The parameter in the randomization
term is made to depend on the allowed maximum number of iterations and de-
creases from an initial value, α, to a near zero value. Four values are tested,
ranging from the largest possible to a rather small one, α = {1, 0.5, 0.25, 0.05},
being 0.25 the most common value used in the literature. The parameter γ is
kept fixed over the iterative process. To analyze the effect of the attractiveness
in the algorithm, four moderate values have been selected: γ = {2, 1, 0.5, 0.25}.
Only eight combinations of α and γ have been tested in these experiments. A
population of 20 points is used and the problem is solved 10 times with indepen-
dent randomly generated initial populations. The iterative FA terminates when
the absolute difference between the obtained solution, at the current iteration,
and the best known optimal solution is below a small tolerance, for instance
1.0e-4, or when a maximum of 500 iterations is reached. The lower and upper
bounds for the decision variables are pLi =0 and pUi =5.0e-4 for i = 1, . . . , 5. The
best known solution for this problem is p∗1 = 5.9256e-5, p∗2 = 2.9632e-5, p∗3 =
2.0450e-5, p∗4 = 2.7473e-4, p∗5 = 4.0073e-5, with the optimum objective function
value J(p∗) = 19.872, as reported in [36].

Table 2 contains the results produced by the proposed algorithm and corre-
spond to the best function value, Jbest, the average of the function values, over
the 10 runs, Javg, the median of the function values, Jmed, and the average num-
ber of iterations, N.Itavg. From the table, it can be concluded that combining
α = 0.25 with γ = 1 gives the best results in terms of best, average and median
J values, and a lower average number of iterations. The run that produced the
best value Jbest = 19.8772 required 294 iterations and 5860 function evaluations.
From the table, it is possible to conclude that the two best sets of results cor-
respond to a small value of α, meaning that the randomness characteristic of
the FA is somehow controlled, and to a moderate value of γ (0.5 and 1) which
promotes the local search ability of the FA. We note that a very small value of
α (for example, 0.05) is harmful since the algorithm is not capable of exploring
the search space for the region where the global solution lies.

Figure 3 shows the evolution of the objective function along the iterations,
relative to the best and worst runs for the case where α = 0.25 and γ = 1. For
comparative purposes, the evolution of the objective function of the worst run,



for the case where α = 0.5 and γ = 0.5 is also shown. As it can be seen the value
α = 0.25 produces a significant decrease in J during the early iterations.

Table 2. Results obtained by FA, for different combinations of α and γ.

α γ Jbest Javg Jmed N.Itavg

1 1 20.0334 30.2361 28.2366 500
0.5 1 20.4490 25.7785 25.5231 500
0.5 0.5 19.9366 67.8867 29.4598 500
0.25 2 19.8819 44.2389 30.5656 490
0.25 1 19.8772 25.6777 20.7662 459
0.25 0.5 19.8970 27.0022 24.2394 500
0.25 0.25 19.9029 356.7275 180.7635 500
0.05 1 260.6788 979.0378 657.9491 500

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 

runbest with α=0.25 and γ=1

runworst with α=0.25 and γ=1

runworst with α=0.5 and γ=0.5

Fig. 3. Evolution of the objective function from the best and worst runs, when α = 0.25
and γ = 1, and from the worst run, when α = 0.5 and γ = 0.5.

4.2 Comparative Results

The second experiment aims to compare the results produced by the FA with
those obtained by the fmincon function from the Matlab Optimization Toolbox,
as well as with those achieved in [14,18,36,37,38]. Therefore, Table 3 contains



a summary of the results – the best objective function value, the best param-
eter values, and the number of iterations, N.It, and the number of function
evaluations, N.f.ev, of the reported solution – obtained by:

– FA (in the context of the direct sequential approach by invoking the function
ode15s for the numerical integration of the ODEs);

– fmincon (in the context of the direct sequential approach with ode15s for
the numerical integration of the ODEs);

– the hybrid scatter search methodologies proposed in [36,18] – therein denoted
by SSm – (in the context of the direct sequential approach);

– the metaheuristic EM, implemented with a random local search procedure,
in [37] (in the context of the direct sequential approach, with ode45 for the
numerical integration of the ODEs);

– the deterministic global optimization algorithm based on outer approxima-
tion proposed in [14] (in the context of orthogonal collocation on finite ele-
ments in [0, 36420]);

– the deterministic gradient-based solver ‘filterSQP’ (a sequential quadratic
programming based on the filter set methodology) tested in [38] (in the con-
text of 3-stage collocation method with uniform partition of 100 subintervals
in [0, 36420]).

