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that heralds the most discoveries, is not "Eureka!" but 

"That's funny..." 

(Isaac Asimov) 
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ABSTRACT 

Even though the introduction of biomaterials in modern medicine has been crucial in restoring 

body function and quality of life, all biomaterials are prone to be colonised by microorganisms, 

representing, therefore, niches for infection in vivo. These biomaterial-associated infections (BAI) 

are often associated to the biofilm mode of growth, in which bacteria encase themselves in a self-

produced hydrated matrix of extracellular polymeric substances (EPS), conferring them protection 

against the host immune system and antibiotic treatment. Since bacterial adhesion to the surface 

of a biomaterial is a crucial step in BAI pathogenesis, surface modification of biomaterials to 

impart them with the ability to resist bacterial colonisation represents the most potential 

approach to fight these infections. Considerable advances in the field of antibacterial coatings 

have been occurred, but few biomaterials have been designed that effectively reduce the 

incidence of BAI. Therefore, the key goal of this thesis was to propose an effective coating 

strategy to impart biomaterials with the ability to prevent bacterial adhesion and simultaneously 

kill the adherent ones, with low propensity for developing bacterial resistance and with absence 

of adverse effects on the interaction with mammalian cells. Antimicrobial peptides (AMP) and 

enzymes targeting different EPS were the compounds chosen as antimicrobials alternatives to be 

immobilized onto biomaterial surfaces.  

Compounds immobilization was performed using a facile mussel-inspired adhesive coating 

strategy in which materials were immersed in a solution containing dopamine and the 

compounds together (1-step approach immobilization), or materials were immersed in an 

alkaline solution of dopamine to form a thin layer of polydopamine (pDA) and then transferred 

into a solution containing the AMP and/or enzymes (2-step approach immobilization). Mono and 

bi-functional coatings were physically characterized in what concerns their morphology, 

wettability, surface composition and roughness. Scanning electron microscopy and atomic force 

microscopy showed that the presence of pDA increased the surface roughness of both 

polydimethylsiloxane (PDMS) and polycarbonate materials, while the measuring of water contact 

angles showed a decrease on the hydrophobicity characteristic of these materials. Further 

functionalization with AMP or enzymes yielded surfaces with similar morphology or a more 

homogeneous coating, when a 2-step or 1-step approach immobilization was performed, 

respectively. Their antimicrobial and anti-adhesive performance as well their cytotoxicity were also 

evaluated.   

A screening with several AMP more traditional and natural such as polymyxins B and E, as well 

as analogues peptides more active and stable such as Palm and Camel was performed. AMP 

proved to be good alternatives to antibiotics as they were able to compromise biofilm formation at 

similar range concentrations to inhibit planktonic growth. Polymyxins B and E were more effective 

against Pseudomonas aeruginosa while Camel and Palm were more promising against 

Staphylococcus aureus. Polymyxin E potential was further demonstrated after its physical 

adsorption onto polystyrene surfaces as it proved to impair biofilm formation and increase P. 

aeruginosa biofilms susceptibility to antimicrobial treatment.  

Peptides immobilization was afterwards optimized using the pDA-based approaches. 

Immobilization of polymyxins B and E onto PDMS rendered the surfaces with antimicrobial 
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activity towards the Gram-negative bacteria P. aeruginosa and showed great potential to 

overcome some concerns associated to bacterial resistance and toxicity reported in the past for 

these compounds when in solution. Palm was, however, the AMP chosen to design bi-functional 

coatings as its immobilization rendered PDMS with effective antimicrobial activity against both 

Gram-negative and Gram-positive bacteria, especially against the Gram-positive ones, the most 

commonly found associated to BAI.  

The immobilization of different enzymes (alginate lyase, lysozyme, proteinase K and DNase I) was 

afterwards optimized and results showed that catechol chemistry allowed their grafting without 

compromising their catalytic activity. DNase I was the enzyme chosen for further investigations 

because exhibited the best anti-adhesive features against a wider spectrum of bacterial strains. 

Once established the AMP and enzyme with most promising features, their co-immobilization was 

optimized in order to impart PDMS surfaces with potent antimicrobial and anti-adhesive 

properties against the adhesion of several strains of P. aeruginosa, S. aureus  and 

Staphylococcus epidermidis as single and dual-species, with excellent stability and no cytotoxicity. 

To better discriminate co-adhesion of both species on modified surfaces, PNA FISH 

(Fluorescence in situ hybridization using peptide nucleic acid probes) was also employed, and 

results showed that P. aeruginosa was the dominant organism, with S. aureus adhering 

afterwards on P. aeruginosa agglomerates. The fate of bacteria that managed to adhere to the 

proposed bi-functional coatings was also investigated and results showed that bacteria were more 

susceptible to antibiotic treatment and to macrophages phagocytosis, without developing 

bacterial resistance towards the immobilized AMP.  

In conclusion, a facile and non-toxic mussel-inspired adhesive coating strategy was applied to co-

immobilize Palm and DNase I onto biomaterial surfaces without compromise their activity and 

rendering the surfaces with good antimicrobial, anti-adhesive and anti-biofilm features together 

with no cytotoxicity and no propensity for developing bacterial resistance. This coating strategy 

holds, therefore, great potential to be further explored in the design of biomaterial implants and 

devices to combat BAI.      
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RESUMO 

Ainda que a introdução de biomateriais na medicina atual tenha sido fundamental para 

recuperar funções do corpo humano comprometidas e melhorar a qualidade de vida em geral, 

todos eles são propensos a ser colonizados por microrganismos, constituindo, desta forma, 

nichos para infeção in vivo. As infeções associadas a biomateriais (BAI) estão frequentemente 

associadas a biofilmes, estruturas biológicas nas quais as bactérias se envolvem numa matriz 

hidratada de substâncias poliméricas extracelulares (EPS) por elas produzida, que lhes confere 

proteção contra o sistema imunitário do hospedeiro e tratamentos com antibióticos. Uma vez 

que a adesão bacteriana à superfície de um biomaterial desempenha um papel crucial na 

patogénese de BAI, a modificação de superfícies para as dotar de capacidade de resistir à 

colonização bacteriana representa a abordagem mais promissora para combater estas infeções. 

Nos últimos anos tem-se assistido a grandes avanços na área dos revestimentos antibacterianos, 

contudo, são ainda poucos os biomateriais concebidos que efetivamente reduzem a incidência 

de BAI. A presente tese teve como objetivo principal propor uma estratégia de revestimento 

capaz de eficazmente dotar os biomateriais com características de prevenção da adesão 

bacteriana e, simultaneamente, com capacidade para matar bactérias que eventualmente 

consigam aderir, e sem potencial para desenvolver resistência bacteriana ou citotoxicidade. Os 

compostos selecionados como alternativos aos antibióticos para serem imobilizados em 

biomateriais foram péptidos antimicrobianos (AMP) e enzimas que atuam em diferentes EPS. 

A imobilização dos compostos foi efetuada recorrendo a uma estratégia de adesão inspirada em 

mexilhões, seguindo duas abordagens: numa, os materiais foram colocados numa solução 

contendo simultaneamente dopamina e os compostos a imobilizar (abordagem de imobilização 

num passo); noutra, os materiais foram incubados primeiramente numa solução alcalina de 

dopamina, para formar um filme fino de polidopamina (pDA), e depois transferidos para uma 

solução contendo AMP e/ou enzimas (abordagem de imobilização em 2 passos). Os 

revestimentos mono e bi-funcionais foram caracterizados fisicamente no que diz respeito à sua 

morfologia, molhabilidade, composição atómica da superfície e rugosidade. A microscopia 

eletrónica de varrimento e microscopia de força atómica demonstraram que a presença de pDA 

aumentou a rugosidade da superfície do polidimetilsiloxano (PDMS) e do policarbonato, 

enquanto a medição dos ângulos de contacto da água demonstrou uma diminuição da 

hidrofobicidade característica destes materiais. A funcionalização posterior com AMP ou enzimas 

gerou superfícies com morfologia semelhante ou com um revestimento mais homogéneo 

mediante a realização de uma abordagem de imobilização em 2 ou num passo, respetivamente. 

Os materiais funcionalizados foram também avaliados em termos do seu desempenho 

antibacteriano e citotoxicidade.  

Um primeiro estudo para averiguar o potencial antimicrobiano de uma série de AMP mais 

tradicionais e naturais como as polimixinas B e E, bem como péptidos análogos mais estáveis e 

potentes, como o Palm e Camel, demonstrou que estes constituem uma alternativa aos 

antibióticos uma vez que foram capazes de comprometer a formação de biofilme quando 

utilizados em concentrações semelhantes às necessárias para inibir o crescimento planctónico. 

As polimixinas B e E foram mais eficazes contra Pseudomonas aeruginosa enquanto o Camel e o 
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Palm foram mais promissores contra Staphylococcus aureus. O potencial da polimixina E foi, 

ainda, demonstrada após a sua adsorção física em superfícies de polistireno, ao comprometer a 

formação de biofilme de P. aeruginosa e ainda promover a sua suscetibilidade a tratamentos 

antimicrobianos posteriores.  

A imobilização dos AMP foi posteriormente otimizada usando estratégias baseadas na pDA. A 

imobilização de polimixinas B e E em PDMS conferiu a esta superfície atividade antimicrobiana 

contra a bactéria Gram-negativa P. aeruginosa e evidenciou o carácter promissor da sua 

utilização, uma vez que foram superados problemas relacionados com o desenvolvimento de 

resistência e toxicidade associados a estes AMP quando usados em solução. Palm foi, contudo, 

o AMP selecionada para manufaturar os revestimentos bi-funcionais dado que a sua imobilização 

conferiu ao PDMS atividade antimicrobiana contra bactérias Gram-positivas e Gram-negativas, 

sendo mais relevante contra as Gram-positivas, as mais frequentemente associadas a BAI.  

A imobilização de várias enzimas (alginato liase, lisozima, proteinase K e Dnase I) foi também 

otimizada, tendo-se demonstrado que a imobilização baseada na pDA não comprometeu a sua 

atividade catalítica. A DNase I foi a enzima que exibiu melhores propriedades anti-adesivas 

contra um espectro mais alargado de estirpes bacterianas, tendo por isso sido selecionada para 

a investigação de revestimentos bi-funcionais. Uma vez estabelecido o AMP e a enzima com as 

caraterísticas mais promissoras, otimizou-se a sua co-imobilização de modo a conferir às 

superfícies de PDMS atividades antimicrobianas, anti-adesivas e anti-biofilme contra a adesão de 

várias estirpes de P. aeruginosa, S. aureus and Staphylococcus epidermidis, de forma isolada ou 

em consórcios de duas espécies, com excelente estabilidade e sem citotoxicidade. A hibridação 

fluorescente in situ combinada com moléculas de ácido péptido-nucléico (PNA FISH) foi ainda 

utilizada para a discriminação dos microorganismos nos consórcios polimicrobianos. Foi possível 

observar que a P. aeruginosa foi o organismo dominante no cosnsórcio, com S. aureus a aderir 

aos aglomerados de P. aeruginosa. A suscetibilidade das bactérias que eventualmente consigam 

aderir aos revestimentos propostos foi também investigada tendo-se mostrado que estas 

bactérias foram mais sensíveis ao tratamento com antibióticos e à fagocitose levada a cabo por 

macrófagos, sem desenvolverem resistência bacteriana em relação ao AMP imobilizado.  

Em conclusão, a estratégia de adesão inspirada em mexilhões aplicada para, de forma simples e 

não-tóxica, co-imobilizar um AMP e uma enzima em biomateriais não comprometeu a sua 

atividade e dotou as superfícies de PDMS com propriedades antibacterianas relevantes e sem 

indícios de desenvolvimento de citotoxicidade e de resistência bacteriana. Estes revestimentos 

apresentam um grande potencial para o desenvolvimento de biomateriais capazes de resistir 

efetivamente a BAI. 
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THESIS PREAMBLE 

CONTEXT AND MOTIVATION 

Modern medicine has achieved great advances with the introduction of biomaterials to support or 

restore human body function. It has been estimated that the number of total hip replacements in 

the world is approximately one million a year, while the number of knee replacements is more 

than 250 000. A major problem emerging from the increasing use of biomaterial implants and 

medical devices is BAI. Microorganisms are able to reach the surface of a biomaterial, adhere to 

it and form a so-called biofilm, a microconsortia of surface adhering cells enclosed in a self-

produced matrix of EPS. BAI are extremely difficult to treat, as this biofilm mode of growth offers 

protection against the host immune system and antibiotic treatment. Surface modification of 

biomaterials to impart them with the ability to resist or prevent bacterial adhesion represents the 

most potential approach to fight BAI and several strategies have been proposed in the last few 

years. However, most of the current strategies presents some important limitations, including the 

emergence of multi-drug resistant bacteria and toxicity concerns. In addition, most of techniques 

reported for their formulation require complex, labor and time-consuming techniques as well as 

the usage of organic solvents which may affect the integrity of biomaterials. Another important 

aspect to be resolved is the accumulation of dead bacteria on the antimicrobial coatings. These 

bacteria may allow the adhesion of other bacteria which can promote more bacterial 

accumulation on the surface, reducing its antimicrobial activity over time. Anti-adhesive coatings, 

alone, are not able to completely prevent bacterial adhesion. Therefore, an ideal antibacterial 

coating should combine the strengths of both strategies: to kill bacteria and simultaneously 

prevent the fouling of proteins and bacteria in the surface. Furthermore, this ideal coating should 

be prepared using a facile and non-toxic approach. In the search for alternative compounds to be 

immobilized onto biomaterial surfaces and render them with both antimicrobial and anti-adhesive 

properties, protein-like antibacterial agents have been recently recognized as promising 

candidates. This class of compounds includes peptides whose mode of action involves 

electrostatic interaction with bacterial membranes with subsequent disruption of membrane's 

structural stability (AMP) and enzymes that target bacterial surface or biofilm matrix components.  
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RESEARCH AIMS 

The ultimate goal of the present thesis was to optimize the co- immobilization of AMP and 

enzymes, using dopamine chemistry, in order to design a simple and effective coating strategy 

able to simultaneously prevent bacterial adhesion and kill the adherent ones, with low propensity 

for developing bacterial resistance and adverse effects towards mammalian cells (Figure 1). It 

was hypothesized that degradation of biofilm matrix components such as polysaccharides and 

proteins using matrix-disrupting enzymes, will affect bacterial adhesion to the surfaces, delaying 

biofilm establishment and enhancing bacterial susceptibility to other antimicrobials such as AMP. 

The aims of this thesis were: 

1. Screening the antimicrobial activity of different AMP in order to establish which 

immobilization renders biomaterial surfaces with the effective ability to kill adherent bacteria.   

2. Screening the anti-adhesive and/or antimicrobial activity of enzymes targeting different 

bacterial surface components or biofilm EPS in order to establish which immobilization is able to 

prevent bacterial adhesion.  

3. Combine the most promising AMP and enzyme to create a bi-functional coating able to 

prevent bacterial adhesion and subsequent biofilm establishment, with low propensity for 

developing bacterial resistance and toxicity.  

 

Figure 1. Schematic representation of the main goal of the present thesis: use dopamine chemistry to co-

immobilize AMP and enzymes to confer both antimicrobial and anti-adhesive properties to biomaterial 

surfaces with low propensity for bacterial resistance and toxicity towards mammalian cells (not to scale).  
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OUTLINE OF THE THESIS 

The present thesis reports the research work performed at Centre of Biological Engineering, 

University of Minho, Braga, Portugal and at Messersmith Research Group, Northwestern 

University, Evanston, USA, under the supervision of Professor Doctor Maria Olívia Pereira and 

Professor Doctor Phillip Messersmith, respectively.  

This thesis is organized in six chapters that cover the research aims aforementioned. The first 

chapter summarizes the state-of-the-art on surface modification strategies aimed to control BAI, 

with a special focus on the potential of two bio-inspired compounds, AMP and enzymes. It is also 

reviewed the principles of catechol chemistry as a promising approach for materials modification.  

Chapter 2 describes the microorganisms, culture conditions, materials and techniques used 

throughout this PhD project as well as the rationale beyond it. Chapter 3 is dedicated to the 

screen and optimization of AMP immobilization. After evaluating their antimicrobial activity in 

solution (Chapter 3.1) and when physically adsorbed onto surfaces (Chapter 3.2) the most 

promising AMP were immobilized onto PDMS (Chapters 3.3 and 3.4). In Chapter 4, enzymes 

targeting different EPS were immobilized onto surfaces to determine the most efficient one to 

prevent bacterial adhesion. Chapter 5 describes the co-immobilization of the most promising 

AMP and enzyme as well as their physical and biological characterization. Finally, the main 

conclusions are presented in Chapter 6 and clues for future work are also suggested.  
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ABBREVIATIONS AND ACRONYMS 

A450 Absorbance at 450 nm 
A490  Absorbance at 490 nm 
A570  Absorbance at 570 nm 
A640  
AL 

Absorbance at 640 nm 
Alginate lyase 

AFM  Atomic Force Microscopy 
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ATCC  American Type Culture Collection 
BAI  
BSA 
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Biomaterial-associated Infection(s) 
Bovine serum albumin 
Ciprofloxacin 
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CFU  Colony Forming Unit 
CV  Crystal violet 
DAPI  4`, 6-diamidino-2-phenylindole 
DMEM  Dulbecco's Modified Eagle's Medium 
DNA  Deoxyribonucleic acid 
DNase I  Deoxyribonuclease I 
eDNA extracellular DNA 
EPS  Extracellular polymeric substances 
et al.  (et ali) and others 
FBS  Foetal Bovine Serum 
FISH  Fluorescence in situ hybridization 
HAI  Healthcare associated infections 
HCl  Hydrogen chloride 
kHz  Kilohertz 
LbL  Layer-by-layer 
log  logarithm with base 10 
LPS  Lipopolysaccharides 
M  Molar 
MBC  Minimum bactericidal concentration 
MHB Mueller Hinton Broth 
MIC  Minimum inhibitory concentration 
MTS  (3-(4, 5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)- 2H-tetrazolium) salt 
NaCl Sodium chloride 
nm Nanometre 
nM  Nanomolar 
PB  Polymyxin B 
PBS  Phosphate buffered saline 
PC  Polycarbonate 
pDA  Polydopamine 
PDMS  Polydimethylsiloxane 
PE  Polymyxin E 
PEG poly (ethylene) glycol 
pH  potential hydrogen 
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PMA  Phorbol 12-Myristate 13-Acetate 
PMMA  poly (methyl methacrylate) 
PMS  Phenazine methosulfate 
PNA Peptide nucleic acid 
PNAG  poly-N-acetylglucosamine 
QAC Quaternary ammonium compound(s) 
rRNA  ribosomal ribonucleic acid 
rpm  revolutions per minute 
RPMI  Roswell Park Memorial Institute medium -1640 
RT  Room Temperature 
SD  Standard deviation 
SEM  Scanning electron microscopy 
TAE Tris-acetate-EDTA buffer 
TSA  Tryptic soy agar 
TSB  Tryptic soy broth 
UP  Ultrapure 
UV  Ultra violet 
v  Volume 
w  Weight 
XPS  X-ray photoelectron spectroscopy 
XTT  2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 

inner salt 
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(pDA) and pDA-coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-
Palm) and both DNase and Palm (pDA-MIX) after being subjected to no treatment (black) or 
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CHAPTER 6 CONLUDING REMARKS AND WORK PERSPECTIVES 
 
Figure 1. Schematic representation of the work conducted in the present thesis to design a bi-
functional coating. Antimicrobial functionality was conferred by AMP immobilization and mono-
functional coatings proved to be stable for up to 5 days, with no development of bacterial 
resistance or cytotoxicity and enhanced susceptibility to antibiotic treatment. Anti-adhesive 
properties were imparted by enzyme immobilization without compromising their biological 
activity and no cytotoxicity. These coatings failed, however, in preventing biofilm 
establishment. Co-immobilization with both compounds yielded a bi-functional coating 
combining the properties of mono-functional coatings alone. The role of host immune system 
was also evaluated on these coatings (not to scale).  
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Chapter1 

INTRODUCTION 

This chapter provides a general outline on surface modification methodologies aimed to control 

BAI, giving examples of desirable surface properties and the approaches that have been used to 

obtain these features. Two bio-inspired compounds, AMP and enzymes targeting EPS, as a 

promising and viable alternative to conventional antibiotics, are also presented. Finally, the 

relevance of catechol chemistry for the design of adhesive coatings that can serve as a platform 

for further functionalization of biomaterials with different antibacterial agents is mentioned.  
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BIOMATERIAL-ASSOCIATED INFECTIONS 

Modern healthcare is strongly dependent on the use of biomaterial implants and medical devices, 

such as heart valves, catheters, stents, arthoprostheses and fracture fixation devices. Their 

introduction into medical practice was responsible not only for a better quality of life but also for 

patient survival [1]. It is estimated that every person will require some implant procedure during 

his/her lifespan [2]. There are, however, some drawbacks associated to their use as they 

constitute a main source of healthcare associated infections (HAI). Just in 2002, the number of 

nosocomial infections in USA hospitals were approximately 1.7 million, of which almost 100 000 

cases resulted in death [3]. The costs associated with HAI were estimated to range from 28-45 

billion dollars per year and more than half of these infections are associated with medical devices 

and implants [4,5]. 

Upon implantation, the fate of a biomaterial can be described as a race between its integration 

into the surrounding tissue and bacterial adhesion to its surface [2,6]. For a successful 

implantation, tissue integration must occur prior to bacterial adhesion, thereby preventing 

bacterial colonization at the implant. Conversely, if the race is won by bacteria, the implant 

surface will become rapidly covered by a biofilm [2,7], a microconsortia of surface adhering cells 

encased in a self-produced matrix of EPS [8]. This extracellular matrix, which is mainly comprised 

of water, polysaccharides, proteins and extracellular DNA (eDNA), makes biofilms the most 

successful forms of life on earth as it provides mechanical support, mediates cell-cell and cell-

surface interactions and acts as a protective barrier [9].  

There are different routes through which bacteria can reach the surface of a biomaterial and 

cause BAI [2,7]. The most common source of infection (perioperative contamination) is the direct 

contamination of the biomaterial implant during its insertion by bacteria present in the ambience 

of the operating room or by bacteria that normally populate the skin [10]. Contamination can also 

occur after implantation (postoperative contamination), during the period of hospitalization, 

caused by direct contamination of open wounds or by the use of invasive devices like catheters or 

drains. A third possible source of infection, but less likely to occur, is late hematogenous 

contamination that appears months or years after surgery, when bacteria from local infections 

elsewhere in the body are spread through the blood, reaching a biomaterial surface. 

Hematogeneous spreading of bacteria may result from skin infections, surgical or dental 

interventions, pneumonia, abscesses or bacteraemia [11].  Although the levels of bacteria found 
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in hospital settings have been reduced by the use of aseptic surgical techniques, microorganisms 

are still found at the site of approximately 90 % of all implants [12,13]. The most common 

pathogens implicated in BAI include yeasts (Candida species), Gram-positive (S. aureus, S. 

epidermidis, Enterococcus faecalis, Streptococcus viridans) and Gram-negative (Escherichia coli, 

Klebsiella pneumoniae, Proteus mirabilis and P. aeruginosa) bacteria (Table 1). Many of these 

microorganisms can be found in the skin of patients and clinicians (S. epidermidis and S. 

aureus), in the water (E. coli and P. aeruginosa) or in equipment that was not properly cleaned 

and sterilized [14].  

The occurrence of BAI is greatly affected by the location of a device in the body. Medical devices 

can be either totally external to the body and in contact with the surface of epidermis or mucosal 

membranes, percutaneous or permucosal and, thus, breaching epithelial or mucosal membranes 

barriers, or totally internal [15]. For instance, devices in contact with the outer part of the body 

such as urinary tract catheters or endotracheal tubes are readily reached by microorganisms and 

consequently have a higher incidence of BAI than totally internal implants (Table 1). 

Biofilm formation on biomaterial surfaces (Figure 1) is a developmental process which includes 

the following main steps: i) transport of bacterial cells to the surface and their initial and 

reversible adhesion, ii) irreversible attachment, iii) microcolony formation, iv) biofilm maturation 

and differentiation and v) cell detachment with propagation of infection [16]. Once implanted, the 

biomaterial surface is first covered with a layer mostly composed of proteins (fibronectin, 

vitronectin, fibrinogen, albumin and immunoglobulins), a so called conditioning film, which play a 

role on bacteria-surface interactions [17]. In a first stage, bacteria and surface protein 

interactions are mediated by weak attraction forces, such as Van der Waals and electrostatic 

charges, being afterwards strengthened by specific interactions involving bacterial adhesion 

proteins [18,19] and EPS production. Adhering bacteria can grow and divide, forming 

microcolonies that are considered the basic organizational units of a biofilm. Entrapment of other 

planktonic bacteria in the extracellular matrix also occurs, resulting in a multi-layered and mature 

biofilm. Once established, biofilms are less susceptible to antimicrobial treatment and to the host 

immune system than their planktonic counterparts [20], making BAI extremely difficult to treat. 

As a consequence, the fate of an infected implant device is often its surgical removal, leading to 

considerable costs for healthcare system, patient suffering, prolonged hospitalization and even 

death [21]. 
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Figure 1. Schematic representation of the steps involved in biofilm formation on a biomaterial surface: 

transport to the surface and initial and reversible adhesion of cells (1), irreversible attachment (2), 

microcolony formation (3), maturation and differentiation of biofilm (4) and dispersal of single cells from 

the biofilm (5). 
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Table 1. Incidence and causative agents of infections associated with commonly used medical devices and implants. 

Implant/device 
classification 

Examples Material Commonly causative microorganism 
Associated disease or 

outcomes 
Infection 
incidence 

Ref 

Superficial Wound dressings 

Gauzes 
Hydrogels 
Alginate 
Collagen 

Staphylococcus aureus 
Pseudomonas aeruginosa 

Healing complications 
Chronic infection 

1-5% 
[6,22, 
23] 

Intracorporeal 

Contact lenses Silicone hydrogel 
Staphylococcus spp 

P. aeruginosa 
Microbial keratitis 
Peripheral ulcer 

0.6% [15,24] 

Urinary catheters 
 

Silicone 
Latex 

Escherichia coli 
Klebsiella spp 

Serratia spp Citrobacter spp 
P. aeruginosa 

Coagulase Negative Staphylococci 
(CNS) 

Enterococcus spp 

Blockage from thick films 
Catheter-associated 

bacteriuria 

10-20% 
33% 

[14,25] 

Dialysis 
equipment 

Polycarbonate 
Silicone 

Staphylococcus spp 
Pseudomonas spp 

Vascular access-related 
infections peritonitis 
endotoxin exposure 

24% [15] 

Permucosal Dental implants 
Titanium 
Zirconia 

Streptococcus spp 
Butyrivibrio spp, Campylobacter spp 
Peptococcus spp, Actinomyces spp 

Peri-implant 
mucositis and peri-

implantitis 
6.9% [15,26] 

Totally internal 

Joint prosthesis 
Titanium 

Stainless steel 
CNS 

S. aureus 
Infection 

1% (hip 
prosthesis) 
0.7% (knee 

replacement) 

[27] 

Mammary 
prosthesis 

Silicone 
S. aureus 

Streptococcus spp, CNS 
Propionibacterium spp 

Infection 1-2.5% [28] 
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TRENDS IN SURFACE MODIFICATION TO CONTROL BAI 

In the last years, great efforts have been devoted to address the problem of BAI. When a BAI is 

established the main goals involve to cure the infection, prevent its recurrence, preserve body 

function and reduce the risk of death. In some cases, these goals can be achieved with 

prophylaxis in the form of systemic administered antibiotics, mainly vancomycin, often in 

combination with rifampicin [29]. However, because bacteria in biofilms are more resistant to 

antimicrobial agents, routine antibiotic treatments are often unsuccessful and may be followed by 

surgical removal of the primary and insertion of a secondary implant. For many implants, 

especially those in contact with the circulatory system, removal of the implant is dangerous and a 

high mortality is associated with these infections.  [5,30]. A more desirable option to fight BAI 

relies, therefore, on the development of materials able to resist microorganisms’ colonisation in 

first place. In the past, basic material parameters, such as material composition, were explored 

to control device infections which was performed by introducing an antimicrobial agent such as 

silver throughout the bulk of the material [31,32]. Although this approach ensures the long-term 

antimicrobial effect of materials, adding the antimicrobial agent may negatively interfere with the 

fundamental properties, stability and processability of the material. Alternatively, surface 

modification can be applied to existing biomaterials, with little impact on such bulk properties, 

often more cost and time effective and some of these strategies are summarized in Figure 2 [33].    

  

 

Figure 2. A schematic representation emphasizing different strategies designated to control biomaterial-

associated infections (adapted from [6,34]) (not to scale). 
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ANTI-ADHESIVE COATINGS 

As microbial adhesion to the surface of a biomaterial is the first step in biofilm formation and, 

therefore, a crucial step in BAI pathogenesis, several surface modifications have been developed 

to prevent bacterial adhesion at first place, the so-called anti-adhesive coatings. It has been found 

that controlling parameters such as hydrophobicity, surface roughness, electrostatic interactions 

and surface compliance can reduce bacterial adhesion to a surface [35]. For instance, it was 

reported that smooth surfaces attract fewer bacteria rather than rough or porous surfaces [36] 

and also that hydrophilic surfaces decreased bacterial adhesion in contrast to hydrophobic ones 

[37]. It is also well accepted that bacterial attachment on a biomaterial is facilitated by a layer of 

adsorbed protein, and thus surfaces that prevent non-specific interactions with the biological 

environment, namely the adsorption of proteins, also should resist the adhesion of bacteria [38]. 

Most of these surfaces are based on polymer brushes after their modification with hydrophilic 

polymers or oligomers [39].  A polymer brush is formed when hydrophilic polymer chains are 

end-grafted to a surface in a high packing density, forcing the polymer chains to stretch away 

from the surface. When in an aqueous medium, these hydrophilic polymer brush-coatings form a 

highly hydrated layer at the surface, which compression upon bacterial attachment results in an 

osmotic pressure and decreased mobility (conformational entropy) of the polymer chains in the 

brush. It performs, thus, as repulsive forces to prevent protein adsorption and bacterial adhesion 

on the surfaces. To prepare an efficient anti-adhesive brush-coating there are two critical 

parameters, the thickness and density of brush-coatings [40,41]. Polymers or oligomers based 

on the ethylene glycol repeat unit, such as poly (ethylene) glycol (PEG) are the most commonly 

used hydrophilic material to fabricate surfaces that resist bacterial adhesion [42].  Another 

strategy is based on biomimetic zwitterionic polymers which have an equimolar number of 

homogenously distributed anionic and cationic groups on their polymer chains [43]. For instance, 

Anagnostou et al. demonstrated that functionalized poly (methyl methacrylate) (PMMA) – based 

polymers inhibited more than 90 % of S. aureus adhesion compared to untreated surfaces [44]. 

Similarly, Cringus-Fundeanu et al. found a high reduction (70-92 %) in microbial adhesion to 

silicon wafers grafted with polyacrylamide brushes [45]. In addition, it was demonstrated that 

polymer brush-coatings may assist in preventing infection of implant surfaces after revision 

surgery, by reducing the number of bacteria adhering to a re-implanted biomaterial surface [46].  

These anti-adhesive coatings, however, do not completely prevent microbial adhesion and even 

the few bacteria adhering to a polymer brush have been demonstrated to be able to form a 
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weakly adhering biofilm [47]. Furthermore, anti-adhesive properties may be compromised after 

polymer brush-coatings exposure to physiological fluids due to surface overwhelming by 

continuous protein assault and coating degradation [48]. Traditional approaches to prepare most 

of these anti-adhesive coatings involve multiple steps and usage of different organic solvents [40]. 

All together, these issues have limited the clinical application of these strategies.  

 

ANTIMICROBIAL COATINGS 

Another strategy to prevent bacterial adhesion is the incorporation of active biocides that promote 

bacterial killing (Figure 2). These antimicrobial coatings can be further classified as exerting off-

surface effects (antimicrobial-releasing coatings), when antimicrobials are released from the 

surface to target planktonic cells, or on-surface effects (contact-killing surfaces), when the agents 

are directly immobilized on the surfaces to target attached cells [49]. 

ANTIMICROBIAL-RELEASING COATINGS 

Antimicrobial-releasing coatings are designed to kill bacterial cells before they come into contact 

with the implant surface. The advantage of these coatings over systemic drug delivery is that a 

high local dose can be administered without exceeding the systemic toxicity level. Also, as the 

overall antimicrobial dose in the body can remain low, it is possible to reduce the effects on 

healthy tissues and beneficial flora which increases patient comfort and simultaneously reduces 

the costs associated to follow-up care [50]. An important factor to take into account in the design 

of releasing coatings is the kinetics of the antimicrobial compound. A fast release may provide 

relatively high doses but short-term action while a slow release may not achieve the required 

therapeutic level and also induce bacterial resistance. An ideal release coating should provide the 

release of effective doses of antimicrobial agents over longer periods of time (weeks) at 

concentrations above minimum inhibitory concentration (MIC) [51].  

Among the antimicrobial agents commonly used to design these releasing-coatings, antibiotics 

and silver stand out for their excellent antibacterial activity. Several antibiotics including 

vancomycin, ciprofloxacin (CIP), clarithromycin, amoxicillin, tobramycin and gentamicin have 

been formulated as sustained-release delivery systems [52]. An important example of this design 

is antibiotic-releasing bone cements in which antibiotics including gentamicin, tobramycin and 

also vancomycin are loaded into bulk PMMA bone cement formulations intra-operatively, often 
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placed around total joint arthroplasties [53]. Although these coatings are efficient, there are some 

drawbacks associated to them. The overuse of antibiotics can induce multi-drug resistant bacteria 

[54] and if used to treat an infection, a second surgery may be required to remove the cement 

after complete antibiotic release.  

Apart from antibiotics, silver is a potent heavy metal which has been widely incorporated in 

releasing-coatings formulations. It is considered that silver has active antimicrobial effect only in 

the ionic form Ag+, instead of its metallic state, via different mechanisms: inhibiting membrane 

transport processes, blocking cell replication and disrupt cell metabolism. These effects result 

from silver ionic ability to bind to DNA and also to key thiol groups of metabolic enzymes of the 

bacterial electron transport chain, resulting in their inactivation [55]. Clinical development of 

antimicrobial resistance to silver to date is rare [56] which can be attributed to its multifactorial 

mode of action. Silver, in its ionic form, has demonstrated antimicrobial efficacy against a broad 

spectrum of microorganisms commonly found at implant sites such as P. aeruginosa, E. coli, S. 

aureus and S. epidermidis [57]. Although silver-based releasing coatings are effective in killing 

bacteria, its toxicity to the human body remains a concern. Some studies consider silver to be 

biocompatible [58,59] but it has also been shown that silver can damage eukaryotic cells and 

tissues and induce undesirable responses [60,61].     

CONTACT-KILLING SURFACES  

Given the drawbacks of antimicrobial-releasing coatings, covalent immobilization of antimicrobials 

offers an alternative approach that avoids exposure to leaching compounds and potentially 

increases the duration of antimicrobial efficacy [62]. Different compounds such as antibiotics, 

polymers, metallic and quaternary ammonium compounds (QAC) have been exploited to 

generate contact-killing antimicrobial coatings [63-66]. Although some of these strategies were 

appropriate for specific applications, there is a need for wide-spectrum antimicrobials able to 

prevent bacterial colonisation of biomaterials, with low cytotoxicity and propensity to develop 

bacterial resistance, and stable for long periods [67]. 

In the search for compounds meeting the aforementioned criteria, protein-like antibacterial 

agents have been recognized as promising candidates for the new generation of antibacterial 

surfaces [68]. This class of compounds include peptides which mode of action involves 

electrostatic interaction with bacterial membranes and disruption of membrane's structural 
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stability, called AMP [67,69], and proteins that degrade biofilm matrix components [70], called 

biofilm-dispersing enzymes or matrix-disruptive enzymes.  

