
  
 

 

 

 

 

 

 

 

João C. Ferreira, Vítor Monteiro, José A. Afonso, João L. Afonso  

“Tracking Users Mobility Patterns Towards CO2 Footprint” 

Advances in Intelligent and Soft Computing, 1st ed., Sigeru Omatu, Ali Selamat, Grzegorz Bocewicz, Pawel 

Sitek, Izabela Nielsen, Julián A. García-García, Javier Bajo, Ed. AISC Springer Verlag, 2016, Part I, pp.87-

96. 

 

 

http://link.springer.com/chapter/10.1007%2F978-3-319-40162-1_10 

 

 

 

ISBN: 978-3-319-40161-4 (Print) 978-3-319-40162-1 (Online)  

ISSN: 2194-5357 

DOI: 10.1007/978-3-319-40162-1_10 

 

 

 

 

This material is posted here according with:  

“The Author may self-archive an author-created version of his/her Contribution on his/her own website and/or 

in his/her institutional repository, including his/her final version. He/she may also deposit this version on 

his/her funder’s or funder’s designated repository at the funder’s request or as a result of a legal obligation, 

provided it is not made publicly available until 12 months after official publication.”  

© 2016 SPRINGER 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55642648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

Tracking Users Mobility Patterns 
Towards CO2 Footprint  

João C. Ferreira1,3, Vítor Monteiro1, José A. Afonso2, João L. Afonso1 

1Centro ALGORITMI, University of Minho, Guimarães, Portugal, 
2CMEMS-UMinho, Guimarães, Portugal, and 3ADEETC at ISEL, Lisbon, Portugal 

Abstract. This research work is based on the development of a mobile applica-

tion and associated central services for tracking users’ movements in a city, iden-

tifying the transportation mode and routes performed. This passive tracking gen-

erates useful data about users’ habits, which are then associated with the CO2 

emission in the form of a mobility invoice, with the goal of enabling the users to 

understand their carbon footprint resulting from the users’ mobility process in the 

city. The performance of the developed system is validated through experimental 

tests based on data collected during six months from more than 2500 mobility 

experiences. 

Keywords: mobile application, personalized data, geographical system, intelli-

gent public transportation, carbon footprint. 

1 Introduction 

CO2 emissions in big cities due to transportation systems raise the need to improve the 

sustainability and accessibility of collective transport, while simultaneously promoting 

the use of more environmentally friendly transportation systems. In this sense, it is im-

portant to make available adequate and updated information regarding the mobility op-

tions offered by transport operators and users. One important research work is to create 

a tool to measure the mobility of people in a city, identifying passively the transporta-

tion mode, routes performed and associated times. Information and communication 

technologies (ICT) have the potential to effectively change the way people live and 

their mobility and energy consumption. Nowadays, mobile devices incorporates many 

diverse and powerful sensors, like GPS, cameras, microphones, light, temperature, di-

rection (i.e., magnetic compasses) and acceleration (i.e., accelerometers). Accelerome-

ters with GPS can be used to perform activity recognition [1], a task which involves 

identifying the physical activity of a user. Activity inference provides the ‘what’ of a 

user’s context, whereas location sensors (such as cell-tower/Wi-Fi localization and/or 

GPS) provide the ‘where’. This ‘what’ and ‘where’ information can be used by a num-

ber of mobile phone applications, including physical fitness and health monitoring [2], 

recommendation systems, and the study of environment and personal behavior. In this 

work, we explore the potential of a mobile device application designed to track users’ 

habits in a customized way, using integrated accelerometers and GPS information, with 
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the goal to create a monthly user invoice related with their movements and used trans-

portation modes (e.g., bus, train, car, bike, walk, etc.). This approach allows the dis-

covery of mobility habits of millions of users passively, just by having them carry mo-

bile phones in their pockets. From the collected sensor data, it is possible to identify the 

user’s transportation mode and also characterize the traffic conditions. In association 

with the travelled distance, we can track the CO2 emissions resulting from the user 

mobility and provide the information to the user in the form of a monthly invoice related 

with the concept of carbon footprint [3]. 

