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ABSTRACT

In spite of the strategic importance of the natidt@tuguese road network, there are no recentestud
concerned with either the identification of contrtidry factors to road collisions or collision pretbn
models (CPMs) for this type of roadway. This stpdgsents an initial contribution to this problem by
focusing on the national roads NR-14, NR-101 and20R, which are located in Portugal’s northern
region. This study analyzed the collisions freqiesicaverage annual daily traffic (AADT) and
geometric characteristics of 88 two-lane road sedgsdrough the analysis of the impact of different
database structures in time and space. The seleegudents were 200-m-long and did not cross
through urbanized areas. Data regarding the arntraféic collision frequency and the AADT were
available from 1999 to 2010. The GEE procedure agdied to ten distinctive databases formed by
grouping the original data in time and space.

The results show that the different observationghiwi each road segment present mostly an
exchangeable correlation structure type. This palser analyses the impact of the sample size on the
model’s capability of identifying the contributirigctors to collision frequencies, therefore mustkvo
with segments homogeneous greatest possible. Tje pantributing factors identified for the two-
lane highways studied were the traffic volume (AADTane width, horizontal sinuosity, vertical
sinuosity, density of access points, and densitypedlestrian crossings. Acceptable CPM was
identified for the highways considered, which estied the total number of collisions for 400-m-long
segments for a cumulative period of six years.
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1. INTRODUCTION

The increasing number of collisions in rural hasated the need to develop strategies to help highwa
agencies reducing these events. The World Healgfarxation revealed that more than 1.2 million
people die and 50 million people are injured onwloeld’s roads every year, and in Portugal, these
figures for 2011 were 689 and 42,162, respectivielya country with a population of 10.5 million
(WHO, 2013).

Properly registered and analyzed road collisiom @dtows for the identification of the areas oesit
where safety measures have a greater potentiadutmress and effectiveness (Lord and Mannering,
2010). Therefore, collisions prediction models (GJMre important tools in promoting traffic safety
in different roadway facilities. They can providecarate estimates for the total collision frequefury

a location per unit of time, which is usually a d¢tion of the roadway’s traffic and geometric
characteristics. However, the interpretation ofRMCcoefficient as the true effect of an incremental
change in an associated roadway feature is notlysaisfactory (Hauer, 2004). According to the
referenced authors, this situation can arise dupr¢dlems such as (i) the cause-effect assumed
between some roadway characteristics and collisioag be not always true; (ii) the presence of a
strong correlation among the model's independeniabkes; and (iii) the lack of important
explanatory variables in the model, which causesctiefficient of one or more variables in the model
to represent the unavailable variable rather thaim bwn effect.

The development of CPMs is based on discrete, ryative, and over dispersed data. Additionally, in
some cases, the available data may present temposgatial correlations, which impose specific
statistical considerations for the model developnféfang and Abdel-Aty, 2006). A comprehensive
analysis of the data and the methodological iseegarding the development of analytic approaches to
study the factors related to road collisions caridomd in the works of (Lord and Mannering, 2010)
and (Mannering and Bhat, 2014). Additionally, samadeling difficulties imposed by databases with
many records of zero collisions have caused thgeusdifferent statistical modeling approaches for
CPM development, which are not easy to justify frartraffic engineering perspective (Lord et al.,
2005). When the use of these approaches cannotsbied and the database is formed by temporal
and/or space-related data, it is possible to devidle CPM based on aggregated number of collision
observation through some time period or given spogvever, the impact of this aggregation on the
identification of the significant explanatory vebies to the observed collision frequency need to be
further investigated.

Due to the intrinsic characteristics of collisiosta, CPMs are commonly developed using the Poisson
and negative binomial regression models (KumaraGirid, 2003; Hauer, 2004; Caliendo et al., 2007;
Anastasopoulos et al., 2012; Castro et al., 201t Bt al., 2014). The form of the CPM usually
consists of the product of the exposure measuesés multiplied by an exponential term related to
the other explanatory variables. Models contairadditive terms have also been referred to in the
literature, where the additive component aims tooant for the influence of hazard points (Hauer,
2004; Caliendo et al., 2007). Therefore, Lord anshhtring (2010) and Mannering and Bhat (2014)
present an analysis of different methodologicadralitives which can be used in the development of
CPMs, while also point out the potentialities anditations of each approach according with the
characteristics of the available database.

