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Abstract 

The structural performance and durability of reinforced concrete structures are strongly 

influenced by the material properties of concrete. Concrete’s characteristics endure strong 

evolution since casting, passing from a solid suspension to a structural material. Therefore, it is 

extremely important to understand and predict the structural behaviour of concrete since the 

beginning of the hardening process for a good structural design, particularly in regard to the 

development of self-induced stresses (due to heat of hydration and shrinkage). Apart from these 

issues related to structural design, relevant urges are brought about by the necessity of 

shortening construction schedules, both due to pressures by society, as well as due to economic 

and sustainability concerns. In view of these motivations, there are enough reasons to justify 

the importance of having experimental methods that allow continuous monitoring of the 

evolution of mechanical properties of concrete since very early ages, both in laboratory 

environment and “in-situ”. In such concern, several methods experimental have been proposed 

throughout the years, particularly in regard to the evaluation of the E-modulus of concrete. 

However, the most widespread methods still present limitations/complexities which make them 

inadequate for the wider intents mentioned above. Thus a new experimental method called 

EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) was 

proposed in 2009, which is based on the modal identification of a composite beam (acrylic and 

concrete) during the curing period of concrete, allowing the continuous measurement of 
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concrete E-modulus since casting. Despite the good results obtained during the first 

implementation prior to this thesis, the EMM-ARM is still lacked extensive validation and 

presented several laminations that needed to be overcome. 

Following the encouraging results obtained in the first application of EMM-ARM, the work 

reported in this thesis intended to achieve an improved robust tool based on EMM-ARM to 

provide early information of the cementitious materials stiffness, readily available for 

application on behalf of both scientists and practitioners. In pursuit of that goal, relevant 

changes were introduced in EMM-ARM, particularly in concern to the geometry and materials 

involved in the EMM-ARM mould, as well as to the modal identification of technique. These 

changes allowed overcoming the identified constraints and to significantly improve the 

usability and robustness of the method. This thesis also presents a systematic study of the 

application of EMM-ARM compared to competing methods that mechanical characterization 

of cementitious materials at early ages with mutual validation objectives. This systematic study 

allowed proving that the results of EMM-ARM are metrologically robust and also to clearly 

identify the strengths and limitations of EMM-ARM. 

After the optimization and validation of EMM-ARM the method was applied in different 

conditions such as: (i) different isothermal curing temperatures in the range 10-40ºC; (ii) the 

implementation in a construction site; and (iii) non-isothermal conditions.  

This research also permitted demonstrating that EMM-ARM can be used to characterize a wide 

range of materials that undergoes chemical hardening such as structural epoxy adhesives. In 

addition, a new version of EMM-ARM for monitoring the concrete viscoelasticity during the 

fresh state was suggested.  

The thesis ends with a foray into the microstructural simulation of the stiffness evolution of 

cementitious materials by taking advantage of the unprecedented quantitative experimental 

information obtained with EMM-ARM. The stiffness evolution of cement pastes, simulated by 

μic/AMIE, developed at EPFL (École polytechnique fédérale de Lausanne) was validated 

through comparison with EMM-ARM results.  
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Resumo 

A performance estrutural e a durabilidade de estruturas de betão armado são fortemente 

influenciadas pelas propriedades do betão. As características do betão sofrem uma grande 

evolução desde a betonagem, passando de uma suspensão de sólidos para um material 

estrutural. Desta forma torna-se extremamente importante compreender e prever o 

comportamento estrutural do betão desde o inicio do processo de endurecimento para se 

conseguir efetuar um correto dimensionamento estrutural, especialmente no que diz respeito ao 

desenvolvimento de tensões autoinduzidas (devido ao calor de hidratação e à retração). 

Adicionalmente a estas questões relacionadas com o dimensionamento estrutural, o 

desempenho estrutural do betão é também relevante do ponto de vista da redução dos períodos 

de construção devido a pressões da sociedade assim como devido a questões económicas e de 

sustentabilidade. Tendo em conta estas motivações, há razões suficientes para justificar a 

importância a existência de métodos experimentais que permitam a monitorização continua da 

evolução das propriedades mecânicas do betão desde as primeiras idades, tanto para a aplicação 

em laboratório assim como “in-situ”. Nesse sentido vários métodos experimentais têm vindo a 

ser propostos ao longo dos anos, particularmente no que diz respeito à avaliação do módulo de 

elasticidade de betão. No entanto, os métodos mais disseminados ainda apresentam limitações 

e/ou complexidades que os tornam inadequados para os propósitos mais amplos acima 

mencionados. Desta forma um novo método experimental foi proposto em 2009 chamado 
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EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) que é 

baseado na identificação modal de uma viga composta (acrílico e betão) durante o processo de 

cura, permitindo a monitorização continua do modulo de elasticidade do betão desde a 

betonagem. Apesar dos bons resultados obtidos durante a primeira aplicação do método antes 

desta tese, o EMM-ARM ainda requer uma extensa validação e apresenta algumas limitações 

que necessitam de ser eliminadas. 

Na sequência dos resultados encorajadores obtidos na primeira aplicação do EMM-ARM, o 

trabalho reportado nesta tese pretende alcançar uma ferramenta melhorada e robusta baseada 

no EMM-ARM para fornecer informação antecipada sobre a rigidez materiais cimentícios e 

fornece-la em tempo real ao utilizador. Na busca deste objetivo foram introduzidas alterações 

relevantes no EMM-ARM, particularmente no que diz respeito à geometria e materiais 

envolvidos no molde, assim como na técnica de identificação modal. Estas adaptações 

permitiram superar as limitações identificadas e melhorar significativamente a usabilidade e a 

robustez do método. Esta tese apresenta também um estudo sistemático da aplicação do EMM-

ARM comparado aos métodos concorrentes capazes de caracterizar as propriedades mecânicas 

dos materiais cimentícios nas primeiras idades com o objetivo de fazer a validação mútua dos 

métodos. Este estudo sistemático permitiu provar que os resultados obtidos pelo EMM-ARM 

são metrologicamente robustos e ainda identificar claramente os pontos fortes e limitações do 

método. 

Após a otimização e validação do EMM-ARM, o método foi aplicado sob diferentes condições, 

tais como: (i) diferentes temperaturas isotérmicas de cura na gama entre 10-40ºC; (ii) a 

implementação num estaleiro de obra; e (iii) condições não-isotérmicas. 

Este trabalho permitiu também demonstrar que o EMM-ARM pode ser utilizado para 

caracterizar uma vasta gama de materiais que sofre endurecimento químico, tais como adesivos 

epoxídicos. Adicionalmente, foi ainda sugerida uma nova versão do EMM-ARM para 

monitorizar a viscoelasticidade do betão durante o estado fresco. 

A tese termina com uma incursão na simulação microestrutural da evolução da rigidez de 

materiais cimentícios, tirando partido da informação experimental quantitativa sem precedentes 

obtida com o EMM-ARM. A evolução rigidez de pastas de cimento, simulada pelo modelo 

μic/AMIE, desenvolvido na EPFL (École polytechnique fédérale de Lausanne) foi validada 

através de comparação com os resultados obtidos pelo EMM-ARM. 
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Chapter 1  

Introduction 

1.1. Scope and overview 

Concrete is one of the most used materials for the construction of infrastructures, such as 

bridges, buildings and containment structures. It is a multiphase material that undergoes 

significant changes in the microstructural level during the hydration of cement. The hydration 

process begins when the cement powder is mixed with water. The hydrated cement paste creates 

a matrix that fills the space between the aggregated and keeps them together. In fact, the 

development of concrete properties is closely linked with the properties evolution of the cement 

paste contained therein. Although hydration is a lengthy process that normally progresses 

during the entire lifetime of concrete, is in the early ages after mixing that the development is 

stronger, in correspondence to a period that is normally addressed as the curing time. During 

this period, the mechanical properties such as modulus of elasticity and compressive strength, 

increase rapidly. 
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Understanding the development of these mechanical properties at early ages is of utmost 

importance to the science of materials, making it possible to obtain forecasts of early age 

cracking which is a phenomenon that controls half the paradigm load/resistance (Lura, 2003). 

The importance of making a correct characterization of the evolution of concrete properties 

from the earliest age is also understandable from an operational point of view of the 

construction processes of reinforced concrete structures. Indeed, this knowledge can provide 

the bases to support decision making both in stripping operations or prestressing applications, 

among others. 

To attempt to solve the issues raised in the previous paragraphs, several destructive and non-

destructive testing methods have been proposed over the years for characterizing the 

mechanical properties of concrete from the earliest ages. In this thesis, the author intends to 

make an approach to non-destructive methods to characterize the evolution of the concrete 

hardening process, focusing especially attention in the modulus of elasticity and the structural 

setting.  

Given the importance of knowing the evolution of the elastic modulus of concrete since casting, 

many methods have been developed over the years for such purpose: mechanical methods 

(Maia et al., 2012b, Boulay et al., 2010, Staquet et al., 2012, Boulay et al., 2013b); equivalent 

age method (Chanvillard and D’aloia, 1997, D'Aloia and Chanvillard, 2002); wave propagation 

methods (Voigt, 2005, Reinhardt and Grosse, 2004, Carette and Staquet, 2015); resonance 

methods (Kim et al., 2009, Wang et al., 2010a); and methods based on dielectric properties 

(Beek, 2000). However, all the mentioned methods still carry one or more of the following 

limitations: specimens need to be demoulded for the test to begin, thus hindering the possibility 

of obtaining results in the very early ages of curing; need for complex test setups and data-

processing to obtain estimates of strength/stiffness, which frequently rely in the need for pre-

calibrated relationships between the intended mechanical property and the actually measured 

property (e.g. an electric property); limitations in concern to high sensitivity to local effects 

caused by aggregates, which are normally felt in acoustic methods (Neville, 1995). 

Based on the intent to overcome limitations associated to existing techniques for E-modulus 

assessment of cement-based materials, the scientific advisor of this thesis has recently proposed 

a method called EMM-ARM (Elastic Modulus Measurement through Ambient Response 
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Method) (Azenha, 2009) which allows continuous measurement of the elastic modulus of 

cement-based materials since casting. The method is based on modal identification of a 

composite beam under ambient vibration. However, despite the successful results obtained in 

the first application of EMM-ARM (Azenha, 2009, Azenha et al., 2010a), the method could be 

considered at a very early stage of development when the work reported in this thesis began. In 

fact, at such state of development, the method still required a skilled and experienced operator 

to ensure that the experiment was adequately carried out, and particularly to do it in such 

conditions that would not negatively affect the quality of the E-modulus estimation. In fact the 

user needed to be aware of all the techniques used during the whole experimental procedure to 

be able to perform the experiment correctly, as opposed to several commercial systems that 

frequently almost allow a ‘one-button’ operation framework (Brouwers et al., 2011). 

Furthermore, the EMM-ARM test beams for concrete were still relatively large and consumed 

relevant quantities of concrete, thus limiting the ease of handling and even disposal after testing. 

Another challenging issue was related to the high sensitivity of EMM-ARM to potentially 

disturbing ambient noises that posed significant difficulties to the process of modal 

identification. Additionally, the EMM-ARM still lacked systematic validation programs 

through careful metrological analysis and by comparing the results with other methods. In fact, 

prior to this thesis the method had only been properly validated in its version for concrete testing 

through comparison with the results obtained by cyclic compression tests. These limitations 

were hindering a widespread systematic application of EMM-ARM among researchers and 

practitioners within the field of cement-based materials, particularly that of concrete. 

It is also important to remark the great importance of using simulation models to estimate the 

mechanical properties of cement-based materials, for both structural and materials science 

points of view. Throughout the history of cement/concrete science, simulation models have 

played an important role. Since the emergence of the first simple models, there has been a 

continuing effort to improve and increase in sophistication. However, although there are several 

models to simulate the cement hydration, few of them extend the field of mechanical properties 

in order to simulate the setting time and the evolution of the stiffness of cement paste/concrete. 

Nevertheless, to estimate the mechanical properties of cement-based materials throughout the 

cement hydration process, some authors have recently suggested different simulation 

models/strategies (Do, 2013, Sanahuja et al., 2007b, Pichler et al., 2007, Chamrová, 2010, 

Kamali-Bernard and Bernard, 2009). The most advance methods are based on the 



Chapter 1 

4 
 

microstructural simulation of the cement paste microstructure evolution along the cement 

hydration (Bishnoi and Scrivener, 2009, Thomas et al., 2011). Based on the cement paste 

microstructure the mechanical properties can be estimated through the use of homogenization 

theories (Sanahuja et al., 2007a) or through finite element modelling (Do, 2013). Despite the 

encouraging results obtained in the more recent studies the existing simulation strategies still 

lack experimental validation of the simplifications and assumptions made. 

1.1.1. Research questions 

From the above described research opportunity, the following research questions can be raised: 

 Is EMM-ARM metrologically robust? 

 What are the limitations of EMM-ARM? 

 Can the quality of EMM-ARM results be improved by the application of new 

geometries/mould materials, as well as different modal identification techniques? 

 Can EMM-ARM be implemented and applied in the construction industry as a quality 

control and decision support tool (with specific standards)? 

 How can EMM-ARM be used to validate/improve the microstructural simulation models 

of the cement-based materials mechanical properties? 

1.2. Research objectives, methods and Chapter outline 

The previous section highlighted a research gap on a recent proposed experimental technique 

for early age monitoring of cement-based materials stiffness. The main purpose of the research 

conducted during this thesis is to provide to the technical and scientific communities with a 

framework based on EMM-ARM that is capable of providing real-time information s about the 

elastic modulus of cement-based materials along the whole cement hydration process. 

The conducted research reported in this thesis is organized in 8 Chapters (including the present 

introduction). The overall research strategy is summarised in Figure 1.1 and briefly addressed 

in the next paragraphs. 
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Figure 1.1. Research strategy.  

Firstly, an extensive literature review on experimental methods for monitoring the elastic 

modulus of the cement-based materials is presented in Chapter 2. Along such Chapter, the 

strengths and weaknesses of the different existing methods are highlighted as well as their 

application scopes. Still within this Chapter, the state of development of the EMM-ARM prior 

to this thesis is presented, and some of the limitations of the original implementation are raised. 

The Chapter ends with a critical review on existing comparative studies regarding the presented 

experimental methods.  
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Despite the results obtained in the original EMM-ARM method being quite consistent, the 

method still has aspects that need to be addressed in order to improve its usability and 

robustness. Therefore, after identifying the limitations and weaknesses of EMM-ARM, Chapter 

3 focuses on a detailed study of enhancements the test setup of EMM-ARM. This study aims 

to improve the robustness of the method and to reduce the user dependency. In fact, the original 

testing beam has a very high slenderness, to enable the use of very simple modal identification 

techniques, and the mould is made of a rather brittle material (acrylic) that poses some problems 

when a systematic application is considered. One of the most relevant improvements is related to 

the adaptation of the testing mould, by changing the geometry and supports in regard to the 

original implementation. However, this study will have impact in the modal identification of 

the resonance frequency of the beams.  

Therefore, the enhancements of EMM-ARM test setup will be accompanied by a simultaneous 

study of adaptations to the modal analysis technique used to identify the resonance frequency 

of the composite beams. This parallel study, presented in Chapter 4, aims to improve the 

accuracy and reduce the user dependency in the process of identification of the first resonance 

frequency of the tested beam. The Chapter will begin with a short literature review on structural 

dynamics models, followed by a survey on existing modal identification techniques. After the 

identification of the most promising techniques to use in the EMM-ARM experiments, the 

Chapter will follow with a comparison study of the accuracy of different modal identification 

techniques applied to EMM-ARM tests. 

In spite of the improvements introduced and the consistency of the results obtained by EMM-

ARM, the method still lacked an extensive validation and an evaluation of its complementarity 

EMM-ARM with the currently existing techniques for the same purpose. This research has 

attempted to fill such gap with a systematic study of the application of different methods for 

mechanical characterization of cementitious materials. Therefore, Chapter 5 is initially 

dedicated to the comparison of various existing methods that have been described in the 

literature review, namely: EMM-ARM, cyclic compression, ultrasonic wave transmission and 

bender-extender elements. Another feature of this Chapter is the description of an inter-

laboratory comparison focused specially on comparing the EMM-ARM results with BTJASPE 

and TSTM methods recently developed at IFSTTAR and ULB, respectively. This inter-

compassion of experimental results allowed to further validate the EMM-ARM elastic modulus 
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estimations and to promote the method among the scientific community as a valid method for 

continuous E-modulus estimations of cement-based materials. After the inter-comparison of 

methods for mechanical characterization of cementitious materials, the second part of Chapter 

5 deals with the EMM-ARM validation study. This part of the Chapter addresses the accuracy, 

repeatability, reproducibility and sensitivity issues of EMM-ARM experiments. 

After the validation of EMM-ARM, the method was applied in various different scenarios. 

Chapter 6 starts with the application of EMM-ARM to study the kinetics of elastic modulus 

evolution of cement-based materials as function of temperature. This study aims to prove the 

versatility of the method in view of its capacity for evaluating the E-modulus evolution under 

different temperature histories. The second part this Chapter pertains to an applied investigation 

about the possibility of using the EMM-ARM as tool to support decision making during the 

construction of a segmental bridge in Portugal. The proof-of-concept associated to this in-situ 

application of EMM-ARM can be a relevant asset in the dissemination the method over the 

industrial community. In addition, due to a construction company request a new variant to 

EMM-ARM for monitoring concrete viscoelasticity during the fresh state was developed and 

discussed in the thesis. The Chapter ends with the application of EMM-ARM to the study of 

structural epoxy adhesives, highlighting the versatility of the principles of the technique for 

application outside the scope of cement-based materials. 

In this work, it was also intended to provide a contribution to existing microstructural 

simulation models of cement-based materials through the application of a currently existing 

model together with EMM-ARM data. In fact, the availability of an unprecedented quantitative 

experimental information from the innovative method EMM-ARM provides advantages in 

terms of experimental information for the improvement/validation of micromechanical 

simulation models. Therefore, Chapter 7 starts with a brief literature review on mechanical 

properties simulations strategies and cement hydration simulation models. From the survey, a 

simulation strategy based on microstructural cement hydration simulation model μic together 

with the finite element modelling software AMIE, developed at EPFL (École polytechnique 

fédérale de Lausanne), was chosen to be implemented and validated in comparison with EMM-

ARM results. This study was made within a STSM (short term scientific mission) at EPFL in 

collaboration with Cyrille Dunant. 
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The main conclusions of this thesis are summarized in Chapter 8, together with some 

suggestions for possible extensions to the performed research. 
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Chapter 2  

Stiffness monitoring of cement-based materials 

2.1. Introduction 

The measurement of stiffness in cementitious materials is for several years a big challenge to 

the scientific and technical communities especially with regard to the early ages monitoring in 

the last decades (Powers, 1938, Jones, 1949, RILEM, 1975, Boulay and Colson, 1979, Chengju, 

1989, Boumiz et al., 1996, Jin and Li, 2001, Bentz, 2008, Boulay et al., 2013b). Several distinct 

methodologies have been proposed throughout the years that allow more or less direct 

assessment of stiffness or stiffness-related properties. This Chapter provides a literature review 

on the various experimental methodologies that enable to estimate the stiffness of cement-based 

materials. The following methods will be described: (i) cyclic loading methods; (ii) wave 

propagation methods; (iii) dielectric methods; (iv) resonance based methods and (v) other 

methods. The Chapter ends with a critical review of all the methods found in the literature for 

this purpose, with particular focus on the distinction between fields of application, measured 

properties and the direct comparisons that have already been made between existing methods. 
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2.2. Cyclic loading methods 

The cyclic loading methods are the most accepted and commonly used to obtain the elastic 

properties of cement-based materials within the industry and scientific community.  

2.2.1. Classical uniaxial cyclic compression method 

The basis of this method consists in applying a unidirectional stress to a specimen and recording 

the corresponding deformations in the same direction. In the variant for concrete, this 

methodology has already been standardized by various entities, such as: EN 12390-13 (2013), 

ISO 1920-10 (2010), LNEC E397 (1993), RILEM CPC8 (1975) and ASTM C469 (2006). To 

obtain the elastic modulus of concrete according to the standard ISO 1920-10 (2010), a series 

of at least four uniaxial loading/unloading cycles need to be applied to cylindrical concrete 

specimen with a height/diameter ratio of 2:1, as shown in Figure 2.1. The loading/unloading 

cycles are performed between an initial stress of 0.5 MPa and one third of the average concrete 

compressive strength in similar cylinders (fcm/3) at the age of testing. The strains induced in the 

specimen are obtained by measuring the variation of longitudinal distance between two metallic 

rings attached to the specimen. The measurement is made through at least three displacement 

sensors, as shown in Figure 2.1. 

 

Figure 2.1. Scheme of the uniaxial cycle compression method. 
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The first cycle of loading/unloading is normally disregarded and the E-modulus is obtained 

through the analysis of the remaining cycles, by dividing the stress variations by strain 

variations within each cycle, as shown in equation (2.1): 

 

ba

ba
cE

















  (2.1) 

where Ec is the material E-modulus (Pa), σa is the maximum stress (Pa), σb is the initial stress 

(Pa), εa is the longitudinal strain corresponding to the maximum stress (m/m) and εa is the 

longitudinal strain corresponding to the initial stress (m/m). 

Even though this methodology has been originally developed for concrete testing, it has been 

demonstrated in the works of Chamrová (2010) and Maia et al. (2011b) that it can also be 

applied to other cementitious materials, by using specimens with adapted dimensions. The two 

cited works have used this methodology applied to cement pastes, reporting good results. 

However, although widely accepted, according to Bischoff and Perry (1991) this method is 

sensitive to the loading rate, with different values are obtained for the same material by applying 

the load in a different loading rates. According to the authors one quasi-static test must have a 

strain-rate between approximately 10-2 and 10-7 m/m·s. 

2.2.2. Other methods 

The classical uniaxial cyclic compression method described in the previous subsection requires 

the use of a demoulded specimen, thus preventing such tests from being performed at very early 

ages of curing, i.e., ages at which the materials do not yet have sufficient strength in order to 

be demoulded and tested without significant damage risks. To overcome this limitation of the 

classical method, Boulay et al. (2010) developed a method called BTJASPE (acronym for 

BéTon au Jeune Age, Suivi de la Prise et du module d’Élasticité), which allows the application 

of compression cycles without demoulding the specimen (Boulay et al., 2010, Boulay et al., 

2013a, Boulay et al., 2013b, Delsaute et al., 2016, Boulay et al., 2012). 
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A special cylindrical chamber was designed to hold a sample with 100 mm in diameter and 

200 mm in length (see Figure 2.2). As the test is conducted with the specimen inside the mould, 

the interpretation of test results becomes harder than classical testing because of the necessary 

corrections related to the lateral confinement created by the mould. The physical measurements 

(load and longitudinal displacement) measured during the test allow the calculation of an 

experimental stiffness of the sample (named here as KBT). This stiffness represents the 

combination between the material stiffness and the lateral confinement provided by the mould. 

The separation of these two parts is based on a relationship between the E-modulus of the 

material inside the mould and the experimental stiffness KBT obtained through a finite element 

calculation performed during the design of the device (Boulay et al., 2010):  

 
BTBTc KKE   7.221003.1 28

 with KBT in N/m (2.2) 

Wherer Ec is the E-modulus of the material inside the mould (Pa). Despite this additional 

complexity, this apparatus and procedure allow obtaining stiffness values right after the 

structural setting of the material. This chamber also allows to perform the control of the 

specimen temperature and the measurement of other physical characteristics such as creep and 

the thermal expansion coefficient. 

Figure 2.2. Model of BTJASPE test method: a) Mould; b) +float and 3 LVDT's; c) +upper 

bearing; d) +lower bearing and fixtures (adapted from Boulay et al. (2010)). 

   
 

a) b) c) d) 
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Another method that also allows evaluation of the elastic modulus by cyclic mechanical tests is 

the Temperature Stress Testing Machine (TSTM) (Boulay et al., 2013a, Boulay et al., 2013b, 

Darquennes et al., 2011, Delsaute et al., 2016, Staquet et al., 2012, Kishi et al., 2008, Schoppel 

et al., 1994, Klausen et al., 2015). Originally, this method was developed for monitoring the 

tensile creep of concrete, but also allows the implementation of short loading cycles during the 

curing process, without the need to demould the sample. It is conceptually quite similar to 

BTJASPE method, however being different geometry of the mould and the ability to apply both 

compressive stresses and tensile (Delsaute et al., 2012). A general scheme of a TSTM is shown 

in Figure 2.3. Typically, these type of machines are composed of a dog-bone shaped specimen 

fixed on one end by a steel grip and the other extremity is connected to a movable steel grip, 

controlled by an actuator. Additionally, the machine is capable of controlling the temperature 

of the specimen through a cryostatic bath connected to the framework of the specimen. During 

the experiments the distance between two points in the specimen is measured and the applied 

load is recorder by a load cell placed between the actuator and the moving cross-head. All the 

data is recorder in a computer that control autonomously the entire experiment. 

 

Figure 2.3. General scheme of a TSTM. Adapted from Schoppel et al. (1994). 
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2.3. Wave propagation methods 

The methods based on the wave propagation are often called acoustic methods. Two major 

groups of methods based on this principle are normally applied in the context of stiffness-related 

measurements: the wave transmission and the wave reflection methods. 

2.3.1. Wave transmission methods (WTM) 

The idea of using the measurement of the wave propagation velocity to determine the start and 

end of the setting period in cement-based materials was first described in the 1940s (Jones, 

1949). The basic principle on which the wave transmission method is based is that the velocity 

of a propagating wave through a medium is dependent on its elastic properties and density 

(Meyers and Chawla, 2008). In the majority of the studies where these experimental techniques 

were implemented and the velocity variations of longitudinal waves over time were compared 

with the physicochemical characteristics of cementitious materials, it was found that the 

changes in the velocity of the propagated waves are related to the formation of connections 

between the cement particles during cement hydration (Lee et al., 2004). According to Chotard 

et al. (2001) and Smith et al. (2002) the velocity of propagated waves is sensitive to solid 

hydrate formation and the variation of velocity observed over time correspond to the cement 

hydration and hardening process. 

The general scheme of application of this type of experimental methodologies is shown in 

Figure 2.4. In this method, an ultrasonic wave is generated on one side of the sample, which is 

transmitted through the material and is ultimately received on the opposite side of the specimen. 

Both generated and transmitted signals are measured to be able to obtain the propagation time 

of the waves through the material. These methods can be applied using compressional waves 

(P-waves) or shear waves (S-waves) (Van Den Abeele et al., 2009). 
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Figure 2.4. Application scheme of ultrasound transmission methodology. Adapted from 

ASTM (1991). 

The accurate determination of the wave propagation time is crucial for the accuracy of this 

method. However, this determination is a difficult issue to solve, and can be time-consuming 

and often inaccurate. In the determination of the propagation time there is always an uncertainty 

about the instant when the ultrasonic wave reaches the receiver probe, as can be seen in Figure 

2.5, where an emitted wave and the correspondent received waves during an experiment 

performed with P-waves are shown (Granja, 2011). Indeed, in Figure 2.5, it is possible to 

imagine three different estimates for the instant of arrival of the wave (1, 2 and 3), which is a 

typical pattern on measurements taken in cement-based materials. Thus, depending on 

subjective interpretations of the operator, the arrival time of the propagated wave may differ, 

since it is unclear where the received waveform actually begins. In fact, no clear indications 

were found in the literature regarding which of these three possible points is really the point of 

arrival of the wave (Lee and Santamarina, 2005). 
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Figure 2.5. Determination of the ultrasonic wave propagation time. 

Finally, after the determination of the wave propagation time is possible to obtain the velocity 

of wave propagation (V), given by: 

 

wt

l
V




  (2.3) 

Where Δl is the distance between probes and Δtw is wave propagation time. After obtaining the 

velocity of the wave, a correlation can be made with the elastic properties of the medium, 

through the following equations of wave propagation theory, which are applicable for 

homogeneous and isotropic media (e.g. Meyers and Chawla, 2008): 

 










)21)(1(

)1(

dyndyn

dyndyn

P

E
V  

 


2)1( dyn

dyn

S

E
V  (2.4) 

where VP is the compressional (P) wave velocity (m/s), VS the shear (S) wave velocity (m/s), 

νdyn the dynamic Poisson’s ratio, Edyn the dynamic elastic modulus (Pa) and ρ the density 

(kg/m3). However it must be noted here that concrete may not always be considered as a 

homogeneous and isotropic medium, particularly at early ages (Tuleubekov, 2012). In fact the 

presence of large aggregates in the mixture introduces heterogeneity that can transmit the waves 

even before the structural setting, leading to higher velocities than expected. 
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In addition to these problems, these correlations also add another problem to these methods: 

obtaining dynamic Poisson’s ratio. This property can be obtained by the following equation 

(Meyers and Chawla, 2008): 
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Therefore, in order to convert the measured ultrasonic wave velocity in to the dynamic E-

modulus, both the velocities of compressional waves and the shear waves need to be assessed 

(Boumiz et al., 1996). This causes an increase in the complexity of these methods, since the 

sensors typically used only record and/or transmit one type of wave, thus making it necessary 

to duplicate the entire experimental apparatus. 

In wave transmission methods, the ultrasonic signals can be generated in several ways: by an 

ultrasonic contact probe, a smart aggregate, a bender-extender element (BE) or an impact. These 

signal generating techniques are discussed in the next sub-sections. 

2.3.1.1. Contact probes 

In various applications made by several authors with this methodology (Boumiz et al., 1996, 

Lee et al., 2004, Naik et al., 2004, Reinhardt and Grosse, 2004, Van Den Abeele et al., 2009, 

Voigt et al., 2005, Voigt et al., 2006, Carette and Staquet, 2015, Boulay et al., 2012, Deniz and 

Erdoğan, 2015, Larcher et al., 2015), the adopted experimental setup was similar to that shown 

in Figure 2.6. In this experimental setup one ultrasonic wave transmitter probe is positioned in 

one side of a sample and the transmitted wave is received on the opposite side by a similar 

probe. The wave is generated in a function generator and transmitted to the sample by the 

transmitter, passing directly through the sample to the receiver. Due to the characteristics of the 

commonly used transmission and receiver devices in experiments with this method usually only 

P-waves are measured due to the limited efficiency in the shear wave emission. 
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For application of this method for continuous monitoring of cement pastes hardening from the 

fresh state, Reinhardt and Grosse (2004) resorted to filling a container with the mixture of 

cement paste, in which was previously embedded two ultrasonic probes (Figure 2.6). To avoid 

the possibility of transmission waves through the acrylic mould that supports the probe, it 

consists of two separate parts that are connected to each other by an insulating material that also 

acts as a form. Even though this mould has proved effective in cement paste and mortar, its 

applicability to concrete is quite limited due to the limitations in the sample size. 

 

Figure 2.6. Mould used by several authors for cement pastes. Adapted from Reinhardt and 

Grosse (2004). 

It is additionally noted that several authors mention that the air content in mortars and cement 

pastes can have drastic effects on the reduction of the velocity of longitudinal ultrasonic waves, 

as the reflection of the waves in the air bubbles causes a severe attenuation (Lee et al., 2004, 

Boumiz et al., 1996, Sant et al., 2009). Zhu et al. (2011a) state that this velocity reduction 

caused by the air bubbles is especially relevant at very early ages and can limit the ability of 

this method to identify stiffness variations at instants nearby the setting time. Therefore, this 

method becomes potentially inadequate (or at least somehow limited) to monitor the mechanical 

characteristics of a cement paste, mortar or concrete as these materials typically contain air 

bubbles. 

Since the geometrical scale in which these tests with contact probes are usually conducted 
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sensitive to local effects caused by the aggregates and, therefore, several authors reject their 

ability to effectively measure the elastic modulus in concrete, which renders the results of the 

method to be more adequately considered qualitative, rather than quantitative (Azenha, 2009, 

Abo-Qudais, 2005, Karaiskos et al., 2015). For all these reasons and because a large number of 

variables affect the relationship between the concrete strength and the velocity of ultrasonic 

waves, the use of this method to estimate the compressive strength and other mechanical 

characteristics of concrete is not recommended unless calibration tests have been made 

beforehand (Naik et al., 2004). However, the validity of the calibration tests may be limited in 

the case of in-situ applications due to the naturally occurring variations that may occur in the 

mixture with respect to the mixture previously used to define the correlation between the wave 

velocity and the mechanical properties. 

Despite these limitations, this method was successfully applied in laboratory (Reinhardt and 

Grosse, 2004, Trtnik and Gams, 2015, Zhang et al., 2015) and in construction sites (Boumiz et 

al., 1996, Staquet et al., 2009) with very reproducible results. This fact, combined with the 

knowledge that ultrasound techniques provide an effective means for detecting surface and 

internal cracks in concrete structures, increases the usefulness of this method (Naik et al., 2004). 

The procedures for such tests have been standardized by ASTM (ASTM, 1991), CEN (CEN, 

2004) and other organizations (RILEM, 1972, BSI, 1997, ISO, 2014), exist for this purpose 

several commercial equipment available (Proceq, 2014, Controls, 2015, Qualitest, 2015). 

2.3.1.2. Smart aggregates (SMAG) 

The SMAGs consist of piezoelectric sensors that can be embedded within a concrete element 

to continuously monitor the evolution of the velocity of P-waves during the curing process. To 

allow embedment in the concrete the piezoelectric sensor (which is very sensitive) is enclosed 

by an impermeable coating and incorporated into a small cube or cylinder made of mortar (see 

Figure 2.7). The first smart aggregates (SMAG) were developed at Houston University by Gu 

et al. (2006). 

This experimental technique follows quite similar principles to the ultrasonic wave transmission 

method with contact probes presented before (Qin and Li, 2008, Dumoulin et al., 2012). Two 

SMAGs are embedded in concrete at a known distance, one working as a transmitter and the 



Chapter 2 

20 
 

other as receiver. As the probes are embedded into concrete, the potentially de-coupling 

problems that are felt when contact probes are used, become eliminated (Song et al., 2008). The 

SMAGs still allow the sensor to operate at different frequencies, depending on the stiffness of 

the material in which they are embedded, improving the quality of the transmitted signal. 

   

a) b) c) 

 

d) 

Figure 2.7. Assemble of a SMAG probe: a) Piezoelectric sensor; b) Waterproof coating; c) 

Final SMAG; d) Scheme of a SMAG. Adapted from Dumoulin et al. (2012) and Song et al. 

(2008). 

2.3.1.3. Bender-extender elements (BE) 

The bender-extender elements (BE) were initially used to measure the shear wave velocity in 

marine sediments by Shirley and Hampton (1978). A BE is a dual transducer composed of two 

thin piezoceramic plates, rigidly connected to a metal core sheet with electrodes on its outer 

surfaces (Figure 2.8). The metal plate serves as a mechanical support, since the piezoceramic 

plates are extremely fragile. This set is protected by a rigid epoxy resin coating in for electrical 

isolation and prevention from direct contact with the material and water. The typical thickness 

of these range between 0.5 and 1.0 mm. The electrical connection of the plates is made with 

respect to the polarization directions of the two plates in order to ensure a proper flexion 

Water-proof coating

Electric wires

Piezoceramic patch

Mortar



Stiffness monitoring of cement-based materials 

21 
 

(Ferreira, 2008, Lee and Santamarina, 2005). The controlled excitation of the two piezoelectric 

elements causes flexion of the BE at a certain frequency, thus generating an ultrasonic wave in 

the material in which it is embedded. Then the wave travels through the material and when 

reaches the receiver the wave bends the BE generating an electric signal. Both emitted and 

received signals are acquired by data acquisition system and the wave velocity is computed. 

 

Figure 2.8. Scheme of a BE sensor. Adapted from Ferreira (2009). 

The small thickness of the BE probes allows the application of a large displacement and 

relatively small force generated in low acoustic impedance materials such as soils and 

sediments (Zhu et al., 2011b). This technique has been widely adopted to evaluate the shear 

modulus in laboratory soil samples (Thomann and Hryciw, 1991). Applications of BE in soils 

or stabilized soils with lime or cement are numerous, involving aspects such as: monitoring of 

stiffness parameters, comparing the dynamic and static stiffness moduli, assessing the 

anisotropy of the material, etc. (Ferreira, 2008). The bender-extender elements have satisfactory 

results in the study of soils, which are materials with great heterogeneity and great presence of 

air voids (Ferreira, 2008), due to the fact that it is possible to adjust the frequency to which 

these sensors operate within a wide frequency range, to match the optimum resonance 

frequency of the set probe-material.  

Despite these good results, currently there are few studies reporting the application of this 

method to cementitious materials, only emphasizing the works of Zhu et al. (2011b) and Liu et 

al. (2014). In the first application of this method to cementitious materials, made by Zhu et al. 

(2011b), a scheme similar to the Figure 2.9 was used. This pioneer experience intended to 

monitor two types of waves between the emission source and the two distinct receivers: 
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compressional waves (P) recorded in receiver 1 and shear waves (S) recorded in receiver 2. 

According to the conclusions reported in the study the signals from the receiver 2 were similar 

to the signal receiver 1, i.e, the receiver 2 was also more effective in measuring the S-wave 

rather than P-waves. 

 

Figure 2.9. Application diagram of the BE method. Adapted from Zhu and Kee (2010). 

To eliminate the uncertainty in the estimation of the wave transmission velocity several 

alternatives are proposed in the literature. According to Fonseca et al. (2008) it is possible to 

use a frequency sweep as an input signal and a spectrum analyser of the input and output signals 

with significant advantages in the sense that the process becomes fully automatable. In spite of 

that, this methodology also has problems related to the uncertainty in regard to the estimation 

of wave propagation velocity. Figure 2.10 shows an example of the results of the method 

applied to a sand. In this case, the input signal consisted of a frequency sweep between 1 kHz 

and 50 kHz within a short period of 20 seconds. The first to estimate the wave transmission 

velocity consists in transforming the two recorded signals (input and output) from the time 

domain (Figure 2.10a) to the frequency domain. This transformation allows the estimation of 

the coherence (Figure 2.10c) and the phase angle (θ) between the output and input signals 

(Figure 2.10b). However the phase angle obtained is limited to the interval [π, -π], thus making 

it necessary to carry out an operation named unwrap (Greening et al., 2003). From the 

unwrapped phase angle between the two signals, shown in Figure 2.10d, a calculation is made 

in regard to the slope of a line tangent to the unwrapped phase angle, in a region of frequencies 

for which the coherence between the signals is close to unity. This is the point where the method 

also presents some uncertainty, since the choice of points to be used to obtain the slope of the 
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line depends on the user options. The slope of this line (dθ/df) allows obtaining the transmission 

time wave (Δtw) through the material under study by the application of equation (2.5) (Greening 

and Nash, 2004). 

 

df

d
tw






2

1
 (2.6) 

  

a) b) 

  

c) d) 

Figure 2.10. Results for a sand. 

2.3.1.4. Impact echo 

In addition to the methodologies presented for measuring ultrasonic wave velocity, there is a 

variant where the excitation/wave transmission is performed using an impact on the material’s 

surface. This variant is designated by impact echo method and was already applied successfully 
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by several authors (Carino, 2004b, Voigt, 2005, Pessik and Carino, 1988, Lee et al., 2004, Jin 

and Li, 2001, Hassan and Jones, 2012, Lu et al., 2013) and the American Society for Testing 

and Materials already have a standard for these method (ASTM, 2015b). However, the 

application of this variant of the method to cementitious materials is not feasible at early ages 

in which the material does not have stiffness/strength sufficient to sustain the impact without 

damage. 

2.3.2. Wave reflexion methods 

The ultrasonic wave reflection method (UWR) is based on the knowledge that a wave 

propagating an interface between two different mediums is partly transmitted and partly 

reflected (Reinhardt and Grosse, 2004). The decrease in amplitude of the reflected wave 

depends on the reflection coefficient, which in turn is a function of the acoustic properties of 

the materials at the interface. This technique was used to monitor concrete properties was 

introduced by Ozturk et al. (1999) and Rapoport et al. (2000). 

The operation scheme of this experimental method applied to the study of cement-based 

materials is shown in Figure 2.11. This method has been successfully implemented by several 

authors (Voigt et al., 2006, Kim et al., 2009, Popovics and Subramaniam, 2014, Chung et al., 

2012, Suraneni et al., 2015, Chung et al., 2013). A plate of a buffer material (usually steel) is 

placed in contact with fresh cement-based material. Then, a UWR probe is attached to the plate 

and a S-wave pulse is emitted at the buffer material surface. When the tested material is in the 

liquid state, the pulse is almost completely reflected in the interface between the buffer-material 

and the tested material, since S-waves do not propagate in fluids (t0). Thus, the reflection 

coefficient is close to one. As cement hydration progresses and begins forming a rigid skeleton, 

shear waves start being able to propagate through the cementitious material. This causes a 

portion of the shear wave to be transmitted through cementitious material, resulting in loss 

during the reflection process (t1). Consequently, the reflection coefficient starts to decrease. 

This process evolves until the end of the hardening process (t2). 
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Figure 2.11. Operating scheme of the ultrasonic wave reflection method. Adapted from Voigt 

et al. (2006). 

According to Wang et al. (2010b) the accuracy of reflection technique depends on the ability 

to detect changes in characteristics of the reflected ultrasonic wave, which varies with the 

acoustic impedance0F

1 of the cementitious material. Immediately after mixing, and the initial 

stage of hydration, cementitious materials have very low levels of distortion and acoustic 

impedance modulus. Therefore, UWR measurements sensitive to change of the shear modulus 

in the first hours of hydration has remained a challenge. Over time, increased shear modulus 

produces an increase of the acoustic impedance of the material, thus improving the applicability 

of the method. 

The UWR can be very useful especially in construction sites where usually it is only practical 

to access the concrete surface (Lee et al., 2004, Reinhardt and Grosse, 2004). Although it is 

fairly easy to apply and just need to the availability of one single surface of the material for 

testing, this method has some drawbacks. The method consists on the measurement of wave 

reflection on a surface of concrete, and not on its internal properties which are quite relevant 

form an engineering point of view. Furthermore, the harvested results actually correspond to 

the cement paste/mortar in the vicinity of the interface, thus being highly influenced by the 

presence of large aggregates in the vicinity of the interface. It is therefore arguable the 

applicability of this method to measure the properties of concrete itself (Voigt, 2005). 

                                                 
1 Impedance can be characterized as a sound propagating from a medium, with certain specific characteristics, to 
another with different characteristics. This difference is directly related to the energy that will be reflected in the 
media interface in question. 
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2.4. Dielectric methods 

The dielectric properties of a material (permittivity and conductivity) determine the response 

of the material when subjected to an electric field (Beek and Hilhorst, 1999). The permittivity 

is the electrical polarization of a material, while the electrical conductivity is the amount of 

electrical current that travels through it. The dielectric properties of concrete can be represented 

by a parallel combination of a resistance, that corresponds to the electrical conductivity, and a 

capacitor, which stands for the electrical permittivity (Figure 2.12) (Beek and Hilhorst, 1999, 

Beek, 2000, Beek et al., 1999). 

 

Figure 2.12. Dielectric properties of the concrete represented as a resistor and a capacitor. 

Adapted from Beek and Hilhorst (1999) 

The concept behind the application of this method to concrete is based on the changes in 

dielectric properties of the different phases present in this material during its early ages. Young 

concretes have a high quantities of present free water in the pores, which will be consumed 

during hydration (Beek, 2000, Beek and Hilhorst, 1999). In fact, the dielectric properties of 

concrete are highly conditioned by ionic water that fills almost all the pores of the cement paste 

on concrete. The pore water has a high permittivity and a high conductivity, which does not 

occur with the cement particles, whether or not hydrated (Beek et al., 1999). In this way, 

changes in dielectric properties can be considered to mostly occur due to change of free water 

available in the pore network in the cement paste. 

A wide variety of applications of electrical methods on cementitious materials are reported, 

ranging from monitoring changes in pore solution and pore connectivity with time (Christensen 

et al., 1994) , effects of mineral and chemical admixtures (Christensen et al., 1992), diffusion, 
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permeability and chloride conductivity (Neithalath et al., 2006), determination of setting time 

(Xian-yu et al., 2002, Sanish et al., 2013, Wei and Li, 2006) and assessment of mechanical 

properties (Neithalath et al., 2010). Additionally, there are already available commercial 

equipments to perform this tests (Brouwers et al., 2011, Gigatec, 2015). 

Indeed, this approach has some advantages in the sense that it allows measurements to begin 

effectively immediately after mixing, it provides continuous measurements, and it does not 

disturb the samples. However, it has the relevant drawback of requiring the experimental 

establishment of correlations between the dielectric and mechanical properties for each mix, as 

to be able to infer mechanical properties based the measurement of dielectric properties. 

2.5. Resonance based methods 

This subchapter provides a literature review on existing methods for assessing elastic properties 

of cement-based materials with basis on resonance principles. Existing resonance based 

methods can be classified in three main categories: (i) the classical resonance method; (ii) the 

electromechanical impedance (EMI) method (iii) the EMM-ARM method. 

2.5.1. Classical resonance method 

This method was first developed by Powers (1938) who has determined the resonant frequency 

a concrete prism (51×51×241 mm) by matching the musical tone created, when hit by a 

hammer, to the sound created by one of a set of orchestral bells calibrated according to the 

frequency of the generated sound. The shortcomings of this approach are obvious, such as the 

subjective nature of the test, and limitation to a discrete and relatively small range of 

frequencies. However, this method laid the foundation for the later development of more 

sophisticated approaches. 

An important dynamic property of any elastic system is its natural frequency of vibration. As 

an example, if a vibrating beam with known dimensions is considered, its natural frequency of 

vibration is mostly related to its geometry, support conditions, density and elastic modulus of 

the material.  Thus, the elastic modulus of a material can be determined from the measurement 
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of the natural vibration frequency of prismatic beams using existing mathematical relationships 

between the two parameters, provided that all other parameters are known. These relationships 

were derived for homogeneous solid media, isotropic and perfectly elastic. They may however 

be also applied to heterogeneous systems, such as concrete, when the sample sizes are large 

relative to the size of the heterogeneities. Therefore, according to Malhotra and Sivasundaram 

(2003) for the longitudinal test configuration shown in Figure 2.13, the elastic modulus of a 

cementitious material can be obtained by equation (2.6). 
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2424










frL
Edyn  (2.7) 

where Edyn is dynamic E-modulus of the tested material’s (Pa), ρ is the density (kg/m3), L is the 

length of the specimen (m), fr is the resonance frequency of the fist mode of vibration, λ is the 

radius of gyration of the section around an axis perpendicular to the bending plane (λ = th/12 

for rectangular sections), th is the thickness (m) and Η is a constant (4.73 for the first mode of 

vibration).  

This method is already standardized by ASTM (2002). To measure the longitudinal first natural 

frequency of the sample, the sample is excited with an impact at one end and the accelerations 

are recorded at the opposite end. According to the ASTM C215 (2002) the test can be performed 

in several alternative configurations, as shown in Figure 2.13, for the collection of other 

vibration modes (eg transverse or torsional). However, the most common test setup consists in 

the configuration for assessment of the longitudinal mode of vibration (Giner et al., 2011, 

Hassan and Jones, 2012, Zhao et al., 2014, Lee et al., 1997, Kolluru et al., 2000, Wang and 

Subramaniam, 2011). 
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Figure 2.13. Position and direction of the impact (black arrow) and accelerometer for the 

various vibration configurations of the sample. Adapted from ASTM (2002). 

In order to allow free vibration of the sample, the mould needs to be removed prior to the 

beginning of the test. Due to this fact, and the need to apply an impact on the sample, this 

method does not allow the continuous measurement from the fresh state. Despite these 

disadvantages this methodology allows the measurement of global properties of a sample, while 

the vast majority of the methods only obtain local values of properties (Kim et al., 2009). 

2.5.2. Electromechanical impedance (EMI) method 

This technique was originally developed by Liang et al. (1994) for the assessment of damage 

in structures. To better understand this method it is necessary to introduce the concept of 

mechanical impedance. The mechanical impedance of a point on a structure is the relationship 

between force applied at such point and the resulting velocity in that same point. It is a 

mechanical property and has a direct relationship with the physical parameters such as elastic 

modulus and density (Shin et al., 2008, Wang et al., 2010a, Wang and Zhu, 2011). Thus, the 

concrete mechanical properties can be estimated by measuring the mechanical impedance.  

Piezoelectric materials such as PZT (piezoelectric lead zirconate titanate) exhibit the 

piezoelectric effect, i.e they are able to generate an electric charge in response to an applied 

mechanical stress (direct effect) and, conversely, a mechanical stress is produced in response 

to an applied electric field (inverse effect) (Shin et al., 2008, Park et al., 2003). The process 

used in EMI simultaneously uses both direct and inverse piezoelectric effects to assess the 

mechanical impedance. When a PZT attached to a sample is triggered by a fixed alternating 

electric field, a small deformation is produced in the PZT as well as in the sample area where 

Impact Accelerometer Accelerometer Accelerometer

Transversal mode Longitudinal mode Torsional mode

Impact

Impact

0.132 L



Chapter 2 

30 
 

the PZT is attached. This excitation is then reflected as a mechanical vibration and is transferred 

back to the PZT which transforms in an electrical response (Park and Inman, 2005). Thus any 

change in the mechanical properties of the material where the PZT is coupled causes a change 

in the measured response of PZT. 

An electromechanical model describing the process is displayed in Figure 2.14. The PZT is 

usually connected directly to the surface of the sample under study by a high-strength adhesive 

to ensure adequate mechanical coupling. 

 

Figure 2.14. Mechanical model of an assembly of a PZT. Adapted from Liang et al. (1996). 

This method then enables continuous monitoring of the mechanical impedance of cementitious 

materials properties by measuring the electrical admittance of PZT sensor attached to the tested 

sample, as illustrated in Figure 2.15. However, to estimate the mechanical properties of the 

material pre-calibrated correlations between the property and the electrical admittance are 

needed. 

 

Figure 2.15. Photo of the specimen used in an experiment with PZT made by Shin et al. (2008). 
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Due to the ease implementation of the EMI method and the possibility of making measurements 

right after the structural setting, this method has been used by numerous different authors 

(Wang et al., 2014, Lim and Soh, 2014, Song et al., 2013, Guo and Sun, 2012, Yang et al., 

2010, Wang et al., 2015, Wang and Zhu, 2011, Shin et al., 2008, Park et al., 2003). Furthermore, 

the small size of the sensors and the possibility of attaching a sensor directly in the test material 

makes this method very interesting for in-situ applications. In fact some authors have applied 

this methodology successfully in construction environment (Yang et al., 2010, Song et al., 

2013, Wang et al., 2015). 

2.5.3. Ambient vibration method 

The EMM-ARM testing technique is a variant of the classical resonance method and has been 

initially proposed by Azenha et al. (2010a). Through a continuous non-parametric modal 

identification of a composite beam (composed by the mould filled inside with the material to 

be tested) with known geometry and support conditions, it is possible to obtain the evolution of 

the flexural resonant frequency of the first mode of vibration. From this evolution, it is then 

possible to directly and quantitatively estimate the evolution of E-modulus of the tested 

material, without any kind of ambiguity of user dependency in the data processing. The original 

setup of the method for concrete testing includes a 2 meters long cylindrical acrylic tube with 

external/internal diameters of 100/92 mm. The mould is horizontally placed over four concrete 

cubes through two horizontal threaded rods (with 5 mm in diameter) that laterally trespass the 

composite beam through its cross-sectional centre as shown schematically in Figure 2.16. This 

configuration allows the structure to behave as simply supported with a free span of 1.8 meters. 

To avoid debonding between the mould and the material inside, potentially caused by concrete 

shrinkage associated to the relatively large length of the beam, 5 vertical connectors are placed 

at even spacing along the total length of the composite beam.  
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a) 

 

b) 

Figure 2.16. EMM-ARM original test apparatus: a) Scheme; b) 3D exploded view [units: 

mm]. 

The beam is then excited by the environmental noise (e.g.: wind, people walking, noises from 

construction site, etc.) which can conceptually be assumed to have an average behaviour of 

white noise, i.e. a stochastic process with constant spectral intensity in all frequencies. The 

resulting vibrations are then acquired in the vertical direction through an accelerometer attached 

at mid span to the composite beam. It should be noted that due to high slenderness of the 

composite beam, it is highly excitable and the input provided by the environmental noise is 

enough to induce vibrations that can be detected by the accelerometer, allowing the test to be 

carried out without the need for explicitly exciting the composite beam. Nonetheless, in order 

to increase the amplitude of vibration of the beam and facilitate the resonance frequency 

detection, a fan is placed in the vicinity of the experiment and blowing air towards the beam. 
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In regard to data processing, Figure 2.17 shows a flowchart with a brief overall description of 

the framework adopted to estimate the stiffness of the tested concrete along the curing process. 

First the vibrations at the mid span of the beam are acquired in packages of 900 seconds (Figure 

2.17 (a)). From the recorded accelerograms (Figure 2.17(b)), the collected data is converted 

from the time domain to the frequency domain through the Welch procedure (Welch, 1967), 

thus resulting in the normalized power spectrum density (NPSD) of each measured package of 

data (Figure 2.17 (c)) – see further details in Azenha et al. (2012b). The NPSDs can then be 

included side-by-side in a coloured frequency vs time surface, with colouring that is 

proportional to the intensity of the power spectra (Figure 2.17 (d)). Then, the resonance 

frequencies of the first vibration mode are identified through the highest peak in each amplitude 

spectrum (Figure 2.17 (e)). In order to obtain a continuous evolution of the resonance frequency 

of the composite beam, this whole process is repeated every 60 minutes. 