The rest of the paper is organized as follows. Section 2 describes the tasks associated 

to data acquisition and classification. Section 3 describes the developed transportation 

mode identification system and the corresponding performance evaluation results. Sec-

tion 4 concerns to the user mobility patterns, while Section 5 presents the proposed 

mobility invoice system. Section 6 presents the mobility advisor to reduce the carbon 

footprint. Finally, Section 5 presents the conclusions and future work. 

2 Data Acquisition and Classification 

The applied methodology is composed by a set of sequential processes. The first pro-

cess, identified as data collection, varies from case to case, being responsible for the 

collection of huge amounts of data (big data). For testing purposes, we used mobile 

device sensor data from 50 Lisbon area users, in a period corresponding to the first six 

months of 2013. This phase involves the identification of outliers and the removal of 

inconsistent data to reduce the number of records [4]. The second process consists on 

data transformation into predefined classes (Fig. 1). This is a process that is specific to 

each case study. Taking into account the mobile device sensor data, Fig. 1 shows the 

20 predefined classes (C1 to C20). These classes are created based on accelerometer 

measurements in the three orientation axis, as well as additional GPS data. The accel-

erometer data is divided into three dimensions: Z (vertical) is the upright direction; Y 

(longitudinal) is the direction of movement and X (transversal) is the steering direction. 

The transformation process to merge original data into these predefined classes uses 

information of two consecutive accelerometer data measurements, where the data value 

difference is classified into four scales: 1 - straight, when the measurement changes in 

the module are less than 0.1 ms-2; 2 - smooth, when it is more than 0.1 ms-2 and less 

than 0.5 ms-2; 3 - rough, when it is between 0.5 ms-2 and 2 ms-2; 4 - very rough, when 

it is more than 2 ms-2. 

3 Transportation Mode Identification 

From the mobile device sensor data, it is possible to identify the transportation mode 

that the user takes to go from A to B. Transportation mode detection has been explored 

by [5-7], among others. All of these approaches use past data to build a classification 

model that identifies the transportation mode and most of these approaches use a com-

bination of GPS and accelerometer data from the three axes. From this data, it is possi-

ble to calculate the speed and the position. We developed this work based on a discrete 



approach using predefined data classes and a training set of 250 cases, representing car 

travel (60), bus (50), train (30), underground (40), walking (25), boat (20) and motor-

cycle (25). Table 1 shows an example of event count per class for three transportation 

modes (other modes are omitted for simplicity purposes). Since we want a generic ap-

proach, the main effort to perform is the transformation of raw data into these prede-

fined classes, as Table 1 shows. These classes can be increased to cover new situations, 

and when not used should be treated as empty fields. 

Our approach for public transportation mode identification is based on the value of 

P(TMj|Ck), which means the probability of transportation mode j (TMj) given Ck meas-

urements are discrete classes defined from accelerometer data as illustrated on Figure 

1. We use classes C1 to C20, using the Bayes theorem: 

   (1) 

where, TM1 = Car, TM2 = Bus, TM3 = Train, TM4 = Metro, TM5= Walk, TM6 = Boat 

and TM7 = Motorcycle. We calculate P(TMj) as the number of cases for transportation 

mode j divided by the number of cases in the training set, for example, P(TM1) = 60/250 

= 0.24. The same approach is used to calculate the other values. For the probability 

P(Ck|TMj) = P({C1,C2,..,C20}|TMj), we assume the independence of events, therefore: 

  (2) 

where, P(Ck|TMi) is based on the training data set. Since the number of events varies 

with the sampling time and the route distance, we perform a normalization using the 

percentage. For example, for X-axis accelerometer data from car samples, we have 23 

C1 events, 2111 C2 events, 3312 C3 events and 34 C4 events. This totals 5480 events, 

so we have 0.4% of events in class C1, 38.5% in class C2, 60.5% in class C3 and 0.6% 

in class C4. To avoid zero probability, since (2) is a multiplication, we always introduce 