An important issue related to the model’'s paramseemwhether one can assume that the parameters
vary across observations. For the purpose of allifrequency modeling, it is usually assumed that
they are constant from year to year, as referrdy tAnastasopoulos and Mannering (2009) in a study
regarding a comparative analysis between fixedrpatars and random parameters models (the
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intercept or others parameters varies across yddrgey indicate some advantages of the latter nsodel
specially for applications as before-and-after sidand traffic collision trend analysis and aleo t
incorporate the effects of the variables in modeisrecorded. Other papers on investigating random-
parameters models can be found in the literatuneagfasopoulos et al., 2012; El-Basyouny and
Sayed, 2009; Venkataraman et al., 2013). Althougd modeling approach is promising, for the
purpose of the present paper, the parameters otmdtam year to year will be considered in the
models.

The collision records can be grouped by taking atoount the period of the observation (usually, bu
not necessarily, the year) or clustered accordingpime spatial or other characteristics observed at
specific time period (Wang and Abdel-Aty, 2006).eTbbservation within these groups may or may
not be statistically independent from each othet,tbe groups are independent among themselves.
The existence and type of correlation within theugs of data that form the entire database is
extremely relevant when determining the complexitythe parameters’ estimation using different
model types.

When the data within groups are not correlated,biéiic GLM can be applied by considering the
inclusion of dummy variables for time (or space}tie model. For the case of longitudinal data, the
procedures for estimating the parameters are dakrfireen the GLM procedure. For non-Gaussian
outcomes, the procedures may be separated intaginalamodel family, which are the generalized
estimating equations (GEE), as one example, amatidom-effects family, a generalized linear mixed
model (GLMM) that is a more complex family of mosleThe latter procedure will not be considered
in the present work.

The GEE procedure was developed by (Liang and Zd@&6) as an extension of the GLM for the
analysis of longitudinal data when the primary food the analysis is the dependence on the model’s
response to the explanatory variables. The GEEbeaapplied for both Gaussian and non-Gaussian
response variables and is a general method foyzanglclustered data where the following are true
(Wang and Abdel-Aty, 2006): (i) observations witlaircluster may be correlated; (ii) observations in
separate clusters are independent; (iii) a monat@msformation of the expectation is linearly teth

to the explanatory variables; and (iv) the variace function of the expectation. Regarding the
correlation among the observations in a given elishe GEE allows for different choices including
the non-correlation condition. Furthermore, diffdérstudies worked the modeling of the road safety
with the GEE (Lord and Persaud, 2000; Wang and ARAtde 2006; Lord and Mahlawat, 2009;
Mohammadi et al., 2014).

The main objective of this study is to identify tfaetors that contribute to fatal and injury cobis
frequency for road segments, through of the aralys impact of different database structurese ti
and space. These segments are located on the Begtugational roads NR-14, NR-101 and NR-206,
which are located in Portugal’s northern region.

The type of correlation within the data relatecetah road segment will also be evaluated using the
generalized estimating equations procedure (GEEjnfadeling the longitudinal data. It is expected
that the identification of the correlation typeHet than the “independent” correlation) may cafient
modelers’ attention for the fact that this datarabeeristic must be evaluated in advance to the
selection of the method to estimate the coeffisi@itCPMs.

The importance of studying collisions to improvadcafety in the Portuguese northern national road
system is justified by the fact that these roadgesa high concentration of cities and industrzies.
Despite its importance, recent studies concernirgpgromotion of road safety in those roads are
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scarce. Among these studies, the work of (GomesGardoso, 2012) must be highlighted. These
authors studied the impact of low-cost engineenmegsures on the decrease of accidentalness in some
stretches of a multilane national road, the NR-6.fér the identification of contributory factorsrfo
road collisions in Portuguese road system, the rfwins of recent studies made in the country has
been on the elements of urban roads (Couto andifer2011; Gomes, 2013).

2. DATA

The initial traffic collision database includes thember of fatal and injury collisions, volume and
geometric characteristics data on two-lane 2004mg-lbighway road segments belonging to sections
of highways located in northern Portugal. The @ataavailable for the years 1999 to 2010 and these
data were extracted from the database of the Natidathority for Road Safety, ANSRA(toridade
Nacional de Seguranca Rodovidridhe highways and respective links are preseintéable 1.