 

Figure 2.17. Non-parametric data processing and stiffness estimation flow chart. 
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Finally, the stiffness evolution of the material can be inferred based on the resonance frequency 

evolution of the composite beam using the motion equation of a simple supported beam with a 

mass at mid span: 
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where Y(t) represents the amplitude of the vertical displacement along the acquisition time, t 

(in seconds), expressed in relation to the deflection mode ϕ(x), x is the coordinate along the span 

of the beam (m), E̅ and I̅ are the homogenized elasticity modulus (Pa) and second area moment 

of inertia (m4) of the composite cross-section, respectively and m̅ is the uniformly distributed 

mass along the beam (kg/m). Form the equation (2.7) it is possible to express ϕ(x) as a function 

of A1, A2, A3 and A4, as shown below: 

          xaAxaAxaAxaAx  sinhcoshsincos 4321  (2.9) 
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where ω=2·f is the first angular resonance frequency of the beam (rad-1) and f is the linear 

frequency (Hz). At this stage boundary conditions need to be applied to equation (2.8) for the 

present beam, with a double support in one end and a vertical sliding support on the other, one 

has:  

At   0x  : )0()0(   kIE   , 0)0( IE  (2.10) 

At   Lx : pmLLIE  )()( 2    , 0)(  L   

Where mp is the concentrated mass located at the mid span (kg), L is half of the span of the 

beam (m) and k is the vertical stiffness of the supports (N/m). Introducing these boundary 

conditions in equation (2.8) a set of equations is obtained, whose eigenvalues ω may be 

computed according to: 
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With the results of modal identification, all variables in equation (2.10) are known except for 

E̅I̅, thus allowing to mathematically obtain this unknown. Bearing in mind the composite 

tubular section of known internal/external diameters (i, e), and the known E-modulus of the 

mould Em, it is possible to compute the E-modulus of the tested material (concrete) Ec through 

equation (2.11): 
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(2.12) 

By performing the above procedure for all data packages (corresponding to one age of testing 

at every 60 minutes after casting), the E-modulus versus time evolution curve can be obtained 

(Figure 2.17(f)). 

Since the original proposed method for concrete testing (Azenha et al., 2010a), the technique 

has been adapted to test other materials like cement pastes (Azenha et al., 2012a, Maia et al., 

2011a, Maia et al., 2011b, Maia et al., 2012b, Maia et al., 2012c) and stabilized soils (Azenha 

et al., 2011, Silva, 2010, Silva et al., 2013a, Silva et al., 2014). The variant for cement paste 

testing differs from the concrete version in two main aspects: (i) the cross section of the tube 

used is greatly reduced and (ii) the structural system of the beam now consists of a cantilever. 

The Figure 2.18 depict the experimental setup for this variant of the method. 

Although this variant uses a distinct structural system, the test procedure to obtain the resonance 

frequency of the composite beam is quite similar to the variant for concrete described before. 

However after determining the first flexural resonant frequency of the composite beam, 

equation (2.10) is no longer valid due to the different structural system. 
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a) 

 

b) 

Figure 2.18: Experimental setup for EMM-ARM testing of cement paste: a) Scheme; b) 3D 

exploded view [units: mm]. 

Therefore, in order to infer the stiffness of the tested material, it becomes necessary to derive a 

new formulation of the cantilever structural system (Figure 2.18). In this case the boundary 

conditions to introduce in equation (2.8), in correspondence to the fixed support in one end, are: 

At   0x  : )0()0(  
 kIE   , 0)0(   (2.13) 

At   Lx : pmLLIE  )()( 2    , 0)(  L   

where kθ is the rotational stiffness of the support (N/m). Therefore, the relation between the 

frequency of the first mode of vibration and the stiffness of the composite beam can be 

computed according to equation (2.13): 
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Then the E-modulus of the material inside the mould can be estimated based on the geometry 

and stiffness of the acrylic tube through the equation (2.11). 

2.6. Other experimental methods 

In addition to the experimental methods presented in previous subchapters there are some 

methods not mentioned because of the fact that they do not provide estimations the stiffness (or 

stiffness related parameters) of the tested cementitious materials. However, they allow the 

assessment of mechanical properties along the cement hydration reaction that may be related to 

the stiffness of cementitious materials. The following methods can be included in such group: 

general impact method (Gaede, 1941, Voigt, 2005), indentation method (Voigt, 2005), rebound 

hammer method (Basu and Aydin, 2004, Cano-Barrita et al., 2015, Rojas-Henao et al., 2012), 

direct pull-out method (Voigt, 2005, Carino, 2004a), break-off method (Voigt, 2005, Naik, 

2004), acoustic emission method (Mindess, 2004, Pazdera et al., 2014), rheometer method 

(Voigt, 2005, De Larrard et al., 1997, Jau and Yang, 2010, Hu and Wang, 2011, Sun et al., 

2006). 

In addition there are methods based on penetration resistance in near-fresh states which have 

special interest due their capacity to define the structural setting. There are several methods for 

the assessment of the evolution of penetration resistance of cementitious materials since the 

early ages. The Table 2.1 summarizes the various methods found in the literature within this 

thesis: (i) Vicat needle (Bentz et al., 2012, Wang et al., 2013, Liao and Wei, 2014); (ii) 

Penetrometer (Malhotra and Carette, 2004); (iii) Proctor needle (Malhotra and Carette, 2004) 

and (iv) Hilti needle (Malhotra and Carette, 2004, Lootens et al., 2009, CEN, 2005b). This table 

shows the type of measurement of each method, some observations on the nature of the method 

of execution as well as the applicable standards. 
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Table 2.1. Penetration resistance methods. Adapted from Lootens et al. (2009). 

Test Measurement type Observations Standards 
Vicat Measurement of the penetration 

depth for an applied load 
Discrete but possibility of 
multiple measurements at various 
points (can be automated) 

ISO 9597 
ASTM C191-04 
AASHTO T131 
EN 196-3 

Penetrometer Measurement of the force 
required to maintain a given 
penetration rate 

Continuous at the same point (can 
be automated) 

D 3441-79 
D 1558-84 

Proctor needle Measurement of the force 
required for the needle penetrate 
a depth of 25 mm 

Discrete but possibility of 
multiple measurements at various 
points (manual) 

ASTM C403 

Hilti needle Measuring the depth reached by 
a shot from a nail 

Discrete but possibility of 
multiple measurements at various 
points (manual) 

EN 14488-2 

 

Despite the ability to monitor the setting of cementitious materials, these methods are 

destructive and consequently continuous measurements can not be performed in the same point. 

On the other hand, the accuracy of these methods depends largely on the operator skills and 

experience (Lee et al., 2004). Consequently, the significance of the results can be considered 

questionable (Sleiman et al., 2010).  

According to Voigt (2005) there are also radioactive methods for monitoring the evolution of 

the cementitious materials properties. Within this group, the following methods can be listed: 

gamma radiometry (Mitchell, 2004, Hönig, 1991, Voigt, 2005, Kovler, 2006), x-ray microscopy 

(Mitchell, 2004, Voigt, 2005, Sun et al., 2014) and x-ray microtomography (Voigt, 2005, Provis 

et al., 2012, Ma et al., 2015). All these methods have the great disadvantage that they issue 

quite harmful radiation to health, which is why its practical implementation is extremely 

limited. 

It is also possible to analyse the characteristics of cementitious materials through the analysis 

of images obtained by scanning optical microscopy (Poon and Groves, 1988, Diamond, 2004, 

Segre and Joekes, 2000, Igarashi et al., 2004, Li et al., 2004, Bentz and Stutzman, 2006, 

Sanchez and Sobolev, 2010, Scrivener, 2004, Muller et al., 2013). With this type of analysis, it 

is possible to evaluate the development of the microstructure of the cement paste and to obtain 

qualitative information on the state of the hydration reaction (as shown in the example in Figure 
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2.19). However, these methods are very difficult to implement, requiring very expensive 

equipment and complex procedures for sample preparation. 

 

Figure 2.19. Typical mortar image (with 200 days of curing) obtained by an surface electronic 

microscope (Scrivener, 2004). 

2.7. Summary 

Table 2.2 provides a summary of all experimental methods to evaluate changes in the stiffness 

or strength related properties since early ages of cementitious materials found in the literature 

review conducted in the scope of this thesis. As can be observed in Table 2.2, there is a large 

variety of experimental methods for such purposes. Nevertheless, the results that can be 

obtained are not necessarily always quantitative and the measured property is not always of the 

same nature thus not all can be directly compared. Since the rise of the different experimental 

techniques that some authors have discussed this issue. It was Powers (1938) who launched the 

discussion in the scientific community on the applicability of the experimental methods for 

determining the stiffness of cementitious materials, with the discussion of the results obtained 

from the classical cyclic compression method and dynamic tests (classical resonance). Later 

Philleo (1955) added a new technique to the discussion: the ultrasonic wave transmission 

method (UWT). In these studies, the authors concluded that dynamic tests (classical resonance 

and UWT) deal only with purely elastic effects, while the static tests deal with nonlinear 

deformation (such as instant creep), leading the estimations of the dynamic tests to conduct to 

higher values than those obtained through static tests. 
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Table 2.2. Summary of the existent experimental methods to evaluate changes in the 

properties of cementitious materials. 

Method Excitation Measured 
response 

Destructive 
(Yes/No) 

Application 
(Lab/in-situ) 

Relationship 
with stiffness 

Cyclic loading Application of a 
given 
compressional / 
tensile stress at a 
given stress rate 

Strain variation No Lab Direct (Estat) 

US wave 
transmission 

Application of an 
ultrasonic 
excitation 

Wave 
propagation 
velocity 

No Lab/in-situ Direct (Edyn) 

BE Application of an 
ultrasonic 
excitation 

Wave 
propagation 
velocity 

No Lab/in-situ Direct (Edyn) 

US wave 
reflection 

Reflection of an 
ultrasonic pulse 

Wave reflection 
loss 

No Lab/in-situ Direct (Edyn) 

Classic 
resonance 

Application of an 
external impact 

Resonance 
frequency of the 
specimen 

No Lab Direct 
(Estat/Edyn) 

PZT Application of an 
ultrasonic 
excitation 

Resonance 
frequency of the 
sensor 

No Lab Direct (Edyn) 

EMM-ARM Passive Resonance 
frequency of the 
specimen 

No Lab Direct (Estat) 

Chemical 
shrinkage 

Passive Water-
embedded 
volume 

No Lab Indirect 

Autogenous 
shrinkage 

Passive Exterior volume No Lab Indirect 

Conductivity Application of an 
electrical voltage 

Variation in the 
conductivity 

No Lab Indirect 

Acoustic 
emission 

Passive Cavitation of 
the air bubbles 

No Lab/in-situ Indirect 

Vicat / 
penetrometer 

Penetration by a 
needle/metal rod 

Penetration 
resistance 

Yes Lab/in-situ Indirect 

Rheometer Application of a 
shear stress at a 
given rate 

Increase in shear 
stress 

Yes Lab Indirect 

Isothermal 
calorimeter 

Passive Heat release No Lab Indirect 

Semi-adiabatic 
calorimeter 

Passive Temperature 
profile 

No Lab Indirect 

Restrained 
shrinkage 

Passive Change in stress Yes Lab Indirect 

Maturity Passive Temperature 
history 

No Lab/in-situ Indirect 
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Voigt et al. (2005) present a set of comparisons between experimental methods to estimate the 

mechanical properties of cementitious materials, namely: UWT, UWR, penetration resistance, 

adiabatic calorimetry and temperature. In such paper, the authors concluded that both the 

transmission and reflection ultrasonic methods have the ability to make quantitative and 

qualitative monitoring of cement hydration reaction. A good consistency was observed between 

the results of ultrasonic reflection and penetration resistance indicating that both methods 

evaluate the same mechanism: the development of rigid connections between the cement 

particles. However, the results of the ultrasonic transmission methods begin to evolve earlier 

than those obtained through penetrometer readings, indicating that it is affected by the 

formation of hydrated products, such as ettringite, which have little influence on the stiffness 

of the material. 

One of the most extensive work for comparison of experimental methods to evaluate changes 

in the properties of cementitious materials was performed by Sant et al. (2009) where several 

methodologies capable to detect the transition from fluid to solid of cementitious materials were 

compared during the hydration process: monitoring of chemical shrinkage, autogenous 

shrinkage, acoustic emission, electrical conductivity, Vicat needle, UWT, rheological 

measurements, isothermal and semi-adiabatic calorimeter and restrained ring shrinkage test. 

However, in this paper the authors only intended to verify the ability of each method in detecting 

the transition from liquid to solid, not being addressed the ability of experimental methods to 

quantify the stiffness of the material. 

Concerning the EMM-ARM methodology, it was only compared to some of the more classical 

methods such as the classic cyclic compression and calorimetry (Maia et al., 2012b, Maia et 

al., 2012c, Azenha et al., 2010a). These studies have shown that the method is capable of 

obtaining similar results to cyclic compression. Yet it still was not made a deep study to 

examine the phenomenon that leads a method which at first sight could be classified as 

‘dynamic’, to be able capable of producing the same results (or very similar) to the ‘static’ 

results that can be obtained with classical uniaxial cyclic testing. 

In the context of the comparison between experimental methods of interest to evaluate the 

evolution of physical/mechanical properties of cement-based materials since early ages, several 
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other studies exist, which were not enumerated above. Table 2.4 shows a summary of the 

literature concerning comparative studies involving two or more techniques. 

By analysing  Table 2.4, it appears that although there are already several studies in which it 

was discussed the relevance of the results for each experimental methodology, few are those 

that focus directly on the issue of getting the elastic modulus. 

Table 2.3. Comparisons between different experimental methodologies present in the 

bibliography. 

Authors Experimental methods compared Properties under study 
Popovics et al. (2008) Classical cycle compression; Ultrasonic wave 

transmission; Classical resonance 
E-modulus 

Philleo (1955) Classical cycle compression; Ultrasonic wave 
transmission; Classical resonance 

E-modulus 

Voigt et al. (2005) Ultrasonic wave transmission; Ultrasonic wave 
reflexion; Penetration resistance; Adiabatic 
calorimetry; Temperature evolution 

Microstructure evolution 

Sant et al. (2009) Chemical and autogenous shrinkage; Acoustic 
emission; Electric conductivity; Vicat needle; 
Ultrasonic wave transmission; Rheometer; 
Isothermal calorimetry; Semi-adiabatic calorimetry; 
Restrained shrinkage 

Setting 

Maia et al. (2012b), 
Maia et al. (2012c), 
Azenha et al. (2010a) 

EMM-ARM; Classical cycle compression; 
Calorimetry; Chemical shrinkage 

Microstructure evolution 

Boumiz et al. (1996) Ultrasonic wave transmission; Electric conductivity; 
Isothermal calorimetry; Compressive strength 

E-modulus 

Kamada et al. (2005) Ultrasonic wave transmission; Rheometer; 
Penetration resistance 

Physical and chemical and 
properties 

Sun et al. (2006) Rheometer; Ultrasonic wave reflexion Viscoelastic properties 

Voigt et al. (2006) Ultrasonic wave reflexion; Maturity Compressive strength 

Amziane (2006) Measurements of total and hydraulic pressures; 
Vicat needle. 

Setting 

Malhotra and Carette 
(2004) 

Penetration resistance; Esclerometer Compressive strength 
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2.7.1. Applicability range 

In addition to the comparison of results, it is also important to define the applicability range in 

terms of curing stage of the cementitious materials of each experimental method. Figure 2.20 

shows a qualitative representation of the relevant methodologies to characterize the evolution 

of the properties of cementitious materials, at several stages of hydration, including the 

evolution from the solid suspension to the hardened solid. 

 

Figure 2.20. Range of application of the experimental methods to evaluate changes in the 

properties of cementitious materials (partly based on the work of Kamada et al. (2005)) 

Immediately after mixing, concrete behaves like a fluid with suspended particles. Hence, at this 

stage it is only feasible to apply methods suited to measure fluid properties, such as the slump, 

flow and Vebe tests. After some reactions between cement and free water, which create 

hydrated compounds, there is an increase in viscosity of the fluid. In this period, rheological 

methods can be applied, making it possible to determine the viscoelastic properties of the 

material. After some time, the material enters a period of transition between the liquid and solid 

state, beginning to develop some stiffness, although residual. It becomes thus possible to use 

methods capable of determining the stiffness of the material that do not require the test 

specimen to be removed from the mould, such as: EMM-ARM, UWT, UWR and dielectric 

properties. It is also possible at this stage to determine the beginning and end of setting of the 

material through methods based on penetration resistance. With the increased stiffness of the 

material, it begins to behave as a solid. The rheological and methods based on penetration 

resistance are no longer be able to study the material in this phase and is, however, possible to 

use the traditional methods for the determination of the mechanical characteristics of the 

Curing timeSuspension Transition Solid

Slump Penetration

Flow Cyclic compression

Vebe Compressive strength

Rheological Classical resonance 
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concrete: the method of the cyclic compression of the classic resonance and compressive 

strength. 

2.7.2. Stress/strain rate effect on mechanical properties estimation 

It is well known that strength and stiffness of cementitious materials depends on the rate of 

loading (Shkolnik, 2008, Bischoff and Perry, 1991, Popovics et al., 2008, Fischer et al., 2014, 

Pichler et al., 2014a). As the stress or strain rate increases the values of strength or stiffness 

increases as well. This phenomenon is due to the reduction of the test duration and that provides 

less time for non-linear creep-related mechanisms to reduce the initial strength/stiffness of the 

material. Thus several authors separate the properties in quasi-static or dynamic depending on 

the test method used. However, the definitions of quasi-static and dynamic modulus is dubious. 

For concrete cylinders in uniaxial unconfined compression, ISO 1920-10 (2010) recommends 

a quasi-static loading rate of 0.20 to 0.60 MPa/second. For typical concretes the modulus of 

elasticity is 30 GPa, hence for the linear part of the stress-strain curve, this translates into a test 

strain rate between 6.7×10-6 and 2×10-5 s-1. This is in agreement with the MC2010 (CEB-FIP, 

2010) quasi-static strain rate of 3×10-5 s-1 for compression. Despite the agreement about the 

strain rate for quasi-static testing of concrete, the range for dynamic stress or strain rate is not 

so well defined. Bischoff and Perry (1991) define in its work three different ranges of dynamic 

strain rates: earthquake between 10-3 and 10-2 s-1, hard impact between 100 and 20 s-1 and blast 

between 102 and 103 s-1. However more recent research works (Pichler et al., 2014b, Fischer et 

al., 2014) found that only above a stain rate of 100 s-1 the cement-based materials strength start 

to increase. 

Several authors have suggested relationships between the dynamic and quasi-static modulus 

(Edyn and Estat, respectively) as can be seen in Table 2.3. 

Table 2.4. Relations between dynamic modulus Edyn (GPa) and static modulus Estat (GPa). 

Author Model 

Neville (1995) dynstat EE  83.0  

Swamy and Bandyopadhyay (1975) 1925.1  dynstat EE  

Yuan et al. (2004) 245.7033.1  dynstat EE  
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However, these expressions are purely empirical and do not take into account the stress/strain 

rate of the dynamic test. According to MC2010 (CEB-FIP, 2010) the effect of high strain rate 

on the E-modulus in compression can be estimated from equation (2.15). A similar correlation 

(equation (2.16)) was also suggested by Shkolnik (2008) based on experimental data fitting. 
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with k·T/Wa = 404 MPa at the temperature of test T = 293°K and where E is the E-modulus 

obtained at a strain rate ε,̇ E0 and ε0̇ are the quasi-static E-modulus and strain rate (defined here 

as 3×10-5 s-1), respectively. The effect of the strain rate on the E-modulus obtained from both 

expression is shown in Figure 2.21. As can be seen, the values obtained from the two 

expressions are in good agreement between each other and are in good agreement with the 

results found in the literature (Wu et al., 2012, Dejian and Xilin, 2008).  

 

Figure 2.21. Strain rate influence on concrete E-modulus. 
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The strain rate ranges of the quasi-static tests presented before are presented in the top part of 

Figure 2.21. Additionally, the strain rate of the EMM-ARM test to the for the most requested 

fibre in the mid-span cross-section is also shown in the figure. The strain rate of the EMM-

ARM test was computed from the peak velocity (ẏ) obtained by integration of an accelerogram 

from an experiment with a concrete with 35 GPa. The strain rate (ε)̇ was computed through the 

equation (2.17) (Sun and Wu, 2009). 

 
h

L
y 

2

2
   (2.17) 

where L is span of the beam and h is distance between the neutral axis and the point of interest 

in the cross-section (defined here as half of the cross section height).  

As can be observed in Figure 2.21 all the strain rate ranges of the quasi-static methods lie within 

the static range defined previously. Furthermore, the EMM-ARM maximum strain rate is also 

within the quasi-static range. In fact, from the obtained results the strain rate obtained for the 

EMM-ARM tests seems to be lower than the cyclic compression tests. However, one shown 

note that the strain rate computation might have a poor accuracy due to the indirect measure of 

the beam’s peak velocity. Nevertheless, one should not expect any differences in the E-modulus 

estimation between the EMM-ARM and the quasi-static methods due to the strain rate effect 

since all these methods lie within the static range. Lastly, the identification of the stress/strain 

rate of the ultrasonic wave transmission methods is a hard task due to the low level of 

disturbance of the material. Still according to Tatsuoka (2011) the strain rate of an ultrasonic 

wave transmission method is in a range between 102 and 104 s-1. Therefore, due to the much 

higher strain rate of the ultrasonic wave transmission methods when compared to the other 

methods one obtain higher E-modulus estimations that can be classified as dynamic E-modulus. 
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2.7.1. Stress level effect on E-modulus estimation 

Another effect on E-modulus estimation that needs to be discussed is related with the stress 

level used in each experimental method. It is well known that the stress-strain relationship is in 

fact non-linear, and can be described by a quadratic equation such as equation (2.18), where b 

is the non-linear parameter (Shkolnik, 2008, Delsaute et al., 2016). This expression is not based 

on any mechanical concept but it is the result of a mathematical fitting on basis of the 

experimental results. As it was shown in the work of Shkolnik (2008), the non-linear parameter 

b in the stress-strain relationship is dependent on the concrete mix design and the degree of 

hydration. As concrete hardens and the E-modulus increases, the slope of this stress-strain 

relationship decreases. 

 2
0   bE  (2.18) 

where b = E0/2·εc and εc is the strain of breaking the interatomic bonds.  

The nonlinearity of the stress-strain curve can have an important rule since difference of ~9% 

between the linear behaviour and the nonlinear one are expected to happen at 1/3 of the ultimate 

compressive strength. However, contrary to the statements of Shkolnik (2008) and despite the 

common agreement in the scientific community regarding the fact that the static E-modulus is 

smaller than that obtained by dynamic methods, Popovics et al. (2008) state that there is no 

evidence of non-linear behaviour in the stress-strain curves of the cyclic compression tests.  

Regarding the experimental methods presented before, the stress level used is indeed very 

different between each other. In the first group, the cyclic loading methods, the stress level is 

usually 1/3 of the ultimate compressive strength of the material at the age of testing. This 

recommendation is mainly due to the lack of accuracy of the longitudinal strain measurement 

of the specimens at low levels of applied stress. Therefore, in the remaining methods, since the 

strain measurement accuracy is not an issue, the stress levels used are much lower (almost 

negligible). Despite this different stress levels used as stated by Popovics et al. (2008) no 

differences should be observed from this fact. However, one should remark that if one 

experiment is performed at a stress level higher than 1/3 of the ultimate compressive strength 

nonlinear effects might be observed.  
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Chapter 3  

Enhancements of EMM-ARM test setup 

3.1. Introduction 

Despite the successful results obtained through the studies involving EMM-ARM before the 

work of this dissertation, the method could still be considered to be at an early development in 

view of a potentially generalized application in both research and industry fields. In fact, at the 

current state of development, the method still requires the operator to be somewhat experienced 

to ensure the capacity to carry out the experiment. There are indeed several special cares 

(normally resulting from experience) that need to be taken to ensure that the experiment occurs 

in conditions that do not negatively affect the quality of E-modulus estimation. In fact the user 

needs to be aware of all the techniques used during the whole experimental procedure to be able 

to perform the experiment correctly, as opposed to several commercial systems that frequently 

almost allow a ‘one-button’ operation framework (Brouwers et al., 2011, Proceq, 2014, Grant, 

2012). Furthermore, due to the sizes, materials and/or geometry of the EMM-ARM beams, there 

are still some limitations for a simple application of the method. These limitations are still 
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currently hindering a widespread systematic application of EMM-ARM among concrete 

researchers and practitioners. 

This Chapter presents a comprehensive study of several improvements to EMM-ARM, which 

aimed to mitigate the problems and limitations of the method at the state of development shown 

in Chapter 2 (i.e. before the research work reported in this thesis). The improvements to EMM-

ARM are initially reported for the version of this method that allows testing concrete testing, 

and afterwards for cement paste testing. It should be noted that part of the content of this 

Chapter has already been published in (Azenha et al., 2012b, Granja and Azenha, 2015) and 

submitted to (Granja and Azenha, 2016). 

3.2. Concrete testing 

The main limitations that the methodology presents are related to the mould (acrylic tube – 

Figure 2.16) used in the tests, which tends to pose some problems when a systematic application is 

considered: (i) due to the 2.0 m length, the handling and casting operations are relatively 

complex to carry out; (ii) the mould material (acrylic) in combination with the need for 

connectors placed along the beam disable the access of a vibrating needle to the inside of the 

mould; (iii) acrylic is a quite brittle material that tends to shatter under direct contact with the 

vibrator needle, thus demanding specific protective procedures during casting, such as the 

interposition of a cloth between the vibrator needle and the mould, as to avoid damages; (iv) 

the accuracy of E-modulus predictions tends to be influenced by the vertical stiffness of the 

supports of the beam that need to be meticulously setup and verified by the test operator. 

The following subsections will present several proposed improvements to EMM-ARM, 

together with a parallel experimental study for validation purposes. The description and 

validation of improvements is started with adaptations to the geometry/material of the testing 

mould, followed by the development of a new support system. In the end a new reusable mould 

is suggested. All the experiments reported in this sub-section, comprise measurement of 

accelerations at mid span of the beams, acquired through an accelerometer PCB 393B12 

(sensitivity: 10 V/g; range: ±0.5 g), which was in turn connected to a dynamic acquisition 

system NI 9234 with 24 bit resolution. The accelerations were recorded at an acquisition 

frequency of 500 Hz in packages of 300 seconds each 10 minutes. To validate EMM-ARM, the 
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classical approach of testing E-modulus in cylinders under cyclic compressive loading (here 

termed as CC) was also taken for all the tested concretes, following the recommendations 

LNEC E397 (1993). 

3.2.1. Mould geometry and material 

3.2.1.1. First attempt 

As stated the original implementation of EMM-ARM described above carries several 

drawbacks. Therefore, it was decided to explore the possibilities and pitfalls of using an 

alternative mould which could be re-used, while allowing easy access of a vibrating needle to 

the entire specimen. The basic conception of the mould for the new test setup followed the same 

principles as those already adopted for the acrylic tube and presented in the work of Azenha et 

al. (2010a): 

1. The resonant frequency of the composite beam should preferably range from 10 Hz 

(with concrete in fresh state) to less than 50 Hz at the hardened state, as to avoid the 

introduction of electricity noise in the acquired signals at such stage. This demand 

causes the beam to be relatively slender, which carries the interesting feature of being 

easily excitable by ambient vibrations, thus facilitating the use of output-only modal 

identification techniques. 

2. The centre of gravity of the mould must coincide with the centre of gravity of the tested 

concrete to simplify the analysis procedures.  

It was also decided to increase the minimum cross-sectional dimension of the specimen to 

150 mm in order to be able to test the same types of concretes that are used in the traditional 

cylinders (150 mm diameter) and cubes (150 mm edges) (CEN, 2000), in terms of maximum 

admissible aggregate size. In order to simplify the casting operations, it was decided to use a 

square section for the tested concrete, with the mould being open at the top, as can be seen in 

Figure 3.1. This ‘U-shaped’ section has the advantage of allowing concrete to be cast from the 

top of the beam, with the mould already set into its final testing position. It further allows the 

easy access of the vibrating needle to all parts of concrete, and ensures that the cross-sectional 
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centres of gravity of the mould and concrete coincide. Additionally, to eliminate the risk of 

damage the mould during casting this new mould was manufactured in steel. 

 

Figure 3.1. ‘U-shaped’ section adopted [units: mm]. 

A parametric study using equations (2.11) and (2.12) was performed in order to define the 

thickness (th) of the mould and the span of the beam in order to meet the requirements set out 

above. Thus, two scenarios were considered: one for the beginning of the curing period of 

concrete when the stiffness of the material was considered null, and the second one for a 

hardened concrete with E = 30 GPa. This study also considered that concrete has a density of 

2400 kg/m3 and the steel of the mould has E = 210 GPa and ρ = 7800 kg/m3. 

The variation of the first resonance frequency with the thickness of the mould and with the span 

of the beam is shown in Figure 3.2 for the two different scenarios under study. In this figure, it 

is possible to observe that the decrease of the span of the beam span causes the first resonance 

frequency of the beam to increase exponentially. On the other hand, increasing the thickness of 

the mould increases the resonance frequency of the beam. This effect is more pronounced on 

the scenario when the concrete is in the fresh state and has zero stiffness. Therefore, the 

reduction of the thickness of the mould increases the resolution of the method, since the 

frequency variation along the stages curing is increased. Based on these results, it was decided 

to adopt a 1 mm thick mould. In order to limit the maximum frequency of the beam below 

50 Hz when the concrete is hardened (E = 30GPa) it was decided to use a 2.4 m span beam. 

Thus the maximum expected frequency will be around 46.9 Hz and the frequency evolution 

along the concrete curing should be around 22.3 Hz. 
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Figure 3.2. Dependency of the first resonance frequency of the new ‘U-shaped’ beam with the 

mould thickness and span. 

The developed mould was based on 1 mm thick steel alloy plates, which were bent to meet the 

geometry shown in Figure 3.3. The mould has a total length of 2.6 m and a ‘U-shaped’ cross 

section that assures inner cross-sectional dimensions for the specimen of 150×150 mm2. 

Extremity lids are placed at 100 mm distance from the extremities of the mould, causing the 

length of the concrete specimen to be of 2.4 m, which is coincident with the free span of the 

simply supported beam assured by the bottom supports. 

These bottom supports solely sustain the bottom part of the mould along its 150 mm width. 

Aluminium stiffeners are placed on top of the beam in order to assure that the geometry of the 

mould remains unchanged after casting (i.e. the mould does not suffer cross-sectional 

deformations associated to the lateral pressure caused by fresh concrete). Casting procedures 

are relatively straightforward, with possible use of vibrating needles, and the interesting feature 

of being conducted with the mould placed in its final structural arrangement (simply supported). 

Upon the end of casting operations (total concrete height of 150 mm), a plastic cover should be 

placed in order to assure proper curing conditions and prevent water loss from the specimen 

(which would affect its overall mass). During the experiment, accelerometers are placed at 3 

spots throughout bottom surface of the beam, allowing a more accurate modal identification as 

compared to a single-accelerometer setup (as shown in Section 4.4.1). 
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a) 

 

b) 

Figure 3.3. EMM-ARM steel ‘U-shaped’ beam: a) Scheme; b) 3D exploded view [units: mm]. 

After the end of the experiment, the set composed by the accelerometers, the extremity lids and 

the aluminium stiffeners are removed from the mould. Then, the mould is turned upside down, 

allowing the easy removal of the concrete specimen through slight bending of the lateral walls 

of the mould. It should be remarked that this experimental setup causes the experiment to have 

no expendable parts: everything is re-usable. 
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In order to validate the new devised ‘U-shaped’ mould an experiment was performed in a 

prefabrication industry plant. The overall experiment consisted in casting two EMM-ARM 

specimens: one with the original acrylic tube version (O-ACR-1.8-CS), and the other in the ‘U-

shaped’ steel mould (U-STL-2.4-CS). The geometrical and mechanical characteristics of the 

beams are summarized in Table 3.1. The concrete used in these tests, named as Mix 1, has the 

composition as shown in Table 3.2. 

Table 3.1. Parameters used for the transformation of the frequencies in E-modulus. 

 Test 1 – concrete mix 1 
Reference O-ACR-1.8-CS U-STL-2.4-CS 

Geometry   
Cross-section Circular ‘U’ 
i/Height 91.50 mm 146.7 mm 

e/Width 99.92 mm 150.3 mm 
Span 1800 mm 2405 mm 
Connectors 
(spacing) 

Yes 
(300 mm) 

No 

Supports ØTR=5 mm 
Concrete cubes 

Concrete cubes 

Mould   
Material Acrylic Steel 
Density 1180.0 kg/m3 7800.0 kg/m3 
E-modulus 3.50 GPa 170.0 GPa 

Concrete density 2450.0 kg/m3 2450.0 kg/m3 

 

Table 3.2. Concrete compositions used. 

Component Mix 1 (kg/m3) Mix 2 (kg/m3) Mix 3 (kg/m3) Mix 4 (kg/m3) Mix 5 (kg/m3) 
Sand 418 (fine) 621 (0/8) 739 (0/4) 245 (0/2) 250 (0/2) 
 377 (coarse) 306 (4/8) – 786 (0/6) 460 (0/4) 
Gravel 1006 (5/15) 438 (10/16) 1072 (8/22) 417 (6/14) 1140 (4/16) 
 – 449 (14/12) – 478 (14/20) – 
Cement 430 

(CEM I 42.5R) 
224 

(CEM I 42.5R) 
340 

(CEM I 52.5N 
PMES CP2) 

280 
(CEM II 

42.5R) 

218 
(CEM II/A-L 

42.5R) 
Fly ash – 96 – 40 112 
Water 143 l/m3 170 l/m3 184 l/m3 143 l/m3 155 l/m3 
Super 
plasticiser 

3.90 
(Polycarboxylic 
ether polymers) 

2.20 
(Pozzolith 

390S) 

– 6.25 
(Rheobuild 

1000) 

3.3 
(Sikament 

400+) 

 

As concrete could not be classified as self-compacting, the casting operations inside the acrylic 

tube had to be done with external vibration (handheld vibrator coated with a cloth and slightly 

pressed against the mould), as shown in the photo of Figure 3.4a. In the case of concrete inside 
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the steel mould, casting operations were easier because of the direct access of the vibrator (see 

Figure 3.4b).  

  

a) b) 

Figure 3.4. Examples of how to vibrate the concrete: a) Acrylic EMM-ARM beam with a 

vibrator coated with a cloth and slightly pressed against the mould; b) ‘U-shaped’ steel 

EMM-ARM. 

Fans were placed in the vicinity of EMM-ARM specimens to increase the ambient vibration 

associated to air movement (random turbulent motion). A photo of the experiment is shown in 

Figure 3.5. Alongside with these experiments, the static E-modulus of concrete was determined 

through classic cyclic compression tests (CC) in 150 mm diameter and 300 mm long cylinders 

at the ages of 1, 4, 7, 14 and 28 days (three cylinders tested at each age) according to LNEC E 

397 (1993). 
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Figure 3.5. Photo of the test. 

The raw data in terms of identified resonant frequencies along time, collected in both EMM-

ARM specimens, is shown in Figure 3.6a. It can be observed that a wide range of frequencies 

is covered during concrete hardening in both cases, ranging from 9 to 40 Hz in the acrylic beam 

and from 20 to 45 Hz in the steel alloy beam. Both evolution curves seem plausible, exhibiting 

an initial dormant period (where frequency remains almost unchanged) in the first two hours, 

and then having steep evolutions until approximately 2 days age. After that, both beams exhibit 

a significantly smaller rate of resonant frequency growth in time. 

  

a) b) 

Figure 3.6. a) Identified resonant frequencies in the EMM-ARM specimens; b) E-modulus 

obtained through EMM-ARM and through compressive cyclic testing. 

The analysis of interest in the scope of this thesis is centred in the E-modulus of concrete, which 

was estimated with recourse to equations (2.11) and (2.12) applied to the data of Figure 3.6a, 

together with the information forwarded in Table 3.1. The estimated evolution of E-modulus 
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based on the resonant frequencies for both beams is shown in Figure 3.6b. The results obtained 

through classic cyclic testing are also shown in the figure. Regarding the E-modulus estimation 

by the acrylic mould EMM-ARM, it can be stated that an excellent coherence in regard to 

classic cyclic testing was obtained, within an error margin that relies below ~2 GPa. This 

situation is consistent with the kind of accuracy already reported before for laboratory 

application of EMM-ARM (Azenha et al., 2010a). It is also noticeable that the initial E-modulus 

amounts to ~0 GPa, which denotes the feasibility of the assumption of zero initial stiffness (this 

observation is also valid in the case of the steel alloy mould).  

The use of the initially devised version of EMM-ARM for acrylic is thus considered valid in 

view of its ability of estimating E-modulus values very similar to the static E-modulus estimated 

by the classic cyclic compression test. However, the same conclusion of adequate performance 

cannot be withdrawn by observation of the results for the steel alloy EMM-ARM in Figure 3.6b. 

In fact, after an initial period where the estimated E-modulus evolution was remarkably similar 

to that obtained from the acrylic EMM-ARM, at 0.7 days, the behaviour started to deviate. After 

such instant, the steel alloy EMM-ARM led to significant underestimations of concrete E-

modulus up to the final age of 15.5 days. The reason for this deviation was successfully 

determined at the end of the experiment, as it was possible to remove the plastic sealing from 

the top of the beam and observe it. It was seen that some parts of the edge between concrete 

and the steel mould were slightly separated, thus pointing to the debonding of the two materials, 

as shown in Figure 3.7. This debonding is bound to have been caused by the effect of 

autogeneous shrinkage of concrete (as drying was prevented), and it has probably occurred at 

the equivalent age of 0.7 days mentioned above. 
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a) b) 

Figure 3.7. Evidence of debonding in the ‘U-shaped’ steel mould: a) Position of the 

debonding problem; b) Detail A. 

In order to make sure that the concrete in the specimen was actually well cast and that its 

stiffness was adequate (thus ruling out the possibility of internal voids or defects), it was 

removed from the steel mould and tested individually as simply supported, with a span of 2.3 m 

(this beam was named S-CON-2.3). The measured resonant frequency was of 49.8 Hz. By 

application of equations (2.11) and (2.12), together with the analysis parameters shown in Table 

3.3, the measured resonance frequency led to an estimation of 35.1 GPa for the E-modulus at 

such instant of testing (t = 15.5 days). As the E-modulus of concrete obtained through classic 

cyclic compression testing at a similar age (t = 14.7 days) had the comparable value of 

E = 36.9 GPa, this satisfactory coherence rules out the possibility of the error in steel alloy 

EMM-ARM being caused by the concrete itself. Therefore, these findings confirm the 

plausibility of appointing the loss of bond between the materials as a cause of the under-

estimation of E-modulus with the steel-alloy EMM-ARM. In fact, the occurrence of debonding 

may induce overall stiffness loss of the system and/or motivate the occurrence of local modes 

of vibration (that may lie within the frequency range of the experiment) in the bottom steel plate 

that supports the accelerometer. 

Table 3.3. Physical characteristics of the demoulded concrete beam. 

Reference S-CON-2.3 
Geometry  

Cross-section Square 
Height 146.7 mm 
Width 150.3 mm 
Span 2300 mm 

Supports Concrete cubes 
Concrete density 2392.0 kg/m3 
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Bearing in mind the reported problem with the ‘U-shaped’ EMM-ARM steel mould, it was 

decided to perform a second experiment with measures being taken to mitigate the possibility 

of debonding. In an attempt to overcome this problem, 16 steel connectors were placed along 

the sides of the steel mould (8 in each side). The connectors are stainless screws with 3.55 mm 

in diameter and 37.76 mm in length were laced in the beam according to the scheme shown in 

Figure 3.8. 

 

a) 

 

b) 

Figure 3.8. Overall scheme of the steel ‘U-shaped’ beam [units: mm]. 
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This second test with the ‘U-shaped’ steel alloy mould containing connectors took place at a 

distinct construction site, and with a distinct type of concrete. The characteristics are presented 

in Table 3.4 and the concrete composition was the mix 2 shown in Table 3.2. Additionally 

classic cyclic compression testing (CC) were conducted in cylinders (Ø = 150 mm and 300 mm 

height) at ages of 1, 3, 7, 14 and 29 days, performed according to LNEC recommendations 

E397 (1993). 

Table 3.4. Beam characteristics used in test 2. 

 Test 2 – concrete mix 2 
Reference U-STL-2.4-CS 

Geometry  
Cross-section ‘U’ 
Height 150.40 mm 
Width 151.58 mm 
Span 2404 mm 
Connectors 
(spacing) 

Yes 
(500 mm) 

Supports Concrete cubes 
Mould  

Material Steel 
Density 7800.0 kg/m3 
E-modulus 170.0 GPa 

Concrete density 2300.0 kg/m3 

 

The raw results of the resonance frequencies identified from the ‘U-shaped’ steel beam are 

shown in Figure 3.9a. Once more, the resonance frequency evolution has similar kinetics to the 

previous EMM-ARM applications, with a dormant period in the first 7 hours, after which the 

resonance frequency evolved significantly until two days of concrete curing. From that point, 

the evolution rate was significantly reduced. 

The estimated concrete E-modulus and the corresponding comparison with CC results for this 

test is shown in Figure 3.9b. The results show similar coherence to that which had been 

previously obtained in the acrylic EMM-ARM application. This leads to the conclusion that the 

addition of drive screws in the steel mould avoids the debonding problems, and thus allows 

proving the steel alloy EMM-ARM as a feasible alternative to the initially devised acrylic 

mould. It is further remarked that the inclusion of these screws does not endanger the re-

usability of the mould, as they can be easily unscrewed before concrete removal. 
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a) b) 

Figure 3.9. Results of test 2: a) Identified frequency evolution in the EMM-ARM specimen; 

b) E-modulus obtained through steel alloy EMM-ARM with connectors and through 

compressive cyclic testing. 

However, despite this successful feasibility demonstration, the steel-alloy mould revealed to be 

somehow impractical for systematic application due to its large size (2.6 meter long). 

Furthermore, due to the reduced thickness of its steel plate, the mould tended to suffer sectional 

deformations with repeated use. In fact, in just one reuse of the mould the cross-sectional 

geometry changed 0.78% (1.28 mm) in the width and 2.46% (3.70 mm) in the height. These 

changes in the geometry tended to compromise the accuracy of the stiffness estimations, which 

is a quite undesirable effect. Thus if these changes were not properly taken into account they 

would have had an impact in the E-modulus estimations of 1.8% (0.53 GPa). 

3.2.1.2. Second attempt 

As previously stated, a major limitation of EMM-ARM in the 2 meters long acrylic beam setup 

is related to the difficulty to cast inside the long mould from its extremity and the inherent 

difficulties in handling the test beam. Despite the previous attempt, where the use of an open 

‘U-shaped’ beam solved the problem of casting, the ‘U-shaped’ mould continues to be an 

obstacle due to its considerable size that is not manageable by a single operator. Therefore, it 

was decided to adapt the original tubular mould by reducing its total length, making 

casting/handling operations easier. However, it is necessary to take into account that the 

reduction of the beam span increases the overall stiffness of the system and thus decreases the 
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amplitude of ambient-induced vibrations of the beam, which ultimately poses difficulties for 

the accurate measurement of accelerations. 

Therefore, an analytical parametric study was performed in order to optimize the span of the 

beam. In this study, it was established that the maximum resonance frequency of the first 

vibration mode of the beam should be around 150 Hz. This value, which was based on the 

accumulated experience of previous applications, should be appropriate to ensure vibration 

levels that can be detected by the adopted accelerometers without accuracy issues (e.g. avoiding 

high noise-to-signal ratios). It was also considered relevant to limit the maximum resonance 

frequency, as to prevent the EMM-ARM test from reaching resonance frequencies that could 

induce a dynamic-type response (therefore obtaining dynamic E-modulus measurements as 

opposed to the current capacity of capturing static E-modulus values as discussed in section 

2.7.2) (Shkolnik, 2008). Thus, a scenario for a hardened concrete with 30 GPa and 2400 kg/m3 

density was considered. By conserving the cross-sectional characteristics to the original 

implementation (see Figure 2.16), while reducing the span to 0.9 m, the resulting calculated 

resonance frequency of the EMM-ARM beam was found to fill the intended requirements (i.e. 

f < 150 Hz). It should also be noted that this smaller span increases the resolution of EMM-

ARM by increasing the range of variation of the resonance frequencies during testing. In fact, 

since the instants right after casting (0 GPa) to the hardened stage of concrete (30 GPa), the 

original implementation of EMM-ARM covered an evolution range of 7.4-38.6 Hz, whereas 

the reduced span version covers a range of 28.8-147.7 Hz. It is noted that further alternatives to 

the ‘U-shaped’ cross-section were no longer studied due to the robustness problems that the 

thin plate of the mould has brought. 

Therefore, two laboratory test programs were performed to study the feasibility of reducing the 

total length of the testing beams (Figure 3.10), while conserving a tubular cross-section for the 

mould. Both test programs included additional specimens in which the material of the mould 

was changed to PVC, which is both cheaper than acrylic and less prone to being damaged during 

casting operations. Each of the two test programs is briefly summarized in Table 3.5, whereas 

the corresponding concrete compositions are shown in Table 3.2. The first test program 

comprised three beams (Figure 3.10a): one corresponding to the original implementation with 

acrylic beam that had 1.8 m span (O-ACR-1.8-CS); another with the ‘U-shaped’ steel mould of 

2.4 m span as reported in Figure 3.8 (U-STL-2.4-CS); and a new 0.9 m span PVC mould with 
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inner/outer diameter of 86/90 mm (O-PVC-0.9-CS). The second test program was solely 

dedicated to the tubular shaped beams and included (Figure 3.10b): one beam corresponding to 

the original implementation (O-ACR-1.8-CS); one acrylic beam with the same cross section as 

the previous one, but 1.0 m span (O-ACR-1.0-CS); and a beam with PVC mould that was quite 

similar to the one of the first test program, but had 1.0 m span instead of 0.9 m (O-PVC-1.0-

CS). In both test programs, additional cylinder specimens (Ø = 150 mm and 300 mm height) 

have been cast as to allow the evaluation of E-modulus through CC testing. In the first test, two 

specimens were cast and tested at 2.7, 7, 14 and 28 days. In the second test, three specimens 

were cast and tested at 41 days. The tests were performed in the laboratory of the University of 

Minho under almost isothermal environmental conditions (at 20±2 ºC). 

a) b) 

Figure 3.10. Photos of the studied EMM-ARM beams: a) Test 3; b) Test 4. 

Table 3.5. Beam characteristics for the tests 3 and 4. 

 Test 3 – concrete mix 3 Test 4 – concrete mix 4 
Reference O-ACR-1.8-CS U-STL-2.4-CS O-PVC-0.9-CS O-ACR-1.8-CS O-ACR-1.0-CS O-PVC-1.0-CS 

Geometry       
Cross-section Circular ‘U’ Circular Circular Circular Circular 
i H 92 mm 150 mm 86 mm 92 mm 92 mm 86 mm 
e  100 mm 150 mm 90 mm 100 mm 100 mm 90 mm 
Span 1800 mm 2400 mm 900 mm 1800 mm 1000 mm 1000 mm 
Connectors 
(spacing) 

Yes 
(300 mm) 

Yes 
(500 mm) 

Yes 
(180 mm) 

Yes 
(300 mm) 

Yes 
(200 mm) 

Yes 
(200 mm) 

Supports ØTR=5 mm 
Concrete cubes 

Concrete cubes ØTR=5 mm 
Concrete cubes 

ØTR=5 mm 
Concrete cubes 

ØTR=5 mm 
Concrete cubes 

ØTR=5 mm 
Concrete cubes 

Mould       
Material Acrylic Steel PVC Acrylic Acrylic PVC 
Density 1286.9 kg/m3 7800.0 kg/m3 1463.5 kg/m3 1400.0 kg/m3 1200.0 kg/m3 1400.0 kg/m3 
E-modulus 3.30 GPa 170 GPa 4.3 GPa 3.60 GPa 4.00 GPa 3.50 GPa 

Concrete density 2340.3 kg/m3 2362.9 kg/m3 2295.7 kg/m3 2382.6 kg/m3 2347.1 kg/m3 2311.3 kg/m3 
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The resonance frequencies identified by EMM-ARM for test programs 3 and 4 are shown in 

Figures 3.11a and 3.11b, respectively. It is noticeable in both figures that both the initial 

resonance frequency and the amplitude of resonance frequency variation of EMM-ARM tests 

is increased in the specimens with smaller span (0.9 m and 1.0 m) as expected. In fact, the 

frequency variation along testing was 9.7-44.5 Hz in the 1.8 m span original beam (ACR-O-

CS-1.8), whereas it shifted to 30.1-139.2 Hz for the 0.9 m span beam (PVC-O-CS-0.9). 

Moreover, all frequency evolution curves appear to be plausible, showing an initial dormant 

period (where the frequency remains almost constant within ±0.3 Hz). After this threshold, the 

frequencies evolved significantly for all tested specimens until approximately 21 and 19 hours 

of curing period for the mix 1 and 2, respectively, after which a dramatic reduction in the slope 

of frequency evolution occurs. 

  

a) b) 

Figure 3.11. Comparison between the frequency evolutions obtained through the different 

EMM-ARM beams: a) Test 3; b) Test 4. 

The elasticity modulus of the two concretes was estimated by applying equations (2.11) and 

(2.12) to the resonant frequencies presented in Figure 3.11. In a first approach, it was assumed 

that the vertical stiffness of the supports of the beams (k – in equation (2.11)) was infinite. The 

resulting E-modulus evolution estimates, along with the results of CC testing, are shown in 

Figures 3.12a and 3.12c for tests 3 and 4, respectively. There is a good coherence between the 

results of the original EMM-ARM beam (O-ACR-1.8-CS) and the ‘U-shape’ steel beam (U-

STL-2.4-CS) with the results of cyclic compression, corroborating the validity of results 

presented in previous works (Azenha et al., 2010a, Azenha et al., 2012b, Boulay et al., 2013a). 

Nevertheless, when the results of the reduced span EMM-ARM beams (O-ACR-1.0-CS, O-

0.01 0.1 1 10 100
0

50

100

150

F
rq

u
en

cy
 [

H
z]

Time [days]

 U-STL-2.4-CS
 O-ACR-1.8-CS
 O-PVC-0.9-CS

0.01 0.1 1 10 100
0

40

80

120

160
F

re
qu

en
cy

 [
H

z]

Time [days]

 O-PVC-1.0-CS
 O-ACR-1.0-CS
 O-ACR-1.8-CS



Chapter 3 

66 
 

PVC-1.0-CS and O-PVC-0.9-CS) are added to the comparison, a large discrepancy between the 

results of these beams can be seen. In fact, the estimated concrete stiffness through these test 

beams is consistently lower than that of the previous implementations and that of CC. A careful 

analysis of the experimental setup at the end of the experiments allowed observing that the 

assumption of infinite rigidity for the supports might not be truly valid due to: (i) a small gap 

between the mould and the concrete cube support; and to (ii) precarious support conditions due 

to misalignments of the horizontal rods in the beam in combination with the small stiffness of 

the horizontal rods. Then, the consideration of infinite of k in equation (2.11) would require a 

corresponding correction, as to obtain accurate estimates of concrete E-modulus. 

  

a) b) 

  

c) d) 

Figure 3.12. Comparison between the E-modulus evolutions obtained through the different 

EMM-ARM beams: a) Test 3 with k=∞; b) Test 3 with real value of k; c) Test 4 with k=∞; d) 

Test 4 with real value of k. 
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Thus, the spacing between the effective point where the rods touch the supports and the concrete 

beams (see Figure 3.13) was carefully measured and the actual stiffness of the support beams 

with circular cross-section was estimated in accordance with the procedure present in the work 

of Azenha et al. (2010a). 
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Figure 3.13. Effective point where the rods touch the supports. 

The following values for the vertical stiffness of the supports were obtained: 25×106 N/m for 

the PVC beams (O-PVC-0.9-CS and O-PVC-1.0-CS) as a result of an average 8.1 mm gap in 

both sides of the beams; 17×106 N/m for the beam O-ACR-1.0-CS as a result of an average 

9.2 mm gap; and 848×106 N/m for the beam O-ACR-1.8-CS as a result of an average 2.0 mm 

gap. The vertical stiffness of the supports of the ‘U-shaped’ steel beam was assumed to be 

infinite due to their direct standing on concrete blocks without intermediate supporting bars 

(flexible). These values were introduced in equation (2.11) (page 35) and the concrete E-

modulus for all tested beams was recomputed based on the frequencies of the Figures 3.11a and 

3.11b. 

The corrected curves of stiffness evolution of the concrete for the test programs 3 and 4 are 

shown, respectively, in Figures 3.12b and 3.12d. It can be observed that the E-modulus 

estimation of all beams and CC testing has become quite coherent. It is interesting to notice that 
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the estimates of E-modulus of the longer span test specimens (original implementation) were 

marginally affected by this correction, with modifications always below 0.1% in comparison to 

the initial estimates in which the rigidity of the supports had been considered infinite. However, 

the new reduced spans have strongly increased the dependency of E-modulus estimates on the 

stiffness of the supports, thus justifying the changes of more than 15.1% of estimates when the 

support stiffness was corrected. Despite this stiffness support sensitivity issue, these two test 

programs have allowed confirming that the reduction of beam span and alteration of mould 

material to PVC are feasible changes. 

3.2.2. New supports 

Taking into account the added sensitivity to support conditions that the reduced span of ~1.0 m 

carries to EMM-ARM E-modulus estimations, it became necessary to ensure adequate support 

conditions of the tested beams as to guarantee the desirable robustness for testing. Thus a new 

support system was developed in which the dependency on the operator skill to ensure stiff 

supports is strongly reduced. The new support system was developed in steel to ensure adequate 

stiffness and durability. 