 

 

AMP AND ENZYMES: PROMISING CANDIDATES AS COATING AGENTS  

ANTIMICROBIAL PEPTIDES: AN OVERVIEW 

AMP are a key component of the innate immune systems of most living organisms to protect 

them against invading microorganisms. So far, more than 2680 AMP have been reported in 

antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) and they have been 

isolated from a wide variety of sources, including animals (both vertebrates and invertebrates), 

plants, bacteria, fungi and viruses [71-73]. Despite their structural and functional diversity, these 

peptides have certain common properties such as containing highly cationic character, having 

the tendency to adopt amphipathic structures because of their substantial proportion of 

hydrophobic residues, and being directed to the cell membrane. AMP are classified based on 

their secondary structure as β-sheet peptides stabilized by two to four disulphide bridges (human 

α- and β-defensines, plectasin or protegrins), α-helical peptides (LL-37, cecropins or magainis), 

loop peptides formed from a single disulphide bridge (bactenecin) and extended structures rich in 

glycine, proline, tryptophan, arginine and/or histidine (indolicidin), with the first two classes being 

the most common in nature [74,75].  

As the first line of defence of animals and plants against invading pathogens, AMP exhibit 

important features that make them promising candidates for clinical applications and potential 

alternatives to conventional antibiotics. These features include ability to discriminate between 

host and microbial cells (cell selectivity); rapid mechanisms of action; activity against a wide 

spectrum of microorganisms, including resistant and multidrug resistant strains; and low 

propensity for developing microbial resistance [76]. AMP cell selectivity can be explained by the 

different composition and topological arrangement of the lipids of cytoplasmic membranes in 

prokaryotic and eukaryotic cells [77]. The outer leaflet of the membranes of animals and plants is 

exclusively composed of electrically neutral, zwitterionic phospholipids; most of the lipids with 

negatively charged head groups are segregated into the inner leaflet, facing the cytoplasm. In 

contrast, bacterial membranes contain large amounts of negatively charged phospholipid head 
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groups. The low propensity to develop microbial resistance and the fast killing exhibited by AMP 

can both be explained by their site of action and the bacterial membrane. A microorganism 

would have to redesign its membrane, changing the composition and/or organization of its lipids, 

which probably constitutes a "costly" solution for most of microbial species [78].  

The mechanisms of action of AMP have been widely studied and, in spite of being a topic 

subjected to some controversy [72,79], there is a structural model established by Shai-Matzusaki-

Huang [77,78, 80-82] that is generally accepted to explain the activity of most AMP [78]. In this 

model, it is proposed that cationic AMP are first attracted to bacterial surfaces by electrostatic 

interactions, followed by displacement of lipids, alteration of membrane structure and, in certain 

cases, entry of the peptide into the target cell. Once peptides have reached the cytoplasmic 

membrane they can interact with lipid bilayers. At low peptide/lipids ratios, peptides are bound 

parallel to the lipid bilayer. After a certain peptide threshold concentration is achieved [83], 

peptide molecules are oriented perpendicularly to the membrane and inserted into the lipid 

bilayer, forming transmembrane pores. Several models have been proposed to explain peptide 

insertion and membrane permeability, namely the "barrel-staves model", the "carpet model" and 

the "toroidal-pore model". In the first, peptides reorient perpendicular to the membrane and align 

(like the staves in a barrel) in a manner in which the hydrophobic peptide regions align with the 

lipid core region of the bilayer and the hydrophilic peptide regions align inward to form 

transmembrane pores [80,84]. These pores are proposed to allow leakage of cytoplasmic 

components and also disrupt the membrane potential.  In the "carpet model", peptides are 

electrostatically attracted to the anionic phospholipid head groups covering the surface of the 

membrane in a carpet-like manner. Once a saturation point is reached, peptides are thought to 

disrupt the bilayer in a detergent-like manner, eventually leading to the formation of micelles. This 

local disturbance in membrane stability will cause the formation of cracks, leakage of cytoplasmic 

components, disruption of the membrane potential and, ultimately, membrane disintegration. 

Finally, in the "toroidal-pore model", peptides insert into the membrane and then cluster into 

unstructured bundles that induce the lipid monolayers to bend continuously through the pore so 

that the water core is lined by the inserted peptides and the lipid head groups. The pores created 

will be responsible for leakage of ions and possibly larger molecules throughout the membrane. 

However, not all AMP seem to exert their action on membranes. Actually, an increasing number 

of peptides have been described as acting on intracellular targets in bacteria altering the 
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cytoplasm membrane septum formation, inhibiting protein, cell wall or nucleic acid synthesis 

[85]. 

As a consequence of host-pathogen interactions during evolution, bacteria have developed some 

mechanisms to resist peptides, such as efflux pumps, secreted proteases and alterations of the 

bacterial surface. Efflux pumps, such as QacA of S. aureus [86] and MtrCE system of Neisseria 

gonorrhoeae [87], are energy-driven systems that constantly export toxic substances out of the 

cell wall away from the membrane. Because of their low specificity, these efflux pumps are also 

able to accept cationic AMP as substrates [88]. Gram-negative bacteria reduce their susceptibility 

to AMP by the incorporation of positively charged aminoarabinose in lipid A, which reduces the 

anionic characters of the cell surface and thus the electrostatic interactions with cationic AMP 

[89]. Likewise, Gram-positive bacteria, which do not have lipid A, achieve the same purpose by 

transporting D-alanine from the cytoplasm to the surface techoic acids, reducing the net negative 

surface charges [90]. Since such mechanisms of resistance require considerable levels of energy 

from bacteria, most of these are subjected to gene regulation, ascertaining that they are only 

active when needed [91]. Nevertheless, hosts have also invented tricks to circumvent bacterial 

AMP resistance mechanisms such as the introduction of disulphide bonds or other 

posttranslational modifications aimed to stabilize AMP against proteolytic inactivation. 

Furthermore, it takes 30 passages for P. aeruginosa in sub-MIC peptide to increase its resistance 

by 2-to-4-fold [92], whereas under the same conditions, resistance to gentamicin can increase by 

190-fold [93].   

AMP also present some characteristics that have limited their widespread use in clinical 

applications. Their potential for toxicity, the cost and complexity of their synthesis constitute the 

main disadvantages. Furthermore, their susceptibility to be degraded by proteases in the serum, 

especially AMP that are cationic and show fast degradation due to their arginine and lysine 

content, limits substantially their use in applications in vivo  [94].  In fact, to date, only few AMP 

have proceeded into clinical trials and none of the described peptides has obtained US Food and 

Drug Administration (FDA) approval for clinical applications. Several approaches have, however, 

been proposed to address these main disadvantages. For instance, in the last few years, several 

non-natural mimics of AMP have been developed. These so called de novo AMP are different 

from the natural ones, with simpler but rationally engineered composition, obtained by varying 

the amino acid content and sequence and overall peptide length to achieve significant resistance 
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to protease degradation, enhanced activity and very low cytotoxicity properties. The high costs 

associated to peptides manufacturing has limited both the testing and development of AMP in 

large quantities. Many attempts have been recently reported to produce them by using biological 

production systems, such as bacteria, yeast and insect cells [95], as well by random 

polymerisation of mixtures [96,97].  

 

ANTIMICROBIAL COATINGS BASED ON AMP 

Nature provides many examples of successful strategies used by organisms to prevent bacterial 

colonization on living tissues. For instance, amphibians and fishes have developed an active 

system of defence as they secrete a dermal chemical slime composed of several AMP and 

proteins to prevent colonization of their skin by microorganisms [98,99]. Taking this strategy as a 

source of inspiration, different methods based on physical or chemical immobilization of AMP 

have been explored to develop antibacterial coatings. Among the physical immobilization 

methods, layer-by-layer (LbL) has been the most explored technique to immobilize AMP on 

surfaces. In this approach, which is based on the alternate adsorption of polycations and 

polyanions on a solid substrate, AMP can be simply embedded in the multilayer architecture to 

prepare functional films [100]. The amount of AMP bound to the surface can be controlled by the 

thickness of the LbL coatings, determined by the number of deposited layers. For instance, 

Etienne et al. [101] have explored LbL technique to incorporate the peptide defensin from 

Anopheles gambiae mosquitoes into polyelectrolyte multilayer films. The inhibition of E. coli 

growth at the surface of films functionalized with defensin was found to be 98 % when 10 AMP 

layers were inserted in the film architecture. This approach is, however, restricted to the use of 

highly charged and water-soluble AMP, which are not so frequently encountered. Furthermore, 

the electrostatic interactions between the peptides and the polyelectrolyte matrix may denature 

the peptide or reduce its motility, which therefore compromises its antimicrobial activity. To 

overcome these limitations, Guyomard et al. [102] proposed an approach in which a non-water 

soluble AMP, gramicidin A, was conjugated with a non-denaturing amphiphilic polysaccharide 

(hydrophobically modified carboxymethylpullulan) to obtain a negatively charged complex that 

was LbL assembled with cationic poly(L-lysine) to form biofunctionalized films. These films 

exhibited a strong antibacterial activity against E. feacalis, resulting from a double mechanism: 

the slow release of the peptide into the solution surrounding the film and the direct contact 
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between bacteria and the film surface. The antibacterial activity could be controlled by the 

number of layers deposited. Another key drawback associated with this strategy is to achieve a 

sustained release of the AMP entrapped in polyelectrolyte multilayer films into the surrounding 

bulk. Shukla et al. [103] proposed to control AMP release by using hydrolytically degradable LbL 

assembled films. The AMP Ponericin G1 was successful incorporated into polyelectrolyte 

assemblies based on a hydrolytically degradable cationic poly (β-amino ester) and an anionic 

polyanion such as alginic acid. The obtained films were able to inhibit S. aureus attachment over 

10 days due to the degradation of poly (β-amino ester). Moreover, release profiles could be 

controlled by changing the film microstructure.  

Although the physical entrapment of AMP into polymer layers has been successfully explored to 

prepare antibacterial coatings, there are some drawbacks associated to these strategies that limit 

their application into biomaterial implants or medical devices. The gradually decreasing level of 

released peptide may lead to sub-inhibitory concentrations in the surrounding bulk, which may 

provide conditions for development of microbial resistance. Moreover, most AMP present local 

toxicity or haemolytic activity which has limited their applications that require systemic 

distribution. Examples of AMP with cytotoxic profiles include LL-37 [104], Citropin 1.1, 

Omiganan, Pexiganan, Protegrin 1 and Temporin A [105]. Another concern inherent to physical 

immobilization strategies is related to the long-term stability of these assemblies which are still 

largely not reported. Covalent immobilization of AMP offers an alternative approach that avoids 

patient exposure to leaching compounds and potentially increases the duration of antimicrobial 

efficacy and their long-term stability [106].  In covalent immobilization strategies, AMP chemically 

react with a given surface to form stable and non-leaching antimicrobial coatings [69]. Surfaces 

that are not reactive toward AMP can undergo some surface treatment to introduce the desired 

functional groups that will allow the grafting of AMP in a further step [35]. A common method to 

covalently immobilize AMP involves the use of functionalized resins such as PEG or other 

polymeric brushes that bear reactive groups suitable for peptide covalent immobilization. For 

instance, Haynie et al. [107] applied standard solid-phase peptide synthesis to immobilize the 

natural occurring AMP magainin 2 and several idealized synthetic amphipathic peptides onto 

ethylenediamine-modified polyamide resin (PepsinK). The immobilized peptides proved to retain 

their lethal activity against several Gram-positive and Gram-negative bacteria. They were also able 

to demonstrate that the interaction with the outer membrane of the bacteria is sufficient for their 
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lethal activity, as the immobilized AMP system described consisted of a short spacer (2 or 6 

carbon chain linkers) linking the peptide to the support. Recently, Gao et al. [108] described the 

development of infection-resistant coatings based on covalently grafted hydrophilic polymer 

brushes conjugated with several AMP. The coatings proved to be non-toxic, antimicrobial and 

biofilm resistant.   

Another commonly explored method to covalently immobilize AMP onto surfaces is through their 

grafting on self-assembly monolayer (SAM). The SAM layer can be functionalized with different 

reactive groups, enabling the coupling of AMP. Humblot et al. [109] used SAMs based on pure 

11-mercaptoundecanoic acid (MUA) or a mixture of 11-MUA and 6-mercaptohexanol 

(HS(CH2)6OH) to immobilize the peptide magainin 1 on gold surfaces. The antibacterial activity of 

the modified SAMs with maganin 1 was tested against three Gram-positive bacteria and the 

results revealed that the grafted magainin 1 reduced by more than 50 % the adhesion of bacteria 

on the surface and killed the adhered ones. No release of the peptide was observed and the 

activity persisted overtime up to 6 months.  The same authors, using a similar approach, were 

able to immobilize the peptide gramicidin A onto cystamine monolyaer deposited on gold 

surfaces [110]. Surfaces grafted with this AMP inhibited the adhesion of Gram-positive and Gram-

negative bacteria as well as yeast. The formation of a biofilm on these surfaces was delayed for 

at least 24 h.  

As previously mentioned, several non-natural mimics of AMP have been developed in the last 

years, providing advantages in terms of chemical diversity and significant resistance to protease 

degradation. For instance, several peptoids (non-natural mimics of polypeptides with the side 

chains appended to the amide nitrogen instead of the α-carbon) that were designed to mimic 

helical antimicrobial peptoids, were synthesized by Statz et al. [111] with a peptoid spacer chain 

to allow mobility and an adhesive peptide moiety for easy immobilization onto TiO2 substrates. 

Substrates functionalized with these ampetoids and the antifouling polypeptide polymer led to 

surface coatings composed of both active and passive functionalities. The results showed that the 

ampetoid retained their antimicrobial activity as the membranes of adhered E. coli cells were 

damaged after 2 h exposure to the modified surfaces.   

INFLUENCE OF IMMOBILIZATION PARAMETERS UPON AMP’S ACTIVITY 

The retention of antimicrobial activity after AMP immobilization into surfaces is a crucial factor for 

their potential as antibacterial coatings agents in biomedical applications. In fact, most of the 



 INTRODUCTION 

 
 

17 
 

reported studies about AMP immobilization onto surfaces has found that the activity of bound 

peptides is lower when compared to that of their soluble counterparts [107,112-114]. 

Understanding and optimization of immobilization parameters, such as peptide surface 

concentration, influence of the spacer (length and flexibility) or peptide orientation after 

immobilization, are essential for developing efficient, safe and long-lasting antibacterial coatings 

[69]. The amount of peptide bound to the surfaces depends on the immobilization strategy used, 

as limited accessibility of the peptide reactive groups and different coupling strategies can affect 

the efficiency of peptide immobilization [67]. For instance, Chen et al. [115] observed that the 

efficacy of antimicrobial activity is related to the attachment method. In their work, the AMP 

melimine was immobilized on glass substrates by two different bifunctional azides (4-fluoro-3-

nitrophenyl azide (FNA) and 4-azidobenzoic acid (ABA)) as cross-linking agents and they found 

that the 4-fold higher concentration of peptide obtained via ABA immobilization correlated with a 

higher antimicrobial activity. Hilpert et al. [114] have also reported a positive relationship 

between activity and surface concentration and have shown that increasing the amount of AMP 

loaded enhanced the antimicrobial activity. Although important, peptide surface concentration 

does not appear to be the most critical immobilization parameter influencing the antimicrobial 

activity of tethered AMP. Bagheri et al. [112] studied the influence of surface peptide density and 

spacer lengths on the antibacterial activity and found that an increase in the loading capacity of 

the resin where the peptides were immobilized was not enough to compensate the decrease in 

activity due to reduction of the spacer length. They concluded that this last parameter, the spacer 

length, was the most determinant. Most of the studies reporting AMP immobilization present a 

spacer attachment step and the antimicrobial activity of some AMP such as LL-37 was 

completely lost when immobilized on solid supports in the absence of spacers [116]. The 

presence of a spacer may be important for enabling peptide insertion into the cell and thus 

membrane permeabilisation, leading to cell death. This working mechanism, known as polymeric 

spacer effect [117] was first described to explain how surface attached antimicrobial polymers 

might act as a contact-active surface [118]. The polymeric spacer effect has been the subject of 

some controversy. In fact, given the usually found active lengths of the grafted polymers, their 

possibility to reach the inner cell membrane of the attached bacteria would require high 

stretching of them [119]. Kugler et al. [120] have grafted quaternized poly (vinylpyridine) chains 

on glass surface by two different methods and varied the charge density within the organic layer. 

They found a sharp transition between biological activity and inertness at a certain partial 
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alkylation level. The authors proposed a new mechanism based on ion exchange between the 

bacterial membrane and the functionalized surface: the removal of divalent counterions from the 

bacteria during adsorption on charged surfaces induces disruption of the bacterial envelope and 

non-viability. This effect occurs for Gram-positive and Gram-negative bacteria after their adhesion 

on the functionalized surface.  

Both aforementioned mechanisms have been found during AMP immobilization. In fact, although 

some reports [107,113,114,121] suggested that immobilized peptides demonstrate a similar 

membrane permeabilisation mode as their soluble counterparts, there are, however, other 

studies [107,114] where it was found that membrane permeabilisation was not a prerequisite for 

immobilized AMP induce their lethal activity. These researchers used short spacers of 2 or 6 

carbons long to bind the peptides onto polyamide resins and showed that they retained their 

antibacterial activity. They suggested an electrostatic interference and destabilization rather than 

a penetrating mechanism.  

Another possible mechanism for contact-active antimicrobial surfaces that do not contain a 

polymeric spacer was proposed by Bieser et al. [119]. They investigated a series of cellulose 

coatings with different quaternary ammonium groups and additional hydrophobic groups and 

found that the antimicrobial activity of such surfaces against S. aureus was mainly controlled by 

the cationic/hydrophobic balance and not so much by the charge density. These authors 

proposed the so called phospholipid sponge effect where the antimicrobial action is driven by the 

attraction between the negatively charged phospholipids in the microbial cell membrane and the 

surface. This hypothesis was further supported by the fact that all the coatings could be 

deactivated by treating them with SDS and a negatively charged phospholipid. A recent study 

conducted by Asri et al. [122] also supports this bacterial-killing mechanism. They concluded that 

whereas the mechanism of QAC in solution is based on adsorption, ion-exchange and membrane 

damage, immobilized QAC molecules enhance the adhesion forces between a bacterium and a 

substratum surface to a lethally strong attraction, causing reduced growth, stress de-activation 

and removal of membrane lipids, leading eventually to cell death.  

The flexibility of the spacer is another parameter to be considered as it is correlated with lateral 

motility of the peptide immobilized. For instance, Gao et al. [123] investigated the influence of 

polymer brushes properties on the immobilization of the AMP Tet213 and on its antimicrobial 

activity. They found that the peptide density and graft density (related to conformational flexibility) 
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of the chains on surface are two important parameters with great influence on the antimicrobial 

activity. Peptide orientation and flexibility, obtained as a result of peptides binding on different 

chain positions may also significantly impact the antimicrobial activity of immobilized AMP. 

Strauss et al. [124] have reported differences in the activity of the AMP cecropin P1 when 

immobilized by different immobilization methods which was attributed to changes in the 

orientation of the immobilized peptide. In another study, it has been reported that random 

orientation of immobilized peptide LL-37 led to the loss of its antimicrobial activity even when the 

peptide was linked to a long and flexible PEG spacer [116]. The antimicrobial activity could be 

restored through oriented binding of LL-37 through its N-terminus. However, it should be 

mentioned that proper peptide orientation alone in the absence of a long and flexible spacer was 

not enough to achieve antimicrobial activity, which highlights the complex interdependence of the 

different immobilization parameters.   

 

ENZYMES AS ANTIMICROBIAL AND ANTI-BIOFILM AGENTS 

Biofilm establishment involves two important stages: bacterial initial adhesion to a surface and 

the production of EPS such as polysaccharides, proteins and eDNA [70]. EPS are responsible for 

providing mechanical stability of biofilms, mediating microorganisms’ adhesion to surfaces and 

forming a cohesive, three-dimensional polymer network that interconnects and transiently 

immobilizes biofilm cells [9]. Thus, another promising anti-biofilm strategy may rely on the use of 

enzymes that can prevent biofilm infections in different ways. They can directly attack the 

microorganism causing cell lysis; interfere with biofilm formation and/or destroy the biofilm by 

degrading the compounds involved in microbial initial adhesion or the polymers of biofilm matrix 

(proteins, polysaccharides, eDNA) or by impairment of intercellular communication when quorum 

sensing molecules are the target; and/or catalyse reactions which result in the production of 

antimicrobial compounds [125-127].  

PROTEOLYTIC ENZYMES 

Proteins and glycoproteins are the dominant molecules mediating adhesion of many fouling 

organisms, thus proteases (protein hydrolysing enzymes) are the most tested and most 

successful enzymes used for the control of marine biofouling [126,128]. For example, the 

commercial proteases Savinase and Esperase proved to effectively inhibit and disperse 
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Pseudoalteromonas sp. D41 and multiple biofilms, respectively [129,130]. In medical 

applications, lysostaphin has been the subject of great interest to fight methicillin-resistant 

Staphylococcus aureus (MRSA) because of its ability to cleave the cross-linking pentaglycine 

bridges of the cell walls of staphylococci [131]. Other proteolytic enzymes investigated to fight 

biofilm infections include proteinase K, trypsin and serratiopeptidase [132,133]. For example, 

proteinase K was able to effectively remove the biofilm formed by a clinical isolate of S. aureus 

[134]. The proteolytic enzyme serratiopeptidase was evaluated for the treatment of BAI, revealing 

a promising effect by inhibiting biofilm formation and enhancing antibiotic action [135].   

POLYSACCHARIDE-DEGRADING ENZYMES 

The most commonly exploited polysaccharide-degrading enzymes include lysozyme, alginate 

lyase and dispersin B. Lysozyme is characterized by an enzymatic and non-enzymatic 

antibacterial mode of action, especially against Gram-positive bacteria. Lysozyme can damage 

bacterial cell wall by catalysing the hydrolysis of 1,4-β -linkage between N-acetyl-muramic acid 

and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine 

residues in chitodextrins. The non-enzymatic mode of action of lysozyme is based on the cationic 

and amphiphilic properties of the enzyme which leads to perturbations in the cell membrane and 

activate the autolytic system of bacteria [127,136]. Alginate is another matrix polysaccharide that 

contributes to mucoid biofilm structure and plays a role in bacterial virulence and persistent 

nature of lung infections, which makes this polymer an important target in medical research. The 

potential of alginate lyase, an enzyme able to degrade this polysaccharide, has been investigated 

in the last years [137]. Alginate lyase treatment has been shown to detach biofilms from abiotic 

surfaces [138] and to increase gentamicin and CIP killing of mucoid P. aeruginosa biofilm [139]. 

A recent study [140] showed, however, that alginate lyase dispersion of P. aeruginosa biofilms 

and enzyme synergy with tobramycin is completely decoupled from its catalytic activity as 

equivalent anti-biofilm effects could be achieved with bovine serum albumin (BSA) or simple 

amino acids. These conclusions highlight the need for a careful re-examination of the 

fundamental assumptions underlying the interest in this biofilm-dispersing enzyme.   

Another well-studied matrix-disruptive enzyme is dispersin B, a glycoside hydrolase produced by a 

human periodontal pathogen A. actinomycetemcomitans [141]. This enzyme is able to degrade 

poly-N-acetylglucosamine (PNAG), a biofilm matrix polysaccharide that has been shown to play a 

role in surface attachment and intercellular adhesion of staphylococcal species and E. coli, and it 
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is believed to mediate several important processes such as biofilm formation and pathogenesis 

[142]. The presence of this enzyme as a complement of growth medium has been shown to 

cause almost complete inhibition of biofilm formation of several Gram-negative and Gram-positive 

PNAG-producing bacteria. Furthermore, some studies showed that dispersin B can efficiently 

detach biofilms and increase their susceptibility to antimicrobial action [143-146].  

 

EXTRACELLULAR DNA-DEGRADING ENZYME 

A promising development in biofilm research has been the finding that eDNA plays an essential 

role as a component of the biofilm matrix in most bacterial species [147]. Whitchurch et al. [148] 

were the first to show that the presence of DNase I in growth medium could prevent biofilm 

formation by P. aeruginosa and also showed that DNase I could dissolve established biofilms. 

Extracellular DNA is responsible to bind biopolymers in EPS through attractive, short-range acid-

base interactions [149] which makes DNase I a promising alternative to inhibit, disperse or even 

increase biofilms susceptibility to antimicrobials [147]. In fact, this enzyme has been used in the 

therapeutics of patients suffering from cystic fibrosis [150].   

 OXIDATIVE ENZYMES 

An indirect enzymatic strategy to control biofilms relies on the use of enzymes to produce 

biocides that actively interfere with bacterial attachment. Enzymes commonly used in this 

strategy include glucose oxidase [151], hexose oxidase [151] and haloperoxidases [152]. 

Oxidases are used because they produce hydrogen peroxide while haloperoxidase catalyses the 

formation of hypohalogenic acid, which have potential cytotoxic effects [153].  

ANTI-QUORUM SENSING ENZYMES 

Another enzyme-based strategy that has been explored to control biofilms includes the use of 

enzymes that degrade quorum sensing signal molecules. Quorum sensing is a bacterial cell-cell 

communication process based on the production, detection and response to extracellular 

signalling molecules called autoinducers [154].  Two well-investigated quorum sensing systems 

are the acyl-homoserine lactone (AHL) signalling system of many Gram-negative species and the 

peptide-based signalling systems of many Gram-positive species [155]. AHL-acylases (cleaving 

the amide bond between the acyl chain and the homoserine lactone ring) and AHL-lactonases 
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and paraoxonases (both cleaving the ester bond of the AHL ring) have been identified as 

promising quorum sensing enzymes [156, 157].  

 

ANTIBACTERIAL COATINGS BASED ON ENZYMES 

The general use of therapeutic enzymes in clinical field has been restricted by the issue of 

enzymatic instability combined with the high cost associated with their isolation and purification. 

With the advances achieved in recombinant DNA technology, several enzymes are now 

extensively characterized and available in industrial quantities at affordable prices [127]. 

Enzymes immobilization had also contributed for the success of enzyme therapy approaches. In 

general, immobilized enzymes are more active over a broader range of environmental conditions 

(pH, temperature) than free enzymes and display higher stability when stored. Furthermore, 

enzyme immobilization improves their efficacy as it allows enzymes localization at where they are 

needed, at the coating-target interface [126]. A general method that can be applied to immobilize 

any enzyme does not exist and, usually, satisfactory methods have been developed based on trial 

and error. The most frequently used immobilization techniques include non-covalent adsorption, 

immobilization via ionic interactions, covalent attachment, cross-linking and entrapment in a 

polymeric gel or capsule [158].  

Although immobilization of enzymes has been widely applied in marine antifouling technologies 

[35, 126], the number of studies reporting the immobilization of enzymes onto surfaces with the 

purpose of preventing BAI has increased in the last few years. Yuan et al. [159], have recently 

described an environmentally friendly approach to impart stainless steel (SS) surfaces with 

antifouling and antibacterial functionalities by functionalization of lysozyme into antifouling 

P(PEGMA) brushes immobilized by a biomimetic inspired by the mussel adhesive protein, 

dopamine. The so obtained hybrid exhibited antifouling properties and the ability to prevent BSA 

adsorption as compared to the SS surface unmodified, exhibiting also a high antimicrobial 

efficiency against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli). Muszanska 

et al. [160] have described a strategy for developing coatings with both antifouling and 

antimicrobial properties by conjugation of lysozyme into brushes of Pluronic. The conjugated 

lysozyme exhibited antibacterial activity against Bacillus subtilis and the coatings with a lower 

degree of lysozyme coverage proved to be more bactericidal. In another strategy reported by Caro 

et al. [161], two hydrolytic enzymes (lysozyme and trypsin) were covalently immobilized onto SS 
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surfaces through different strategies: directly by adsorption onto the metal surface, onto amino 

groups of the polymer poly (ethylene imine) (PEI) layer previously adsorbed on the surface and 

covalently grafted via the glutaraldehyde cross-linker. The antimicrobial tests performed against 

Micrococcus lysodeikticus bacteria showed that samples prepared with enzymes covalently 

grafted onto the PEI layer via a glutaraldehyde cross-linker exhibited a higher enzymatic activity 

compared to the samples where enzymes were directly adsorbed. The activity was also enhanced 

when enzymes were grafted onto a double PEI-glutaraldehyde-PEI layer, which highlights the 

importance of a distance between enzymes and the surface to improve the accessibility of the 

active site.  

The bacteriolytic enzyme lyostaphin was adsorbed onto polystyrene and fluorinated ethylene 

propylene catheters to prevent their colonisation by several S. aureus strains. Lysostaphin is an 

endopeptidase that cleaves the crosslinking pentaglycine bridges of the cell wall of staphylococci. 

The antibacterial activity of the coating was maintained for at least 4 days and it was not 

compromised by the presence of serum proteins [162]. More recently, Yeroslavsky et al. [163] 

have demonstrated a simple method that utilizes the adhesive property of polydopamine (pDA) to 

covalently immobilize lysostaphin in order to generate antibacterial and anti-biofilm surfaces.   

Pavlukhina et al. [164] have reported the development of a biocompatible surface coating in 

which the enzyme dispersin B was incorporated through a LbL technique. This enzyme was 

chosen because of its ability to cleave the polysaccharide PNAG, a component of the biofilm 

matrix produced by several Gram-positive bacteria such as S. epidermidis and S. aureus. 

Dispersin B was loaded into a poly (allylamine hydrochloride) (PAH) hydrogel matrix prepared by 

electrostatic interactions of PAH and poly(methacrylic acid) (PMAA), followed by chemical 

crosslinking with gluraraldehyde and pH-triggered removal of PMAA. To assess whether dispersin 

B retained their activity after being immobilized into the surfaces, dispersin B-loaded coatings 

were challenged with two bacterial suspensions of the strain S. epidermidis for different period 

times: 6 h and 12 h. After this time points, biofilm formation on the surfaces were quantified by 

counting the number of viable cells and a significant inhibition of biofilm development on 

dispersin B-loaded coatings was observed (reduction of at least 98 %) for both time points. 

Swartjes et al. [165] have also reported a new method to prevent biofilm formation on surfaces 

exploring the potential of enzymes immobilization. In this work, a DNase I enzyme coating was 

applied to PMMA, using dopamine as an intermediate. The enzymatic coating strongly reduced 
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the attachment of S. aureus (95 %) and P. aeruginosa (99 %) and also prevented biofilm 

formation up to 14 h, without affecting mammalian cell adhesion and proliferation.  

 

 

METHODS FOR SURFACE MODIFICATION 

The most commonly used materials in the design of biomaterial implants and medical devices, 

such as silicone rubber, polyurethane and polycarbonate (PC), are very hydrophobic and 

relatively inert. Their surfaces must undergo some treatment to introduce the desired functional 

groups that will allow the grafting of the bioactive compound in a further step. Sometimes, an 

intermediate step is used to create a "spacer" or "linker" between the compound and the surface 

which can improve its bioactivity by reducing the steric constraints and shielding the compound 

from hydrophobic surface induced denaturation [106]. Several surface modification methods 

such as wet chemistry, self-assembled monolayers, ionized gas treatment and ultra violet (UV) 

radiation have been developed to treat the inert polymeric surfaces before further 

functionalization. However, these pre-treatments can alter the mechanical properties of treated 

materials or may require sophisticated instrument. Furthermore, these methods either convert 

existing surface groups to reactive sites or introduce new functionalities to the surfaces and the 

functional groups produced depend on the substrate used [166].  In the search for a facile 

surface modification able to introduce a wide variety of desired properties regardless the type of 

material, Messersmith and co-workers reported, in 2007, a bio-inspired approach which has 

revolutionized the world of material science [167]. 

 

POLYDOPAMINE: A BIO-INSPIRED POLYMER COATING 

The natural world provides many examples of adhesive mechanisms used by living organisms 

that have been a source of inspiration to develop new adhesive strategies for modifying surfaces. 

Marine mussels, for example, have a remarkable ability to attach to wet surfaces in the sea. Their 

adhesion must be fast, strong and tough so they can survive in the ocean’s turbulent zone [168] 

and, in fact, mussels have been shown to attach to virtually all types of organic and inorganic 

surfaces even classically adhesion resistant ones such as poly (tetrafluoroethylene). These 

adhesive mechanisms have been best characterized in the common blue mussel, Mytilus edulis 
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which anchors itself to substrates through acellular byssal threads composed of collagen and silk-

like proteins as well as unique adhesive proteins (Figure 3A). Understanding mussel's adhesion 

mechanisms may rely in the amino acid composition of proteins found near the plaque-substrate 

interface. From the 34 known proteins secreted by the mussel foot, at least five subtypes are 

known to contain 3-4-dihydroxy-L-phenylalanine (DOPA), a hydroxylated version of the natural 

amino acid tyrosine, at concentrations ranging from a few mol % to 27 mol %. The highest 

content of DOPA occurs in M. edulis foot protein 3 (Mefp-3, 21 mol %) and Mefp-5 (27 mol %), 

both of which appear to be in higher relative abundance near interface of the plaque with the 

substrate (Figure 3B). Additionally, they both have large numbers of DOPA-Lys tandem 

sequences. Assuming that the coexistence of catechol (DOPA) and amine (lysine) groups may be 

essential for a successful adhesion to a wide range of materials, Messersmith and co-workers 

identified a small molecule that combines both functionalities, dopamine (Figure 3C). They 

reported that dopamine, as a simple structural mimic of Mefp-5, could be deposited as a thin 

adherent polymer film (polydopamine, pDA) on different material surfaces, including metals, 

polymers and inorganic materials (Figure 3D). Furthermore, the pDA-coated surfaces proved to 

be versatile substrates for further ad-layer deposition of several compounds. 

 

 

Figure 3. (A) Photograph of a mussel attached to commercial PTFE; (B and C) Schematic illustrations of 

the interfacial location of Mefp-5 and a simplified molecular representation of characteristic amine and 

catechol groups; (D) The pDA dip-coating treatment process. (Adapted from [168,169])  
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The most commonly used protocol for the production of pDA-based materials involves their 

immersion in aqueous solution of dopamine, buffered to a pH typical of marine environments 

(usually 2 mg of dopamine per mL of 10 mM Tris buffer, pH 8.5). Dopamine can be oxidized and 

spontaneously self-polymerize under alkaline conditions with oxygen as the oxidant. This self-

polymerization reaction takes place immediately and is associated with a colour change from 

colourless to pale brown turning deep brown with passing time. The thickness of the pDA film 

can be controlled by changing the concentration of dopamine monomers and the polymerization 

time until a maximum value of 50 nm [170].  

In spite of the widespread use of this surface modification method, the molecular mechanisms 

behind pDA formation has not been fully understood. In the early stages of this research field, it 

was believed that pDA formation shared many characteristics with melanin biosynthesis 

pathways. Under oxidative (e.g. alkaline pH) conditions, dihydroxyl group protons in dopamine 

are deprotonated becoming dopamine-quinone which subsequently rearranges via intramolecular 

cyclization to leokodopaminechrom. Further oxidation and rearrangement leads to 5, 6 

dihydroxyindole, which further oxidation causes intermolecular cross-linking to yield a polymer 

structurally similar to the bio-pigment melanin. The pDA coated surfaces can subsequently 

interact covalently with several compounds via Schiff-base reactions (amine containing 

molecules) or Michael type reactions (amine and thiol containing molecules) [167]. Bielawski and 

co-workers, on the other hand, proposed a new structural model in which pDA is not a covalent 

polymer but instead a supramolecular aggregate of monomers that are held together through a 

combination of charge transfer, π-stacking and hydrogen bonding interactions. The combination 

of these non-covalent interactions is responsible for the high stability of pDA coatings as well as 

its insolubility [171]. In the model proposed by Lee and co-workers it was proposed that the 

formation of pDA was a result of the combination of non-covalent self-assembly and covalent 

polymerization [172].  

One of the most important properties of pDA is its ability to react with a wide range of molecules 

especially with amine and/or thiol containing compounds. Under basic conditions, the catechol 

in the pDA matrix can be oxidized into to the corresponding quinone, which can then react with 

the nucleophilic amine or thiol groups by means of a Schiff base reaction or via a Michael-type 

addition pathway. Polydopamine functionalization is a very simple procedure solvent-free, which 

does not require time-consuming synthesis of complex linkers, only requiring agents mixing at 

room temperature (RT) under basic conditions. Furthermore, it has the advantage of proceed in 
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aqueous environments and remain quite stable, unlike to N-hydroxysuccunimide or maleimide, 

two commonly used agents in coupling strategies, which are susceptible to hydrolysis leading 

often to low efficiency of surface bioconjugation [170]. Bioconjugation reactions on pDA surfaces 

can be modulated by pH, affording selectivity of reaction with amine or imidazole functional 

groups of biomolecules. Lee and co-worker reported this pH dependent immobilization onto pDA 

layer using a compound containing two different nucleophiles, lysine and histidine at opposite 

ends of the molecule. Compound immobilization occurred in a pH-dependent manner due to the 

large difference in pKa values of histidine (pKa ≈6) and ε-amines (pKa ≈10) [173].  