Table 3. Optimal objective function value and parameters: FA vs fmincon and the
results in [14,18,36,37,38].

solution parameter vector N.It N.f.ev

FA 19.877 (5.928e-5, 2.962e-5, 2.041e-5, 2.764e-4, 4.046e-5) 294 5860
fmincon 19.929 (5.911e-5, 2.968e-5, 2.070e-5, 2.745e-4, 4.001e-5) 24 217
in [36] 19.872 n.a. n.a. 1163a

in [18] 19.87 (5.926e-5, 2.963e-5, 2.047e-5, 2.745e-4, 3.998e-5) 9518 (122 )b

in [37] 19.874 (5.926e-5, 2.963e-5, 2.047e-5, 2.743e-4, 3.991e-5) 147 3824

in [14] 19.87 n.a. 2 (8916 )b

in [38] 19.8721 n.a. n.a. (28 )b

n.a. means not available.
a Average value over ten independent runs.
b CPU time in seconds.

The fmincon function implements a local gradient-based method and re-
quires an initial approximation provided by the user. The sequential quadratic
programming based on a quasi-Newton update formula to approximate the sec-
ond derivatives of the objective function is used, and fmincon was invoked with
its default settings. It is common knowledge that traditional local solvers may
fail to reach a global optimal solution unless a good initial approximation is pro-
vided by the user. Thus, the initial approximation pi = 0, i = 1, . . . , 5 is used.
The fmincon function achieved the minimum J = 19.929 after 24 iterations and



217 function evaluations. The best solution reported by FA Jbest = 19.8772 (see
Table 2) is close to the best known optimal solution, with a relative error of
0.026%, while the solution obtained with fmincon has a relative error of 0.29%.
This is a confirmation that FA makes a comprehensive exploration of the search
space, without requiring any good initial approximation. The scatter search al-
gorithms proposed in [18,36] activate a gradient-based local search procedure
(the fmincon function from Matlab) that is carried out from different vectors
as initial points to accelerate convergence to the solution. In [36], the best value
Jbest = 19.872, the average value Javg = 24.747, the worst value Jwor = 68.617
and the average number of evaluationsN.f.evavg = 1163 (over ten executed runs)
are reported. In [18], the initial approximation pi = 0.5, i = 1, . . . , 5 is used and
the optimal value J = 19.87 is reached after 9518 iterations and 122 seconds. In
[37], the best value Jbest = 19.874, the median value Jmed = 20.325, the worst
value Jwor = 21.806, and the average number of iteration N.Itavg = 147 and of
function evaluationsN.f.evavg = 4070 (over ten executed runs) are reported. The
outer approximation based algorithm presented in [14] converges to J = 19.87.
Although only two iterations of the outer approximation strategy are required
to reach the solution, the therein used approach may lead to computational bur-
dens and the process is a very costly one (see details in Table 3). The problem
at hand is also part of the well-known Large-Scale Constrained Optimization
Problem Set (COPS) and was solved by a collocation method and several NLP
solvers, for comparative purposes, in [38]. The minimum J value found by the
well-known ‘filterSQP’ was 19.8721 after 28 seconds. It can be concluded from
the results shown in the table that the direct sequential approach based on the
FA is effective in reaching the optimal solution. Convergence to the solution may
be accelerated and solution quality may be improved by incorporating a local
search technique into FA.

Figure 4 shows the evolution over time of the concentrations of reactant
and the four products for the α-pinene isomerization problem, considering the
optimal values of the parameters obtained by the FA (shown in Table 3) –
represented by full lines. The figure also shows the experimental data represented
by points alone, as reported in [19]. As it can be seen the obtained optimal values
for the parameters allow the model to reproduce almost exactly the experimental
data. On the other hand, Fig. 5 shows the experimental data (represented by the
points alone) and the values predicted by the model (represented by full lines)
for the same time instants, considering the optimum values for the parameters
produced by fmincon (as reported in Table 3).

5 Conclusions

We have shown that the parameter estimation problem on the α-pinene iso-
merization model can be easily solved by a direct sequential approach which
transcribes the DO problem in a small finite-dimensional BCNLP problem. As a
consequence, a stochastic global optimization technique can be applied to locate
a global minimum of the goodness of fit objective function subject to bound con-
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duced by FA.
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Fig. 5. Concentrations estimated by the model (full lines) and experimental values
(points alone) in the α-pinene isomerization, based on the parameters obtained by
fmincon.

straints on the values of the parameters. The simple to understand and easy to
implement metaheuristic FA has shown to be a reliable method to locate a global
optimal solution of this challenging DO problem. Some preliminary experiments



were carried out in order to tune the parameters α and γ of the FA, and it is
shown that this issue is crucial to the convergence features of the algorithm. The
implementation of FA was effective in a way that the produced results are com-
parable to those of previously used metaheuristics and outperform the results
obtained by fmincon function from Matlab. The obtained solution is very close
to the best known solution in the literature and allows the model to reproduce
almost exactly the experimental data.

Future developments will be directed to the FA enhancing strategy by using
an efficient but simple random local search procedure so that convergence could
be accelerated.
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