The sketch of the new steel supports is shown in Figure 3.14. The supports have specially 

devised round depressions to receive the horizontal rods from the specimen, and their geometry 

is such that the slacks between the specimen and the supporting system are kept to a minimum 

(i.e. under 0.5 mm, when the specimen is centred with the support). As mentioned in the 

previous subsection, slight alignment mismatches had been observed between the pairs of 

supporting rods of the beams at their extremities. These mismatches demanded that slight 

corrections were made in the height of the support blocks in some occasions (e.g. with thin 

metal sheets – see Figure 3.13). To avoid such type of operator-dependent corrections with 

potential impact on the stiffness of the supports, the new developed supports encompass a 

longitudinal bearing in one of them (pivoted support), which allows fine-tuning its transversal 

rotation as to compensate any potential misalignment between the supporting rods of the beam. 
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a) 

 

b) 

Figure 3.14. New EMM-ARM steel supports: a) Pivoted; b) Fixed [units: mm]. 

In addition to the development of the new supports, to increase the vertical stiffness of the 

whole support system, the horizontal threaded rods (TR) with TR = 5 mm that were used in 

previous implementations of EMM-ARM where replaced with plain steel rods (PR) with 

PR = 12 mm. These adaptations increased the vertical stiffness of the supports to a minimum 

of 8.79×1012 N/m. In the worst-case scenario of the shortest beam O-ACR-09 (most sensitive 

to the stiffness of the support), this stiffness has an impact of less than 0.0001% on the 

estimation of composite beam stiffness, when compared to the assumption of infinite rigidity 

of the support. 

To assess the performance of the newly devised support system, a test program was performed. 

This test program intended to compare two different EMM-ARM beams: an original 

EMM-ARM beam (O-ACR-1.8-CS) with 1.8 m span and supported over concrete cubes 

(Figure 2.16) and an acrylic beam with 1.0 m span (O-ACR-1.0-MS), which is equal to the first 

beam, except for its span and the fact that it uses the new support system (Figure 3.15). Besides 
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the EMM-ARM experiments, E-modulus had already been measured for a previous batch of 

this concrete in cylinder specimens through CC at the age of 41 days. 

 

Figure 3.15. Scheme of the reduced span mould for EMM-ARM tests with new steel supports 

[units: mm]. 

The characteristics of the beams used in this experiment are shown in Table 3.6. The concrete 

used in this experiment was mixture 4 shown in Table 3.2. 

Table 3.6. Beam characteristics used in the test 5. 

 Test 5 – concrete mix 4 
Reference O-ACR-1.8-CS O-ACR-1.0-MS 

Geometry   
Cross-section Circular Circular 
i 91.65 mm 91.46 mm 

e 100.19 mm 100.17 mm 
Span 1825 mm 1019 mm 
Connectors 
(spacing) 

Yes 
(300 mm) 

Yes 
(330 mm) 

Supports ØTR=5 mm 
Concrete cubes 

ØPR=12 mm Steel 
supports 

Mould   
Material Acrylic Acrylic 
Density 1160.0 kg/m3 1160.0 kg/m3 
E-modulus 5.70 GPa 6.20 GPa 

Concrete density 2316.8 kg/m3 2317.4 kg/m3 

 

The evolutions of the identified resonance frequencies of the two beams as presented in Figure 

3.16a. Once more, as can be observed, the evolutions kinetics displays similar shape to previous 
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implementations of EMM-ARM. The estimated elastic modulus evolutions from these 

resonance frequencies for concrete are shown in Figure 3.16b. Both EMM-ARM results seem 

to slightly over-estimate the value of E-modulus as compared to CC testing. The reader is 

however reminded that these CC results pertained to a previous batch of the same concrete, and 

that this difference is likely to be related to variance between different concrete batches. 

Furthermore there is an almost perfect overlap of the E-modulus estimations obtained with the 

original beam (O-ACR-1.8-CS) and with the reduced span beam with the new support system 

(O-ACR-1.0-MS). 

  

a) b) 

Figure 3.16. Comparison between the E-modulus evolutions with different support systems. 

Therefore, it is possible to conclude that the new support system for EMM-ARM beams is 

feasible and provides sufficient stiffness for the assumption of infinite support stiffness in the 

scope of application of the E-modulus predictive formulae. Thus, the dependency of the 

operator in the results was strongly reduced by eliminating the problem of controlling the gap 

between the supports and the testing beam and by allowing the correction of some geometric 

imperfections in the alignment between the horizontal rods that support the beam (pivoted 

support). 

3.2.3. Development of a new reusable mould 

In previous subchapters, new moulds for EMM-ARM were studied by varying both the 

geometry, the mould material and the supports. However, none of the tested moulds is reusable 
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(except for the ‘U-shaped’ steel mould, with its negative points raised earlier), which would 

definitely be a desirable situation to perform systematic applications of EMM-ARM. Based on 

the previous developments, and taking into account the intention of making a reusable mould, 

a new PVC mould reinforced with aluminium rings, with the geometry shown in Figure 3.17, 

was developed and tested. To enable the reuse of the PVC tube, it was sliced in two halves 

along its longitudinal direction through a vertical plane. The longitudinal cut was made in this 

position as to avoid undermining the composite behaviour of the beam. Indeed, the shear 

stresses are minimum in the top and bottom parts of the beam. In order to ensure constancy of 

geometry of the PVC mould, three lightweight aluminium rings were glued to the tube, which 

also ensure adequate connection between the two PVC halves. 

a) 

 

b) 

 

Figure 3.17. Reusable mould for EMM-ARM tests: a) Scheme; b) 3D exploded view [units: 

mm]. 
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The combination of several factors in the design of this re-usable mould make it advantageous 

in comparison to the previous attempt of re-usability through the ‘U-shaped’ mould: (i) its 

circular cross section and the aluminium ring allow a better control of geometry constancy along 

repeated use; (ii) the smaller span makes it easier to handle, particularly in regard to demoulding 

operations at the end of the experiment, together with specimen disposal; (iii) much less 

concrete volume is necessary to deploy the same type of characterization. Additionally, the use 

of PVC as mould material, together with the absence of internal connectors and the small length 

of the beam, allows the access of a vibrator needle inside the mould without danger of damaging 

it, which is a significant advantage in comparison to the original implementation of EMM-

ARM.  

To test this new mould, an additional test program experiment with three EMM-ARM beams 

was carried out: a 0.9 m span acrylic beam similar to the original supported with the new 

supports (O-ACR-0.9-MS); the new reusable beam (R-PVC-1.0-MS); and a beam similar to the 

newly devised reusable but with the PVC tube intact, i.e. without cutting it in halves, nor placing 

the aluminium rings (O-PVC-1.0-MS, which is not re-usable). This test allowed, in addition to 

the validation of the reusable beam, to check if the elimination of the vertical connectors could 

lead to the loss of the composite behaviour of the beam due to slippage. The characteristics of 

the beams used in this test are given in Table 3.7. In addition to the EMM-ARM testing, cyclic 

compression testing (CC) was made at 7 days of curing. This new mould was tested with the 

concrete mix 5 shown in Table 3.2. 

Table 3.7. Beams characteristics used in the test 6. 

 Test 6 – concrete mix 5 
Reference O-ACR-0.9-MS O-PVC-1.0-MS R-PVC-1.0-MS 

Geometry    
Cross-section Circular Circular Circular 
i 92.11 mm 96.05 mm 96.04 mm 

e 99.82 mm 110.19 mm 110.11 mm 
Span 900 mm 1000 mm 1000 mm 
Connectors 
(spacing) 

Yes 
(300 mm) 

No No 

Supports ØPR=12 mm Steel 
supports 

ØPR=12 mm Steel 
supports 

ØPR=12 mm Steel 
supports 

Mould    
Density 1239.9 kg/m3 1469.4 kg/m3 1492.6 kg/m3 
E-modulus 4.68 GPa 3.40 GPa 3.06 GPa 

Reusable No No Yes 
Concrete density 2361.8 kg/m3 2380.0 kg/m3 2381.3 kg/m3 
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The identified evolution of resonance frequencies for the three tested beams is presented in 

Figure 3.18a, where it is possible to observe the three phases of the concrete hardening. First 

the dormant period, followed by a fast evolution of the frequencies and after 2 days of curing a 

slow grow period. Based on this information, the elastic modulus evolutions of concrete 

monitored in this test program were computed and are shown in Figure 3.18b. The Figure 

highlights a good coherence between the results obtained with three different beams, with a 

variation of only 0.97 GPa (3%) at 7 days. The results of the EMM-ARM and cyclic 

compression tests also show only a deviation of 1.25 GPa (4%) at such age. This similarity in 

the results allows the validation the removal of vertical connectors. In fact, despite the removal 

of the vertical connectors placed along the beam, concrete remains mechanically connected to 

the mould through the horizontal rods placed at the extremities of the beam, which in addition 

to support the beam, also end up operating as extremity connectors. These results also validated 

the reusable beam during its first use. It is noted that after the end of this experiment, the mould 

was easily removed and re-assembled. The geometry of the reassembled mould was verified 

after the test and the geometry variation from the state prior to the test was less than 0.25% in 

both the internal and external diameters. It is also pointed that the demoulded specimen did not 

exhibit any kind of damage or cracking. 

  

a) b) 

Figure 3.18. Comparison between the E-modulus evolution obtained through reusable and 

non-reusable beams. 
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3.3. Cement paste testing 

Since its first application, the EMM-ARM applied to cement paste has yielded successful results 

and has been extensively used in materials research (Maia et al., 2011a, Maia et al., 2011b, 

Maia et al., 2012b, Maia et al., 2012c). However, contrary to the concrete version in which the 

mould had some practical issues and major user-dependency problems that prevented the 

systematic use of the method, the original test apparatus applied to cement pastes has less user-

dependency problems and did not reveal any relevant problematic issues. Nevertheless the 

clamping device of the beam is still quite insufficiently developed, as it may cause a non-expert 

user to make mistakes in the assembly, with potentially relevant impacts in the support 

conditions. It is also hard to ensure the verticality of the accelerometer placed at the free end of 

the composite beam and the stiffness of the support is dependent on how the user attaches the 

clamping device of the beam to the support base of the testing system. Additionally, although 

it is possible to obtain good quality and repeatable results with the version of EMM-ARM for 

cement paste, when compared with the version for concrete, it has a much lower resolution. 

This lower resolution is related to the higher slenderness of the beam and the higher relevance 

of the accelerometer’s mass in the free end of the beam when compared with the mass of the 

beam.  

The following section presents the implementation of a new clamping device that allows a 

simple assembly of the whole testing apparatus. Then a study on the possibility of using moulds 

with shorter spans and the use of very lightweight accelerometers to increase the resolution 

method will be presented.  

3.3.1. New support system 

As mentioned the beam’s camping system has some shortcomings that make it unreliable when 

appropriate attention is not taken during the assembly of the testing system. This happens 

because the original clamping device consists of two halves of a steel tube that embrace the 

testing beam and do not actually have any connection to a rigid base to stand the entire testing 

system. Such connection is normally made through an external clamp that presses the beam 

against a metallic heavy base, as shown in Figure 3.19. 
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Figure 3.19. EMM-ARM for cement paste original support system. 

It is this connection that renders the support system potentially unreliable, and extreme caution 

is needed during the clamp adjustment to ensure proper support of the beam and guarantee the 

verticality of the measuring axis of the accelerometer placed at the free end. Therefore, in order 

to limit the user's dependency, a new support system was developed, as shown in Figure 3.20. 

It consists of a new clamping device composed of two parts: the lower part is fixed to a rigid 

base for supporting the entire structural system; and the top paste fixing the beam to the 

clamping device. Both parts of the support have a semi-circular groove with a diameter equal 

to the outer diameter of the testing beam (20 mm). In order to avoid any problems with 

geometric imperfection in the outer diameter of the beam, the clamping device was designed to 

have a 1 mm gap between the two parts of the support (see Figure 3.20b). This gap allows it to 

continue to be effective even when the beam has an outer diameter of 19 mm. 
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a) 

  

b) 

Figure 3.20. New EMM-ARM supports for cement paste tests: a) Disassembled scheme; b) 

Assembled scheme. 

In order to verify if the new support is stiff enough to allow the consideration of a perfect 

cantilever a small experimental test was performed. In this test a small weigh of 0.54 kg was 

suspended at the free end of a EMM-ARM acrylic beam (i = 16 mm e = 20 mm and 

E = 4.2 GPa) with 250 mm of span filled with an epoxy adhesive with E = 8.55 GPa (estimated 

by an EMM-ARM test). The deflexion of the beam was measured in 4 different points along its 

free span and these measurements were compared to a numerical curve. To compute the 

numerical curve was computed assuming a perfect cantilever. The results of this validation test 

are shown in Figure 3.21. As can be observed there is almost a superposition of the two curves 

proving that the support is stiff enough to allow the consideration of a perfect cantilever.  

Bottom part Top part

120

70
20

R10

25 25

70 70

25 25

70

70

20

R10

3D view

1

70

4
1

Perfect circle
Ø=20 40

70
Perfect circle
Ø=19



Chapter 3 

78 
 

 

Figure 3.21. Results of the support stiffness validation test. 

The final testing apparatus is presented in Figures 3.22a and 3.22b. This new clamping device 

is then attached to a steel support as shown in Figure 3.22c. Thus with this new testing apparatus 

the test assembly process is much simpler, and the stiffness of the beam support is increased.  

a) 

 

 

b) c) 

Figure 3.22. EMM-ARM final assembly for cement pastes tests: a) Scheme; b) 3D exploded 

view; c) Photo [units: mm]. 
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To validate the use of this new support, a test was made where four different beams were 

evaluated: three beams identical in every aspect to the original presented in Figure 2.18 (45-

OS-A1-C1-1, 45-OS-A1-C1-2, 45-OS-A1-C1-3) and one beam similar to the previous ones but 

with the support provided by the new system (45-NS-A1-C1). The characteristics of the beams 

as well as the tested cement paste are shown in Table 3.8. It is noted that in all experiments 

reported in these subsection 3.3.1, the accelerations at free end of the beams were acquired 

through an accelerometer PCB 352C04 (sensitivity: 1 V/g; range: ±5 g) connected to a dynamic 

acquisition system NI 9234 with 24-bit resolution. The accelerations were recorded at an 

acquisition frequency of 500 Hz in packages of 60 seconds each 10 minutes. 

Table 3.8. Beam’s characteristics for the cement paste tests. 

Reference 
45-OS-

A1-C1-1 
45-OS-

A1-C1-2 
45-OS-

A1-C1-3 
45-NS-
A1-C1 

45-OS-
A2-C1 

25-OS-
A1-C1 

45-OS-
A1-C2 

25-OS-
A1-C2 

Geometry         
i (mm) 16.305 16.313 16.313 16.145 16.313 16.100 16.410 16.683 
e (mm) 20.025 20.135 20.135 20.138 20.135 20.000 20.068 20.008 
Span (mm) 450.0 450.0 450.0 450.0 450.0 250.5 449.0 250.5 

Supports Original Original Original New Original Original Original Original 
Mould         

Density (kg/m3) 1285.9 1238.9 1238.9 1231.7 1238.9 1255.1 1314.9 1339.7 
E-modulus (GPa) 4.70 5.00 5.00 4.20 5.00 4.70 4.75 4.80 

Accelerometer         
Mass (grams) 23.25 23.25 23.25 23.25 5.80 23.25 23.25 23.25 
Sensitivity (mV/g) 1000 1000 1000 1000 10 1000 1000 1000 

Cement paste          
Cement type CEM I  

42.4R 
CEM I  
42.4R 

CEM I  
42.4R 

CEM I 
42.4R 

CEM I  
42.4R 

CEM I 
42.4R 

CEM I  
52.5N  

CEM I  
52.5N 

w/c 0.50 0.50 0.50 0.50 0.50 0.50 0.54 0.54 
Density 1740.9 1789.6 1789.6 1797.9 1789.6 1774.3 1712.6 1700.2 

 

The resonant frequencies identified by the EMM-ARM for the four studied beams are shown 

in Figure 3.23a. It is worth mentioning the good coherence between the frequency evolutions 

identified in the different beams, ranging from ~14.9 Hz to 24.9 Hz within the testing period. 

Moreover, all the frequency evolution curves exhibit an initial dormant period where the 

frequency remains almost constant with standard deviation (SD) of 0.076 during the first 5 

hours. After this threshold, the frequencies evolved significantly for all tested specimens until 

approximately 48 hours of curing period, after which a dramatic reduction in the slope of 

frequency evolution occurs. The consistency of the identified frequency evolutions indicates 

right away for the suitability of the new support system. However, the EMM-ARM experiments 

are targeted to the estimation of the elastic modulus of the material inside the mould, which 
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should then be assessed. Thus the elasticity modulus of the tested cement paste was estimated 

by applying equations (2.14) and (2.12) to the resonant frequencies presented in Figure 3.23a. 

The resulting E-modulus evolution is shown in Figure 3.23b. 

Firstly, it is possible to verify that the E-modulus evolution curves estimated from the beams 

with the same testing apparatus have very good coherence with each other, demonstrating 

adequate repeatability of EMM-ARM. Furthermore, when comparing the results obtained with 

the beam with the new support (45-NS-A1-C1), it can be seen that there is an almost perfect 

superposition of the curves, with a differences always under SD < 0.25. Additionally, it can be 

seen that during the initial dormant period, the estimated E-modulus of the cement paste is 

almost zero (6.35×10-4 GPa with SD = 0.104) in all the tests. These results are in agreement to 

previous applications (Azenha et al., 2012a, Maia et al., 2011a, Maia et al., 2011b, Maia et al., 

2012b, Maia et al., 2012c). The similarity of the E-modulus evolutions during the whole curing 

process of the cement paste allow the validation of the new support system of the EMM-ARM 

beams. 

  

a) b) 

Figure 3.23. Cement paste EMM-ARM test 1: a) Identified first resonance frequency 

evolutions; b) Estimated elastic modulus evolutions. 

3.3.2. Mould geometry and accelerometer 
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paste testing still has problems related to the resolution that can be achieved in the E-modulus 

measurement. This problem is mainly related to the high slenderness of the test beam and to the 

ratio between the beam’s mass and the mass of the accelerometer on the free end of the beam. 

Thus, in an attempt to increase the resolution of the method, this subsection presents a study 

aimed to reduce the slenderness of the beam by reducing its free span. The reduction of the size 

of the beam is also interesting from the point of view of the study of expensive materials, such 

as synthesized pure compounds (for example pure Alite) which have considerable 

manufacturing costs and as such it is intended to use the least possible amount of material. 

In order to support the decision about the new span of the beam it was established as a principle 

that it should have a slenderness closer to the original beam applied to concrete. However, it 

was necessary to take into consideration that the beam response to the environmental excitation 

has to be higher when compared to the version for concrete due to lower accuracy of the light 

weight accelerometers. Therefore, a compromise was established that led to the choice of a 

250 mm span which reduces the slenderness (λ) of the beams from 140.56 to 78.09, value rather 

close to the value used in the original beam applied to concrete (52.99). The slenderness values 

of the different EMM-ARM moulds are summarised in the Table 3.9. 

Table 3.9. EMM-ARM moulds slenderness. 

Mould 
characteristics 

Concrete Cement paste 
O-ACR-1.8 O-PVC-1.0 45-OS-A1 25-OS-A1 

Øi (mm) 92.0 96.0 16.0 16.0 
Øe (mm) 100.0 110.0 20.0 20.0 
Span (mm) 1800 1000 450 250 
λmould 52.99 27.40 140.56 78.09 

 

To validate the use of this new geometry test beam, two tests were conducted with two different 

cement pastes (C1 and C2). The characteristics of the beams as well as the tested cement pastes 

are shown in Table 3.8. The first resonance frequency evolutions obtained in these two tests are 

shown in Figure 3.24a. It is noticeable that both the initial resonance frequency and the range 

of variation of the resonant frequency of EMM-ARM tests is increased in the specimens with 

250 mm span (25-OS-A1-C1 and 25-OS-A1-C2) as expected. Moreover, all frequency 

evolution curves appear to be plausible, showing a shape similar to the ones obtained in 

previous applications. 
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Again the elasticity modulus of the two cement pastes was estimated by applying equations 

(2.14) and (2.12) together with the information shown in Table 3.8 to the resonant frequencies 

presented in Figure 3.24a. The resulting E-modulus evolution estimates are shown in Figure 

3.24b for the two tests. In this figure, it can be observed that the evolution curves of each cement 

paste are almost overlapping with each other, regardless of the test setup that was used, with 

differences always under SDC1 < 0.288 and SDC2 < 0.289 for cement pastes C1 and C2 

respectively. Additionally, it can be seen that even during the initial dormant period the E-

modulus estimations were not affected by the span reduction and the initial values obtained at 

this stage were almost zero (9.20×10-4 GPa with SD = 0.104 and 3.95×10-2 GPa with 

SD = 0.0069 for the cement paste C1 and C2 respectively). Furthermore, when comparing the 

results obtained with the two pastes (C1 and C2), it can be seen that the E-modulus evolution 

is a bit faster in the cement paste C2 (CEM I 52.5N and w/c 0.54) in the beginning of the cement 

hydration and until 1.35 days. Then the cement paste C1 (CEM I 42.5R and w/c 0.5) starts to 

develop higher stiffness. In the end of the tests, at 10 days, the difference between the two 

cement pastes is ~1.5 GPa. These results emphasize the ability that the EMM-ARM has to 

evaluate the kinetics of cement hydration. Furthermore the similarity of the E-modulus 

evolutions during the whole curing process of the cement paste allow the validation of the 

reducing the span of the beam to perform EMM-ARM tests. 

  

a) b) 

Figure 3.24. Results of the cement paste test 2: a) Identified natural frequencies; b) Estimated 

E-modulus. 
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accelerometer used in the tests and the beams is much higher in variant for cement pastes (45-

OS-A1) when compared with the variant for concretes (O-ACR-1.8 and O-PVC-1.0) which 

leads to a reduction in the resonance frequency variation range along the test and consequently 

to the reduction of the method resolution.  

Table 3.10. Mass ratio between the beam and the accelerometer. 

 Concrete Cement paste 
Reference O-ACR-1.8 O-PVC-1.0 45-OS-A1 45-OS-A2 

Mould     
γmould (kg/m3) 1300 1300 1300 1300 
Øi (mm) 92.0 96.0 16.0 16.0 
Øe (mm) 100.0 110.0 20.0 20.0 

Testing material     
γmaterial (kg/m3) 2400 2400 1700 1700 

Mass     
m̅ (kg/m) 17.52 20.32 0.489 0.489 
maccel (kg) 0.22 0.22 0.025 0.0058 
maccel/m̅ (%) 1.26 1.08 5.11 1.19 

 

Thus a new test was performed in which was intended to investigate the feasibility of using a 

very light weight accelerometer (PCB 352C04 with 5.8 grams). However, this type of light 

weight accelerometers typically has very low sensitivity (10 mV/g) which can significantly 

hinder the identification of the beam vibrations. Therefore, in an attempt to not excessively 

undermining the identification of the beam resonance frequencies, instead of using a short span 

beam tested before (which would lead to a reduction in the vibration amplitude), the test beam 

in this experiment has the same span as shown in Figure 3.22. In this new test the accelerations 

at the free end were monitored by this new accelerometer here called A2 (45-OS-A2-C1). The 

test was performed with the cement paste C1. 

The identified first resonance frequency of the EMM-ARM beams is shown in Figure 3.25a. 

First, it is possible to observe the increase in both the resonant frequencies and the variation 

range of the beam with the lighter accelerometer relative to the previously tested beams. In fact, 

for the beams with the heavier accelerometers (45-OS-C1-1-A1, 45-A1 OS-C1-2-45 and OS-

A1-1-3), the resonance frequencies ranged between 14.9 Hz during the dormant period and 24.9 

Hz in the end of the test (that corresponds to a 10 Hz range). In the beam with the lightweight 

accelerometer A2, the resonance frequencies ranged from 16.8 Hz to 27.9 Hz (11.1 Hz range). 
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After converting the resonance frequency to the E-modulus of the cement paste the obtained 

results are shown in Figure 3.25b. There is an almost perfect superposition of the different 

evolutions, with differences lower than SD < 0.044. From this good coherence between the 

results it can be concluded that the use of low-mass accelerometers improves the resolution of 

the EMM-ARM tests as the resonance frequency range changed from 9.96 Hz in the beams 

with the heavier accelerometer (45-OS-A1-C1-1, 2 and 3) to 11.15 Hz (+11.9%) in the beam 

45-OS-A2-C1. 

  

a) b) 

Figure 3.25. EMM-ARM results of the cement paste test 3: a) Resonance frequency 

evolution; b) Estimated cement paste E-modulus.  
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Chapter 4  

Identification of modal parameters 

4.1. Introduction 

In the previous Chapter, the limitations EMM-ARM were studied in view of issues related to 

the experimental setup, namely: moulds geometry, materials and support systems, as well as 

the development of a reusable mould for concrete testing. However, in addition to the 

aforementioned improvements that solved limitations of the initial versions of EMM-ARM, the 

method presents another potential problem. The original implementations of EMM-ARM were 

conducted in laboratorial conditions where the selection of an appropriate place to perform the 

experiments (where the ambient noise on average in periods of 10 minutes can easily be 

assumed as a white noise) was quite easy. Nonetheless if this premise is not valid, i.e if the 

vibrations of the beam are contaminated by noises with well-defined frequencies within the first 

natural frequency range of the EMM-ARM test the frequency spectra can be affected by these 

noises that have potential to hinder the frequency identification. However, these issues can be 

easily avoided by the use of different modal identification techniques where a small excitation 

is applied to the test specimen (Goodwin and Payne, 1977). 
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In view of the issue raised in the previous paragraph, this Chapter present a study on the 

possibility of using different types of vibration tests for EMM-ARM, such as environmental 

vibration testing and forced vibration. Together with this study will be also evaluated the use 

of new modal parameters identification techniques. But first a short literature review on 

dynamic models of structures will be presented to better frame the topic under study.  

4.2. Dynamic models of structures 

The dynamic structural models aim to characterize the behaviour of structures under dynamic 

actions. Two different approaches are available for evaluating the structural dynamic 

behaviour: deterministic and stochastic (Chopra, 1995, Clough and Penzien, 1995, Reynders, 

2012, Peeters and De Roeck, 2001, Mendes and Oliveira, 2008). The difference between these 

two approaches depends upon how the excitation of the structure is defined. To use a 

deterministic approach, the time variation of the excitation needs to be fully known. On the 

other hand, if the time variation of the excitation is not completely known (random 

dynamic/stochastic excitation) but can be defined in a statistical sense a stochastic analysis 

should be used. 

4.2.1. Deterministic systems 

4.2.1.1. Linear Equations of Motion 

Consider a linear time-invariant vibrating structure with general viscous damping with ny output 

degrees of freedom (DOFs) and nu DOFs of interest. Newton’s equations of motion for this type 

of structures are a set of m second-order differential equations, where m is the number of 

independent DOFs, given by the equation (4.1) (Chopra, 1995, Mendes and Oliveira, 2008, 

Reynders, 2012). 
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with M, C and K  m×m respectively the mass, damping and stiffness matrices, v(t)  m the 

vector with modal displacements and B2  m×nu a selection matrix such that the vector with 

externally applied forces, u(t)  nu has only elements that are not identically zero.  

4.2.1.2. Impulse Response 

The Impulse Response Function (IRF) H(t)  ny×nu is defined as the response at DOF l due to 

an impulsive input along DOF m, applied at t = 0 under zero initial conditions on the outputs. 

Once IRF is determined, the response y(t) at the outputs due to any input vector u(t)  nu can 

be computed by convolution, since any u(t) ca be written as equation (4.2) (Reynders, 2012).  

 


  dutHtu )()()(  (4.2) 

Using the assumption that the structure is linear and time-invariant one can obtain: 

 )()()()()( tutHdtuHty  


  (4.3) 

4.2.1.3. Transfer function 

Consider a damped harmonic input at DOF m, um = es·t with s  ℂ. Using (4.3), the response at 

DOF l can be computed according to equation (4.4) (Reynders, 2012). 
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where H(s) is the Laplace transform of H(t). The Laplace transform of the impulse response is 

called the transfer function and can be written as (Cauberghe, 2004): 

 )()()( susHsy   (4.5) 
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The transfer function of a discrete system is defined as the z-transform H(z) of its impulse 

response (Hk), and the relationship y(z) = H(z)·u(z) still holds. The frequency response function 

(FRF) H(ω) is defined as the Fourier transform of the IRF (Cauberghe, 2004).  

4.2.1.4. Continuous-Time State-Space Model 

The state formulation allows to explore structures where damping is not proportional to the 

distribution of stiffness and mass, also allowing the construction of mathematical models where 

the characteristics of the experimental data are specifically considered. This formulation allows 

the modelling of noise always existent in experimental testing, as well as the construction of 

models in discrete time, adapted to the use of time series obtained in experimental studies. 

State-Space equation 

In the state of formulation, the system of differential equations of 2nd order is converted into a 

system of differential equations of 1st order. By rearranging (4.1) and assuming that M has full 

rank, a continuous-time state space model (4.6) is obtained (Reynders, 2012). 
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The vector x(t)  n is called the state of the structure. The number of elements of x(t), n, is 

called the model order. The state matrix AC have the following the relationship: 

 
T

CCA   (4.7) 
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This relationship is very important since shows that the matrices ΛC and Ψ have, respectively, 

the eigenvalues and eigenvectors of the state matrix. The dynamic characteristics of a system 

are in fact described in its state matrix. 

Observation equation 

If the output quantities of interest are linear combinations of displacements, velocities or 

accelerations DOFs, it is possible to obtain the equation (4.8) (Reynders, 2012). 

 )(
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where Cv̈  ny×n, Cv̇  ny×n, Cv  ny×n are selection matrices. Considering equation (4.1) 

and the state vector definition (4.6), the expression (4.8) can be transformed into the equation 

(4.9) designated by observation equation (Reynders, 2012). 

 )()()( tuDtxCty CC   (4.9) 

where 
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Impulse Response and transfer function 

Combining the equations (4.6) and (4.9), a state-space parametrization of the impulse response 

can be obtained (Reynders, 2012): 

 )()( tDBeCtH CC
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A Laplace transform of both sides of the equations (4.6) and (4.9) results in a parametrization 

of the transfer function: 

    )()()()(
1

susHsuDBAIsCsy CCCC 


 (4.11) 

4.2.1.5. Discrete-time State-Space Model 

Since for a given input u(t), solving the equations (4.6) or (4.8) analytically is usually 

impossible in the time domain, it seems natural to convert these models to discrete time 

(Reynders, 2012). Thus, the following equations are obtained: 

 kkk uBxAx 1  (4.12) 
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where 
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 CCC    

 and   CDD    

Impulse response 

The state equations (4.12) and (4.13) can be solved as (Reynders, 2012): 
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From this relationship the impulse response (Hk) is then obtained: 

 DH 0   ,        BACH k
k  1

  ,      k > 1 (4.15) 

Transfer function 

The transfer function (H(z)) can be obtained by performing the z-transform of both sides of 

equations (4.12) and (4.13) as shown in the following equation (Reynders, 2012): 

    )()()()(
1

zuzHzuDBAIzCzy 


 (4.16) 

4.2.2. Stochastic systems 

The term stochastic excitation is associated with the unknown dynamic action, whose temporal 

variation is random in nature, i.e. when is impossible to predict the future behaviour of the 

excitation (Rodrigues, 2004). In these circumstances, the characterization of the dynamic 

behaviour of structures can only be achieved through the adoption of probabilistic concepts 

(Chopra, 1995, Clough and Penzien, 1995). Thus, the dynamic behaviour characterization is 

based on the analysis and interpretation of the structure response, and are specially devoted to 

the experimental side. In this section some basic concepts of statistics and stochastic processes 

are introduced, which aim at the study of analytic representation of spectral density functions, 

a key element in addressing this type of process in the frequency domain (Chopra, 1995, 

Rodrigues, 2004). 

If a stochastic process is stationary and ergodic, the autocorrelation function only includes a 

realization r and a time lag τ, and can be determined simply by the following expression (Clough 

and Penzien, 1995, Rodrigues, 2004): 
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The autocorrelation functions associated with a stationary stochastic processes with zero mean 

are symmetric functions with a maximum at the origin. By applying a Fourier transform these 

functions can be converted to the frequency domain. Thus, the auto-spectrum or power 

spectrum functions are obtained (Rodrigues, 2004): 

 





2

)()(   deRS i
xxxx  (4.18) 

These spectrums are real function that quantifies the distribution of energetic content of the 

signal along the frequencies. Thus, the area below the graph represents the total energy of the 

signal.  

The response spectral density functions for structures with several degrees of freedom can be 

defined based on the following expression (Rodrigues, 2004): 

 )()()()(  H
pq HSHS   (4.19) 

where Sq(ω) represents the frequency spectrum matrix of the structure, H(ω) the frequency 

response function matrix (()H denotes the complex conjugate transposed of the matrix) and 

Sp(ω) is the excitation spectrum matrix. 

4.2.2.1. Discrete-time stochastic state-space model 

By applying model reduction, sampling and modelling the noise, equation (4.1) can be 

converted to following discrete-time stochastic state-space model (see the detailed derivation 

in (Peeters and De Roeck, 1999)): 

 kkk wxAx 1  (4.20) 

 kkk vxCy   (4.21) 
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where xk is the discrete-time state vector with the sampled displacements and velocities in 

instant k·t; yk is the response vector and contains the sampled accelerations in instant k·t; A 

is the state matrix; C is the output matrix; wk is defined as process noise resulting from input 

perturbations and modeling inaccuracies; and vk is measurement noise due to transducers and 

data acquisition disturbances. Both stochastic vectors (wk and vk) are impossible to measure but 

their statistic properties can be assumed as: zero mean and white noise (Rodrigues, 2004, 

Peeters, 2000). 

The modal parameters can be obtained from the matrices A and C. the derivation starts with the 

eigenvalue deposition of A (Peeters, 2000): 

 
1 dA  (4.22) 

where Ψ is the eigenvector matrix and Λd is a diagonal matrix containing the discrete time 

eigenvalues. The eigenfrequencies ωi and damping coefficients ξi can be computed from: 

 
t

i
ie      ,     iiiiii j   1, *

 (4.23) 

Where Δt is the sampling time. Finally, the mode shapes ϕ can be obtained from: 

  C  (4.24) 

4.3. Modal analysis tests 

The identification of modal parameters through dynamic test was originally developed in the 

fields of mechanics and aerospace engineering (Juang, 1994a). Modal testing is an experimental 

technique used to derive the modal model of a linear time-invariant vibratory system (He and 

Fu, 2001). The theoretical basis of the technique is secured upon establishing the relationship 

between the vibration response at one location and excitation at the same or another location as 

a function of excitation frequency. Modal analysis involves three constituent phases: data 

collection, system identification and modal parameter extracting from the identified system. 
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For the dynamic monitoring structures, depending on the source of excitation are currently used 

two different groups techniques: experimental modal analysis – EMA (He and Fu, 2001, Ewins, 

2000) and operational modal analysis – OMA (Rainieri and Fabbrocino, 2014, Reynders, 2012, 

Peeters and De Roeck, 2001, Overschee and Moor, 1996). 

4.3.1. Experimental modal analysis (EMA) 

The EMA tests essentially consists in applying a controlled excitation to the structure under 

study with low intensity, so that the produced vibration levels do not affect the integrity of the 

structure, and measuring its response. The forced excitation can be induced by mechanical 

vibrators or low power explosive. Since in these tests, both the excitation forces and the 

structure response are measured it becomes possible to perform the evaluation of the impulse 

response functions (IRF) and the frequency response function (FRF). The first EMA techniques 

were Single Degree Of Freedom (SDOF) methods like Peak-Picking (PP) or Circle Fitting (He 

and Fu, 2001). In these methods, it is assumed that each mode can be estimated independently 

from the other modes, and consequently they are not useful when some modes of interest are 

closely spaced. This disadvantage was later removed with the introduction of Multiple Degree 

Of Freedom (MDOF) methods for EMA. Nowadays EMA is a well-established and often-used 

approach in mechanical engineering, as documented in (Ewins, 2000, He and Fu, 2001). Table 

4.1 presents a summary of several algorithms for experimental modal identification. Detailed 

information about these methodologies may be found in (Caetano, 1992, Ewins, 2000, He and 

Fu, 2001, Pintelon et al., 1994, McKelvey et al., 1996, Juang and Suzuki, 1988, Juang and 

Pappa, 1985, Chen et al., 1993) 

Table 4.1. EMA system identification methods.  

Type of formulation Method 

Frequency domain 

Peak-picking 
Circle-fit 
Inverse 
Dobson 
Nonlinear LSFD 
Orthogonal Polynomial 
ERA 

Time domain 

Complex Exponential 
LSCE 
Ibrahim 
ERA 
ARMA 
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4.3.2. Operational modal analysis (OMA) 

OMA is based on the measurement of a structure response to dynamic excitations imposed on 

the structure due to environmental factors such as wind and urban traffic, which can be defined 

as the operational conditions. The dynamic response of the structure is acquired through the 

measurement of the accelerations, velocities or displacements in relevant points of the structure. 

From the acquired signals the dynamic system is identified, using stochastic modal analysis 

techniques, and the modal parameters can be estimated based on that system, namely the 

eigenfrequencies, damping coefficients and modes shapes (Reynders, 2012). 

The OMA techniques have the major advantage of not using explicit excitation of structures 

(Ren and Zong, 2004). This type of modal identification methods, by means of measurements 

of ambient vibration, has become a very attractive approach to the area of civil engineering 

structures. In fact these methods has been successfully applied in monitoring the conservation 

status of many major structures, such as the Golden Gate Bridge (Kim et al., 2007), the Vasco 

da Gama bridge (Cunha et al., 2001), the suspended roof of the stadium of Braga (Magalhães 

et al., 2006), among others. 

The responses induced by environmental actions have small amplitudes, which requires the use 

of very sensitive equipments to acquire the response of the structure (Rodrigues, 2004). 

Fundamentally can be considered two sets of OMA methods: the first group comprises the 

signal analysis methods, where the measured response series at different points of the structural 

systems are analysed and related to each other based on the its transformation to the frequency 

domain – frequency domain methods; the second group corresponds the methods were the 

acquired repose time series are analysed directly in the time domain – time domain methods. 

Figure 4.1 shows a summary of the OMA methods. 
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Figure 4.1. General outline of the main OMA methods (FFT – Fast Fourier Transform; SVD – 

Singular Value Decomposition; LS –  Least Squares algorithm; EVD – Eigenvalue 

Decomposition ; QR – Orthogonal decomposition). Adapted from Rodrigues (2004). 

4.4. EMM-ARM adaptations to the modal analysis technique 

As already mentioned, EMM-ARM is based on a simple OMA technique of a composite beam 

called peak-picking. However, the robustness of this technique can be compromised when the 

tests are performed in places with high contaminations of the ambient noise. In fact, at locations 

such as construction sites, there frequently exists heavy machinery being operated, which may 

induce significant environmental vibration at a certain frequency or set of frequencies (e.g. 

vibrations conducted through air or ground), thus having potential to interfere with in the range 

of resonant frequencies to be identified with EMM-ARM. In this subchapter the possibility of 

using both different OMA techniques as well as EMA techniques will be addressed. But first 

the original OMA technique used in EMM-ARM in the first application will be presented. It 

should be noted that part of this study was already published in (Granja and Azenha, 2015) and 

submitted to publication in (Granja and Azenha, 2016). 
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4.4.1. Operational modal analysis (OMA) tests 

4.4.1.1. OMA nonparametric modal identification 

The response frequency spectra are the starting point of this group of identification methods, so 

this subsection start with the demonstration of the algorithm to perform its estimation from the 

acquired response time series. 

Response spectral density function estimation 

The most efficient way of evaluating the spectral density functions of a structural system 

response involves the determination of the Discrete Fourier Transform (DFT) of the response 

signals (Welch, 1967). However the application of this algorithm result in leakage errors (for 

more information see (Dishan, 1995, Thompson and Tree, 1980)). To reduce the effects of 

leakage before the DFT calculation it should be apply signal processing windows, or windows 

of data, to the response signals. In the case of random type signals usually Hanning window are 

used. The Fourier Transforms of the discrete-time response signals yk to which a data window 

wk has been applied, are given by: 
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where N is the number of discrete signal values yk, Δt is the time interval between the discrete 

signal values yk, ω is the arbitrary frequency and T is the total duration of the signal yk. The 

usual choice of discrete values to calculate the Fourier Transform is (Welch, 1967): 
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The frequency resolution in the DFT is therefore equal to the inverse of the total duration of the 

signals, namely: 
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In discrete frequencies ωm the processed values provide the Fourier components defined by 

(Rodrigues, 2004): 
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  ,    m = 0, 1, 2, …, N−1 (4.28) 

An efficient way of making the determination of the DFT is via the Fast Fourier Transform 

algorithm (FFT). The estimated spectral density functions matrix Ŝy(ωm) of yk responses can 

then be calculated from its DFT Y(ωm) through expression (4.29) (Rodrigues, 2004). 
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However, the application of the Fourier Transforms to discrete signals with finite duration 

results in spectra with a high variance (see (Welch, 1967) for more information). To reduce this 

variance, the response records yk are divided into nd samples, to each a Hanning windows is 

applied and the corresponding DFT is computed. Finally, the average of all spectra is calculated 

being obtained a smoothed estimation of the response spectral density functions. To take 

advantage of all the information contained in the acquired data is usual to overlap in the data 

division procedure. When Hanning windows are used is usual to use an overlap value near half 

the segment length (50% overlapping) (Welch, 1967). 

Pick-picking (PP) method 

The Pick-picking (PP) method, systematized in the work Felber (1993), the eigenfrequencies 

of a structure are identified from the selection of the peaks with highest amplitude in the spectral 
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density functions. The modal parameters are obtained through the amplitude and phase 

relationship between a reference point and the measured points. This method is quite simple 

and fast execution. 

The OMA tests may require the acquisition of the structure response in several notable points. 

Therefore, the spectral analysis of these records will lead to the same number of auto-spectra 

and also to the cross-spectra between each two response records obtained in different 

instrumented points. The analysis of these spectral density function, to identify the 

eigenfrequencies can become extremely laborious. One way to synthesize all of this information 

is through the Normalized Power Spectrum Density – NPSD (Felber, 1993). These spectra are 

calculated from the auto-spectra of each record through the following equation: 
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The damping coefficient relative to a SDOF oscillator can be determined by the half-power 

method (Clough and Penzien, 1995). In this method to compute the damping coefficient of each 

eigenfrequency, it is only necessary estimate the two points with spectral ordered equal to 

αmax/2, half the maximum frequency amplitude (αmax), defined as ωb and ωa. The damping 

coefficient of the vibration mode i, can then be estimated by the following expression (Chopra, 

1995): 
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  (4.31) 

However, the damping coefficients estimated by this method are not very accurate (Rodrigues, 

2004). This is mainly due to the uncertainty that exists in the selection of half-power points, the 

frequencies ωb and ωa, since the spectral ordinates are defined with a resolution finite frequency 

Δω. 
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Case study 

In order to compare the accuracy of the methods of identification of modal parameters of an 

EMM-ARM beam hereinafter all methods will be used in the same case study. This case study 

consists on a series of OMA and EMA tests in a reusable EMM-ARM beam similar to that 

shown in Figure 3.17 (page 72) with its characteristics shown in Table 4.2. The tests were 

performed after 8 days of casting when the concrete casted inside de tube could be considered 

stable, i.e. without E-modulus evolution in the time-span of the experiments (~3 hours). The 

resonance frequency, defined here as reference, and the E-modulus of the concrete inside the 

mould was estimated through an EMM-ARM test using EMA SSI technique as will be 

presented in section 4.4.2.3. 

Table 4.2. Physical and mechanical characteristics of the EMM-ARM beam. 

Reference OMA-1 
Geometry  

Cross-section Circular 
i 95.64 mm 

e 110.11 mm 
Span 1000 mm 

Supports ØPR=12 mm Steel 
supports 

Reusable Yes 
Mould  

Density 1239.9 kg/m3 
E-modulus 3.10 GPa 

Concrete   
Density 2335.2 kg/m3 
E-modulus 26.56 GPa 

Expected frequency 117.20 Hz 

 

In this specific case, the beam was tested under OMA conditions with one fan paced in the 

vicinity of the tests to increase the air movement and therefore increate the ambient excitation 

of the beam. The response of the beam was acquired with one high precision accelerometer 

PCB 393B12 (sensitivity: 10 V/g; range: ±0.5 g) attached to the top part of the beams mid-span 

connected to a data acquisition system NI 4431 with an analogue to digital converter with 24 

bits. The test was performed during 30 min with a sampling rate of 10 kHz. A part of the 

acquired signal is shown in Figure 4.2. 
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Figure 4.2. Raw acquired data in OMA. 

From Figure 4.2 it possible to observe that the amplitude of vibration of the EMM-ARM beam 

under OMA testing is very low. Nevertheless, the sensitivity of the accelerometer together with 

the data acquisition system resolution used in the tests seems to be adequate since the whole 

system has a sensitivity of 2.4×10-5 g. However, one can extrapolate that is not for the signal to 

be contaminated with ambient noises with the same amplitude or even higher. 

Regarding the signal processing, the FFT algorithm was performed with 214 points (16 384). 

Hanning windows were used to decrease the leakage effect with 50% overlap. By using 

equation (4.27) is possible to verify that the final NPSD has a resolution of 0.6103 Hz. The 

resulting NPSD is shown in Figure 4.3a. As can be seen, the NPSD shows several peaks that 

correspond to different vibration modes of the beam. However, together with peaks that 

correspond to modes of vibration, it is possible to observe several peaks from ambient noise, 

despite lower amplitude than the peak of the resonance frequency of the beam’s first mode of 

vibration. Nevertheless, these noisy peaks can easily hinder the automatic peak identification, 

and more advanced techniques might be necessary to be applied. 

Through the use of PP method is possible to estimate the frequency and damping coefficient of 

the first mode of vibration, as shown in Figure 4.3b. The estimated frequency was 117.798 Hz, 

value that has a non-negligible difference, 0.598 Hz (+0.51%), form the expected 117.20 Hz. 

However, the difference between the two values is lower than the frequency resolution of the 

NPSD, showing that although the method’s precision is adequate, the frequency resolution 

plays a very important rule and is an issue difficult to solve. The resolution can be increased by 
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increasing the acquisition time which, however, is not a feasible operation when the material 

inside the beam is in the hardening process. 

As shown in Figure 4.3b the damping coefficient was accessed using equation (4.31). The value 

obtained was 1.202%. This value also allows to validate the assumption on which the 

identification of the frequencies in the original implementation EMM-ARM was based on 

which it is assumed that the damped frequencies are equal to the undamped ones. In fact, if the 

estimated damping coefficient value is valid, the difference between the two frequencies, 

undamped and damped, is only 0.007%. 

  

a) b) 

Figure 4.3. a) Normalized Power Spectrum Density (NPSD); b) Peak-picking OMA 

identification method. 

Inverse Fourier Transform (IFT) 

Another method to identify the modal parameters of a system based on its response frequency 

spectra is by using the Inverse Discrete Fourier Transform (IDFT). Transforming spectral 

density functions of a SDOF system to the time domain by IDFT (with the Inverse Fast Fourier 

Transform (IFFT) algorithm), one obtains the corresponding auto-correlation functions from 

which it is possible to estimate the eigenfrequencies and damping coefficients. The damping 

coefficient is determined using the logarithmic decrement δ of the positive and negative 

maximum of the auto-correlation function which is defined by the following expression 

(Brinker et al., 2001): 
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where r0 is the initial value of the auto-correlation function and rk is the value of the logarithmic 

decrement in the point k. Both the logarithmic decrement and the initial value of the auto-

correlation function can be obtained through a linear regression in k·δ and ln(|rk|) and the 

damping coefficient is obtained from (Brinker et al., 2001): 

 
22 4 





  (4.33) 

The frequency is estimated by linear regression of the time where the auto-correlation function 

crosses the zero. 

Case study 

Regarding the same case study presented before, only the frequency spectrum between 0 and 

395 Hz was selected in order to eliminate the influence of vibration modes higher than the first. 

By applying the IFFT algorithm to the selected region of the spectrum is possible to obtain the 

auto-correlation function shown in Figure 4.4. 
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a) 

  

b) c) 

Figure 4.4. OMA IFT results: a) Auto-correlation function; b) Zero-crossing of the auto-

correlation function; c) Evolution of the logarithm of the positive and negative maximums. 

As mentioned, from the auto-correlation function of a SDOF oscillator is possible to determine 

the eigenfrequency and the correspondent damping coefficient. The variation of the zero 

crossing points with the time instant at which they occur (for the frequency determination) and 

the evolution of the logarithm of the positive and negative maximums with the number of 

indexes (for the damping coefficient determination) are shown, respectively, in Figures 4.4b 

and 4.4c. From the slope of a linear curve fit at the first 50 points of the curves it was possible 

to estimate the frequency of 117.529 Hz and the damping coefficient of 0.583%. The estimated 

frequency is more accurate than the one identified through the PP method when compared with 

the reference value. However, the estimation of the damping coefficient if strongly influenced 

by the noise level present in the response frequency spectrum.  
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Despite the problems in the damping coefficient estimation, with this method it is possible to 

eliminate the uncertainty about what is the peak in the frequency spectrum that is related with 

the structural response of the structure (problem of the PP method). 

4.4.1.2. OMA parametric subspace system identification 

Until this point all the modal identification used in EMM-ARM tests were based only on 

frequency domain modal identification methods (non-parametric methods). However, the 

accuracy of these methods has high sensitivity to the noise level of the measuring environment, 

as already observed in the first work with EMM-ARM (Azenha et al., 2010a) and also in the 

previous subchapter. The time domain methods (also known as parametric methods) (Peeters, 

2000, Peeters and De Roeck, 1999, Overschee and Moor, 1996) are usually more robust and 

less sensitive to noise levels (Rodrigues, 2004). 

In the approach devised here, the Stochastic Subspace Identification (SSI) parametric method 

(Peeters and De Roeck, 1999) was chosen to estimate the modal parameters in EMM-ARM. 

Time discrete models require that the continuous response (e.g. structural accelerations 

recorded along a time interval) can be represented with a certain fixed sampling period t. Then, 

the response can be discretized and solved at every instant tk, where tk = k·t and k is an integer. 

If it is assumed that excitation forces are unknown but exhibit white noise properties, the 

discrete-time state model presented by the equations (4.20) and (4.21) can be assumed (Juang, 

1994b). 

The main objective of the SSI method is the identification of the state matrix A and the output 

matrix C (equations (4.20) and (4.21)) which contain the information about the resonant 

frequencies, mode shape vectors and damping coefficients (Deraemaeker et al., 2008, 

Rodrigues, 2004, Peeters, 2000, Peeters and De Roeck, 1999). 
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Considering that the output covariance Λι and the state-output covariance G matrices are 

defined as (Reynders, 2012): 

  T
kk yyE 1  (4.34) 

  T
kk yxEG 1  (4.35) 

where yk are the recorded outputs of the system. Stochastic system realization starts with 

gathering output correlation matrices in a block Hankel matrix (Reynders, 2012): 
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where ı is chosen in such a way that, if n is the expected system order, ny·ı ≥ n, nu·ı ≥ n and 

ı ≥ 2. The block Hankel matrix decomposes into the extended observability matrix Oı and the 

stochastic controllability matrix Cı (Reynders, 2012): 

  COL |1  (4.37) 

where 
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The matrices Oı and Cı can be obtained from L1|ı, up to a similarity transformation of the A 

matrix, using reduced singular value decomposition (Zeiger and McEwen, 1974): 

 
TVSUL |1  (4.40) 

 2/1SUO   (4.41) 

 TVSC  2/1
  (4.42) 

where S contains only the nonzero singular values and U and V contain the corresponding 

singular vectors. The C matrix can be determined as the first ny rows of Oı and the G matrix as 

the first nu columns of Cı. For the determination of A, there are several different algorithms 

(Kung (Kung, 1978), Zeiger-McEwen (Zeiger and McEwen, 1974) and Eigensystem 

Realization Algorithm (ERA) (Juang and Pappa, 1985)). Kung’s algorithm makes use of the 

shift structure of the matrix Oı (Reynders, 2012) 

  OOA 
†

 (4.43) 

where “†” denotes the Moore-Penrose pseudo-inverse, Oı͟ is equal to Oı without the last ny rows 

and Oı͞ is equal to Oı without the first ny rows. 

The results from the SSI method can be observed in a stabilization diagram (Figure 4.5 

computed from the case study presented before), which results from the information of matrices 

A and C (Peeters and De Roeck, 1999). In this diagram the parameters in a range of model 

orders, the so-called stochastic state-space realizations, are presented. The horizontal axis 

regards to the frequencies, whereas the vertical axis is related to all model orders (also known 

as the state space dimension, which is the dimension of the matrix A). The physical modes 

reveal themselves as straight vertical lines, according to several criteria (isolated or combined), 

such as: frequency, mode shape, and damping. In opposition, noise modes will appear scattered 

all over the diagram. At this stage, and based in the stabilization diagram, the user should select 

a model order, according to the stable vertically aligned poles. Normally this procedure is not 

straightforward, as the selection of the model order depends on the experience of the user and 

on the quality of data.  
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Figure 4.5. Stabilization diagram of the Stochastic Subspace Identification method (Symbols: 

‘○’ stable pole: damping coefficient between 0.1 and 10%, relative frequency variation < 3% 

and relative damping coefficient variation < 15% (Reynders, 2012); ‘+’ unstable pole). 

Case study 

Considering the same case study presented in the section 4.4.1.1, the SSI OMA technique was 

applied to the acquired response accelerogram presented in Figure 4.2. The stabilization 

diagram of the SSI method is shown in Figure 4.5. For the definition of a stable pole it was 

defined that the damping coefficient should be between 0.1 and 10% and the relative variation 

of the frequency and damping coefficient between two consecutive model orders should be 

under 3% and 15%, respectively. Taking in to consideration these criteria, one can observe that 

there are 6 stable poles, denoted in the diagram as a series of sable poles vertically aligned. 