Biocompatibility is an important property required for materials to be applied in the biomedical 

field. Taking into consideration the fact that pDA is the major component of naturally occurring 

melanin widely distributed in the human body, it was expected to exhibit excellent 

biocompatibility. It has been demonstrated that pDA did not compromise the viability or 

proliferation of many kinds of mammalian cells such as fibroblasts, osteoblasts, neurons and 

endothelial cells [174]. Furthermore, several studies have reported that pDA layer even promoted 

cell adhesion and proliferation of substrates in a material-independent manner, providing further 

evidence of the negligible cytotoxicity of pDA [175, 176].  

The interfacial adhesion property of pDA coatings has been widely exploited to introduce new 

functionalities to the materials for new applications. For example, immobilization of neurotrophic 

growth factors and adhesion peptides onto polymer substrates enhances differentiation and 

proliferation of human foetal brain-derived and human induced pluripotent stem cell-derived 

[177]. Polydopamine coating has been also used to introduce both antimicrobial and anti-fouling 

properties into a polymeric substrate by deposition of silver nanoparticles and PEG [65]. 

Examples of other fields where pDA coatings have been exploited includes biomineralization 

[178], single-cell encapsulation [169], softlithography [179], biocompatible surface modifications 

[174, 180], attenuation of intrinsic in vivo toxicity of biomaterials [176] and sensors [181].   
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Chapter2 

METHODOLOGY 

This chapter describes the materials, equipment and the methodologies used throughout this 

work. Although the description of the experimental procedures is presented throughout the 

subsequent chapters, the rationale beyond the methodologies employed are explained in greater 

detail in this chapter.  
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MICROORGANISMS AND CULTURE CONDITIONS 

BACTERIAL STRAINS 

Three bacterial species, commonly isolated from BAI, were used throughout this work: the Gram-

positive S. aureus and S. epidermidis and the Gram-negative P. aeruginosa:  

- The type strains purchased from the American Type Culture Collection, P. aeruginosa 

ATCC 27853, ATCC 39324 and ATCC 10145; 

- P. aeruginosa clinical isolated strains, PD64.8, PD68.7, PD50.2 and PD 96.4. These 

strains were kindly provided by Dr. Margarida Martins from 3B’s Research Group - 

Biomaterials, Biodegradables and Biomimetics, University of Minho, Taipas/Guimarães, 

which were obtained under the scope of the project "Insights into peritoneal dialysis 

catheter associated biofilms" funded by the Portuguese Society of Nephrology to Dr. 

Anabela Rodrigues. 

- P. aeruginosa clinical isolated strain U147016-1, kindly provided by Dr. Alberta Faustino 

from S. Marcos Hospital in Braga. 

- The type strain purchased from ATCC, S. aureus ATCC 25923. 

- S. aureus GB 2/1 isolated from explanted voice prostheses at the University Medical 

Centre of Groningen (the Netherlands) was used throughout this study as a model strain.  

- S. epidermidis GB 9/6 also isolated from explanted voice prostheses at the University 

Medical Centre of Groningen (the Netherlands). 

 

BACTERIA PRESERVATION 

Bacterial strains were stored at -80 C in broth medium supplemented with 20 % (v/v) glycerol. 

Prior to each experiment, cells were propagated by streaking a loopful of cells onto Tryptic Soy 

Broth medium (TSB, Merck, Portugal) supplemented with 1.2 % (w/v) agar (Merck, Portugal) 

plates and incubated at 37 °C for 24 h. These stocks were stored at 4 C for no longer than one 

week.  
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MEDIA AND GROWTH CONDITIONS 

TSB, MHB (Mueller Hinton Broth, Merck, Portugal) and TSA (Tryptic Soy Agar) were prepared 

according to the manufacturer’s instructions. For all experiments, batches (20 mL in 50 mL 

Erlenmeyer) of TSB were inoculated with freshly grown cells in an orbital shaker (120 rpm, OS-

20) at 37 C overnight (16-18 h). Bacterial cells were harvested by centrifugation (9000 g, 5 

min, at RT) and washed in sterile saline solution (0.9 % NaCl prepared in distilled water). The 

cellular suspension was then adjusted by spectrophotometric measurement at 640 nm 

(calibrations were performed for each bacterial strain to relate the absorbance at 640 nm with 

the number of colony forming units, CFU).  

 

 

ANTIBACTERIAL COMPOUNDS  

In this work two bio-inspired compounds, specifically AMP and enzymes targeting extracellular 

polysaccharide substances, were investigated as potential alternatives to antibiotics in the design 

of antibacterial surfaces. Two antibiotics were also used to perform some treatment therapies.  

 

ANTIMICROBIAL PEPTIDES 

In this work, different peptides representing different mechanisms of action and different 

chemical structures were used (Figure 1).   

POLYMYXINS B AND E 

Polymyxins are a group of cationic polypeptides that consist of a seven-member cyclic ring of 

aminoacids with a tripeptide side chain bounded to a fatty acid chain that has been found to be 

either 6-methyl-octanic acid or 6-methyleptanoic acid. The two polymyxins have the same 

heptapeptide ring, with the exception of a single aminoacid, which is phenylalanine in polymyxin 

B (PB) and leucine in polymyxin E (PE), commonly called colistin [1]. Their mechanism of action 

involves cell membrane’s disruption by binding to the anionic part of the lipopolysaccharides 

(LPS) of Gram-negative bacteria, which results in leakage of intracellular components. The clinical 

use of these compounds was discontinued in the 1970s due to their nephrotoxicity and 

neurotoxicity. However, the widespread emergence of multidrug resistant strains has led to the 
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return of these older antimicrobials with acceptable efficacy and less toxicity than reported in the 

past [2]. PB was purchased from Biochrom (Germany) and PE (colistin sulphate) from Sigma 

(Portugal).   

LIPOPETIDE PALM-KGK-NH2  

Palm-KGK-NH2 (Palm) belongs to a new group of lipopeptides with potent antifungal and 

antibacterial activities. These lipopeptides are derived from positively charged peptides containing 

D- and L- amino acids (diastereomers) that are palmitoylated at their N terminus [3]. As a 

lipopetide its mechanism of action consists of simple disruption of membrane electric potential 

[4]. 

CAMEL 

Camel (KWKLFKKIGAVLKVL-NH2) is 15-residue hybrid peptide with seven amino acids that are 

derived from the sequence of cecropin A, which comes from the larvae of the silk moth 

Hyalophora cecropia and eight amino acids that are derived from the sequence of melittin, which 

comes from honey bee venom [5]. It has been found that camel is more active than the native 

molecules and also lacks the undesirable hemolytic properties of melittin [6,7].  
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Figure 1. Chemical structures of AMP: polymyxin E (A), polymyxin B (B), Palm-KGK-NH2 (C) and Camel (D).  

 



 METHODOLOGY  

 
  

43 
 

PEPTIDE SYNTHESIS 

The peptides Palm and Camel were kindly provided by Dr. Wojciech Kamysz, (Faculty of 

Pharmacy, Medical University of Gdansk, Poland) and Dr. Daria Grzywacz (Lipopharm, Poland). 

Accordingly, peptides were synthesized manually by solid-phase synthesis method on polystyrene 

AM-RAM resin, using Fmoc/tButyl strategy [8]. Coupling was performed with HOBt/DIPCDI 

method, the Fmoc protecting group were removed with 20 % piperidine. Crude peptides were 

cleaved from resin using a mixture of trifluoroacetic acid (TFA), triisopropylsilane (TIS) and water 

as scavengers. The final products were purified by reverse-phase high performance liquid 

chromatography (RP-HPLC) in a mixture of acetonitrile- water with 0.1 % TFA as an eluent. 

Molecular weights of peptides were determined by matrix–assisted laser desorption ionization-

time of flight mass spectrometry (MALDI-TOF). 

 

PEPTIDES ANTIMICROBIAL ACTIVITY 

The antimicrobial activity of AMP was assessed by determining the minimum inhibitory (MIC) and 

bactericidal (MBC) concentrations by the microdilution method according to Clinical and 

Laboratory Standards Institute (formerly NCCLS) [9]. Briefly, the wells of a sterile 96-well round-

bottom microtiter plates (polystyrene, Orange, USA) were filled with 100 µL of MHB with 

increasing concentrations of peptide to which were added 100 µL of each bacterium inoculum 

(adjusted to a final concentration of 5 × 105 CFU/mL). The plates were afterwards incubated at 

37 C for 24 h in an orbital shaker at 120 rpm (OS-20). In this assay, two controls were used, 

one without bacteria as a negative control and one without peptide as a positive control. 

Moreover, culture medium with increasing concentrations of peptides without bacteria were also 

performed in order to avoid misleading results. The MIC of the planktonic fraction was obtained 

by measuring the absorbance at 640 nm (A640nm), where clear wells (A640nm =0.05 negative control) 

were evidence of bacterial growth inhibition. MBC determination was performed by adding a 

droplet of 10 µL from each well with no visible growth on a TSA plate. The lowest concentration 

that yielded no colony growth after 24 h at 37 C was identified as the MBC. 
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ENZYMES 

In this work, several enzymes targeting different biofilm matrix or bacterial cell wall components 

were investigated. 

LYSOZYME 

Lysozyme is a hydrolytic enzyme able to destruct bacterial cell walls by an enzymatic hydrolysis 

of 1-4-beta-linkages between N-acetylmuramuc acid and N-acetyl-D-glucosamine residues of 

peptidoglycan in the bacterial cell wall, especially for Gram-positive bacteria. This enzyme was 

chosen because of its well-known bactericidal properties [10], physiological abundance (it can be 

found in several biological fluids and tissues including avian egg, plant and animal secretions), 

high thermal stability, wide pH activity range and well known structure [11]. It was purchased 

from Fisher Scientific, USA.   

PROTEINASE K 

Proteinase K is a serine protease able to cleave peptide bonds of proteins important for bacterial 

adhesion and/or biofilm establishment. This enzyme is stable in a broad range of conditions 

such as pH, buffer salts, detergents and temperature [12, 13].  It was purchased from Biochrom, 

Germany.  

DNASE I 

DNase I is an enzyme able to non-specifically cleave eDNA by breaking phosphodiester bonds of 

the phosphate backbone. Extracellular DNA acts as a bridge between the bacterial cell wall and 

EPS by binding biopolymers in EPS through attractive, short-range acid-base interactions [14] 

which makes DNase I a promising alternative to inhibit, disperse or even increase biofilms 

susceptibility to antimicrobials [15]. It was purchased from Applichem, Germany.  

ALGINATE LYASE 

Alginate lyase is able to degrade the polysaccharide alginate that contributes to mucoid biofilm 

structure, playing a role in bacterial virulence and persistent nature of lung infections. Alginate 

lyase treatment has been shown to detach biofilms from abiotic surfaces [16] and to increase 

gentamicin and CIP killing of mucoid P. aeruginosa biofilm [17]. It was purchased from Sigma 

(Portugal).  
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DETERMINATION OF ENZYMATIC ACTIVITY  

ALGINATE LYASE 

Alginate lyase catalyses depolymerisation of alginate through cleavage of the 4-O-glycosidic bond 

via a β-elimination mechanism which leads to formation of a double bond between C-4 and C-5 

and production of 4-deoxy-L-erythohex-4-ebe pyranosyluronate at the non-reducing end of the 

resulting oligomers which can be detected by measuring absorbance at 235 nm [18].  Briefly, 

alginate lyase-coated surfaces were covered with 0.6 mL of 0.1 % sodium alginate (Sigma) 

prepared in 0.2 M phosphate buffer, pH 6.3. After incubation at 37 °C for 30 min, the 

absorbance of the reaction mixture was measured at 235 nm. As a control, the activity of 

alginate lyase heat-inactivated before its immobilization was also determined. 

DNASE I 

DNase I is an endonuclease that acts on phosphodiester bonds adjacent to pyrimidines to 

produce polynucleotides with terminal 5’-phosphates. Therefore, its activity was determined by 

analysing the hydrolysis of plasmid DNA which was extracted using the Zyppy Plasmid Miniprep 

Kit (Zymo Research, USA) according to the manufacturer’s instructions. After digestion with 

restriction enzyme HindIII-FH (New England Biolabs, NEB), DNA aliquots of 40 µl were then 

exposed to immobilized DNase I and analysed by electrophoresis in a 1 % agarose (BIORON, 

Germany) gel in 1 x Tris-acetate-EDTA (TAE) buffer. The gel was left running for approximately 50 

min at a constant potential of 80 V and visualized under UV light using a transilluminator 

(BioRad).  

LYSOZYME 

Lysozyme bioactivity was measured using a previously reported based on spectrophotometrically 

monitoring of Micrococcus lysodeikticus (Sigma, Portugal) turbidity as a consequence of cells 

lysis [19].  Briefly, coupons functionalized with lysozyme were covered with 3 mL of a suspension 

of M. lysodeikticus prepared in 66 mM phosphate buffer, pH 6.24 and adjusted to an optical 

density of approximately 1.0 at 450 nm. Samples were kept at 37 °C for 9 h and aliquots were 

withdrawn at different time points to measure their turbidity spectroscopically at 450 nm. As a 

control, pDA-coated coupons without lysozyme and a bacterial suspension alone were also 

monitored.  
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ANTIBIOTICS 

Ciprofloxacin, a fluoroquinolone and vancomycin, a glycopeptide antibiotic, were used in this 

project. Stock solutions were prepared and stored according to the manufactures instructions. 

Both antibiotics were purchased from Sigma (Portugal).  

 

BIOFILM STUDIES FOR AMP SCREENING 

BIOFILM FORMATION  

Biofilm formation was based on the microtiter plate test developed by Stepanovic et al. [20]. Cells 

were harvested by centrifugation, washed in sterile saline solution and dilutions were made to 

prepare standardized cell suspensions in TSB at a cell density of 1x106 CFU/mL. Afterwards, 200 

µL/well of the bacterial suspension were transferred to 96-well flat-bottom tissue culture plates 

(Orange Scientific) that were incubated at 37 C for 24 h on a horizontal shaker (120 rpm, OS-

20). 

 

BIOFILM SUSCEPTIBILITY  

Biofilm susceptibility to the antimicrobial compounds was evaluated using different application 

strategies: preconditioning the adhesion surfaces with antimicrobials prior to biofilm formation, 

growing biofilms in its presence and treating the biofilms after their establishment.  

 AFTER CONDITIONING WITH ANTIMICROBIAL AGENTS 

Microtiter plates were filled with different concentrations of antimicrobial agent and left at RT for 

30 min. Control wells, containing sterilised ultrapure (UP) water only, were treated in the same 

way. Antimicrobial solutions were, then, removed and the plates air-dried at RT. Biofilms were 

developed in clean and conditioned wells according to the modified plate procedure developed by 

Stepanovic et al. [20] mentioned above.  

 IN THE PRESENCE OF ANTIMICROBIALS  

Biofilms were formed in microtiter plates as aforementioned but prepared in TSB supplemented 

with different concentrations of antimicrobial agent.  
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AFTER TREATMENT WITH ANTIMICROBIAL AGENTS 

Biofilms formed on clean and/or pre-conditioned wells were subjected, subsequently, to sudden 

treatment of antimicrobials at RT for different periods of time. For that, the content of each well 

was removed and washed with sterilised water and the wells attached biofilms were afterwards 

treated with antimicrobials. Non-treated wells were filled with sterilised UP water for the same 

period of time. 

 

BIOFILM CHARACTERIZATION 

 BIOFILM MASS 

Biofilm mass was quantified by the crystal violet (CV) staining method, adapted from Stepanovic 

et al. [20]. CV is a basic dye which binds to negatively charged molecules from the cells surface 

and the polysaccharides from the biofilm extracellular matrix [21]. After biofilm growth, the 

content of each well was removed and the wells were washed twice with sterilised water. The 

plates were then left to dry for 30 min and the remaining bacteria attached were fixed with  200 

µL of absolute methanol per well. After 15 min, plates were emptied and left to dry again. The 

fixed bacteria were then stained with 200 µL of CV (Gram colour-staining, Merck) per well for 5 

min and excess staining was rinsed off by washing the wells with distilled water. The plates were 

air dried and the wells filled with 200 µL of 33 % (v/v) acetic acid (Merck) to solubilise the CV 

bound to the adherent bacteria. The absorbance of the obtained solution was measured at 570 

nm using a microtiter plate reader (Model Sunrise-basic Tecan, Austria). Control experiments to 

avoid false results were also performed in order to determine whether the tested medium and the 

material of construction of the plates could interact with biomass quantification. 

 BIOFILM CELLS METABOLIC ACTIVITY 

The metabolic activity of biofilm-encased cells was measured using the 2,3-bis (2-methoxy-4-nitro-

5-sulfophenyl)-2H-tetrazo-lium-5-carboxanilide sodium salt (XTT, Sigma-Aldrich) colorimetric 

method as described by Stevens and Olsen [22], with some modifications. This method is based 

on the reduction of XTT by metabolically active cells to a water-soluble orange formazan. The 

produced formazan can be quantified by spectrophotometry analysis, being therefore 

proportional to the bacterial metabolic activity [23]. After biofilm growth and washing procedures 
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as aforementioned, 200 µL of a combined solution of XTT and phenazine methosulfate (PMS, 

Sigma) were added to each well in order to obtain a final concentration of 150 µg/mL of XTT and 

10 µg/mL of PMS. The plates were afterwards incubated at 37 C for 3 h and 120 rpm, in the 

dark. The absorbance of each well was measured at 490 nm using a microtiter plate reader. 

Control tests, using culture medium and empty wells were also performed in order to avoid 

misleading results.   

 BIOFILM-ENTRAPPED CELLS 

In order to determine the number of CFU, biofilms were washed as described before and 

removed by ultrasonic bathe in a Sonicor SC-52 (Sonicor Instruments) operating at 50 kHz, 

during 6 min (these parameters were previously optimized in order to promote complete removal 

of biofilm attached without causing lysis). Bacterial suspensions were afterwards collected, gently 

vortexed to disrupt possible cell aggregates and serially diluted. Serial 10-fold dilutions were 

performed and plated into TSA plates that were incubated overnight at 37 C in an aerobic 

incubator prior enumeration. The number of viable biofilm cells was expressed as CFU per cm2. 

 

 

SURFACE MODIFICATION 

MATERIALS PREPARATION 

Polycarbonate and PDMS were the materials used throughout this work. These materials were 

chosen because of their use in a wide range of medical devices, such as filters cartridges for 

dialysis, blood oxygenators, reservoirs and filters, connection components as well as urinary, 

central venous and peritoneal catheters [24-26]. PC was purchased from McMaster Carr (USA) 

and was cut into square pieces measuring 1.3 x 1.3 x 0.3 cm3. It was cleaned by sonication for 

20 min in 0.12 M HCl and 20 min in isopropanol, followed by rinsing with UP water and finally 

air-dried overnight [27]. PDMS was prepared by mixing and curing of two-component kit Sylgard 

184 (Dow Corning, USA) at RT. Briefly, base and curing agents in the kit were mixed thoroughly 

in 10:1 (w/w), cast in a petri dish and kept at RT for 48 h. After curing, the PDMS was cut into 

circle pieces of 0.9 cm diameter at a thickness of about 0.3 cm. Prior utilization, PDMS coupons 

were sonicated in a commercial detergent (Sonasol, Henkel Ibérica, Portugal) for about 5 min, 
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rinsed with distilled water for a few minutes, sonicated in methanol for about 20 min, then rinsed 

with distilled water and air-dried overnight [28]. Once dried, sterilization was performed by 

autoclaving coupons for 15 min at 121C.     

 

POLYDOPAMINE COATING AND FURTHER FUNCTIONALIZATION 

Coatings were prepared as illustrated in Figure 2 testing two pDA-based approaches: a two and a 

one-step immobilization. For compounds immobilization via a 2-step approach (Figure 2B), the 

first step involved the deposition of a pDA coating on material surfaces which was performed by 

immersing them in a freshly prepared solution of dopamine (Sigma, Missouri; 1 or 2 mg/mL 

dopamine-HCl in 10 mM bicine buffer, pH 8.5) for 18 h, at RT and under agitation (70 rpm). 

Materials were then rinsed with UP water and air-dried. For further functionalization, pDA-coated 

coupons were immersed in compounds solutions and were incubated for different periods of time 

and pH, under agitation. A 1-step pDA-based immobilization procedure was also performed 

(Figure 2A). In this approach, dopamine (2 mg/mL) and compounds were dissolved together in 

10 mM bicine buffer solution (pH 8.5) and the coupons were immediately immersed in this 

solution. After overnight coating at RT and under agitation (70 rpm), the coupons were taken and 

rinsed with UP water and air-dried. 
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Figure 2. Schematic description of pDA coating developed for AMP and/or enzymes immobilization onto 
material surfaces. Materials were immersed in a solution containing dopamine and the biomolecule 
together for 1-ste approach immobilization (A). For the 2-step immobilization approach (B), materials were 
first functionalized with a layer of pDA, followed by biomolecule(s) immobilization. AMP and enzymes are 
immobilized to the exposed catechol functionalities on the coated materials via Michael addition/Schiff 
base reaction of the compounds’ inherent thiol (I) and/or amine (II) group, as well via physical adsorption 
(III). 

 

SURFACE CHARACTERIZATION 

SEM 

The surface morphology of materials was analysed by scanning electron microscopy (SEM). Prior 

to observation, samples were sputter coated with gold and observed with an S-360 scanning 

electron microscope (Leo, Cambridge, MA, USA). SEM imaging was performed with the following 

parameters: 15 kV accelerating voltage, 22 mm stage distance, 500 x and 5000 x magnification. 

XPS 

X-ray photoelectron spectroscopy (XPS) (Omicron ESCA Probe; Omicron, Taunusstein, Germany) 

was used to characterize the chemical composition of substrates. The X-ray source operated at 

300 W with a spot size of 1.5 mm and a constant sample deflection angle of 45°. An electron 
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gun was used to minimize surface charging effects, operating with a beam current of 0.008 mA 

at 12.5 eV. High-resolution spectra of the C1s region were obtained by averaging 3 separate 

sweeps between 277.5 and 292.5 eV. 

AFM 

The surface morphology and roughness were also evaluated using atomic force microscopy 

(AFM). AFM measurements were performed at RT using a Multimode with a Nanoscope III from 

Digital Instruments (USA) operating in tapping mode. Scan rates were set at 1 Hz and the 

scanning area per sample was fixed at 5 µm x 5 µm. Surface morphology and roughness 

analysis were conducted using NanoScope Analysis 1.10 software. 

CONTACT ANGLE MEASUREMENTS 

To evaluate the surface wettability of surfaces, the static water contact angle of materials after 

each deposition step was measured by a sessile drop method using an automated contact angle 

measurement apparatus (OCA 15 Plus, Dataphysics, Germany) that allows image acquisition and 

data analysis. Contact angles were measured using 3 µL drops of water. 

PHYSICOCHEMICAL CHARACTERIZATION OF SURFACES AND CELLS 

Since thermodynamic properties play an essential role in the initial bacterial adhesion to surfaces 

[29], the physicochemical surface properties of bacterial cells and materials used in this project, 

were determined by performing contact angle measurements with the sessile drop technique and 

the method proposed by van Oss approach [30]. Measurements were performed on cleaned and 

dried materials and on bacterial layers deposited on membrane filters, as previously described 

[31]. Briefly, a bacterial suspension was adjusted to a concentration of approximately 1x109 

CFU/mL in sterile saline solution from an overnight culture and deposited onto a 0.45 µm 

cellulose membrane filter, previously wetted with 10 mL of distilled water to obtain a thick lawn of 

cells. The filters with the resultant lawn of cells were afterwards kept on petri dishes containing 1 

% (w/v) agar and 10 % (v/v) glycerol for at least 3.5 h, until the so call “dried-plateau” was 

obtained. All measurements were performed at RT and water, formamide and α-

bromonaphtalene were used as reference liquids for standardized contact angles measurements.  

According to van Oss approach, the contact angle (θ) formed by a liquid (𝑙) on a solid surface or 

bacterial cells (𝑠) can be related to surface tension parameters of the liquid and solid surface by 

the following equation: 
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(1 + 𝑐𝑜𝑠𝜃) × 𝛶𝑙
𝑇𝑂𝑇 = 2 (√𝛶𝑠

𝐿𝑊 × 𝛶𝑙
𝐿𝑊 + √𝛶𝑠

+ × 𝛶𝑙
− + √𝛶𝑠

− × 𝛶𝑙
+) (1),  

where 𝛶𝐿𝑊 denotes the Lifshitz – van der Waals component of surface free energy, 𝛶+ the 

electron-acceptor and 𝛶−the electron-donor components of surface free energy. For a non-polar 

liquid, the polar component of surface tension is null so equation (1) becomes: 

𝛶𝑠
𝐿𝑊 =

𝛶𝑙
𝑇𝑂𝑇

4
× (1 + 𝑐𝑜𝑠𝜃)2 (2). 

The surface tension components can be then determined by measuring the contact angles 

formed by three different liquids (𝜃𝑤,𝜃𝐵 and𝜃𝐹), for which apolar ( 𝛶𝐿𝑊) and polar components 

( 𝛶+ 𝛶−) are knowns (Table 1).  

 

Table 1. Surface tension parameters of the three liquids used in contact angle measurements for the 

determination of solids surface tension. Data were taken from [32]. 

 Surface tension (mJ/m2) 

Liquids 𝛶𝑙
𝑇𝑂𝑇 𝛶𝑙

𝐿𝑊 𝛶𝑙
+ 𝛶𝑙

− 

Water 72.8 21.8 25.5 25.5 

α-Bromonaphthalene 44.4 44.4 0 0 

Formamide 58 39 2.28 39.6 

 

Taking into account the contact angle values obtained with these three liquids and the values 

from Table 1, three forms of the equation (1) are obtained and simultaneously resolved to 

calculate the surface tension components, 𝛶𝑙
𝐿𝑊 , 𝛶𝑙

+ and 𝛶𝑙
−.  

𝛶𝑠
𝐿𝑊 = 11.1 × (1 + 𝑐𝑜𝑠𝜃𝐵)2(3) 

5.049 × √𝛶𝑠
+ + 5.0549 × √𝛶𝑠

− = 36.4 × (1 + 𝑐𝑜𝑠𝜃𝑤) − 15.55 × (1 + 𝑐𝑜𝑠𝜃𝐵) (4) 

6.293 × √𝛶𝑠
+ + 1.510 × √𝛶𝑠

− = 29 × (1 + 𝑐𝑜𝑠𝜃𝐹) − 20.806 × (1 + 𝑐𝑜𝑠𝜃𝐵) (5) 

From the surface tension components it is possible to determine the total surface tension of a 

surface (𝛶𝑠
𝑇𝑂𝑇):  

𝛶𝑠
𝑇𝑂𝑇 = 𝛶𝑠

𝐿𝑊 + 𝛶𝑠
𝐴𝐵 (6) 
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𝛶𝑠
𝐴𝐵 = 2 × √𝛶𝑠

+ × 𝛶𝑠
− (7) 

It should be mentioned that negative square roots of surface energy parameters were taken as an 

indication that the parameter is zero according to van der Mei et al. [32].  

According to van Oss [30], hydrophobicity can be expressed in the form of the free energy of 

interfacial interaction (∆𝐺𝑠𝑤𝑠
𝑇𝑂𝑇) between the particles of a solid surface (𝑠), in an aqueous 

environment (𝑤). The free energy of interfacial interaction can be calculated by the sum of polar 

and apolar components: 

∆𝐺𝑠𝑤𝑠
𝑇𝑂𝑇 = ∆𝐺𝑠𝑤𝑠

𝐿𝑊 + ∆𝐺𝑠𝑤𝑠
𝐴𝐵  (8) 

∆𝐺𝑠𝑤𝑠
𝐿𝑊 = −2 × (√𝛶𝑠

𝐿𝑊 − 𝛶𝑤
𝐿𝑊)

2

(9) 

∆𝐺𝑠𝑤𝑠
𝐴𝐵 = −4 × [(√𝛶𝑠

+ × 𝛶𝑠
−) + (√𝛶𝑤

+ × 𝛶𝑤
−) − (√𝛶𝑠

+ × 𝛶𝑤
−) − (√𝛶𝑤

+ × 𝛶𝑠
−)] (10) 

According to this model, when ∆𝐺𝑠𝑤𝑠
𝑇𝑂𝑇 > 0, the surfaces are hydrophilic and for ∆𝐺𝑠𝑤𝑠

𝑇𝑂𝑇 < 0, 

they are hydrophobic.  

From the physicochemical parameters of each adhesion entity (bacteria and surface) it was 

possible to determine the thermodynamic relation between both entities, namely the free energy 

of adhesion (∆𝐺𝑏𝑠𝑏
𝑇𝑂𝑇) between the bacteria (𝑏) and the surfaces (𝑠). According to the 

thermodynamic theory, adhesion will be favoured if interaction leads to a decrease on free energy 

of adhesion.  

 

PEPTIDES IMMOBILIZATION EFFICIENCY AND COATINGS STABILITY 

The efficiency of peptide immobilization was determined by quantifying the amount of unattached 

peptide in the buffer solution retrieved immediately after completing the coating process. The 

peptide concentration was measured by using a fluorescamine (Sigma) assay [33]. 

Fluorescamine is a heterocyclic dione that reacts with primary amines to form a fluorescent 

product. The fluorescence of a solution containing peptides or proteins and fluorescamine will be 

proportional to the quantity of free amino groups present. Briefly, before and after incubation of 

peptides onto pDA-coated surfaces, the supernatants containing loaded and unattached peptide, 

respectively, were retrieved and used as samples to determine the peptide immobilization 
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efficiency. The amount of peptide lost during washing procedure was also quantified. 

Fluorescamine assay was performed by mixing fluorescamine solution (Sigma; 3 mg/mL in 

acetone) and the sample at 1:3 ratio in a 96-black-well plate (Greiner). After 15 min of incubation 

at RT, the fluorescence intensity of each sample was measured by using a microplate reader 

(Synergy HT, Biotek). Finally, immobilization efficiency was represented as the percentage ratio of 

the amount of immobilized peptides to the amount of loaded peptides. 

In order to investigate coatings stability, the detachment of immobilized peptides was quantified 

by measuring the amount of released peptides from the modified surfaces during incubation 

under a physiologically relevant condition (in phosphate buffered saline, PBS at 37 ºC). For that, 

500 µL of a fresh PBS (10 mM potassium phosphate, 150 mM NaCl, pH 7.4) solution was 

added to each well of a 48-well microtiter plate (Orange Scientific, USA) in which coupons 

functionalized with peptides were placed immediately after peptide immobilization. The coupons 

were then incubated at 37 °C for 5 days. Every day, supernatant samples (500 µL) were 

withdrawn to determine the amount of peptide released. The remaining peptides on the surface 

were quantified by subtracting the released peptides from the total amount of peptides 

immobilized at the first day. 

 

 

ANTIBACTERIAL PERFORMANCE OF COATINGS 

The antibacterial performance of the functionalized surfaces was investigated using different 

methods.  

 

BACTERIAL CONTACT KILLING ASSAY 

In order to evaluate bacterial contact-killing properties of the modified surfaces, a previously 

reported method was applied with some modifications [34]. Briefly, bacterial concentration was 

adjusted in TSB to a final concentration of 1x106 CFU/mL and 20 µL of this solution was added 

to each well of a microtiter plate (Orange Scientific, USA), in which uncoated and modified 

coupons were placed. The plate was afterwards incubated at 37 ºC, under static conditions for 

24 h. After that, materials were placed on a TSA plate, incubated for 24 h at 37 ºC and bacterial 
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growth was checked for all conditions tested and tabulated as “+” for growth and “-“for no visible 

growth.  

 

QUANTIFICATION OF BACTERIAL ADHESION 

Quantification of adherent bacterial cells was performed by the spread plate method as 

previously described [35]. Briefly, after different incubation periods, the coupons were washed 

with saline solution and removed from the microtiter plates with sterile forceps into eppendorf 

tubes to which were added 1 mL of saline solution. Adhered bacteria were then detached by 

ultrasonic bathe in a Sonicor SC-52 (Sonicor Instruments) operating at 50 kHz, during 6 min 

followed by rapid vortex mixing for 30 s (these parameters were previously optimized). Serial 10-

fold dilutions were performed and plated onto TSA plates that were incubated overnight at 37 C 

in an aerobic incubator prior enumeration. The number of viable bacterial cells was expressed as 

CFU per mL. 

 

BACTERIAL VIABILITY ON MODIFIED SURFACES 

The performance of the modified surfaces against bacterial adhesion was evaluated by preparing 

a bacterial suspension with 1x108 CFU/mL in PBS from an overnight culture at 37 °C. For dual-

species adhesion, a combination of 50 % of suspended inoculum of each species was used. 

Materials were placed into the wells of a tissue culture plate and covered with the bacterial 

suspension. The samples were kept at 37 ºC for 4 h, at 120 rpm (OS-20), washed with saline 

solution, stained with a live/dead stain (BacLight Bacterial Viability Kit, Invitrogen) and observed 

in a fluorescent inverted microscope (Leica, DMI 3000B). In this assay, the red-fluorescent 

nucleic acid staining agent propidium iodide, which only penetrates damaged cell membrane, 

was used to label dead bacterial cells on the surfaces. In contrast, the SYTO 9 green-fluorescent 

nucleic acid staining agent, which can penetrate cells both with intact and damaged membranes, 

was used to label viable cells. ImageJ (Version 1.49m, Wayne Rasband, National Institutes of 

Health, USA) software was used to subtract the image background and the threshold function 

was used to render each greyscale image into a binary translation with distinct areas identifying 

adhered bacteria. The threshold value supplied by ImageJ was used as default but when 

necessary the threshold value was manually adjusted until all visible cells were included within 
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the thresholded range. The area measurement function was used to quantify the area of the 

pixels above the threshold and to thereby quantify the area covered by bacteria discriminating, at 

the same time, the fraction of live and dead bacteria, depending on the channel being analysed. 

Values were normalized to unmodified material control as previously performed [27].   

 

SUSCEPTIBILITY PATTERN OF CELLS ADHERED TO MODIFIED SURFACES 

In order to evaluate the susceptibility pattern of bacterial cells adhered to PDMS surfaces, cells in 

contact with modified and unmodified surfaces were recovered and allowed to adhere to new 

bare and modified samples during a period of 10 days. Briefly, a bacterial suspension with 1x107 

CFU/mL was prepared in TSB and 300 µL of this suspension were added to a 48-well microtiter 

plate in which PDMS, pDA-coated PDMS and PDMS coupons functionalized with AMP were 

placed. The plate was incubated for 24 h at 37 ºC, at 120 rpm. The coupons were subsequently 

washed 3 times with saline solution to remove free-floating bacteria and transferred to an 

eppendorf tube with 1 mL of saline solution. The tubes were then sonicated for 6 min, subjected 

to vortex for 30 s and 300 µL of this suspension were added to a 48-well microtiter plate in 

which new PDMS coupons were placed. The procedure was repeated for 10 successive days. 

The MIC and MBC for each condition tested were determined on days 0 and 10 and compared. 

The number of cells recovered each day was quantified by CFU counting.  

 

LOCALIZATION AND DISTRIBUTION OF BACTERIAL POPULATIONS BY PNA FISH 

In order to assess bacterial spatial organization and the species distribution on the coated 

surfaces, PNA FISH (peptide nucleic acid fluorescence in situ hybridization) method was 

employed. Before starting the hybridization, co-adhesion of P. aeruginosa and S. aureus was 

allowed to occur for 4 h as aforementioned in the sub-section of bacterial viability on modified 

surfaces. Coupons were then washed with UP sterile water and air-dried for 15 min. Bacteria 

were fixed with methanol (100 %) for 20 min. This fixation step proved to be crucial to avoid 

bacterial detachment during hybridization procedure [36]. Fixed bacteria were stored at 4 ºC for 

no longer than 48 h before the multiplex PNA FISH procedure.  A specific 16S rRNA PNA probe 

(Paer565) previously developed [37] was used for P. aeruginosa detection and S. aureus was 

identified by counterstaining the samples with 4, 6-diamidino-2-phenylindole (DAPI, Sigma) at the 
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end of the hybridization procedure. After bacteria fixation with methanol, 20 µL of 4 % (w/v) 

paraformaldehyde followed by 50 % ethanol (v/v) were applied to cover the entire surface and 

incubated for 10 min each and allowed to air dry. This step enables the fixation of the cells and 

increase the permeabilization of the cell membrane to the subsequent hybridization allowing the 

labeled oligonucleotide probes to diffuse to their intracellular rRNA target molecules [38]. 