 
Fig. 1. Predefined data classes. 
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an offset of one in the counting process. This is a similar process used in text classifi-

cation through NB [8]. Taking into consideration that the 60 cases correspond to trips 

performed by car, in the calculation of the average of these values we reached the value 

of 0.5% for P(C1|TM1). From other values of the training set we have P(C1|TM2) = 10% 

(this is higher because of the waiting time at bus stations, where the user is immobile, 

which means that C1 events are being collected), P(C1|TM3) = 95%, P(C1|TM4) = 91%, 

P(C1|TM5) = 15%, P(C1|TM6) = 5%, and P(C1|TM7) = 2%. This collection process with 

the class identification allows the determination of the transportation mode because 

some events are characteristic of some transportation modes in particular. For example, 

events in the C1 class are common in railroad or underground transportation, which 

implies very smooth changes in Z-axis acceleration. On the other hand, if we have the 

majority of events in class C4, this indicates a motorcycle or a boat. Meanwhile, the 

study of the acceleration shape allows differentiating the boat from the motorcycle. C3 

means several speed limitation bumps or potholes in the road in a vehicle or bus. Again, 

through the pattern of acceleration, it is possible to distinguish a pothole from a speed 

bump. Acceleration data from the X-axis (C8 and C7 classes) can be helpful to identify 

aggressive or drunk drivers. 

Speed information from GPS is used to differentiate among walking, bicycling, boat, 

and other transportation modes. Periodic stops are used to differentiate among car/mo-

torcycle and underground, bus or train. Motorcycle is better discerned from car trans-

portation in high traffic periods, because the average speed is higher and the position 

pattern is different. In order to distinguish metro from train, we use the following heu-

ristics: (1) Underground usually runs below ground without a GPS signal; (2) Distances 

Table 1. Sample of data training set with three transportation modes.  

All values represent number of events after the second process.  

Data Class Car (12 km) Bus (7.5 km) Metro (2.3 km) 

C1 23 314 2313 

C2 2111 1350 112 

C3 3312 4175 2 

C4 34 65 0 

C5 3402 3603 967 

C6 1501 2421 1223 

C7 425 165 121 

C8 126 6 0 

C9 9 454 367 

C10 390 420 8 

C11 1234 1242 634 

C12 1476 1580 1021 

C13 1021 1374 32 

C14 521 412 53 

C15 631 556 41 

C16 254 2860 430 

C17 532 642 267 

C18 264 1210 412 

C19 1375 1340 810 

C20 96 0 0 



between stops in underground transportation are usually smaller; (3) Altimetry infor-

mation. Given the sensor information and GPS traces, we predict the transportation 

mode among the available modes. This is done calculating the probability P(TMj|Dk), 

with (j = 1,…7) and (k = 1,…20), and choosing the highest value. Table 2 presents 

performance results in a confusion matrix. Results are available using 6 month data in 

more than 2500 recorded mobility experiences. From this data we used 250 for training 

purposes and evaluated 500 cases based on precision measurement (number of correct 

cases classified for that transportation mode divided by the transportation mode cases 

available). We achieved high precision identification values for walking (97%) and car 

(95%), having lower values for train (70%) and underground (72%). In 24% of cases 

there was a classification change from underground to train. 

4 User Mobility Patterns 

Other knowledge that can be extracted from the collected mobile device sensor data is 

related with the information of the distinct locations where the users spend their time 

throughout the day (e.g., home, work, shopping centers, restaurants, etc.). From the data 

that we have collected, we are particularly interested in identifying locations where 

people spend a great deal of time, and associating these locations with in-formation 

about the environment, obtained from geographic information system data sources. We 

have all GPS data and time stored in a user mobility profile, in a cloud database, with 

the information about time and routes (XML graph with time and GPS coordinates). It 

is possible to present the route representation for that month with associated infor-

mation of the transportation mode, the number of times the route was performed, and 

also the temporal periods. Thus, it is possible to represent the time that a user spent in 

each location. User mobility profile is stored in central server. Based on the information 

shown in Fig 2, it is possible to produce a monthly invoice. 