However, in this method with the use of only one monitoring point of the structure’s response 

is impossible to select the pole that corresponds to the first mode of vibration of the EMM-

ARM beam. Thus a preprocessing step is taken to allow the identification of the desired pole. 

This preprocessing step corresponds to the use of the nonparametric IDFT technique presented 

before to identify the frequency (or at least a closer frequency) and then use this information to 

select the desired pole.  

By using a model order of 40 a frequency of 117.321 Hz was identified. This value is 

significantly more accurate than the one obtained from the previous nonparametric OMA 

techniques with a difference from the expected of 0.10%. Additionally, a damping coefficient 

of 0.383% was identified, value that is considerably different from the previous ones. However, 

one should keep in mind that the previous values could have a high estimation error. 
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4.4.1.3. Comparison between the OMA techniques 

The identified modal parameters though the OMA techniques are surmised in Table 4.3. From 

this table it is clear that the Subspace System Identification (SSI) technique is the more accurate 

one and the peak-picking (PP) techniques, the one in which the original EMM-ARM method 

was based, is the less accurate, when compared with the reference value. However, despite the 

increase in accuracy with the use of SSI techniques to perform the modal parameters 

identification, these techniques are still very sensitive to the ambient noise. 

Table 4.3. Identified modal parameters though the OMA techniques. 

Method 
Frequency (Hz) 

Damping (%) 
 Dif. from ref. 

PP 117.798 0.51% 1.202 
IFFT 117.529 0.28% 0.583 
SSI 117.321 0.10% 0.383 
Reference 117.200   

 

Second case study 

To further validate the OMA techniques presented before a second case study was used. This 

second case study had two purposes: first validate the accuracy of the techniques along an entire 

EMM-ARM tests where the frequencies of the testing beam evolve; and second to check the 

sensitivity to the ambient noise of each technique. In this second case study the ‘U-shaped’ 

version of EMM-ARM described in the section 3.2.1.1 was tested inside a prefabrication 

industry plant, in parallel with the production/testing of a 27.4 m long prestressed concrete 

beam for a bridge in Portugal. The characteristics of the beam are shown in Table 4.4. It was 

decided to perform the test in a prefabrication industry plant to intentionally contaminate the 

response signals with harmonic noises, difficult to separate from the signal. 
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Table 4.4. Physical and mechanical characteristics of the EMM-ARM beam tested in the 

second case study. 

Reference OMA-1 
Geometry  

Cross-section ‘U’ 
i/Height 150 mm 

e/Width 150 mm 
Span 2405 mm 
Connectors 
(spacing) 

No 

Supports Concrete cubes 
Mould  

Material Steel 
Density 7800.0 kg/m3 
E-modulus 170.0 GPa 

Concrete density 2450.0 kg/m3 

 

The previous implementation of EMM-ARM relied on the use of a single accelerometer for the 

modal identification. In this case study the use of three accelerometers to record the beams 

response was also checked. The two additional accelerometers were attached to the beam at 

750 mm for each side from the center accelerometer placed at mid span of the beam as shown 

in Figure 3.3 (page 54). The use of three accelerometers allows modal identification to be easier, 

as more information can be perceived in regard to relative ordinates in the modal shape. Thus, 

the first flexural resonant frequency can be much easier to recognize due to the well-known 

expectable mode shape.  

The same accelerometers presented in the first case study were used (sensitivity of 10 V/g, 

within the range ±0.5 g). Fans were placed in the vicinity of EMM-ARM specimen to increase 

the ambient vibration associated to air movement (random turbulent motion). The conrete used 

in these tests had the composition shown in Table 4.5 

Table 4.5. Concrete composition tested in the second case study. 

Component Mix (kg/m3) 
Sand 418 (fine) 
 377 (coarse) 
Gravel 1006 (5/15) 
Cement 430 

(CEM I 42.5R) 
Water 143 l/m3 
Super plasticiser 3.90 

(Polycarboxylic 
ether polymers) 
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The identified resonant frequencies and damping coefficients along time, that were identified 

with the three OMA techniques presented before (PP, IFT, SSI computed with information 

provided with only one accelerometer SSI-1A) and with the additional SSI technique SSI-3A 

(computed with the use of the information form the three accelerometers) from the EMM-ARM 

specimen are shown in Figures 4.6a and 4.6a. It can be observed that all the techniques were 

able to identify the frequency evolution of the EMM-ARM beam with a very plausible shape. 

However, it is clear that the accuracy of the different identification techniques is quite different. 

To illustrate the accuracy and precision of each technique the normal distribution of the 

identified frequencies was computed. But first the all the values were normalized to a reference 

value at the age of testing computed from a curve fitting of the equation (4.44) (Carette, 2015) 

to the identified frequency evolution with the SSI-3A technique, as shown in Figure 4.6c. 

 
321
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The normal distributions of the frequency identification along the whole EMM-ARM tests form 

the four distinct techniques are shown in Figure 4.6d. 
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a) b) 

  

c) d) 

Figure 4.6. Second case study OMA results: a) Fully automatic frequency evolution identified 

with four distinct approaches; a) Fully automatic damping coefficient evolution identified 

with IFT, SSI-1A and SSI-3A; c) Curve fitting of the frequency evolution obtained through 

SSI-3A; d) Accuracy and precision of the OMA methods. 

As can be seen the more accurate and precise technique was the SSI-3A with an average (μ) of 

1.000 and a Standard Deviation (SD) of 0.0058 and on the opposite side is the PP with μ = 0.993 

and SD = 0.0316. However, the use of three accelerometers to perform the modal identification 

only marginally improved the identification precision since the SSI-1A had μ = 1.000 and 

SD = 0.0101. 

Regarding the identification of the damping coefficient evolution, shown in Figure 4.6b, one 

should remark that only the parametric identification methods were able to identify the 

evolution even with a big dispersion of the results. 

0 2 4 6 8
15

25

35

45

55

 PP         IFT
 SSI-1A  SSI-3A

F
re

q
u
en

cy
 [

H
z]

Time [days]
0 2 4 6 8

0

2

4

6

8

10  IFT
 SSI-1A
 SSI-3A

D
am

p
in

g
 [

%
]

Time [days]

0 2 4 6 8
15

25

35

45

55

 Reference
 SSI-3A

F
re

qu
en

cy
 [

H
z]

Time [days]
0.9 1.0 1.1

0

20

40

60

80
 PP
 IFT
 SSI-1A
 SSI-3A

P
ro

ba
bi

li
ty

 d
en

si
ty

 [
-]

Relative value [-]



Identification of modal parameters 

113 
 

These results enable to conclude that the use of parametric SSI techniques improve the accuracy 

of the EMM-ARM frequency estimation and allow to estimate, even with high dispersion, the 

damping evolution, when compared with the original identification technique used in EMM-

ARM tests. 

4.4.2. Experimental modal analysis (EMA) tests 

As stated in Chapter 2, the EMM-ARM is based on OMA of a composite beam. However, as 

presented before, the robustness of these techniques can be compromised when the tests are 

performed in places with high contaminations of the ambient noise. In fact, at locations such as 

construction sites, heavy machinery being operated frequently exists, which may induce 

significant environmental vibration at a certain frequency or set of frequencies (e.g. vibrations 

conducted through air or ground), thus having potential to interfere with the EMM-ARM 

resonant frequencies identification. This section the potential to change the modal identification 

technique used in EMM-ARM through the use of EMA techniques will be investigated. By 

application of these techniques, the sensitivity of the modal identification to the ambient noise 

is strongly reduced and the response of the beam is amplified which simplifies the identification 

process of resonance frequency, and opens pathways for a fully automated procedure, 

regardless of the testing site. 

4.4.2.1. Excitation issue 

Even though EMA techniques can increase the accuracy of the modal identification of the 

composite beam, it has to be taken into account that the induction of an external vibration during 

the curing period of the cementitious materials may potentially affect the development of the 

mechanical properties, particularly during the setting time when bonds are being formed in the 

cement matrix that can be damaged due to the vibrations. This issue was studied by several 

authors (Dunham et al., 2007, Hong and Park, 2015, Fernandes et al., 2011) and it was found 

that excessive vibration during the curing process can affect the elastic modulus by almost 10%. 

Also in the work of Hong and Park (2015) it was found that even small vibrations (with 

maximum accelerations of 14.4 mg at 5 Hz) can have a relevant impact in the concrete curing 

process and affect its mechanical properties. Based on these evidences it was established that 

the use of forced vibrations techniques should be quite limited in terms of vibration intensity 
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applied to the material, as to make the impact of such vibration negligible on the setting and 

hydration processes.  

In addition to the excitation intensity issue, it is also necessary to take into consideration that 

the application of equation (2.11) presented in section 2.5.3 demands a structural system 

comprised of a simply supported beam with an added mass at mid-span, but does not include 

any potential interaction issues with an actuator system. Therefore, the actuator must not 

introduce any added vertical stiffness to the system, otherwise a spring would have to be 

considered (and dully quantified) in the boundary conditions used to derive the equation. 

In this way a custom electromagnetic actuator was developed, specially designed to be able to 

apply a very small dynamic force to the testing beam without physical contact between the 

actuator and the beam. A representation of this custom made electromagnetic actuator is shown 

in Figure 4.7. The force is applied to the beam through a magnet (made of neodymium N50 

with remanence: Br=1.4T;  = 8 mm; height = 20 mm) that is physically attached to the bottom 

of the beam at mid span. On the opposite side, the magnet is surrounded by a coil (made with 

copper wire with 0.22 mm in diameter and 3140 turns; int = 10 mm ext = 25 mm). When 

subjected to a given current intensity, this coil creates a magnetic field dependent on the current 

polarity and intensity. The coil’s frame was built in a non-ferromagnetic material (plastic) to 

prevent interaction between the magnet attached to the beam and the body of the actuator, which 

could again introduce an effect similar to that of an elastic spring at mid span of the beam. 

 

Figure 4.7. Custom made non-contact electromagnetic actuator attached to an EMM-ARM 

beam [units: mm]. 
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Before starting the implementation of a different modal analysis testing technique to EMM-

ARM, a test was performed to characterize the excitation that the developed actuator can exert 

on an EMM-ARM acrylic beam with the same characteristics of the beam O-ACR-0.9-MS 

shown in Table 3.7 (page 73). Before the beginning of the test the E-modulus of concrete inside 

the acrylic mould was accessed through OMA with PP method of the beam. The concrete inside 

the beam had 63 days of age and it was verified that it had an E-modulus of 30.8GPa (obtained 

through an EMM-ARM OMA test with PP identification technique) at the time of testing. 

Regarding the test procedure with forced excitation, a sine function was sent in a continuous 

sweep of frequencies with 40 seconds duration between 20 and 200 Hz with an amplitude of 

±2.4 V, through a dynamic signal analyser NI 4431 with 24-bit resolution, at a sampling 

frequency of 20 kHz. To measure the force applied to the beam and the level of induced 

accelerations, a piezoelectric impedance sensor (PCB 288D01 with sensitivity to accelerations 

of 100 mV/g in the range of reading ±50 g and sensitivity to forces of 22.4 mV/N in the range 

of reading ±222.4 N) was placed between the magnet and the beam.  

Figure 4.8 depicts the induced voltage, as well as the resulting forces and accelerations that 

were input to the beam during 16 cycles that operated in the vicinity of the resonance frequency 

(163.0 Hz). It can be observed that the amplitude of the excitation force ranged ±8 mN and is 

constant throughout this specific stretch of the frequency sweep. Despite the very low excitation 

force range, as can be seen in Figure 4.8b, it is sufficient to create a response with enough 

acceleration amplitude to be detectable by the accelerometer. The maximum response of the 

beam was in a range of ±6 mg, value that according to the study of Hong and Park (2015) is 

small enough to avoid changes in the mechanical properties. Based on the level of excitation 

and maximum response of the beam it can be concluded that this test procedure should be 

suitable for application to an EMM-ARM beam along the concrete curing, without 

disturbing/damaging the microstructural development. 
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a) 

 

b) 

Figure 4.8. Excitation imposed to the EMM-ARM beam: a) Excitation voltage and force 

applied; b) Excitation voltage and acceleration response. 

4.4.2.2. EMA nonparametric modal identification 

Pick-picking (PP) method 

This method is identical to the PP method presented previously in OMA techniques. However, 

in this group of methods the modal identification is made from the estimated IRF or FRF of the 

system rather than through the structure response spectra (He and Fu, 2001). In the context of 

this thesis the modal parameters were estimated through the FRF that, in the frequency domain 

(defined here as H(ω)), can be defined by the ratio of the cross-spectrum excitation-response 

Sfy(ω) and the auto-spectrum of the excitation Sff(ω) (Oppenheim et al., 1989), as shown in the 

equation (4.45). 
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For estimating damping, the half power points at ωa and ωb are obtained from each side of the 

identified peak with amplitude αmax/√2, where αmax is amplitude of the identified peak. The 

damping coefficient is then computed by applying equation (4.31). 

Case study 

Consider the same beam presented in the first case study of this Chapter. The EMM-ARM beam 

was also tested with EMA techniques. The excitation of the beam was made by the custom 

made electromagnetic actuator presented in Figure 4.7 at the mid span of the beam. The 

excitation signal was a sine sweep with linear frequency variation between 10 and 2000 Hz 

during 100 seconds with constant maximum force amplitude of 8 mN. The test was made during 

400 seconds at an acquisition rate of 10 kHz. A segment of the acquired data, force and 

acceleration, both at mid span, is shown in Figure 4.9. 

 

Figure 4.9. Raw acquired data in EMA. 

From the raw acquired data, it is possible to compute the Normalized Power Spectrum Density 

(NPSD) of both the excitation and the response of the beam. The FFT algorithm was performed 

with 215 points (32 768). Hanning windows were used to decrease the leakage effect with 50% 

overlap. Through the use of equation (4.27) is possible to verify that the final NPSD has a 

resolution of 0.3051 Hz. The obtained spectra are shown in Figures 4.10a and 4.10b. From these 
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spectra one can conclude that the amplitude of the excitation was enough to eliminate the effect 

of all the contaminations in the frequency spectra from the ambient noise, even when a lower 

acquisition time and a higher number of points in the FFT algorithm were used. However, 

despite the NPSD of the response being much cleaner and with a higher frequency resolution, 

since the excitation of the beam was explicitly measured it is possible to compute the FRF of 

the system through the use of equation (4.45). The amplitude and phase angle of the FRF are 

shown in Figures 4.10c and 4.10d, respectively. 

  

a) b) 

  

c) d) 

Figure 4.10. EMA EMM-ARM results: a) NPSD of the excitation; b) NPSD of the response; 

c) Amplitude of the Frequency Response Function (FRF); c) Phase of the FRF. 

Looking to the FRF amplitude in Figure 4.10c it became clear what is the peak with higher 

amplitude, that corresponds to the first mode of vibration of the EMM-ARM beam. By selecting 
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the expected frequency than the one identified by the OMA PP technique. However, the 

difference is still not negligible (0.25%). After the section of the frequency of the first mode of 

vibration, the damping coefficient was estimated, as can be seen in Figure 4.11. The estimated 

value was 1.169% that is close to the value obtained in the OMA PP technique. 

 

Figure 4.11. EMA PP technique frequency and damping coefficient identification. 

Inverse Fourier Transform (IFT) 

Similar to the OMA IFT technique, in EMA the same strategy can be followed by simply 

replacing the NPSD of the response by the amplitude of the FRF. Apart from that change all 

the procedure remains the same. 

Case study 

In the case study, the IFFT algorithm was applied to the FRF spectrum. However, it should 

be noted that only the spectrum frequency between 0 and 395 Hz was used in order to 

eliminate the influence of the vibration modes higher than the first. The obtained Auto-

correlation function is shown in Figure 4.12a. 
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a) 

  

b) c) 

Figure 4.12. EMA IFT results of case study: a) Auto-correlation function; b) Zero-crossing of 

the auto-correlation function; c) Evolution of the logarithm of the positive and negative 

maximums. 

From a linear curve fitting to the evolution of the zero crossing points with of the time instant 

at which they occur and the evolution of the logarithm of the positive and negative maximums 

with the number of indexes, shown in Figures 4.12b and 4.12c, at the first 50 points it is possible 

to estimate the frequency of 117.112 Hz and the damping coefficient of 0.903%, respectively. 

The identified frequency is very close to the expected with a difference of only 0.06%. Also the 

estimated damping is reasonable close to the value obtained from the OMA PP and EMA PP. 
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4.4.2.3. EMA parametric modal identification 

Despite the increase in the identification accuracy by using very simple EMA techniques, this 

improvement can be enhanced through the use of more advance EMA identification techniques. 

Instead of looking to the FRF data, by using parametric identification techniques is possible to 

identify the properties of the system that is under test and from that system extract the modal 

parameters. There are several parametric techniques available to perform the system 

identification, based on time domain or in frequency domain. However the frequency domain 

methods has the following advantages (Pintelon et al., 1994): it is easy to reduce the noise; the 

non-excited frequency lines are eliminated; the processing time is reduced since a large number 

of time-domain samples are replaced by a small number of spectral lines; no initial state 

estimation of the system is needed; and when periodic excitations are used the quality of 

estimated FRF is increased. Thus in the context of these thesis only frequency domain methods 

will be presented.  

In frequency domain there are two different methods to perform the system identification: the 

Parametric Identification of the Transfer Function and the Deterministic Subspace 

Identification. In the following section the identification procedures will be presented and its 

performance will be verified with a case study. 

EMA Parametric Identification of the Transfer Function (TF) 

Consider the linear dynamic time-invariant continuous-time system. The objective is to estimate 

the real coefficients P = (α0, α1, …, αn, β0, β1, …, βn)T of the rational transfer function model 

H(s,P), equation (4.46), of order n/d using a discrete set of measured input-output spectra 

(Xm(ωk), Ym(ωk) : k = 1, 2, …, F) or measured frequency response data (Hm(ωk) : k = 1, 2, …, 

F) (Pintelon et al., 1994). 
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The estimates are found by minimizing (in each step) a “quadratic-like” cost function K 

(Pintelon et al., 1994): 

 EEK T   (4.47) 

where E is a nonlinear vector function of the measurements and the model parameters. Often a 

Newton-Gauss type algorithm is used to minimize equation (4.47). The ith iteration step of this 

algorithm is given by (Pintelon et al., 1994): 

       )()()1()()( iTiiiTi EJPJJ    (4.48) 

here J(i) denotes the Jacobian of the vector E evaluated at P(i) (J(i) = ∂E/∂P(i)). To estimate the 

model parameters, the objective is to minimize the following cost function (Pintelon et al., 

1994): 
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which is nonquadratic in the parameters. Finally, the poles of the structure are obtained by 

computing the roots of the denominator polynomial of the estimated transfer function. From 

the poles, the modal parameters (eigenfrequencies and damping coefficients) can be estimated 

using equation (4.23). 

Case study 

The FRF estimated in the previous section, shown in Figure 4.10c, was processed using the 

strategy presented before. First, to check the most adequate orders of the numerator and 

denominator polynomials, a stabilization diagram was constructed. It was assumed that the 

orders of the two polynomials should remain equal and the maximum order was defined as 50. 

To define a pole as stable the following roles were followed: the damping coefficient should be 

between 0.1 and 10% and the relative frequency and damping coefficient variations should be 

less than 3 and 15%, respectively. The resulting stabilization diagram is presented in Figure 
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4.13a together with the FRF amplitude estimated through the TF model of 50th order. It is clear 

that only 7 stable poles are present in the diagram (defined as a series of consecutive stable 

poles in a vertical alignment).  

The estimated FRF from the 50th order model was compared with the FRF experimentally 

obtained, as shown in Figures 4.13b, 4.13c and 4.13d. An almost perfect fitting of the FRF was 

obtained. From the identified TF model one can obtain the frequency and the damping 

coefficient of the first mode of vibration of 117.160 Hz and 1.109%, respectively. The identified 

frequency is very close to the expected value with an error of only 0.04%. It should also be 

noted that the damping coefficient estimation in this technique is very stable and the value is 

considerable close (taking in to account the variance that the parameter exhibit in the current 

case study) to the one identified in by the OMA PP, EMA PP and EMA IFT techniques.  
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a) b) 

  

c) d) 

Figure 4.13. EMA TF results: a) Stabilization diagram (Symbols: ‘○’ stable pole: damping 

coefficient between 0.1 and 10%, relative frequency variation < 3% and relative damping 

coefficient variation < 15%); b) FRF amplitude fitting; c) FRF phase fitting; d) FRF real vs 

imaginary fitting. 

Deterministic Subspace System Identification (SSI) 

The objective of a parametric identification is to identify state space models (equations (4.12) 

and (4.13)) from the given frequency response data. The relation between the state-space model 

and the Frequency Response Function (FRF) G(ωi) is (Chen et al., 1993): 
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Where ωi are the frequencies in rad/second and Δt the sampling time interval. Given G(ωi), the 

problem of parametric identification is to find a set of matrices, denoted by Â, B,̂ Ĉ and D̂ 

(hereafter “^” denotes and estimated value), such that the estimated FRF (Ĝ(ωi)) (4.51) matches 

G(ωi) optimally under some optimally criterion (Chen et al., 1993). 

   DBAIeCG n
tj

i
ˆˆˆˆ)(ˆ 1

i 
  (4.51) 

Note that G(ωi) is a matrix of dimension m×r. If the 2-norm of the error is to be minimized, 

then an appropriate error index is (Chen et al., 1993): 
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Where ϖ(ωi) is a specified frequency weighting function and l is the total number of 

frequencies. However, minimizing equation (4.52) with the respect to the state-space 

parameters directly is a nonlinear problem, which may be difficult to solve. To avoid the 

difficulties associated with the nonlinear optimization, one possible alternative is to optimize 

first with respect to the Markov parameters and then convert the Markov parameters to a space-

state model, as optimizing equation (4.52) with respect to the Markov parameters is a linear 

problem. To formulate this alternative mathematically, it begins with expanding equation (4.50) 

(Chen et al., 1993): 
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 (4.53) 

where Y0 = D, Yk = C·Ak-1·B (k = 1, 2, …, ∞) are the Markov parameters.  

  



Chapter 4 

126 
 

Replacing the equation (4.53) in to equation (4.52) yields (Chen et al., 1993): 
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However, the problem associated with this approach is that theoretically the number of Markov 

parameters is infinite. To avoid the problem of excessive number of parameters in the 

optimization, an intermediate step should be taken. That is, curve-fit the FRF data using a finite-

ordered matrix-fraction first and then construct the Markov parameters from this result. 

Linear Curve-fitting 

The transfer function matrix of the system described by equations (4.12) and (4.13) the transfer 

can be expressed by a Left Matrix-Fraction Description(LMFD) as (Chen et al., 1993): 

 )()()( 1111   zSzRzG  (4.55) 

where both R(z–1) and B(z–1) are matrix polynomials: 
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This factorization is also not unique. For convenience one can choose the orders of both 

polynomials to be equal (= p) (Chen et al., 1993). Pre-multiplying equation (4.55) by R(z–1) 

one has: 

 )()()( 1111   zSzGzR  (4.58) 
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which can be rearranged to become: 
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Because G(z–1) is known at z = ejωiΔt, (i = 1, …, l), the equation (4.59) is linear and there are a 

total of l equations available (Chen et al., 1993). Denoting ejωiΔt by zi and stacking up the l 

equations, one has: 

   (4.60) 

where 
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Equation (4.60) is a normal equation, where a least-squares solution of Θ can be found. 

Estimation of Markov parameters 

After obtaining a solution to equation (4.60), it is now necessary to construct the system Markov 

parameters (Chen et al., 1993). Equation (4.58) can be written as: 
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From this relation, the following equations are derived by equating terms of like powers and 

recalling equations (4.56) and (4.57): 

 00 SY   (4.62) 
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Identification of state-space models 

Once the Markov parameters are constructed, the Eigensystem Realization Algorithm (ERA) 

can be used to obtain a state-space model (Chen et al., 1993). The ERA uses singular value 

decomposition to decompose a data matrix (referred to as the general Henkel matrix) and to 

compute a state-space model from the decomposed matrices (Bayard, 1994, Juang and Pappa, 

1985).  

The Eigensystem Realization Algorithm in Frequency Domain (ERA-FD) begins by forming 

the r×(N+1) complex block matrix, called Henkel matrix (H). If one consider any r and s such 

that r+s ≤ N and min(r, s) ≥ 2·p, the Hankel type matrices H0, H1 can be defined as (Bayard, 

1994): 
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After the formation of the Henkel matrices a balanced state-space realization using the ERA 

algorithm needs to be computed. First the Singular Value Decomposition (SVD) of H0 is 

performed (Bayard, 1994):  

 
TVUH 0  (4.66) 

where Σ = diag[σ1, …, σμ], and μ = min(r·ny, s·nu). By plotting the Hankel singular values σi the 

trade-off between model order and identification accuracy can be visualized, and one can 

truncate to keep only q singular values. From the q-th order state-space realization as (Bayard, 

1994): 
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Uq – submatrix formed from first q columns of U 

Vq – submatrix formed from first q columns of V 
 

Then from the eigenvalue decomposition of the matrix A tis possible to estimate the modal 

parameters of the system: damped angular eigenfrequencies and damping coefficients of the 

eigenmodes from the imaginary and real parts respectively. 
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Case study 

Similarly to the previous case, the EMA SSI technique was applied to the FRF data. First to 

check the most adequate model order a stabilization diagram was constructed. The maximum 

order was again defined as 50 and the same criteria as used to define a pole as stable. In the 

stabilization diagram, shown in Figure 4.14 (with the FRF estimated from the 50th order SSI 

model), it is possible to observe 14 stable poles (represented as a series of stable poles vertically 

aligned).  

In Figures 4.14d, 4.14c and 4.14d the estimated FRF from the 50th model order obtained through 

the SSI technique is compared to the acquired FRF. As can be observed fitting that can be 

considered perfect of the FRF was obtained. From the identified SSI model one can obtain the 

frequency of the first mode of vibration of 117.20 Hz and the corresponding damping 

coefficient of 1.103%.  



Identification of modal parameters 

131 
 

  

a) b) 

  

c) d) 

Figure 4.14. EMA SSI results: a) Stabilization diagram (Symbols: ‘○’ stable pole: damping 

coefficient between 0.1 and 10%, relative frequency variation < 3% and relative damping 

coefficient variation < 15%); b) FRF amplitude fitting; c) FRF phase fitting; d) FRF real vs 

imaginary fitting. 

4.4.2.4. Comparison between the EMA techniques 

The identified modal parameters through the EMA techniques are summarized in Table 4.6. By 

the analysis of the table one can note that the modal parameters (frequency and damping) 

identified by the SSI and TF techniques exhibit no significant differences between them. The 

PP technique was the one with the worst performance in the frequency identification. 
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Regarding the estimated damping coefficients, it is possible to observe that all the techniques 

were quite close when compared with the OMA test. However, is difficult so state what is the 

more accurate one since no reference value could be defined. 

Table 4.6. Identified modal parameters though the EMA techniques. 

Method 
Frequency (Hz) 

Damping (%) 
 Dif. from ref. 

PP 117.49 0.250% 1.169 
IFT 117.11 0.075% 0.903 
TF 117.16 0.035% 1.109 
SSI 117.20 - 1.103 

 

Second case study 

In the case study presented before the test was performed in lab conditions with very low 

ambient noise. Thus to check the accuracy of the Experimental Modal Analysis (EMA) tests 

under very noisy conditions a new case study was used. In this new test a 1.0 meter PVC EMM-

ARM beam with geometry similar to the one presented in Figure 3.15 (page 70) was used with 

the physical and mechanical characteristics shown in Table 4.7. The experiment was performed 

in a construction site where heavy machinery was used during the experiment.  

Table 4.7. Physical and mechanical characteristics of the EMM-ARM beam used in the 

second case study. 

Reference EMA-2 
Geometry  

Cross-section Circular 
i 96.42 mm 

e 110.01 mm 
Span 998 mm 
Connectors 
(spacing) 

No 

Supports ØPR=12 mm 
Steel supports 

Mould  
Material PVC 
Density 1434.1 kg/m3 
E-modulus 3.50 GPa 

Concrete density 2327.9 kg/m3 

 

The conrete used in these tests had the composition shown in Table 4.8. 
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Table 4.8. Concrete compositions used 

Component Mix (kg/m3) 
Sand 300 (0/2) 
 540 (0/6) 
Gravel 550 (6/14) 
 420 (11/22) 
Cement 320 

(CEM II/A-L 42.5R) 
Fly ash 100 
Water 165 l/m3 
Super plasticiser 3.36 

(Polycarboxylic ether 
polymers) 

Adjuvant 0.84 
(Basf Pozzolith 540) 

 

To monitor the beam response at mid span PCB 393B12 accelerometers (sensitivity of 10 V/g, 

within the range ±0.5 g) were used. The excitation of the beam was made by the custom made 

electromagnetic actuator presented in Figure 4.7 connected to a NI 4431 dynamic signal 

analyzer with 24-bit of resolution. The excitation signal was a sine sweep with linear frequency 

variation between 10 and 200 Hz during 40 seconds with constant maximum force amplitude 

of 8 mN. Each test was made during 300 seconds at an acquisition rate of 500 Hz and repeated 

every 600 seconds. 

The identified resonant frequencies and corresponding damping coefficients along time, that 

were identified with the four EMA techniques presented before (PP, IFT, TF and SSI), are 

shown in Figures 4.15a and 4.15b. At first it is possible to observe that despite the high 

amplitude of the ambient noises, three of the identification techniques (PP, TF and SSI) were 

able to identify the frequency evolution of the first mode of vibration with a very plausible 

shape. However, the IFT technique proved to be very sensitive to the noise and the identification 

resulted in a big scatter of erroneous values. Additionally, regarding the other three techniques, 

it is clear that the identification accuracy is different. To illustrate the accuracy and precision 

of each technique the normal distribution of the identified frequencies was computed. But first 

the all the values were normalized to a reference value at the age of testing computed from a 

curve fitting of the equation (4.44) to the identified frequency evolution with the TF technique, 

as shown in Figure 4.15c. 
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a) b) 

  

c) d) 

Figure 4.15. Second case study EMA results: a) Fully automatic frequency evolution 

identified with four distinct approaches; a) Fully automatic damping coefficient evolution 

identified with IFT, TF and SSI c) Curve fitting of the frequency evolution obtained through 

TF; d) Accuracy and precision of the EMA methods. 

The normal distribution of the frequency identification accuracy of each method is shown in 

Figure 4.15d. As can be observed in the figure the more accurate and precise technique was the 

TF with an average (μ) of 1.0015 and a Standard Deviation (SD) of 0.0141 followed with very 

similar values by the SSI technique. 

Regarding the identification of the damping coefficient evolution, shown in Figure 4.15d, one 
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hours. After this point the damping of the EMM-ARM beam evolve rapidly reaching a 

maximum value of ~4.6% at 14 hours. After this point the kinetic of the evolution change again 

and the value starts to drop reaching ~1.3% at 1.5 days after casting and remains more or less 

constant after this point. Despite these evolution, the use of the damping to explore the 

viscoelastic behaviour of the material inside the mould remains a challenge, since the separation 

of the contribution of the mould to the final response is not a trivial operation. 

From these results one can conclude that with the use of EMA testing techniques and the modal 

parameters estimation TF or SSI methods the sensitivity of the EMM-ARM to the ambient noise 

is substantially reduced as well as the accuracy in increased even when the experiments are 

performed in a very noisy place. Also the EMA parametric identification techniques allow the 

identification of the beam’s damping along the material curing that might be used in the future 

to estimate some viscoelastic properties of the material under test. 

4.4.3. Validation of EMA applied to EMM-ARM 

As mentioned before, the use of excitation during a EMM-ARM tests could lead to damage of 

the material during the early age of curing. Therefore, to validate the use of this alternative 

testing technique, during the last case study presented before one additional beam was tested 

under OMA conditions. Therefore, one of the beams was tested through the original ambient 

vibration technique (OMA-2) and the other was tested through the forced vibration technique 

(EMA-2) as presented before. The characteristics of the OMA-2 tested beam are shown in Table 

4.9. Together with EMM-ARM testing, E-modulus was assessed through CC testing at the ages 

of 1, 2 and 7 days (kept at the same curing conditions). 
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Table 4.9. Beams characteristics for the test 5. 

Reference OMA-2 
Geometry  

Cross-section Circular 
i 96.47 mm 

e 110.00 mm 
Span 998 mm 
Connectors 
(spacing) 

No 

Supports ØPR=12mm 
Steel supports 

Mould  
Material PVC 
Density 1460.9 kg/m3 
E-modulus 3.50 GPa 

Modal analysis Ambient 
Concrete density 2335.5 kg/m3 

 

The colour maps obtained in this experiment are shown in Figure 4.16. It is possible to observe 

that, although it is possible to identify the resonance frequency evolution along the concrete 

curing in both beams, the evolution is considerably clearer and more evident in the beam EMA-

2. In fact, this beam that endured forced excitation exhibits almost no influence of 

environmental noises, which are clearly seen as horizontal lines in Figure 4.16a (indicated by 

red arrows) for the beam tested without explicit excitation. To better understand this idea, the 

response spectra obtained by the two beams (NPSD of the beam OMA-2 and FRF of the beam 

EMA-2) were normalized to their maximum amplitude at two different ages (0.57 and 3.87 

days), and represented in Figure 4.17. While at 3.87 days the resonance peak can be easily 

identifiable in both spectra, this does not happen in the spectra at the age of 0.57 days. In fact, 

the peak of highest amplitude does not match the resonant frequency peak in the NPSD 

spectrum of the beam OMA-2. This fact compromises the use of simple automatic algorithms 

for the identification of resonant frequencies. Therefore, if OMA methods are to be used (i.e. 

without specific known excitation), it becomes necessary to perform the identification manually 

using the surfaces shown in Figure 4.17, where it is possible to interpret the graph and separate 

the noise harmonic frequencies from the system resonance frequency. 
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a)  b) 

Figure 4.16. Evolution of the frequency spectrum: a) NPSD of the beam OMA-2; b) FRF of 

the beam EMA-2. 

 

Figure 4.17. NPSD and FRF frequency spectrums at 0.57 and 3.87 days. 

The resonant frequencies identified in the two different beams are shown in Figure 4.18a. It is 

worth mentioning that the results of the two beams are almost superimposed. The elasticity 

modulus of the concrete was estimated by applying equations (2.11) and (2.12) to the resonant 

frequencies presented in Figure 4.18a. The resulting E-modulus evolution is shown in Figure 

4.18b. Firstly, it is possible to verify that the E-modulus evolution curves have very good 

coherence with each other, with differences lower than 0.25%. Furthermore, the values obtained 

through EMM-ARM are similar to those collected in CC tests in terms of magnitude and 

evolution kinetics. These results suggest that the level of excitation applied to the beam EMA-

2 is not sufficient to damage the weak connections in the beginning of the cement hydration 

and decrease the estimated concrete stiffness. Thus this test allowed to confirm the viability of 

the use of EMA techniques to perform EMM-ARM tests, with significant advantages in terms 
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of robustness and possibility of automated data processing without any kind of intervention on 

behalf of the operator. 

  

a) b) 

Figure 4.18. Comparison of the results obtained with OMA and EMA tests: a) Frequency 

evolution; b) E-modulus evolution. 
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Chapter 5  

Validation of the ambient vibration method 

5.1. Introduction 

Despite the successful results obtained through the studies involving EMM-ARM before the 

research work of this thesis (Maia et al., 2012b, Maia et al., 2012c, Maia et al., 2012a, Azenha 

et al., 2012a, Azenha, 2009, Azenha et al., 2010a, Azenha et al., 2010b), as well as the 

improvements introduced in σs 3 and 4, the method still requires an extensive and systematic 

validation of the attained E-modulus estimations. In fact, the EMM-ARM was only compared 

with classical cyclic compression tests (CC). Furthermore, all the comparison tests were made 

by the same operator. The obtained results have pointed that EMM-ARM is able to measure E-

modulus values are similar to those obtained through cyclic compression tests at the same ages 

and same curing conditions. However, there is still the need for conducting a more profound 

and systematic study to analyse the performance of the EMM-ARM for characterising cement-

based materials since early ages, more specifically concrete and cement paste, focusing on its 

relative behaviour to other methods. That is precisely the initial aim of this Chapter (in sections 

5.2.1 and 5.2.2). 
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After the comparison of EMM-ARM with the competing methods, this Chapter addresses issues 

related to the repeatability, reproducibility and accuracy of the E-modulus estimations. In the 

end of this Chapter, a sensitivity analysis of the input parameters needed to compute the material 

E-modulus on the final estimation will be presented. 

5.2. Comparison with other methods 

Upon the beginning of this thesis, EMM-ARM was in a prototype stage with very few 

experiments performed. Therefore, and as stated before, an extensive comparison of the results 

obtained with EMM-ARM and the comparable or competing methods was needed. In this 

subchapter two different experimental campaigns will be presented, where the E-modulus 

estimations through EMM-ARM for two different variants (concrete and cement paste) will be 

compared with several other methods used in the bibliography for the E-modulus estimation of 

cement-based materials. 

In fact, there are already some studies regarding the comprehensive comparison of different 

experimental methods to access the behaviour of cement-based materials at early ages (Bullard 

et al., 2006, Sant et al., 2009). However, these works focused mainly on the detection of the 

setting time, rather than the evolution of stiffness itself. Thus, this subchapter aims also to fulfil 

this gap through an extensive comparison between several experimental methodologies capable 

of quantifying the stiffness of concrete and cement paste, such as: EMM-ARM, cyclic 

compression/tension tests (CC, BTJASPE, TSTM), ultrasonic wave transmission (UWT), 

bender-extender elements (BE), and penetration resistance. 

5.2.1. Concrete 

The work that will be presented here was the result of part of an international collaboration 

between three research centres (University of Minho (UM), Institut Français des Sciences et 

Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR) and Université 

libre de Bruxelles (ULB)). The results are already published in two papers (Boulay et al., 2013a, 

Delsaute et al., 2016). 
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Additionally to the EMM-ARM technique presented and enhanced in the previous two Chapters 

used in the Laboratory of Structures of the University of Minho (UM), eight different 

techniques have been implemented in the three involved laboratories. They can, a priori, be 

sorted in two classes, according to their respective ranges of loading rates: four techniques of 

quasi-static loadings (cyclic compression tests: classical CC (all three labs), automated with 

BTJASPE (IFSTTAR), classical automated (ACC) using BTJASPE protocol (IFSTTAR), 

automated with a TSTM (ULB)); and four techniques of high frequency loadings: three 

classical UPV measurements with PunditLab (UM), FreshCon (ULB), and BTPULS 

(IFSTTAR); and Smart Aggregates SMAGs (ULB). All these experimental methods were 

applied without a rigorous temperature history control history of the specimens due to practical 

limitations associated to the test setups and the size of specimens themselves. That is why 

observations are compared after having expressed results at the same concrete maturity using 

the equivalent time method.  

5.2.1.1. Mixing and material characterization 

The same material is used in the three laboratories. The mixture proportions are given in Table 

5.1. 

Table 5.1. Mixture proportions of the concrete (w/c = 0.54). 

Components Mass (kg/m3) 
Cement 340 

(CEM I 52.5 N PMES CP2) 
Sand 739 (0/4) 
Gravel 1072 (8/22) 
Total water 184 
Density 2335 

 

The concrete was mixed mechanically or manually depending on the volume of the batch (from 

2 litres to approximately 40 litres). Even though these differences can lead to scattered results, 

no significant effect was observed in the performed experiments on this concrete as presented 

in section 5.2.1.3. 

The strength evolution was useful for quantifying the limits of the automatic loadings (tests 

presented in section 5.2.1.2) applied at early age in order to avoid any damage of the samples. 
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The samples were cylinders (Ø = 110 mm×220 mm). They were cured inside adhesive 

aluminium tape at 20°C, and capped with sulphur mortar. The corresponding results are 

reported in Figure 5.1. 

 

Figure 5.1. Compressive strength results obtained by the teams of IFSTTAR and ULB. 

For the sake of these calculations, the compressive strength (fcm) is modelled by the following 

equation: 
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(5.1) 

with: α1 = 43.87, τ1 = 1.36 and β1 = 0.81. teq is the equivalent age at 20°C.  

The apparent activation energy was determined through calorimetric testing and a value of 

32.2 kJ/mol was obtained (Boulay et al., 2013a). Together with temperature recordings, the 

apparent activation energy allowed the calculation of the equivalent age (teq) (D'Aloia, 2003), 

according to Arrhenius laws. These calculations were performed at an arbitrary reference 

temperature equal to 20°C, allowing all experimental results to be normalized to temperature 

effects.  

An important issue to remark pertains to the consideration of the instant of setting, which is of 

paramount importance for the analysis of results reported herein. The setting period corresponds 

to a period between the time when a needle penetrates completely a sample of mortar or cement 
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grout and the time when it does not penetrate anymore the sample (Sant et al., 2009). As 

penetration tests do not apply specifically for concrete, the work of reference of Robeyst et al. 

(2008) compared transmitted ultrasonic P-waves to penetration tests performed on thieved 

concrete. They found that the final setting occurs when the value of the derivative of the P-wave 

velocity evolution decreases down to 80% of the peak value. This technique was applied here. 

It is worth underlining that the final setting corresponds to a time when a sample can be 

manipulated, but gently to avoid any rupture. Before this time, any manipulation would be 

likely to induce rupture of specimens. It is also the time when the stiffness of the material begins 

to increase significantly. This final setting is, here, called t0 (Bentur, 2003). An estimation of 

this time is required for starting tests just after concrete setting. According to the assessment 

that will be presented in section 5.2.1.3, the final setting t0 estimated for this concrete was 5.4 

hours (0.226 days). 

5.2.1.2. Experimental techniques and protocols 

EMM-ARM 

In the context of this collaborative research, three different EMM-ARM beams were used to 

characterise the tested concrete: one cylindrical acrylic beam (O-ACR) similar to the original 

as presented in Figure 2.16 (page 32); one ‘U-shaped’ metallic beam (U-STL) as shown in 

Figure 3.3 (page 54); and one cylindrical PVC beam (O-PVC) with geometry similar to the one 

presented in Figure 3.15 (page 70). The physical and mechanical characteristics of the beams 

are presented in Table 5.2.  

The three beams were tested under OMA conditions with a fan pointing to the beams to increase 

the amplitude of vibration. Accelerations of the monitored points have been measured for 28 

days with sampling frequency of 200 Hz and PCB accelerometers with 10 V/g sensitivity, 0.15 

to 1000 Hz frequency range and 225 grams of mass. Packets of 60 seconds of data have been 

taken every 15 minutes with a 24-bit data logger (NI 9234). Regarding the frequency 

identification, the OMA SSI technique was used with a model order of 4.  
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Table 5.2. Physical and mechanical characteristics of the EMM-ARM beams. 

 Test 3 – concrete mix 3 
Reference O-ACR U-STL O-PVC 

Geometry    
Cross-section Circular ‘U’ Circular 
i H 92 mm 150 mm 86 mm 

e  100 mm 150 mm 90 mm 
Span 1800 mm 2400 mm 900 mm 
Connectors 
(spacing) 

Yes 
(300 mm) 

Yes 
(500 mm) 

Yes 
(180 mm) 

Supports ØTR=5 mm 
Concrete cubes 

Concrete cubes ØTR=5 mm 
Concrete cubes 

Mould    
Material Acrylic Steel PVC 
Density 1286.9 kg/m3 7800.0 kg/m3 1463.5 kg/m3 
E-modulus 3.30 GPa 170 GPa 4.3 GPa 

Concrete density 2340.3 kg/m3 2362.9 kg/m3 2295.7 kg/m3 

 

Classical cyclic compression tests (CC) 

Classical tests, considered as reference, were performed at UM, IFSTTAR and ULB on 

cylinders at different ages. For each test, strains were measured by extensometers. Three 

transducers (LVDTs) measured the relative displacement between 2 rings fixed to the specimen, 

as presented on Figure 2.1 (page 10). The specimens were kept in a curing chamber at 20ºC. 

However, the protocol of loading, the size of the specimen and the extensometers used for the 

determination of E are different. These differences are synthesized in Table 5.3. The selected 

testing ages associated to the results are given also in this table. 

Table 5.3. Classical test setup in the different laboratories. 

Lab UM IFSTTAR ULB 

Extensometer spacing (mm) 100 120 120 
Specimen    

Height (mm) 300 220 220 
Diameter (mm) 150 110 110 

Protocol of loading    
Loading range 0.8 to 33% of fcm 5% to 30% of fcm 20% of fcm 
Stress rate (MPa/s) 0.3 0.5 0.20 to 0.55 

Testing ages (days) 3, 7, 14, 28 
0.4, 0.5, 0.8, 1, 7, 

14, 28, 90 
0.8, 1, 2, 5 

 

At the University of Minho, cylinder specimens, 150 mm in diameter and 300 mm in length, 

have been tested under cyclic compression according to (LNEC, 1993). The protocol of loading 

consisted in applying 5 cycles between 0.8 MPa and 33% of the ultimate strength at the age of 
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testing. The loading rate was set to 0.3 MPa/s. The testing equipment included a hydraulic 

actuator with 2000 kN of maximum load capacity. 

At IFSTTAR, sample geometries were the same as the ones used for strength measurements 

(cylinders with 110 m in diameter and 220 mm in length). The first tests were performed 7 

hours after casting. Strains were measured by extensometers. The protocol of loading consists 

in applying 4 cycles between 5 and 30% of the strength measured on other cylinders (with the 

same geometry) just before the test (Torrenti et al., 1999). The loading rate was set to 0.5 MPa/s. 

The testing equipment included a hydraulic actuator with 500 kN of maximum load capacity. 

At ULB, similar cylinders and the same extensometer were used. 20% of the concrete strength 

at the time of the test was applied within 10 seconds, on 4 different samples. Corresponding 

stress rates were ranging from 0.2 to 0.55 MPa/s, depending on the age of the sample. The 

testing equipment included a hydraulic actuator with 1000 kN of maximum load capacity. 

BTJASPE device 

BTJASPE is a relatively recent device, developed at IFSTTAR (Boulay et al., 2012, Boulay et 

al., 2010, Boulay et al., 2013b), as already presented in section 2.2.2. It allows the automatic 

monitoring of the stiffness of a concrete cylinder remaining in its mould. Measurements start 

just after concrete casting and continue up to a few days. The device is placed between the 

plates of an automatic testing machine. The temperature of the sample is kept at a constant value 

thanks to a circulation of water inside a double walled mould. The sample is 100 mm in 

diameter and 200 mm in length. This sample is loaded at a constant strain rate of 5×10-3 m/m·s 

until a relative strain equal to 100×10-3 m/m·s. Then, at this point the ramp is reversed in order 

to unload the sample. This strain value is chosen to avoid any damage of the sample in 

compression. This protocol allows starting the tests shortly after the concrete casting as the 

device has a LVDT in the top to detect the contact between the actuator and the sample. A new 

loading cycle is triggered after a delay of about 15 to 30 minutes. 
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Automated cyclic compression tests (ACC) using BTJASPE protocol 

In order to check the accuracy of this test setup (sample confined in the stainless steel mould), 

other tests using the same loading protocol were performed on concrete cylinders removed from 

their cardboard mould just after the concrete setting (detected by ultrasonic measurements). The 

sample is capped with sulphur mortar, equipped with an extensometer and placed between the 

upper and the lower bearings used for BTJASPE (Figure 5.2). A ball joint is placed between 

the upper face of the sample and the upper bearing. In that case, the sample is not confined thus 

the results are not affected by any lateral effect and they can be considered as validation tests 

for BTJASPE study (called ACC hereafter). Strain measurement is performed with the same 

technique adopted by IFSTTAR for the reference tests in cylinders (classical testing). 

 

Figure 5.2. Validation test for results obtained with BTJASPE (Delsaute et al., 2016). 

Temperature Stress Testing Machine (TSTM) 

Since 2006, a revisited TSTM has been under development in ULB for testing concrete since 

t0, under free and restraint conditions (Boulay et al., 2013b, Staquet et al., 2012). The testing 

machine is a Walter+Bay LFMZ 400 kN electromechanical testing setup. The machine is 

composed by a fixed steel head, a central part where the testing specimen is placed and a moving 

end (Figure 5.3a). In the central part, where the measurements of the displacements are taken, 

the stress field is assumed to be homogenous (Figure 5.3b) and the cross-sectional dimensions 

are 100×100 mm2. The displacements are recorded by Foucault current’s sensors (contact free 

sensors). Before casting, a plastic sheet is placed in the mould to ensure sealed conditions. 
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Moreover, the plastic sheet helps also to reduce the friction between the sample and the mould, 

within a system that also encompasses a Teflon plate. The machine is equipped with a double 

walled mould allowing a thermal regulation and, in particular, ensuring isothermal curing 

conditions. Temperature measurements took place in the central part of the specimen and in 

each heads. The experiment was conducted in a climatic chamber with temperature of 20 ± 1ºC. 

 

 

a) b)  

Figure 5.3. a) TSTM equipment for cyclic loadings; b) Measurement of displacement in 

TSTM device (Delsaute et al., 2016). 

A new methodology was developed for measurement of the Young’s modulus. The test is 

controlled at a constant loading rate, thanks to the software “DION®” (Walter & Bai). The test 

begins shortly after t0. For each cycle of loading, the moving end of the testing machine is 

controlled by the force sensor, up to 20% of the compressive strength at the age of testing. The 

sample is then unloaded till a null force. Recordings (displacements, force and temperature) are 

taken during the cycles and more specifically during each loading and unloading. These 

displacement measurements can then be directly used to compute the Young’s modulus. The 

duration between each loading was approximately 60 minutes. The relation between the stresses 

and the strains is quasi linear during the loading. In order to keep the strictly linear zone of the 

stress/strain curve, the Young’s modulus is calculated between 30 and 80% of the maximum 

load reached in each cycle. 

Classical ultrasonic wave transmission (UWT) measurements 

Three classical techniques of UWT were performed on this concrete. First, the PunditLab 

device (Proceq, 2014) was used in the UM laboratory. This device is equipped with two probes 
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with a resonance frequency of 54 kHz that were placed in two opposite sides of a concrete cube 

with 150 mm edge. Single period pulses were generated with 500 V of amplitude. The 

measurements stated immediately after casting, however due to the fluid like behaviour of the 

concrete in fresh state the first measurements were taken only at 6 hours after casting.  

The FreshCon device (see Figure 5.4) developed at the University of Stuttgart was used due to 

its ability to detect very early age signals. Ultrasonic pulses of 5 µseconds at 800 V are sent 

through ultrasonic transducers (0.5 MHz resonant frequency). The ultrasonic pulse velocity 

(UPV) can therefore be computed before setting. These technique was used by the ULB team 

in the context of these research work. In addition, the UPV was measured with a BTPULS 

device developed at IFSTTAR (Boulay et al., 2013b). This additional test, performed after the 

setting, was performed for comparative purposes between these two techniques. 

 

Figure 5.4. FreshCon System (Delsaute et al., 2016). 

In the FreshCon system, the sample thickness is 47 mm. Two samples are cast inside two similar 

containers: one for P-waves measurements and one for S-waves measurements. Samples are 

placed in a thermally regulated chamber and their temperatures are measured continuously 

during the test. Detailed information about this method can be found in (Krüger et al., 2013). 

The P-waves (Vp) and S-waves (Vs) velocities can be used to compute the dynamic Poisson’s 

ratio (νdyn) and E-modulus (Edyn) through equations (2.4) and (2.5) (page 16). 
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Smart aggregates (SMAGs) 

The main drawback of the PunditLab, FreshCon and BTPULS systems is the use of a fixed 

sized mould which strongly limits the possible testing conditions of the sample. In particular, it 

does not allow applying specific hygral and/or mechanical boundary conditions on the concrete 

sample. An alternative is to perform ultrasonic testing directly inside a concrete specimen of an 

arbitrary shape and size using embedded piezoelectric transducers. The use of embedded 

transducers, also called “Smart Aggregates” (SMAGs) can be used to monitor the elastic 

mechanical properties of concrete in (Li et al., 2009). At ULB, transducers based on a similar 

design were recently developed. Each SMAG consists in a flat piezoelectric patch which is 

wrapped in a waterproof coating and embedded in a small cube or cylinder made of mortar (as 

already shown in Figure 2.7 – page 20). One of the advantages of this technique is that no 

coupling agent is needed between the sensor and concrete. The SMAGs fabricated at ULB have 

been used for the monitoring of the P-wave velocity in early age concrete (Dumoulin et al., 

2012). The results for early age testing are used in this paper and compared to the results 

obtained with the other techniques presented. More detail about the testing procedure is detailed 

in the work of Dumoulin et al. (2012). 

A prismatic mould, containing a pair of SMAGs with a distance d = 56 mm is used (Figure 5.5). 

The FreshCon system is used to excite the emitter with a pulse of 800 Volts and 2.5 µs and 

record the wave at the receiver’s side. The testing procedure is therefore identical to the one 

described before for FreshCon, except for the fact that piezoelectric transducers of the mould 

are replaced by SMAGs directly embedded inside the concrete specimen. 

 

Figure 5.5. Prismatic mould with SMAGs before casting the concrete (Delsaute et al., 2016). 
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5.2.1.3. Results and discussions 

The results are cumulatively presented below, beginning with the results of classical cyclic 

compression tests (CC), the EMM-ARM results, followed by a comparison between the low 

frequency techniques (CC, EMM-ARM, BTJASPE, ACC and TSTM). The comparison 

proceeds with the results obtained through the wave propagation methods. Finally, a 

comparison between the data collected through all analysed testing methodologies is presented. 