Afterwards, 20 µL of hybridization solution containing the probe at 200 nM was applied on 

coupons which were covered with coverslips and incubated in the dark for 1 h at 65 ºC. After 

hybridization, coupons were inserted in a 24-well microtiter plate (Orange Scientific) containing a 

pre-warmed (at 65 ºC) washing solution composed of 5 mM Tris Base, 15 mM NaCl and 0.1 % 

(v/v) Triton X-100 (Sigma). The plate was incubated for 30 min at 65 ºC in the dark. Finally, 

coupons were allowed to air dry in the dark before counterstaining with DAPI (40 µg/mL) for 5 

min at RT in the dark and cells were visualized under an epifluorescence microscope. For 

microscopic visualization, a fluorescence microscope (Olympus BX51, Perafita, Portugal) 

equipped with the filters sensitive to DAPI (BP 365-370, FT 400, LP 421) and to the signalling 

molecule of the PNA probe  (BP 530-550, FT 570, LP 591, for Alexa 594) was used. 

 

EVALUATION OF BIOFILM FORMATION BY XTT REDUCTION ASSAY 

In order to investigate the potential of modified coatings to impair biofilm formation, the 

metabolic activity of biofilm cells was evaluated using the aforementioned XTT colorimetric 

method [22], with some modifications. XTT is a tetrazolium that can be reduced by cells in their 

mitochondria to an orange coloured formazan dye. The amount of formed tetrazolium formazan 

is thus proportional to biofilm cells metabolic activity. Briefly, a bacterial suspension with 1x107 

CFU/mL was prepared in TSB and added to a microtiter plate in which modified surfaces were 

placed. The plate was incubated for 24 h at 37 ºC and 120 rpm (OS-20). The coupons were 

subsequently washed with saline solution to remove free-floating bacteria and a combined 

solution of XTT and PMS were added to each well in order to obtain a final concentration of 150 

µg/mL of XTT and 10 µg/mL of PMS. The plates were afterwards incubated at 37 C for 3 h and 

120 rpm (OS-20), in the dark. The absorbance of each well was measured at 490 nm using a 

microtiter plate reader.  

 



CHAPTER 2  

 

58 
 

CYTOTOXICITY OF MODIFIED SURFACES 

DIRECT-CONTACT OF CELLS WITH MODIFIED SURFACES  

Cytotoxicity tests were performed using fibroblast cells 3T3 (CCL 163) from ATCC, a cell line 

commonly used for biomaterial surface compatibility studies [39,40]. Cells were  first cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % of foetal bovine serum 

(FBS) and 1 % penicillin/ streptomycin at 37 ºC and 5 % CO2. After achieving the confluence, 

cells were detached using trypsin and 500 µL of a cell suspension with 1x105 cells/mL were 

added to each well of a 48-well microtiter plate in which the modified surfaces were previously 

inserted. The plates were incubated at 37 ºC and 5 % CO2 for 48 h. 

 

CELL VIABILITY EVALUATION BY MTS 

Metabolic activity of cells in contact with modified surfaces was then evaluated by the MTS (3-(4, 

5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium), inner salt 

reduction assay. All the medium was removed and a solution containing 100 µL of MTS 

(Promega CellTiter 96® AQueous NonRadioactive Cell Proliferation Assay) per each 1 mL of 

DMEM without phenol red was added to each well. After 1 h of incubation in the dark, at 37ºC 

and 5 % CO2, the absorbance of the resulting solution was measured at 490 nm.  

 

MACROPHAGE-BACTERIA INTERACTIONS ON MODIFIED SURFACES 

CELL CULTURE CONDITIONS AND MACROPHAGES DIFFERENTIATION 

A human monocyte line cell (THP-1, ATCC TIB-202) was used to study the role of host immune 

system once bacteria manage to adhere to bi-functional coatings. Monocytes were routinely 

cultured in (RPMI-1640) with sodium bicarbonate and L-glutamine, supplemented with 10 % FBS 

and 1 % penicillin/ streptomycin .The flasks were kept at 37 °C in a humidified atmosphere with 

5 % CO2 and cells were passaged when reached the exponential phase of growth (3 - 8 x 100 

000 cells/mL). Cells were harvested by centrifugation (150 g, 5 min at RT) and the harvested 

cells were counted using a Burker–Turk hemocytometer. To induce monocytes differentiation into 

macrophages, 1x106 cells/mL were diluted in RPMI supplemented with 100 nM of phorbol 12-

Myristate 13- (PMA) and cultured for 24 h at 37 °C and 5 % CO2. Cells in suspension were 
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afterwards removed by aseptically removing the medium and adhered cells were washed with 

RPMI-1640 and incubated for more 48 h in medium without PMA.  

 

MACROPHAGES-MEDIATED PHAGOCYTOSIS OF BACTERIA ADHERING TO BI-FUNCTIONAL 

COATINGS 

Differentiated macrophages were detached using trypsin and 300 µL of a cell suspension with 

5x105 cells/mL were added to each well of a 48-well microtiter plate in which the modified 

surfaces with staphylococci (1x108 CFU/mL in PBS) adhered for 4 h, were previously inserted. 

The plates were incubated at 37 ºC and 5 % CO2 for 2 h. The coupons were washed with PBS, 

stained with DAPI (40 µg/mL) and visualized under an epifluorescence microscope. 

 

 

STATISTICAL ANALYSIS 

Results were presented as mean ± standard deviation (SD). The statistical analysis for this 

project was performed as follows: outliers were identified and removed by applying Grubbs’ test 

and data normality was checked using Kolmogorov-Smirnov test. After this analysis, parametric 

tests (one way ANOVA followed by Tukey’s test) or nonparametric (Kruskal−Wallis test) were used 

depending on whether the samples were from normally distributed populations or not, 

respectively. These analysis were formed using Microsoft Excel and Graph Pad Prism 5.0 

software.   
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3.1 
 

Screening of the susceptibility patterns 

of planktonic and sessile cultures 

towards AMP 

AMP have been recognized as excellent candidates as alternatives to antibiotics for the new 

generation of antimicrobial surfaces. Prior to their immobilization, it was aimed to evaluate their 

efficacy, when in solution, against planktonic and sessile cultures of both Gram-positive and 

Gram-negative bacterial strains commonly found in BAI. Different AMP, representing different 

mechanisms of action, were used in this screening study, namely polymyxins (B and E), Camel 

and Palm. Results demonstrated the potential use of these AMP in the early stages of biofilm 

growth to impair its establishment, highlighting their potential as candidates for the development 

of antimicrobial coatings for medical devices. Polymyxins were more effective against the Gram-

negative strain while Camel and Palm against the Gram-positive one.  
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INTRODUCTION 

Nowadays, the major global healthcare problem is the growing number of nosocomial infections 

associated to the emergence of resistance microorganisms. This problem gets worse when 

microorganisms switch from planktonic to sessile lifestyle and live in biofilms. Once established, 

biofilms are less susceptible to antimicrobial treatment and to the host immune system than their 

planktonic counterparts [1], making nosocomial infections a burden to the public health systems.  

In order to prevent bacterial adhesion and subsequent biofilm formation or even kill harmful 

microbes, a wide range of biocides have been extensively used in healthcare settings. Although 

most of them show broad spectrum antimicrobial activity, their overuse, inappropriate selection, 

dosing and deficient time of application may be at the root of microbial resistance development 

[2]. A potential solution to overcome this problem may lie in the use of AMP.  

AMP play a crucial role in the innate immune systems of most living organisms defending them 

against invading microorganisms. Several studies have focused on designing analogue peptides 

more active and stable than the natural AMP without causing harm to mammalian cells [3]. A 

way of optimizing these compounds include the synthesis of hybrid peptides containing portions 

of the amino acid sequences of two peptides with different mechanisms. Camel is a 15-residue 

hybrid peptide derived from the sequences of two insect peptides, cecropin A (isolated from the 

larvae of the silk moth Hyalophora cecropia) and melittin (isolated from honey bee venom). This 

hybrid peptide is more active than the native molecules and also lacks the undesirable 

haemolytic properties of melittin [4]. Some studies have reported promising in vitro activities of 

Camel and its analogues against anaerobic bacteria [5] and staphylococcal skin infections [6]. 

Another strategy to obtain effective AMP rely on the attachment of palmitic acid to the N terminus 

of positively charged short peptides, without activities against microorganisms. These so-called 

lipopetides are granted with a broad spectrum of potent antimicrobial activities and low levels of 

haemolytic activity [7, 8]. Another group of cationic antimicrobial lipopeptides that has been used 

as the last resource to fight multi-drug resistant Gram-negative strains are polymyxins [9]. Only 

polymyxins B and E (also called colistin) have been used in clinical practice [10]. Structurally, 

they consist of a seven-member cyclic ring of aminoacids with a tripeptide side chain bounded to 

a fatty acid chain. The two polymyxins have the same heptapeptide ring, with the exception of a 

single aminoacid, which is phenylalanine in polymyxin B and leucine in colistin [11]. Although 

effective, some concerns have been raised about the development of bacterial resistance and 
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toxicity towards these AMP [9] which may be overcome by their covalent immobilization onto a 

biomaterial surface.  

The main goal of this study was to screen the antimicrobial activity of these aforementioned AMP 

in order to seek the most promising ones which can be later immobilized onto a biomaterial 

surface. For that, the susceptibility patterns of planktonic and sessile cultures of both Gram-

positive and Gram-negative bacteria were determined.  

 

 

MATERIALS AND METHODS 

BACTERIAL STRAINS AND GROWTH CONDITIONS 

In this study, a reference strain of P. aeruginosa (ATCC 39324) and a clinical isolate of S. aureus 

were used as representative of Gram-negative and Gram-positive strains commonly associated to 

BAI. Bacteria were preserved and cultured as described in Chapter 2.  

 

ANTIMICROBIAL PEPTIDES 

A number of AMP were investigated in this study: polymyxin B and polymyxin E, Camel and Palm. 

Stock solutions were prepared in sterile UP water and were stored at -20 °C until being used.   

 

PLANKTONIC SUSCEPTIBILITY PATTERNS 

Planktonic susceptibility towards AMP was evaluated by determination of MIC and MBC as 

described in Chapter 2. Three independent assays with six replicates for each condition were 

performed.  

 

BIOFILM SUSCEPTIBILITY TO AMP 

Susceptibility patterns of sessile cultures towards AMP was evaluated by forming biofilms in the 

presence of increasing concentrations of AMP as described in Chapter 2. Biofilms were then 

characterized in terms of biomass through the CV staining method and determination of the 
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number of viable cells, also described in Chapter 2. Three independent assays with six replicates 

for each condition were performed.  

 

 

RESULTS 

SUSCEPTIBILITY PATTERNS OF PLANKTONIC CULTURES 

The concentrations of peptides able to inhibit planktonic bacterial growth (MIC) and those 

required to kill planktonic (MBC) bacteria are summarised in Table 1.  

 

Table 1. MIC and MBC of peptides against planktonic cultures of P. aeruginosa (ATCC 39324) and S. 

aureus (clinical isolate). MIC and MBC are expressed in µg/mL.  

AMP 
P. aeruginosa S. aureus 

MIC MBC  MIC  MBC 

PE 2 4 16 > 64 

PB 2 4 8 > 64 

Palm 64 64 32 64 

Camel 16 32 2 8 

 

Results showed that polymyxins were the most effective against P. aeruginosa, with lower 

concentrations required to inhibit its planktonic growth.  A lower activity was found against S. 

aureus as polymyxins were not able to kill this strain even for the higher concentration tested. 

These results may be explained by polymyxins’ mechanism of action as it involves cell 

membrane’s disruption mainly by binding to the lipid A portion of LPS of Gram-negative bacteria 

[12]. The Gram-positive strain was more susceptible to Camel and Palm, especially to Camel, 

with lower concentrations required to prevent its planktonic growth.  

Based on these susceptibility patterns, the potential of polymyxins to prevent the formation of P. 

aeruginosa biofilms and the potential of Camel and Palm against S. aureus biofilms were 

afterwards evaluated.  
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BIOFILM SUSCEPTIBILITY PATTERNS 

In order to assess the antimicrobial effects of polymyxins B and E during biofilm development, 

biofilms of P. aeruginosa were allowed to growth for 24 h in the presence of increasing 

concentrations of these AMP.  

 

 

Figure 1.  Biomass (A) and number of cultivable cells (B) of P. aeruginosa (ATCC 39324) biofilms 

developed in TSB supplemented with increasing concentrations of polymyxin B  (black) or polymyxin E 

(white). Significant differences were found for PE (***) p < 0.001 and PB (###) p < 0.001, compared to 

biofilm formation in the absence of peptides (0 µg/mL). 

 

Figure 1 shows that the presence of 1 µg/mL of both polymyxins (0.5x the MIC value) during 

biofilm development completely reduced the biofilm mass. Concerning the effect of polymyxins 

on biofilm entrapped cells, a reduction in a dose-dependent manner and a similar pattern was 
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observed. Polymyxin E was more efficient than polymyxin B as it was observed a 4.5 and 3.2 log 

reduction in the number of culturable cells, respectively, after biofilms development in the 

presence of a concentration of 64 µg/mL (32x the MIC value).    

The potential of Camel and Palm to prevent the formation of S. aureus biofilms is presented in 

Figure 2.  

 

Figure 2.  Biomass (A) and number of cultivable cells (B) of S. aureus  (clinical isolate) biofilms developed 

in TSB supplemented with increasing concentrations of Camel (white) or Palm (black). Significant 

differences were found for Camel (***) p < 0.001 and Palm (###) p < 0.001, compared to biofilm 

formation in the absence of peptides (0 µg/mL). 

 

Results showed that biofilm mass of S. aureus was affected by the presence of Camel from a 

concentration of 16 µg/mL (8x the MIC value). The presence of Palm in the early stages of 

biofilm formation, at a range of 4 to 16 µg/mL, reduced biofilm mass but had no significant 
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effect for higher concentrations. This pattern was not observed, however, on the number of viable 

cells which may be attributed to the strain phenotype in the absence of peptides. According to 

Stepanovic et al. [13], biofilms formed by this strain can be classified as a moderately adherent 

and therefore the CV staining method may not the best one to evaluate peptides ability to prevent 

biofilm formation as the amount of biofilm formed may not cross the limit detection of the 

method. In fact, no correlation between the number of viable cells and CV staining method has 

been previously demonstrated [14]. Results showed that biofilm establishment in the presence of 

Camel and Palm peptides was impaired from a concentration of 8 and 4 µg/mL, respectively, as 

shown by a decrease in the number of viable cells.  

 

 

DISCUSSION 

The increased prevalence of bacteria with resistance to conventional antibiotics associated to the 

fact that the number of new antimicrobials is declining, represent a serious worldwide problem 

[15,16]. In this scenario, AMP have been recognised as promising candidates as alternatives to 

antibiotics, due to their low toxicity, broad range of activity and unspecific mechanism of action 

[17]. This work aimed at determining the most promising AMP to afterwards be immobilized onto 

biomaterial surfaces in order to render them with antimicrobial features. For that, the in vitro 

susceptibility patterns of both planktonic and biofilm cultures involving P. aeruginosa, as a Gram-

negative representative strain, and, S. aureus, as a Gram-positive one, were determined.  

Results obtained for planktonic cultures (Table 1) allowed to conclude that polymyxins B and E 

were the most effective AMP against the Gram-negative strain while Camel and Palm required 

lower concentrations to inhibit S. aureus growth. The ability of these AMP to prevent biofilm 

formation using a prophylactic approach was then evaluated. Results showed that the same 

range of concentrations tested in planktonic studies was able to impair biofilm establishment of 

both strains, which highlights the potential of these antimicrobials as compared to conventional 

antibiotics. In general, the concentrations of antibiotics required to kill biofilm bacteria are much 

higher than their MIC values [1]. These effective low concentrations also suggest that toxicity 

issues should not be raised when using these compounds.  
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Polymyxins B and E greatly impaired biofilm formation of P. aeruginosa (Figure 1) which is in 

accordance to several studies reporting their potent in vitro activity against some multi-resistant 

Gram-negative pathogens. Most of these studies, however, were performed only with polymyxin E 

and its efficacy was mostly determined in pre-formed or established biofilms [18-20]. Although 

effective, some concerns have been raised about polymyxins development of bacterial resistance 

and toxicity [11,12]. Their immobilization onto a surface, the ultimate goal of the present thesis, 

may overcome these issues as it avoids patient exposure to sub-inhibitory concentrations.  

Palm and Camel’s ability to impair biofilm formation of S. aureus required higher concentrations 

than polymyxins against P. aeruginosa. However, similar and biological significant log reductions 

(higher than 3 log) could be achieved for the highest tested concentrations. These results are in 

accordance to a previous study where these peptides were very effective against staphylococcal 

strains isolated from skin infections. In that study, the safety of these AMP was also determined 

and it was concluded that Camel was not toxic at its MIC value, unlike Palm [6].  

In conclusion, the overall results demonstrated the potential use of AMP in the early stages of 

biofilm development to impair its establishment. Unlike antibiotics, these compounds were able 

to compromise biofilm formation at similar range concentrations able to inhibit planktonic growth, 

highlighting their potential as candidates for the development of antimicrobial coatings for 

medical devices.  
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Synergistic antimicrobial effect 

against P. aeruginosa biofilms: PE 

preconditioning surfaces plus 

antimicrobial treatment 

Biofilm formation on medical devices is commonly associated with persistent infections. Once 

established, biofilms are less susceptible to antimicrobial treatment and to the host immune 

system which often results in implant devices surgical removal. The combination of biofilm 

preventive measures may be the best option to control such infections. This work aimed to 

investigate the potential of PE during the early stages of biofilm formation to impair P. aeruginosa 

biofilm establishment. Two strategies were used: pre-conditioning the adhesion surfaces with PE 

before biofilm formation and growing biofilms in its presence. The effect of treatment with CIP or 

PE on the 24-h-old P. aeruginosa biofilms formed on clean and PE-conditioned surfaces was 

further assessed. A P. aeruginosa reference strain and a clinical isolate were used as biofilm 

producers and biofilms were characterized in terms of biomass, respiratory activity and number 

of viable cells. Biofilm formation of both strains was significantly impaired when PE was used 

either as biofilm growth media complement or to randomly coat the adhesion surfaces before 

biofilm growth. Furthermore, random deposition of PE on the adhesion surfaces proved to 

increase biofilm susceptibility to CIP or PE treatment in terms of viable cells. Taken together, 

these data highlight a promising use of PE as a medical device coating agent and a synergistic 

effect between PE surface conditioning and antimicrobial treatment. 
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INTRODUCTION 

Bacterial adhesion to surfaces and subsequent biofilm formation remains a serious threat in 

biomedical field when bacteria are able to reach the surface of medical devices or implants 

becoming the focus of persistent infections, called BAI [1, 2]. Biofilm formation is a crucial step 

in the pathogenesis of these infections [3], as bacterial cells within a biofilm encase themselves 

in a self-produced matrix of EPS [4] which confers them protection against antimicrobial 

treatments and the host immune system [5].  

Biofilm formation on biomaterial surfaces is a developmental process which includes the 

following main steps: i) transport of bacterial cells to the surface and their initial and reversible 

adhesion, ii) irreversible attachment, iii) microcolony formation, iv) biofilm maturation and 

differentiation and v) detachment of individual bacteria or aggregates from the biofilm [6]. 

Bacterial adhesion [7] is mediated by specific and non-specific interactions between cell surface 

structures and molecular groups of the surface [8]. Prior to the attachment process, the surface 

is first covered with a layer of proteins and glycoproteins, the so called conditioning film. The 

conditioning film on the biomaterial surface changes the physicochemical properties of the 

surface so the affinity of an organism for a native or a conditioned surface can be greatly different 

depending on the molecules that constitute the conditioning film [9-11]. After adhesion to 

biomaterials, biofilm formation takes place by auto-aggregation of the attached cells within a self-

produced matrix [4].  

P. aeruginosa is the most common Gram-negative bacillus associated with BAI [12] and its 

emergence as a nosocomial pathogen is a growing concern [13]. Eradication of P. aeruginosa 

infections represents a serious challenge because of its ability to form strong biofilms, its intrinsic 

resistance to antibiotics [14] and its remarkable ability to develop resistance during antimicrobial 

treatment [15]. In fact, there has been a recent emergence of P. aeruginosa clinical isolates 

resistant to virtually all antibiotics [16]. The widespread emergence of multidrug-resistant 

Pseudomonas strains has led to the return of older antimicrobials such as polymyxins with 

acceptable efficacy and less toxicity than reported in the past [17]. 

PE, also known as colistin, belongs to an old class of cationic, cyclic AMP with significant in vitro 

activity against some multi-resistant Gram-negative pathogens, representing therefore, a 

promising treatment option for serious infections caused by P. aeruginosa [18]. Although a 

number of studies have assessed in vitro bactericidal activity of PE alone and combined with 
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other antimicrobials [19,20], PE efficacy was mostly determined in pre-formed or established 

biofilms [21]. As early bacterial adhesion is a crucial step in BAI pathogenesis, it was 

hypothesized that PE conditioning of medical devices surfaces could offer an efficient alternative 

to control P. aeruginosa infections. Moreover, its combination with antimicrobial treatment could 

act synergistically as an effective approach to prevent biofilm formation on medical devices.  

The aim of this work was, therefore, to study the effect of PE in the early stages of biofilm 

formation by two P. aeruginosa strains.  For that purpose, two different application strategies 

were first used: pre-conditioning the adhesion surfaces with PE prior to biofilm formation and 

growing biofilms in its presence. It was also evaluated if the combination of PE conditioning 

surfaces and antimicrobial treatment could act synergistically as an effective approach to control 

P. aeruginosa biofilms.   

 

MATERIALS AND METHODS 

BACTERIAL STRAINS AND GROWTH CONDITIONS  

P. aeruginosa reference strain (ATCC 10145) and a P. aeruginosa clinical isolate catalogued as 

U147016-1 were used throughout this study. The strains were preserved and cultures as 

described in Chapter 2.  

 

ANTIMICROBIAL AGENTS 

The AMP PE and the antibiotic CIP were used in this study. Stock solutions were prepared in 

sterile UP water and were stored at -20 °C until being used.  

 

PLANKTONIC ANTIMICROBIAL SUSCEPTIBILITY 

Planktonic susceptibility towards antimicrobials were evaluated by determination of the MIC and 

MBC as described in Chapter 2. Three independent assays with 4 replicates were performed.  
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BIOFILM INHIBITION ASSAYS 

In order to determine the effect of PE in the early stages of biofilm formation, pre-conditioning 

and co-incubation experiments were performed as described in Chapter 2. Biofilms were then 

characterized in terms of biomass, metabolic activity and number of cultivable cells as also 

described in Chapter 2. Three independent assays with 4 replicates were performed.  

 

BIOFILM TREATMENT WITH CIP OR PE 

Biofilms formed on clean and pre-conditioned wells with PE (32 µg/mL) for 30 min were 

subjected subsequently to sudden treatment of CIP or PE at RT for different periods of time (30 

min, 120 min and 240 min). For that, the supernatant content of each well was withdrawn and 

the wells washed with sterilised UP water. The wells attached biofilms were afterwards treated 

with CIP at 0.75 µg/mL (MBC) or PE at 4 µg/mL (MBC). Non-treated wells were filled with 

sterilised UP water for the same period of time. Two or three independent assays with 4-8 

replicates were performed.  

 

RESULTS 

MIC AND MBC DETERMINATION ON PLANKTONIC CULTURES 

The concentrations of PE and CIP able to inhibit planktonic bacteria growth (MIC) and those 

required to kill planktonic bacteria (MBC) are summarised in Table 1. Both antimicrobials were 

effective at low concentrations, however, different susceptibility patterns could be observed for 

the P. aeruginosa strains investigated in this study. The reference strain proved to be susceptible 

to both antimicrobial agents while the clinical isolate was considered resistant to CIP and 

susceptible to PE, according to CLSI criteria [22].   

Table 1.  MIC and MBC of CIP and PE against planktonic cultures of P. aeruginosa ATCC 10145 and 

clinical isolate U147016-1. MIC and MBC values are expressed in µg/mL. 

P. aeruginosa strain 
CIP PE 

MIC  MBC MIC  MBC  

ATCC 10145 0.1875 0.75 2 4 

U147016-1 16 32 2 4 
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ANTIMICROBIAL EFFECT OF PE IN BIOFILM DEVELOPMENT 

In order to assess the antimicrobial effects of PE during biofilm development, biofilms were 

allowed to grow for 24 h in the presence of increasing concentrations of PE. Figure 1 shows that 

the presence of 2 µg/mL of PE (the MIC value) during biofilm development completely reduced 

the biofilm mass and metabolic activity for both strains. Concerning the effect of PE on biofilm 

entrapped cells, it was observed a reduction in a dose-dependent manner for both strains 

investigated. PE proved to be more efficient against the reference strain as it was observed a 5 

and 3 log reduction in the number of the reference and isolate culturable cells, respectively, after 

biofilms development in the presence of 64 µg/mL of PE (32x the MIC value).    

 

 

Figure 1. Metabolic activity (A), biomass (B) biofilm  and number of cultivable cells (C) of P. aeruginosa 

ATCC 10145 (white) and P. aeruginosa clinical isolate U147016-1 (black) biofilms developed in TSB 

supplemented with increasing concentrations of PE. Significant differences were found for ATCC 10145 

(***) p < 0.001 and U147016-1 (###) p < 0.001, compared to biofilm formation in the absence of 

peptides (0 µg/mL). 
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EFFECT OF PE SURFACE PRECONDITIONING BEFORE BIOFILM DEVELOPMENT 

The effect of PE surface coating, evaluated at several concentrations, on the biomass, activity 

and culturable cells of biofilms formed by both P. aeruginosa strains are shown in Figure 2.  

 

 

Figure 2. Metabolic activity (A), biomass (B) and number of cultivable cells (C) of P. aeruginosa ATCC 

10145 (white) and P. aeruginosa clinical isolate U147016-1 (black) biofilms developed on surfaces pre-

conditioned with increasing concentrations of PE. Significant differences were found for ATCC 10145 (***) 

p < 0.001 and U147016-1 (###) p < 0.001, compared to biofilm formation in the absence of peptides (0 

µg/mL). 

 

Figures 2 A and B show that, in general, random deposition of PE on the adhesion surfaces 

reduced biofilm activity and mass accumulated in a dose-dependent manner for both strains 

except for the activity of biofilms produced by the reference strain which were only inhibited from 

a PE concentration of 32 µg/mL (p<0.001). The presence of a PE conditioning film prepared at a 

concentration of 32 µg/mL caused a complete reduction of the respiratory activity and mass 

accumulated of the biofilms developed by both P. aeruginosa strains (p<0.001). Regarding the 

effect of PE on biofilm entrapped cells, the presence of the conditioning film only influenced 
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biofilm formation by both strains when it was prepared at PE concentrations of 32 µg/mL and 64 

µg/mL (p<0.001), causing 2 log reduction in the reference strain and 1 log in the clinical isolate. 

 

 

COMBINED EFFECT OF PE SURFACE PRECONDITIONING AND BIOFILM ANTIMICROBIAL 

TREATMENT 

The combined effect of PE conditioning surfaces and antimicrobial treatment with CIP or PE on 

biofilms formed by the reference and clinical isolated P. aeruginosa strains are presented in 

Figures 3 and 4, respectively. A concentration of 32 µg/mL was chosen for PE conditioning as it 

proved to cause a reduction in the number of cultivable cells. For the treatment approach, 

antimicrobials were applied at their MBC.  
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Figure 3. Metabolic activity (A), biomass (B) and number of cultivable cells (C) of P. aeruginosa ATCC 

10145 24-h-old biofilms developed on PE-conditioned surfaces and treated with CIP or PE for 30 min 

(black), 120 min (grey) and 240 min (white). 
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Figure 4. Metabolic activity (A), biomass ( (B) and number of cultivable cells (C) of P. aeruginosa clinical 

isolate U147016-1 24-h-old biofilms developed on PE-conditioned surfaces and treated with CIP or PE for 

30 min (black), 120 min (grey) and 240 min (white). 

 

Figure 3 shows that, biofilms developed by the reference strain on clean surfaces and subjected 

to CIP treatment for a period of 30 min, revealed, slightly, a lower number of biofilm cells 

(p<0.05) but similar values of biomass and activity as biofilms not subjected to treatment 

(p>0.05). Treatment with PE, for the same period of time, reduced biofilm activity (p<0.001) and 

mass (p<0.01) but had no effect in the number of biofilm cells. Regarding the biofilms developed 

by the clinical isolate (Figure 4), it was possible to observe that CIP treatment had no influence 

on biofilm formation, in terms of mass, activity or biofilm entrapped cells. PE treatment reduced 
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biofilm activity (p<0.05) and mass (p<0.001) but had no effect in the number of biofilm cells.  

Surface conditioning with PE before biofilm development was very efficient, as it impaired 

significantly biofilm formation of both strains, especially in terms of mass and activity (p<0.001). 

It was observed that the reference strain and the clinical isolate had 0.9 log and 0.3 log reduction 

in the number of biofilm cells, respectively. Concerning the combined application of PE 

conditioning and biofilm treatment with CIP or PE, it was observed a reduction on biofilm mass 

and activity similar to the one revealed by biofilms formed on PE conditioned surfaces without 

being subjected to antimicrobials treatment. The combination of both strategies promoted a 

similar improvement on CIP and PE efficacy, causing a reduction of approximately 1 log in the 

cells of the biofilm formed by the reference strain. For the clinical isolate, the combination of both 

strategies proved to be more effective (p<0.01) when PE treatment was performed, causing a 0.7 

log reduction. 

Biofilms developed by both strains on clean surfaces and subjected to CIP or PE treatment for a 

higher period of time, 2 h, revealed similar values of mass, activity and biofilm entrapped cells as 

biofilms formed on clean surfaces and not subjected to the antimicrobial treatment (p>0.05). 

Biofilms of both strains that were formed on surfaces previously conditioned with PE revealed an 

accentuated reduction in biofilm mass and activity, and a reduction of 2.1 log and 0.8 log in 

biofilm cells formed by the reference strain and the clinical isolate, respectively. Regarding the 

combined application of PE conditioning and biofilm treatment with CIP or PE, it was observed, 

for both strains, the same sharp reduction on biofilm mass and activity as the one revealed by 

the biofilms formed on PE conditioned surfaces only. The combination of both strategies caused 

1.7 log and 1.8 log reduction when biofilms of the reference strain were subjected to CIP and PE 

treatment, respectively. Regarding the clinical isolate, log reductions of 1.5 and 1.2 were 

observed when biofilms were subjected to, respectively, CIP and PE treatment. 

Increasing the treatment period of biofilms formed on clean surfaces with PE or CIP to 4 h, 

showed that, in general, neither of the antimicrobials had influence on biofilm formation by both 

strains. PE conditioning of the surfaces before biofilm formation, on the other hand, caused a 

marked reduction in biofilm mass and activity and a reduction of 1.4 log and 0.9 log on biofilm 

cells formed by the reference strain and the clinical isolate, respectively. Biofilms formed, by both 

strains, on PE conditioned surfaces that were subjected to CIP or PE treatment revealed an 

accentuated reduction on biofilm mass and activity, similar to the one presented by biofilms 

formed on conditioned surfaces, only. The combination of both strategies had a significant effect 
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on biofilm entrapped cells of the reference strain, causing 1.8 and 2.1 log cell reductions when 

CIP or PE treatment was performed, respectively. As for the clinical isolate, the combination of 

both strategies had also effect on biofilm entrapped cells, causing a cell reduction of 1.3 log and 

0.9 log when CIP or PE treatment was performed, respectively.  

Figures 3 and 4 also show that treatment time was a factor that influenced biofilm formation. For 

the reference strain, no difference in the amount of biofilm mass and activity was observed with 

the treatment time. However, CIP or PE treatment of biofilms formed on PE conditioned surfaces 

increased the number of viable cells with the increase of treatment time. Interestingly, the 

efficacy of PE conditioning film without antimicrobial treatment was increased when biofilms were 

subjected to sterile water for 2 h or 4 h, when compared to the biofilms subjected for 30 min.  

The biofilm formation by the clinical isolate was also affected by treatment time. Unlike the 

reference strain, increasing the period during which biofilms formed on clean surfaces were 

subjected to sterile water as a control, proved to enhance biofilm activity and mass for a period of 

4 h, being more evident for biofilm activity. Regarding the number of biofilm entrapped cells, 

treatment time had only effect on biofilms formed on PE conditioned surfaces and subjected to 2 

h of CIP treatment h, when compared to a treatment time of 30 min. Application of CIP or PE 

treatment, for 2 or 4 h, to biofilms formed on PE conditioned surfaces yielded similar values of 

biofilm entrapped cells. Similarly to the reference strain, the efficacy of PE conditioning film 

without antimicrobial treatment was increased when biofilms were subjected to sterile water for 2 

h or 4 h, when compared to the biofilms subjected to a 30 min treatment. 

From the results presented on Figures 3 and 4 it was possible to classify the antimicrobial effect 

obtained when both strategies, PE conditioning and antimicrobial treatment (with CIP or PE), 

were combined. The antimicrobial effect was classified as synergistic, additive, indifferent and 

antagonistic after comparing biofilm inhibitions regarding its biomass, metabolic activity and 

number of viable cells achieved when both strategies were compared with the theoretical sum 

that would be achieved taking into account the results obtained when the antimicrobial 

approaches were applied alone. The results obtained are summarised in Table 2 and an example 

of how this classification was applied is presented in Figure S1 of Supplemental Material. 
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Table 2.  Antimicrobial effects on 24-h-old P. aeruginosa ATCC 10145 and U147016-1 biofilms formed on 

PE conditioned surfaces after CIP or PE treatment. 

Biofilm characterization: biomass 

 CIP treatment PE treatment 

Treatment time 30 min 2h 4h 30 min 2h 4h 

Strain 
ATCC10145 Indifferent Indifferent Indifferent Indifferent Indifferent Indifferent 

U147016-1 Indifferent Indifferent Indifferent Indifferent Indifferent Indifferent 

Biofilm characterization: metabolic activity 

 CIP treatment PE treatment 

Treatment time 30 min 2h 4h 30 min 2h 4h 

Strain 
ATCC10145 Indifferent Indifferent Indifferent Indifferent Indifferent Indifferent 

U147016-1 Indifferent Indifferent Indifferent Indifferent Indifferent Indifferent 

Biofilm characterization: cell viability 

 CIP treatment PE treatment 

Treatment time 30 min 2h 4h 30 min 2h 4h 

Strain 
ATCC10145 Additive Indifferent Indifferent Indifferent Indifferent Synergism 

 U147016-1 Indifferent Indifferent Indifferent Synergism Synergism Synergism 

 

Concerning biofilm mass and metabolic activity, data show that the combination of both 

strategies yielded the same biofilm reduction achieved by PE conditioning (the most effective 

approach when applied alone) for all the conditions tested. Regarding the reduction achieved in 

terms of viable cells, different antimicrobial effects could be observed. For the reference strain, 

when PE conditioning was combined with 30 min of CIP treatment a similar log reduction was 

achieved to the theoretical sum of both approaches applied individually (additive effect). 

Increasing the treatment period, the combination of both strategies yielded similar log reductions 

achieved by PE conditioning applied alone (indifferent effect). When the antimicrobial treatment 

was performed with PE instead, a synergistic effect was observed when a 4 h treatment was 

implemented. Regarding the clinical isolate, the combination of PE conditioning with CIP 

treatment always had an indifferent effect but when PE was applied, the combination of both 

strategies was able to achieve higher reductions on the number of viable cells than when the 

antimicrobial approaches were applied alone, for all the treatment periods.       
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DISCUSSION    

Bacterial colonisation of indwelling devices followed by biofilm formation remains a serious 

concern in modern healthcare as it is commonly associated to persistent infections [23]. 