5 Mobility Invoice System 

Presently, carbon footprint is the most popular measure of environmental impact, and 

it is used to refer the amount of greenhouse gas emissions that are produced during the 

mobility process of a user. Using the knowledge discovery of transportation mode de-

Table 2. Confusion matrix for the transportation mode identification. 

 TM1 TM2 TM3 TM4 TM5 TM6 TM7 
TM1 95% 3% 1% 0% 0% 0% 1% 

TM2 3% 89% 3% 2% 1% 0% 2% 

TM3 1% 3% 70% 24% 1% 0% 1% 

TM4 0% 2% 24% 72% 1% 1% 0% 

TM5 0% 1% 1% 1% 97% 0% 0% 

TM6 0% 0% 0% 1% 0% 82% 17% 

TM7 1% 2% 1% 0% 0% 17% 79% 



tection and associated distances, we are able to generate a monthly report with the as-

sociated CO2 emissions (see Fig. 3), where a price per km is defined for each transpor-

tation mode [9][10]. From the tracking of user movements, it is possible to improve 

public transportation routes and timing. Our intention is to show an important output, 

which is a result of the passive data collection from mobile devices, and the consequent 

application of knowledge discovery to sustainable transportation. It is possible to de-

velop a suggestion system to reduce this invoice and, consequently, reduce the CO2 

emissions in the city. This reduction can be achieved based on: (1) Carpooling system 

to reduce car usage; (2) Public transportation information integration [11]. For this pur-

pose, a mobile application, developed based on current user position and taking into 

account the user habits (past route performed), provides personalized advice to go from 

current position to final destination based on public transportation availability (user 

  

Fig. 2. User movement in a monthly period and associated transportation mode. 

 

Fig. 3. Example of a mobility invoice, based on transportation mode identification 

and associated distance. 
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receives route and scheduling information). An example of a mobility invoice is 

showed in Fig 3, where users travel distance by transportation mode are used to get a 

value, related with CO2 emissions price based on values identified in Fig 4. 

6 Mobility Advisor to Reduce the Carbon Footprint 

The main idea is to provide advice to reduce the carbon footprint based on historical 

user mobility data, through the matching of this data with public transport services us-

ing the information of available routes and schedules. This approach can be comple-

mented with data integration of different information sources, such as: car and bike 

sharing systems [11][12] and also carpooling [13]. These systems are important to the 

growing interest of the sustainable transport systems, and to reduce the growth of en-

ergy use, noise, air pollution and traffic congestion, due to a decrease in the number of 

cars and to an increase in the shared use of electric or low pollutant vehicles. Also, bike 

sharing systems permit door-to-door ride features and allow to access areas of the city 

that are forbidden for other kind of vehicles. Also, the integration of public transporta-

tion data can be used as complement. Through previous work, we integrate the access 

to several public transportation databases using a semantic approach described in [13] 

and the START project [http://www.start-project.eu], where the integrated information 

available in mobile devices increases the usage of public transportation among different 

experiences in European project partners (England, France, Spain and Portugal). With 

this, it is possible to have information about the schedule and the price of public trans-

portation. With this information in a previous project we build a route planner that in-

tegrates routes and public transportation [11]. 

 
Fig. 4. Identification of the price per km of CO2 emissions 

based on transportation mode. 
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7 Conclusions 

Tracking of user activity and associated mobility is now possible at low costs through 

the use of mobile device sensor information. The data generated using this approach is 

in the class of big data and has great impact in the study of user mobility habits. . In 

this work we show the application of this approach to the tracking of user mobility in a 

city through the identification of the used transportation modes, routes and times. This 

information can be transformed in an informative CO2 invoice, which allows users to 

be aware of their carbon footprint. Along with that, associated measures and sugges-

tions to reduce this invoice are then provided. With a considerable number of users, this 

passive tracking of data from citizens could generate useful data about mobility habits 

and be used to improve the citizens’ mobility. Moreover, public transport operators can 

use the processed data to improve their transportation offers towards the users’ needs. 
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