Classical cyclic compression tests (CC) 

Measurements of the modulus of elasticity were performed by means of classical extensometry 

in the 3 laboratories (Table 5.4). Strain rates were ranging from 0.2 to 0.55 MPa/s for the 3 

laboratories. 

Table 5.4. Classical cyclic compression tests (mean values). 

UMinho* IFSTTAR* ULB** 
teq (days) E (GPa) teq (days) E (GPa) teq (days) E (GPa) 

2.78 34.66 0.36 2.72 0.79 16.8 
6.80 36.10 0.47 7.32 0.92 20.5 

14.11 36.60 0.79 18.76 1.96 29.5 
27.98 38.59 0.97 22.86 4.88 35.2 

  1.16 26.14   
  7.23 36.41   
  14.23 37.43   
  28.23 39.66   
  90.23 39.62   

*Mean values of 3 specimens 
**Values of 1 specimen 

As loading protocols are very similar, these results are mixed in order to obtain a single 

description of the evolution of the Young’s modulus by these classical means. For the sake of 

the analysis of our results, the following mathematical model was used (Carette, 2015) (Figure 

5.6): 
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where E(teq) is expressed in GPa, teq in days, α1 = 32.35, β1 = 1.81, τ1 = 0.63 α2 = 11.30, 

β2 = 0.34 and τ2 = 6.16.  

 

Figure 5.6. Evolution of the E-modulus obtained with classical methods. A model is adjusted 

to the data. 

This function is accepted as the reference for the comparisons between the different methods 

and will thus be used recurrently in the following sections. This kind of test does not provide 

an accurate estimation of t0; as the first measurement could only be made 3 hours after t0. 

EMM-ARM results 

The resonant frequency evolutions for the three composite beams (concrete-filled moulds), 

resulting from processing the recordings of the accelerometers are shown in Figure 5.7a. All 

the data of EMM-ARM is plotted according to the equivalent age, normalized to 20°C (see 

temperature history in Figure 5.7b). By observation of Figure 5.7a, it is clear that all composite 

beams endured a significant frequency shift ranging between 27.49 Hz in the beam U-STL and 

109.12 Hz in the beam O-PVC.  

0.01 0.1 1 10 100
0

10

20

30

40

50

R
2
 = 0.995

 Model
 CC UM
 CC IFSTTAR
 CC ULB

E
-m

o
d
u
lu

s 
[G

P
a]

Equivalent age [days]

2

2

1

1

21)(



































 eqeq tt

eq eetE


1
 = 32.35


1
 = 0.63


1
 = 1.81


2
 = 11.30


2
 = 6.16


2
 = 0.34



Chapter 5 

152 
 

  

a) b) 

Figure 5.7. a) Resonant frequency evolution for the acrylic, metallic and PVC EMM-ARM 

composite beams (O-ACR, U-STL and O-PVC); b) Temperature history observed in the 

EMM-ARM specimens. 

The overall results of E-modulus measured by the three EMM-ARM composite beams and the 

reference curve of classical tests are shown in Figure 5.8. It is evident that the coherence of the 

four curves is very good at most ages of testing, once more confirming the feasibility and 

robustness of EMM-ARM. It is however remarked that the E-modulus obtained from the 

metallic mould test is slightly higher than the E-modulus obtained from the other beams (acrylic 

and PVC) from the beginning of the evolution until ~3 days of age. This may be partially 

explained by some uncertainties in the geometry of the metallic beam due to its high local 

deformability (1 mm thick plates) that resulted in some local warping due to previous uses of 

the mould. After this point the values estimated by the different beams are quite similar with an 

average value of 36.06 GPa with a standard deviation SD = 0.98. A slight under-estimation of 

the final E-modulus value of all EMM-ARM specimens in regard to the model can also be 

observed in Figure 5.8. 
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Figure 5.8. E-modulus obtained through EMM-ARM (acrylic, metallic and PVC composite 

beams - O-ACR, U-STL and O-PVC) compared to calibrated model for quasi-static E-

modulus. 

Comparison between low frequency testing methods 

The average E-modulus evolutions obtained will all low frequency (or quasi-static) methods 

are shown in Figure 5.9. In all the results the overall evolution kinetics is similar, with an initial 

dormant period until ~5 hours after mixing. At this point the E-modulus starts to increase 

whatever the testing method. After setting, the kinetic of the E-modulus looks very similar, 

whatever the testing method whereas a limited scattering is observable between the results, 

especially very early ages. It appears that the difference of protocol of loading (strain rate, stress 

amplitude) and the type of testing method did not induce any strong effect on the kinetic and 

the amplitude of the E-modulus. Furthermore, all low frequency testing methods have revealed 

a good correspondence with classical cyclic compression results. 

 

Figure 5.9. E-modulus obtained with low frequency testing methods. 
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To illustrate the accuracy and precision of each method the normal distribution of the estimated 

E-modulus was computed. But first all the values were normalized to a reference value at the 

age of testing computed from the model (fitting of CC results). The normal distributions of the 

E-modulus estimations along the whole duration of the tests form the five distinct techniques 

are shown in Figure 5.10 and the mean values and standard deviations are summarized in Table 

5.5. 

 

Figure 5.10. Accuracy and precision of the low frequency experimental methods. 

Table 5.5. Summary of the mean values (μ) and standard deviations (SD) of the E-modulus 

estimated with the low frequency experimental methods. 

Method EMM-ARM BTJASPE ACC TSTM 
μ 0.952 0.902 0.946 0.997 

SD 0.0618 0.2914 0.0888 0.1490 

 

It can be observed that, the most accurate was the TSTM method with an average (μ) of 0.997, 

though the precision was low since the Standard Deviation (SD) is 0.1490. Regarding the EMM-

ARM results, it is possible to state that the method is able to estimate the so-called quasi-static 

E-modulus of the concrete with a very high precision and a good accuracy. This results enable 

the validation of the E-modulus estimations obtained with EMM-ARM since the accuracy and 

precision of the estimations are within the range of the competing static methods.  
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High frequency testing 

The P-wave velocity results obtained, for the same concrete, with the PunditLab, SMAGs, the 

BTPULS and FreshCon systems are plotted on Figure 5.11. Additionally, with the FreshCon it 

was also measured the velocity of S-waves transmission. In the figure, the average of three 

samples is shown for FreshCon and BTPULS. 

 

Figure 5.11. Measured P-wave velocities using PunditLab, FreshCon, BTPULS, and SMAGs. 

In the FreshCon results the P-waves velocity increases rapidly during setting and stabilizes after 

the final setting time to a value slightly superior to 4000 m/s. However, the S-waves hardly 

propagate though fluids. It is only at the beginning of the hardening that the S-waves velocity 

increases. Then, it slowly reaches a value close to 2500 m/s. These observations are in good 

agreement with the few results found in the literature (Van Den Abeele et al., 2009, 

Benmeddour et al., 2012). It seems also that this system gives slightly different results of P-

waves velocity, in the first part of the curve when compared to the others. However, this 

difference mainly occurs before t0. These differences could be related to errors on the distance 

between the probes (Carette et al., 2012). From 12 hours onward, the overall tendency is the 

same for all techniques, however with some differences in the magnitude of the velocity. In 

fact, one can identify two groups, the first one (PunditLab and BTPLUS) has a velocity at 24 

hours of 4350 m/s and the second group has 4070 m/s. These discrepancies can be due to 

different air content in the different moulds, since different techniques are used for placing the 

concrete in the moulds. Indeed, it is known that a strong dependency of the early age P-waves 

velocity to the air content of the mix exists. In aired mixes, the initial velocity is around 250 m/s, 

whereas for de-aired mixes, initial values close to 1500 m/s can be observed (Zhu et al., 2011a). 
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Additionally, these differences could be related to the different mould and probes sizes and 

different distances between probes of the different methods. Further analysis should be made 

to study the origin of these differences. 

In order to evaluate the relevance of the PunditLab, SMAGs and BTPULS methods compared 

to usual UPV measurements, a constant Poisson’s ratio of 0.3 has been considered as no S-wave 

measurements were performed with these techniques. The dynamic E-modulus (Edyn) 

estimations with the high frequency methods are shown in Figure 5.12. The values for the 

FreshCon curve with a constant νdyn equal to 0.3 and the SMAGs curve seem to stabilise after 

30 hours, whereas the values of the FreshCon curve with consideration of the evolution of νdyn, 

the PunditLab and BTPLUS follows the trend of the static E-modulus given by the model with 

increasing values after 30 hours. 

 

Figure 5.12. Comparison of the dynamic E-modulus computed from the P-wave velocity only 

with νdyn = 0.3 (PunditLab, SMAGs, FreshCon, BTPULS) and from the P-wave and S-wave 

velocity (FreshCon) with the static E-modulus model. 

Before the setting time, a scattering is observable between all the dynamic testing methods. The 

results FreskCon considering the real νdyn exhibit the lowest amplitude because before t0, the 

values of νdyn are much higher than 0.3. After t0, again one can separate the methods in two 

groups: the first one (PundilLab and BTPLUS) the E-modulus estimations follows the static 

model but with a gap of ~1.6 GPa; the second one (FreshCon, BTPULS with constant νdyn) the 

E-modulus estimations seems to stabilize with tendency to underestimate the so-called static E-

modulus. Only the FreshCon with consideration of the real νdyn seems to enable the estimation 

of the static E-modulus but only after ~3 days after mixing. Therefore, as observed in (Van Den 
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Abeele et al., 2009), the computation of Edyn only from P-wave velocity should be considered 

as a qualitative indicator of the E-modulus development.  

Overall comparison 

Figure 5.13 presents the synthesis of all results. Only mean values of each testing method are 

shown here. As expected, clear differences appear between static and dynamic results. Dynamic 

modulus with consideration of the evolution of νdyn is always higher than static results. A faster 

evolution of dynamic results is also observable. 

 

Figure 5.13. Comparison of E-modulus obtained with static and dynamic testing methods. 

  

0.01 0.1 1 10 100
0

10

20

30

40

50

CC Model

BTPLUS

SMAGs

PunditLab

FreshCon

FreshCon 

TSTM

EMM-ARM

BTJASPE

E
-m

o
du

lu
s 

[G
P

a]

Equivalent age [days]

ACC



Chapter 5 

158 
 

Final setting time 

With the results obtained from FreshCon the final setting time was computed from derivative 

of the wave velocity evolution according to the procedure described in section 5.2.1.1. Due to 

the acquisition noise the experimental data was fitted by the equation (5.3) to enable the 

computation of the first derivative of the P-wave velocity. 
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where α1 = 1445.98, α2 = 2445.72, α3 = 409.06, τ1 = 0.207, τ2 = 0.182, β1 = 6.113, β2 = 1.548 

and R2 = 0.9994. The wave velocity and the corresponding first derivative along time is shown 

in Figure 5.14. After the selection of the peak of the derivative of the P-wave velocity, the point 

when the derivative of the velocity decreases to 80% of the peak value is identified, that 

corresponds to the final setting time in accordance to the work of (Robeyst et al., 2008). As 

already presented before, a value of 5.4 hours (0.226 days) was obtained. 

 

Figure 5.14. Final setting time estimation with FeshCon. 

Nonetheless, since EMM-ARM also provides information about the E-modulus evolution since 

casting, the setting time obtained from FreshCon is compared here with the first derivative of 

the E-modulus evolution obtained with EMM-ARM. Similarly, to the previous method, the 

experimental data (average of the three specimens) was again fitted to enable the computation 

of the derivative of the E-modulus evolution. To the fit the experimental the equation (4.1) was 
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used with the following parameters: α1 = 27.95, α2 = 9.26, τ1 = 0.657, τ2 = 0.517, β1 = 0.977, 

β2 = 2.464 and the R2 was 0.9993. The E-modulus evolution and the corresponding first 

derivative along time are shown in Figure 5.15. It is observed that there is a very good 

agreement between the final setting time obtained with FreshCon (0.226 days) and a setting 

time computed by selecting the first point with 50% of the peak value of the DE/dt curve 

(0.211 days).  

 

Figure 5.15. Final setting time estimation with EMM-ARM. 

Despite a good agreement between the two setting times estimations, further experiments will 

be necessary to validate the feasibility of assuming that the final setting time corresponds to the 

first point with 50% of the peak value of the first derivative of the E-modulus.  
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In this subchapter, the EMM-ARM version for cement paste will be validated through 

comparison with a set of directly or indirectly competing methods, such as: classical cyclic 

compression (CC), ultrasonic pulse velocity (UPV), bender-extender elements (BE) and Vicat 

needle. It should be noted that this work is the continuation of the work carried out by the author 

during the master's thesis (Granja, 2011). It is also remarked that some of these results were 

already published in (Granja et al., 2014a, Granja et al., 2012). 
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5.2.2.1. Experimental Program 

Materials 

The experiments were conducted on cement pastes containing Type I and Type II Portland 

cement. Table 5.6 presents the compositions and properties of the two cements, based on 

information provided by the cement producer (average analysis of the month in which the 

cement was produced). The Bogue composition was calculated according to ASTM C150 

(2004). 

Table 5.6. Tested cements: chemical and Bogue composition together with other cement 

characteristics (percentages with respect to mass). 

Cement 
CEM II/B-L 

32.5N 
CEM I 
42.5R 

Loss of ignition [%] 13.50 2.69 
Insoluble residue [%] 3.02 1.34 
Silicon Oxide [%] 15.91 19.58 
Aluminate Oxide [%] 4.21 4.72 
Iron Oxide [%] 2.56 3.24 
Calcium Oxide [%] 58.02 63.42 
Magnesium oxide [%] 1.38 2.12 
Sulphates [%] 2.71 3.52 
Potassium oxide [%] - - 
Sodium oxide [%] - - 
Chlorides [%] 0.04 0.05 
Free lime [%] - 1.05 
N/D (no dosed) [%] - - 
C3S [%] 42.47 51.63 
C2S [%] 13.58 17.18 
C3A [%] 6.82 7.03 
C4AF [%] 8.84 9.86 
Limestone filler [%] - - 
Gypsum [%] - - 
Blaine [cm2/g] 4899 3891 
Specific gravity [g/cm3] 2.99 3.13 

 

In the scope of this experimental program, two cement paste compositions with two different 

water/cement ratios (w/c = 0.45 and w/c = 0.50) were adopted. The mixture proportions of the 

cement pastes as well as the corresponding nomenclatures are presented in Table 5.7. For both 

cement pastes with w/c = 0.5, more than one batch was tested. Therefore, the density value 

indicated in Table 5.7 corresponds to the average value and the observed variation (less than 

0.23%). This care in the determination of density is particularly important due to its role in the 
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evaluation of E-modulus of the cement paste through the EMM-ARM method, as shown in 

equations (2.12) and (2.14) (page 35). 

Table 5.7. Cement pastes adopted in this research work. 

Reference Cement type w/c ratio Density (kg/m3) 
c32.5wc0.5 CEM II/B-L 32.5 N 0.50 1787.4±4.0 
c42.5wc0.5 CEM I 45.5 R 0.50 1840.3±4.1 
c42.5wc0.45 CEM I 45.5 R 0.45 1926.8 

 

The acrylic tubes used for the EMM-ARM had an average elastic modulus of 4.72 GPa at 20°C 

(with a variation of ±0.02 GPa in all tested moulds) and an average density of 1172 kg/m3. The 

values of E-modulus and density of the acrylic were verified in the laboratory through modal 

identification of the empty moulds, which were weighed before the start of each test. 

Experimental program and procedures 

The experimental program involved the measurement of the cement pastes E-modulus with 4 

distinct methods: EMM-ARM, ultrasonic pulse velocity (UPV), bender-extender elements (BE) 

and classic cyclic compression (CC) tests. Penetration resistance was also measured through 

Vicat needle testing, according to EN 196-3 (2005b). The details about the procedures used in 

each method is presented in the next section. All EMM-ARM tests involved simultaneous 

testing of two specimens for repeatability checking. The list of all the specimens used during 

this experimental program, comprising the three cement pastes previously mentioned, is 

presented in Table 5.8. EMM-ARM, BE and UPV tests were performed continuously since 

casting, whereas the cyclic compression tests were conducted at the ages of 2, 3, 7, 14 and 28 

days. 
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Table 5.8. Specimens used in the study. 

Specimen Cement paste 
Monitoring 

method 
Curing 

temperature (ºC) 
32.5-Vic c32.5wc0.5 Vicat 20 
32.5-CC c32.5wc0.5 CC 20 
32.5-UPV c32.5wc0.5 UPV 20 
32.5-BE c32.5wc0.5 BE 20 
32.5-EMM1 c32.5wc0.5 EMM-ARM 20 
32.5-EMM2 c32.5wc0.5 EMM-ARM 20 
42.5-Vic c42.5wc0.5 Vicat 20 
42.5-CC c42.5wc0.5 CC 20 
42.5-UPV c42.5wc0.5 UPV 20 
42.5-BE c42.5wc0.5 BE 20 
42.5-EMM1 c42.5wc0.5 EMM-ARM 20 
42.5-EMM2 c42.5wc0.5 EMM-ARM 20 
42.5A-EMM c42.5wc0.45 EMM-ARM 20 
32.5-EMM40 c32.5wc0.5 EMM-ARM 40 
42.5-EMM40 c42.5wc0.5 EMM-ARM 40 

 

In specific regard to the preparation of the cement pastes, the mixing operations were performed 

in an automatic mixer, according to the following procedure that conforms the 

recommendations of EN 196-1 (2005a): (i) introduce the cement and immediately after add 

water (instant defined as “t=0”); (ii) start mixing at 500 rpm for 90 seconds; (iii) stop mixing 

during the following 90 seconds; (iv) resume mixing operation at 500 rpm for another 30 

seconds. After the mixing process, the resulting cement pastes were poured into the moulds, 

which were simultaneously slightly vibrated for removal of air bubbles during the casting 

process. The time elapsed between mixing and the beginning of monitoring did not exceed 20 

minutes for any of the continuous methods (EMM-ARM, UPV and BE). 

All these tests on c32.5wc0.5, c42.5wc0.5 and c42.5wc0.45 were performed under moist sealed 

conditions at 20°C and carried out for at least 7 days. The only exception to the mentioned 

situation corresponded to the CC specimens that were demoulded right before the first test 

(t = 2days) and were placed, unsealed, in a controlled environment with T = 20ºC and 

RH = 60%. The temperature inside the distinct samples was assessed through embedded K-type 

thermocouples. In the EMM-ARM samples, the maximum temperature increase with respect to 

the registered room temperature was lower than 0.5°C, thus rendering temperature variation 

effects negligible. In the remaining specimens, maturity corrections were necessary to take into 

account the temperature effects during the cement hydration process shown in Figure 5.16.  
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Figure 5.16. Specimens temperature history. 

The comparative results to be presented in the next section refer to their equivalent age (teq), at 

a reference temperature adopted as 293.15°K = 20°C. In order to assess the apparent activation 

energy, two additional tests were performed with the EMM-ARM. These additional 

experiments were conducted on cement pastes c32.5wc0.5 and c42.5wc0.5, in a temperature-

controlled room that guaranteed an average temperature of 40.2±0.2°C. The obtained Eact 

values that were used for maturity corrections in the scope of this study are discussed in section 

5.2.2.3. 

5.2.2.2. Experimental techniques and protocols 

EMM-ARM 

In this experimental program the cement pastes presented before were tested with the EMM-

ARM version for cement pastes testing (see section 2.5.3). Here, the original test apparatus 

shown in Figure 2.18 (page 36) was used. The geometry of the tested beams is presented in 

Table 5.9. 

Table 5.9. EMM-ARM beams’ geometry. 
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i (mm) 16.18 16.13 16.13 16.18 16.13 16.13 16.14 

e (mm) 20.13 20.11 20.10 20.14 20.13 20.11 20.12 
Span (mm) 450.0 450.0 450.0 450.0 450.0 450.0 450.0 
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Classical cyclic compression tests (CC) 

Classical cyclic compression tests (CC) with on-sample strain measurements were performed 

to quantify the E-modulus of cylindrical specimens. The cement paste cylindrical specimens 

utilized in this study had a diameter/height of 50/100 mm. The testing apparatus includes a 

hydraulic actuator with 50 kN capacity and 3 displacement transducers (LVDTs), supported by 

2 aluminium rings attached to the specimens (spaced 40 mm), as presented in Figure 2.1 (page 

10). The test protocol adopted in this work was based on the experiments reported by Maia et 

al. (2012b). Each test involved 3 loading/unloading cycles, with a loading rate of 200 kPa/s, 

and the E-modulus was computed in the loading branch of the last load/unload cycle. The 

maximum cyclic load reached 33% of the compressive strength of the cement paste at the age 

of testing, obtained through destructive compressive tests in 50×50×50 mm3 cubes. 

Ultrasound Pulse Velocity (UPV) 

In the present work, the method for monitoring the velocity of ultrasonic waves in cement pastes 

is based on the generation and transmission of a single-period sine wave through an ultrasonic 

probe transmitter, according to the test configuration shown in Figure 5.17a. The setup consists 

of an ultrasonic transmitter placed on one side of the sample, as depicted in Figure 5.17b, and 

a receiver positioned on the opposite side. The wave, defined in a function generator (model 

TTI - TG1010A) with 0.1 mHz resolution, an accuracy of <10 ppm and a range of 0.1 mHz to 

10 MHz, is transmitted to the sample through a contact probe (P-wave probe with operating 

frequency of 150 kHz and diameter of 25 mm), and received in the opposite side of the sample 

by another contact probe (identical to the source probe). The size of the probes is considered to 

be adequate for application to cement pastes since its diameter is greater than the largest 

expected heterogeneity. An oscilloscope with 16-bit resolution and a sensitivity of 10 mV/div 

to 20 V/div (PicoScope 4424) performs the analog-to-digital conversion of both emitted and 

received waves and transmits the digitized waves to the computer for signal processing. 
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a) b) 

Figure 5.17. UPV method: a) experimental set-up; b) container. 

A prismatic mould, made of extruded polystyrene, with dimensions 60×60×150 mm3 was used, 

as seen in Figure 5.17b. To allow measurements immediately after mixing, the UPV probes 

were positioned in advance in the opposite faces of the cross-section of the mould. Preliminary 

tests allowed to confirm that the adopted solution performed well, without any noticeable 

negative effects on the quality of the received wave. 

Bender-extender elements (BE) 

In the present work, the adopted test configuration for this methodology is quite similar to the 

one described in the previous section for UPV, except for the use of BE probes instead of 

ultrasonic probes (Figure 5.18a). In this study, T-shaped bender-extender elements made in the 

University of Western Australia (Brignoli et al., 1996) were used, and they are schematically 

depicted in Figure 5.18b. These BE enable the measurement of P and S waves and operate in a 

wide frequency range, common for this type of probes. 
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a) b) 

Figure 5.18. BE method a) experimental set-up; b) BE probe [units: mm]. 

In order to avoid errors in the identification of the wave propagation time, special attention must 

be given to the mould used for the BE methodology, due to the possible existence of “cross 

talk” parasite waves (Santamarina et al., 2001). However, as the usual operation of BE elements 

involves a wide frequency range that can start as low as 1 kHz, the distance between the probes 

must hence be higher, in comparison with the distance adopted for the UPV method. 

Preliminary tests in the scope of this research work have shown that the adopted geometry for 

the UPV (60×60×150 mm3, as shown in Figure 5.19) made in extruded polystyrene is also 

suitable for BE experiments on cement pastes. However, in this case the probes were placed in 

the opposite faces of the mould that are separated by 210 mm. Similarly to the UPV, the BE 

probes were fixed to the mould in order to allow measurements immediately after mixing. 

 

Figure 5.19. Container for the use of bender-extender elements. [units: mm]. 

The choice of the best frequency for wave velocity assessment at each instant of testing was 

made by manually sweeping the frequency to obtain the highest output signal amplitude. At 

such frequency, the identification of the wave arrival time is facilitated, since the noise-to-signal 
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ratio is at its lowest. It is reasonable to assume that within the range of frequencies used in this 

method, the travel time is independent of frequency, that is, the travel time remains the same 

regardless of the applied input frequency (Viana da Fonseca et al., 2009). 

5.2.2.3. Results and discussion 

The results are cumulatively presented below, beginning with the results of classic methods 

(Vicat test and cyclic compression), followed by the EMM-ARM results. The comparison 

proceeds with the results obtained through the wave propagation methods (UPV and BE). 

Finally, a comparison between the data collected through all analysed testing methodologies is 

presented. 

Penetration tests and cyclic compression tests 

The Vicat and cyclic compression tests conducted on the cement pastes c32.5wc0.5 and 

c42.5wc0.5 yielded the results presented in Figures 5a and 5b. The results of penetration testing 

(Figure 5a) show that the structural setting time occurs earlier for the cement paste prepared 

with the higher cement class (c42.5wc0.5) – see Table 5.10. Cyclic compression testing of 

c42.5wc0.5 also yielded higher elastic modulus than of c32.5wc0.5 during the whole period of 

study as shown in Figure 5b. 

  

a) b) 

Figure 5.20. Results obtained through the classic methods a) Penetration resistance (Vicat 

needle) b) Cyclic compression. 
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Table 5.10. Structural setting time of the cement pastes. 

Cement paste Initial setting (hours) Final setting (hours) 
c42.5wc0.5 7.05 8.39 
c32.5wc0.5 7.17 8.75 

 

EMM-ARM 

The resonant frequencies identified by the EMM-ARM method for the three studied cement 

paste mixtures are shown in Figure 5.21a. It is worth mentioning that a wide range of 

frequencies was covered throughout the curing process of the cement pastes, ranging from 

~14.6 Hz to 26.0 Hz within the testing period. Moreover, all frequency evolution curves appear 

to be plausible, showing an initial dormant period (where the frequency remains almost constant 

within ±0.3 Hz). After this threshold, the frequencies evolved significantly for all tested 

specimens until approximately 48 hours of curing period, after which a dramatic reduction in 

the slope of frequency evolution occurs. 

The elasticity modulus of the tested cement pastes was estimated by applying equations (2.11) 

and (2.12) (page 35) to the resonant frequencies presented in Figure 5.21a. The resulting E-

modulus evolution is shown in Figure 5.21b. 

  

a) b) 

Figure 5.21. EMM-ARM results: a) Frequency evolution; b) E-modulus evolution. 

Firstly, it is possible to verify that the E-modulus evolution curves of the same cement pastes 
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ARM. Furthermore, when comparing the results obtained with the two pastes containing the 

same w/c ratio (c42.5wc0.5 and c32.5wc0.5), it can be seen that the cement paste containing 

the CEM I 42.5R cement has a higher stiffness, with a difference of ~2 GPa at the age of 7 days 

(168 hours) - see Figure 5.21b. However, even though the cement paste c42.5wc0.5 has reached 

a higher stiffness after the first day of curing, the E-modulus evolution at very early ages is 

fairly similar to that of paste c32.5wc0.5. In fact, this would not be expected by strictly 

considering the chemical composition of the utilized cements, namely due to the higher C3S 

content of cement CEM I 42.5R. Nonetheless, another important characteristic might justify 

this behaviour at very early ages: the specific surface or Blaine index. In fact, the Blaine index 

of CEM I 42.5 R is lower than that of CEM II/B-L 32.5N (3891 against 4899 cm2/g according 

to Table 5.6). The similarity of the E-modulus evolution at very early ages between the two 

pastes can thus be considered reasonable, taking into account these two aspects that justify the 

apparent inverse trends: clinker composition and specific surface.  

A further comparative interpretation can be made by observing the behaviour of the two pastes 

containing the same type of cement: c42.5wc0.5 and c42.5wc0.45. The corresponding results 

are shown in Figure 5.21b, where the expected trend was confirmed: the reduction of the w/c 

ratio increases early hydration velocities, and leads to higher values of E-modulus (after 6 days 

of curing, there is a difference of approximately 1.3 GPa). 

The comparison between the elastic modulus results obtained by EMM-ARM and by classic 

methods (CC and Vicat) for the cement pastes c32.5wc0.5 and c42.5wc0.5 is shown in Figure 

5.22. It can be seen that the values obtained through the EMM-ARM are similar to those 

collected in CC tests in terms of magnitude and evolution kinetics. However, the results for 

c32.5wc0.5 (Figure 5.22a) show a non-negligible difference of 1.4 GPa at teq = 22.4 days (538 

hours). This deviation may possibly be explained by differences in the curing conditions of the 

samples. In fact, the EMM-ARM samples remained in perfectly sealed conditions during the 

whole test, while the samples used for the CC tests were exposed to drying during the testing 

period. This small variation in the curing conditions may have influenced the hydration process 

at the surface of the CC specimens (Parrott, 1990), which may have significant effects in view 

of the small size of the specimen, thus resulting in lower stiffness. As the porosity of c32.5wc0.5 

is higher than that of c42.5wc0.5, it is plausible that this deficient curing of CC specimens may 

have affected c32.5wc0.5 more significantly, as opposed to c42.5wc0.5. 
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a) b) 

Figure 5.22. Comparison of the results of EMM-ARM, Vicat, and cyclic compression for 

cement pastes: a) c32.5wc0.5 b) c42.5wc0.5. 

The results presented in Figure 5.22 also show good agreement between EMM-ARM and the 

data collected by the Vicat needle, in the sense that the end of setting determined by Vicat 

testing coincides with the end of the dormant period observed in EMM-ARM, followed by a 

strong acceleration of the hydration kinetics.  

With the results obtained from EMM-ARM the final setting time was computed from the 

derivative of the E-modulus evolution according to the procedure described in the previous 

section 5.2.1.3. Again, due to the acquisition noise the experimental data was fitted by the 

equation (4.1) to enable the computation of the first derivative of the E-modulus evolution. To 

the fit the experimental the parameters shown in Table 5.11 were used.  

Table 5.11. Parameters used to fit the EMM-ARM results. 

Parameter 32.5-EMM 42.5-EMM 
α1 9.218 2.830 
α2 3.584 11.512 
τ1 0.980 1.184 
τ2 7.652 1.299 
β1 1.601 2.619 
β2 1.087 0.954 
R2 0.999 0.999 

 

The E-modulus evolutions and the corresponding first derivative along time are shown in Figure 

5.23. From these graphs the final setting time was computed by selecting the first point with 
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50% of the peak value of the first derivative of the E-modulus evolution. The following values 

were obtained for final setting: 8.10 and 10.48 hours for the cement pastes c42.5wc0.5 and 

c32.5wc0.5, respectively. The values obtained for the cement paste c42.5wc0.5 are in very good 

agreement with ones obtained with Vicat needle presented in Table 5.10. However, for the 

cement paste c32.5wc0.5 the coherence between the two values is poor with a difference of 

1.43 hours. This difference could be related to differences in the curing temperatures since the 

tests were performed at room temperature without a precise control. 

 

  

a) b) 

Figure 5.23. EMM-ARM final setting time determination: a) Cement paste c32.5wc0.5; b) 

Cement paste c42.5wc0.5. 

Ultrasonic Pulse Velocity (UPV) 

The evolution of the P-wave velocity for c42.5wc0.5 and c32.5wc0.5 is shown in Figure 5.24, 

together with information collected by Vicat testing. 
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Figure 5.24. P-wave velocity evolution for cement pastes c42.5wc0.5 and c32.5wc0.5. 

Firstly, it should be noted that UPV was unable to provide measurements of P-wave velocity in 

the cement pastes at very early ages, including the setting period. The earliest measurement was 

only possible at teq = 12.4 hours, when EMM-ARM already exhibited E-moduli above 0.8 GPa 

for both pastes (see Figure 5.22). The reason for this problem can be attributed to the presence 

of air bubbles in the samples, which have been reported to attenuate and delay the wave 

propagation, as well as due to the high impedance mismatch between the transducers and the 

fresh cement paste (Zhu et al., 2011a). In fact, in order to monitor the evolution of the P-wave 

velocity in cement pastes, some authors (Boumiz et al., 1996, Zhu et al., 2011a) used de-aired 

samples (previously placed in vacuum) with successful results. However, since the ‘real’ 

cement pastes always contain some air bubbles the de-airing of the samples may end up 

producing unrealistic results. In order to avoid this drawback in UPV, some authors (Reinhardt 

and Grosse, 2004) successfully performed measurements during the setting by using smaller 

distances between the probes and more energetic excitation signals (with higher voltage) even 

with the wave attenuation. Such alternative was not available in this research work. Another 

solution to this problem, currently under research, involves adjusting the input frequencies to 

lower values (below the reference frequency of the ultrasonic transducers) at very early ages. 

Despite the reduction in the performance of the transducer, this procedure would enable to 

comply with the initially low stiffness of the tested material. However, despite the absence of 

UPV measurements in this initial period (~12 hours), the wave velocity measurements of Figure 

5.24 exhibit an evolution which can be considered plausible. In fact, the various stages usually 

observed in the cement hydration kinetics after the dormant period can be identified: (i) an 

initial stage where a substantial increase in wave velocity occurs; (ii) a subsequent stage in 

which the velocity evolution becomes less significant. Lastly, it can be noted that the 
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c42.5wc0.5 paste shows a greater increase in wave velocity, which is consistent with the results 

of the EMM-ARM that were already reported. 

Bender-extender elements (BE) 

The application of BE for studying the evolution of the stiffness characteristics of cement pastes 

is still taking its first steps, with very few published works so far (Zhu and Kee, 2010, Zhu et 

al., 2011b). However, the success already achieved in the application of BE to cement-

stabilized soils at the University of Minho (Azenha et al., 2011, Silva et al., 2013b) has justified 

the interest on this testing methodology.  

As opposed to the UPV method, the use of BE easily allows to perform high quality 

measurements immediately after casting. This is mainly due to the high efficiency over a wide 

frequency range that the BE probes possess, which enables an adjustment of the input frequency 

to provide better results at each instant of measurement. However, despite this benefit, the use 

of BE is often accompanied by difficulties associated with a high sensitivity to external 

disturbances (such as the existence of electrical noise in the testing room), which obscure and 

compromise the interpretation of test results. This high sensitivity can be partly explained by 

the relatively low power of the signal generator adopted in this research that solely allowed a 

maximum excitation amplitude of 20 V. On the other hand, the use of power amplifiers (to 

boost the input signal) is limited by the transducer itself, which depolarises approximately 

above 60 V. 

Figure 5.25 shows four S-wave signal readings performed for the paste c42.5wc0.5 at ages of 

2.9, 9.0, 26 and 172 hours. These readings were conducted at optimum increasing frequencies 

between 1 kHz at 2.9 hours and 50 kHz at 172 hours (see Figure 5.25a). In the four 

measurements presented in Figure 5.25b, one can clearly observe the difficulty the 

identification of the first arrival of the wave. This problem was already mentioned in the works 

of Ferreira (2009) and Viana da Fonseca et al. (2009) regarding the performance of BE in stiff 

materials. 
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a) b) 

Figure 5.25. Signal readings during the use of the BE method in the paste c42.5wc0.5 at 2.9, 

9, 26 and 172 hours of curing: a) Input signal at the transmitter BE; b) Output signal 

registered by the receiver BE. 

The BE used in these tests have the capability of measuring compressional (P) and shear (S) 

waves, hence initially all tests included the recording of both wave types. However, after some 

measurements, it was found that both sensors measured exactly the same type of wave: S-waves 

(noted by the same wave shape and the order of magnitude of the recorded velocities). The 

justification for this phenomenon is due to the characteristics of the BE probes, as mentioned 

by Lee and Santamarina (2005), and schematically shown in Figure 5.26: the probe generates 

two P-wave side lobes normal to their plane and a S-wave frontal lobe. Therefore, since the 

generation of response signal in the receiver demands that the sensor itself bends, when the BE 

transmitter and BE receiver are perfectly aligned (which is the case in our work), the P-waves 

are parallel to the longitudinal axis of the receiving transducer, thus being unable to flex it. On 

the other hand, the S waves disturb the transducer in the direction perpendicular to its 

longitudinal axis, thus causing a larger bending motion and as a result a larger signal output. 

This feature causes them to lose the ability to adequately receive P-waves, while having a 

significant resolution in the measurement of S-waves. Additionally, at very early ages, i.e. in 

fresh pastes, the propagation of P-waves is difficult, as already mentioned in regard to UPV 

tests, due to the presence of entrapped air and to the high stiffness impedance between the 

transducer and the material. As the paste hardens, the compressional wave velocity increases 

rapidly and the frequency required to measure such high velocity causes the BE to vibrate in 

complex mode shapes, which in turn strongly reduces the amplitude of the effectively 

propagated wave and makes it difficult to detect the P-wave in the received signal. 
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Figure 5.26. Waves generated by a BE probe. Adapted from Lee and Santamarina (2005). 

Consequently, the attempt to measure P-waves with BE in the scope of this research work was 

abandoned. Moreover, these results demonstrate that the use of S-waves is more suited to 

monitor these complex evolving processes than P-waves, since shear waves only propagate 

through the solid skeleton of the specimens, providing a higher sensitivity towards the structural 

changes that occur during setting. 

After obtaining the propagation time of the S-waves, the evolution of the wave velocity was 

computed, as shown in Figure 5.27. It can be observed that there are no significant differences 

in the recorded wave velocities for the two types of pastes. However, the S-wave velocity is 

higher in the c42.5wc0.5 paste throughout the entire curing period. It should also be noted that 

the difference in the wave velocity increases along the curing process, which is in agreement 

with the results of the previous methods. Therefore, the application feasibility of this 

methodology to cement pastes was confirmed in coherence with the conclusions of the research 

work conducted by Zhu et al. (2011b). It should also be noted that, in the very early ages of 

curing (before setting), this method is more sensitive than the EMM-ARM. In fact, the 

measurements with BE method begin ~2hours after mixing, which is significantly sooner than 

the initial setting time that only occurred at 7 hours of age. This is a clear indication that a robust 

solid skeleton for S-wave transmission exists much sooner than the conventional initial setting 

time (Sant et al., 2009), thus highlighting the potential of S-waves for measuring pre-setting 

behaviour. In fact, any potential analysis of the viscoelastic properties at pre-setting stages (for 

example through a rheometric test (Sun et al., 2006)) can lead to the observation that significant 

changes occur during this period. However, the EMM-ARM results still remain unaffected at 

this stage (i.e. constant), while there is already evolution of the velocity of the propagated wave 

measured with the BE. 
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Figure 5.27. S-waves velocity evolution in the c32.5wc0.5 and c42.5wc0.5 cement pastes. 

Overall comparison 

Taking into account that the methodologies based on wave propagation measure dynamic 

parameters, for the purpose of comparison of all methodologies under study, the results were 

normalized (‘Norm’ in Figure 5.28) by dividing all results of each specimen/methodology by 

their corresponding values at teq = 7 days. Moreover, in order to simplify the analysis and to 

compare both methods based on wave propagation (BE and UPV) with the results of quasi-

static methods, the velocity values were squared (V2) prior to normalization, as V2 is 

proportional to the elasticity modulus (see equation (2.4) – page 16).  

The results of all experimental methods involved in this comparison is given in Figure 5.28, 

which demonstrates a quite reasonable reciprocal agreement, thus mutually validating the 

studied methodologies. The good performance of EMM-ARM in the scope of this comparative 

study, together with its ability to provide precise, continuous and quantitative estimates of E-

modulus confirms the versatility and applicability of this methodology.  
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a) b) 

Figure 5.28. Comparison of the results of all methodologies used in this study for cement 

pastes a) c32.5wc0.5 and b) c42.5wc0.5. 

In regard to setting times, there is also a good coherence between Vicat, EMM-ARM and BE, 

as observable in Figure 5.28. Thus, these results have confirmed the applicability of the wave 

propagation methods to monitor the stiffness of cement pastes since the fresh state and 

throughout the entire hardening process, as already mentioned by other authors (Boumiz et al., 

1996, Reinhardt and Grosse, 2004). Despite this fact, the results obtained by these wave-

propagation based methods should be regarded qualitatively, since these refer to dynamic 

properties, whose conversion to static properties is often arguable, particularly at very early 

ages, due to the evolution of Poisson’s ratio during curing (Popovics et al., 2008). 

However, it should be noted that these wave velocity methods (UPV and BE) seem to exhibit a 

slightly more accelerated evolution kinetics than EMM-ARM, which is more evident for the 

c42.5wc0.5 paste, as shown in Figure 5.28b. This fact may be related to the early evolution of 

Poisson's ratio. Similar findings have been reported in other research works, where the 

consideration of constant Poisson's ratios led to apparent earlier acceleration of stiffness when 

estimated through pulse velocity methods (Boulay et al., 2013a). 

Activation energy 

The two additional EMM-ARM tests that were performed at 40°C allowed obtaining the 

apparent activation energy of c42.5wc0.5 and c32.5wc0.5. Given the influence of temperature 
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variations on the stiffness of the acrylic (Schirrer and Goett, 1982), an initial modal 

identification test was performed on the acrylic hollow beam to obtain the E-modulus of the 

acrylic at 40ºC. An E-modulus of 3.6±0.2 GPa was obtained. 

The results collected during the apparent activation energy experiments are shown in Figure 

5.29a. It is noted that the test conducted inside the temperature-controlled chamber at ~40°C 

lasted only 10 hours for the c32.5wc0.5 paste and 16 hours for the c42.5wc0.5 paste. The limited 

duration of these tests was due to an electrical problem in the data acquisition system. 

Nonetheless, despite the short duration of the tests, the repetition of the tests was considered 

unnecessary because the extracted information was sufficient for determining the apparent 

activation energy of the tested cement pastes. The results show that the initial setting in 

specimens exposed to 40°C occurred much earlier (~2 hours) than the initial setting observed 

in the tests at 20°C (~7 hours). Moreover, the reaction rate was also more significant, since it 

can be observed that, for example, the time needed to growth the elastic modulus from 1 to 

5 GPa is approximately 5.49 hours at 40°C, as opposed to the approximately 18.24 hours 

required for the test conducted at 20°C. 

  

a) b) 

Figure 5.29. E-modulus evolution of the cement pastes c32.5wc0.5 and c42.5wc0.5 cured at 

different temperatures (20°C and 40°C), obtained through the EMM-ARM: a) plotted in order 

to the curing age b) plotted in order to the equivalent age at 20°C. 

The data collected through these particular tests enabled the possibility of determining the 

apparent activation energy (Eact) by the successive application of equation (6.1) (page 194) with 

distinct Eact values until the E-moduli evolution at both temperatures (20°C and 40°C) matched 
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when presented in order to their equivalent age (teq) (see Figure 5.29b). This procedure is 

usually referred to as the “superposition method” (D'Aloia, 2003, D'Aloïa et al., 2001). The 

following values of Eact were computed: 42 kJ/mol and 41 kJ/mol for pastes c32.5wc0.5 and 

c42.5wc0.5, respectively. 

5.3. Repeatability of E-modulus estimations 

In the previous subchapter it was shown that EMM-ARM capable of very consistent results 

when compared with the competing methods. However, the repeatability of the method still 

needed to be assessed in order to make the measurement method valid (Dotson, 2015). 

According to JCGM (2012) repeatability in the context of a physical measurement is “the 

measurement precision under a set of repeatability conditions of measurement (...) that includes 

the same measurement procedure, same operators, same measuring system, same operating 

conditions and same location, and replicate measurements on the same or similar objects over 

a short period of time”. In accordance to the previous subchapter, the repeatability study was 

divided in two parts: the first one dedicated to the version of EMM-ARM for concrete testing 

and the second on to the cement paste version. 

5.3.1. Concrete 

To assess the repeatability of EMM-ARM a series of seven tests were performed in five 

different concrete mixes with at least 2 beams tested simultaneously. The list of all the tests 

performed with the information of the concrete mix tested, the number of specimens and 

temperature of testing is presented in Table 5.12. All the tests were performed at room 

temperature with exception to the test T7 that was performed under imposed variable 

temperature. The mean temperature history measured in the specimens tested in test T7is shown 

in Figure 5.30. 

  



Chapter 5 

180 
 

Table 5.12. Tests performed in the repeatability study for the EMM-ARM concrete version. 

Test Concrete Number of tests Testing temperature 

T1 C1 3 
Room temperature 

20±2°C 

T2 C2 3 
Room temperature 

20±2°C 

T3 C3 3 
Room temperature 

20±2°C 

T4 C4 3 
Room temperature 

20±2°C 

T5 C5 6 
Ambient temperature 

17±7°C 

T6 C6 3 
Ambient temperature 

23±8°C 

T7 C1 2 
Variable 

See Figure 5.30 

 

 

Figure 5.30. Temperature history of T7 test. 

The mixture proportions for the five different concretes are given in Table 5.13. 
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Table 5.13. Mixture proportions of the different concrete mixes used. 

Component 
Mix C1 
(kg/m3) 

Mix C2 
(kg/m3) 

Mix C3 
(kg/m3) 

Mix C4 
(kg/m3) 

Mix C5 
(kg/m3) 

Mix C6 
(kg/m3) 

Sand 250 (0/2) 395 (0/2) 245 (0/2) 739 (0/4) 300 (0/2) 330 (0/2) 
 460 (0/4) 395 (0/6) 786 (0/6) – 540 (0/6) 560 (0/6) 
Gravel 1140 (4/16) 840 (6/22) 417 (6/14) 1072 (8/22) 550 (6/14) 550 (6/14) 
 – – 478 (14/20) – 420 (11/22) 440 (11/22) 
Cement 218 

(CEM II/A-
L 42.5R) 

320 
(CEM I 
42.5R) 

280 
(CEM I 
42.5R) 

340 
(CEM I 52.5N 

PMES CP2) 

320 
(CEM II / A-L 

42.5R) 

220 
(CEM II / A-L 

42.5R) 
Fly ash 112 – 40 – 100 130 
Filler – 260 – – – – 
Water 155 l/m3 160 l/m3 143 l/m3 184 l/m3 165 l/m3 160 l/m3 
Super 
plasticiser 

3.30 
(Sikament 

400+) 

7.64 
(Viscocrete 

3006) 

6.25 
(Rheobuild 

1000) 

– 3.36 
(BasfGlenium 

Sky 548) 

2.45 
(BasfGlenium 

Sky 548) 
Plasticiser – – – – 0.84 

(BasfPozzolith 
540) 

2.10 
(BasfPozzolith 

540) 

 

The E-modulus evolutions obtained in the seven different tests are shown in Figure 5.31. In this 

figure only the mean curve (full lines), the mean curve + the standard deviation (dashed lines) 

and the mean curve - the standard deviation (dash dot lines) are represented. As can be observed 

in all the tests, the deviation from the mean curve is very small with average error of 1.5% at 

the end of all the test. In fact, even tests performed with the same concrete but with different 

temperature histories (T1 and T7), the final values measured at the age of 7 days have a very 

small discrepancy (a difference of 0.5 GPa or 1.8%). These results enable to state that the E-

modulus estimations obtained with EMM-ARM in the version for concrete have a very good 

repeatability. 
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Figure 5.31. Concrete E-modulus evolutions obtained in seven EMM-ARM tests. 

5.3.2. Cement paste 

The repeatability of EMM-ARM for cement pastes was evaluated by performing seven tests 

with seven different cement pastes with at least 2 specimens. The list of all the tests performed 

with the information of the cement paste composition, the number of specimens and 

temperature of testing is presented in Table 5.14. 

Table 5.14. Tests performed in the repeatability study for the EMM-ARM cement paste 

version. 

Cement paste Cement w/c 
Number of 

tests 
Testing 

temperature 
GA0.50T20 Grey type A 0.50 7 20°C 
GB0.50T20 Grey type B 0.50 2 20°C 
GC0.35T20 Grey type C 0.35 2 20°C 
W0.32T20 White 0.32 2 20°C 
W0.40T20 White 0.40 2 20°C 
W0.48T20 White 0.48 2 20°C 
W0.40T10 White 0.40 2 10°C 

 

The composition and properties of the different cements used in the cement pastes are shown 

in Table 5.15. 
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Table 5.15. Composition of the different cements used in the cement pastes. 

Cement Grey type B Grey type A Grey type C White 
C3S [%] 42.47 51.63 70.80 66.89 
C2S [%] 13.58 17.18 10.20 20.00 
C3A [%] 6.82 7.03 6.40 3.51 
C4AF [%] 8.84 9.86 7.30 1.00 
Free lime [%] - 1.05 - 0.31 
Gypsum [%] - - 5.30 - 

 

The E-modulus evolutions obtained in the seven different tests are shown in Figure 5.32. In this 

figure only the mean curve (full lines), the mean curve + the standard deviation (dash lines) and 

the mean curve - the standard deviation (dash dot lines). As can be observed in all the test 

results, the deviation from the mean curve is very small with average error of 1.1% at the end 

of all the tests. These results enable to state that the E-modulus estimations obtained with EMM-

ARM in the version for cement pastes have a very good repeatability. 

 

Figure 5.32. Cement paste E-modulus evolutions obtained in seven EMM-ARM tests. 

5.4. Reproducibility of the EMM-ARM experiments 

In metrology sciences, a measuring method is only valid if its application is reproducible 

(Dotson, 2015). According to JCGM (2012) measurement reproducibility is “the measurement 
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objects”. Therefore, in order to assist further validate the EMM-ARM, a new experimental 

program targeted to the study of recycled aggregates in concrete was seized to evaluate the 

reproducibility of EMM-ARM. This experimental program was part of an international 

collaboration with the University of A Coruña and was performed by Miriam Lizancos (PhD 

student from A Coruña university), who is henceforward referred as ‘inexperienced user’. To 

allow the implementation of the EMM-ARM by a non-experienced operator, a user guide was 

made as presented in Appendix A. One should highlight that the inexperienced user had access 

to this manual and only had minor instructions delivered personally in order to perform the 

EMM-ARM application autonomously.  

Regarding the experimental program, two reusable EMM-ARM beams (see Figure 3.17) were 

tested with the characteristics presented in Table 5.16. The tests were performed under EMA 

conditions. The excitation of the beams was performed through the custom made noncontact 

electromagnetic actuator presented in section 4.4.2.1 connected to a dynamic signal analyser 

NI 4431 with 24-bit resolution that generated a sine sweep between 20 and 200 Hz in 40 

seconds with 7 Vpp. The response of each beam was acquired at a rate of 1250 Hz by an 

accelerometer PCB 393B12 (sensitivity: 10 V/g; range: ±0.5 g) connected to the same dynamic 

signal analyser. Each measurement had a duration of 300 seconds and was repeated each 12 

minutes. The resonance frequencies were identified through the TF method presented in section 

4.4.2.3 with a model order of 4. 

Table 5.16. Characteristics of the EMM-ARM beams used in the reproducibility tests. 

Reference R-PVC-1 R-PVC-2 
Geometry   

Cross-section Circular Circular 
i 96.04 mm 96.35 mm 

e 110.11 mm 110.20 mm 
Span 1000 mm 1000 mm 

Supports ØPR=12 mm Steel 
supports 

ØPR=12 mm Steel 
supports 

Mould   
Density 1794.6 kg/m3 1777.8 kg/m3 
E-modulus 3.10 GPa 3.10 GPa 

Reusable Yes Yes 
Concrete density 2400.6 kg/m3 2375.8 kg/m3 

 

The two beams were tested in two different concrete batches of the same concrete with the 

composition presented in Table 5.17. In addition to the EMM-ARM, CC tests were performed 
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after 8.5 days of curing in the concrete batch of the EMM-ARM beam 1 (R-PVC-1) according 

to the standard EN 12390-13 (2013). 

Table 5.17. Concrete composition used in the EMM-ARM reproducibility tests. 

Components Mass (kg/m3) 
Cement 400 
Sand 308 (0/2) 
 608 (0/5) 
Gravel 300 (4/12) 
 600 (10/20) 
Water 180 

 

The identified resonance frequency evolutions had evolution kinetic similar to the results 

obtained in the previous implementations as can be seen in Figure 5.33a. Furthermore, the 

frequency evolutions of the two different beams had a good repeatability with a difference of 

only 0.94% (1.25 Hz) at 2.45 days. The estimated concrete E-modulus and the corresponding 

comparison with CC results for this test are shown in Figure 5.33b. As can be seen the E-

modulus evolutions estimated by EMM-ARM had a kinetic similar to previous 

implementations. Additionally, the coherence between the EMM-ARM and CC results is 

similar to that which had been previously obtained with a difference of 3.6% (1.4 GPa). This 

leads to the conclusion that the EMM-ARM can easily be reproducible by a non-experienced 

operator with access to the EMM-ARM users guide and minor instructions. 

  

a) b) 

Figure 5.33. EMM-ARM reproducibility tests results: a) Frequency evolution; b) E-modulus 

evolution. 
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After these first tests the PhD student, Miriam Lizancos, has continued to use the EMM-ARM. 

Until now the student has already performed 16 different tests and only 3 have faced problems 

not directly related to the experimental technique (one due to power loss, other due to 

malfunction of the custom actuator and the last one due to interference by an external person). 

Yet, even in these three tests the results obtained since the beginning of the test until the instant 

when the problem happened were recovered. In the end Miriam Lizancos was interviewed to 

access the perception about the EMM-ARM. The results of the interview are summarized in 

Table 5.18.  

Table 5.18. Quality assessment of the EMM-ARM method by Miriam Lizancos. 

Questions Score 
1. Do you consider that the EMM-ARM is ready to be used by an unexperienced user with 

only support of a user manual? 
5 

2. Do EMM-ARM results have adequate the accuracy for scientific use in materials 
research? 

5 

3. Do you consider that your implementation of EMM-ARM encountered relevant 
difficulties? 

0 

4. Is the EMM-ARM user’s manual clear? 5 
5. Does the user’s manual have all the necessary information? 5 
6. Is the EMM-ARM software easy to use? 5 
7. Does the EMM-ARM software respond to your experimental needs? 5 
8. Do you think that EMM-ARM should be addressed in a standard for wild spread 

application? 
5 

Scale: 0 – Not agree; 5 – Totally agree 
 
How do you rate EMM-ARM as an experimental technique? 5 
Scale: 0 – Very bad; 5 – Excellent 

 

As can be observed the results are undoubtedly outstanding with an overall rate of ‘Excellent’. 