Bacterial adhesion is a crucial step in this colonisation process, representing, therefore, a 

promising target for the development of biofilm preventive measures. In this work, the presence 

of PE during the early stages of biofilm formation was able to impair biofilm establishment by a 

P. aeruginosa reference strain and a clinical isolate.  

The presence of PE during biofilm growth was able to impair its development and, unlike most 

antibiotics, PE concentration able to inhibit planktonic bacteria (MIC) was also able to impair 

biofilms developed by both strains. Generally, antibiotic concentrations required to kill biofilm-

encased bacteria are significantly higher when compared with their MIC because, once 

established, biofilms are often more difficult to eradicate [24]. Moreover, PE’s MIC and MBC 

almost coincide (two-fold difference), which indicates that killing is generally bactericidal, a highly 

desirable mode of action. This remarkable anti-biofilm activity of PE makes it a promising coating 

agent for medical devices.   

The random deposition of antimicrobials can alter the surface physicochemical properties and, 

therefore, promote or impair the subsequent bacterial adhesion. In this work, the presence of PE 

on the surfaces impaired biofilm formation, especially in terms of biofilm activity and mass 

accumulated. The presence of PE during biofilm formation may have interfered in the transition 

from reversible and initial adhesion to stable and irreversible interactions [25], disturbing 

transition from microcolonies to biofilms and thus delaying the mature biofilm development [26]. 

Other authors [27] have demonstrated the potential of Tachyplesin III as a coating agent to 

prevent bacterial adhesion to medical surfaces. Coating ureteral stents with this AMP was able to 

prevent biofilm formation in vitro and in a rat model of P. aeruginosa ureteral stent infection. 

The surface conditioning with PE required higher concentrations to accomplish similar reductions 

in terms of biofilm mass and activity when this AMP was used as biofilm growth media 

complement, being also less efficient in the reduction of biofilm entrapped cells. A longer period 

of time was used to promote surface conditioning (2 h) but there were no statistically differences 

when compared to surfaces conditioned during 30 min only. In fact, according to Chmielewski 

and Frank [28], the adsorption of an organic layer onto a substratum can occur within seconds of 

exposure to an aqueous environment. The slightly decrease in PE efficacy may, thus, be related 
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to the adsorption process itself which can cause peptide aggregation and also an uneven peptide 

distribution along the surfaces.  

Although surface conditioning with PE proved to impair biofilm activity and mass of both strains, 

the conditioning film still allowed the adhesion of a considerable number of cells during the 24 h 

of biofilm growth. Differences found for the different methods may be attributed to a low limit 

detection of both CV staining and XTT methods as aforementioned in Chapter 3.1. Based on the 

number of entrapped cells found, it was speculated that these cells could be more susceptible to 

antimicrobial action. To test this hypothesis, biofilms were allowed to grow for 24 h on PE 

conditioned surfaces and afterwards subjected to antimicrobial treatments for different periods of 

time. Antimicrobial treatment was performed with CIP, an antibiotic commonly prescribed to treat 

P. aeruginosa infections, and PE.  Several studies have shown synergism between conventional 

antibiotics and AMP [29,30]. The combined use of these antimicrobials can reduce the dose and 

side effects, as well to prevent the development of bacterial resistance.  

The preventive strategy (PE conditioning) proved to be more efficient than the prophylactic 

approach (CIP or PE treatment) confirming that biofilms are more difficult to eradicate once 

established. On the other hand, biofilms established on clean surfaces could not be, in general, 

impaired by CIP or PE treatment, for any of the periods of time investigated. PE has proved to be 

less effective on initial stage biofilms (24 h growth) than on mature biofilms [31] which could be 

explained by the fact that PE preferentially killed cells forming the core/stalk of the P. aeruginosa 

PAO1 mushroom structures, which were less active than the cap forming subpopulations [32]. 

So, the combination of PE with antibiotics with good bactericidal activity against strains in an 

active stage, such as CIP, may represent a promising choice to maintain PE efficacy against 

biofilm-associated infections.  

The combined effect of a preventive strategy (PE conditioning) and a prophylactic one (CIP or PE 

treatment) could only be observed in terms of biofilm encased cells, which may be attributed to a 

lower limit detection of both CV staining and XTT methods as aforementioned. In general, 

biofilms formed by the reference strain on PE conditioned surfaces became more exposed to CIP 

or PE action. Antimicrobial action proved to be more effective for longer periods of time. The 

clinical isolate proved to be less susceptible than the reference strain which was expected as 

clinical isolates, frequently exposed to stress conditions in a hospital environment, can suffer a 

selection process that favours more pathogenic strains [33]. In this study, the effects were 
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classified based on a statistical analysis. However, it should be highlighted that from a biological 

point of view, 1.8 log cell reduction (the highest reduction achieved when combing both 

approaches) may fall short to achieve a successful therapy in clinical practice. 

In conclusion, the overall results demonstrated the potential use of PE in the early stages of 

biofilm growth to impair its establishment. Moreover, and as a consequence of the reduced 

amount of biofilms attached to PE conditioned surfaces, adhered cells or thin biofilms became 

more exposed to the subsequent action of CIP or PE. It would be worthwhile to test higher 

concentrations of CIP and PE during biofilms treatments or even other antimicrobials, in order to 

achieve a complete eradication of biofilms formed on PE-conditioned surfaces.  This study also 

pointed out that PE is a promising candidate for the development of an antimicrobial coating for 

medical devices. Although effective, some concerns have been raised about PE development of 

bacterial resistance and toxicity. PE immobilization onto a biomaterial surface may overcome 

these drawbacks as it avoids patient exposure to sub-inhibitory concentrations.  
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SUPPLEMENTAL MATERIAL  

 
Figure S1.  Representative additive (A), synergetic (B) and indifferent (C) effect between PE conditioning 

and CIP treatment.  
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3.3 
 

Bio-inspired coating strategies for the 

immobilization of polymyxins to 

generate killing-contact surfaces 

Microbial colonisation of indwelling devices and subsequent biofilm formation remain a major 

cause of morbidity and mortality in modern healthcare. The development of novel approaches to 

prevent BAI are, therefore, in great demand. This study aimed to immobilize two AMP (PB and 

PE) onto PDMS using two pDA-based approaches: the conventional 2-step method involving first 

the deposition of a pDA layer to which biomolecules are afterwards immobilized, and a 1-step 

method where peptides were dissolved together with dopamine before its polymerization. Surface 

characterization confirmed the immobilization of polymyxins onto PDMS at a non-toxic 

concentration. Immobilization of polymyxins using a 1-step pDA-based approach was the best 

method investigated as it was able to prevent P. aeruginosa adhesion and kill a significant 

fraction of the adherent ones, without causing harm to fibroblast cells. PE exhibited a better 

performance than PB as its immobilization onto PDMS imparted surfaces with antimicrobial 

properties regardless the immobilization approach used. In addition, cells that managed to 

adhere to these modified surfaces exhibited the same susceptibility pattern as cells adhered to 

unmodified surfaces, highlighting that resistance development towards polymyxins did not occur. 

The overall data suggest that PE functionalization using a 1-sep approach holds great potential as 

an additional antimicrobial functionality in the development of bi-functional coatings. 
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INTRODUCTION 

Millions of lives are saved, every day in modern healthcare, thanks to the use of biomaterial 

implants and medical devices. Despite their crucial role in medicine progress, there are some 

drawbacks associated to their increased use as they all are prone to bacterial colonisation [1,2]. 

Bacterial adhesion to an indwelling device, followed by biofilm formation, is commonly associated 

to persistent infections and subsequently to tissue destruction, systemic dissemination of the 

pathogens and dysfunction of the device, resulting in serious illness and death [3]. BAI are 

extremely hard to treat because cells within a biofilm encase themselves in the self-produced 

polymeric matrix which confers them protection against antimicrobial treatment and host 

immune system [4,5]. The microorganisms most frequently isolated from BAI include the Gram-

positive S. aureus and S. epidermidis and the Gram-negative P. aeruginosa. This last one stands 

out for its ability to form strong biofilms [6,7], intrinsic resistance to antibiotics [8] and 

remarkable ability to develop resistance during antimicrobial treatment [9].  

The development of materials that can resist or prevent bacterial adhesion constitutes the most 

promising approach to deal with BAI problem and modern biomaterial science has provided 

several modification and activation strategies to impart biomaterials with antibacterial properties 

[10]. However, most of the current strategies, which are based on the immobilization of 

antimicrobial compounds, present some important limitations such as incomplete efficacy, 

toxicity and the development of bacterial resistance [11,12]. In the search for new compounds 

that can overcome such drawbacks, AMP have been recognized as promising candidates for the 

new generation of antimicrobial surfaces [13,14]. Polymyxins are a group of cationic 

antimicrobial lipopeptides that has been used as the last resort to fight multi-drug resistant P. 

aeruginosa strains [15]. Only polymyxins B and E have been used in clinical practice [16]. 

Although effective, some concerns have been raised about the development of bacterial 

resistance and toxicity towards these AMP [15]. The answer for these drawbacks may rely on 

their stable immobilization onto a biomaterial surface [17].  

The aim of the current study was, thus, to immobilize PE and PB onto PDMS, commonly referred 

as silicone rubber, which has been widely used for implantable biomedical devices such as 

catheters or voice prostheses [18,19], using dopamine chemistry. Two pDA-based approaches 

were compared: the conventional 2-step method involving first the deposition of a pDA layer to 

which biomolecules are afterwards immobilized, and a 1-step method where compounds are 
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incorporated throughout the full thickness of the pDA film as they are dissolved together with 

dopamine before its polymerization [20].  

 

 

MATERIALS AND METHODS 

BACTERIAL STRAIN AND GROWTH CONDITIONS 

A reference strain of P. aeruginosa (ATCC 39324) was used throughout this study. The strain 

was preserved and cultured as described in Chapter 2.  

 

AMP AND ANTIMICROBIAL SUSCEPTIBILITY 

In this work, two AMP were used: polymyxin B and polymyxin E. The MIC and MBC of peptides 

were determined by the microdilution method as described in Chapter 2.  

 

POLYDOPAMINE COATING AND AMP IMMOBILIZATION 

Prior to surface modification, PDMS coupons were cleaned and prepared as described in Chapter 

2. Coatings were prepared following two pDA-based approaches as illustrated in Figure 2 of 

Chapter 2: a two and a 1-step immobilization. For peptides immobilization via the 2-step 

approach (Figure 2B), the first step involved the deposition of a pDA coating on PDMS coupons 

which was performed by immersing them in a solution of dopamine (2 mg/mL dopamine-HCl in 

10 mM bicine buffer, pH 8.5) for 18 h, at RT and under agitation (70 rpm). Coupons were then 

rinsed with UP water. For further functionalization with peptides, pDA-coated coupons were 

immersed in PB or PE solutions (1 mg/mL, 2-step PB[1] or 2-step PE[1] and 5 mg/mL, 2-step 

PB[5] or 2-step PE[5], in 10 mM bicine buffer supplemented with 600 mM NaCl, pH 8.5) and 

were incubated for 2 h, at RT, under agitation (70 rpm). For the 1-step pDA-based immobilization 

(Figure 2A), dopamine (2 mg/mL) and polymyxins (1 mg/mL, 1-step PB[1] and 1-step PE[1]) 

were dissolved together in 10 mM bicine buffer solution (pH 8.5) and the PDMS coupons were 

immediately immersed in this solution. After overnight coating at RT and under agitation (70 

rpm), the coupons were rinsed with UP water and air-dried for 45 min.  
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SURFACE CHARACTERIZATION 

PDMS prior and after surface modification was characterized by SEM and by measuring water 

contact angles as described in Chapter 2. Experiments were performed in triplicate.  

 

PEPTIDES IMMOBILIZATION EFFICIENCY AND COATINGS STABILITY 

The efficiency of polymyxins immobilization was determined by quantifying the amount of 

unattached peptide in the buffer solution retrieved immediately after completing the coating 

process using fluorescamine assay as described in Chapter 2. Three independent assays with 

three replicates for each condition were performed. For testing coatings stability, the detachment 

of immobilized peptides was quantified by measuring the amount of release peptides also as 

described in Chapter 2. These experiments were performed twice with three replicates for each 

condition tested. 

 

BACTERIAL CONTACT KILLING ASSAY 

In order to evaluate bacterial contact-killing properties of PDMS surfaces functionalized with 

polymyxins, a previously reported method described in Chapter 2 was applied. Two independent 

assays with three replicates for each condition were performed.  

 

BACTERIAL VIABILITY ON MODIFIED SURFACES 

Antibacterial performance of the generated surfaces against adhesion for 4 h was evaluated 

using the live/dead staining method described in Chapter 2. Three independent assays with 

three replicates for each condition were performed. 

 

SUSCEPTIBILITY PATTERN OF CELLS ADHERED TO MODIFIED SURFACES 

The susceptibility pattern of bacterial cells adhered to PDMS surfaces was evaluated as described 

in Chapter 2 with some modifications. Briefly, a bacterial suspension with 1x108 CFU/mL was 

prepared in PBS and 300 µL of this suspension were added to a 48-well microtiter plate in which 

PDMS, pDA and pDA functionalized with AMP were placed. The plate was incubated for 4 h at 37 
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ºC and 120 rpm. Cells were recovered as described in Chapter 2 and used to determine the MIC 

and MBC against the same immobilized AMP. Two independent assays with three replicates for 

each condition were performed. 

 

CYTOTOXICITY ASSAY 

Cytotoxicity tests were performed using fibroblast cells 3T3 (CCL 163) obtained from ATCC.  

Cytotoxicity was evaluated by the MTS reduction assay as described in Chapter 2. Two 

independent assays with three replicates for each condition were performed. 

 

 

RESULTS 

POLYMYXINS IMMOBILIZATION ON PDMS MATERIAL 

In this study, polymyxins B and E were immobilized onto PDMS and a pDA-based surface 

modification was applied for their immobilization using two different approaches (Figure 2 of 

Chapter 2). The 2-step approach (Figure 2B of Chapter 2) involved first the deposition of a 

uniform pDA coating from a dopamine-HCl solution at a slightly alkaline pH. During these 

incubation period in the dopamine solution, the color of the coupons gradually changed from 

transparent to dark brown (Figure S1 in Supplemental Material).The pDA coating was then used 

as a platform for polymyxins’ immobilization due to the presence of residual quinones which 

present convenient sites for covalent grafting of nucleophilic groups such as amino functional 

groups found in AMP via Michael Addition and/or Shiff reactions. For 1-step pDA-based 

immobilization procedure (Figure 2A of Chapter 2), the PDMS coupons were immersed in one-pot 

mixture of dopamine and the polymyxin to be immobilized. Previous work has shown that this 

procedure not only simplifies immobilization of biomolecules even further but it also increased 

the total amount of immobilized compounds at surfaces [21]. To quantify the coating efficiency of 

peptides, the buffer solutions containing the unattached peptides were retrieved immediately 

after finishing the coating process and results are summarized in Table 1.  
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Table 1. Efficiency and stability of pDA-mediated immobilization of PE and PB. Stability was evaluated 
under physiologically relevant conditions (PBS at 37 °C) for 5 days. ND means not determined.  

Method/ 

Polymyxin 

Immobilized amount [%] 

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 

1-step [PE1] 

2-step [PE1]  

2-step [PE5] 

69.71 ± 4 69.21 ± 0.4 68.75 ± 0.2 68.37 ± 0.1 68.13 ± 0.2 68.06 ± 0.1 

39.87 ± 17 39.04 ± 0.5 38.83 ± 0.1 37.84 ± 0.8 37.53 ± 0.3 37.29 ± 0.3 

<0 ND 

1-step [PB1] 

2-step [PB1] 

2-step [PB5] 

60.99 ± 4 60.84 ± 0.1 60.64 ± 0.2 60.35 ± 0.1 60.13 ± 0.2 
60.13 ± 

0.01 

30.12 ± 16 29.96 ± 0.1 29.72 ± 0.1 28.75 ± 0.3 28.53 ± 0.2 28.49 ± 0.1 

<0 ND 

 

The percentage of peptide immobilized on PDMS was dependent on the approach used for 

polymyxins functionalization. Using a 1-step approach, greater amounts of polymyxins B and E 

were immobilized (70 % and 61 %, respectively). However, taking into account that fluorescamine 

reacts with the primary amino groups found in the free amines on positively charged 

diaminobutyric acid (Dab) residue of polymyxins, as well as the amine groups found on dopamine 

molecule in solution, it is hard to distinguish between the amount of dopamine polymerized and 

polymyxins immobilized using this 1-step approach. Using the 2-step approach, this limitation 

was overcame as dopamine polymerization occurred before polymyxins immobilization. For a 

lower concentration of loading polymyxins B and E (1 mg/mL) results showed a lower 

immobilization percentage of around 40 % and 30 %, respectively. Increasing the loading 

concentration for 5 mg/mL, the value of fluorescence measured after coating process was higher 

than the one obtained for the loading solution, yielding a percentage of immobilization lower than 

zero. These results suggest that for a higher concentration, polymyxins may have interfered with 

the pDA coating, so that some amino groups present in this layer were removed from the PDMS 

surface, increasing, therefore, the content of amino groups detected by fluorescamine assay. In 

order to assess coatings stability, the detachment of immobilized polymyxins was quantified by 

measuring the amount of released polymyxin from the functionalized surfaces when incubated in 

PBS at 37 °C. Results confirmed coatings stability using both strategies as the polymyxins did 

not significantly detach from the surfaces for up to 5 days.  
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SURFACE MORPHOLOGY AND SURFACE WETTABILITY DETERMINATION 

Surface morphology of unmodified PDMS and pDA-mediated modified surfaces was characterized 

using SEM analysis and are presented in Figure 1.   

The unmodified PDMS exhibited smooth surface morphology compared with the modified ones. 

Self-polymerized pDA particles could be observed on modified PDMS coupons confirming the 

pDA coating. Further functionalization with polymyxins B or E yielded surfaces with different 

morphologies depending on the approach used.  Results showed that 1-step approach for 

immobilization of both polymyxins yielded surfaces with a more homogeneous coating with 

agglomerates more evenly distributed along the surfaces. When PE was immobilized using the 2-

step approach at a lower concentration, a similar morphology to the pDA coating alone was 

observed with smaller agglomerates. The increase of the loading concentration caused the 

formation of bigger agglomerates, heterogeneously distributed along the surface. For PB 

immobilization using the 2-step approach, the same agglomeration formation could be observed. 

For the lower concentration, PB immobilization seems to slightly increase the surface roughness, 

as compared to PE at the same concentration.   
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Figure 1. SEM images of unmodified PDMS, pDA-coated PDMS (pDA), pDA-coated PDMS surfaces with immobilized PE and PB via 2-step approach (2-step [PE] or 2-step [PB]) 

and 1-step approach (1-step [PE] and 1-step [PB]).The scale bars in the first and third column indicate 1 μm and the bar scale in the second and fourth column indicates 10 

μm.
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To evaluate the surface wettability of the PDMS after surface modification, the static water contact angle 

of the PDMS after each deposition step was measured (Figure 2).  

 

Figure 2. Measurement of the water contact angle of unmodified PDMS, pDA-coated PDMS (pDA), pDA-coated 

PDMS surfaces with immobilized PE and PB via 2-step approach (2-step [PE] or 2-step [PB]) and 1-step approach 

(1-step [PE] and 1-step [PB]). Significant differences were found for (***) p < 0.001, compared to PDMS control 

and (###) p < 0.001, compared to pDA control. 

 

Bare PDMS surfaces exhibited a water contact angle of 109.9° ± 3.0°. Polydopamine coating 

decreased the contact angle of PDMS surface (56.6° ± 4.8°) indicating that the surface becomes more 

hydrophilic after pDA coating. Further immobilization with polymyxins B or E, using the 2-step approach 

immobilization, increased the water contact angle when compared to the PDMS with pDA coating alone. 

Increasing the concentration of polymyxins B or E from 1 mg/mL to 5 mg/mL had no significant effect 

on surface wettability.  When polymyxins B or E were immobilized via 1-step approach, no significant 

interference was introduced to surface wettability, as compared to the pDA coating.  

 

ANTIMICROBIAL AND ANTI-ADHESION PROPERTIES OF PDMS FUNCTIONALIZED WITH POLYMYXINS 

Contact-killing of P. aeruginosa was evaluated by dropping a small volume of bacterial suspension on 

the surfaces of PDMS functionalized with polymyxins B or E for 24 h at 37 ºC. Representative pictures 

of antimicrobial growth and contact-killing activity are presented in Figure S2 of Supplemental Material.  
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Table 2. Contact-killing activity of unmodified PDMS, pDA-coated PDMS (pDA), pDA-coated PDMS surfaces with 

immobilized PE and PB via 2-step approach (2-step [PE] or 2-step [PB]) and 1-step approach (1-step [PE] and 1-

step [PB]). Visible growth was used as an indicator of contact-killing activity and it was tabulated as “+” for 

growth and “-“ for no visible growth. 

Condition tested Visible Bacterial growth 

PDMS + 

pDA + 

2-step [PE1] - 

2-step [PE5] - 

1-step [PE1] - 

2-step [PB1] + 

2-step [PB5] - 

1-step [PB1] - 

 

 

Table 2 shows that no contact-killing was observed for bare PDMS and after pDA coating. Further 

functionalization with PB yielded surfaces with bacterial contact-killing activity but only when a higher 

concentration of this peptide (5 mg/mL) was used during immobilization process. In turn, PDMS 

functionalized with PE exhibited bacterial contact-killing activity for both concentrations tested. When 1-

step immobilization approach was applied, only PE exhibited contact-killing activity.  

For further evaluation of the antimicrobial performance of functionalized PDMS surfaces, an attachment 

assay was also performed in which bacteria were allowed to attach for 4 h and the remaining cells on 

the PDMS coupons were imaged with fluorescence microscopy. It was possible to measure the 

remaining cells on the modified surfaces and simultaneously discriminate between live and dead cells, 

or more, specifically, evaluate bacterial membrane’s integrity (Figures 3 and 4). 
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Figure 3. Representative fluorescent live/dead stain images obtained during P. aeruginosa attachment assays. The scale bar indicates 100 μm.
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 Figure 4.  Normalized attachment of P .aeruginosa to unmodified PDMS, pDA-coated PDMS (pDA), pDA-

coated PDMS surfaces with immobilized PE and PB via 2-step approach (2-step [PE] or 2-step [PB]) and 

1-step approach (1-step [PE] and 1-step [PB]). All values were normalized to % coverage on PDMS control. 

Significant differences were found for (**) p < 0.01 and (***) p < 0.001, compared to PDMS control 

attachment and (##) p < 0.01 and (###) p < 0.001, compared to PDMS fraction of dead cells. 

 

Unmodified PDMS material allowed the adhesion of P. aeruginosa cells and most of them 

remained alive. Polydopamine-coated surfaces slightly decreased the adhesion of this strain as 

compared to the unmodified PDMS but no significant antimicrobial effect was observed. PE 

immobilization via 2-step approach had no significant effect on bacterial attachment but was 

responsible for a higher fraction of dead cells. Increasing the concentration of PE during this 2-

step approach immobilization, had no effect on anti-adhesive or antimicrobial properties of the 

coating. On the other hand, when PE was immobilized during dopamine polymerization (1-step 

approach), bacterial attachment was decreased to the same levels as the ones achieved by pDA 

coating alone but a higher fraction of dead cells could be found. For PB immobilization via 2-step 

approach, it was possible to conclude that the increase of the concentration enhanced the 

antimicrobial and anti-adhesive properties of the PDMS coupons. PB immobilization via 1-step 

approach yielded similar results to PE as it led to a reduction of bacterial attachment to the same 

level as the pDA coating alone and an increase of the fraction of dead cells.  

 

SUSCEPTIBILITY OF CELLS ADHERED TO THE MODIFIED SURFACES 

Although the resistance to polymyxins as well as to other AMP has been slower than to antibiotics 

[22], it has been showed that P. aeruginosa exposure to subinhibitory levels of PB and E induces 

resistance towards higher, and otherwise lethal, levels of these antimicrobials [23]. In order to 

evaluate if their covalent immobilization could overcame this issue, the potential development of 
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bacterial resistance toward these modified surfaces was assessed. In this assay, cells in contact 

with unmodified and modified PDMS surfaces were recovered and used to determine the MIC 

and MBC of polymyxins B and E (Table 3). 

 

Table 3. Susceptibility (MIC and MBC) of adhered cells to unmodified PDMS pDA-coated PDMS (pDA), 

pDA-coated PDMS surfaces with immobilized PE and PB via 2-step approach (2-step [PE] or 2-step [PB]) 

and 1-step approach (1-step [PE] and 1-step [PB]). 

Cells recovered from MIC (µg/mL) MBC (µg/mL) 

PDMS 2 8 

pDA 2 8 

2-step [PE1] 2 8 

2-step [PE5] 1 2 

1-step [PE1] 2 4 

2-step [PB1] 2 8 

2-step [PB5] 2 8 

1-step [PB1] 2 8 

 

Results showed that cells adhered to PDMS functionalized with polymyxins B or E, using all the 

different approaches, exhibited the same or lower susceptibility pattern as cells adhered to PDMS 

or coated with pDA, suggesting no development of resistance during this period of time. The 

higher MBC found for adhered cells when compared to planktonic cultures was expected taking 

into consideration that adhered cells are inherently less susceptible than their planktonic 

counterparts [24]. 
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EFFECT OF PDMS MODIFIED SURFACES ON FIBROBLAST GROWTH AND ADHESION 

Besides the antibacterial performance of coating surfaces, the knowledge of their effect on the 

human cells is also crucial. Therefore, to predict the effects of the functional coatings developed 

in this study on mammalian cells, a cytotoxicity assay was performed (Figure 5). Results showed 

that further functionalization of pDA-coated PDMS surfaces with both polymyxins had no 

significant effect on 3T3 fibroblast metabolic activity. 

 

Figure 5. Viability of mammalian cells after 48 h of contact with to unmodified PDMS, pDA-coated PDMS 

(pDA), pDA-coated PDMS surfaces with immobilized PE and PB via 2-step approach (2-step [PE] or 2-step 

[PB]) and 1-step approach (1-step [PE] and 1-step [PB]), measured with an MTS assay. Significant 

differences were not found for p > 0.05 compared to pDA-coated PDMS surfaces (pDA). 

 

 

DISCUSSION 

With an ageing society, the problem of BAI is expected to increase in the coming years. When 

antimicrobial treatment fails, the removal of the infected implant may not completely solve the 

problem due to the remaining pathogen in the body, which is responsible for recurrent infections 

[1, 25]. Preventive approaches such as the modification of biomaterials to render them with 

antibacterial properties appear, therefore, as the best strategy to deal with these infections. In 

this study, pDA-mediated catechol functionalization was applied to render PDMS surfaces, a 

widely used biomaterial in clinical applications, with antimicrobial properties through the 

immobilization of two AMP: polymyxins B and E. 
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Polymyxins B and E have been used as the last resort to fight multi-drug resistant strains so there 

should be some caution in their widespread use to avoid the development of resistance which 

has already been reported [23, 26]. An alternative approach for their use that may minimize the 

potential development of microbial resistance as well as the toxicity toward mammalian cells 

relies on their covalent immobilization [17]. Polymyxins B and E share many similarities 

regarding their mechanism of action, antimicrobial spectrum, clinical uses and toxicity. However, 

they also differ in several aspects, including chemical structure, formulation, potency, dosage and 

pharmacokinetic properties [27]. Their mechanism of action involves the disruption of 

membrane’s stability after their binding to the anionic part of the LPS of Gram-negative bacteria, 

which causes the leakage of intracellular components. Because of its wider global availability, 

most clinical studies have been focused on PE. However, some studies have suggested that the 

incidence of nephrotoxic effects is higher with colistinmethate (the inactive form of PE) than with 

PB [28, 29]. 

Polydopamine-mediated immobilization of PE onto PDMS generated surfaces able to kill adhering 

P. aeruginosa bacteria upon contact, regardless the immobilization approach applied. Such 

antimicrobial activity was not, however, as pronounced when bacteria were allowed to adhere to 

the modified surfaces from a liquid phase, as bacteria were able to adhere and a significant 

fraction were still alive. Membrane damage, which was confirmed by the fraction of dead cells, 

was mainly observed when PE was immobilized via a 2-step approach. Increasing the 

concentration of PE did not improve the antimicrobial properties of the coating and slightly 

increased bacterial attachment, which may be attributed to the higher surface roughness 

observed in these surfaces. Moreover, the method used to quantify the amount of PE 

immobilized suggested that increasing its concentration had some interference with pDA coating. 

Increasing peptide concentration, increased the amount of amine groups that may have reacted 

with dopamine aggregates via noncovalent interactions [30]. Therefore, it is reasonable to expect 

some changes in coating stability under aqueous conditions. However, in this study the PDMS 

functionalized with polymyxins using a loading concentration of 5 mg/mL retained its 

antimicrobial functionality, which is a sign that polymyxins were still grafted onto surfaces 

although some stability disturbance may have occurred. 

PE immobilization during dopamine polymerization, on the other hand, caused less membrane 

damage but was able to prevent bacterial attachment at some extent, which may be attributed to 
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a more efficient immobilization. The 1-step approach involves self-polymerization of dopamine in 

the presence of compounds to be immobilized, hence leading to homogeneous mixing of 

covalently linked compounds throughout the layer of pDA [20] and surface characterization 

confirmed a more homogeneous coating. Moreover, while the amount of immobilized compounds 

via 2-step approach is limited as the amount of reactive quinone groups that can react is limited 

to the surface of the outer surface, it is expected that biomolecules incorporation using 1-step 

approach occurs throughout the full thickness of the pDA layer than only at its outer surface [21].  

PB immobilization onto PDMS yielded antimicrobial coatings less efficient against P. aeruginosa 

when compared to PE. A higher concentration of PB was needed to obtain coatings able to kill 

adhering bacteria upon contact as well as to prevent bacteria adhering from a liquid phase. The 

lower efficacy of PB at a concentration of 1 mg/mL as compared to PE may be explained by the 

presence of more agglomerates which results in a higher surface roughness. Increasing the 

concentration of PB using the 2-step approach also resulted in the formation of larger 

agglomerates. Similar results were obtained to PE immobilization, when PB was co-dissolved with 

dopamine as it caused less membrane damage but was able to prevent bacterial attachment at 

some extent.  

To investigate the anti-adhesive performance of coatings functionalized with polymyxins, cells 

were allowed to adhere to their surfaces for 4 h. This period of time was chosen because the first 

6 h after surgery (the so-called “decisive period”) are identified as being critical for preventing 

bacterial adhesion in order to ensure the long-term success of the implant [31]. During this 

period of time, there is a competition between integration of the material into the surrounding 

tissue and adhesion of bacteria to the implant surface [32].  

Bacteria are well known for their ability to adapt in response to their environment, and indeed the 

development of resistance to polymyxins by P. aeruginosa strains has already been reported 

[26].  Results showed that, for all the immobilization approaches investigated, some viable cells 

could be found on the modified surfaces. To infer if their presence could be attributed to some 

development of resistance towards polymyxins immobilized on the surface, an assay was 

performed in which cells in contact with unmodified and modified surfaces were used to 

determine the MIC and MBC of polymyxins used to functionalize PDMS. Results showed that cells 

adhered to PDMS functionalized with both polymyxins exhibited the same or lower susceptibility 

pattern as cells adhered to PDMS unmodified and coated with pDA, suggesting no development 
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of resistance. This first evidence is very important and promising, however, it should be taken 

into consideration that 4 h of adhesion may not be a sufficient period of time to conclude about 

resistance development. To strengthen the non-appearance of resistance, further studies should 

be performed where cells in contact with modified and unmodified surfaces should be 

continuously recovered and allowed to adhere to new samples during a longer period of time. 

Another important concern associated to the use of polymyxins is their toxicity [16]. It should be 

emphasized that, although in the present study, a higher concentration of polymyxins (1 mg/mL 

and 5 mg/mL) was used for their immobilization, a much lower concentration was actually 

immobilized on the surfaces (about 40 %). Moreover, the effects of coatings functionalized with 

these peptides were evaluated on fibroblast cells and results showed that their presence caused 

no harm to these cells which may be attributed to their covalent immobilization without leaching.  

The overall results suggested that immobilization of PE using a 1-step pDA-based strategy may be 

a useful added functionality in the development of bi-functional coatings composed by anti-

adhesive compounds, such as the ones developed with polymer brushes [33] or enzymes 

targeting EPS [34]. 
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SUPPLEMENTAL MATERIAL 

 

Figure S1. Polydimethylsiloxane samples before and after pDA deposition.  

 
 
Figure S2. Representative pictures of contact-killing assay. Bacterial growth can be observed on TSA 
plates containing bare PDMS (A) and pDA (B) and no growth was visible for pDA-coated PDMS further 
functionalized with colistin or polymyxin E (C) and polymyxin B (D).  
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3.4 
 

Characterization and biological 

activity of surface-tethered Palm and 

Camel  

Recent studies have focused on the immobilization of AMP to render the surfaces with 

antimicrobial properties. A crucial factor for AMP potential as antibacterial-coating agents is the 

retention of antimicrobial activity after their immobilization. In this chapter, the 2-step approach 

pDA-mediated was explored to tether the peptides Camel and Palm onto PDMS materials. 

Different modifications were introduced to these peptides in an attempt to enhance their 

antimicrobial activities after immobilization. Results showed that only Palm was able to retain its 

antimicrobial activity once immobilized, causing membrane damages to adhered cells, mainly the 

Gram-positive strain tested. Camel immobilization was not succeeded even when a linker was 

introduced which may be attributed to its native mechanism of action in solution which involves 

the formation of pores. In conclusion, Palm exhibited great potential to be further used in the 

design of bi-functional coatings and this chapter also highlights the complex interplay of 

immobilization parameters to assure peptides activity is retained. 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 AMP MODIFICATIONS  

 

119 
 

INTRODUCTION 

In the past years, a number of studies have highlighted the potential of AMP of the innate 

immune system and their synthetic derivatives as alternatives to conventional antibiotics [1,2]. 

Although their therapeutic potential as antibiotics has been already established [3], some issues 

concerning their toxicity and lack of stability in vivo have limited their clinical use. Recent studies 

have focused, therefore, on several approaches for AMP immobilization onto a number of 

surfaces in an attempt to confine and maintain their activity while minimize their toxicity [4 5].  

A crucial factor for AMP potential is the retention of antimicrobial activity after their 

immobilization. In fact, most of the reported studies on AMP immobilization have found that the 

activity of bound peptides is lower as compared to that of their soluble counterparts [5-9]. Several 

parameters such as peptide surface concentration, the spacer (length and flexibility) or peptide 

orientation should be taken into account for developing efficient and long-lasting antimicrobial 

coatings [10]. For instance, the presence of a spacer may be important for enabling peptide 

insertion into the cell and thus membrane permeabilization, leading to cell death. PEG with 

different lengths has been commonly used as linkers during the preparation of surfaces 

functionalized with peptides [8,11]. The reason for its wide usage relies on the fact that this 

polymer puts together a number of promising characteristics for clinical applications, namely its 

solubility in water, lack of toxicity, excellent biocompatibility and simple elimination from living 

organisms [12]. Furthermore, it may be an advantage for the coverage of surfaces due to its anti-

fouling properties towards proteins and cells [13].  

This chapter aimed to optimize the immobilization of the peptides Camel and Palm onto PDMS 

materials and evaluate the influence of two different spacers on their immobilization.        

 

 

MATERIALS AND METHODS 

BACTERIAL STRAINS AND GROWTH CONDITIONS 

A reference strain of P. aeruginosa (ATCC 39324) and a clinical isolate of S. aureus were used 

throughout this study. The strains were preserved and cultured as described in Chapter 2.  
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AMP, PEPTIDE SYNTHESIS AND MODIFICATIONS 

In this work, two peptides were used: Palm and Camel. Peptides were synthesized manually by 

solid-phase synthesis method as described in Chapter 2. The terminal residues of Camel were 

modified with cysteine (C), lysine (K) and two glycine residues (GG) as previously described [14]. 

The peptide modified was called Camel-CKGG. The C-terminal of Palm peptide was modified with 

cysteine (C) to which poly ethylene glycol (PEG) was introduced. The peptide modified was called 

Palm-PEG.         

 

ANTIMICROBIAL SUSCEPTIBILITY OF PEPTIDES 

MIC and MBC of peptides with and without modifications were determined by the microdilution 

method as described in Chapter 2.  