Table 1: Road 200-m-long Segments Considered &o€#Ms Development

National . Total Length Len_gth) N. of segments influenced N. of segments
Road Link ) studied® by road junctior@ studied

(m) 200m 400m
NR - 14 Braga-Famalicdo 22,200 17,600 75 13 4
Braga-Guimarées 18,000 17,600 66 22 8
Braga-Vila Verde 8,800 8,800 39 5 1
NR - 101 Guimarées-Felgueiras 20,400 17,800 61 28 11
Famalicdo-Guimaraes 19,200 19,200 81 15 6
NR - 206 Guimarédes-Fafe 6,400 6,400 27 5 2
Total 95,000 89,400 349 88 32

(a) Considers only two-lane extensions not locatigdinvurban areas.
(b) 200-m-length segments presenting road junctore®ntaining part of a given road junction apgtoa

In Portugal, according to the ANSR, the analysisridfcal safety points for two-lane highways must
be based on 200-m-long road segments (ANSR, 20i&)efore, the links considered were divided
into 200-m-long fixed segments for which the geotnetharacteristics, traffic flow (expressed in
average annual daily traffic) and number of calis from the years 1999 to 2010 were registered.
Some segments of these links were not includethénsample studied because they present one or
more characteristics that do not fit the purposthisfstudy. These characteristics are the follgwii
more than two lanes; (ii) cross through urbanizegs; and (iii) contain road junctions or portiafs
junction approaches (with roadways for accessirigescior with interchanges for the national
expressway system). Because of these criteria, @ghty-eight 200-m-long segments are present in
the initial (more disaggregated) database, as showiable 1. To study alternative spatial variasion
on collision data collection reference (by meansdefining different lengths for the segments
considered), the original 200-m-long segments vggoeiped into consecutive units of 2 segments,
which formed 400-m-long.

2.1. Geometric Characteristics

For the purpose of this study, the following geametharacteristics of each segment were
considered: (i) Lane width (LW); (ii) Shoulder wid{SW); (iii) Lateral offset (LO); (iv) Rate of the
length in horizontal tangent per total segment flen@RSL) calculated by dividing the length of
straight line (tangent in horizontal alignment) thye length of the segment in horizontal projection
considered (200m or 400m); (v) Horizontal sinuogis), calculated by dividing the road alignment
curvature at the horizontal curve (in degrees)H®y length of the segment in horizontal projection
considered (200m or 400m); (vi) Rate of the lerigthertical tangent per total segment length (RTL)
calculated by dividing by the length of straighmgi(tangent in vertical alignment) and SL is thegté
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of the segment in horizontal projection conside2dOm or 400m); (vii) Vertical sinuosity (VS),
calculated by dividing algebraic difference in gradiin percentage) observed at the sag or crest
vertical curve by the length of the segment in zmntal projection considered (200m or 400m); (viii)
Density of pedestrian crossings (DPC), which israef as the number of pedestrian crossing fadlitie
per length of the segment (200m or 400m); and Density of access point (DAP), which is
calculated as the number of accesses to privatgefties (and/or to secondary roadways without
exits) per length of the segment (200m or 400m).

The geometric data were collected in the field, aoche statistics related to the observed values for
the 200-m-long segments are presented in Tabtdinhportant to highlight that these charactarsst
were treated as initial explanatory variables foe bserved collision frequency for each road
segment.

Table 2: Descriptive Statistics of the Segment®ir@atric Characteristics

Characteristics Units Mean SD Minimum Maximum
LW m 3.66 0.18 3.05 4.23
SW m 0.74 0.56 0.10 3.45
LO m 2.32 1.14 0.60 5.68
RSL 0.62 0.26 0.04 1.00
HS degree/m 300.01 280.46 0.00 1491.50
RTL 0.85 0.31 0.00 1.00
VS %/m 4.63 8.20 0.00 25.35
DPC n°/segment 0.15 0.35 0.00 1.00
DAP n°/segment 4.01 2.93 0.00 15.00