Only in the third question the answer was not totally convinced. In fact, the student had some 

minor problems during the implementation that had classified as ‘non relevant’. Since then, 

three more research centres are now implementing the EMM-ARM: the École polytechnique 

fédérale de Lausanne (EPFL), the Swiss Federal Laboratories for Materials Science and 

Technology (EMPA) and the Pontificia Universidad Católica del Perú (PUCP). The first 

feedback provided by these research centres was positive and a scientific publication was 

already published (Aguilar et al., 2016). 
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5.5. Accuracy of the E-modulus estimations 

According to JCGM (2012) measurement accuracy is the “closeness of agreement between a 

measured quantity value and a true quantity value of a measurand”. Thus in this subchapter 

the analysis of the EMM-ARM E-modulus estimations accuracy will be discussed. Once more, 

the analysis was divided in two parts related to the material: concrete and cement paste. 

5.5.1. Concrete 

From all the experiments performed during this thesis and the results of the first implementation 

of EMM-ARM (Azenha et al., 2010a) the relation between the E-modulus obtained from the 

classical cyclic compression tests (CC) and the EMM-ARM estimation at the same age of 

testing was computed and the results are shown in Figure 5.34. 

 

Figure 5.34. Relation between the concrete E-modulus estimated from CC and EMM-ARM. 

As can be seen in the figure, the relation between the two estimations is always very close to 1, 

and the dispersion of the results is small. Nevertheless, to better interpret the results a normal 

distribution was fitted to the results as shown in Figure 5.35a. This figure shows the cumulative 

probability along the E-modulus estimated by the EMM-ARM divided by the E-modulus 

obtained from CC. A mean value of 0.981 was obtained, along with a standard deviation of 

0.0496. The probability density of this normal distribution is shown in Figure 5.35b. As can be 

seen the accuracy of the EMM-ARM estimations is very high, with a mean error of 1.9%. 
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Additionally, based on this data, it is possible to observe that there is a 90% possibility that the 

EMM-ARM E-modulus estimations are between 0.899 and 1.062 of the CC values. 

  

a) b) 

Figure 5.35. Normal distribution of the relation between the concrete E-modulus estimations 

from EMM-ARM and CC: a) Cumulative probability; b) Probability density. 

5.5.2. Cement paste 

The relation between the E-modulus obtained from the classical cyclic compression tests (CC) 

and the EMM-ARM estimation at the same age of testing extracted from all the experiments 

performed during this thesis and the results of the first comparison of EMM-ARM with CC 

(Maia et al., 2012b) are shown in Figure 5.34.  

 

Figure 5.36. Relation between the cement paste E-modulus estimated from CC and EMM-

ARM. 
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As can be observed the values are close to the line that represents the equality between the E-

modulus estimated from EMM-ARM and CC. However, the dispersion of the results is slightly 

higher when compared with the results from the tests on concrete. Then again, a normal 

distribution of the results was fitted to the experimental data, as shown in Figure 5.37a 

(cumulative probability of the normal distribution). The mean value and standard deviation of 

the normal distribution is 0.953 and 0.1121, respectively. Therefore, one can state that the 

EMM-ARM in the cement paste version have a high accuracy with an average error of 4.7%. 

By plotting the probability density graph of the normal distribution (Figure 5.37b) one can 

observe that there is a 90% possibility that the EMM-ARM E-modulus estimations are between 

0.769 and 1.137 of the values obtained with the classical cyclic compression tests (CC). 

  

a) b) 

Figure 5.37. Normal distribution of the relation between the cement paste E-modulus 

estimations from EMM-ARM and CC: a) Cumulative probability; b) Probability density. 
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Table 5.19. Characteristics of the reference beams used. 

Parameter Concrete Cement paste 
Geometry   

Cross-section Circular Circular 
i 96 mm 16 mm 

e 110 mm 20 mm 
Span 1000 mm 450 mm 

Mould   
Material PVC Acrylic 
Density 1700 kg/m3 1300 kg/m3 
E-modulus 3.10 GPa 4.50 GPa 

Concrete    
Density 2370 kg/m3 1756 kg/m3 
Final E-modulus 30 GPa 15 GPa 

E̅I̅   
@ E = 0 GPa 9.4 kN·m2 20.9 N·m2 
@ E = final value 134.4 kN·m2 69.2 N·m2 

 

Based on the information of Table 5.19, and based on the use of equations (2.11) (page 35) and 

(2.14) (page 37) for the concrete and cement paste, respectively, the initial and final resonance 

frequencies of the beams were computed. The concrete beam first resonance frequency starts 

at 32.6 Hz when the stiffness is null and reach 123.4 Hz at the end when the concrete has 

E = 30 GPa. In the case of cement paste the frequency range is smaller starting at 14.7 Hz and 

ending at 26.7 Hz when the cement paste has E = 15 GPa. 

Based on these frequency values a parametric study was made to verify the influence of errors 

made during the measurement of the different parameters used to estimate the final E-modulus 

of the material inside the mould. The errors can be related to the precision of equipment used 

to measure the parameters (weighting machines and measure tapes) and to the user (human 

error). First, the parametric analysis was made with only 3 parameters used to estimate the 

composite beam stiffness (E̅I̅): free span (L), concentrated (mp) and distributed masses (m̅), as 

shown in Figure 5.38. In this first analysis the support stiffness (k) was consider infinite. 

Between those three parameters, the free span is the one that shows stronger impact on the 

estimation error in both cases, as an error of 0.1% in the measurement leads to an E̅I̅ estimation 

error of ~0.4%. Thus a careful estimation is needed in order to reduce the E̅I̅ estimation error 

during the EMM-ARM tests. Contrarily the concentrated mass has a very small impact in the 

final E̅I̅ estimation, with an error lower than 0.1% when an error of 0.3% in the parameter is 

made. One should also remark that this errors have a direct impact in the final E-modulus of 

the material. 
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a) b) 

Figure 5.38. Influence of span and masses on EI estimation: a) Concrete; b) Cement paste. 

Another parameter that has a potential to introduce errors in E̅I̅ estimations is the stiffness of 

the support(s) (k), as can be observed in Figure 5.39. This issue was already discussed in 

sections 3.2.2 and 3.3.1, however due to the big impact that it can represent, it is further 

evaluated herein. The parametric analysis was made for the instants when the materials 

(concrete and cement paste) are in the fresh state (E = 0 GPa) and for the hardened stage 

(E = 30 GPa for concrete and E = 15 GPa for the cement paste). The influence of the support 

stiffness increases with the increase of the material stiffness in both cases. From this analysis, 

in order to have an E̅I̅ estimation error lower than 0.1% the supports should have a vertical and 

rotational stiffness of at least 5.47×109 N/m and 5.64×105 N/rad for the concrete and cement 

paste beams, respectively. However, despite this influence, if the new supports presented in 

sections 3.2.2 and 3.3.1 are used the supports stiffness is much higher that these minimum 

values and errors in this parameter should not influence the final E-modulus estimations. 
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a) b) 

Figure 5.39. Influence of support stiffness on E̅I̅ estimation: a) Concrete; b) Cement paste. 

After the estimation of the composite beam stiffness (E̅I̅), it is possible to infer the E-modulus 

of the tested material (inside the mould) through the use of equation (2.12) (page 35). For this 

operation, three additional parameters are necessary: the internal (i) and external (e) 

diameters of the mould and the stiffness of the mould material (Emould). A final parametric 

analysis was made for the reference scenarios and the results are shown in Figure 5.40. In 

equation (2.12) (page 35) the internal diameter (i) is the parameter that have the biggest impact 

on the E-modulus estimation since an error of 0.1% in the parameter leads to a maximum error 

of 0.11 and 0.04 GPa for the concrete and cement paste, respectively. Contrarily the E-modulus 

of the mould has a low influence in the final estimation. 

  

a) b) 

Figure 5.40. Influence of internal and external diameters and mould stiffness on E-modulus 

estimation: a) Concrete; b) Cement paste. 
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Chapter 6  

Applications and variant of EMM-ARM 

6.1. Introduction 

Until this stage of the thesis, the main focus of EMM-ARM experiments has been placed in 

metrological validations and improvements the technique to enable robust estimations of the 

stiffness evolution of cement-based materials since early ages. Additionally, almost all 

experiments were performed in laboratory and under isothermal conditions (or near-isothermal 

conditions), aiming at the reference temperature of 20°C. Therefore, this Chapter is dedicated 

to applications of EMM-ARM in different conditions: (i) under different curing temperatures 

to perform maturity analysis; (ii) the implementation in a construction site to support decision 

making; and (iii) under non-isothermal conditions. Furthermore, due to a construction company 

request a new version of EMM-ARM for monitoring the concrete viscoelasticity during the 

fresh state will be presented. The Chapter ends with an application of EMM-ARM to a structural 

non cement-based adhesive to demonstrate the versatility of the technique. This application 

filled a gap found in the literature, since no method was found capable of monitoring the 
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stiffness of epoxies adhesives that could easily be implemented in-situ during strengthening of 

real structures to enable a quality control of the adhesive. 

6.2. Application to the study of cement hydration temperature dependence 

The set of chemical reactions involved in cement hydration is exothermic and thermally 

activated, i.e. the reaction rate is strongly influenced by temperature. To deal with this 

phenomenon the concept of concrete maturity emerged in the 1950’s (Saul, 1951). The concrete 

maturity was defined by Saul (1951) as: “Concrete of the same mix at the same maturity has 

approximately the same strength whatever combination of time and temperature go to make up 

that maturity”. Over the last decades, the maturity concept has been used as one of the most 

favourable methods for estimating in-place concrete mechanical properties (Chanvillard and 

D’aloia, 1997). One of the most widespread formulations for concrete maturity is based on an 

Arrhenius law that is used to describe the effect of temperature on the rate of a chemical reaction 

(Poole et al., 2007). This formulation allows the computation of the equivalent age (teq) of 

concrete, that represents the age of curing at a reference temperature (Tr adopted here as 

293.15°K = 20°C) that would result in same property value as would result for curing under 

different temperatures (D'Aloia, 2003), as follows: 

where Eact is the apparent activation energy, R is the universal gas constant (8.314 J/mol·K), t 

is the instant at which the equivalent age is being computed, T(τ) is the temperature at instant τ 

and Δt is the time interval between to measurements. 

This formulation has one control variable, the apparent activation energy (Eact), that represents 

the overall temperature reactivity of the set of chemical reactions that occurs during the 

hydration. However, due to the complexity of the cement hydration process the apparent 

activation energy has to be experimentally determined through monitoring of material 

hydration. Usually these measurements are carried out through calorimetry tests in specimens 

cured at two different temperature histories (at least) (Azenha, 2009) since the methods to 
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measure the mechanical properties of cement-based materials do not provide continuous 

information during the early ages of the curing process (period where most of the changes in 

the materials properties happens) needed to estimate the Eact. However, calorimetry tests did 

not take into account the mechanical properties of the cement-based materials. Thus, the use of 

Eact obtained from calorimetric tests to estimate the mechanical properties could lead to wrong 

approximations. Therefore, this subchapter presents the use of the unprecedented data obtained 

by EMM-ARM to assess the apparent activation energy based on the E-modulus estimations. 

6.2.1. Hydration kinetics at different temperatures 

In order to assess the apparent activation energy, two EMM-ARM test programs were 

performed in two different materials: cement paste and concrete. In each test program, three 

beams were tested at three different temperatures in an isothermal temperature-controlled room 

with average temperatures of 16.07, 31.29 and 40.18°C for the cement paste and 20.72, 30.59 

and 40.13°C for the concrete. The characteristics of the beams used in each test are shown in 

Table 6.1. 

Table 6.1. Beams characteristics used in the maturity test 

 Test program 1 Test program 2 
Reference EMMcp16 EMMcp31 EMMcp40 EMMc20 EMMc30 EMMc40 

Geometry       
Cross-section Circular Circular Circular Circular Circular Circular 
i 16.14 mm 16.08 mm 16.40 mm 91.76 mm 91.43 mm 91.34 mm 

e 20.11 mm 20.08 mm 20.06 mm 99.76 mm 99.79 mm 99.69 mm 
Span 450 mm 450 mm 450 mm 906 mm 902 mm 902 mm 
Connectors 
(spacing) 

No No No Yes 
(300 mm) 

Yes 
(300 mm) 

Yes 
(300 mm) 

       
Supports Steel 

clamps 
Steel 

clamps 
Steel 

clamps 
ØPR=12 mm 

Steel supports 
ØPR=12 mm 

Steel supports 
ØPR=12 mm 

Steel supports 
Mould       

Material Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic 
Density 1261 kg/m3 1267 kg/m3 1295 kg/m3 1220.4 kg/m3 1186.1 kg/m3 1182.4 kg/m3 
E-modulus 5.16 GPa 4.63 GPa 4.31 GPa 3.92 GPa 3.83 GPa 3.71 GPa 

Material       
Type Cement 

paste 
Cement 

paste 
Cement 

paste 
Concrete C4 Concrete C4 Concrete C4 

Density 1745 kg/m3 1718 kg/m3 1724 kg/m3 2327.7 kg/m3 2333.6 kg/m3 2335 kg/m3 
       

Average curing 
temperature 

16.07°C 31.29°C 40.18°C 20.72°C 30.59°C 40.13°C 
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These tests were performed on cement paste and concrete with the compositions presented in 

Table 6.2. 

Given the influence of temperature variations on the acrylic stiffness (Schirrer and Goett, 1982), 

prior to each test, the acrylic E-modulus was accessed through modal identification of the empty 

beams at the intended test temperature. The obtained values for temperature-dependent E-

modulus of acrylic are shown in the Table 6.1. The tests presented here were performed under 

OMA (Operational Modal Analysis – ambient vibration) conditions. The accelerations of the 

beams were acquired with two different types of accelerometers: PCB 393B12 (sensitivity: 

10 V/g; range: ±0.5 g) in the concrete beams and PCB 352C04 (sensitivity: 1 V/g; range: ±5 g) 

in the cement paste beams. In all the experiments the measurements were acquired with a 

dynamic acquisition system NI 9234 with 24-bit resolution at an acquisition frequency of 

500 Hz in packages of 300 seconds each 10 minutes. 

Table 6.2. Cement paste and concrete compositions. 

Component Cement paste Component Concrete C4 (kg/m3) 
Cement CEM I 52.5N PMES CP2 Sand 739 (0/4) 

w/c 0.54 Gravel 1072 (8/22) 
  Cement 340 

(CEM I 52.5N PMES CP2) 
  Water 184 l/m3 

 

The temperature history was acquired with K-type thermocouples placed at the geometrical 

centre of the cross-section and at least two diameters from the extremity of the specimen. The 

acquired temperatures for all the specimens, along the entire duration of the tests, are shown in 

Figures 6.1a and 6.1b for the cement paste and concrete tests, respectively. Firstly, regarding 

the initial temperature of the components it is worth mention that prior to mixing all the 

components were placed in a temperature controlled chamber at the target temperature for 1 

day. However, after the mixing process the temperature of the materials (cement paste and 

concrete) changed from the target due to the temperature of the mixing room and mixer. From 

the measured temperatures it is possible to observe that the temperature history in the specimens 

is almost isothermal, with a small variation during the first 18 hours after casting due to heat of 

hydration. 
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a) b) 

Figure 6.1. Temperature history: a) Cement paste specimens; b) Concrete specimens. 

The results collected during the EMM-ARM experiments are shown in Figures 6.2a and 6.2b 

for cement paste and concrete, respectively. Additionally, in the second test program, cyclic 

compression tests (CC) were performed in cylinders cured with same temperature history as 

EMM-ARM. The CC tests were performed simultaneously with the end of the experimental 

procedure of each EMM-ARM experiment, and followed the standard LNEC E397 (1993). The 

CC results are also shown in Figure 6.2b. 

  

a) b) 

Figure 6.2. Estimated E-modulus evolutions at different curing temperatures: a) Cement paste; 

b) Concrete. 
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that the effect of temperature on the E-modulus evolution kinetics is quite clear. With the 

increase of curing temperature, the E-modulus evolves faster. This situation is evidenced, for 

example, by the achievement of the cement paste elastic modulus of 3 GPa, which took 0.64 

days at 40°C, as opposed to the 1.63 days required for the test conducted at 16°C. Similar 

conclusions can be drawn from the results for concrete. Furthermore, the final values obtained 

for concrete E-modulus at the end of each experiment, exhibit a good coherence with an average 

value of 35.87 GPa (SD = 0.061) at 14 days of curing. This value is also very close the average 

value obtained with CC tests – 37.35 GPa (SD = 0.962). The stiffness kinetics also show that 

the setting time of both the cement paste and concrete is reduced with the increase in curing 

temperature. These results allow the validation of the capacity of EMM-ARM to measure the 

E-modulus evolution of both cement paste and concrete under different isothermal curing 

temperatures that differ from the reference temperature of 20°C evaluated in previous Chapters, 

and belong to the range 16°C – 40°C. 

Despite the good results reported above, it was decided to fit each of the obtained experimental 

curves of E-modulus by an equation similar to equation (5.2) (page 150) as shown in Figure 

6.3. By using these fitted curves for the estimation of the setting time and apparent activation 

energy, it is possible to reduce numerical errors in estimations, which would occur due to noise 

(variance) in the E-modulus evolutions of each experimental curve. The parameters obtained 

from the fitting are presented in Table 6.3. As observable in the figure, an almost perfect fit to 

the experimental data was obtained with R2 higher than 0.9997. Hereafter all the calculations 

will be made with basis on these analytical models. Additionally, this data fitting allows to 

obtain the asymptotic ultimate value for the E-modulus (Eult) that will be used later to compute 

the evolution of the hydration degree. 
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a) b) 

Figure 6.3. Model fit to the E-modulus evolutions: a) Cement paste; b) Concrete. 

Table 6.3. Parameters of the fitting models. 

Parameter EMMcp16 EMMcp31 EMMcp40 EMMc20 EMMc30 EMMc40 
α1 4.854 4.555 5.824 21.267 28.496 20.797 
α2 4.854 6.138 4.527 19.082 8.117 16.521 
β1 1.088 2.194 2.383 2.322 2.498 3.898 
β2 1.088 0.681 1.170 0.580 1.262 0.752 
τ1 1.591 0.574 0.337 0.412 0.290 0.191 
τ2 1.591 1.636 2.038 1.427 1.971 0.571 
R2 0.9997 0.9999 0.9999 0.9998 0.9998 0.9998 

 

From the E-modulus evolutions the final setting time for each beam was computed according 

to the protocol presented in Chapter 5: the final setting time is defined as the first point for 

which half of the maximum value of the first derivative of the E-modulus evolution is reached, 

as shown in Figure 6.4. 
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EMMcp16 EMMcp31 EMMcp40   EMMc20 EMMc30 EMMc40 

10.64 h 7.50 h 4.95 h   5.72 h 4.70 h 3.45 h 

a) b) 

Figure 6.4. Final setting time identification: a) Cement paste; b) Concrete. 

Firstly, it is worth mentioning that the final setting time for concrete is shorter than that of 

cement paste for all the curing temperatures. This is probably related to the presence of rigid 

aggregates in concrete that fill very effectively part of the solid skeleton, increasing the 

connections. Additionally, it can be observed that the final setting time is strongly affected by 

the curing temperature with reduction of more than 50% in the cement paste with an increase 

of 24°C of the curing temperature. 

6.2.2. Apparent activation energy 

6.2.2.1. The ‘speed method’ 

The activation energy was calculated by the so-called ‘speed method’ suggested by D'Aloia 

(2003) that is based on the analysis of hydration rates. Usually this method is not suitable to be 

applied to results of mechanical properties since it requires the characterization of the material 

property throughout the whole curing process with measurements every 5 to 15 minutes. 

However, with the EMM-ARM results this problem is overcome as it is possible to obtain 

results every 10 minutes throughout the curing process of the material. In this method, the 

apparent activation energy (Eact) is computed in each step of the hydration degree (α). according 

to the following equation: 
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where T1 and T2 are the average temperatures of the material in each step of α in test programs 

1 and 2, respectively. Here, the hydration degree is quantified as follows: 

where E(t) is the monitored E-modulus of concrete at age t and Eult is the asymptotic ultimate 

value obtained from the data fitting presented in Figure 6.3 (Eult = α1+α2). 

The ‘speed method’ allows calculation of the activation energy from two different tests, and 

does not require any information about the hydration kinetics. The analysis of experimental 

results enabled to plot Eact as function of the hydration degree for each couple of EMM-ARM 

tests (see Figure 6.5). It is possible to observe that the apparent activation energy changes with 

temperature and this temperature dependency is more relevant for the very low and very high 

values of the hydration degree. The Eact in the concrete tests seems to stabilize during an 

intermediate stage between 5 and 50% hydration degrees, around an average value of 47.36 

kJ/mol (SD = 1.04), for the three couples of temperatures under study. Regarding the cement 

paste, between 5 and 25% of hydration degree, Eact remains in a plateau but with different values 

for three temperature couples (40.24, 46.64 and 59.17 kJ/mol for the couple 16-31°C, 16-40°C 

and 31-40°C, respectively). Despite these plateaus, the evolution of the apparent activation 

energy along the hydration degree have strange evolutions with high variance. These type of 

results are consistence to the ones obtained with calorimetry data (Azenha, 2009, D'Aloia and 

Chanvillard, 2002, D'Aloia, 2003). 
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a) b) 

Figure 6.5. Activation energy versus hydration degree obtained with ‘Speed method’: a) 

Cement paste; b) Concrete. 

In Figure 6.6, the evolutions of hydration degree are plotted as function of equivalent age 

computed using the equation (6.1) and the values of the activation energy from Figure 6.5. It is 

possible to observe that an almost perfect superposition of the different evolutions is attained. 

  

a) b) 

Figure 6.6. Hydration degree versus equivalent age with Eact from ‘Speed method’ results: a) 

Cement paste; b) Concrete. 

Nonetheless, despite the good superposition of the hydration degree evolutions presented in 

Figure 6.6 this approach to compute the apparent activation energy may lead to less-than-perfect 

matches if one try to superimpose the E-modulus evolutions curves. In fact, and as can be seen 

in Figure 6.7, due to the different E-modulus ultimate value obtained for each specimen, the E-
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modulus curves are not perfectly superimposed, especially at stages when the rate of evolution 

starts to decrease.  

  

a) b) 

Figure 6.7. E-modulus versus equivalent age with Eact from ‘Speed method’ results: a) 

Cement paste; b) Concrete. 

During the dormant period and until the final setting time, the method seems to work well. In 

fact, as can be seen in Figure 6.8, the equivalent age of the final setting time is very close in all 

the specimens, with an average of 10.05 hours (SD = 0.050) and 7.56 hours (SD = 0.061) for 

the cement paste and concrete, respectively. During this period the average activation energy 

as the following values: 10.57, 14.77 and 42.39 kJ/mol for the specimens EMMcp16, 

EMMcp31 and EMMcp40, respectively, and 46.96, 46.77 and 32.15 kJ/mol for the specimens 

EMMc20, EMMc30 and EMMc40, respectively. 
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EMMcp16 EMMcp31 EMMcp40   EMMc20 EMMc30 EMMc40 

9.34 10.00 10.10   7.49 7.64 7.56 

a) b) 

Figure 6.8. Equivalent age of the final setting time: a) Cement paste; b) Concrete. 

6.2.2.2. The ‘derivate of speed method’ 

As any chemical reaction, the hydration reaction can be described by a rate equation given by 

the following expression (Vyazovkin, 2011): 

    


fTk
dt

d
  (6.4) 

where α is the hydration degree, dα/dt is the hydration rate, T is the absolute temperature (°K), 

k(T) is the rate constant, and f(α) is the function that describes the hydration reaction mechanism 

(for more details see (Azenha, 2009)). 

Based on the EMM-ARM results, the function f(α) for each specimen was computed through 

the first derivative of the hydration degree evolution normalized to the maximum value. The 

obtained function as shown in Figure 6.9. 
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a) b) 

Figure 6.9. Kinetic hydration function f(α): a) Cement paste; b) Concrete. 

Firstly, it is seen that the hydration kinetic is different for cement paste and concrete, despite 

the fact that they share the same cement and w/c ratio. In the case of the cement paste the peak 

of the function f(α) happens at α = 14.9% (SD = 0.007) of the hydration degree as opposed to 

the 20.4% (SD = 0.018) that the concrete need to reach the peak. Additionally, some 

temperature dependency of the hydration kinetic can be observed, especially in the cement paste 

during the post-peak period, as already observed by other authors (Azenha, 2009, De Schutter 

and Taerwe, 1995). Due to this temperature dependency of f(α), the basic assumptions of the 

‘derivate of speed method’ to compute the Eact are jeopardized (Azenha, 2009). Nonetheless, 

the computation was performed anyway, but using the real f(α) functions for each temperature 

couple, instead of a single representative function. 

The reaction parameter k(T) was obtained from the maximum value of the hydration rate 

function shown in Figure 6.10 (ASTM, 2011). The obtained values are presented in Table 6.4 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f(


) 
[-

]

 [-]

 EMMcp16
 EMMcp31
 EMMcp40

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f(


) 
[-

]

 [-]

 EMMc20
 EMMc30
 EMMc40



Chapter 6 

206 
 

  

a) b) 

Figure 6.10. Reaction rate as function of the hydration degree: a) Cement paste; b) Concrete. 

Table 6.4. Kinetic parameters obtained from the reaction rate data. 

Reference k(T) 
EMMc20 1.371 
EMMc30 2.648 
EMMc40 4.710 
EMMcp16 0.351 
EMMcp31 0.844 
EMMcp40 1.581 

 

The kinetic rate constant k follows an Arrhenius temperature dependence (Poole et al., 2007):  
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where At is a proportionality constant. The kinetic rate equation can therefore be rewritten as: 
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By plotting the logarithms of the rate constant ln(k) versus 1/T, it was possible to obtain both 

the apparent activation energy, Eact, and the natural logarithm of the pre-exponential factor, 

ln(A), from the slope and the y intercept of a linear fit of the results shown in Figure 6.11. The 

activation energy was determined to be 47.299 and 46.457 kJ/mol for the cement paste and 

concrete, respectively, as summarized in Table 6.5. These values are close to the average values 
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obtained in the ‘speed method’ for the hydration degree between 5 and 25% (48.68 kJ/mol) and 

5 and 50% (47.36 kJ/mol) in the cement paste and concrete, respectively.  

  

a) b) 

Figure 6.11. Arrhenius plot of rate coefficient: a) Cement paste; b) Concrete. 

Table 6.5. Estimated apparent activation energy Eact and rate constant At. 

Reference Eact [kJ/mol] At [min-1] 
Cement paste 47.299 1.327×1012 
Concrete 46.457 6.570×104 

 

In Figure 6.12, the hydration degree values are plotted as function of equivalent age. From this 

figure, a poor quality of the superposition can be visually identified, especially for the cement 

paste. This fact is due to the premises of the ‘derivate of speed method’ which allow the 

calculation of the average Eact between the beginning of the tests and the peak of the rate of 

reaction. Thus, as can be seen at the equivalent age of 18 and 11 hours for the cement paste and 

concrete (which are the instants at which the peak of the rate of E-modulus development 

occurs), respectively, the hydration degree values are superimposed. However, outside these 

points the superposition of the curves is poor.  
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a) b) 

Figure 6.12. Hydration degree versus equivalent age with Eact from derivate of speed method 

results: a) Cement paste; b) Concrete. 

Again, by plotting the E-modulus evolutions along the equivalent age the superposition of the 

cure becomes a little worse, as shown in Figure 6.13. This effected is related to the same fact 

that occurred in the previous method: the calculations are based on the hydration degree and 

not directly on the E-modulus evolutions, which did not actually completely match at the end 

of the experiments. 

  

a) b) 

Figure 6.13. E-modulus versus equivalent age with Eact from derivate of speed method results: 

a) Cement paste; b) Concrete. 
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6.2.3. Final remark 

In this subchapter the use of EMM-ARM to compute the apparent activation energy was 

presented. Firstly, it was proved it is possible conduct EMM-ARM experiments at isothermal 

curing temperatures that differ from the reference temperature of 20ºC tested in the previous 

Chapters. Furthermore, the obtained results have shown the effect of the curing temperature on 

the E-modulus evolution kinetics. Since the EMM-ARM is able to measure the quasi-static E-

modulus of the cementitious materials continuously, it gives unprecedented information to 

compute the apparent activation energy of a mechanical property of cement-based materials. 

6.3. In-situ application to support decision making 

The main objective of this this subchapter is the demonstration of EMM-ARM in an in-situ 

application, with the purpose of continuously monitoring of the mechanical properties of 

concrete to serve as support to decision making in prestressing application during the 

construction of a bridge. The bridge where the study took place is located in the Dão river 

(Portugal), and consists of three spans (100 + 170 + 120 m) supported by two intermediate 

columns as shown in Figure 6.14. 

 

Figure 6.14. Dão river bridge (Portugal). 

The deck consists of a prestressed concrete box girder, built by the balanced cantilever method. 

Each casting stage (4 to 5 meters long) is prestressed as soon as concrete reaches a prescribed 

minimum strength. Therefore, the use of a methodology that allows continuous estimates of the 

mechanical properties of concrete can be of significant usefulness to support decision-making 

processes for the prestressing operations. The next subsections present the efforts towards the 

in-situ implementation process, with particular emphasis on the implementation of a 
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temperature matched curing system, as to better follow the maturity of concrete in the regions 

of interest for prestressing application (near the pre-stressing heads).  

6.3.1. EMM-ARM in-situ validation 

Before beginning the tests to support decision-making during the construction of the bridge, a 

comprehensive experimental program was made to validate the EMM-ARM in construction 

site environment. In fact, the location of the in-situ laboratory induced significant vibrations to 

the EMM-ARM specimens that might potentially cause signal contamination problems in the 

modal identification processes. This initial experimental program was composed of three 

different validation tests (V1, V2 and V3) in which 9 EMM-ARM specimens were tested (see 

Table 6.6): 4 cylindrical acrylic beams (ACR-0.9) with geometry similar to the one shown in 

Figure 3.15 (page 70); 3 cylindrical PVC beams (PVC-1.0) with 1.0 m of span; and 1 reusable 

beam (PVCR-1.0) (see Figure 3.17 – page 72). During this study, two different concrete mixes 

were used (C5 and C6) and the corresponding compositions are shown in Table 6.7. 

Table 6.6. In-situ validation tests of EMM-ARM 

Test V1 V2 V3 
Beams used ACR-0.9-V1-1 PVC-1.0-V2 ACR-0.9-V3 

ACR-0.9- V1-2 ACR-0.9-V2 PVC-1.0-V3 
PVC-1.0-V1 PVC-1.0-V2 PVCR-1.0-V3 

Concrete C5 C5 C6 

 

Table 6.7. Concrete composition. 

Component Mix C5 (kg/m3) Mix C6 (kg/m3) 
Sand 300 (0/2) 330 (0/2) 
 540 (0/6) 560 (0/6) 
Gravel 550 (6/14) 550 (6/14) 
 420 (11/22) 440 (11/22) 
Cement 320 

(CEM II / A-L 42.5R) 
220 

(CEM II / A-L 42.5R) 
Fly ash 100 130 
Water 165 l/m3 160 l/m3 
Super 
plasticiser 

3.36 
(BasfGlenium Sky 548) 

2.45 
(BasfGlenium Sky 548) 

Plasticiser 0.84 
(BasfPozzolith 540) 

2.10 
(BasfPozzolith 540) 
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The physical and mechanical characteristics of all the beams used in the three validation tests 

are summarized in Table 6.8. 

Table 6.8. Physical and mechanical characteristics of the EMM-ARM specimens used in the 

in-situ validation tests. 

Reference 
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Geometry          
i (mm) 91.96 91.96 96.17 96.42 91.78 96.47 91.81 96.04 97.86 

e (mm) 100.25 99.98 109.93 110.10 99.94 110.00 99.85 110.11 110.89 
Span (mm) 900.0 900.0 1000.0 998.0 900.5 998.0 900.0 900.0 1000.0 
Connectors 
(spacing (mm)) 

Yes 
(300) 

Yes 
(300) 

No No Yes 
(300) 

No Yes 
(300) 

No No 

Supports (mm) ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

ØPR=12 
MS 

Mould          
Material Acrylic Acrylic PVC PVC Acrylic PVC Acrylic PVC PVC 
Density (kg/m3) 1160 1256 1441 1434 1198 1461 1219 1493 1501 
E-modulus (GPa) 3.90 3.90 3.40 3.50 3.80 3.50 4.10 3.10 3.40 

Concrete density 
(kg/m3) 

2350 2350 2350 2328 2350 2335 2350 2374 2350 

Type of 
identification 

OMA OMA OMA OMA OMA EMA OMA OMA OMA 

 

The tests took place inside a container placed near the discharge zone of the mixer trucks, as 

shown in Figure 6.15. As the container did not have a rigid floor, a small concrete slab was 

placed over such floor, as to reduce the effect of flexibility of the base on the resonance 

frequencies of the testing beams. All the tests were performed under OMA (Operational Modal 

Analysis – ambient vibration) conditions, except for the beam PVC-1.0-V2 that was tested 

under EMA (Experimental Modal Analysis – forced vibration) condition with the protocol 

presented in section 4.4.1. The accelerations of the beams were acquired with PCB 393B12 

accelerometers (sensitivity: 10 V/g; range: ±0.5 g), connected to a dynamic acquisition system 

NI 4431 with 24-bit resolution at an acquisition frequency of 500 Hz in packages of 300 seconds 

each 10 minutes. 
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Figure 6.15. In-situ testing lab for EMM-ARM. 

It is remarked that, in addition to the EMM-ARM tests, cyclic compression tests (CC) were 

performed at 1, 2, 7 and 28 days and 1, 2 and 7 days (three tests at each age) in the validation 

tests 1 and 3, respectively. For the CC tests cylindrical specimens ( = 150 mm and 300 mm 

height) were also cast on site and tested in the structures laboratory of the University of Minho, 

according to the standard LNEC E397 (1993).  

The results obtained in the verification tests are shown in Figure 6.16. By analysing the results 

of the EMM-ARM beams is possible to confirm that the kinetics of evolution of the elastic 

modulus of concrete has shape and magnitude consistent with typical results obtained in 

previous applications. It is also possible to observe a great coherence between the results 

obtained by the different EMM-ARM beams, with maximum standard deviation of 1.10 GPa. 

There is a very good congruence between the results obtained by EMM-ARM and the classic 

cyclic compression method. This consistency in the results suggests that the EMM-ARM can 

be applied in construction site conditions at its current stage of development. Despite these good 

results, a remark is made regarding the early age curing temperatures. In fact, due to the lack of 

temperature control in the tested specimens, they endured lower temperatures than those that 

were experienced in the actual structure. Therefore, some extent of discrepancy would be 

expectable within the first 1.5 days of curing, while hydration heat still had a relevant role. This 

limitation can however be easily overcome by imposing the temperatures recorded in the actual 

structure to the tested samples in a process that is usually called temperature matched curing 

(Williams, 1986), and will be object of description/implementation still within this Chapter. 
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a) b) 

Figure 6.16. E-modulus evolution obtained with EMM-ARM and CC: a) V1 and V2 tests; b) 

V3 test. 

6.3.1. Temperature matched curing system 

The in-situ EMM-ARM tests reported so far did not include any temperature control. However, 

the curing temperature plays a key role in the development of the hydration reactions and 

consequently on the mechanical properties. Therefore, in addition to the readily available in-

situ implementation of EMM-ARM, it was necessary to develop a temperature control system 

to impose the temperatures observed inside the concrete in the real structure to the EMM-ARM 

testing specimen. This system, shown schematically in Figure 6.17a, consists of a small 

chamber of 1.2×1.2×0.8 m3 made of polystyrene with a fan heater inside. The chamber’s 

temperature control is performed by switching on or off the electrical resistance of the heating 

vent using in order to match the temperature inside the chamber (interior sensor) to those 

observed in the structure. The temperature of the concrete in the actual structure is measured 

by the embedment of a temperature sensor in concrete in the zone of interest newly casted 

(neighbourhood the prestressing head). The control unit is composed of a relay module (that 

switch the electrical resistance of the heating vent between the ‘on’ and ‘off’ conditions) 

controlled by a programmable microcontroller board (Arduino (CC, 2016)) connected to a 

computer with a temperature control software. The temperatures were acquired through K-type 

thermocouples connected to a 20-bit PicoLog data acquisition system. 
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a) b) 

Figure 6.17. a) Temperature match curing system scheme; b) validation test temperature 

evolution. 

The efficiency of the system was checked by performing a small pilot test where a pre-defined 

temperature history was imposed to the chamber. The results of this small test are shown in 

Figure 6.17b, where it is possible to confirm that the temperature control was quite efficient 

during the temperature rise (desirable situation in temperature match curing systems of 

concrete). 

6.3.2. E-modulus vs compressive strength 

After the in-situ validation of EMM-ARM, it was necessary to devise a process that makes 

EMM-ARM results useful for the contractor to support prestress application decisions. For such 

purpose, an assessment was made in regard to the relationship between the concrete elastic 

modulus and compressive strength in the particular case of the concrete of this construction. 

Therefore, in addition to the EMM-ARM beams and the cyclic compression tests presented 

above, compressive strength tests were conducted on concrete cubes, cured in the same 

conditions, in accordance with the standard EN 12390-3 (2009), at 6 different ages: 0.58, 0.83, 

1.33, 1.54, 1.71, and 28 days. The results of the compressive strength obtained in these tests, 

compared to the corresponding average elastic modulus obtained through the EMM-ARM 

specimens at the same age are shown in the Figure 6.18. A similar function to the one proposed 

by EN 1992-1 (2010) was used to fit to the experimental data. The fitting was made through 
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the minimization of the fitting error and the obtained coefficients (Af, Bf and Cf) are shown in 

the table embedded in Figure 6.18. 

 

Figure 6.18. Ratio between E-modulus and compressive strength of concrete C6. 

6.3.3. Support to decision making for prestressing operations 

This subchapter reports the test that was performed to evaluate the ability of EMM-ARM to 

provide real-time information on the mechanical properties (E-modulus and compressive 

strength) of concrete placed in the structure, with the incorporation of the temperature match 

features mentioned before. To enable the user to see the results in real-time a special designed 

program in LabView was developed. In this program, the user can define the test (all the special 

characteristics of the test, like: number of specimens, type of test of each specimen, specimen’s 

geometry, characteristics of the sensors used, etc.), see the real-time acquired data and the 

identified frequencies, E-modulus and compressive strength. For more details about the 

program see Appendix A. The test was performed during a casting operation of the bridge deck 

with the concrete C6 (see Table 6.7), and two reusable beams (PVCR-1.0-1 and PVCR-1.0-2) 

were deployed, with the characteristics shown in Table 6.9. It should be noted that beam PVCR-

1.0-1 was tested under EMA conditions, with the same explicit excitation as the one presented 

in section 4.4.2.2. Beam PVCR-1.0-2 was tested under OMA conditions. The temperature 

inside the EMM-ARM specimens was measured with a K-type thermocouple placed in the 

geometrical centre of the cross-section and at least two diameters from the extremity of each 

specimen. In addition to EMM-ARM tests, concrete cubes were tested to obtain the 

compressive strength according to EN 12390-3 (2009) at 0.71, 1, 1.46, 1.5, 1.63 and 28 days, 

placed under the same curing conditions of EMM-ARM specimens. 
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Table 6.9. Physical and mechanical characteristics of the EMM-ARM beams used to support 

decision making during prestress applications. 

Reference PVCR-1.0-1 PVCR-1.0-2 
Geometry   

i (mm) 96.04 96.35 

e (mm) 110.11 110.20 
Span (mm) 1000.0 1004.0 
Connectors No No 

Supports (mm) ØPR=12 
MS 

ØPR=12 
MS 

Mould   
Material PVC PVC 
Density (kg/m3) 1493 1536 
E-modulus @20°C (GPa) 3.40 3.40 

Concrete density (kg/m3) 2398 2398 
Type of test EMA OMA 

 

Figure 6.19a shows the recorded temperature history for both the in-situ concrete and the EMM-

ARM specimens. Firstly, it is possible to observe that the temperature matched curing chamber 

followed very precisely the temperature acquired form the real structure until 40 hours. At such 

age, the temperature sensor was disconnected from the data logger due to operational 

constraints during the bridge construction. From this point the temperature presented in the 

graph was measured in the air near the bridge deck and the temperature control of the test was 

switched off. It can be seen that the temperature histories are very similar, despite of the very 

small delay observed in the inner temperatures of the EMM-ARM specimen (caused by the 

thermal inertia of the specimen itself in regard to the surrounding environment that matched the 

in-situ concrete).  

Because of the varying temperature on the EMM-ARM specimen, the E-modulus of the PVC 

mould also endured changes during the experiment (Nishi et al., 1975). Therefore, the 

knowledge of the temperature dependent E-modulus of the mould becomes a relevant 

information that needs to be input to the concrete E-modulus estimation model. Therefore, 

before the actual experimental program reported in this section, a calibration test was performed 

in the beam PVCR-1.0-V3 (which was hardened and available from a previous test series). It 

should be noted that the beams PVCR-1.0-V3 and PVCR-1.0-1 shared the same mould and the 

PVCR-1.0-2 was made from the same piece of PVC tube, thus surely sharing the same 

mechanical properties. In this test the beam PVCR-1.0-V3 was placed in a temperature 

controlled room and the temperature was raised from the ambient temperature (29°C) to 50°C 

in 5 steps (30, 35, 40, 45 and 50°C). The temperature was kept constant in each step for at least 
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1 hour to ensure that the mould reached the air temperature. To get the variation of the E-

modulus of the mould it was assumed that during the test the E-modulus of the concrete inside 

the beam remained constant at 38.7 GPa (obtained through EMM-ARM test at 29°C right 

before the beginning of the test). Figure 6.19b shows the PVC E-modulus variation as function 

of the temperature of the mould. To simplify the correction of the EMM-ARM E-modulus 

estimations the experimental data was fitted with a linear equation, as presented in the same 

figure.  

Additionally, the varying temperature induce stresses in the specimen, due to the different 

thermal-expansion coefficients. In fact, the concrete has a thermal-expansion coefficient of 

~1×10-5 K-1 (Sellevold and Bjøntegaard, 2006) and the PVC of ~5×10-5 K-1 (Nishi et al., 1975). 

These have the potential to cause debonding between the mould and the material inside and in 

an extreme scenario cracking of the concrete. However, in all the experiments performed with 

EMM-ARM these issue was never observed. Nevertheless, in the end of the test performed to 

get the variation of the E-modulus of the mould the temperature was decreased again to 29°C 

and an EMM-ARM test was performed. The estimated E-modulus was very similar to the value 

obtained before the beginning of the test proving that no debonding or cracking problem 

happened during the temperature variation.  

The E-modulus and compressive strength evolutions identified during the test are shown in 

Figures 6.19c and 6.19d, respectively. Due to a power failure during the night, the 

measurements were lost between 1.73 and 14.7 hours after the beginning of the test. However, 

despite this power failure the results of the E-modulus evolution are consistent with the results 

of cyclic compression tests obtained for the same concrete in the V3 test. 
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a) b) 

  

c) d) 

Figure 6.19. Results used in support decision making: a) Temperature history; b) Temperature 

dependency of the mould E-modulus c) E-modulus evolution; d) Estimated compressive 

strength evolution. 

After application of the ratio between the E-modulus and compressive strength presented in 

section 6.3.2, it was possible to estimate the compressive strength evolution based on the EMM-

ARM results, as shown in Figure 6.19d. The figure presents the results of the compressive 

strength obtained from the uniaxial loading of concrete cubes. As can see the results are in very 

good coherence, thus proving that the EMM-ARM can serve as a tool to support decision-

making in constructions sites. However, the lack of a specific standard to the application of 

EMM-ARM technique is currently hindering its wide spread application.  
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6.4. New variant EMM-ARM, targeted to fresh state characterization 

It is known that the viscoelastic properties of cement-based materials endure significant changes 

during the so-called dormant period (fresh state) (Banfill, 2006, Hanehara and Yamada, 2008). 

The knowledge of these properties can provide fundamental information about the physical 

status of a solid particle suspension system transforming to a viscous semi-solid and 

subsequently to a solid system (Kovler and Roussel, 2011). Still the viscoelastic properties 

evolution during the fresh is of upmost importance for the practical and scientific communities 

since provide information about the workability and viscosity of the material crucial for 

predictions of casting processes, estimate the pressure over the formworks and verify the ability 

of the concrete to correctly fill the formworks (Roussel, 2007, Kovler and Roussel, 2011). 

Additionally, the quality of the concrete structure is also dependent on the rheological behaviour 

of the fresh concrete during placement into formwork during construction (Wallevik, 2009). 

Thus, several researchers are studying evolution of the material properties during this phase 

(Sun et al., 2006, Subramaniam and Wang, 2010, Banfill, 2006, Hanehara and Yamada, 2008). 

Usually the fresh properties of the cement-based materials are only assessed qualitatively by 

performing flowability or slump tests (Banfill, 2006, Hanehara and Yamada, 2008).  

In view of the above mentioned matters, several authors have been using rheological methods 

to characterize the evolution of the viscoelastic properties during the fresh stat of the cement-

based materials (Banfill, 2006, Hanehara and Yamada, 2008, Wallevik, 2009). However, these 

methods have several disadvantages since they are destructive and as the material hardens the 

ability to perform tests decrease rapidly. Additionally, dynamic methods are also being used to 

characterize the fresh properties (Sun et al., 2006, Subramaniam and Wang, 2010) but they still 

have the disadvantages presented in section 2.3. 

Based on lack of methods and deep knowledge on the fresh properties of cement-based 

materials, the use of vibration based methods to study the evolution of the viscoelastic 

properties of cement-based materials during the fresh state will be investigated in this Chapter.  
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6.4.1. Basis 

The initial motivation for the establishment of the new method was raised by a request from a 

construction company in order to experimentally support decisions on the velocity to imprint 

in slip-forming operations of a vertical pipeline on a hydroelectric power station. In this type of 

concrete construction technique, the form is moving at a constant rate and the velocity of the 

movement is controlled by the height of the form and by the concrete setting time. Therefore, 

it is of paramount importance to accurately define the setting time and even to potentially track 

the stiffness behaviour before such event. 

Firstly, it was decided to try to use the EMM-ARM to do the job. However, the accuracy of the 

method prior to the setting is low, and the final setting time only can be accurately determined 

after the estimation of the whole E-modulus evolution curve. Furthermore, the actual 

applicability of E-modulus predictive formulae through EMM-ARM can be quite debatable 

before the setting time. Therefore, a new method based on the accumulated experience in the 

use vibration based techniques, was suggested and called SMEA (Stiffness Monitoring at very 

Early Age). 

The basis of this new method was the inversion of the concept behind the EMM-ARM. Instead 

of having a composite beam, with the hardening material inside, supported over rigid supports, 

the new method uses a steel cantilever beam partially embedded into the material under test 

(Figure 6.20). As the material starts to harden, the support condition of the cantilever starts to 

change, and consequently the resonance frequency of the beam changes also. To identify the 

resonance frequency of the steel bar, an accelerometer is attached to its free end to measure the 

ambient induced vibrations. In similarity to the original implementation of EMM-ARM, a fan 

is placed in the vicinity of the specimen to amplify the ambient induced vibrations. 
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a) b) 

Figure 6.20. New method to study very early age cementitious materials (SMEA): a) Scheme; 

b) 3D view [units: mm]. 

The scheme of the initial version of the test apparatus is shown in Figure 6.20, with the testing 

steel plate having 400 mm length, with a cross-section of 4.5×25 mm2. The steel plate is 

vertically fixed to the bottom of a wood form with internal dimensions of 150×150×150 mm3. 

6.4.2. Pilot experimental program 

A pilot experimental program was made to investigate the applicability of the new suggested 

method. The experimental program was composed of two identical test programs, T1 and T2, 

where 3 different geometries of the steel plate were selected: (i) cross-section of 25×4.5 mm2 

and 300 mm length (150 mm of free span): (ii) cross-section of 25×4.5 mm2 and 400mm length 

(200 mm of free span); (iii) cross-section of 25×2.0 mm2 and 400 mm length (200 mm of free 

span). The physical characteristics of the different specimens are presented in Table 6.10. 

Furthermore, to assess the repeatability of the method, two identical specimens (SM4.5-25-1 

and SM4.5-25-2) where tested. The accelerations at the free end of the stripe were measured 

through an accelerometer PCB 352C04 (sensitivity: 1 V/g; range: ±5 g) connected to a dynamic 

acquisition system NI 9234 with 24-bit resolution. The accelerations were recorded at an 

acquisition frequency of 500 Hz in packages of 60 seconds each 10 minutes. 
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Table 6.10. Characteristics of the different test configurations used in the two pilot 

experiments. 

Specimen 
Steel bar 

Test 
Average 

temperature 
(°C) 

Length 
(mm) 

Thickness 
(mm) 

Width 
(mm) 

Density 
(kg/m3) 

Free span 
(mm) 

SM2-25-T1 400.0 2.04 24.87 7741.7 255.0 T1 19.8 
SM4.5-25-1-T1 400.0 4.48 25.47 7689.4 250.0 T1 19.8 
SM4.5-25-2-T1 400.0 4.42 25.42 7732.0 250.0 T1 19.8 
SM4.5-15-T1 300.0 4.45 25.41 7724.3 152.0 T1 19.8 
SM2-25-T2 400.0 2.01 24.84 7839.4 250.0 T2 21.7 
SM4.5-25-1-T2 400.0 4.42 25.53 7732.9 250.0 T2 21.7 
SM4.5-25-2-T2 400.0 4.43 25.49 7684.9 250.0 T2 21.7 
SM4.5-15-T2 300.0 4.46 25.41 7686.2 150.0 T2 21.7 

 

The E-modulus of the concrete was accessed through one companion EMM-ARM specimen in 

each test program. The EMM-ARM specimens were 1.0 m PVC tubes with geometry similar 

to the one presented in Figure 3.15 (page 70). The characteristics of the specimens and testing 

technique are shown in Table 6.11. The protocol used in the EMM-ARM tests was similar the 

one presented in section 3.2.1.2.  

Table 6.11. Physical and mechanical characteristics of the EMM-ARM beams. 

Reference EMM-T1 EMM-T2 
Geometry   

i 86.50 mm 85.56 mm 

e 90.60 mm 90.88 mm 
Span 1000.0 mm 1000.0 mm 
Connectors 
(spacing) 

Yes 
(250) 

Yes 
(250) 

Supports ØTR=5 mm 
Concrete cubes 

ØTR=5 mm 
Concrete cubes 

Mould   
Material PVC PVC 
Density 1461.5 kg/m3 1475.7 kg/m3 
E-modulus 3.00 GPa 3.00 GPa 

Concrete density 2388.0 kg/m3 2386.6 kg/m3 
Type of test OMA OMA 

 

Additionally P-wave velocity propagated trough the concrete was measured using PunditLab 

(see section 5.2.1.2 for more details) and the initial setting time was accessed through 

penetration resistance tests according to the ASTM C403 (2008) standard. One should remark 

that due to technical problems, since the experiments were performed in a concrete in-situ 

laboratory during a hydroelectric power plant construction, the protocol of the ASTM C403 

standard was adapted. The adaptation comprised the use of the actual concrete instead of a 
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sieved one. This adaptation had a well-known drawback since the presence of the large 

aggregates increases the possibility of errors in the assessment of the penetration resistance 

(Carette, 2015). To attempt to counteract this potential problem, measurement comprised three 

valid penetrometer tests at the same instant, which were then averaged. Each penetration test 

was only considered valid if no coarse aggregate had been hit. A photo of the first test of the 

pilot experimental program is shown in Figure 6.21. The temperature of all specimens was 

acquired through K-type thermocouples (placed at the geometric centre of each specimen) 

connected to a PicoLog data acquisition system with 20-bit resolution. 

 

Figure 6.21. Photo of the pilot experimental program test 1. 

For the pilot experiments a normal concrete mix was tested with the mix proportions provided 

in Table 6.12. It is word mention that the time ‘0’ in the results was defined as the time when 

the water contacts with cement during the mixing process. 

Table 6.12. Concrete mix composition. 

Component  Mix (kg/m3)  
Sand 715 (0/4) natural 
 257 (0/4) crushed 
Gravel 793 (8/20) 
Cement  240 

(CEM I 42.5R) 
Fly ash  200 
Water  152 l/m3 
Plasticiser 2.7 

(Glenium Sky 617) 
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6.4.3. Results and discussion 

The room temperature histories observed during the two pilot test programs are shown in Figure 

6.22. As can be seen during the first 5 hours the temperature of both test programs was similar 

with average temperatures of 20.1 and 22.4°C for the test 1 and 2, respectively. After this period 

the temperature of test program 1 was higher than that of test program 2 with maximum 

difference of ~7°C.  

  

a) b) 

Figure 6.22. Temperature history: a) Test 1; b) Test 2. 

The evolution of the penetration resistance obtained in the two test programs is given in Figure 

6.23 where it is possible to see that the penetration resistance was null during the first 3 hours 

of curing. After this point the resistance started to increase, with a small difference between the 

two tests. The resistance evolution in test program 1 was slower and the identified initial setting 

time (time when the penetration resistance reach 3.5 MPa) was 4.00 hours, as opposed to the 

faster initial setting time of 3.68 hours observed in test program 2. This difference in the results 

is probably related to a small difference in the curing temperature during this period. In fact, 

the average temperatures observed in the specimens was 20.5 and 22.6°C in the tests 1 and 2, 

respectively.  
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Figure 6.23. Penetration resistance evolution. 