 

POLYDOPAMINE COATING AND PEPTIDES FUNCTIONALIZATION 

Prior to surface modification, PDMS coupons were cleaned and prepared as described in Chapter 

2. For pDA coating, materials were immersed in dopamine (2 mg/mL dopamine-HCl in 10 mM 

bicine buffer, pH 8.5) for 18 h, at RT under agitation. Coupons were then rinsed with UP water 

and air-dried.  For further functionalization, pDA-coated substrates were immersed in peptides 

solutions (1 mg/mL dissolved in PBS, pH 7.4 or bicine buffer, pH 8.5) for 6 h. After coating at 

RT, under agitation (70 rpm), the coupons were taken and rinsed with UP water and air-dried.  

 

PEPTIDES IMMOBILIZATION EFFICIENCY  

The efficiency of peptides immobilization was determined by quantifying the amount of 

unattached peptides in the buffer solution retrieved immediately after completing the coating 

process. The peptide concentration was measured by using a fluorescamine assay as described 

in Chapter 2. Three independents assays with three replicates for each condition were 

performed.  
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BACTERIAL CONTACT KILLING ASSAY 

In order to determine whether the AMP retained their antimicrobial activity after their 

immobilization, a contact-killing assay was performed as described in Chapter 2. Two 

independent assays with three replicates for each condition were performed.  

 

BACTERIAL VIABILITY ON MODIFIED SURFACES 

Antibacterial performance of the generated surfaces against bacterial adhesion was also 

evaluated by fluorescence microscopy, after live/dead staining as described in Chapter 2. Three 

independent assays with three replicates for each condition were performed.  

 

 

RESULTS 

OPTIMIZATION OF AMP IMMOBILIZATION 

A preliminary optimization of the surface modification method was performed, regarding the 

buffer pH in which AMP were allowed to immobilize to pDA-coated PDMS surfaces. Two different 

buffers, PBS (pH 7.4) and bicine (pH 8.5), were tested and AMP immobilization was performed 

as illustrated in Figure 2B of Chapter 2, using a 2-step immobilization approach.  

To confirm peptides antimicrobial activity, a contact-killing assay was performed in which a small 

volume of bacterial suspension was dropped on the surfaces functionalized with AMP. After 24 h 

of contact, coupons were transferred to TSA plates and antimicrobial activity was evaluated 

based on their ability to prevent any bacterial growth. Bacterial growth was tabulated as “+”and 

no visible growth as “-“ (Table 1). As positive controls, growth was observed on bare PDMS and 

pDA-coated PDMS. The Gram-positive clinical isolate of S. aureus was used in this study given its 

higher antimicrobial susceptibility towards these AMP (Chapter 3.1). Results suggested that only 

Palm retained its antimicrobial activity when immobilized using a neutral pH of 7.4. For further 

assays, AMP were then immobilized on PBS. 
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Table 1. Contact-killing activity of pDA-coated PDMS surfaces with immobilized Palm and Camel using 
different buffers. Visible growth was used as an indicator of contact-killing activity and it was tabulated as 
“+” for bacterial growth and “-“for no visible growth. 

AMP 
Bacterial growth 

PBS Bicine 

Palm _ + 

Camel + + 

 

 

BACTERIAL VIABILITY ON MODIFIED SURFACES 

For further evaluation of the antimicrobial performance of  these surfaces, an attachment assay 

was also performed in which bacteria were allowed to attach for 4 h and the remaining cells on 

the substrates were imaged with fluorescence microscopy. It was possible to measure the 

remaining cells on the modified surfaces and simultaneously discriminate between live and dead 

cells, or more, specifically, evaluate bacterial membrane’s integrity. 
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Figure 1. (A) Representative fluorescent live/dead stain images obtained during adhesion assays of S. 

aureus. The scale bar indicates 100 µm. (B) Normalized attachment and viability of cells on unmodified 

PDMS, pDA-coated PDMS (pDA), and pDA-coated PDMS functionalized with PALM (pDA-Palm) and Camel 

(pDA-Camel). All values were normalized to PDMS control. No significant differences were found for (*) p > 

0.05, compared to PDMS control attachment but significant differences were found (###) p < 0.001, 

compared to PDMS fraction of dead cells. 
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As shown in Figure 1, S. aureus was able to adhere to bare PDMS as well as to the pDA coating, 

without compromising bacterial viability. Further immobilization with both AMP had no significant 

effect on bacterial attachment. Camel had no significant effect on bacterial viability while Palm 

functionalization yielded the surfaces with the best antimicrobial performance (approximately 90 

% of dead cells). Comparing to the Palm peptide, Camel has a larger sequence, and therefore, a 

higher chance to undergo folding or self-assembly, which may had interfered with efficient 

binding of the peptide to the pDA layer. To confirm this hypothesis, the immobilization efficiency 

of both AMP were determined by retrieving the loaded and unattached peptides during the 

coating process.  

 

AMP IMMOBILIZATION EFFICIENCY 

Results in Table 2 revealed that more than 60 % of loaded peptide Palm was immobilized onto 

the pDA-coated PDMS surface. On the other hand, for Camel, the value of fluorescence 

measured after the coating process was higher than the one obtained for the loading solution. 

These results suggest that Camel may have interfered with the pDA coating, so that some amino 

groups present in this layer were removed from the PDMS surface, increasing, therefore, the 

content of amino groups detected by fluorescamine assay.  

 

Table 2. Efficiency of pDA-mediated immobilization of Palm and Camel peptides.  

AMP Immobilization efficiency [%] 

Palm 65.91 ± 2.29 

Camel < 0 

 

 

AMP MODIFICATIONS 

In order to improve Camel immobilization mediated by pDA, it was modified with cysteine (C) and 

lysine (K) to introduce thiol and amino groups and two glycine residues (GG) as a flexible linker. 

Regarding Palm peptide, since it exhibited great antimicrobial properties against the model strain 

investigated, PEG was added in order to introduce anti-fouling properties as well. To determine 
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the effect of AMP modifications on their antimicrobial activity, the MIC and MBC were compared 

to AMP without modifications (Table 3). Different susceptibility patterns could be observed for the 

P. aeruginosa and S. aureus strains investigated in this study. In general, P. aeruginosa was less 

susceptible than the Gram-positive S. aureus as higher concentrations of AMP were required to 

inhibit its growth. Camel was the most promising AMP tested with lower concentrations needed 

to prevent planktonic growth of both strains.  Conjugation of PEG with Palm caused a decrease 

on antimicrobial activity, not being able to kill any strain for the higher concentration tested. 

Although the addition of the amino acids CKGG to Camel has affected its antimicrobial activity, 

MIC and MBC against both strains could be determined.   

 

Table 3. MIC and MBC of peptides with and without modifications against planktonic cultures of P. 

aeruginosa and S. aureus. MIC and MBC are expressed in µg/mL.  

AMP 
S. aureus P. aeruginosa 

MIC MBC  MIC  MBC  

Palm 32 64 64 64 

Palm-PEG 64 > 64 64 > 64 

Camel 2 8 16 32 

Camel-CKGG 16 16 32 64 

 

To determine the success of AMP modifications, an attachment assay was also performed in 

which bacteria were allowed to attach for 4 h and the remaining cells on the substrates were 

imaged with fluorescence microscopy. 
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Figure 2. Normalized attachment and viability of cells on unmodified PDMS, pDA-coated PDMS (pDA), and 

pDA-coated PDMS functionalized with Camel-CKGG (pDA-Camel-CKGG) and Palm-PEG (pDA-Palm-PEG). 

All values were normalized to PDMS control. Significant differences were found for (*) p < 0.05, compared 

to PDMS control attachment and (###) p < 0.001, compared to PDMS fraction of dead cells. 

 

Results in Figure 2 showed that none of the modified peptides were able to impair bacterial 

attachment or cause damages to membrane cells. In fact, the presence of PEG on Palm actually 

increased bacterial adhesion to these surfaces, and no antimicrobial activity was observed.  

 

BACTERIAL VIABILITY ON PDA-PALM SURFACES 

The aforementioned results highlighted the great potential of Palm without modification to be 

used in the design of bi-functional coatings to provide the antimicrobial component. Because it is 

intended to obtain a broad spectrum coating, the antibacterial performance of Palm-modified 

coatings (pDA-Palm) was also evaluated against the Gram-negative P. aeruginosa strain.  
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Figure 3. Normalized attachment and viability of cells of P. aeruginosa on unmodified PDMS, pDA-coated 

PDMS (pDA), and pDA-coated PDMS functionalized with PALM (Si-pDA-PALM). All values were normalized 

to PDMS control. Significant differences were found for (***) p < 0.001, compared to PDMS control 

attachment and no significant differences were found, compared to PDMS fraction of dead cells. 

 

Results showed that unlike for the Gram-positive S. aureus, PDMS functionalized with only pDA 

was able to prevent bacterial adhesion as compared to bare PDMS surfaces. These results may 

be attributed to differences found on the hydrophobicity parameters of bacteria and surfaces, 

which were evaluated through contact angle measurements and explained in Chapter 3.3. 

Further functionalization with PALM had no significant effect on bacterial adhesion, as compared 

to pDA layer alone but slightly increased the number of cells with damaged membrane cells, 

confirming the potential broad-spectrum activity of this coating.  

 

 

DISCUSSION 

In Chapter 3.1 the peptides Camel and Palm exhibited great potential to be further immobilized 

onto surfaces and provide them with antimicrobial properties. Moreover, it has been reported 

Camel potential for the treatment of bacterial skin infections as it did not cause any toxic effect 

on human HaCat keratinocytes at their MIC [15]. In the same study, a similar lipopeptide to the 

one used in this study (Palm-KK-NH2) was also investigated and, unlike, Camel, this peptide 
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became toxic at concentrations near MIC. These toxicity issues may, however, be overcame with 

its immobilization onto a surface. 

For their immobilization, the 2-step pDA mediated approach was explored. The bare PDMS 

surface was first functionalized with a layer of pDA followed by exposure to concentrated peptide 

solutions, under oxidizing conditions, for their attachment via covalent and/or physical adsorption 

[16]. In solution, Camel was more active than Palm as it required lower concentrations to impair 

both planktonic growth and biofilm formation (Chapter 3.1). Its antimicrobial activity, however, 

was not retained after its immobilization, which may be related to its proposed mechanism. It has 

been reported that, in solution, the antibacterial activity of cecropins and related peptides such as 

Camel is due to formation of large pores in bacterial cell membranes [17, 18].  Its 

immobilization, may have resulted in a deviation from its native mechanism in solution, as it has 

been proposed for another peptide with a pore forming mechanism of action [19]. Moreover, 

results concerning peptide immobilization efficiency suggested that Camel may have interfered 

with the pDA coating because of its higher chance to undergo folding or self-assembly for having 

a larger sequence, as compared to Palm peptide. In an attempt to enhance Camel 

immobilization to pDA coating, it was modified with cysteine and lysine to introduce thiol and 

amino groups to increase the coupling specificity to the reactive catechol groups on the pDA 

coating. Two glycine residues were also introduced as a flexible linker. This modification, 

however, was not well succeed as the modified Camel did not cause any significant effect on 

bacterial adhesion. It was hypothesised that the linker introduced was not long enough to provide 

a proper AMP orientation to fully penetrate the bacterial membranes and form pores, its native 

mechanism in solution.     

Palm immobilization, on the other hand, yielded promising results as it retained its antimicrobial 

activity, especially against S. aureus. It has been suggested that membrane perturbation is at 

least one of the targets of these lipopeptides [20]. The stronger tendency of longer lipopeptides 

such as the one investigated in this study to oligomerize and self-associate in solution may 

explain its better performance after its immobilization, as it is more difficult for them to 

transverse the bacterial cell wall and to reach an perturb the cell membrane [21]. Palm 

antibacterial activity after its immobilization may involve the displacement of positive cations from 

the bacterial membranes which induces disruption of the bacterial envelope and death. This 

mechanism was observed in studies where no spacer or short spacers were used for peptides 

immobilization and the activity was retained [6, 22]. Palm immobilization with PEG as a linker 
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failed to improve its antimicrobial activity or render any anti-fouling properties which may be 

attributed to the length of the linker used, that, in a similar way that what happened for the linker 

tested for Camel, may not provide a proper orientation of Palm.  

In conclusion, the overall results highlighted the great potential of Palm peptide in the design of 

antibacterial coatings, imparting them with antimicrobial activity. This chapter also points out the 

interplay of several immobilization parameters on the activity of tethered AMP. 
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Polydopamine-mediated 

immobilization of alginate lyase to 

prevent P. aeruginosa adhesion 

Given alginate's contribution to P. aeruginosa virulence, it has long been considered a promising 

target for interventional therapies, which have been performed by using the enzyme alginate 

lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase was 

immobilized onto a surface as a preventative measure against P. aeruginosa adhesion. A pDA 

dip-coating strategy was employed for functionalization of PC surfaces. Enzyme immobilization 

was confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibited 

anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces 

modified with this enzyme also inhibited the adhesion of the non-mucoid strain. Unexpectedly, 

treatment with heat-inactivated enzyme also inhibited the attachment of mucoid and non-mucoid 

P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase 

functional coatings was catalysis-independent, highlighting the importance of further studies to 

better understand its mechanism of action against P. aeruginosa strains. 
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INTRODUCTION 

Modern healthcare is strongly dependent on the use of biomaterials and medical devices to 

support or restore physiological functions after trauma or disease [1]. There are, however, some 

drawbacks associated with their extended use, as they constitute a primary avenue for 

nosocomial infections [2]. Bacteria are able to reach the biomaterial surface, adhere to it and 

form multicellular aggregates enclosed in a self-produced matrix of EPS, with the resultant 

structures commonly referred to as biofilms [3]. When biofilms are at the root of a bacterial 

infection, treatment becomes extremely difficult as bacteria within these sessile communities 

adopt special features that confer increased resistance to antimicrobial treatments and to the 

host immune system [3, 4]. Biofilm formation is a cyclic and developmental process, initiated by 

adhesion of bacteria to the surface of a biomaterial, followed by proliferation, aggregation and 

maturation [5]. Upon interfacing with a biomaterial surface, replicating adherent bacteria secrete 

mostly insoluble gelatinous exopolymers, which function as a "glue", holding bacterial cells 

together [6]. This extracellular matrix, comprising mainly of water, polysaccharides, proteins and 

eDNA, makes biofilms the most successful living structures on earth, providing mechanical 

support, mediating cell-cell and cell-surface interactions and acting as a protective barrier [7].  

Among the organisms most frequently isolated from infections associated with commonly used 

medical devices and implants, P. aeruginosa stands out for its high incidence and remarkable 

ability to form strong biofilms in devices such as peritoneal catheters [8], ventricular assist 

devices [9], endoscopes [10] and cochlear implants [11]. To establish an infection, P. aeruginosa 

relies on a number of unique virulence factors, including its extensive genetic regulatory networks 

[12,13], secretion of enzymes and exopolysaccharides, as well as ability to adhere to various 

surfaces and form biofilms [14]. The production of the exopolysaccharide alginate is one of the 

most extensively studied virulence factors. Alginate is a linear polymer of β-D-mannuronic and α-

L-guluronic acid residues and it is mainly associated with mucoid P. aeruginosa isolates 

recovered from the lungs of patients with cystic fibrosis [15].  The role of alginate in P. 

aeruginosa adhesion and subsequent biofilm formation has been the subject of some 

controversy. Several independent studies have shown that overproduction of this 

exopolysaccharide yields significant architectural and morphological changes in the biofilm [16-

18] and contributes to the persistent nature of lung infections [19]. These findings have led to the 

assumption of alginate as an attractive target for interventional therapies which can be 
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accomplished by the use of the enzyme alginate lyase. This enzyme is able to depolymerize 

alginate through a β-elimination reaction that releases unsaturated polysaccharides with C=C 

double bonds at their non-reducing terminal urinate residues [20]. In support of this role, alginate 

lyase has been shown to detach mucoid biofilms from abiotic surfaces [21], to increase antibiotic 

susceptibility of mucoid P. aeruginosa biofilms [22], to reduce viscosity in cultures of clinical 

isolates and in cystic fibrosis sputum [23] and to enhance phagocytosis and killing of P. 

aeruginosa by human immune cells [24]. However, other studies demonstrated that alginate 

synthesis is not required for biofilm development [25,26] and it was reported that the 

exogenously added A. vinelandii alginate lyase was not able to remove mucoid P. aeruginosa 

biofilms, despite being active toward alginate surface [27]. The authors suggested that alginate 

did not contribute to the cohesiveness of biofilms or it was protected from enzymatic degradation 

in biofilms. In a recent study, it was shown that alginate lyase dispersion of P. aeruginosa 

biofilms and enzyme synergy with tobramycin is completely decoupled from catalytic activity, as 

equivalent results were obtained with an isogenic non-mucoid strain and the same anti-biofilm 

effects could be achieved with BSA or simple amino acids [28]. 

In the present study, a new approach for utilizing alginate lyase was investigated. Instead of using 

the enzyme for treatment of pre-established mucoid biofilms, the ability of alginate lyase to 

prevent P. aeruginosa adhesion to a surface was investigated. For that purpose, a pDA dip-

coating strategy was applied for functionalization of PC with alginate lyase. 

 

 

MATERIALS AND METHODS 

STRAINS AND BACTERIAL CONDITIONS 

Two reference strains of P. aeruginosa, a mucoid strain (ATCC 39324) and a non-mucoid strain 

(ATCC 27853) were used throughout this study. Four P. aeruginosa clinical isolates (from 

peritoneal catheters), and internally coded as PD 64.8, 68.7, 50.2 and 96.4, were also used. 

The strains were preserved and cultured as described in Chapter 2.  
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ALGINATE LYASE AND BSA COATING ON PC  

Alginate lyase and BSA (a  protein without catalytic activity used as control)  coatings were 

prepared as illustrated in Figure 2B of Chapter 2, adapted from a 2-step method previously 

developed for immobilizing enzyme onto magnetic nanoparticles [29]. Prior to surface 

modification, PC surfaces were cleaned and prepared as described in Chapter 2. PC coupons 

were then immersed in dopamine solution (1 mg/mL dopamine-HCl in 10 mM bicine buffer, pH 

8.5) for 18 h, at RT under agitation (70 rpm). The surfaces were then rinsed with UP water and 

dried with nitrogen gas. To further coat with active or heat denatured (at 105 °C for 15 min) 

alginate lyase, pDA-coated PC coupons (pDA) were immersed in 5 mL of alginate lyase solution 

(1 mg/mL in bicine buffer supplemented with 600 mM NaCl, pH 8.5) for 2 h, at RT under 

agitation (pDA-AL and pDA-inactive AL). For BSA immobilization, pDA-coated PC surfaces were 

immersed in 5 mL of BSA solution (1 mg/mL in bicine buffer supplemented with 600 mM NaCl, 

pH 8.5) for 2 h, at RT, under agitation (pDA-BSA). Alginate lyase simply adsorption without the 

intermediate layer of pDA was also performed by immersing unmodified PC surfaces in 5 mL of 

active alginate lyase solution prepared in the same conditions (PC-AL).   

 

ENZYMATIC ACTIVITY OF ALGINATE LYASE-COATED SURFACES 

The activity of alginate lyase immobilized onto PC surfaces using the coating procedure 

aforementioned was determined by measuring the increase in absorbance at 235 nm as 

described in Chapter 2. Experiments were performed in triplicate for each condition. 

 

PHYSICOCHEMICAL CHARACTERIZATION OF SURFACES AND CELLS 

The hydrophobicity parameters of material surfaces and bacteria were determined using the 

sessile drop contact angle method as described in Chapter 2. Experiments were performed in 

triplicate for each condition. 

 

SURFACE CHARACTERIZATION 

Surfaces were characterized by XPS, SEM and measuring static water contact angle as described 

in Chapter 2. Experiments were performed in triplicate for each condition. 
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BACTERIAL VIABILITY ON MODIFIED SURFACES 

The performance of the modified surfaces against bacterial adhesion was evaluated as described 

in Chapter 2 with some modifications. Briefly, a bacterial suspension with 1x108 CFU/mL was 

prepared in sterile saline solution from an overnight culture of each strain. Materials were placed 

into the wells of a 12-well tissue culture plate and covered with 2 mL of bacterial suspension. The 

samples were kept at 37 °C for 24 h with agitation at 120 rpm and stained with a live/dead 

stain as described in Chapter 2. Two independent assays with three replicates for each condition 

were performed for the reference strains while for the clinical isolates experiments were 

performed in triplicate.  

 

RESULTS 

ALGINATE LYASE IMMOBILIZATION ONTO PC SURFACES  

Polydopamine has been the focus of great interest as a surface modification agent to be used in 

a wide range of applications [30-32]. Messersmith and co-workers [33] have demonstrated that 

this molecular mimic of marine mussels' adhesion proteins can be deposited as a thin adherent 

polymer film on surfaces of various materials including metals, polymers and inorganic materials. 

In this work, the previously demonstrated versatile chemistry of pDA was exploited to 

functionalize PC surfaces with alginate lyase to impart them with anti-adhesive properties. The 

first step of the coating strategy involved the deposition of a uniform pDA coating from 

doplamine-HCl solution at a slightly alkaline pH. The pDA coatings were then used as a platform 

for enzyme immobilization by immersion in an alginate lyase solution (Figure 2B of Chapter 2). It 

is likely that the presence of residual quinones within the pDA coating present convenient sites 

for covalent grafting of nucleophilic groups, such as amino functional groups commonly found in 

enzymes, via Michael Addition and/or Schiff base reactions [34].  

 

SURFACE CHARACTERIZATION 

XPS analysis was employed to confirm each modification step (Figure 1). Polydopamine 

deposition was established by the presence of the N1s (399 eV) peak in the addition to the C1s 

(284.7) and O1s (531 eV) peaks present in unmodified PC. Furthermore, pDA-modified surfaces 

yielded surface chemical compositions similar to the theoretical ones of dopamine (Figure 1B). 
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Alginate lyase immobilization was suggested by the slight decrease of carbon accompanied by an 

increase of nitrogen composition. Differences in chemical composition of enzyme powder before 

and after its immobilization may be attributed to the sampling depth achieved by XPS, which is 

approximately 10 nm, which means the pDA layer may have contributed to the chemical 

signature detected by XPS analysis. Sulphur decrease on immobilized enzyme may be attributed 

to a reduced number of exposed thiol groups on the surface, which were necessary for grafting to 

the pDA-coated PC.  

A) 

 

B) 

Sample C (%) O (%) N (%) S (%) 

PC 85.3 14.7 0.0 0.0 

pDA 70.13 21.18 8.69 0.0 

Dopamine 72.7 18.2 9.1 0.0 

pDA-AL 67.39 19.91 12.45 0.25 

AL 65.4 26.8 5.7 2.1 

Figure 1. XPS analysis of the polymer substrates. (A) XPS peaks of the unmodified PC, pDA-coated PC 
surfaces (pDA) and pDA-coated PC surfaces with immobilized alginate lyase (pDA-AL). (B) Quantification of 
atomic compositions on the polymer surfaces, alginate lyase in powder (AL) and the theoretical 
composition of dopamine based on its molecular composition. 
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Surface morphology of pDA-mediated surfaces was characterized using SEM analysis. The 

unmodified PC surfaces exhibited smooth surface morphology compared to the modified 

surfaces (Figure 2A). Polydopamine particles as a result of dopamine self-polymerization in 

solution could be observed on both pDA-coated surfaces and after further functionalization with 

alginate lyase, confirming the presence of pDA coating. For further characterization of the 

surfaces prepared under these conditions, water static contact angles of the surfaces before and 

after modification were measured (Figure 2B). After applying the pDA coating, PC surfaces 

became more hydrophilic with a significantly reduced contact angle (31°) which is in agreement 

with studies previously reported [33]. Further functionalization with alginate lyase had no 

significant effect on surface hydrophilicity.  

 

Figure 2. SEM images (A) and measurement of the water contact angle (B) of the unmodified PC, pDA-
coated PC surfaces (pDA) and pDA-coated PC with immobilized alginate lyase (pDA-AL).Significant 
differences were found  for (***) p < 0.001, compared to PC control. 

 

ENZYMATIC ACTIVITY OF IMMOBILIZED ALGINATE LYASE 

The catalytic activity of the immobilized alginate lyase onto PC surfaces by simple adsorption or 

mediated by dopamine polymerization was assessed by measuring spectrophotometrically its 

ability to depolymerize sodium alginate. As a control, the activity of alginate lyase heat denatured 

before its immobilization was also determined. Results in Table 1 showed that alginate lyase 
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retained its catalytic activity after being immobilized by both coating strategies. A higher activity 

was, however, obtained when alginate lyase immobilization was mediated by pDA (absorbance 

values of 0.21 and 0.13, respectively). These results also suggest that immobilization mediated 

by pDA yielded a better immobilization efficiency although the amount of immobilized enzyme 

could not be determined.  Heating of alginate lyase before its immobilization caused enzyme 

denaturation as it was not able to act against sodium alginate.  

 

Table 1. Intensities of absorbance measured at 235 nm corresponding to alginate lyase activity against 
sodium alginate. Values are means ± SD. 

Sample Abs235nm 

PC-AL 0.13 ± 0.04 

pDA-AL 0.21 ± 0.04 

pDA-inactive AL 0.03 ± 0.02 

 

 

PREDICTION OF ADHESION 

The evaluation of the hydrophobicity parameters for the reference strains and the PC surfaces 

before and after their modification with pDA are shown in Table 2A. Results show that the two 

reference strains of P. aeruginosa showed water contact angles lower than 65° and positive 

values of free energy of interaction (ΔGiwi), which are indicative of a hydrophilic feature  [35, 36]. 

PC surfaces can be considered hydrophobic since the water contact angle values were higher 

than 65° and a negative value of free energy of interaction. After modification with pDA, their 

thermodynamic properties were altered which can be clearly shown in terms of the free energy of 

interaction (ΔGiwi
TOT) for which a positive value was obtained. This means that, theoretically, the 

affinity of an organism for the unmodified PC surfaces is superior when compared to pDA. From 

the physico-chemical parameters of each adhesion entity (bacteria and surface), it was possible 

to determine the thermodynamic relation between both entities, namely the free energy of 

adhesion (Table 2B). Results suggested that adhesion to both unmodified PC and pDA is more 

favoured for the non-mucoid strain, as indicated by the lower values of free energy of adhesion.  
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Table 2. (A) Values of contact angles (°) with water (θW), formamide (θF), α-bromonaphtalene (θB), surface tension parameters (mJ/m2), and free energy of interaction (∆𝐺𝑖𝑤𝑖
𝑇𝑂𝑇) 

(mJ/m2) between the bacteria and the surfaces (i) when immersed in water (w). (B) Free energy of adhesion between bacteria (b) and the surfaces (s). Values are means ± 
SD. 

 (A) 

Bacteria/Surface 
Contact angle (O) 

Surface Tension Parameters 

(mJ/m2) 

Free energy of 

interaction 

(mJ/m2) 

θW θF θB γi
LW γi

+ γi
- ΔGiwi

TOT 

P. a ATCC 27853 30.8 ± 9.9 23.0 ± 4.7 53.9 ± 6.7 28.1 4.2 41.7 16.2 

P. a ATCC 39324 35.8 ± 11.6 86.5 ± 15.9 26.9 ± 3.4 39.7 0 127.8 121.8 

PC 76.2 ± 8.4 63.1 ± 5.7 12.8 ± 2.9 43.3 0 12.5 -37.8 

pDA 33.9 ± 5.2 10.2 ± 1.7 25.0 ± 5.3 40.3 2.0 34.7 6.6 

 (B) 

 

 

Free energy of adhesion 

(mJ/m2) 

Bacteria 
ΔGbsb

TOT 

PC PC-pDA 

P. a ATCC 27853 2.8 13.3 

P. a ATCC 39324 41.7 48.4 
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ANTIBACTERIAL PERFORMANCE OF SURFACES FUNCTIONALIZED WITH AL  

To investigate the antibacterial performance of PC surfaces functionalized with alginate lyase, 

attachment assays were performed in which bare and treated surfaces were exposed to bacteria 

and the remaining cells on the surfaces were imaged with fluorescence microscopy. These 

assays were performed under starvation conditions (saline solution) and for a long period of time, 

24 h, in order to enhance alginate production from mucoid strains [37]. Two reference strains of 

P. aeruginosa, one mucoid (ATCC 39324) and the other non-mucoid (ATCC 27853), were first 

used to assess the antibacterial properties of the modified surfaces (Figures 4 and 5).  
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Figure 4.  Representative fluorescent live/dead stain images obtained during P. aeruginosa ATCC 27853 

and ATCC 39324 adhesion for 24 h on unmodified PC, pDA-coated PC surfaces (pDA) and pDA-coated 

surfaces functionalized with active (pDA-AL) and heat-inactivated alginate lyase (pDA- inactive AL). 
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Figure 5. Normalized attachment and fraction of dead cells of P. aeruginosa ATCC 39324 (A) and ATCC 
27853 (B) on unmodified polycarbonate (PC), pDA-coated PC (pDA), alginate lyase adsorbed onto PC (PC-
AL) and pDA-coated PC functionalized with active alginate lyase (pDA-AL), heat-inactivated alginate lyase 
(pDA- inactive AL) and BSA (pDA-BSA). Attachment values were normalized to PC control. Significant 
differences were found for (***) p < 0.001, compared to PC control attachment and (###) p < 0.001, 
compared to PC fraction of dead cells 

 

Unmodified PC surfaces allowed the adhesion of both bacterial strains and most of them 

remained alive. The presence of pDA coating decreased mucoid strain attachment and enhanced 

the adhesion of the non-mucoid strain, as compared to the unmodified surfaces. These results 

may be attributed to the differences found on the hydrophobicity parameters of bacteria and 

surfaces aforementioned, as they suggested a higher affinity of non-mucoid strain to PC surfaces 

before and after their modification with pDA. The fraction of dead cells found on pDA slightly 

increased after 24 h of incubation, which can be attributed to a decrease in the pH of saline 

solution in contact with pDA-coated surfaces, as previously reported [31]. The fraction of mucoid 

bacterial cells found on surfaces functionalized with alginate lyase was significantly lower than on 
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unmodified PC and pDA. Interestingly, alginate lyase immobilized on pDA-coated surfaces was 

also able to reduce the number of attached non-mucoid bacterial cells. Regarding cell viability, 

the presence of alginate lyase resulted, in general, in a higher fraction of dead bacteria, 

especially for the mucoid strain, which can be attributed to the antibacterial activity of lyase-

depolymerized products of alginate previously reported [38]. As a control, alginate lyase was also 

immobilized onto PC surfaces using simple adsorption and, although it was able to prevent the 

attachment of both strains, alginate lyase pDA-based immobilization was more efficient in 

preventing bacterial attachment. As another control, alginate lyase heat-inactivated as well as an 

irrelevant protein, BSA, were immobilized onto pDA-coated surfaces and their antibacterial 

performance against the two reference strains evaluated. Results (Figure 5) demonstrated that 

modified surfaces functionalized with heat-inactivated alginate lyase or BSA were also able to 

impair bacterial adhesion of all strains investigated, suggesting that alginate lyase effects on 

bacterial attachment were decoupled from its catalytic activity. 

Furthermore, the attachment of four clinical strains of P. aeruginosa isolated from peritoneal 

catheters on alginate lyase functional coatings was evaluated. Although the mucoid phenotype of 

these clinical isolates was not known, non-mucoid P. aeruginosa strains are the predominant 

clinical and environmental phenotype [26].  
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Figure 6. Normalized attachment (A) and fraction of dead cells (B) of clinical isolates of P. aeruginosa on 

unmodified PC, pDA-coated PC (pDA) and pDA-coated PC functionalized active alginate lyase (pDA-AL) and 

heat-inactivated alginate lyase (pDA-inactive AL). Attachment values were normalized to PC control. 

Significant differences were found for (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001, compared to PC 

control. 

 

Results in Figure 6 showed that clinical isolates were allowed to attach to unmodified surfaces 

and most of them remained alive after a 24 h incubation under non-growing conditions. The 

presence of a pDA coating did not have a significant effect on bacterial attachment but caused a 

slight decrease in cell viability, similar to what was seen with the two reference strains. The 

immobilization of active or heat-denatured alginate lyase on the surfaces, caused a decrease on 

the attachment of clinical strains with the exception of PD 96.4, as its adhesion to the unmodified 

PC was already low.  
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DISCUSSION 

The potential of alginate lyase for the treatment of mucoid P. aeruginosa biofilms has been the 

subject of research for the past few decades [18, 19, 22]. Post-treatment of mucoid P. 

aeruginosa biofilms with alginate lyase and subsequent biofilm detachment has led to the 

assumption that alginate plays an important role on biofilm establishment. In the present work, it 

was hypothesized that the presence of alginate lyase during the first stages of biofilm 

establishment, namely bacterial adhesion to a surface, could prevent its establishment. To 

confirm this hypothesis, alginate lyase was immobilized using a bio-inspired coating strategy. The 

immobilization platform was performed on PC as it has been reported that there is an annual 6 % 

demand for its use in medical devices such as filters cartridges for dialysis, blood oxygenators, 

reservoirs, filters and connection components [39]. The first step of the coating strategy involved 

the deposition of a uniform pDA coating onto PC surfaces from dopamine-HCl solution at a 

slightly alkaline pH. The pDA coatings were then used as a platform for enzyme immobilization. 

Surface characterization studies confirmed alginate lyase immobilization onto pDA-coated PC 

surfaces. Furthermore, it was possible to confirm that alginate lyase retained its activity after their 

immobilization and this catalytic activity was enhanced by pDA intermediate functionalization as 

compared to simple adsorption. As hypothesized, alginate lyase immobilized onto PC was able to 

prevent the adhesion of the mucoid reference strain of P. aeruginosa.  However, surfaces 

modified with this enzyme also inhibited the adhesion of the tested non-mucoid strain. As a 

control, alginate lyase heat-inactivated as well as an irrelevant protein, BSA, were immobilized 

onto pDA-coated surfaces and results demonstrated that these modified surfaces were also able 

to impair bacterial adhesion of all strains investigated, suggesting that alginate lyase effects on 

bacterial attachment were decoupled from its catalytic activity. 

The overall results suggested that alginate lyase immobilized on pDA-coated surfaces is a 

promising approach to impair P. aeruginosa adhesion regardless of its mucoid phenotype, 

therefore qualifying the strategy to be applied in a different context than just cystic fibrosis, where 

the mucoid phenotype predominates. For instance, this enzyme could be used to develop 

functional coatings able to prevent P. aeruginosa infections associated with a variety of 

biomaterials. To confirm this hypothesis, the attachment of four clinical strains of P. aeruginosa 

isolated from peritoneal catheters was also evaluated and similar anti-adhesive properties were 

observed.  
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These findings are consistent with a previous study [28] reporting that alginate lyase effects on P. 

aeruginosa biofilms are completely decoupled from its catalytic activity. The authors suggested 

that the anti-biofilm effects of alginate lyase enzymes could be related to enzyme-mediated 

changes in cell physiology. They hypothesized that instead of actively degrading the biofilm 

matrix, alginate lyase enzymes act as a nutrient source, modulating cellular metabolism, and 

thus inducing biofilm detachment and enhancing antibiotic efficacy. In the present study, 

however, taking into account the enzyme’s immobilization, it may not be available to act as a 

nutrient source and, therefore, a different mechanism may be at the root of alginate lyase effects 

on P. aeruginosa attachment. The enzyme may prevent nonspecific binding of bacteria in a 

similar way to BSA, which has been commonly used to inhibit nonspecific biomolecule and 

bacterial adhesion to surfaces in applications such as bacteria sensors and micro patterning [40, 

41]. Accordingly, pDA-based immobilization of BSA on PC was also able to prevent P. aeruginosa 

reference strains attachment. Immobilized alginate lyase proved to be more efficient than BSA to 

prevent the attachment of non-mucoid strain of P. aeruginosa. Such results may be attributed to 

the physico-chemical properties of the mucoid strain, which makes it more susceptible to the 

hydrophilic character of both alginate lyase and BSA coatings. Given the similar hydrophilic 

characters of both alginate lyase and BSA coatings via pDA, results suggest that alginate lyase 

may have another underlying mechanism for preventing bacterial adhesion, beyond preventing 

nonspecific adhesion. The combination of this preventive approach with therapeutic therapies, 

namely, antibiotic therapies may hold great potential to fight BAI, as it is expected that bacterial 

cells adhered to these modified surfaces will be more susceptible to antibiotic therapy in a similar 

way to bacteria that adhered more weakly to brush-coated silicone rubber, enhancing their 

susceptibility to gentamicin treatment [42].  

In conclusion, although the mechanism(s) of action of alginate lyase against P. aeruginosa strains 

as well as against other strains commonly associated to BAI such as Staphylococcus aureus and 

S. epidermidis, needs to be further explored, this work suggests that alginate lyase 

immobilization on biomaterials may have potential as a preventive approach to fight BAI. 
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Enzymatic mono-functional coatings 

to prevent bacterial adhesion onto 

PDMS  

The growing number of BAI has led to the need of developing novel antibacterial coatings for 

medical devices. The use of enzymes able to degrade biofilm matrix components such as 

proteins and eDNA represents a promising approach to fight these infections. This study aimed to 

apply dopamine chemistry for covalent immobilization of different enzymes (lysozyme, proteinase 

K and DNase I) on PDMS to obtain surfaces able to prevent bacterial adhesion. Results showed 

that enzymes retained its biological activity after their immobilization using pDA as an 

intermediate layer. Lysozyme, however, was not able to prevent or cause membrane damage to 

S. aureus which led to its exclusion for further studies. PDMS functionalized with proteinase K or 

DNase I were able to prevent bacterial adhesion, especially DNase I which exhibited a broader 

action spectre. The overall results suggested that the use of enzymes for materials 

functionalization presents a promising strategy for creating antibacterial surfaces to be applied in 

biomaterials for medical devices and implants.  
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INTRODUCTION 

Polydimethylsiloxane, commonly referred as silicone rubber, is used for a wide variety of 

biomedical applications due to its excellent biocompatibility and mechanical properties. For 

instance, it has been used in vascular grafts [1], catheters [2], stents [3], breast implants [4] and 

voice prostheses [5]. However, PDMS-based biomedical devices are prone to microbial adhesion 

which can be a prelude for biofilm formation and infection. These infections are extremely difficult 

to eradicate because cells within a biofilm encase themselves in self-produced matrix which 

confers them protection against antimicrobial treatment and host immune system [6,7]. Very 

often, the only solution for an infected implant relies on its surgical removal at the expenses of 

considerable costs and patient suffering [8].   

Several strategies to modify PDMS surface have been reported, in an attempt to overcome this 

problem. For example, catheters have been impregnated with antibiotics such as 

minocycline/rifampicine [9], triclosan [10] and nitrofuzane [11]. Although this approach proved 

to prevent bacterial adhesion and biofilm formation on these surface-coated catheters there are 

some drawbacks that limit its clinical applications, mainly its short-term antibacterial effect and 

the potential development of bacterial resistance [12]. An alternative approach relies on the use 

of silver or silver nanoparticles to coat the surfaces of catheters, but its potential has been 

compromised by the high cost of the silver coating and the conflicting clinical results [13]. 

Covalent immobilization of antimicrobials offers an alternative approach that avoids patient 

exposure to leaching compounds and potentially increases the duration of antimicrobial efficacy 

[14]. This strategy should be employed with antimicrobial agents working at the level of the cell 

wall or membrane, since they can only reach the outside of the microbial cells. Quaternary 

ammonium silane and AMP are two examples of commonly used antimicrobial agents that have 

been covalently immobilized to PDMS to prevent BAI [15,16].  

After bacterial adhesion to a surface, large amounts of EPS such as polysaccharides, proteins 

and eDNA, are produced. EPS have a crucial role in infection as it binds the biofilm together and 

to the surface [7]. Therefore, a promising strategy to prevent biofilm formation on the surfaces of 

biomaterials may rely on the use of enzymes targeting the EPS of biofilms matrix. It is expected 

that degradation of biofilm matrix or destabilization of their physical integrity can prevent biofilm 

establishment or promote the detachment of established one. Furthermore, after biofilm 

dispersion, bacterial cells may become more susceptible to antimicrobial action [14,17].  
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In this study, a pDA dip-coating strategy was applied for functionalization of PDMS with enzymes 

targeting different EPS: a polysaccharide degrading enzyme (lysozyme), a protein degrading 

enzyme (proteinase K) and a DNA degrading enzyme (DNase I).  

 

 

MATERIALS AND METHODS 

BACTERIAL STRAIN AND GROWTH CONDITIONS 

A clinical isolate of S. aureus was used throughout this study. The strain was preserved and 

cultured as described in Chapter 2.  

 

ENZYMES 

Enzymes targeting different EPS were used in this study: lysozyme, proteinase K and DNase I.  

 

POLYDOPAMINE COATING AND ENZYMES FUNCTIONALIZATION 

Prior to surface modification, PDMS coupons were cleaned and prepared as described in Chapter 

2. For pDA coating, materials were immersed in dopamine (2 mg/mL dopamine-HCl in 10 mM 

bicine buffer, pH 8.5) for 18 h, at RT under agitation (70 rpm). Coupons were then rinsed with 

UP water and air-dried.  For further pDA functionalization, dopamine coated coupons were 

immersed in enzymes solutions at different incubation periods and temperatures. Preliminary 

optimization studies were performed to identify the conditions used for enzymes immobilization 

and details can be found in the supporting information (Figure S1 of Supplemental Material). 

Lysozyme and proteinase K were dissolved in PBS, pH 7.4, and were incubated overnight, at 4 

°C under agitation. DNase I (1 mg/mL) was dissolved in PBS (150 mM NaCl, 10 mM potassium 

phosphate, pH 6.8) supplemented with 10 mM MgCl2 and was incubated for 6 h, at RT, under 

agitation (70 rpm) as previously described [18].  
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SURFACE CHARACTERIZATION 

Static water contact angle measurements were performed by a sessile drop method as described 

in Chapter 2. Experiments were performed in triplicate.  

 

BACTERIAL VIABILITY ON MODIFIED SUBSTRATES 

Antibacterial performance of the generated surfaces against bacterial adhesion was evaluated by 

an attachment assay as described in Chapter 2. Two or three independent assays were 

performed with three replicates for each condition tested.  

 

ENZYMATIC ACTIVITY 

The activity of immobilized DNase I and lysozyme was performed as described in Chapter 2. 

Experiments were performed in triplicate.   

 

 

RESULTS  

ENZYMES IMMOBILIZATION 

For enzymes immobilization, the 2-step pDA approach was performed as illustrated in Figure 2B 

of Chapter 2. Lysozyme and Proteinase K immobilization was optimized (the details can be found 

on Supplemental Material, Figure S1) while DNase I immobilization was adapted from a study 

previously performed [18].  

 

ANTIBACTERIAL PERFORMANCE OF ENZYMATIC COATINGS 

Since the initial bacterial adhesion onto a biomaterial surface plays a crucial role on biofilm 

formation and subsequent device infection, it is important to inhibit this initial step. Bacterial 

attachment was allowed to proceed for 4 h onto PDMS before and after functionalization with 

enzymes and evaluated by the fluorescence live/dead staining method.   
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Figure 1. (A) Representative fluorescent live/dead stain images obtained during adhesion of a clinical 
isolate of S. aureus. The scale bar indicates 100 µm. (B) Normalized attachment and viability of cells on 
unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS functionalized with lysozyme (pDA-
Lyso), proteinase K (pDA-PK) or DNase I (pDA-DNase I). Significant differences were found for (*) p < 0.5 
and (**) p < 0.01, compared to PDMS control attachment. 

 

Results showed that unmodified surfaces allowed the adhesion of S. aureus and most of them 

were alive. Further modification with pDA had no effect on bacterial attachment or cell viability. 

The presence of lysozyme was not able to prevent bacterial attachment or damage bacterial cells 

membrane. On the other hand, proteinase K immobilized onto pDA-coated PDMS surfaces 

demonstrated some effect against bacterial adhesion causing some reduction on bacterial 

attachment. DNase I immobilization had no effect on cell viability as compared to PDMS surfaces 

but was able to prevent bacterial attachment, confirming, thus, the anti-adhesive properties 

previously attributed to these DNase I-based coatings. Once confirmed the ability of DNase I 
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coating to more efficiently prevent Gram-positive S. aureus adhesion, two strains (with different 

mucoid phenotype) of a relevant Gram-negative strain, P. aeruginosa, were afterwards evaluated. 

 

Figure 2. Normalized attachment and viability of cells of P. aeruginosa ATCC 27853 (bars without pattern) 
and ATCC 39324 (bars with pattern) on unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated 
PDMS functionalized with active DNase I (pDA-DNase I). Significant differences were found for (*) p < 0.5 
and (***) p < 0.001, compared to PDMS control attachment. 

 

Results showed that P. aeruginosa was also able to colonise bare PDMS surfaces but a higher 

fraction of cells with compromised membrane was detected, as compared to S. aureus. PDMS 

modification with pDA had no effect on the attachment of non-mucoid strain but prevented in 

some extent the adhesion of mucoid P. aeruginosa strain. Further functionalization of pDA with 

DNase I prevented the adhesion of both strains, especially the mucoid one.  

 

SURFACE CHARACTERIZATION OF ENZYMATIC COATINGS 

To evaluate the surface wettability of the PDMS after surface modification, the static water 

contact angle  of  surfaces  after  each  deposition  step  was  measured  (Figure  3).  Bare  

PDMS  is  inherently  hydrophobic,  with  a  high  contact  angle  of  108.4°  ±  2.5°.  

Functionalization  of  PDMS  with  pDA  greatly enhanced the hydrophilicity of the polymer 
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surface, decreasing the contact angle to 60.2° ± 3.1°,  which is a  well-established observation 

in other material surfaces as well [19, 20]. Further immobilization with enzymes lysozyme, 

proteinase K and DNase I increased the contact angle to 78.3° ± 11.6°, 70.0° ± 11.1ºand 

83.3°. ± 15.0°, respectively, which may be attributed to the presence of hydrophobic amino acid 

residues [21].   

 

 

Figure 3. Water contact angle of unmodified PDMS, pDA-coated PDMS (Si-pDA) and pDA-coated PDMS 
surfaces functionalized with Lysozyme (pDA-Lyso), proteinase K (pDA-PK) or DNase I (Si-pDA-DNase I). 
Significant differences were found for (***) p < 0.001, compared to PDMS control. 

 

 

ENZYMATIC ACTIVITY AFTER IMMOBILIZATION 

The catalytic activity of enzymes after their immobilization was determined so it was possible to 

conclude about their biological activity. DNase I activity was determined by evaluating the 

hydrolysis of plasmid DNA in solution droplets placed on the coatings.   
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Figure 4. Agarose gel showing the degradation of plasmid DNA in a droplet on PDMS functionalized with 

DNase I after an incubation period of 1, 3 and 3 h (A) and after a 4 h incubation period (B).  M: 1 kb DNA 

ladder (NEB).  

 

In the first experiment (Figure 4A), samples were withdrawn every hour but after a period of 3 h, 

no more samples could be taken because the DNA droplet was dried. Since no DNA degradation 

could be observed during this period of time, a new assay was performed   (Figure 4B) in which 

the first sample was withdrawn only after 4 h. Results showed the degradation of plasmid DNA 

confirming, therefore, that DNase I retained its biological activity after its immobilization onto 

PDMS.   

Lysozyme is a glycosidase able to cleave the polysaccharidic component of the cell wall of 

bacteria such as Micrococcus lysodeikticus, causing cell lysis. Lysozyme bioactivity after its 

immobilization was evaluated by immersing PDMS functionalized with this enzyme in a 

suspension of M. lysodeikticus and its turbidity was monitored spectrophotometrically during 9 h.  
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Figure 5. Lysozyme activity after immobilization onto pDA-coated PDMS (pDA-Lysozyme) by measuring the 

optical density of a suspension of M. lysodeikticus in time. As a control pDA-coated PDMS without 

lysozyme was also monitored.  

 

Results showed that lysozyme immobilization onto PDMS did not compromise its biological 

activity as indicated by the gradually decrease of suspension turbidity as a consequence of M. 

lysodeikticus lysis. As a control, the suspension in contact with pDA-coated PDMS was also 

monitored and no lysis was observed during the same period of time.  

 

 

DISCUSSION 

Development of microbial resistance towards antibiotics and BAI are the major concerns faced by 

modern healthcare. There is, therefore, an urgent need for antibacterial surfaces that can prevent 

bacterial colonisation and subsequent biofilm formation and do not select for resistant strains. 

Immobilization of enzymes targeting different components of biofilm matrix or bacterial cells 

surface has been the focus of great interest in the last years [22-24]. In this sub-chapter, three 

enzymes with different targets were investigated for immobilization onto PDMS surfaces.  
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Lysozyme was chosen because it has been used to modify the surface of biomaterials to 

enhance their antimicrobial properties [25-27]. Its well-known bacteriolytic activity is 

characterized by an enzymatic and a non-enzymatic mode of action. The enzymatic mode of 

action depends on its ability to hydrolyse the 1, 4 -β–glycosidic bonds between N-acetyl-muramic 

acid and N-acetyl-D-glucosamine. These bonds are present in peptidoglycans, which comprise 90 

% of the Gram-positive bacteria cell wall, making them very susceptible to lysozyme antimicrobial 

activity. The non-enzymatic mode of action of lysozyme is based on the cationic and amphiphilic 

properties of the enzyme which leads to perturbations in the cell membrane and activate the 

autolytic system of bacteria [28, 29]. Lysozyme is classified as GRAS (generally recognized as 

safe) by the FDA and as a food additive by the European Union [30]. For lysozyme to retain its 

enzymatic activity after immobilization, it has to be exposed to the solution rather than being 

adsorbed to the surface [25]. Results showed that lysozyme immobilization using pDA as an 

intermediate was not effective to kill or prevent the adhesion of S. aureus, although its lytic 

activity was retained against M. lysodeikticus. These results may then be attributed to 

Staphylococci resistance previously demonstrated. Lysozyme is not able to recognize 

peptidoglycan modified with O-acetyl groups that enables bacteria such as S. aureus to overcome 

the innate defence system. This modification acts as a steric hindrance and inhibits the binding 

of lysozyme and is mediated by peptidoglycan-specific, membrane bound O-acetyltransferase 

widespread only among pathogenic staphylococci, which is the case of the strain used in this 

study [31,32].  

Proteins and glycoproteins are the dominant molecules mediating adhesion of many fouling 

organisms, thus proteases (protein hydrolysing enzymes) are the most tested and most 

successful enzymes used for the control of marine biofouling [33,34]. For medical applications, 

proteinase K may present a promising proteolytic enzyme to fight biofilm infections. This enzyme 

is stable in a broad range of conditions such as pH, buffer salts, detergents and temperature, 

and was able to effectively remove the biofilm formed by a clinical isolate of S. aureus [35]. When 

immobilized in this study, on the other hand, proteinase K impaired bacterial attachment at some 

extent but was not as effective as DNase I. Such results may be attributed to the loss of 

enzymatic activity after immobilization; this hypothesis needs, however, to be proved in further 

assays. Another possible explanation may be related to the fact that other polymer, such as the 

polysaccharide intercellular adhesin (PIA), plays a major role in the adhesion [36]. In fact, it has 

been reported that proteinase K was more effective in dispersing S. aureus biofilm when PIA 
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content was very less and the biofilm was probably dominated by the presence of proteins [37]. 

These observations allowed to conclude that immobilization of proteinase K could be a promising 

approach in controlling infections caused by S. aureus strains where biofilms matrix are 

dominated by proteins but in other strains in which PIA plays a major role in adhesion and 

biofilm formation, this approach alone may not be useful.  

A promising development in biofilm research has been the finding that eDNA plays an essential 

role as a component of the biofilm matrix in most bacterial species [17, 38]. In fact, this enzyme 

has been used in the therapeutics of patients suffering from cystic fibrosis [39] and its 

immobilization has been previously performed with quite promising results [18]. The results in 

this study endorsed these previous findings as DNase I immobilized onto PDMS material was the 

most effective enzyme tested in preventing the adhesion of both Gram-positive and Gram-

negative bacteria. Results also suggested that its anti-adhesive properties may be attributed to 

the ability to degrade DNA as enzyme retained its bioactivity after immobilization.  

Summarizing, the study conducted in this sub-chapter highlighted the great potential of dopamine 

chemistry to immobilize enzymes without compromise their biological activity and the great 

potential of DNase I to create multi-functional coatings and impart them with anti-adhesive 

properties.  
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SUPPLEMENTAL MATERIAL  

A) 

 
GA 

linker 
Incubation time [h] 

Temperature 
[oC] 

Attachment 
reduction [%] 

Lysozyme 
No overnight 4 Ns 
No 3 RT Ns 
Yes overnight 4 Ns 

Proteinase K 
No overnight 4 54.1 

No 3 RT 39.3 
Yes overnight 4 Ns 

 

 B) 

 

Figure S2. Establishment of key experimental parameters for optimally immobilization of lysozyme and 
proteinase K onto PDMS material. After pDA functionalization, PDMS coupons were immersed in solutions 
of lysozyme or proteinase K (1 mg/mL in PBS) and incubated for different periods of time (3 h or 
overnight, 16-18 h) and different temperatures (4 °C or RT). The influence of a glutaraldehyde linker was 
also evaluated and immobilization was performed as illustrated in B). PDMS was first covered with a pDA 
film followed by immobilization of enzymes with GA as a bi-functional linker. Glutaraldehyde provides the 
reactive aldehyde groups to react with both pDA and different enzyme moieties, mainly involving primary 
amino groups. As output to determine the effect of experimental parameters, an attachment assay of a 
clinical isolate of S. aureus for 4 h was performed and the percentage of attachment reduction, as 
compared to bare PDMS, was determined. It was identified the combination of pDA functionalization of 
PDMS without GA as a linker followed by overnight incubation at 4 °C in enzymes solutions as providing 
the optimal immobilization parameters.  
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5.1 

Co-immobilization of Palm and 

DNase I to create an antimicrobial 

and anti-adhesive bi-functional 

coating 

Bacterial colonization of indwelling devices is very often a prelude for biofilm formation and 

infection. BAI remain a clinical challenge with serious medical and economic consequences, due 

to their resistance to antimicrobials and to the host immune system. This study aimed to co-

immobilize the antimicrobial lipopeptide Palm and the enzyme DNase I to introduce both 

antimicrobial and anti-adhesive functionalities to PDMS, using dopamine chemistry. Surface 

characterization confirmed the immobilization of both compounds and that Palm did not detach 

from the surfaces for up to 5 days. Co-immobilization of both agents resulted in a bi-functional 

coating able to prevent the single and co-adhesion of S. aureus and P. aeruginosa, kill the 

adherent ones, showing no toxicity towards mammalian cells. The overall results highlighted that 

PDMS functionalization with Palm and DNase I holds great potential to fight BAI if explored in the 

development of implants or medical devices. 
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INTRODUCTION 

BAI remain the leading cause of failure of biomaterial implants and medical devices. These 

infections pose a number of clinical and economic challenges due to their resistance to 

antimicrobials and to the host immune system, and, regardless of the complexity of the implant, 

all medical devices are prone to microbial colonization and infection [1]. The fate of a biomaterial 

has been described as a race between its integration into the surrounding tissue and bacterial 

adhesion to its surface [2, 3]. When the race is won by bacteria, the implant surface will become 

rapidly covered by a biofilm [2, 4], a microconsortia of surface adhering cells encased in a self-

produced matrix of EPS [5]. This extracellular matrix, which is mainly comprised of water, 

polysaccharides, proteins and eDNA, makes biofilms the most successful forms of life on earth 

as it provides architectural stability,  mechanical support, mediates cell-cell and cell-surface 

interactions and acts as a protective barrier [6]. Treatment procedures for patients suffering from 

BAI usually involve intravenous and oral antibiotic therapy in which high doses can be 

administered for several weeks or months [7]. Emerging microbial resistance to widely prescribed 

antibiotics compromises the success of this approach and, very often, the treatment fails, and 

the only solution for the infected implant is its surgical removal, at the expenses of patient 

suffering and considerable costs [8].  

Since bacterial adhesion to the surface of a biomaterial is the first step in biofilm formation, a 

number of surface modifications have been developed aiming to reduce the contact with 

approaching bacteria. These anti-adhesive coatings are well known in the literature, mainly the 

ones using hydrophilic polymer brush coatings, but none of them was able to completely prevent 

microbial adhesion [9-11]. The performance of anti-adhesive coatings may be improved by 

adding functionalities that prevent adhering bacteria from growing into a biofilm and to stimulate 

host tissue cell adhesion, depending on the application intended for the biomaterial.  

The aim of the current study was to co-immobilize the AMP Palm and DNase I onto PDMS, using 

dopamine chemistry. It was intended to obtain a bi-functional coating that combines both anti-

adhesive and antimicrobial properties able to prevent bacterial adhesion and subsequent biofilm 

formation, with low cytotoxicity. 
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MATERIALS AND METHODS 

BACTERIAL STRAINS AND GROWTH CONDITIONS 

Two reference strains of P. aeruginosa (ATCC 39324 and ATCC 27853), a reference strain of S. 

aureus (ATCC 25923) as well as clinical isolates of S. aureus and S. epidermidis were used 

throughout this study. The strains were preserved and cultured as described in Chapter 2.  

 

ANTIMICROBIAL PEPTIDE AND ENZYME 

The enzyme DNase I and the AMP Palm were used in this study.  

 

POLYDOPAMINE COATING AND FURTHER FUNCTIONALIZATION 

Prior to surface modification, PDMS coupons were cleaned and prepared as described in Chapter 

2. Coatings were prepared as illustrated in Figure 2B of Chapter 2, using a 2-step immobilization 

approach. For pDA coating, PDMS coupons were immersed in dopamine (2 mg/mL dopamine-

HCl in 10 mM bicine buffer, pH 8.5) for 18 h, at RT and under agitation (70 rpm). Coupons were 

then rinsed with UP water and air-dried. For further functionalization, pDA-coated coupons were 

immersed in DNase I solution (1 mg/ml in 150 mM NaCl, 10 mM potassium phosphate buffer 

supplemented with 10 mM MgCl2, pH 6.8) or in lipopetide Palm solution (1 mg/mL in PBS, pH 

7.4) and were incubated for 6 h, at RT under agitation (70 rpm). Co-immobilization was 

performed by immersing pDA-coated coupons in a mixture solution composed of DNase I and 

Palm at different proportions.  

 

SURFACE CHARACTERIZATION 

The surface morphology and roughness of the materials was analysed by SEM and AFM as 

described in Chapter 2. Static water contact angle measurements were also performed by a 

sessile drop method also described in Chapter 2. Experiments were performed in triplicate.  
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PHYSICOCHEMICAL CHARACTERIZATION OF SURFACES AND CELLS 

The hydrophobicity parameters of material surfaces and bacteria were determined using the 

sessile drop contact angle method as described in Chapter 2. Experiments were performed in 

triplicate.  

 

PEPTIDE IMMOBILIZATION EFFICIENCY AND COATINGS STABILITY 

The efficiency of peptide immobilization and coatings stability was performed as described in 

Chapter 2. Three and two independent assays with three replicates for each condition tested 

were performed.  

 

BACTERIAL VIABILITY ON MODIFIED SURFACES 

Antibacterial performance of the generated surfaces against bacterial adhesion was evaluated by 

a live/dead staining as described in Chapter 2. Two or three independent assays with three 

replicates for each condition tested were performed.  

 

LOCALIZATION AND DISTRIBUTION OF BACTERIAL POPULATIONS BY PNA FISH 

In order to assess bacterial spatial organization and the species distribution on the coated 

surfaces, PNA FISH method was employed as described in Chapter 2. Three independent assays 

with three replicates for each condition tested were performed.  

 

EVALUATION OF BIOFILM FORMATION BY XTT REDUCTION ASSAY 

In order to investigate the potential of modified coatings to impair biofilm formation, the 

respiratory activity of biofilm cells was evaluated using the XTT colorimetric method as described 

in Chapter 2. Two independent assays with three replicates for each condition tested were 

performed.  
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RESULTS  

CO-IMMOBILIZATION OF DNASE I AND PALM ONTO PDMS 

In the present study, a pDA-based surface modification was applied to co-immobilize Palm and 

DNase I onto PDMS to impart it with both antimicrobial and anti-adhesive properties. This AMP 

and enzyme were the agents selected based on the results reported in Chapters 3 and 4. Surface 

modification involved the deposition of a uniform coating of pDA from a dopamine-HCl solution at 

a slightly alkaline pH. The pDA coating was then used as a platform for peptide and/or enzyme’s 

immobilization. For co-immobilization, a mixture solution composed of DNase I and Palm at 

different proportions were investigated and a proportion of 1:3, respectively, yielded the best 

combination of both anti-adhesive and antimicrobial properties (details can be found in Figure S1 

of Supplemental Material).   

 

SURFACE CHARACTERIZATION   

Surface morphology of modified PDMS surfaces was characterized using SEM analysis. The 

unmodified PDMS surfaces exhibited smooth surface morphology compared with the modified 

ones (Figure 1). Self-polymerized pDA particles could be observed on modified PDMS coupons 

confirming the pDA coating. Further functionalization with AMP and/or enzyme yielded surfaces 

with different morphologies, depending on the compound immobilized. Surfaces functionalized 

with DNase I present a rougher surface morphology as compared to the ones with Palm, which 

can be attributed to the presence of more and bigger self-polymerized pDA particles. Co-

immobilization of both compounds yields surfaces with an intermediate morphology.   
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Figure 1. SEM images of unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS surfaces 

functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase I and Palm [1:3] (pDA-

MIX).The scale bars in the left and right column indicate 1 and 10 µm, respectively. 

 

For further surface morphology characterization, samples were also analysed by AFM (Figure 2). 

AFM results confirmed that bare PDMS possessed a smoother morphology as compared to 
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modified surfaces. From the AFM images, it was possible to measure the average roughness of 

surfaces (Figure 2B). Results indicated that the presence of a pDA layer increased the surface 

roughness of PDMS, which is in agreement with reported studies [12, 13]. Further 

functionalization with DNase I yielded surfaces with a heterogeneous roughness as the values 

measured within the same surface presented a large range, suggesting that DNase I 

immobilization was not successful as Palm’s. However, unlike in previous studies reporting other 

peptides immobilization using pDA as an intermediate layer [12, 14, 15], Palm immobilization 

decreased surface roughness which correlates with SEM results. When peptide was co-

immobilized with enzyme, surface roughness increased which may be attributed to the presence 

of DNase I.  

 

Figure 2. (A) AFM images of unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS surfaces 
functionalized with DNase (pDA-DNase I), Palm (pDA-Palm) and both DNase I and Palm [1:3] (pDA-MIX). 
The scale bar indicates 1 µm. (B) Average surface roughness (Ra) of unmodified PDMS, pDA-coated PDMS 
(pDA) and pDA-coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and 
both DNase I and Palm [1:3] (pDA-MIX).  

 

To evaluate the surface wettability of the PDMS after surface modification, the static water 

contact angle of surfaces after each deposition step was measured (Figure 3). Bare PDMS is 

inherently hydrophobic, with a high contact angle of 109.9° ± 3.0°. Its functionalization with pDA 

greatly enhanced the hydrophilicity of the polymer surface, decreasing the contact angle to 56.6° 
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± 4.8°, which is a well-established observation in other material surfaces as well [14, 16]. 

Further immobilization with DNase I or Palm slightly increased the contact angle to 75.8° ± 

16.7° and 77.3° ± 14.7°, respectively, which may be attributed to the presence of hydrophobic 

amino acid residues in the enzyme [17] and Palm’s hydrophobic lipophilic tail. Co-immobilization 

of enzyme and peptide yielded surfaces more hydrophobic with a contact angle of 97.9° ± 

10.2°, which can be attributed to an addition effect provided by each compound. 

 

 

Figure 3. Water contact angles of unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS 

surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase and Palm (pDA-

MIX).Significant differences were found for (**) p < 0.01, compared to PDMS control and (##) p < 0.01, 

compared to pDA control. 

 

 

PEPTIDE IMMOBILIZATION EFFICIENCY AND STABILITY 

To quantify the coating efficiency of Palm, the buffer solutions containing the unattached peptides 

were retrieved immediately after finishing the coating process. The fluorescamine assay revealed 

that 65.9 % ± 9.7 % of loaded peptide was immobilized onto the pDA-coated PDMS surface. A 

similar immobilization efficiency has been previously reported and it proved to be efficient for its 

application [14]. The fact that most AMP present local toxicity or haemolytic activity has limited 
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their applications as therapeutics to be administered into the bloodstream [18]. In the present 

study, this limitation could be overcame by peptide’s immobilization as the fluorescamine assay 

revealed that 56.7 %  ± 2.1 % of loaded Palm was still immobilized after being incubated in PBS 

for 5 days. 

 

Figure 4. Efficiency of pDA-mediated peptide immobilization. Fluorescamine assay was performed to 

determine the immobilization efficiency of pDA-coated PDMS functionalized with Palm under 

physiologically relevant conditions (PBS at 37°C) for 5 days. 

 

ANTIBACTERIAL PERFORMANCE OF MONO AND BI-FUNCTIONAL COATINGS 

Prior to co-immobilization of DNase I and Palm, their immobilization was performed alone. The 

antibacterial performance of these mono-functional coatings was investigated by performing an 

attachment assay in which bacteria were allowed to attach for 4 h and the remaining cells on the 

PDMS surfaces were imaged with fluorescence microscopy. For these analysis, a clinical isolate 

of S. aureus was chosen because of its clinical relevance.  
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Figure 5. (A) Representative fluorescent live/dead stain images obtained during adhesion assays of a 

clinical isolate of S. aureus .The scale bar indicates 100 µm. (B) Normalized attachment and viability of S. 

aureus on unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS surfaces functionalized with 

DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase and Palm (pDA-MIX). All values were 

normalized to PDMS control. Significant differences were found for (*) p < 0.05, compared to PDMS 

control attachment and (###) p < 0.001, compared to PDMS fraction of dead cells. 

 

Bare PDMS surfaces allowed the adhesion of S. aureus cells, which have formed agglomerates, 

and most of them remained alive. Polydopamine-coated surfaces had no significant effect on 

bacterial attachment or cell viability but cells were more evenly distributed along these surfaces. 
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Further functionalization with Palm (pDA-Palm), had no effect on bacterial attachment but was 

responsible for a greater fraction of dead cells. Enzyme mono-functional coating (pDA-DNase I), 

on the other hand, had no significant effect on cell viability as compared to bare PDMS surfaces 

but was able to prevent bacterial attachment.  

Once confirmed the anti-adhesive and antimicrobial properties conferred by immobilization of 

DNase I and Palm, respectively, their co-immobilization was performed so that a bi-functional 

coating integrating both functionalities could be developed. Results showed that with this 

combination (pDA-MIX), the fraction of dead cells greatly increased as compared to unmodified 

PDMS and bacterial attachment was slightly reduced as compared to PDMS functionalized with 

Palm alone, suggesting the additional effect conferred by the presence of DNase I.  

 

ADHESION OF DUAL-SPECIES TO MONO AND BI-FUNCTIONAL COATINGS 

In real situations, microorganisms occur in complex ecosystems, where bacteria may present 

symbiotic relationships and/or distributions that confer best conditions to survive [19]. Most of 

the coating approaches developed to fight BAI only investigates the antibacterial performance 

against bacterial strains as single species.  The performance of mono and bi-functional coatings 

proposed in the present study was, therefore, investigated against dual-species adhesion. For 

that, bacteria were allowed to attach for 4 h and the remaining cells on the PDMS surfaces were 

imaged with fluorescence microscopy after live/dead staining.  
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Figure 6. Normalized attachment and viability of cells of a clinical isolate of S. aureus (A), P. aeruginosa 

ATCC 39324 (B) single-species and co-adhesion (C) on unmodified PDMS, pDA-coated PDMS (pDA) and 

pDA-coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase 

and Palm (pDA-MIX). Significant differences were found for (***) p < 0.001, compared to PDMS control 

attachment and (###) p < 0.001, compared to PDMS fraction of dead cells. 

 

The fitness of dual-species adhesion (Figure 6C) was compared to single-species adhesion 

(Figure 6A and B) to mono-functional coatings. The clinical isolate of S. aureus and a reference 

strain of P. aeruginosa were used in this assay. As previously established, mono-functional 

coatings of DNase I (pDA-DNase I) was able to prevent S. aureus clinical isolated while Palm 

mono-functionalization generated surfaces able to kill most of bacteria (Figure 6A).  When it 

comes to P. aeruginosa adhesion to these mono-functional coatings, different antibacterial effects 

were observed. PDMS functionalized with pDA was able to prevent bacterial adhesion and also 
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affected cell viability as compared to bare PDMS surfaces. These results may be attributed to 

differences found on the hydrophobicity parameters of bacteria and surfaces, which were 

evaluated through contact angle measurements, using van Oss approach [20] (Table 1). 

The two reference strains showed water contact angles lower than 65º and positive values of free 

energy of interaction (ΔGiwi), which are indicative of a hydrophilic surface [21, 22]. From the 

physico-chemical parameters of each adhesion entity (bacteria and surface), it was possible to 

determine the thermodynamic relation between both entities, namely the free energy of adhesion 

(Table 1B). Results suggested that adhesion to both unmodified PDMS and pDA-coated PDMS is 

less favoured for the P. aeruginosa strain, as indicated by the higher values of free energy of 

adhesion.  

PDMS surfaces functionalized with DNase I was able to prevent bacterial attachment while mono-

functional coatings of Palm yielded similar results to pDA coating alone. Adhesion of S. aureus 

together with P. aeruginosa to bare PDMS surfaces yielded a higher fraction of dead cells as 

compared to their mono-species adhesion, suggesting an antagonistic interaction between 

bacterial strains. The presence of a pDA layer was responsible for reducing bacterial attachment. 

As P. aeruginosa was affected by the hydrophilic parameters of pDA-coated PDMS surfaces, this 

results suggested that adhesion on bare PDMS was dominated by this strain. DNase I-based 

mono-functional coating was able to reduce bacterial attachment without significant effect on cell 

viability. These results are in accordance with the fitness observed for mono-species adhesion, as 

PDMS functionalized with DNase I was able to prevent the attachment of both strains, alone. 

Immobilization of Palm onto PDMS pDA-modified surfaces yielded interesting results as they were 

able to prevent bacterial attachment in a greater extent as compared to DNase I. These results 

also suggested that P. aeruginosa had some predominant effect on S. aureus adhesion. Co-

immobilization of both peptide and enzyme at a proportion of 1:3 (pDA-MIX) yielded a bi-

functional coating able to prevent bacterial attachment of both strains and increase the fraction of 

dead cells, as compared to bare PDMS surfaces. These results indicated that bi-functional 

coatings developed in this study retained their both anti-adhesive and antimicrobial properties 

also against dual-species adhesion.  
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Table 1. (A) Values of contact angles (°) with water (θW), formamide (θF), α-bromonaphtalene (θB), surface tension parameters (mJ/m2), and free energy of interaction 

(∆𝐺𝑖𝑤𝑖
𝑇𝑂𝑇) (mJ/m2) between the bacteria and the surfaces (i) when immersed in water (w). (B) Free energy of adhesion between bacteria (b) and the surfaces (s). Values 

are means ± SD. 

 (A) 

Bacteria/Surface 
Contact angle (O) 

Surface Tension Parameters 

 (mJ/m2) 

Free energy of 

interaction 

(mJ/m2) 

θW θF θB γi
LW γi

+ γi
- ΔGiwi

TOT 

S. aureus  12.6  ± 4.7 14.9 ±  7.5 37.6  ±5.3 35.7 1.9 54.1 30.6 

P. aeruginosa  35.8 ± 11.6  86.5 ± 15.9  26.9 ± 3.4 39.7 0 127.8 121.0 

PDMS 108.6  ± 3.2 104.4  ± 7.6 55.9  ± 6.0 27 0 5.6 -54.6 

pDA 59.2 ± 2.4 22.2 ± 10.0 13.6 ± 5.7 43.2 2.5 10.6 -32.2 

 (B) 

  

Free energy of adhesion  

(mJ/m2) 

Bacteria ΔGbsb
TOT 

Si Si-pDA 

S. aureus  2.2 5.1 

P. aeruginosa  34.4 38.9 
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In order to confirm some of the hypothesis raised from aforementioned results, and also directly 

visualize the location and distribution of bacterial strains within the dual-species community, 

adhesion of both strains in the same conditions was allowed to proceed on PDMS surfaces that 

were, afterwards,  observed  under a fluorescence microscope after applying a multiplex PNA 

FISH methodology counterstained with DAPI. The strength of each fluorescent signal allowed to 

distinguish P. aeruginosa (red rod-shaped cells) and S. aureus (blue cocci) within the bacterial 

consortia.  