The elastic modulus evolutions during the first 24 hours of curing obtained with EMM-ARM 

are presented in Figures 6.24a and 6.24b for the test 1 and 2, respectively. The two evolutions 

have small differences between them since the E-modulus of 15 GPa is archived at 12.4 hours 

in the test 1 in opposite to the 14.9 hours observed in the test 2. The small difference in the rate 

of evolution is probably related to the slightly different temperature history of the specimens 

and to a slight different mixing procedure. 

  

a) b) 

Figure 6.24. Final setting time estimation based on the EMM-ARM results: a) Test 1; b) Test 

2. 

Based on the E-modulus evolutions the final setting time was estimated by using the same 

protocol presented in section 5.2.1.3. To reduce numerical errors in final setting time 

estimations due to noise (variance) in the E-modulus evolutions each experimental curve was 
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fitted with an equation similar to (5.2) (page 150) as shown in Figure 6.24. The parameters 

obtained from the fitting are presented in Table 6.13. For the test programs 1 and 2, the 

following final setting times were estimated: 5.02 and 5.43 hours, respectively. These values 

have the opposite trend of the initial setting detect by the penetration tests, i.e. the fastest test 

to reach the initial setting is the one that has the later final setting. This fact could be related to 

some errors in the initial setting detection due to the use of non-sieved concrete. 

Table 6.13. Parameters of the fitting models. 

Parameter EMM-T1 EMM-T2 
α1 26.568 26.503 
α2 0.131 2.427 
β1 2.004 1.825 
β2 0.0003 2.281 
τ1 0.392 0.455 
τ2 9.862 1.681 
R2 0.9997 0.9996 

 

The identified evolutions of the first resonance frequency of the different strips of SMEA 

specimens are shown in Figure 6.25. A good coherence is observed between the results of the 

specimens with the same geometry, with maximum difference of 3.0 Hz, indicating that SMEA 

has a good repeatability. Furthermore, as can be seen in the figure, the resonance frequency 

identified in all specimens evolves significantly during the first 6 hours after casting. After this 

point the evolution is very small demonstrating that the method is only sensitive during the 

period when the material has very low stiffness, less than 1 GPa (as observed in the EMM-

ARM results). By comparing the different curves, it is also evident that the frequency range 

during testing increases with the increase of the stripe’s inertia (SM2-25 to SM4.5-25-1 and 

SM4.5-25-2) and with reduction of the stripe’s slenderness (SM4.5-25-1, SM4.5-25-2 to 

SM4.5-15). Therefore, it becomes clear that the geometry of the specimen SM4.5-15 is the one 

that has more frequency range despite the lower amplitude of the vibrations observed during 

the tests. It is noted that a higher frequency range is desirable in view of better allowing to 

identify variations during the testing period: higher resolution of evaluation. 

At the initial setting time, the identified frequency with specimens SM4.5-15 was 98.4 and 

93.75 Hz in the test programs 1 and 2, respectively. Additionally, the frequency variation 

between the initial and final settings was of 3.2 and 5.7 Hz in the tests 1 and 2, respectively. 
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Figure 6.25. Resonance frequency evolution of the different steel bars. 

By comparing the evolutions of the two specimens SMEA4 with the EMM-ARM E-modulus 

evolution, as shown in Figure 6.26a, it is possible to observe that even when the E-modulus is 

still negligible (first 3 hours) and EMM-ARM does not have enough resolution to 

identify/resolve relevant changes, the frequency identified with SMEA clearly shows that the 

material is getting stiffer. However, the computation of the material stiffness during this phase 

is not straightforward since the material cannot be considered as a solid and therefore the 

material needs to be modelled as a solid suspension fluid. Due to this added complexity the 

conversion of the frequency into viscoelastic properties of the material was not yet addressed 

(in the context of this thesis). 

The SMEA results were also compared with the evolution of transmitted P-waves velocity as 

shown in Figure 6.26b. Even when capered with the UWT method it is possible to observe that 

the sensitivity of SMEA is much higher at the very beginning of the hydration process (until 3 

hours of curing). In fact, it is well known that the ultrasonic waves transmitted through the 

material are attenuated by the presence of air bubbles in concrete (Zhu et al., 2011a), which 

does not happen in SMEA method as only the viscoelastic properties of the material will 

influence the results. 
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a) b) 

Figure 6.26. Comparison of the SMEA results with: a) EMM-ARM; b) UWT. 

6.4.4. Influence of curing temperature  

After the proof of concept of the SMEA method presented before, the new technique was used 

to study the temperature dependency of the viscoelastic properties of concrete during the 

beginning of cement hydration. In this new test, 5 specimens were tested at 3 different 

temperature histories: 13, 20 and 36°C. Regarding the geometry of embedded steel stripes and 

specimens, 300 mm long stripes with cross-section of 25×4.5 mm2 were used, to get better 

results in accordance to the conclusions of the pilot experiments, partially embedded in concrete 

150 mm edge cubes. The characteristics of the 5 specimens as well as the average temperature 

observed during the first 10 hours are presented in Table 6.13. The accelerations were acquired 

with the same type of accelerometer used in the pilot experiment connected to the same data 

acquisition equipment. The accelerations were acquired at 500 Hz in pack of 60 seconds each 

10 minutes. 

Table 6.14. Characteristics of the different test configurations used. 

Specimen 
Steel bar Average 

temperature 
(°C) 

Length 
(mm) 

Thickness 
(mm) 

Width 
(mm) 

Density 
(kg/m3) 

Free span 
(mm) 

SMEA-T13-1 292.5 4.07 25.08 7745.4 142.5 13.69 
SMEA-T13-2 293.5 4.32 25.25 7739.5 142.5 13.65 
SMEA-T20-1 292.5 4.26 25.09 7710.5 142.5 20.63 
SMEA-T20-2 290.5 4.22 25.13 7720.9 142.5 20.56 
SMEA-T36-1 290.0 4.27 25.34 7738.2 139.5 35.57 
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As these experiments intended to study the early stages of the concrete hydration, the initial 

temperature of the raw materials was controlled. The control was made by placing all the raw 

materials needed create the concrete mix in a temperature controlled chamber at the target 

temperature of each test, for at least 12 hours prior to the mixing process. Then, the temperature 

of all specimens was acquired through K-type thermocouples connected to a PicoLog data 

acquisition system with 20-bit of resolution and the results are shown in Figure 6.27. Regarding 

the initial temperature of the concrete, despite the fact that prior to mixing all the components 

were placed in a temperature controlled chamber at the target temperature for 6 hours, after the 

mixing process the temperature of the concrete changed from the target due to the temperature 

of the mixing room and mixer. 

 

Figure 6.27. Temperature history. 

The identified first resonance frequency evolutions from all the specimens tested are shown in 

Figure 6.28a. First one should highlight that results have a similar evolution kinetics to those 

observed in the pilot experiments. The frequency starts to evolve at a very fast rate with a 

progressive deceleration along time. Additionally, the different curing temperatures changed 

considerably the frequency evolutions: the 100 Hz frequency is reached at 0.9 hours in the 

specimen cured at 36°C as opposed to the 5.3 hours needed to reach the same frequency in the 

test at 13°C. There was also a very good coherence between the repeatability tests (specimens 

with the same geometry tested at the same curing conditions). 
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a) b) 

Figure 6.28. Frequency evolution along hydration: a) Experimental data; b) Fitting. 

A further step in the analysis of gathered data, pertained to the evaluation of the apparent 

activation energy of concrete at these very early stages. Again, similarly to what was done in 

section 6.2.1, to reduce numerical errors in the apparent activation energy estimations due to 

noise (variance) in the frequency (fr) evolutions, the mean evolution curve was computed and 

fitted with the equation (6.7) as shown in Figure 6.28b.  

 ft

e
dtfr )(  (6.7) 

The parameters obtained from the fitting are presented in Table 6.15.  

Table 6.15. SMEA results fitting parameters. 

Parameter SEMA-T13 SEMA-T20 SEMA-T36 
d 137.1 118.5 114.4 
e 60.07 37.29 13.45 
f 0.2984 0.6955 0.7578 
R2 0.9978 0.9843 0.9872 

 

To compute the activation energy an adapted version of the so-called ‘speed method’ (see 

section 6.2.2.1) was used. In this version, the apparent activation energy (Eact), instead of being 

computed in steps of the hydration degree, is computed in steps each the normalized frequency 

(η) according to the following equation: 
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where T1 and T2 is the temperature of the material in the tests performed at two different 

temperatures 1 and 2, respectively. Here, the frequencies were normalized at 24 hours after 

casting as presented in Figure 6.29a. The obtained evolution of the apparent activation energy 

is shown in Figure 6.29b. The evolutions of Eact are difficult to interpret since no information 

exists about the relation between the parameter η (that has been established in this research 

work) and the degree of reaction or the stiffness of the material.  

  

a) b) 

Figure 6.29. a) Evolution of the normalized frequency at 24 hours (η); b) Evolution of the 

apparent activation energy with the normalized frequency (η). 

Yet, by using the relation between apparent activation energy and the normalized frequency it 

is possible to obtain a perfect superposition of the frequency evolutions at different curing 

temperatures as shown in Figure 6.30. 
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Figure 6.30. Evolution of the first resonance frequency over the equivalent age at 20°C. 

Despite the difficulties, that can be superseded by performing parallel experiments to estimate 

the curing degree over time or converting the measured frequency to a viscoelastic property of 

the material, the results have shown that SMEA is sensitive enough to perform the 

quantification of the activation energy during the fresh state. 

6.5. EMM-ARM applied to structural epoxy adhesives  

Until now the EMM-ARM technique was only used to monitor the E-modulus evolution of 

cement-based materials and stabilized soils (Azenha, 2009, Azenha et al., 2012a, Azenha et al., 

2010a, Silva et al., 2013a, Silva et al., 2014). However due to the good results obtained in all 

the implementations one have decided to expand EMM-ARM to test different hardening 

materials. 

In recent years, the application of thermosetting resins in civil engineering applications has 

largely increased, mainly for their use in structural strengthening systems such as Fibre-

Reinforced Polymer (FRP) reinforcements (Dunn, 2004). In FRP installations, the mechanical 

behaviour of the strengthening system is strongly influenced by the epoxy adhesive, particularly 

at early ages, while the mechanical properties of the adhesive are still enduring significant 

evolution. Therefore, the final performance of the whole application strongly depends on 

adequate preparation, application and curing of the epoxy resin itself. During the curing period, 

the fluid resin transforms into a rubber (gelation) and then in a solid glass (vitrification), 

developing a progressively denser polymeric network (Gillham, 1986). Additionally, it has 
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been shown that the necessary curing time to reach the targeted bond strength of a given resin 

significantly depends on environmental conditions, such as temperature and moisture 

(Czaderski et al., 2012, Matsui, 1990). However, despite the known issue no methods were 

found in literature capable of measuring the mechanical properties of epoxy adhesives along 

the entire curing process that could be implemented during application in construction sites. 

Thus this section aimed to validate the application of EMM-ARM to study the early-age 

evolution of E-modulus of epoxy materials used for FRP applications, and better understand 

the relationship between distinct approaches for its assessment. For this purpose, a simultaneous 

study of E-modulus of the same adhesive mixture was carried out through EMM-ARM, together 

with tensile testing at several ages. The work presented in this section was already published in 

(Granja et al., 2015, Fernandes et al., 2014, Granja et al., 2014b). Additionally, these work have 

led to the following publications (Benedetti et al., 2016, Fernandes et al., 2015, Benedetti et 

al., 2015) 

6.5.1. Experimental Program 

The experimental program consisted in the execution of an epoxy resin mixture and the 

characterization of the corresponding stiffness evolution along the curing time by EMM-ARM 

tests and monotonic tensile tests (MTT). The two-component epoxy resin-based adhesive used 

in the experimental work, produced by S&P® Clever Reinforcement, had the trademark ‘S&P 

Resin 220 epoxy adhesive’. This adhesive is typically employed for bonding FRP laminates to 

concrete and steel, and therefore may be seen as representative. According to the manufacturer 

(S&P, 2011), the component A (resin) contains 20-25% (by weight) Bisphenol A-Epoxy Resin 

and 5-10% Neopentyl glycol diglycidyl ether and, the component B (hardener) includes 20-

25% poly (oxypropylene) diamine, 1-2.5% piperazine and 20-25% 3,6-

diazaoctanethylenediamin; triethylenetetramine. All the specimens tested in the scope of this 

research were originated from a single batch that involved a total volume of epoxy resin of 1.2 

litres. The individual components were separately stirred and then component B was added to 

component A at a ratio of 1:4 by weight of the respective constituents. To minimise air 

inclusions, the compound was thoroughly and slowly manually mixed until the colour was 

uniformly grey and free of any streaks. The whole mixing procedure lasted approximately 4 

minutes. 
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All experimental procedures (mixing and testing) took place under controlled environmental 

conditions (in climatic chamber), with temperature of 20±1°C and relative humidity of 55±5%. 

The following sections detail the program of tests, methods and the procedures of test series, 

including sample geometries, test configurations and preparation of specimens.  

6.5.1.1. EMM-ARM tests 

In order to adapt the EMM-ARM technique to the study of epoxy adhesive used in FRP 

applications, some further adaptations were necessary. Since the grain size of the filler of the 

epoxy (maximum grain size usually ranging between 0.2 and 0.5 mm (Moussa et al., 2012)) is 

comparable to that of cement paste, it was decided to adopt a similar mould/strategy to the one 

used in EMM-ARM version applied to cement pastes, which is described in section 3.3. Herein, 

focus will be addressed to essential aspects concerning the modified experimental setup and 

testing procedure. 

Taking into account the extensive experience of the author with this testing technique and 

bearing in mind the trade-off that exists between the decrease in specimen size and the 

corresponding increase in resonant frequencies (thus less excitable structures), regarding the 

beam span, since the adhesive upon full hardening have a stiffness around 8 GPa (much lower 

than what is expected in a current cement paste) it was decided to use the EMM-ARM beams 

with the smaller spans (250 mm – see Figure 3.22 (page 78)). It is stressed that the adopted 

geometry simultaneously allows the test to endure a significant variation range of resonant 

frequency of 50-80 Hz for a stiffening of the testing material from 0 to ~8 GPa. This wide range 

of frequency variation allows E-modulus evolution to be identified with a good resolution. The 

same clamping device, as the one used in the cement paste tests, was used to assure complete 

fixation of the cantilever beam. The EMM-ARM experimental setup adopted for testing epoxy 

resin is similar to the one reproduced in Figure 3.22 (page 78). The mould consists of a 330 mm 

long acrylic tube, with internal and external diameters equal to 16 and 20 mm, respectively. 

This cross-sectional size respects the principle that the diameter of the beam should be at least 

3 to 5 times larger than the nominal size of the particles of the tested material, in accordance to 

the criteria given by ASTM C192 / C192M (2015a). 
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In the EMM-ARM application for the study of cement pastes, the acrylic tube was already 

prepared with an extremity cap before the tube filling. However due to the higher viscosity of 

the epoxy adhesive after mixing, this was injected into the tube by using a 100 ml syringe, as 

shown in Figure 6.31. This method of injection had already been successfully verified in 

preliminary tests, checking the possible formation of air bubbles inside the tested material due 

to a potentially inefficient injection of epoxy inside the mould. 

 

Figure 6.31. Photo of the epoxy injection into the acrylic tube. 

When the tube was completely filled with the epoxy, two propylene lids were placed at both 

mould extremities. Finally, after putting the specimen in the final horizontal position, a ceramic 

shear piezoelectric accelerometer (PCB® Piezotronics 352C34, with mass of 5.8 grams, 

sensitivity 100 mV/g; frequency range: 0.5 to 10000 Hz) was placed at the free end of the 

cantilever, in order to monitor the accelerations of the extremity of the beam in the vertical 

direction. The tests were performed in OMA conditions, and the ambient vibrations were 

amplified by placing a domestic fan in the vicinity of the EMM-ARM specimens to increase 

the air movement. The measured accelerations are acquired in a 24-bit data logger (NI-USB-

9233) at a frequency (facq) of 500 Hz, and divided in sets of 300 seconds each 10 minutes. 

In order to check the method's ability to obtain results with good repeatability, two tests were 

performed simultaneously, using the same epoxy adhesive mixture employed for tensile tests. 

Table 6.16 shows the geometric characteristics of the used moulds, as well as the density of 

acrylic and epoxy adhesive. 
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Table 6.16. Characteristics of EMM-ARM specimens. 

Reference EMM1 EMM2 
Geometry   

i 15.99 mm 15.94 mm 

e 20.15 mm 20.14 mm 
Span 250.0 mm 250.0 mm 

Mould   
Material Acrylic Acrylic 
Density 1202.5 kg/m3 1198.9 kg/m3 
E-modulus 4.15 GPa 4.15 GPa 

Epoxy density 1742.9 kg/m3 1763.9 kg/m3 
Type of test OMA OMA 

 

6.5.1.2. Tensile tests – MTT 

An extensive set of thirty tensile tests were performed in order to determine the epoxy E-

modulus at several ages. The specimens for testing were manufactured according to “type 1A” 

defined in EN ISO 527-2 (2012b). This specimen’s geometry is characterized by having a dog 

bone shape at both extremities, with a thickness of 4 mm and overall geometry defined as shown 

in Figure 6.32. Teflon moulds were devised for fabrication of the specimens. After mixing the 

two resin components, the homogenized compound was cast into the referred Teflon moulds. 

Afterwards an acetate sheet was placed on the top surface and pressed with a steel roller. The 

specimens were kept sealed in the curing environment and were removed from the moulds just 

before being tested. For all specimens, width and thickness were measured at the three sections 

(S1, S2 and S3) identified in Figure 6.32, using a digital calliper with a precision of ±0.01 mm, 

to check tolerances and for longitudinal stress calculation. 

 

Figure 6.32. Specimen dimensions according to ISO 527-2 [units: mm]. 

The experimental program comprised the testing ages of 12, 18, 36 and 84 hours. For each age 

of testing, three monotonic tensile tests (MTT) were carried out. A specific nomenclature was 

devised for the test specimens, each one being labelled as MTT_X_Y, where X is the testing 
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time in hours (12, 18, 36 and 84) and Y is the specimen number within the series. The summary 

of all tensile tests performed is shown in Table 6.17. 

Table 6.17. Experimental program of tensile tests. 

Age Series Number of 
specimens 

12h MTT_12h 3 
18h MTT_18h 3 
36h MTT_36h 3 
84h MTT_84h 6 

 

The tensile tests (MTT) were carried out in a universal testing machine (AG-X Shimadzu) with 

50 kN capacity load cell and test force measurement precision of 1/1000 ±0.5%. A TML strain 

gauge (type: BFLA-5-3-3L; measuring length: 5 mm; gauge factor: 2.08 ±1%) was installed on 

the top surface of each specimen (i.e. the surface that was bounded by the acetate sheet), at mid-

length, to measure its longitudinal strain (see Figure 6.33).  

 

Figure 6.33. Layout configuration of tensile tests. 

The tests were conducted under displacement control, at a rate of 1 mm/min, according to EN 

ISO 527-1 (2012a).  
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6.5.2. Results and discussion 

6.5.2.1. EMM-ARM tests results 

The resonant frequencies evolution obtained for the two specimens are shown in Figure 6.34. 

It is remarked that the two frequency curves are very coherent, providing an indication of good 

repeatability of the experimental setup and procedures. Moreover, a wide range of frequencies 

was covered throughout the curing process of the epoxy adhesive, ranging from 51.3 to 79.6 Hz 

within the testing period; E-modulus evolution can thus be identified with a good resolution 

(0.034 GPa for 51.3 Hz and 0.052 GPa for 79.6 Hz). The frequency evolution curves appear to 

be plausible, showing an initial period of approximately 6.4 hours in which the frequency 

remains almost constant. After this threshold, the frequencies evolved significantly for both 

tested specimens until approximately 36 hours of curing. After such period, the slope of 

variation exhibits a significant decrease.  

 

Figure 6.34. Resonant frequency evolution of the EMM-ARM beams. 

The elasticity modulus of the tested epoxy adhesive mixture was estimated by applying 

equations (2.14) and (2.12) (page 35). The stiffness evolution for both EMM-ARM specimens 

is shown in Figure 6.35. The agreement between the results of the two specimens is very good, 

with absolute stiffness differences under 2.5% (0.22 GPa at the age of 168 hours), 

demonstrating adequate repeatability of EMM-ARM. In the initial period (during the first ~6.4 

hours) the epoxy adhesive stiffness was nearly null for both specimens, which is consistent with 

its fluid-like behaviour. The kinetics of evolution of E-modulus was consistent with the one 
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already described and discussed for the frequency evolution, and the final reached value at the 

end of testing was 9.3/9.5 GPa for EMM1/EMM2. 

 

Figure 6.35. E-modulus evolution obtained by EMM-ARM. 

6.5.2.2. Tensile tests results 

Figure 6.36 presents the stress-strain curves obtained at various ages by monotonic tensile tests. 

Stress was evaluated by dividing the applied load by the cross-sectional area of the specimen’s 

mid-height section (where the strain gauge was placed). From this figure, it is possible to 

observe the increase on stiffness along the curing process of epoxy adhesive. At the age of 12 

hours, since the curing reactions had just begun, high values of strains were obtained. In fact, 

the monotonic tensile tests carried out at 12 hours were stopped at about 5% strain (limit of the 

used strain gauges). From 12 to 36 hours, the epoxy stiffness had a significant increase, shown 

by the strong slope difference of the curves obtained at 12, 18 and 36 hours. From 36 to 84 

hours, the stress-strain curves did not exhibit any significant variation: in that period the average 

maximum tensile strength increased only of 0.2 MPa (1%). On the contrary, a decrease of 18% 

(0.0006 m/m) in ultimate strain was observed, confirming that curing reactions were still in 

progress between 36 and 84 hours.  
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Figure 6.36. Stress-strain curves obtained from monotonic tensile tests. 

The Young’s modulus of epoxy adhesive was obtained by through the slope of the linear trend 

line of the experimental values gathered until 1/3 of the ultimate strength, in accordance with 

the American Standard ASTM D638M-93 (1993). In order to avoid the error caused by the 

possible starting misalignment of the grips and the presence of microscopic structural flaws, 

the initial region of positive second derivative of each experimental curve was not considered 

for the calculation of the E-modulus. The average Young’s modulus values obtained are 

depicted in Figure 6.37. 

 

Figure 6.37. Epoxy E-moduli evolution obtained by EMM-ARM and tensile tests (MTT). 

Figure 6.37 also shows the comparison between the elastic modulus results obtained by EMM-

ARM and by monotonic tensile test. At the age of 84 hours, there is a good agreement between 

the values obtained through the EMM-ARM (EMM1 and EMM2), those collected in MTT. 

However, the results show relevant differences at the earlier ages of 12, 18 and 36 hours. At 

such ages, all the E-modulus values obtained from tensile tests are significantly lower than the 
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ones acquired from EMM-ARM, particularly at 12 and 18 hours. This deviation may be 

explained by different time-scales and strain-rates of the experimental tests. However, the 

strain-rate of the different methods, ranging between 10 and 50 μɛ/s for EMM-ARM (computed 

through numerical integration of the accelerograms) and between 100 and 110 μɛ/s for the 

monotonic tensile tests (computed directly from the strain measurements) are within the same 

order of magnitude and therefore are not different enough to justify the gap between the 

estimated E values. Nevertheless, the EMM-ARM has a much lower period of loading (within 

a range of 0.016 and 0.02 seconds) than the monotonic tensile tests (within a range of 10 and 

20 seconds). This lower time-scale makes the method less sensitive to the viscoelasticity of the 

material. The full justification for this difference can be found in (Granja et al., 2015). 
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Chapter 7  

Simulation of stiffness evolution – cement pastes 

7.1. Introduction 

Throughout the history of science, simulation models have played an important role. Since the 

emergence of the first simple models, there has been a continuing effort to improve and increase 

in sophistication. However, for the case of cement-based materials, even the most advanced 

existing models for behaviour simulation still correspond to crude simplifications of reality 

(Bishnoi and Scrivener, 2009, Thomas et al., 2011). Despite the notion that the models and the 

reality are always different, we have seen an increase in demand for simulation models, both in 

science and engineering (Dolado and van Breugel, 2011). This happens because of the need for 

tools that help the understanding and description of the physical and chemical properties of 

such materials, both to support the process of decision-making (which can lead to time savings 

in the construction process) or to the development of new materials (Pape et al., 2008). 

In the last decades several researchers have been proposing microstructural simulation models 

capable of estimating the mechanical properties of cement base materials (Bishnoi, 2008, van 
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Breugel, 1991, Maekawa et al., 1999, Bentz, 1997b). These methods have been under constant 

evolution through the comparison/validation of the results with SEM and classical mechanical 

tests (cyclic compression and strength). However, these comparisons/validations are often 

made only for high degrees of hydration due to the characteristics of the experimental methods 

used (as presented in Chapter 2) (Haecker et al., 2005, Do, 2013). Furthermore, to estimate the 

mechanical properties these models require the knowledge at the micro-scale of the mechanical 

properties of each individual component of the material during the hydration of the cement. The 

characterization of these properties is been made using nanoindentation tests (Manzano et al., 

2009). However, the type of tests is not feasible to characterize the components of the cement-

based materials along the hydration process. 

Taking into account the unprecedented information about the continuous evolution of the 

cement-based materials right since the instant of casting provided by the EMM-ARM a foray 

in the microstructural simulation of the cement-based materials will be made in this Chapter. 

An analysis was made in collaboration with EPFL to evaluate the possibility of using the EMM-

ARM results to validate and estimate the evolving properties of the components of the cement 

pastes. But first it is appropriate to review the state of knowledge concerning micromechanical 

modelling of hardening of cementitious materials. 

7.2. Estimation of mechanical properties  

The estimation of the stiffness evolution of cement-based materials with the advance of the 

hydration reaction is the subject of a large number of studies (Bernard et al., 2003, Do, 2013, 

Sanahuja et al., 2007a). From a macroscopic point of view, the evolution of the mechanical 

properties of cementitious materials can be associated with the degree of hydration through 

empirical relationships (Bernard et al., 2003, De Schutter and Taerwe, 1996). However, as is 

demonstrated in the work Krauß and Hariri (2006), at very early ages, after the initial setting, 

the existing simulation models failed to adequately correlate the stiffness and the degree of 

hydration. Hattel and Thorborg (2003) present a distinct macroscopic approach based on the 

concept of maturity. In this approach the evolution of the elastic modulus over time is defined 

as a function of the final modulus equivalent value related to age, through an Arrhenius 

equation. 
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Several authors have suggested relations between elastic modulus and percolation (ratio of 

volume of solids connected together and the total volume solids) (Torquato, 2001). In their 

work, Ye et al. (2004b) found that the relation between the static modulus of elasticity and the 

volume fraction of the solid phase (p) appears to follow a power law (as shown in equation 

(7.1)), which is a function of the volume fraction of the solid phase at which the solid starts to 

become interconnected (pc) and a structural parameter (kp). 

   pk

cppE   (7.1) 

However, these empirical relationships do not take into account the fundamental physical 

processes and microstructure, ignoring the physical and chemical properties, temperature, air 

content and, in the case of compression strength, cracking (Chamrová, 2010). These 

simplifications make the obtained estimations for the mechanical properties diverge 

considerably, particularly if the material has a high porosity. Thus more sophisticated models 

are needed for accurate prediction of the effective elastic properties of cementitious materials. 

These problems can be solved by using homogenization theories of heterogeneous materials, 

such as concrete, with periodic distribution components. In these models, originally developed 

by Sanchez-Palencia (1980), the material is simulated as an infinite series of unit cells thus 

allowing the material properties to be obtained by separate analysis of each component. Under 

this theory, the analysis of a heterogeneous material is reduced to a simpler problem of a 

representative element in which the elastic properties can be calculated by analytical or 

numerical methods. Several authors have proposed a homogenization analytical approach for 

cementitious materials (Bernard et al., 2003, Constantinides and Ulm, 2004, Pichler et al., 2007, 

Sanahuja et al., 2007a, Tian and Bian, 2013, Zhao et al., 2013). The authors consider the 

microstructure of cementitious material at different levels (multi-level) as shown in Figure 7.1. 

The mechanical characteristics are obtained for the lowest level, homogenized and introduced 

into the next level model. 
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Figure 7.1. Four microstructural levels of cement-based composite materials. Adapted from 

(Pichler et al., 2007) and (Sanahuja et al., 2007a). 

These approaches enable a large reduction in the complexity of simulation models. However, 

even considering only the lowest level of the homogenization models, the actual microstructure 

of a material it is frequently complex and not uniform, making the prediction of their 

mechanical properties in a non-trivial problem even in the case of microstructures with linear 

elastic properties of their phases. 

Therefore several authors have started to create numerical discretized models (see Figure 7.2) 

of the complex microstructure of the materials in an attempt to estimate the mechanical 

properties (Chamrová, 2010, Do, 2013, Haecker et al., 2005, Bernard and Kamali-Bernard, 

2012, Kamali-Bernard and Bernard, 2009). Several numerical models have been proposed for 

modelling of heterogeneous materials microstructure such as the finite element method, 

methods based on fast Fourier transform, method based on network model and method of the 

extended finite element (XFEM) (Chamrová, 2010). It should be noted that, whichever 

simulation method is chosen, the computational cost associated with the simulation of the 

elastic properties of a 3D microstructure can be very high. These models normally simulate 

cement paste through cubic microstructure models, like the one presented in Figure 7.2. 

However, due to the high geometric complexity of the nanostructure of cementitious materials, 

these models are usually generated by considering the microscopic structures of the major 

components as homogeneous materials. This simplification implies knowledge of the 
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homogenized mechanical characteristics of various components involved, which are usually 

obtained by homogenization theories. However, these procedures still require extended 

experimental validation. This may represent an interesting opportunity due the amount of 

information that one can get from EMM-ARM experiments, thus supporting the possibility of 

improvements to existing simulation models. 

a) b) 

Figure 7.2. Simulation strategies to obtain the mechanical properties of cement-based 

materials from: a) Kamali-Bernard and Bernard (2009); b) Chamrová (2010). 

It should also be noted that the complexity of the microstructure and the associated 

computational cost require deep thinking on approaches and simplifications (Chamrová, 2010). 

The replacement of 3D microstructure by 2D slices is tempting. However, Hain and Wriggers 

(2008) demonstrated, by tomography, that the plane stress and plane strain in 2D are 30% 

smaller than in a 3D microstructure. The results suggest that connectivity to 3D is quite different 

and can not be easily established through 2D microstructure. It should also be noted that the 

models that have just been presented assume prior knowledge of the microstructure evolution 

along the hydration of cement and the behaviour of the fundamental components of the cement 

paste. Therefore, in the scope of this thesis, it is considered necessary to deepen the literature 

review on simulation models specifically dedicated to the cement paste hydration presented in 

the following section. 
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7.2.1. Numerical Models for Cement Microstructure 

Throughout the years, several cement hydration models have been proposed (Thomas et al., 

2011). The first models were based on the hydration of a single cement particle (see Figure 7.3) 

(Pommersheim and Clifton, 1979) – These models have two basic limitations: they do not take 

into account the interaction between adjacent cement particles and they fail to faithfully 

reproduce the overall kinetics of a moisturizing series of particles with different sizes. 

 

Figure 7.3. Schematic representation of the hydration of the C3S particle model from 

Pommersheim and Clifton (1979). 

Then, based on experimental observations, new series of models were developed with basis on 

the nucleation and growth phenomena (Scherer et al., 2012). These models are based on 

observations that the hydration process is controlled by the formation of the C-S-H compounds 

(Avrami, 1939, Garrault-Gauffinet and Nonat, 1999, Garrault-Gauffinet and Nonat, 2001). 

However, although more sophisticated models are being implemented increasingly, they should 

be used with caution. In fact, in many cases, even though these models provide estimates that 

reproduce reasonably the experimental data, there is a large gap between the assumptions and 

the real physical process (Thomas et al., 2011). These simple approaches to the complex 

problem of cement hydration have the ability, at best, to simulate the hydration of the cement 

paste during a limited period of time when the temperature is constant. To be able to simulate 

the complex hydration process of cement pastes a more comprehensive approach is needed that 

simultaneously encompasses multiple physical and chemical phenomena. 

The first model with this level of complexity was proposed by Jennings and Johnson (1986). 

This model tries to reflect the complex nature of a cement particle system with the aim of 
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producing a virtual reactor without predetermined and artificial assumptions that were 

underlying the previous models. The cement particles are represented as spheres, placed inside 

a cubic computational volume, and hydration is simulated as reducing the radius of the 

anhydrous phases and concentric growth CSH layers on the surface of these particles, similar 

to the hydration models of a single cement particle (see Figure 7.4). However, due to lack of 

computational power at the time, this model had several simplifications to ensure its viability. 

These simplifications have limited the use of the model. Yet this model has given way to a new 

kind of much more complex simulation models. 

 

Figure 7.4. Microstructure generated with the model of Jennings and Johnson (1986). 

Using a similar approach to that adopted by Jennings and Johnson (1986), van Breugel (1991, 

1995), developed a similar microstructural simulation model, called HYMOSTRUC 

(HYdration, MOrphology and STRUCtural development). In this model a virtual 3D 

microstructure composed of randomly distributed spherical cement particles is considered. As 

the particles react, hydrates are formed in concentric layers around the cement particles. With 

the increasing volume, the particles start to overlap with the adjacent neighbour (see Figure 

7.5). The model treats the entire microstructure through statistical method, instead of attempting 

to explicitly consider all individual particles enduring hydration. Additionally, the degree of 

hydration is reproduced as a function of the particle size distribution and of the chemical 

composition of the cement, the w/c ratio and the reaction temperature (Ye et al., 2004a). This 

approach allows the models to be computationally feasible, but it is impossible to obtain 

localized information, such as the porous network and the connectivity between the particles. 
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Figure 7.5. Hydration scheme in HYMOSTRUC model (van Breugel, 1991). 

The multiscale model DuCOM, capable of simulating cement hydration, was created in the 

University of Tokyo by Maekawa et al. (1999, 2003). This model has been developed as a 

package with finite element prediction capabilities of the material of the reinforced concrete 

behaviour, including effects related to the durability (carbonation, alkali leaching, rebar’s 

corrosion, etc.). The model simulates the cement pore size based on the hydration of 

representative unitary particles. Although this model may not be classified as a truly 

microstructural model, its development has been supported by extensive experimental and 

analytical programs. However, this model depends almost entirely on empirical relationships 

which have been calibrated by experimental results. Furthermore, the hydration is simulated 

using a single cement particle simulated as being an average particle size of the heterogeneous 

distribution of particles in the cement (Bishnoi, 2008). 

An even more sophisticated model has been developed by Bentz and Garboczi (Garboczi and 

Bentz, 1992, Bentz, 1997b, Bentz, 1997a, Bentz, 2006) is the CEMHYD3D model. In contrast 

to the models described above, this one uses an approach based on the structure obtained from 

digital images. The 3D microstructure of cement paste is obtained by processing an actual 

image of a paste within a uniform cubic grid, wherein for each volume element (or voxel) of 

the network is assigned a material (water, alite, etc.). The changes in microstructure are 

simulated by means of a large number of rules that are evaluated locally and depend on the 

materials involved in the interaction of the temperature and, in some cases, global parameters 

that define the microstructure, as the water to cement ratio or a phase volume. These rules are 

used to mimic the dissolution, diffusion and nucleation and growth of hydration products. 

Hydration in CEMHYD3D progresses in different repeated cycles of dissolution, diffusion and 

reaction. This approach leads to a development of the 3D microstructure for ordinary Portland 
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cement pastes, which have a realistic appearance and a quantitative reasonable spatial 

distribution of anhydrous cement particles, hydration products and capillary porosity, as shown 

in example of Figure 7.6. 

 

Figure 7.6. Simulated microstructure through CEMHYD3D model of an ordinary Portland 

cement paste type I with 14 days of hydration (Bentz, 1997b). 

Despite the many success stories in the application of this model, this also presents a number 

of limitations, as the authors refer (Garboczi and Bentz, 2001). As an example it is stated that 

the time scale for the development of the microstructure must be calibrated with experimental 

data for each new cement mixture. In addition, the rules used in the model do not describe the 

whole of the hydration process, with several shortcomings identified. Finally, it should be noted 

that the model rules were calibrated for given a pixel size, and convergence problems have been 

reported to occur when the pixel size is reduced. 

In response to the limitations of CEMHYD3D model Bullard (2007a, 2007b) developed a new 

stochastic simulation model called HydratiCA, based on more fundamental principles of the 

kinetics of cement hydration of each particle. This model simulates explicitly dissolution and 

growth of mineral phases, the diffusion of mobile particles in the solution, the reactions between 

the particles in solution or on solid surfaces, and nucleation of new phases. Thus, this model 

allows to make better predictions of the evolution kinetics of the hydration and the 

microstructural development depending on the chemical composition and temperature of 

mixing than other existing models. However, this level of detail and precision makes this 

approach computationally heavy. (Thomas et al., 2011). 
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Recently a new model was created, based on the model originally developed by Jennings and 

Johnson (1986) called µic (Bishnoi and Scrivener, 2009, Bishnoi, 2008). This model is based 

on the growth of multiple layers of spherical particles and the interconnections between the 

different particles to represent the evolution of the microstructure of the cement paste. This 

model provides a new implementation of the vector approach of Jennings and Johnson (1986) 

model by overcoming some of the limitations. As the calculation of the distance or overlap 

between the particles can be computationally intensive, in previous implementations, made by 

Jennings and Johnson (1986), these interactions were not taken into account, which severely 

affected the performance of the models. However, the new libraries developed for μic model 

allow it to simulate the hydration of millions of cement particles needed to realistically represent 

the particle size distributions found in ordinary cements, taking into account the neighbourhood 

of each particle (Thomas et al., 2011). A typical example of the microstructure of the aspect 

μic model is presented in Figure 7.7. 

 

Figure 7.7. Cut of a microstructure of μic model of a cement paste 80% hydrated with C3S 

grayscale, followed by CH and CSH and pores in black (Bishnoi and Scrivener, 2009). 

However, it is important to note that the μic model presented some limitations, such as: 

represents the C-S-H product as a homogeneous layer over the cement particles (Do, 2013); no 

direct consideration of the chemical solution that provides the driving thermodynamic force; 

and no direct consideration of the transport phenomena such as diffusion (Thomas et al., 2011). 

These limitations have direct influence on the distribution of the hydration products and thus 

on the microstructure evolution. Despite these limitations, and because of its high speed of 

calculation and flexibility, μic allows the simulation of systems with a large range of cement 

particles sizes, including non-reactive fines and considering very specific hydration 

mechanisms, such as a nucleation phase in particles of another (Dolado and van Breugel, 2011). 
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7.3. Validation of cement paste simulation model with EMM-ARM results 

As mentioned in the introduction of these Chapter, due to the lack of experimental data of the 

mechanical properties during the whole hydration process the results estimated by the existing 

microstructural models capable of simulating the stiffness of cement-based materials are still 

lacking validation. Therefore, in this subsection the unprecedented information obtained with 

EMM-ARM results will be explored to validate the results obtained with a microstructural 

simulation model.  

From the literature review presented before the modelling platform μic was chosen to simulate 

the cement paste microstructure evolution along the cement hydration since was identified as 

one of the most advance models. Additionally, these model is under constant evolution and the 

author had the opportunity to work in the research centre that has developed this model 

(Laboratory of Construction Materials (LMC) at EPFL). However, μic platform is not able to 

directly estimate the stiffness of the cement pastes. To perform this task, the microstructure 

needs to be modelled in a finite elements software and the correct mechanical properties of each 

individual phase present in the microstructure of the cement paste needs to be provided. Thus, 

this subchapter was divided in into two parts: (i) simulation of cement hydration to generate the 

microstructure of cement paste; (ii) numerical modelling of the microstructure to estimate the 

cement paste stiffness. In the end the simulations are compared with the EMM-ARM results. 

7.3.1. Cement microstructure simulation 

The modelling platform μic was used to simulate the hydration and the resulting three-

dimensional microstructure of a cement paste. The advantage of using microstructures 

generated by μic is that it simulates the processes that lead to the development of the solid 

skeleton and is capable of generating quite realistic representations of microstructures (Bishnoi 

and Scrivener, 2009). Additionally, as μic uses a vector approach, the generated microstructures 

do not suffer from a resolution limit. 

In order to simplify the complex problem of cement hydration, a cement with high content of 

alite (C3S) was chosen. The chosen cement was a white cement with composition shown in 
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Table 7.1. Due to the high percentage of alite (C3S) and belite (C2S) (86.89% of the total weigh), 

and to the fact that the other components have a low impact on the final microstructure of the 

cement paste, this cement was model as an equivalent cement with composition shown in Table 

7.1. 

Table 7.1. Composition of the white cement selected to model. 

Component White cement Equivalent white cement 
C3S [%] 66.89 76.98 
C2S [%] 20.00 23.02 
C3A [%] 3.51 0 
C4AF [%] 1.00 0 
Free lime [%] 0.31 0 

 

The cement paste had a water to cement ratio of 0.40 (named as W0.40). In the simulation, 

spherical particles of cement grains were placed in a cubic computational volume (CV) with 

100 μm side having periodic boundaries, using random parking. The particle size distribution 

used for cement is shown in Figure 7.8. 

 

Figure 7.8. Particle size distribution used for cement grains. 

In order to obtain a representative volume element (Do, 2013) both for hydration and 

mechanical simulations, the largest unhydrated cement particle was chosen to be 1.5 times 

smaller than the CV. The diameter of the smallest particle was 0.4 μm. The modelling strategy 

used was similar to the one used in the work of Do (2013). All the reactions (equations (7.2) 

and (7.3)) of the cement hydration were controlled using Avrami equation (7.4). 
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 CHCSHLDCSHHDOHSC 593.057.00.13.5 23   (7.2) 

 CHCSHHDOHSC 189.0166.23.4 22   (7.3) 

 
ntkef  11  (7.4) 

where k1 is a rate constant, f is the fraction of material reacted as a function of time, t and n is 

the Avrami exponent that depends upon the nucleation and growth mechanism. 

Two models of particles were used, one for the cement particles and other of the Portlandite 

crystals (CH) as shown in Figure 7.9. The cement particle model was a three-layer model with 

at its centre the anhydrous cement. The two layers of the two different types of calcium silicate 

hydrate (C-S-H) (high density or inner and low density or outer) growth from its surface. The 

high density C-S-H (HD CSH) was assumed to grow inwards filling the space left by the 

anhydrous cement. As opposite the low density C-S-H (LD CSH) grew outwards from the 

surface of the particle. However, assuming the LD CSH as a homogeneous layer grown on the 

cement particles is unrealistic since the product is a heterogeneous material composed of layers. 

Additionally, the LD CSH may grow unevenly into the pore-space and build a fine pore network 

even at quite young ages (Do, 2013). Therefore, the packing density of the LD CSH was 

assumed to increase with hydration to simulate the effect of the increase on the number of C-

S-H needles that start to pack (Do, 2013, Bishnoi and Scrivener, 2009). The CH particle was 

assumed to precipitate on the available space in the cement paste.  

 

Figure 7.9. Particles model used in the simulations. 

The parameters on Avrami equation and on the densification rate of the LD CSH were changed 

to fit the degree of reaction obtained to experimental results from calorimetry and 1H NMR 

obtained in the work of Muller (2014). The hydration simulation was performed in steps of 1 

Cement particles Portlandite particles

CH

Anhydrous cement

HD CSH

LD CSH
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hour until 100 hours of hydration and then in steps of 10 hours for more 560 hours. The final 

comparison obtained with the parameters of Table 7.2 can be observed in Figure 7.10. 

  

a) b) 

Figure 7.10. a) Reaction rates of each hydration reaction; b) Comparison between the degree 

of reaction of the model and the one obtained through calorimetry and 1H NMR. 

Table 7.2. Parameters obtained from the overall cement hydration degree of reaction. 

Parameter C3S C2S 
k1 (h–n) 1.40×10–4 1.25×10–5 
n 2.6 2.6 
t0 (h) 0 0 
α0 0 0 
t1/2 (h) 6 - 
kden outer C-S-H (g/cm3/h) 1.0×10–4 - 
ρmin outer C-S-H (g/cm3) 0.56 - 
ρmax outer C-S-H (g/cm3) 1.70 - 
Vertical grow rate (μm/h) 0.085 - 

 

As can be observed the overall reaction degree model fitted quite well the experimental 

measurements, despite some differences obtained in the post peak stage, as seen in Figure 7.10b. 

These differences could be related mainly to the use of the equivalent cement (with only the 

alite and belite components) and to the fact that the mechanism of cement hydration during this 

phase is not properly modeled in μic due to the use of an inadequate model for the LD CSH. 

The resulting microstructure was generated with a resolution of 0.666 μm and is presented in 

Figures 7.11 and 7.12.  
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 Unhydrated cement  HD CSH  LD CSH  CH 

Figure 7.11. Evolution of the microstructure during the cement hydration. 

 

Cement paste microstructure 

    

LD CSH HD CSH CH 
Unhydrated 

cement 

Figure 7.12. Cement paste microstructure after 100 hours of cement hydration. 

From the evolution of the microstructure one can state that, despite small differences in the 

overall degree of reaction the microstructure of the cement paste seams feasible. 

7.3.1. Stiffness modelling of the cement paste  

After obtaining the cement microstructure along hydration, the elastic properties of the 

composite material can be estimated. There are several methods to perform this estimation that 
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can be separated in two main groups: analytical homogenization methods; and numerical 

modelling of the microstructure (e.g. through the finite element method – FEM) (Chamrová, 

2010). The first approach is the most commonly used since the majority of the cement hydration 

models only give information about abundance of each phase in the system (Pichler et al., 2007, 

Sanahuja et al., 2007a). However, μic platform is capable of simulating the evolution of the 

microstructure of cement paste. Therefore, based on the richness of availability of data within 

this thesis, the second approach was used. 

To perform the numerical modelling of the microstructure of cement paste, a new platform 

called AMIE (Automated Mechanics for Integrated Experiments) was used (Bordas et al., 2007, 

Dunant et al., 2007, Dunant and Scrivener, 2010, Dunant et al., 2013). This platform, developed 

by Cyrille Dunant at LMC, is capable of automatically generating a finite element mesh of the 

cement microstructure based on the results provided by μic platform. The intrinsic elastic 

properties of the individual phases used in these simulations were taken from the literature and 

are listed in Table 7.3. From such table, it is possible to infer that almost all the individual 

phases of the cement paste have well defined stiffness values, except for the case of the LD 

CSH, for which a large range of variation can be observed. Furthermore, the LD CSH is 

simulated μic as an equivalent homogeneous material that densifies along the cement hydration. 

These issues make it necessary to characterize the evolution of the stiffness of the homogeneous 

LD CSH along the cement hydration. 

Table 7.3. Intrinsic elastic properties of the individual phases of the cement paste (Manzano et 

al., 2009). 

Phase Young’s modulus (GPa) Poisson ratio (υ) 
Anhydrous cement 138.0 0.300 
Portlandite 35.4 0.300 
HD C-S-H 32.0 0.250 
LD C-S-H 19 to 45 0.250 
Water-filled porosity 0.0001 0.499 

 

Aware of this information-gap a back analysis was made to fit the simulated stiffness of the 

cement paste to the experimental data from EMM-ARM (obtained previously in section 5.3.2), 

and get the evolution of the stiffness of the equivalent homogeneous LD CSH along the cement 

hydration. The back-analysis was made through trial-and-error in only 15 points at the ages of 

1×10-7, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 hours due to the high 
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computational cost involved in the cement paste stiffness simulation. The analysis was started 

with a constant value to the LD CSH stiffness of 32 GPa (similar to the HD CSH) and each 

point was individually fitted to the experimental value. Figure 7.13 shows the results of the 

simulated stiffness and the LD C-S-H stiffness evolution. 

 

Figure 7.13. Evolution of the outer C-S-H stiffness. 

After the quantification of the LD CSH stiffness through the back-fitting process, this evolution 

was correlated with the LD CSH porosity evolution. However, since the LD CSH porosity is 

not modelled in μic, to perform the correlation the porosity was obtained from 1H NMR results 

(Muller, 2014) (Figure 7.14a). Figure 7.14b shows the relation between the porosity and the 

stiffness of the LD CSH obtained. Additionally, results from homogenization of the LD CSH 

are shown in the figure. The homogenization of the LD CSH was performed by Cyrille Dunant 

using by using a self-consistent scheme (SCS) (Sanahuja et al., 2007b, Pichler et al., 2009, 

Dunant and Granja, 2015) and considering three different scenarios: (i) undrained conditions 

(U-SCS), (ii) drained conditions and considering needle-like inclusions (D-SCS needles) and 

(iii) drained conditions and considering sphere-like inclusions (D-SCS spheres) (see Pichler et 

al. (2009) for more details). The inclusions were assumed to have E = 54 GPa and υ = 0.3. The 

obtained results indicate that the LD CSD behaves similarly to the estimation based on drained 

conditions (regardless of the shape considered for the inclusions) as can be observed in the 

figure. Furthermore, for porosities higher than 0.6, the observed behaviour seems to be between 

the estimations based sphere-like and needle-like inclusions. The percolation threshold of the 

LD CSH was observed to be at ~0.70 of porosity.  
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a) b) 

Figure 7.14. a) Evolution of the LD C-S-H porosity; b) Correlation between LD C-S-H 

porosity and stiffness. 

7.4. Blind simulations of the E-modulus of cement pastes 

To confirm that the above assumption of correlation between LD CSH porosity and stiffness 

(obtained through back-analysis) is valid, two additional cement pastes were simulated (W0.32 

and W0.48). These two cement pastes were composed by the same cement but with two 

different water to cement ratios: 0.32 and 0.48 (termed as W0.32 and W0.48, respectively). All 

the parameters used to simulate the microstructure of the cement paste were kept. The 

comparisons of the overall degree of reaction along the curing time obtained from the model, 

together with the information obtained experimentally, are shown in Figure 7.17a. As can be 

observed the evolutions obtained by the model have differences when compared to the 

experimental values mainly between the ages of 25 to 150 hours. These differences, as already 

discussed above for the W0.40 cement paste, could be related to the simplifications made, 

mainly in the cement composition and in the nature of the LD CSH. However, despite these 

simplifications the simulated microstructure seems feasible as can be observed in Figures 7.15 

and 7.16. 
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a) b) 

Figure 7.15. 3D microstructure 100 hours of cement hydration: a) W0.32 b) W0.48. 

a) 

    

b) 

    

 0h 8h 17h 660h 

 Unhydrated cement HD CSH LD CSH CH 

Figure 7.16. Evolution of the microstructure during the cement hydration: a) W0.32; b) 

W0.48. 

In order to make the simulation of the cement paste E-modulus evolution along the cement 

hydration the same mechanical properties for the different phases as the ones presented in Table 

7.3. For the LD CSH the relation between the porosity and stiffness presented in Figure 7.14b 

was used. However, from the results obtained by Muller (2014) it appears that the porosity 

evolution of the LD CSH for the different cement pastes changed as shown in Figure 7.17b. As 

can be observed the LD CSH porosity evolution for the different cement pastes is quite similar 

with only small differences in the cement paste W0.48 where the porosity is slightly lower. 

Thus, to estimate the LD CSH stiffness evolution the porosity obtained from 1H NMR results 
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was used. The porosity evolutions were fitted by an analytical equation shown in the figure and 

the parameters obtained are given in Table 7.4. 

  

a) b) 

Figure 7.17. a) Comparison between the degree of reaction of the model and the one obtained 

through calorimetry and 1H NMR; b) Evolution of the LD CSH porosity. 

Table 7.4. LD CSH porosity fitting parameters. 

Parameter W0.32 W0.40 W0.48 
a 0.8289 0.8202 0.8227 
b -0.074 -0.074 -0.083 
R2 0.9861 0.9634 0.9940 

 

With the microstructure obtained from μic and the mechanical properties of all the components 

the stiffness of the two cement pastes (W0.32 and W0.48) where computed in AMIE without 

using any fitting parameter. The results of these new simulations are shown in Figure 7.18 

together with the average evolution curve obtained from EMM-ARM tests in section 5.3.2. 

Firstly, one should note that the estimated E-modulus evolutions are in very good agreement 

with the experimental values. However, for the cement paste W0.32 the model estimated a 

significant stiffness value during the dormant period (t < 4 hours), well above the negligible 

stiffness that would be expectable at such stage. This problem may be related to the lack of 

resolution of the control volume under study (it was of 0.666 μm in this case), since the W0.32 

is densest cement paste tested. In fact, the decrease in the distance between particles can lead 

to artificial connections between the anhydrous cement particles when the microstructure of the 

cement paste is not generated with enough resolution. Therefore, this problem can be solved by 

performing simulations with higher resolution than the 0.666 μm used in the current 
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simulations. However due to lack of computation power the it was not feasible to perform the 

simulation with higher resolution. Nevertheless, the results seem to indicate that the back-

analysis procedure has brought a very reasonable set of values for LD CSH stiffness to be used 

in the prediction of the overall stiffness of cement paste.  

 

Figure 7.18. Comparison between the experimental results and numerical simulation of the 

cement pastes E-modulus. 
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Chapter 8  

Conclusions 

8.1. Overview 

The aim of this thesis has been centred in providing the technical and scientific communities 

with a tool based on EMM-ARM capable to provide real-time information along the whole 

cement hydration process about the elastic modulus of cement-based materials. In particular, it 

has sought to explore five research questions: (i) Is EMM-ARM metrologically robust? (ii) 

What are the limitations of EMM-ARM? (iii) Can the quality of EMM-ARM results be 

improved by the application of new geometries/mould materials, as well as different modal 

identification techniques? (iv) Can EMM-ARM be implemented and applied in the construction 

industry as a quality control and decision support tool (with specific standards)? (v) How can 

EMM-ARM be used to validate/improve the microstructural simulation models of the cement-

based materials mechanical properties? 