 

Figure 7. Multiplex PNA-FISH applied to dual-species adhesion onto unmodified PDMS, pDA-coated PDMS 

(pDA) and pDA-coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and 

both DNase I and Palm (pDA-MIX). The scale bar indicates 20 µm. 

 

Results confirmed that P. aeruginosa was the dominant organism with S. aureus adhering 

afterwards on P. aeruginosa agglomerates. No significant differences could be observed on 

bacterial distribution on different PDMS modified surfaces.  

In order to validate the potential of the bi-functional coating developed in this study, other 

combinations of bacterial strains was also evaluated, namely two reference strains of S. aureus 

(ATCC 25923) and P. aeruginosa (ATCC 27853) (Figure 8A) and two clinical isolates of S. aureus 

and S. epidermidis (Figure 8B).  
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Figure 8. Co-adhesion of S. aureus ATCC 25923 and P. aeruginosa ATCC 27853 (A) and clinical isolates 

of S. aureus and S. epidermidis (B) on unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS 

surfaces functionalized with DNase I (Si-pDA-DNase I), Palm (pDA-Palm) and both DNase I and Palm {1:3] 

(pDA-MIX). Significant differences were found for (*) p < 0.5, (**) p< 0.01 and (***) p < 0.001, compared 

to PDMS control attachment and (###) p < 0.001, compared to PDMS fraction of dead cells. 

 

Co-adhesion of reference strains of S. aureus and P. aeruginosa to PDMS surfaces functionalized 

with pDA had no significant effect on bacterial attachment or cell viability as compared to bare 

PDMS surfaces. In a similar way to the aforementioned combination of bacterial strains, mono-

functional coatings with DNase I (pDA-DNase I) reduced bacterial attachment. On the other hand, 

surfaces functionalized with Palm (pDA-Palm) had no significant effect on cell viability. These 

results are in accordance with Palm’s antimicrobial activity determined against planktonic 

cultures of P. aeruginosa ATCC 27853 as its MBC could not be detected within the range 

investigated. Results also suggested that P. aeruginosa was again the dominant organism.  Co-
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immobilization of both peptide and enzyme at a proportion of 1:3 (pDA-MIX) yielded surfaces able 

to prevent bacterial attachment of both strains and increase the fraction of dead cells, as 

compared to bare PDMS surfaces. These results indicated that bi-functional coatings developed 

in this study retained their both anti-adhesive and antimicrobial properties also against the 

adhesion of these two different strains as well. The other combination of bacterial strains, clinical 

isolates of S. aureus and S. epidermidis, were also able to adhere to unmodified PDMS surfaces 

and the presence of a pDA layer had no significant effect on their attachment or viability. Mono-

functional coatings prepared with DNase I (pDA-DNase I) were able to reduce bacterial 

attachment at a lower extent than from the other combinations investigated. Results suggest that 

eDNA effect may not be a structural component as important as on S. aureus adhesion, and 

DNase I presence on bi-functional coatings predominated over Palm antimicrobial activity. Palm-

based coatings retained their antimicrobial activity against these two species. Bi-functional 

coatings combining both bioactive compounds (pDA-MIX), however, were not able to significantly 

impair bacterial attachment or cell viability.  

 

ANTI-BIOFILM PROPERTIES OF MONO AND BI-FUNCTIONAL COATINGS 

To investigate the anti-biofilm properties of coatings, the clinical isolate of S. aureus was allowed 

to grow in TSB for 24 h and biofilm cells viability were evaluated using a XTT assay. In this assay, 

optical density values are proportional to the number of metabolic active cells adhered on the 

surfaces. As shown in Figure 10 unmodified PDMS exhibited the higher values of optical density, 

which confirms that PDMS surfaces are prone to S. aureus adhesion and subsequent biofilm 

formation. The presence of a pDA layer slightly decreased cell activity, which may be attributed to 

the difference adhesion patterns previously observed: S. aureus adhered to PDMS surfaces 

formed agglomerates unlike on pDA where cells were evenly distributed within the surface. 

Therefore, cell agglomerates on bare PDMS surfaces may have contributed to increase the 

optical density measured in XTT assay. Mono-functional coatings of DNase I (pDA-DNase I) had 

no effect on biofilm formation but PDMS functionalized with Palm (pDA-Palm) greatly decreased 

biofilm cells metabolic activity. Bi-functional coatings (pDA-MIX) had no significant effect on 

biofilm cells metabolic activity which may be attributed to the presence of DNase I. 
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Figure 9. Metabolic activity of biofilm cells adhered unmodified PDMS, pDA-coated PDMS (pDA) and pDA-
coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase and 
Palm (pDA-MIX). Significant differences were found for (*) p < 0.5 and (***) p< 0.001, compared to PDMS 
control.  

 

EFFECT OF PDMS MODIFIED SURFACES ON 3T3 FIBROBLAST GROWTH AND ADHESION 

To predict the effects of mono and bi-functional coatings developed in this study on animal cells, 

an assay of cytotoxicity was performed (Figure 10). Results showed that further functionalization 

of pDA-coated PDMS surfaces had no significant effect on 3T3 fibroblast growth and adhesion. 

Bi-functional coatings (pDA-MIX) slightly increased cell metabolic activity.  

 

Figure 10. Viability of mammalian cells after 48 h of contact with pDA-coated PDMS (pDA) and pDA-

coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase and 

Palm (pDA-MIX), measured with an MTS assay. Significant differences were found for (*) p < 0.5 

compared to pDA control.  
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DISCUSSION 

In the fight to prevent BAI several approaches to impart biomaterial surfaces with antibacterial 

properties have been developed in the last years, with great emphasis on anti-adhesive and 

antimicrobial coatings [10, 11]. There are, however, crucial limitations associated to both 

strategies. The emergence of multi-drug resistant bacteria and toxicity concerns are frequently 

associated to the usage of antimicrobials such as antibiotics and silver. Another disadvantage 

associated to antimicrobial contact-killing surfaces is the accumulation of dead bacteria on the 

antimicrobial coatings. These bacteria may allow the adhesion of other bacteria and this promote 

more bacterial accumulation on the surface, reducing its antimicrobial activity over time [23]. 

Anti-adhesive coatings are not able to completely prevent bacterial ahesion and their formulation 

often requires complex, labour and time-consuming techniques as well as the usage of organic 

solvents which may affect the integrity of biomaterials [11].  

The present study aimed to prepare a bi-functional coating incorporating the strengths of both 

strategies: to kill bacteria and simultaneously prevent their adhesion to surfaces, using the facile 

and non-toxic approach developed by Messersmith and co-workers [24]. To confer surfaces with 

antimicrobial activity, the AMP Palm was chosen. As the first line of defence of animals and 

plants against invading pathogens, AMP exhibit important features that make them promising 

candidates for clinical applications and potential alternatives to conventional antibiotics, including 

a low propensity for developing microbial resistance [25, 26]. Palm belongs to a new group of 

lipopeptides with potent antifungal and antibacterial activities. These lipopeptides are derived 

from positively charged peptides containing D- and L- amino acids (diastereomers) that are 

palmitoylated at their N terminus [27]. As a lipopetide its mechanism of action consists of simple 

disruption of membrane electric potential [28]. Anti-adhesive component of bi-functional coatings 

was provided by the enzyme DNase I, targeting eDNA. Because eDNA facilitates the initial stage 

of bacterial adhesion to biomaterials and, virtually, all bacterial populations produce this 

structural component, it was hypothesized that it could be a general target [29]. Furthermore, the 

immobilization of DNase I onto biomaterial surfaces, using a pDA layer as an intermediate, has 

proved to be effective in preventing bacterial adhesion and biofilm formation up to 14 h [30]. 

Surface characterization studies confirmed the immobilization of Palm and DNase I onto pDA-

coated PDMS surfaces and that peptide did not detach from the surface for up to 5 days. 

Enzyme immobilization did not compromise its catalytic activity (Chapter 4.2). To assess the 
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antibacterial performance of developed coatings, adhesion assays were performed in which 

bacterial cells were allowed to adhere for 4 h. This period of time was chosen because the first 6 

h after surgery (the so-called “decisive period”) are identified as being critical for preventing 

bacterial adhesion in order to assure the long-term success of the implant [31]. During this 

period of time, there is a competition between integration of the material into the surrounding 

tissue and adhesion of bacteria to the implant surface [2]. Attachment assay confirmed that 

immobilization of Palm onto pDA-coated PDMS surfaces (pDA-Palm) conferred them with 

effective antimicrobial properties given its ability to damage most of bacterial cells adhered to 

these coatings very fast. This behaviour agrees with lipopeptides ability to kill multi-resistant 

Gram-positive cocci, in solution, previously reported [32]. Enzymatic mono-functional coating 

(pDA-DNase I) was able to prevent bacterial attachment suggesting its suitability to confer the 

anti-adhesive properties intended for the bi-functional coating. Once confirmed the anti-adhesive 

and antimicrobial properties conferred by immobilization of DNase I and Palm, respectively, their 

co-immobilization was performed so that a bi-functional coating integrating both functionalities 

could be developed. Surface characterization of this bi-functional coating revealed a surface with 

intermediate roughness between the one achieved with both compounds, alone. Co-

immobilization of DNase I and Palm yielded more hydrophobic surfaces which can be attributed 

to an addition effect provided by each compound. 

Most of the coating approaches developed to fight BAI only investigate the antibacterial 

performance against bacterial strains as single species.  In the present study, the performance of 

the proposed mono and bi-functional coatings against the adhesion of dual-species was also 

evaluated. DNase I-based mono-functional coating (pDA-DNase I) had a similar effect against co-

adhesion of a clinical isolate of S. aureus and P. aeruginosa (ATCC 39324) as it was able to 

prevent the attachment of both strains, alone and together. Immobilization of Palm (pDA-Palm) 

yielded surfaces able to prevent bacterial attachment in a greater extent as compared to DNase I. 

Co-adhesion results were closer to the ones obtained with P. aeruginosa alone, suggesting that 

this strain had some predominant effect on S. aureus adhesion, which was further confirmed 

with PNA-FISH analysis. The bi-functional coating was able to prevent bacterial attachment of 

both strains and increase the fraction of dead cells, as compare to bare PDMS surfaces. The 

coatings retained, therefore, both anti-adhesive and antimicrobial properties against dual-species 

adhesion. When a different combination of bacterial strains was investigated, namely co-adhesion 

of clinical isolates of S. aureus and S. epidermidis, different performances could be observed. 
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Mono-functional coatings prepared with DNase I were able to reduce bacterial attachment of both 

strains but was not effective as it was with S. aureus and P. aeruginosa strains while PALM-based 

coatings retained their antimicrobial activity against these two species. Bi-functional coatings 

combining both bioactive compounds (pDA-MIX), however, were not able to significantly impair 

bacterial attachment or cell viability. These results may be attributed to the lower efficacy of 

DNase I against S. epidermidis. In fact, it has been reported that eDNA is a structural component 

of biofilm matrix of S. aureus but a minor in S. epidermidis matrix as DNase I treatment was not 

able to detach established biofilms of this last strain [33]. 

Once established the potential of mono and bi-functional coatings to prevent bacterial attachment 

and kill bacteria adhered to the surfaces during the first stages of bacterial colonisation process, 

it is important to evaluate coatings efficacy to impair biofilm formation. For that, S. aureus was 

allowed to grow in a nutrient-rich environment for 24 h and biofilm cells viability were evaluated 

using a XTT assay. Mono-functional coatings of DNase I had no effect on biofilm formation but 

PDMS functionalized with Palm greatly decreased biofilm cells metabolic activity. The better 

results obtained for Palm-based coating surfaces against biofilm formation may be attributed to 

its lower surface roughness as compared to the heterogeneous immobilization of DNase I. 

Results suggest, thus, that roughness surface had a more crucial effect on biofilm formation. 

Another possible explanation for DNase I inefficacy to prevent biofilm formation is the presence of 

proteases or macromolecules present in established biofilms which may interfered with enzyme 

activity. It is important to mention, that TSB is a very rich medium, so the worst case scenario 

was investigated. Bi-functional coatings had no significant effect on biofilm cells metabolic activity 

which may be attributed to the presence of DNase I. The performance of immobilized Palm in a 

rich medium also suggests that coating stability under in vivo conditions should not be 

compromised, a concern raised in Chapter 3.3.  

In summary, a 2-step pDA-based surface modification strategy was applied to successfully co-

immobilize an AMP and an enzyme targeting an important component of biofilm matrix. This 

immobilization approach imparted PDMS surfaces with both anti-adhesive and antimicrobial 

properties against the adhesion of relevant bacteria as single and dual-species, with excellent 

stability and no cytotoxicity, holding, therefore, great potential in the development of materials 

able to prevent BAI. 
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SUPPLEMENTAL MATERIAL 

 

Figure S.1. Optimization of co-immobilization of DNase I and Palm onto PDMS. Bi-functional coatings 
(pDA-MIX) were prepared by mixing different proportions of DNase I and Palm and the antibacterial 
performance against a clinical isolate of S. aureus was evaluated.  Significant differences were found for 
(###) p < 0.001, compared to PDMS fraction of dead cells. Co-immobilization of enzyme and peptide at 
proportions 1:1 and 1:2 yielded surfaces able to prevent bacterial attachment but no significant effect on 
cell viability, suggesting that DNase I was responsible for the predominant effect. Increasing the peptide 
proportion for 1:3, however, the fraction of dead cells greatly increased as compared to unmodified 
PDMS. In addition, bacterial attachment was slightly reduced as compared to PDMS functionalized with 
PALM alone (Chapter 3.4), suggesting the additional effect conferred by the presence of DNase I. This 
proportion was, therefore, chosen for further studies to investigate the potential of bi-functional coatings.  
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Studying the fate of bacteria adhering 

to bi-functional coatings 

In the previous sub-chapter, Palm and DNase I were successfully co-immobilized onto PDMS to 

impart it with both anti-adhesive and antimicrobial properties against the adhesion of relevant 

bacteria as single and dual-species, with excellent stability and non-toxicity. This study aimed to 

investigate the fate of bacteria that managed to adhere to these modified surfaces in what 

concerns their susceptibility to antibiotic treatment, potential development of resistance and their 

clearance mediated by macrophages phagocytosis. Results showed that the bi-functional coating 

proposed in this thesis holds great potential to fight BAI as it proved to enhance bacterial 

susceptibility to antibiotic treatment and to macrophages phagocytosis, without developing 

bacterial resistance towards Palm immobilized. 
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INTRODUCTION 

The development of materials able to resist bacterial colonisation has been proposed as a 

promising approach to fight BAI [1,2]. Although the results obtained with these strategies have 

been encouraging, there are some challenges in the field of antibacterial coatings that urgently 

need to be solved so they can be applied in clinical practice.  

An important issue is related to the fact that most of the coatings reported in the literature are 

not able to completely prevent bacterial adhesion. Therefore, it is crucial to determine if the “few” 

bacteria that manage to adhere to these coatings are able to grow into a mature biofilm. For 

instance, Nejadnik et al. have demonstrated the ability of few bacteria that adhered on a polymer 

brush-coating to form a weakly adhering biofilm [3]. The authors, however, identified the slow 

formation of biofilms on these coatings and their relatively easy detachment as a clinical 

opportunity for prophylactically administration of antibiotics after implant surgery. Another 

challenge is the potential development of microbial resistance towards antimicrobials 

immobilized. Although, antimicrobials permanent immobilization has been described as an 

alternative approach to minimize this potential because it avoids exposure to sub-inhibitory 

concentrations [4], there is a lack of studies addressing these issues. 

A crucial factor influencing the pathogenesis of BAI, often neglected in the field of antibacterial 

coatings, is the role of host’s immune system. Once a BAI is established, different immune cells 

are recruited to the infection site but macrophages end up being the prevailing cells responsible 

to orchestrate the inflammatory process and foreign body reactions [5,6]. Their functions include 

ingestion of bacteria by phagocytosis, destruction of bacteria within the phagolysosome and 

recruitment of inflammatory cells to the site of infection, using chemokines and acute-phase 

proteins. It has been reported, however, that the presence of a biomaterial may compromise the 

host immune system [7]. Therefore, it is important to better understand how immune cells 

interact with adhering pathogens.  

In the previous sub-chapter, an Palm and DNase I were successfully co-immobilized onto PDMS 

surfaces to impart them with both anti-adhesive and antimicrobial properties against the 

adhesion of relevant bacteria as single and dual-species, with excellent stability and non-toxicity. 

Although quite promising the results obtained, it cannot be overlooked the fact that some 

bacteria managed to adhere these coatings. The aim of the present study was, therefore, to 
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determine if bacteria remaining on these surfaces are more susceptible to antimicrobial 

treatment or developed some kind of resistance towards the AMP immobilized on bi-functional 

coatings. It was also intended to investigate the role of these bi-functional coatings on bacterial 

removal and digestion by macrophages.  

 

 

MATERIALS AND METHODS 

BACTERIAL STRAIN AND GROWTH CONDITIONS 

A clinical isolate of S. aureus was used throughout this study. The strain was preserved and 

cultured as described in Chapter 2.  

 

ANTIMICROBIAL SUSCEPTIBILITY TO VANCOMYCIN 

MIC and MBC of vancomycin were determined by the microdilution method as described in 

Chapter 2.  

 

PDMS PREPARATION AND FURTHER FUNCTIONALIZATION 

PDMS was prepared and functionalized as described in Chapter 2 and 5.1. 

 

BIOFILM SUSCEPTIBILITY TO VANCOMYCIN TREATMENT 

Biofilm susceptibility to vancomycin treatment was evaluated by determining cells metabolic 

activity, using the XTT reduction assay. Briefly, a bacterial suspension with 1x107 CFU/mL was 

prepared in TSB and 300 µL of this suspension were added to a 48-well microtiter plate in which 

unmodified and modified PDMS coupons were placed. The plate was then incubated for 24 h at 

37 ºC and 120 rpm. The coupons were subsequently washed once with saline solution to remove 

free-floating bacteria and 300 µL of vancomycin (MIC value prepared in TSB) was added to each 

well. As a control, 300 µL of TSB without antibiotic was also added. The plates were then 

incubated overnight at 37 ºC and 120 rpm and the bacterial metabolic activity was determined 
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using XTT reduction assay as described in Chapter 2. Two independent assays with three 

replicates for each condition tested were performed.  

 

SUSCEPTIBILITY OF ADHERED CELLS TO MODIFIED SURFACES 

The susceptibility pattern of bacterial cells adhered to PDMS surfaces was evaluated as described 

in Chapter 2. Experiments were performed in triplicate.  

 

MACROPHAGES ADHESION TO STAPHYLOCOCCI ADHERING TO SURFACES 

A human monocyte line cell (THP-1, ATCC TIB-202) was used in this study. Monocytes were 

routinely cultured as described in Chapter 2. Experiments were performed in triplicate. 

 

 

RESULTS  

SUSCEPTIBILITY OF BIOFILMS TO VANCOMYCIN TREATMENT 

In order to evaluate the susceptibility of biofilms formed on mono and bi-functional coatings of 

Palm and DNase I, after 24 h of biofilm growth they were subjected to antibiotic treatment 

overnight. Vancomycin is an antibiotic commonly used as a standard therapeutic option against 

staphylococci infections [8]. The concentrations of vancomycin able to inhibit planktonic bacterial 

growth (MIC) and those required to kill planktonic bacteria (MBC) of S. aureus were both 0.5 

µg/mL. Metabolic activity of biofilm cells were afterwards evaluated using XTT reduction assay.   
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Figure 1. Metabolic activity of biofilm cells adhered to unmodified PDMS, pDA-coated PDMS (pDA) and 

pDA-coated PDMS surfaces functionalized with DNase I (pDA-DNase I), Palm (pDA-Palm) and both DNase 

and Palm (pDA-MIX) after being subjected to no treatment (black) or vancomycin treatment at its MIC 

(white). Significant differences were found for (***) p< 0.001, compared to No treatment.  

 

Results showed that, in the absence of treatment, the cells that managed to adhere to both 

unmodified and modified surfaces were able to grow into a biofilm with metabolic active cells. 

Vancomycin treatment at its MIC had no effect on biofilm cells metabolic activity when biofilms 

were formed on unmodified or pDA-coated PDMS, as well as PDMS functionalized with DNase I 

(pDA-DNase I). On the other hand, biofilms formed on PDMS functionalized with Palm alone or 

combined with DNase I were more susceptible to antibiotic treatment, suggesting a synergistic 

effect between modified surfaces and antibiotic therapy. 

 

POTENTIAL DEVELOPMENT OF RESISTANCE BY ADHERED CELLS  

In order to evaluate the potential of bacterial resistance development toward surfaces modified 

with Palm, an assay was performed in which cells in contact with unmodified PDMS and modified 

PDMS surfaces for a period of 10 days, were recovered and used to determine the MIC and MBC 

of Palm (Table 1). As a control, the antibiotic vancomycin, was immobilized onto PDMS using 

dopamine chemistry at the same concentration as the AMP and the same assay was performed. 
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Table 1.  Antimicrobial susceptibility of S. aureus against Palm and vancomycin: MIC and MBC after10 
passages in contact with unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS surfaces 
functionalized with antimicrobials. MIC and MBC are expressed in µg/mL. 

Antimicrobial 
MIC   MBC  

PDMS pDA Antimicrobial  PDMS pDA Antimicrobial 

Palm 64 64 64  >64 >64 >64 

Vancomycin 1 1 2  1 2 8 

 

Results showed that cells adhered to PDMS functionalized with Palm exhibited the same 

susceptibility pattern as cells adhered to PDMS before or after coating with pDA, suggesting no 

development of resistance. On the other hand, cells adhered to surfaces functionalized with the 

antibiotic vancomycin were less susceptible to the same antibiotic as indicated by the higher 

values of MIC and MBC when compared to PDMS unmodified or coated with pDA.  

 

MACROPHAGES PHAGOCYTOSIS OF ADHERED CELLS 

Phagocytosis of staphylococci by macrophages on unmodified modified surfaces was evaluated 

by comparing the adhering cells on the different surfaces before and after the presence of 

macrophages for a period of 2 h (Figure 2). Results showed that macrophages adhesion to 

unmodified PDMS tend to cluster which may compromise their mobility and subsequently their 

phagocytic activity. After pDA coating, macrophages were found more evenly distributed along 

the surfaces and results suggested a higher number of adhered macrophages on bi-functional 

coatings (pDA-MIX). 
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Figure 2. DAPI-stained images of S. aureus adhesion to unmodified PDMS, pDA-coated PDMS (pDA) and pDA-coated PDMS surfaces functionalized with Palm and 

DNase I (pDA-MIX) in the absence (-) of macrophages and after 2 h adhesion of macrophages (+).  The scale bar denotes 100 µm.
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DISCUSSION 

In the fight against BAI, several surface modifications have been proposed to render the 

biomaterial surfaces with anti-infective properties [9]. Despite the promising results reported in 

the literature, where reductions on bacterial attachment higher than 90 % are often achieved [3, 

10], most of these approaches tend to neglect the fate of the few bacteria that manage to attach 

to these modified surfaces. In a similar way, the bi-functional coating developed in last sub-

chapter, was not able to completely prevent bacterial adhesion to modified PDMS. Therefore, the 

aim of this study was to investigate the fate of bacteria that managed to adhere to these modified 

surfaces in what concerns their susceptibility to antibiotic treatment, potential development of 

resistance and their clearance mediated by macrophages phagocytosis.  

Once established a BAI, the most common approach of treatment involves the use of antibiotics, 

which dose must be higher than their MIC to be able to influence cells in sessile style [11]. 

Accordingly, in the present study, biofilms formed on unmodified PDMS and pDA were not 

influenced by vancomycin treatment at its MIC. In the absence of treatment, cells adhered to 

modified surfaces were able to establish biofilms with similar metabolic activity to those formed 

on unmodified surfaces. These results suggest that mono and bi-functional coatings alone may 

not be sufficient to effectively prevent BAI. When, combined with vancomycin treatment, however, 

biofilm establishment was impaired on PDMS functionalized with Palm as well as with Palm 

combined with DNase I (pDA-MIX). It also suggests that antibiotic treatment of BAI could be more 

effective when infections occurs after implantation of a biomaterial with these functional coatings. 

Palm antimicrobial activity seems to be the main factor enhancing bacterial susceptibility to 

antibiotic, as vancomycin treatment had no effect on biofilm formed on PDMS functionalized only 

with DNase I. A similar mechanism of antimicrobial activity for immobilized QAC on a substratum 

and positively charged surfaces in general, has been proposed [12]. Gottenbos et al. [13] 

demonstrated that the strength of adhesion may be determinant for bacterial growth as they 

demonstrated that bacteria showing little desorption from surfaces had more difficulty to divide 

and grow than bacteria adhering more reversibly. Furthermore, a link has been described 

between strong adhesion forces between bacteria and substratum surfaces yielding membrane 

stresses and the percentage of dead cells on a surface for which the term “stress deactivation” 

was coined [14]. Since most of bacterial strains and species exhibit a negative surface charge 

[15], it is believed that strong adhesion forces can be found on surfaces functionalized with 
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cationic AMP that has proved to kill bacteria upon contact (Chapter 3.4), in a so called “lethal” 

regime of strong adhesion forces [16].  

Bacteria have a striking ability to adapt in response to their environment, and indeed, some 

bacterial strains are not susceptible to some AMP, even at high concentrations [17, 18]. Because 

there is a lack of studies addressing the development of bacterial resistance towards AMP after 

their immobilization, a study was performed on Palm-based coatings in order to evaluate the 

potential of bacterial resistance toward these surfaces. Results confirmed that Palm 

immobilization retained its low propensity to develop bacterial resistance, as opposite to the 

immobilization of an antibiotic. These results highlighted the risk associated to the immobilization 

of antibiotics and the promising potential of Palm to be used in the design of materials able to 

prevent BAI. 

Upon the implantation of a biomaterial, tissue trauma and injury trigger a cascade of 

physiological events that activate the immune system [19]. The interactions between 

macrophages and bacterially contaminated biomaterials is, therefore, crucial for the 

establishment of a BAI. Indeed, mature biofilms are less likely to form if macrophages are able to 

remove and destroy bacteria adhering on a biomaterial surface. For further evaluation of the 

clinical potential of the bi-functional coating proposed in this thesis, it was also investigated the in 

vitro response of human macrophages to S. aureus adhering to these coatings and compared to 

unmodified surfaces.  Results, although preliminary and qualitative, showed that macrophages 

were better distributed along pDA-coated surfaces which suggests a better mobility to perform 

their phagocytic activity. Further experiments should be performed to also evaluate, 

quantitatively, their phagocytic activity [20].  

In conclusion, the bi-functional coating proposed in this thesis holds great potential to fight BAI as 

it proved to enhance bacterial susceptibility to antibiotic treatment and possibly to macrophages 

phagocytosis, without developing bacterial resistance towards the AMP immobilized.  
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Chapter6 

CONLUDING REMARKS AND WORK 

PERSPECTIVES 

This chapter describes the main conclusions drawn from the work performed under the subject 

of this thesis as well as some suggestions for future research.  
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GERERAL CONCLUSIONS 

With the increase of elderly population as a consequence of the increasing use of biomaterials to 

support or restore human body function, the problem of BAI may be expected to increase in the 

coming years. As reviewed in Chapter 1, the field of antibacterial coatings has achieved 

considerable advances and encouraging results. However, the strategies currently used to 

prevent BAI, as well as the studies proposed in the literature are still far from perfect. The major 

gaps identified for these approaches include the emergence of bacterial resistance towards 

antimicrobials immobilized, toxicity issues and the need for complex, labor and time-consuming 

techniques for surface modification. The main aim of this thesis was, therefore, to propose a 

simple and effective coating strategy able to simultaneously prevent bacterial adhesion and kill 

the adherent ones, with low propensity for developing bacterial resistance and toxicity towards 

mammalian cells. AMP and enzymes targeting different EPS were the alternatives to antibiotics 

used to confer anti-adhesive and antimicrobial properties, respectively, to biomaterial surfaces.  

Prior to co-immobilization of AMP and enzymes, their single immobilization was first optimized. 

Chapter 3 describes the studies performed to determine the AMP with most promising 

antimicrobial effect after immobilization. A preliminary screening was conducted using a group of 

AMP determining the susceptibility patterns of planktonic and sessile cultures of both S. aureus 

and P. aeruginosa. The results obtained in Chapter 3.1 allowed to conclude that AMP are good 

alternatives to antibiotics as they were able to compromise biofilm formation at similar range 

concentrations able to inhibit planktonic growth. Polymyxins B and E were more effective against 

the Gram-negative strain while Camel and Palm were more promising against the Gram-positive 

one. Based on these results, the potential of polymyxin E during early stages of biofilm formation 

to impair P. aeruginosa was further investigated (Chapter 3.2). Its physical adsorption onto 

polystyrene surfaces proved to impair biofilm formation and increase biofilm susceptibility to CIP 

or PE treatment. Likewise, polymyxins E and B immobilization onto PDMS was optimized using 

two pDA-based approaches (Chapter 3.3). This study pointed out that their immobilization holds 

great potential to overcome some concerns associated to the use of these compounds, namely, 

the development of bacterial resistance and toxicity reported in the past. However, taking into 

account that the spectrum of action of these coatings is directed towards Gram-negative strains, 

immobilization of other AMP was also optimized against Gram-positive bacteria (Chapter 3.4). 

Results highlighted the great potential of Palm to impart biomaterial surfaces with potent 

antimicrobial activity, mainly against Gram-positive bacteria, the most commonly found 
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associated to BAI. Therefore, Palm was considered the most promising AMP to render the 

surfaces with antimicrobial functionality. 

To obtain a bi-functional coating, the immobilization of enzymes targeting different compounds of 

bacterial structure or biofilm matrix was optimized in Chapter 4. Chapter 4.1 showed that PC 

surfaces functionalized with alginate lyase (because of alginate’s contribution to P. aeruginosa 

virulence) exhibited anti-adhesive properties against mucoid but, unexpectedly, to non-mucoid 

strains as well. Such results provided important insights about the mechanism of action of 

alginate lyase against P. aeruginosa strains, as enzyme’s antibacterial performance was catalysis-

independent. To extent the anti-adhesive features of the surfaces, other enzymes were also 

screened against S. aureus in Chapter 4.2. Results found in this study highlighted that DNase I 

was the most effective in preventing the adhesion of both Gram-positive and Gram-negative 

bacteria.  

Co-immobilization of Palm and DNase I, the antimicrobials that rendered biomaterial surfaces 

with the most promising antimicrobial and anti-adhesive properties, is described in Chapter 5. 

The proposed immobilization approach imparted PDMS surfaces with both anti-adhesive and 

antimicrobial properties against the adhesion of several relevant bacteria as single and also 

against the co-adhesion of dual-species, with excellent stability and biocompatible properties. The 

fate of bacteria that managed to adhere to these bi-functional coatings was also studied in 

Chapter 5.2. Bacteria were found to be more susceptible to antibiotic treatment and to 

macrophages phagocytosis, without developing bacterial resistance towards the AMP 

immobilized, which reinforces the applicability of this co-immobilization strategy to functionalize 

biomaterials.     

In summary, the work conducted throughout this thesis reassures that mussel-inspired surface 

modification is a simple approach that can revolutionise the research of antibacterial surfaces by 

allowing the co-immobilization of enzymes and AMP to develop a bi-functional coating. PDMS 

material was, therefore, imparted with both anti-adhesive and antimicrobial properties against the 

attachment of several bacteria as single and dual-species. The coating also exhibited anti-biofilm 

properties, although the role of DNase I was not as evident as in adhesion assays, excellent 

stability, showed no cytotoxicity and development of bacterial resistance towards the AMP 

immobilized. The bi-functional coating proposed holds, therefore, great potential to fight BAI if 

explored in the development of implants or medical devices.  
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Figure 1. Schematic representation of the work conducted in the present thesis to design a bi-functional coating. Antimicrobial functionality was conferred by AMP 

immobilization and mono-functional coatings proved to be stable for up to 5 days, with no development of bacterial resistance or cytotoxicity and enhanced susceptibility to 

antibiotic treatment. Anti-adhesive properties were imparted by enzyme immobilization without compromising their biological activity and no cytotoxicity. These coatings failed, 

however, in preventing biofilm establishment. Co-immobilization with both compounds yielded a bi-functional coating combining the properties of mono-functional coatings 

alone. The role of host immune system was also evaluated on these coatings (not to scale).  
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FUTURE RESEARCH LINES 

Although the findings in this thesis have highlighted the great potential of co-immobilization of 

AMP and enzymes to create bi-functional antibacterial coatings, further investigations should be 

performed to strengthen the applicability of the aforementioned coatings.  

Biomaterial implants come in contact with biological fluids such as blood, urine, tear fluid or 

saliva, depending on the body place they are inserted. The stability of bi-functional coatings and 

their effectiveness after exposure to these biological fluids should, then, be performed and 

compared to PBS. These studies should be conducted using a parallel plated flow chamber, 

which allows insertion of removable discs, to better mimic flow conditions.  

 Although in vitro studies of both anti-adhesive and anti-biofilm activities have been performed in 

this thesis, the anti-infective potential of the bi-functional coating needs to be evaluated in vivo to 

confirm their clinical applications. Different animal models have been reported to evaluate the 

effects of antibacterial coatings, depending on the type of BAI.  

The fate of biomaterial has been described as a race between bacterial adhesion and subsequent 

biofilm growth versus tissue integration. Although this concept dates back from 1987, it was only 

recently that some groups have proposed co-culture experiments to evaluate the simultaneous 

response of bacteria, mammalian and immune cells on a biomaterial surface. Although the 

interactions of these three types of cells with the bi-functional coating proposed have been 

studied in the present thesis, the work would be improved by performing co-cultures experiments 

and therewith bridge the gap between in vitro and in vivo studies. The incorporation of another 

functionality provided by RGD peptide sequence should also be considered. The presence of RGD 

peptide sequence is expected to promote tissue integration as this peptide is known as one of the 

major recognition sites of integrin receptors through which mammalian cells connect to their 

extracellular matrix molecules.  

The low propensity for developing microbial resistance is an important feature attributed to AMP 

which makes them promising alternatives to conventional antibiotics. However, it is well 

established that bacteria have a remarkable ability to cope with antimicrobials-induced stress 

and, in fact, there are some resistance mechanisms reported to AMP. In this study, Palm was 

evaluated for the risk of inducing bacterial resistance after its immobilization.  When in solution, 

resistance towards an antimicrobial is often evaluated either by repeated cultivation of bacteria in 



 CONCLUDING REMARKS AND WORK PERSPECTIVES  

 

215 
 

a sub-inhibitory concentration of the agent or by serial passage experiments at progressively 

increasing concentrations. A similar approach was applied for immobilized antimicrobials and 

results suggested no development of resistance towards the AMP used in the bi-functional 

coating proposed in this thesis. These serial passage procedure should, however, be 

complemented with molecular methods to investigate the presence of resistance genes before 

and after continuous exposure to these bi-functional coatings.  

The work conducted in this thesis greatly focused on evaluating the biological performance of the 

coatings proposed. A more complete surface characterization could help to better understand 

this biological performance. Techniques such as ellipsometry or quartz crystal microbalance with 

dissipation monitoring to determine coatings thickness, surface zeta potential measurements to 

evaluate surface charge and dynamic mechanical analysis to evaluate mechanical properties 

should be performed.  

The enzyme chosen for the bi-functional coating proposed in this thesis, DNase I, showed some 

spectrum activity limitations as eDNA may play different roles as a structural component on 

different strains. A possible way to overcome this issues may rely on the co-immobilization of 

different enzymes with different targets. The combination of dispersin B, proteinase K and DNase 

I seems like a potential combination for further investigations.   

The characteristically dark color of pDA coatings may compromise some practical applications of 

the proposed bi-functional coating. A recently proposed bio-inspired approach to the formation of 

colorless multifunctional coatings, exploiting the versatility and multifunctionality of plant 

polyphenols and their mimics may be solution for this issues. These coatings retain many of the 

advantages of pDA and deposit under similar conditions, but are colorless and derived in some 

cases from reagents less costly than dopamine.  
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