This Chapter addresses the five research questions raised previously by synthesizing the main 

findings derived from the analysis of the experimental and numerical results, which were 
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thoroughly reported in Chapters from 3 to 7. This final Chapter proceeds as follows. First, the 

main findings related to each of the five research questions are outlined. Then, additional 

developments that transcend the research questions are described. Finally, the limitations of the 

study and suggestions for future research are presented. 

8.2. Discussion of findings 

(i) Is EMM-ARM metrologically robust? 

From all the research questions raised in this thesis the most important conclusion to be found 

is probably the answer to this rather broad research question. Prior to this thesis, the EMM-

ARM was in its infancy with only a pilot experiment performed in concrete and a few of them 

applied to cement paste. Therefore, a comprehensive validation of experimental technique was 

needed to prove the robustness and validity of the results. This issue is addressed mainly in 

Chapter 5, with also contributions for these subject in Chapters 3, 4 and 6. 

The initial approach consisted in comparing EMM-ARM results with the results from other 

competing experimental methods. The inter-validation of the different experimental techniques, 

including the EMM-ARM, was initially made in the scope of concrete testing. For a more robust 

comparison, the study was made within a scope of an international collaboration with two 

research centres: the Institut Français des Sciences et Technologies des Transports, de 

l'Aménagement et des Réseaux (IFSTTAR) and the Université libre de Bruxelles (ULB). 

Additionally to the EMM-ARM technique, eight different techniques have been implemented 

in the three laboratories: four techniques of quasi-static loadings: (i) classical cyclic 

compression (CC) (all three labs), (ii) automated CC tests with BTJASPE (IFSTTAR), (iii) 

automated classical CC (ACC) (IFSTTAR), (iv) automated CC tests with a TSTM (ULB); and 

four techniques of high frequency loadings: three classical UPV measurements with PunditLab 

(UM), FreshCon (ULB), and BTPULS (IFSTTAR); and Smart Aggregates SMAGs (ULB). All 

the quasi-static methods yielded results that can be considered as similar to the classical CC 

measurements. Additionally, the EMM-ARM E-modulus estimations were within the range of 

the quasi-static methods, confirming its ability to quantify the quasi-static properties of 

concrete. The small differences that were observed were mostly attributed to the use of different 

mixing and casting protocols among the involved laboratories. From the EMM-ARM results, it 
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was also possible to infer that the method is able to estimate the E-modulus of concrete with 

good accuracy (with an average relation between the classical CC of 0.952) and high precision 

(with a standard deviation of the average relation between the classical CC of 0.0618), even 

when compared with the most advanced competing methods. These results enable the validation 

of the E-modulus estimations obtained with EMM-ARM, which has further proved to be 

simpler to implement and to be almost independent of operator-induced errors.  

Besides the above-mentioned comparisons of EMM-ARM with other experimental techniques 

in the scope of concrete testing, further comparisons were made in the scope of cement paste 

testing. An extensive comparison was made between several experimental methodologies 

capable of quantifying the stiffness of cement pastes, such as: classical cyclic compression 

(CC), EMM-ARM, ultrasonic pulse velocity (UPV) bender-extender elements (BE) and 

penetration resistance (Vicat needle). The stiffness evolution results obtained by all the methods 

exhibited a considerably good agreement, which points to the mutual validation of the utilized 

methodologies. It is also worth mentioning that EMM-ARM and BE were able to detect the 

setting time with very good consistency in comparison with the Vicat test. The EMM-ARM 

was the method that proved to be the most advantageous by allowing continuous automatic 

monitoring of the E-modulus of the tested cement pastes, with collected data providing 

quantitative estimates of the elastic modulus.  

During the inter-comparison study, it was found that there is a very good agreement of the final 

setting time obtained with Vicat with a final setting time computed by selecting the first point 

with 50% of the peak value of the first derivative of the E-modulus evolution obtained with 

EMM-ARM in both concrete and cement paste. Additionally, a good correlation was also found 

between these values and the final setting time computed from ultrasonic methods. Despite the 

limited number of experiments, the good coherence between the results seems to indicate that 

this relation is valid. 

The experiments carried out with the EMM-ARM in different periods with the same concretes 

and cement pastes allowed to prove the good repeatability of the method. However, these tests 

were performed by the same operator. Therefore, an additional experimental program was 

carried out by a different operator, with no prior experience with EMM-ARM. The results 

obtained allowed to prove the good reproducibility of experimental method.  
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In the end of Chapter 5 the accuracy and sensitivity of the EMM-ARM E-modulus estimations 

are shown. It was observed that the EMM-ARM estimations are statistically very close to the 

values estimated by the classical CC method with differences lower than 1.9% and 4.5% in the 

versions for testing concrete and cement paste, respectively. Furthermore, a good precision of 

the EMM-ARM results was observed when compared to the CC method, with a 90% possibility 

of the EMM-ARM E-modulus estimations to be between 0.899 and 1.062 and between 0.769 

and 1.137 of the CC results for the concrete and cement paste, respectively. From the sensitivity 

analyses to the input parameters, it was found that the most influential parameter in the accuracy 

of E-modulus estimations through EMM-ARM is the free span of the beams. It was also evident 

that the stiffness of supports has a relevant role in the estimations of E-modulus, particularly 

when smaller testing spans are selected. However, the use of the enhanced supports suggested 

in this thesis allows overcoming this support sensitivity issue. 

(ii) What are the limitations of EMM-ARM? 

The limitations of the EMM-ARM were raised in the Chapters 2, 3, 4 and 5 and overcome by 

evolving the experimental technique. To be able to perform the experiment correctly with the 

original prototype of the method the user needs to be aware of all the techniques used during 

the whole experimental procedure, as opposed to several commercial systems that frequently 

almost allow a ‘one-button’ operation framework (Brouwers et al., 2011). Furthermore, the 

size, material and geometry of the original EMM-ARM testing beam (version to test concrete), 

posed practical limitations related to casting, handling and even disposing that made the 

practical application somewhat difficult as compared to traditionally shaped specimens (such 

as cubes or cylinders).  

In addition to the aforementioned limitations, the method presented another potential problem 

related to the process of modal identification of the resonance frequency. The original 

implementations of EMM-ARM were conducted in laboratorial conditions, dully preceded by 

a careful selection of the location of the experiment itself. Preliminary experiments were made 

to ensure that the environmental vibrations behaved in average as a ‘white noise’ within 10 

minute periods. If this premise were not valid, i.e if the vibrations of the beam were 

contaminated by noises with well-defined frequencies within the range of evolution of first 

natural frequency of the EMM-ARM test, the test frequency spectra would be affected by such 
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noises with significant potential to induce problems and errors in the frequency identification 

(Azenha et al., 2010a). These contaminations bring additional challenges to the process of 

modal identification to such an extent that they might even disable the possibility of using of 

simple automatic identification algorithms. This is a major drawback when a generalized 

dissemination of EMM-ARM within the scientific and practising communities is considered. 

The process should preferably be fully automated and its proneness to environmental noise 

contamination should be negligible. 

(iii) Can the quality of EMM-ARM results be improved by the application of new 

geometries/mould materials, as well as different modal identification techniques? 

As mentioned previously, the original implementation of EMM-ARM had several weaknesses 

with high potential to decrease the quality and accuracy of the E-modulus estimations. Along 

Chapters 3 and 4, several changes to the EMM-ARM test apparatus and signal processing were 

studied with a remarkable success. Firstly, issues related to the testing mould used in the 

experiments were addressed. The most relevant changes to the testing mould involved the 

reduction of the beam’s span and, in the case of the concrete testing, the change of the mould 

material from acrylic to PVC. These adaptations have increased the robustness of the method 

and made the casting, handling and disposal operations simpler. Additionally, a new support 

system was developed for the EMM-ARM beams, as to reduce dependence of results on the 

operator’s skills/meticulousness, and facilitate the permanent assumption of infinitely rigid 

supports in the E-modulus estimation procedures.  

Regarding the concrete testing version of EMM-ARM, the new supports allow to compensate 

misalignments between the horizontal supporting rods and limit to the gap between the supports 

and the beam to negligible values (i.e. with negligible effects on E-modulus estimates). A 

reusable mould for concrete testing was designed to enable easier systematic use of EMM-

ARM, reducing uncertainties between tests related to the use of newly fabricated moulds, which 

inherently have slight variations in geometrical and mechanical characteristics. The possibility 

of omitting vertical connectors from the experimental setup was also studied, and no loss of 

composite behaviour was observed. Thus it became physically possible to introduce a vibratory 

needle in the EMM-ARM beam, during the casting operations to vibrate the concrete. This 

possibility was also assisted by the shift from a brittle mould material such as acrylic to the 
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more robust PVC that can endure direct contact with the vibrating needle without becoming 

damaged. 

After the improvements of the testing mould, further developments were made towards the use 

of a more robust modal identification technique by introducing a very small forced vibration in 

the test beam. To perform the excitation, a custom low-cost electromagnetic actuator was 

developed, which is able to apply a small dynamic force (±6 mg) to the beam without any 

physical contact. This study concluded that the use of modal identification techniques with 

forced excitation improves the quality of the results when compared with those obtained using 

stochastic methods, without any evidence of damage to the bonds that are formed in the concrete 

microstructure. 

Despite the several modifications to the test setup and data processing introduced during this 

research work, the method still has some potential limitations, such as:  

 The assumption of perfect bond between the tested material and the surrounding mould 

in the E-modulus estimation framework demands that such condition is met during the 

entire testing period. In fact, some specific concretes with high autogeneous shrinkage 

(or expansion) potential may cause difficulties in EMM-ARM testing. It is however 

noted that this problem was only felt once throughout more than 50 EMM-ARM 

experiments during the entire research work, particularly when the long ‘U-shaped’ 

mould without connectors was used. Moreover, the newly proposed mould of reduced 

span clearly reduces the proneness to deboning problems in concrete testing. In cement 

paste testing, the proposed setup has never exhibited any debonding problems regardless 

of the tested material. Anyhow, when testing new mixes, or even other materials (e.g. 

not cement-based), prospect users of EMM-ARM should be aware of this potential 

issue. It should be easily detectable by a strong discontinuity in the identified resonance 

frequency at the instant of debonding. 

 Additionally, the debonding between the mould and the material can also occur due to 

temperature variations during the EMM-ARM tests, since the thermal expansion 

coefficients of the mould and the cement-based materials. In fact, the thermal expansion 

coefficient of cement-based materials is usually around one fifth of the polymeric 

materials (Sellevold and Bjøntegaard, 2006, Nishi et al., 1975). Nevertheless, even 
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though some EMM-ARM experiments have been carried out under non-isothermal 

conditions, relevant loss of the composite behaviour on the beam’s cross-section was 

never observed.  

 Additionally to the debonding problem, the restraint that the mould may pose to 

shrinkage/expansion or thermally induced volumetric changes can also lead to cracking 

of the materials inside the mould. However, in all the experiments performed with 

EMM-ARM this phenomenon was never observed. 

 The reusability of the mould is still limited due to the material that is made (PVC). In 

fact, the PVC is a polymeric material that tends to suffer wear during a systematic use. 

However, after 8 experiments with the same reusable mould no relevant damages in the 

mould were observed. Nevertheless, this limitation can be overcome though the use of 

a more durable material such as Aluminium. 

These potential limitations are no more than just implementations precautions. In fact, none of 

the limitations raised previously had impact in the laboratory and in-situ experiments performed 

during the research work conducted in this thesis. 

(iv) Can EMM-ARM be implemented and applied in the construction industry as a quality 

control and decision support tool (with specific standards)? 

As stated in the introduction of this thesis, there is a high demand for new advanced methods 

for monitoring the mechanical properties of concrete since early ages, as to support decision 

making (prestress application and framework removal) and quality control during construction 

of infrastructures. Due to the versatility, accuracy, ease of use, and quantitative nature of the 

EMM-ARM results proved along this thesis, two in-situ pilot tests were made in two different 

construction sites: a concrete prefabrication plant and a segmental prestressed concrete bridge. 

These tests allowed validating both the original and enhanced reusable versions of EMM-ARM 

in the context of in-situ environments. During these implementations, a fully automatic and 

user-friendly program was developed that allows the use of EMM-ARM by non-experienced 

operators. In view of the intent to match the temperature of EMM-ARM to the temperature of 

concrete in the vicinity of the prestressing heads of the segmental bridge, a temperature matched 

curing system has been developed and successfully demonstrated. It was finally possible to 

show the potential of EMM-ARM to serve as a support tool to decision-making in construction 
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sites by providing real-time information on the mechanical characteristics of the concrete. 

However, more tests need to be done to further validate this statement. 

In addition to the in-situ application, the use of EMM-ARM to compute the apparent activation 

energy was investigated. Firstly, it was proved that with EMM-ARM permits testing at different 

isothermal curing temperatures within the range 10-40ºC, and the obtained results have shown 

the effect of the curing temperature on the kinetics of E-modulus evolution. Since the EMM-

ARM is able to measure continuously the quasi-static E-modulus of the cementitious materials 

it gives unprecedentedly detailed information to compute the apparent activation energy of a 

mechanical property of the cementitious materials. 

Still within Chapter 6, a new variant to EMM-ARM targeted for the measurement of 

viscoelastic properties of cement-based materials during the fresh state was proposed. Such 

variant is based on the measurement of the frequency of vibration of a cantilever steel bar 

partially embedded in the material under testing. During a pilot experiment in concrete it was 

demonstrated that this new method is capable of assessing significant behavioural evolutions 

during the dormant period with quite reasonable resolution. Additionally, the new method was 

used to measure the temperature dependency of the mechanical behaviour during the dormant 

period will significant success. However, the development of an analytical relationship between 

the resonance frequency of the steel bar and a specific concrete property (e.g. viscosity) has not 

yet been achieved. 

Finally, Chapter 6 ends with an application of EMM-ARM to the study of structural epoxy 

adhesives used in FRP strengthening applications. The EMM-ARM technique revealed its 

capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the 

material setting time and the stiffness growth since very early ages. The results obtained by 

EMM-ARM were compared with the outcome of tensile tests. Quasi-static tests provided values 

of Young's modulus that were lower than the values collected by EMM-ARM at early ages. 

This difference can be explained by the significant visco-elastic behaviour that epoxy resin 

exhibits especially at very early ages. In fact, this difference significantly decreased as the 

epoxy adhesive hardened, becoming negligible at the age of 84 hours. With this application it 

was proved the EMM-ARM can be used to characterize a wide range of materials that 
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undergoes chemical hardening. Therefore, the method has potential in many industries beyond 

the construction. 

(v) How can EMM-ARM be used to validate/improve the microstructural simulation models 

of the cement-based materials mechanical properties? 

After the enhancement and validation of EMM-ARM, Chapter 7 extends this thesis to the use 

of the results of the quasi-static E-modulus evolution obtained by the EMM-ARM (with 

unprecedented richness of information) to validate and improve a microstructural simulation 

model of the cement-based materials mechanical properties. The selected modelling strategy 

was composed of two subtasks: (i) simulation of cement hydration to generate the 

microstructure of the cement paste; (ii) extraction of the E-modulus of the cement paste based 

on the microstructure generated and on the intrinsic stiffness of each component. The modelling 

platform μic was used to simulate the hydration of cement pastes and the resulting three-

dimensional microstructure. After obtaining the cement microstructure along hydration, the 

elastic properties of the composite material were estimated by numerical modelling of the whole 

microstructure through the use of AMIE platform. This platform, developed by Cyrille Dunant 

at LMC, is capable of automatically generating a mesh of the cement microstructure based on 

the results provided by μic platform. 

The properties of the Low Density CSH, specially their evolution along the hydration, are still 

unknown. Therefore, based on fitting the AMIE predictions with EMM-ARM results through 

back analysis, the relation between the bulk stiffness and porosity of the homogeneous LD CSH 

was obtained. This allowed to improve the modelling strategy by using a variable bulk stiffness 

of the LD CSH along the cement hydration. The relation between the bulk stiffness and porosity 

of the homogeneous LD CSH was validated through two blind simulations of two different 

cement pastes. 

8.3. Additional developments 

In addition to the findings that answer the research questions raised in the introduction of this 

thesis, the following conclusions were also found during the work conducted: 
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 During the international inter-laboratorial evaluation of experimental methods aimed to 

monitor the concrete stiffness, three classical techniques (PunditLab, FreshCon, 

BTPULS) were compared to a newly developed technique (SMAGs). The results have 

shown that the ultrasonic measurements are also automatic methods and they are good 

candidates for the monitoring of the stiffness of the concrete at very early age. However, 

they provided values of E-modulus that are higher than the values provided by the quasi-

static or low-frequency tests at the time of the concrete setting. This difference decreases 

as the concrete hardens. Their results show a clear effect of the loading rate on the E-

modulus calculation compared to values obtained with quasi-static tests.  

 Regarding the study to compare different experimental methods aimed to monitor the 

cement paste stiffness, it was found that the UPV method did not allow to monitor the 

cement paste since the earliest ages (i.e. since right after mixing), with probable causes 

associated with to the presence of air bubbles in the samples and to the high stiffness 

impedance between the transducers and the paste (Zhu et al., 2011a). 

 In addition to the use of EMM-ARM, this study also presented stiffness evaluation 

through bender-extender elements, which had already been applied to cement paste by 

Zhu et al. (2011a). The results obtained in this research work were consistent with such 

previous approach, confirming that BE sensors have a high level of performance in a 

wide frequency range, which enables the stiffness monitoring of cementitious materials 

from very early ages (often not possible with UPV). This is achieved given the 

possibility of adjusting the input frequency to optimize the amplitude of the received 

signal. The results obtained with BE also demonstrate a higher suitability of the use of 

S-waves in detriment to P-waves to monitor the setting process, due to their sensitivity 

towards structure changes, since the propagation of shear waves only occurs in the solid 

skeleton of the specimens. 

8.4. Prospects for future developments 

The work conducted within this thesis presented the enhancement of the EMM-ARM technique 

in pursuit of increased robustness. The present is devoted to the discussion of some of the 

remaining limitations, and indication of future prospects for further developments. 
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The newly proposed reusable mould for EMM-ARM experiments is made of a material (PVC) 

that is prone to damage and wear upon repeated use. Further research should be considered to 

improve mould reusability through the use of more durable materials such as aluminium. It 

should be pointed however that problems can arise due to the increased rigidity of the system. 

The scope of this thesis was to improve the EMM-ARM in its ability to measure the cement-

based materials E-modulus. Nevertheless, the work development led to the identification of an 

interesting property that also evolves during EMM-ARM tests: the damping. It is well known 

that the damping of a structure is directly related to the viscoelastic properties of the 

corresponding building material (concrete, in this case). This achievement opens a new research 

opportunity to use the EMM-ARM to monitor the evolution of the viscoelastic properties of 

cement-based materials. However due to the composite nature of the section and to the 

viscoelastic properties of the mould itself (either PVC or acrylic), the separation of each 

component of the final structural damping was impossible to archive in the scope of this thesis. 

Therefore, more work is needed in order to ensure the capacity to correctly perform this 

separation, which may be possibly assisted by the use of other mould materials that have less 

influential viscoelastic properties (e.g. steel). Additionally, it must be taken into account that 

the relationship between the structural damping and viscoelastic properties is still a 

controversial issue in the cement-based materials science. Hence future work should be 

definitely considered in such concern.  

The effect of the stress or strain rate on the elastic modulus of the cement-based materials was 

observed in this thesis by performing experimental tests at low and high frequency rates. 

However, the effective strain or stress rate of each experimental technique was not accessed 

due to the high complexity of such task. Therefore, further experimentations are also needed to 

quantify accurately these effects on the evolution of the elastic modulus, especially in what 

concerns the EMM-ARM technique. 

This research work has proposed a methodology for estimation of the final setting time of 

cement-based materials based on the identification of the instant at which the derivate of the 

EMM-ARM E-modulus reaches 50% of its peak. It was found that the estimated final setting 

time was quite similar to the one obtained through penetration testing with the Vicat needle. 

Nonetheless, the number of experiments that pointed the validity of this methodology is 
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considered insufficient to consider it full validated. Therefore, it is considered that further 

experimental study for validation should be carried out.  

The EMM-ARM was originally devised for study cement-based materials. The work of this 

thesis allowed to prove the validity of extending EMM-ARM to study structural epoxy 

adhesives. The results obtained proved the versatility and robustness of EMM-ARM to measure 

continuously the quasi-static elastic modulus of such materials since the fresh state with no 

human interaction and very low operator decency on the results. These facts have opened a 

window to use the method for measure different hardening materials, even outside the scope of 

construction materials. The breath of new testing possibilities is quite large, indeed. 

Even though some efforts have been made in this thesis to disseminate the EMM-ARM among 

the scientific and practical communities the method is still fairly unknown. Thus a further 

international dissemination of the method is needed through its use in international 

benchmarking where various experimental techniques are used by several qualified 

international organizations (scientific or practical). These disseminations will allow 

additionally to validate even more the results obtained with the EMM-ARM technique. In this 

concern, efforts are being made in the context of the international Round Robin Test series 

(RRT+) promoted by COST Action TU1404. Furthermore, a proposal for a standard for the 

elastic modulus measurement with the EMM-ARM needs to be written to allow the practical 

community to use the technique. 

Finally, this thesis has demonstrated how the EMM-ARM results can be used to help the 

development/validation of microstructural simulation models of cement-based materials. In this 

study, a relationship between the porosity and bulk stiffness of the LD CSH was obtained. 

However, the relationship still needs further validation by simulating the elastic modulus of 

other cement paste mixtures. Additional research is also needed to investigate the identified 

problem of the lack of resolution of the microstructural numerical model of dense cement 

pastes. As a final prospect for future development, the possibility validating/development of 

the homogenization theories or meso-structural simulation models to estimate the concrete 

properties based on the equivalent cement paste with the EMM-ARM results for concrete and 

cement pastes should be considered. 
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1 General Information 

1.1 Warnings 

 The manufacturer does not accept any responsibility for direct or indirect damage to people, things or 
animals and use of the appliance in different conditions from those foreseen. 

 The manufacturer reserves the right to make changes to the documentary information or to the appliance 
without advance notice. 

 All operations necessary for maintaining machine efficiency before and throughout use are the operator’s 
responsibility. 

 Carefully read the entire manual before operating the machine. 
 It is vital to know the information and limitations contained in this manual for correct machine use by the 

operator. 
 Interventions are only permitted if the operator is accordingly competent and trained. 
 The operator must be knowledgeable about machine operations and mechanisms. 
 The purchaser must ensure that operators are trained and aware of all the information and clarifications 

in the supplied documentation. 
 Even with such certainty the operator or user must be informed and therefore aware of potential risks 

when operating the machine. 
 Safety, reliability and optimum performance is guaranteed when using original parts. 
 Any tampering or modifying of the appliance (electrical, mechanical or other) which has not been 

previously authorized in writing by the manufacturer is considered abusive and disclaims the constructor 
from any responsibility for any resulting damage. 

 All necessary operations to maintain the efficiency of the machine before and throughout use are the 
responsibility of the user. 

2 Introduction: What is the EMM-ARM? 

The EMM-ARM is recently developed method that allows the automatic and continuous evaluation of the E-Modulus 
of cement based materials immediately after casting. This methodology is based on continuous modal identification 
of the first flexural resonant frequency of a composite beam. This beam is placed horizontally, with a well-known 
support conditions, that can be simply supported at both extremities or fixed as a cantilever, and vertical 
accelerations resulting from ambient or forced vibration are measured or at mid-span or at the free end, 
respectively.  

By monitoring this accelerations, it is possible to perform modal identification and evaluate the first flexural 
resonance frequency of the beam (see Figure 1). The resonant frequency of the tested beam evolved as a result of 
the increasing stiffness of the cementitious material, and was correlated with the Young’s modulus by applying the 
dynamic equation of motion. Therefore it was possible to obtain a real-time curve of E-Modulus against time. 
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Figure 1. Data processing scheme. 

3 General description of the EMM-ARM 

3.1 Concrete version 

The version of EMM-ARM devised for studying concrete was introduced by Azenha et al. (2010). The basic unit of 
the test specimen is the mould, which is a special designed PVC tube with inner/outer diameter of 96 mm/110 
mm and with three aluminium rings to reinforce the tube presenting them to lose the geometry, as shown in Figure 
2. Before actually casting concrete inside the tube, some preparations are necessary. Firstly, two horizontal rods 
are placed through holes near the extremities of the beam, in order to materialise simple supports for a 1.0 m 
span beam. The mould also comprises two extremity lids, one of which is kept fixed, and the other one is removable 
for casting operations. Casting of the specimen is made with the mould in an inclined position, until complete filling 
is achieved (with the mould placed vertically) and the top lid is fixed in place. After casting is finished, the composite 
beam is placed horizontally and simply supported on its extremity rods over two steel rigid supports (see Figure 2). 
An accelerometer is attached to the mid-span of the beam as well as a custom electromagnetic actuator, and 
acceleration measurements can start within a period of less than 20 min from the beginning of casting operations. 
Based on the measured accelerations and excitation, and assuming that environmental vibrations have very low 
influence on the measured accelerations, the resonance frequency of the first mode of vibration is identified. 
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Figure 2. Experimental setup for EMM-ARM testing of concrete. Units [mm]. 

3.2 Cement paste version 

The version of EMM-ARM devised for studying cement pastes was introduced by Azenha et al. (2012). The 
fundamental component of this method is a hollow tubular beam made of acrylic, with outside/inside diameters of 
20/16 mm. The composite beam consists of a 550 mm long acrylic tube filled with fresh cement paste, with 
extremity caps made of polypropylene. The composite beam is then fixed in the horizontal position, operating as a 
cantilevered structural system with a span of 450 mm – see Figure 3. The specimen is fixed using a metal clamping 
device with inner diameter matching the outer diameter of the beam. The metal clamping device is then rigidly 
connected to a rigid base to ensure complete fixation. A lightweight accelerometer is afterwards attached to the 
free end of the cantilevered beam. The cantilevered beam is then excited by ambient noise (e.g., wind, people 
walking nearby, vibrations originated by mechanical equipment, etc.) which can conceptually be assumed to have 
an average behaviour of white noise, i.e. a stochastic process with constant spectral intensity at all frequencies. It 
should be noted that, due to the slender-ness of the beam, the vibrations that are merely caused by the surrounding 
environment are high enough to be registered by the accelerometer, enabling modal identification without using 
any external or forced excitation. However, in order to intensify the ambient vibration associated to air movement, 
and thus facilitate the process of automatic modal identification, fans were placed in the vicinity of EMM-ARM 
specimens. The experiment starts as soon as all components are correctly placed. 

 

Figure 3. Experimental setup for EMM-ARM testing of cement paste. Units [mm]. 
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4 Test assemble 

4.1 Hardware 

4.1.1 Acquisition system 
In the EMM-ARM tests we use two types of equipments to perform the data acquisition: the NI USB 9234 or 9233 
and the NI USB 4431. 

4.1.1.1 NI USB 9234 or 9233 
The NI 9233 or 9234 is a 4-channel dynamic signal acquisition module for making high-accuracy audio frequency 
measurements from integrated electronic piezoelectric (IEPE) and non-IEPE sensors. For more information please 
see : http://www.ni.com/datasheet/pdf/en/ds-316 

 

4.1.1.2 NI USB 4431 or NI 4432 
The NI USB-4432 bus-powered dynamic signal analyzer (DSA) with 24-bit resolution. The first four measurement 
channels have selectable IEPE. The fifth channel is a generating signal and has 24-bit resolution. For more 
information please see: http://www.ni.com/pdf/products/us/cat_ni4432.pdf 

 

4.1.2 Signal generation system 
For signal generation it is possible to use the NI USB 4432 or any other signal generator from National Instruments. 
Additionally, when the tests has more than one beam with excitation it is required a signal multiplexer. 

 

  

http://www.ni.com/datasheet/pdf/en/ds-316
http://www.ni.com/pdf/products/us/cat_ni4432.pdf
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4.1.2.1 Signal multiplexer 
The signal multiplexer is a custom made equipment based on a Arduino. It needs to be connected to the acquisition 
computer. The excitation signal is connected to the ‘Input’ and then each electromagnetic actuator is connected to 
one of the ‘Outputs’. 

  

4.2 Accelerometers 

4.2.1 Concrete testing 
Requirements: 

Sensitivity >10 Volts/g 

Measurement range ±0.1 to ±0.5 g 

Frequency range 0.1 to 1000 Hz 

Resonant Frequency >10 kHz 

Weight <400 g 

Type of sensing part Piezoelectric 

Note: 

Usually the tests are performed with the accelerometers PCB 393B12. For more information see: 
http://www.pcb.com/contentstore/docs/PCB_Corporate/Vibration/Products/Specsheets/393B12_J.pdf 

4.2.2 Cement paste testing 
Requirements: 

Sensitivity >0.5 Volts/g 

Measurement range ±0.5 to ±10 g 

Frequency range 1 to 1000 Hz 

Resonant Frequency >10 kHz 

Weight <50 g 

Type of sensing part Piezoelectric 

Note: 

Usually the tests are performed with the accelerometers PCB 352B. For more information see: 
http://www.pcb.com/contentstore/docs/PCB_Corporate/Vibration/Products/Specsheets/352B_C.pdf 

3 Outputs 

Input 

USB cable 

http://www.pcb.com/contentstore/docs/PCB_Corporate/Vibration/Products/Specsheets/393B12_J.pdf
http://www.pcb.com/contentstore/docs/PCB_Corporate/Vibration/Products/Specsheets/352B_C.pdf
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4.3 Cable connections 

4.3.1 Without excitation 
It is possible to use the NI 9234, 9233 or 4432 as data acquisition system. As example in the next figures are 
presented the cables needed to perform the tests without excitation on two beams. In the first figure a NI 9234 or 
9233 is used and the accelerometers of the beams are connected to the channels ai0 and ai1. 

 

In the second figure the a NI 4431 or NI 4432 is used and the accelerometers of the beams are connected to the 
channels ai0 and ai1. 

 

  

USB cable

BNC cable

BNC cable

Accelerometer beam 2

Accelerometer beam 1

NI 9234 ai3

ai2

ai1

ai0

USB cable

BNC cable

BNC cable

NI 4431

Accelerometer beam 2

Accelerometer beam 1

ao0

ai3

ai2

ai1

ai0
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4.3.2 With excitation 
When the tests are made with excitation it is need to use the NI 4432 or a combination of acquisition and generation 
devices. For propose of example, the following figures presents the cable connection needed for a teste with two 
beams with excitation on one of them and with excitation on all the beams, respectively. It should be noted that 
when more than one beam with excitation is used a signal multiplexer is needed. The excitation is generated in the 
channel ao0 and needs to be divided in two to allow the reading of the real excitation to the beams. After this 
division one cable is connected to electromagnetic actuator, in the case one, and to the ‘Input’ of the multiplexer, 
in the case two. The other cable needs to be connected to the input channel ai0 to read the real excitation. 

 

 

 

USB cable

BNC cable

BNC cable

BNC cable

BNC cable

NI 4431

Accelerometer beam 2

Coil beam 1

Accelerometer beam 1

ao0

ai3

ai2

ai1

ai0

USB cable

USB cable

BNC cable

BNC cable

BNC cable

BNC cable

BNC cable

BNC cable

NI 4431 ao0

ai3

ai2

ai1

ai0

IN

Out 1

Out 2

Out 3

Accelerometer beam 2

Coil beam 2

Coil beam 1

Accelerometer beam 1

Multi.
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4.4 Concrete setup 

4.4.1 Reusable beams components 
Part Number Photo Features 

Half PVC tube 2 

 

Total length – 1050mm 

External diameter – 110mm 

Internal diameter – 96mm 

Material – PVC and Aluminium 

Sealing rubber 4 

 

Withd – 3mm 

Height – 7mm 

Length – 1050mm 

Material – Rubber 

Bolt 6 

 

Diameter – 5mm 

Length – 16mm 

Material – Steel 

Extremity lid 2 

 

Material – Wood 

Rod 2 

 

Diameter – 12mm 

Length – 150mm 

Material – Steel 

Fixed support 1 

 

Support spacing – 111mm 

Material – Steel 

Pivot support 1 

 

Support spacing – 111mm 

Material – Steel 

Threaded rods 4 

 

Diameter – 5mm 

Length – 125mm 

Material – Steel 



  EMM-ARM User’s guide 

 

 

© by University of Minho  Page 9 of 51 
 

MA R

M ME

 

Part Number Photo Features 

Accelerometer 
support 

1 

 

Material – Aluminum 

Magnet support 1 

 

With  – 10mm 

Length – 10mm 

Thikness – 1mm 

Material – Steel 

Magnet 1 

 

Diameter – 8mm 

Length – 15mm 

Material – Neodymium 

Coil 1 

 

Custom 

Accelerometer 1 

 

Sensitivity – 10V/g 

Range – ±0.5g 
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4.4.2 Mould assembling for casting 
[1] Glue the rubbers strips in the sides of the 

two half’s of the PVC tube 

 

[2] Assemble the half’s of the PVC tube 

 

[3] Place the screws in the aluminium rings 

 

[4] Place the horizontal rod on one of the 
extremities of the tube 

 

[5] Place one of the extremities lids 
 

 
 

Note: don’t change the position of the two 
lids because they have small differences 
between them. 
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[6] Place the threaded rods to fix the lid in 
place 

 

 
 

[7] The mould is ready for casting 
 
 

 

 

 

  

Note: tighten the nuts to ensure the geometry 
of the beam. 

Important: after assemble the mould wait at 
least 2 hours to cure the glue of the 
rubbers strips 
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4.4.3 Casting operations 
[8] Put the concrete in a wheelbarrow. 

 

[9] Cast the tube from the top (open 
extremity). 

 

[10] Until 1/3 of the length of the tube. 
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[11] Vibrate the concrete with a vibrating 
needle with a diameter ≤25mm. 

 

 

 

 

 

 

 

 

[12] Repeat the steps [9] to [11] until the tube 
is full. 

 

[13] After the filling of the tube place the 
horizontal rod. 

 

 

 

Note: be careful to avoid damaging the tube 
with the vibrating needle. 

Important: vibrate manually the concrete on 
the top of the tube around the horizontal 
rod. 
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[14] Insert a thermocouple in the concrete and 
pass the wire through the groove of the 
horizontal rod. 

 

 

 

[15] Place the lid on the open end of the tube 
and fix it with two threaded rods. 

 

 

 

 

 

 

 

 

 

  

Important: the thermocouple wire must be at 
the top of the rod when the beam is in its 
final testing position. 

Note: tighten the nuts to ensure the geometry 
of the beam. 

Bottom 

Top 
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4.4.4 Test setup assemble 
[16] After closing the tube. 

 

[17] Place the beams in the supports. 
 

 

 

[18] Glue the accelerometer supports to the 
top of the mid span aluminium ring. 

  

[19] Glue the magnet support to the bottom of 
the mid span aluminum ring. 

  

[20] Attach the accelerometer to the support. 

 

Important: checking whether the beam is 
properly supported. 

Note: to simplify the assembly process of the 
experimental setup after casting, this 
support can be glued prior to the casting. 

Note: to simplify the assembly process of the 
experimental setup after casting, this 
support can be glued prior to the casting. 
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[21] Place the magnet in the support. 
 

 

 

[22] Place the coil in position. 
 

 

 

[23] Connect the cables to the accelerometer 
and to the coil and the test can start. 

 

 

  

Note: the magnet does not need any type of 
glue to stay in position during the test 
once the support is ferromagnetic. 

Important: ensure that the coil does not touch 
the magnet. 
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4.5 Cement paste setup 

4.5.1 Specimen components 
Part Number Photo Features 

Acrylic tube 1 

 

Total length – 550mm 

External diameter – 20mm 

Internal diameter – 16mm 

Material – Acrylic 

Clamping 
device 

1 

 

Internal diameter – 20mm 

Material – Steel 

Extremity lid 1 

 

Wigth – 20mm 

Length – 20mm 

Thikness – 0.2mm 

Material – Propylene 

Accelerometer 
support 

1 
 

Material – steel 

Plastic adhesive 
tape 

1  Material – Plastic adhesive tape 

Bolt 4 

 

Diameter – 5mm 

Length – 50mm 

Material – Steel 

Accelerometer 1 

 

Sensitivity – 1 V/g 

Range – ±5g 
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4.5.2 Mould assembling for casting 
[1] Glue the extremity lid to one of the 

extremities of the acrylic tube. 

 

[2] Glue the accelerometer support to the 
same extremity in a way that the axis of 
the support became in the end of the 
beam. 

 

[3] Place the clamping device on the other 
end of the acrylic tube in order to have a 
450mm cantilever. 
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4.5.3 Casting operations 
[1] Place the tube in the vertical position. 

 

[2] Caste the cement paste inside the tube. 

 

[3] Close the open end of the tube with the 
plastic adhesive tape. 
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4.5.4 Test setup assemble 
[1] Place beam in the final testing position 

and connect the clamping device to a rigid 
support. 

 

[2] Attach the accelerometer to the support 
and connect the cable of the 
accelerometer. 
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5 Software 

5.1 Getting started 

Launch the EMM-ARM v2.0.1 program 

 

The main window will appear: 
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To load the configurations press the “Open” button. 

 

Then choose the name and the location of the xml file with the configurations. The program already have 4 
configuration files for tests: in concrete with and without temperature acquisition and in cement paste with and 
without temperature acquisition. 

After the loading of the configurations, press the “New” button to set the physical channels of the acquisition and 
generation devices. 
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Press “Next” button 

 

Press “Next” button 
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An accelerometer configuration page will appear: 

3  

In this page set: 

[3] The physical channel for the accelerometers (Accelerometer 
Channel) 
 The physical channel of the accelerometers have the device ID, that 

needs to be a NI DAQ signal acquisition, and the number of the channel 
in the signal acquisition devise. 

 

 

Press “Next” button 
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A generation configuration page will appear: 

 

In this page set: 

[4] The output physical channel of the stimulus 
 The output physical channel of the stimulus have the device ID, that 

needs to be a NI DAQ signal generation, and the number of the channel 
in the signal generation devise. 

 

[5] The input physical channel of the stimulus 
 The input physical channel of the stimulus have the device ID, that 

needs to be a NI DAQ signal acquisition, and the number of the channel 
in the signal acquisition devise. 

 

 

Press “Finish” button 
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To start the acquisition press “START” button 

 

To know more details about the program see the next section. 
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5.2 Overview 

Launch the EMM-ARM v2.0.1 program 

 

The main window will appear: 
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5.2.1 Configurations 
5.2.1.1 Create new configuration 
To create a custom configuration for the test press “New” button 

 

A configuration window will appear: 

 

In this window it is possible to set: 

[1] The path to save the data: 
 Folder where all the data will be saved. 
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[2] The generation and acquisition sampling rate (Hz) 
 Needs to be at least 10 times larger than the higher excitation frequency 

or in case of output-only tests 4 times larger than the higher resonance 
frequency of the beam. 

 

[3] Turn ON or OFF the data resampling 
 This feature was added to the program to reduce the data processing 

time and output data size. If the data resampling is ON it becomes 
necessary to set the final sampling rate. 

 

[4] The acquisition sampling rate (Hz) 
 Needs to be at least 4 times larger than the higher expected resonance 

frequency of the beams. 

 

[5] The acquisition time (s) 
 Testing time of each beam. It is recommended to use 300 seconds. 

 

[6] The time between events (s) 
 Time between each reading in each beam. 

 

[7] The type of the test: 
 EMA/OMA – if the test will be performed with an imposed excitation 

with an electromagnetic actuator; 
 OMA – if the test will be performed with ambient excitation only. 

 

[8] The number of beams 
 Number of samples to be tested. This number is limited by the capacity 

of the data acquisition system. For reliability of the system do not use 
at the same time more than: 4 beams in output-only tests and 3 beams 
in input-output tests. 

 

 

In this window it is also possible turn ON or OFF the temperature acquisition by pressing “Temperature acquisition” 
button. 
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If the temperature acquisition is ON a new window will appear were it is possible to set: 

[9] The number of temperature sensors 
 It is possible to set a maximum of 6 temperature sensors. 

 

[10] The type of thermocouple 
 The type of alloys combination. The default type is K. 

 

[11] The temperature units 
 It is possible to choose between: Celsius, Kelvin, Fahrenheit, Rankine 

and a costume scale. 

 

[12] The name of the temperature channels 
 List of names to assign to the temperature channels. 

 
[13] The physical channel 

 The physical channel of each sensor have the device ID, that needs to 
be a NI DAQ temperature acquisition, and the number of the channel 
in tbe acquisition devise.  

[14] The correspondence between the temperature sensors and the 
beams 

 
 

In the same window it is also possible to go to the advanced settings by pressing “Advanced Settings” button. 

 

A new window will appear were it is possible to set: 

[15] The name of the files 
 Prefix to the files with the measured accelerograms. Then the final 

name of the files will be "Prefix"_YYYY-MM-DD_HH-MM-SS.txt 
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[16] The communication buffer size to each channel 
 2𝑥 is number of points per channel to buffer in the data acquisition 

system.It is recommended to use a buffer size to each channel close to 
half of the acquisition frequency. 

 

FFT Settings  
[17] The window overlap on the welch procedure for the data 

processing 
 It is recommended to use 50% overlap to prevent lost of data, once in 

the data processing it is applied a Hanning window on the signals 

 

[18] The size of the FFT in the welch procedure for the data 
processing 
 2𝑥 is number of points used in the FFT for the data processing. 

 

PP Settings 
 Peak picking modal identification settings 

 

[19] The number of points to detect the frequency 
 The number of points, around the detected peak on the power spectrum 

density of the response of each beam, used to detect the resonance 
frequency. 

 

System identification Settings 
 Peak picking modal identification settings 

 

[20] Model order 
 Single or multiple 

 

[21] SSI model Number of states 
 If Model order = Single – SSI model number of states 
 If Model order = Multiple – maximum SSI model number of states 

 

[22] TF model order 
 If Model order = Single – TF model order 
 If Model order = Multiple – maximum TF model order 

 

IFFT Settings 
 Inverse of Fast Fourier Transform settings 

 

[23] N spline 
 Increase factor of the number of points of the SDOF accelerogram 

resulting from the IFFT algorithm 

 

[24] Number of points Frequency 
 Number of points to perform a linear regression to identify the 

resonance frequency 

 

[25] Number of points Damping 
 Number of points to perform a linear regression to identify the damping 

of the testing beam 
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[26] Maximum Frequency 
 Frequency upper limit to select the range to perform the IFFT of the 

frequency spectrum 

 

Frequency range 
 Range of frequencies to perform the resonance frequency identification 

 

[27] Frequency range Auto 
 Automatic frequency range or manual fix limits 

 

[28] The size of the window to select the resonance frequency 
 Window width to detect the peak of higher intensity in power spectrum 

density of the response of each beam. The limits of the window are the 
resonance frequency of the last event +/- the width of the window. 

 

[29] Method used in the frequency identification to compute the E-
modulus of the material  

 

In the same window it is also possible to configure the relationship between the E-Modulus and the compressive 
strength of the material by pressing the “E vs fcm settings” button. 

 

A new window will appear 



  EMM-ARM User’s guide 

 

 

© by University of Minho  Page 33 of 51 
 

MA R

M ME

 

In this window it is possible to: 

[30] Turn ON/OFF the compressive strength (fcm) estimation 
 By default the program will compute the compressive strength of the 

material.  

 

[31] Set the parameters of the relation between the E.Modulus and 
the  compressive strength 
 The correlation between Ecm and fcm is based on the eurocode 2 as 

well as the default values for the variables.  

 

Press “Finish” button 
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Press “Next” button 
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A beam configuration page will appear: 

 

In this page it is possible to set: 

[32] The support conditions 
 It is possible to choose between a Simple Supported beam and a 

Cantilever beam. 

 

[33] The beam geometrical and mechanical characteristics  
 Span 

 

 Internal diameter (Dint) 

 

 External diameter (Dext) 

 

 Distributed mass (mb) 

 

 Concentrated mass at mid span (mp) 

 

 E-Modulus of the mould (Emold) 

 

 Vertical Stiffness of the supports (k) 

 

 Type of data processing (Type of test) 
 

 Expected first resonance frequency (Exp. Start Frequency) 
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Press “Next” button 

 

An accelerometer configuration page will appear: 

 

In this page it is possible to set: 

[34] The characteristics of the accelerometers  
 Accelerometer maximum value 

 

 Accelerometer minimum value 

 

 Sensitivity 
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 Physical Channel (Accelerometer Channel) 
 

 

Press “Next” button 

 

A generation configuration page will appear: 
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In this page it is possible to set the parameters needed to configure the sine sweep that will be send to the beams: 

[35] The duration (s) 
 Duration of each sweep. If the duration is less than the testing time of 

each event the sweep will be repeated until the end of the event. 

 

[36] The start frequency (Hz) 
 Lower bond of the frequency sweep. It is recommended to use not more 

than half of the first expected resonance frequency of the beams. 

 

[37] The end frequency (Hz) 
 Upper bond of the frequency sweep. It is recommended to use at least 

30Hz more than the ultimate expected resonance frequency of the 
beams. 

 

[38] The amplitude (Vpp) 
 Amplitude of the excitation signal. 

 

[39] Frequency spacing 
 Type of variation of the frequency in the sweep. It is recommended to 

use linear variation. 

 

[40] The phase of the signal 
 It is recommended to keep this value in zero. 

 

[41] The output physical channel of the stimulus 
 The output physical channel of the stimulus have the device ID, that 

needs to be a NI DAQ signal generation, and the number of the channel 
in the signal generation devise. 

 

[42] The input physical channel of the stimulus 
 The input physical channel of the stimulus have the device ID, that 

needs to be a NI DAQ signal acquisition, and the number of the channel 
in the signal acquisition devise. 

 

[43] The type of reading of the stimulus 
 The excitation can be characterized in two ways: by measuring the 

generated signal or through a force sensor placed between the 
electromagnetic actuator and the beam. 
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Press “Finish” button 
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5.2.1.2 Save configurations to file 
To save the configurations press the “Save” button. 

 

Then choose the name and the location of the xlm file. 
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5.2.1.3 Load configurations from file 
To load the configurations press the “Open” button. 

 

Then choose the name and the location of the xml file with the configurations. 
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5.2.2 Start 
To start the acquisition press “START” button 
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5.2.3 Running 
5.2.3.1 Acquiring signals tab 

 

In this tab it is possible to observe: 

[1] The acquired accelerograms 

 

[2] The real-time Power Spectrum of the acquired accelerograms. 

 

[3] It is also possible to turn ON/OFF the power spectrum and 
change the intensity to dB or linear scale 

 

[4] The temperature acquired from the temperature sensors 
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5.2.3.2 Processed signals tab 

 

In this tab it is possible to observe: 

[5] The processed data from the last event: 
 The power spectrum density of the response (PSD Response) 
 The power spectrum density of the stimulus (PSD Stimulus) 
 The power spectrum density of the response with the SSI frequency identification technique stabilization 

diagram (SSI OMA) 
 The frequency response function spectrum with the SSI frequency identification techniques stabilization 

diagrams and estimated FRF spectrums (SSI EMA) 
 SDOF accelerogram obtained through the IFFT technique from the power spectrum density of the response 

(IFFT PSD) 
 SDOF accelerogram obtained through the IFFT technique from the frequency response function (IFFT FRF) 

 

[6] A table with the identified parameters: 
 Resonance frequency obtained through the identification of the peak of higher intensity in the frequency 

response function (Fr PP-FRF [Hz]) 
 Resonance frequency obtained through the identification of the peak of higher intensity in the power spectrum 

density of the response accelerogram (Fr PP-PSD [Hz]) 
 Resonance frequency identified through the inverse of fast Fourier transform technique of the frequency 

response function (Fr IFFT-FRF [Hz]) 
 Damping of the testing specimen identified through the inverse of fast Fourier transform technique of the 

frequency response function (Dp IFFT-FRF) 
 Resonance frequency identified through the inverse of fast Fourier transform technique of the power spectrum 

density of the response accelerogram (Fr IFFT-PSD [Hz]) 
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 Damping of the testing specimen identified through the inverse of fast Fourier transform technique of the power 
spectrum density of the response accelerogram (Dp IFFT-PSD) 

 Resonance frequency identified through the transfer function model identification technique (Fr TF-FRF [Hz]) 
 Damping of the testing specimen identified through the transfer function model identification technique (Dp 

TF-FRF) 
 Resonance frequency identified through the subspace system identification technique (Fr SSI-FRF [Hz]) 
 Damping of the testing specimen identified through the subspace system identification technique (Dp SSI-

FRF) 
 Estimated E-modulus of the material based on the selected resonance frequency (E-Modulus [GPa]) 
 Compressive strength estimation based on the estimation of the E-Modulus of the material (fcm [MPa]) 

 

[7] It is possible to change the intensity of the spectrums to dB or linear scale 

 

 

Additionally it is possible to plot a 3D map of the evolution of the spectrums by pressing the “Plot” button. 

 

Must be selected: 

 The channel number  

 The type of spectrum that can be: PSD Response, PSD Stimulus or FRF 
Amplitude 

 

 Turn ON/OFF the conversion of the frequency to E-Modulus   
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A new window will appear 

 

In this page it is possible to set: 

[8] The maximum value of the Y-axis 
 It can be Frequency or E-Modulus depending on the option chosen 

before 

 

[9] The minimum of the X-axis  

[10] The maximum of the X-axis  

[11] Save the color map 
 The file will be saved in the same folder as the results files and will have 

the following name: “Type_of_spectrum”_”Ch#”.bmp. For example: 
PSD_Response_Ch1.bmp. If the save button were pressed the window 
will be closed too. 

 

Press “Close” button to exit 
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5.2.3.3 Time evolution tab 

 

In this tab it is possible to observe: 

[12] The time evolution of the: 
 Resonance frequency of the beams obtained through the identification of the peaks of higher intensity in the 

power spectrums densities of the responses accelerograms (Frequency) 
 Estimated E-modulus of the materials of the beams based on the previous resonance frequency (E-Modulus) 
 Compressive strength estimation based on the estimation of the E-Modulus of the material (fcm) 
 Temperature sensors (Temperature) 

 

[13] A table with the history of the identified parameters: 
 Date of the measurement 
 Number of the beam (Beam) 
 Resonance frequency obtained through the identification of the peak of higher intensity in the frequency 

response function (Fr PP-FRF [Hz]) 
 Resonance frequency obtained through the identification of the peak of higher intensity in the power spectrum 

density of the response accelerogram (Fr PP-PSD [Hz]) 
 Resonance frequency identified through the inverse of fast Fourier transform technique of the frequency 

response function (Fr IFFT-FRF [Hz]) 
 Damping of the testing specimen identified through the inverse of fast Fourier transform technique of the 

frequency response function (Dp IFFT-FRF) 
 Resonance frequency identified through the inverse of fast Fourier transform technique of the power spectrum 

density of the response accelerogram (Fr IFFT-PSD [Hz]) 
 Damping of the testing specimen identified through the inverse of fast Fourier transform technique of the power 

spectrum density of the response accelerogram (Dp IFFT-PSD) 
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 Resonance frequency identified through the transfer function model identification technique (Fr TF-FRF [Hz]) 
 Damping of the testing specimen identified through the transfer function model identification technique (Dp TF-

FRF) 
 Resonance frequency identified through the subspace system identification technique (Fr SSI-FRF [Hz]) 
 Damping of the testing specimen identified through the subspace system identification technique (Dp SSI-FRF) 
 Estimated E-modulus of the material based on the selected resonance frequency (E-Modulus [GPa]) 
 Compressive strength estimation based on the estimation of the E-Modulus of the material (fcm [MPa]) 
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5.2.4 Stop 
To stop the program press “STOP” button. 

 

When the program is stopped a menu bar will appear. 
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5.2.5 Restart 
To restart the program press the arrow button in the top menu bar. 

 

Then go to the section 5.2.1 of the manual. 
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5.3 Output results files 

During a test the program will create several results files. All this files has a suffix to his name that represents the 
date of creation: YY-MM-DD_hh:mm:ss. In the flowing examples the files were created on 3 of February of 2015 at 
10:18:05. 

 Dataoriginal_15-02-03_10-18-05.zip 

All data acquired during the tests. Each column represents one input channel starting in the channel 1 until the 
last channel. Note that when there is excitation to the beams there will be a column that represents the real 
excitation readings. 

 Tempdata.dat 

Temporary binary data file that will be deleted after the data processing is finished. 

 Results_2015-01-14_11-07-25.txt 

This file contains all the important configurations of the program and the final processed results: 

Fr PP-FRF [Hz] – Resonance frequency obtained through the identification of the peak of higher intensity in the 
frequency response function; 

Fr PP-PSD [Hz] – Resonance frequency obtained through the identification of the peak of higher intensity in the 
power spectrum density of the response accelerogram; 

Fr IFFT-FRF [Hz] – Resonance frequency identified through the inverse of fast Fourier transform technique of 
the frequency response function; 

Dp IFFT-FRF – Damping of the testing specimen identified through the inverse of fast Fourier transform technique 
of the frequency response function; 

Fr IFFT-PSD [Hz] – Resonance frequency identified through the inverse of fast Fourier transform technique of 
the power spectrum density of the response accelerogram; 

Dp IFFT-PSD – Damping of the testing specimen identified through the inverse of fast Fourier transform technique 
of the power spectrum density of the response accelerogram; 

Fr TF-FRF [Hz] – Resonance frequency identified through the transfer function model identification technique; 
Dp TF-FRF – Damping of the testing specimen identified through the transfer function model identification 

technique; 
Fr SSI-FRF [Hz] – Resonance frequency identified through the subspace system identification technique; 
Dp SSI-FRF – Damping of the testing specimen identified through the subspace system identification technique; 
E-Modulus [GPa] – Estimated E-modulus of the material based on the selected resonance frequency; 
fcm [MPa] – Compressive strength estimation based on the estimation of the E-Modulus of the material. 

 Temprature_2015-01-14_11-07-25.txt 

This file contains the acquired temperature evolution along the test for the configured channels. 
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