2.2. Traffic Data

The average annual daily traffic (AADT) close te ttoad segments is an essential indicator for the
collision risk and, therefore, its presence is naoxy in prediction models. In Portugal, Estradas d
Portugal - EP (Roads of Portugal) is responsibitete gathering of traffic data in the road network
Therefore considering the period in study comprikesyears 1999 to 2010, there was a need to get a
historic series from the segments’ AADT for thatipe according to the analysis and treatment of the
data made available by EP. These data was complethby data collectioin loco in some of the
studied road segments. The AADT values varied f@a65 to 32,857 vehicles, with mean and
standard deviation of 12,936 and 6,323, respegtivel

2.3. Collision Data

The collision data for this study were provided thg National Authority for Road Safety, ANSR
(Autoridade Nacional de Seguranca Rodovigrend cover the period from 1999 to 2010. The ANSR
maintains a database with information gathered ftben Traffic Crash Registration Form, BEAV
(Boletim Estatistico de Acidentes de Vig¢aehich is filled out at the time of the crash.the BEAV

the crash are classified into collision, run-of&doand vehicle-pedestrian collision.

The initial database, which has 12 records for ediche eighty-eight 200-m-long segments, is formed
using 1,056 records, of which 815 recorded zerdistmhs. That is, the database is zero inflated.
Therefore, a preliminary analysis aimed at verdywhether there are plausible reasons for theses zer
was performed. This analysis could indicate thevearence of using a zero-inflated regression model
(zero-inflated Poisson, ZIP, or zero-inflated nagabinomial, ZINB). Taking into account the total
number of traffic collisions registered per 200-ang segment during the overall analysis period (12
years), the frequency distribution of the total tw@mof collisions per segment was determined and is
presented in Table 3.
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Table 3: Frequency Distribution of the Number ofliSmns per Segment in 12 Years

Number of collisions 0 1 2 3 4 5 6 7 8 9 11 13

Number of 200-m-long segments 9 17 12 18 5 9 5 5 23 2 1

The main characteristics of the nine segments wvaéno collisions were analyzed against
correspondent characteristics observed at theegjgents presenting nine or more collisions. This
analysis reveals that, based on the characterigtesl in Table 2 and on the traffic volume levels
there is no technical justification for assumingtthhhe zero-collision segments can be treated as
potentially safe segments. Therefore, it was deciu# to use of a zero-inflated regression moatel. |
this case, as recommended by (Lord et al., 20@&)ative time periods for aggregating the number
of collisions were considered for modeling as amsda reduce the number of records (observations)
with zero collisions, as shown in Table 4.

Table 4: Number of Zero (ZR) and Total CollisiorRfTRecords for Different Time Observation
Periods

Time observation period (in years)

Segment length Type of records 1 5 3 4 6 7
ZR 815 323 175 117 56 9
200 m TR 1,056 528 352 264 176 88
(%) of ZR 77 61 50 44 32 10
ZR 233 82 42 28 11 0
400 m TR 384 192 128 96 64 32
(%) of ZR 61 43 33 29 17 0

3. METHODOLOGY

3.1. Model Formulation

The CPM for the Portuguese two-lane highway segsnevds developed using the generalized
estimating equations (GEE) with the negative biradimk function. Therefore, the analysis considers
only models with the general expression presemégtjuation 5.

a+yin(Volume, + > BiXi n
)OS

Therefore, it is a fixed-parameters model type fmhich the GLM version is derived:

ln[E(ymt)] = In[a] +yx |n[V0|qunt] + Zj B X mt (6)
where:E(yn) = the expected number of collisions at segmenver time period; Volume,, = AADT

observed at segmentover timet; x; . = value of explanatory variableobserved at segmemntover
timet; anda, y, f; = model parameters to be estimated.

The modeling procedure followed a backward elimorastarting with the AADT and all candidate
variables (presented in Table 2). The final modeldach combination of segment length and time
observation period, which considered the threeetation structure provided by the GEE, present only
the explanatory variables that are statisticaliypsicant at 5% significance level.

The identification of the factors affecting theduency of collisions defined by the combinations of
time and space was based on the model that besiefifield data. The best model for a given
combination was selected based on the conditicesepted in Section 3.2.
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The overall best model was selected on the CURE(tative residuals) plot and on the margin3l R
because the quasi-likelihood information criteri(@IC) statistic is relevant for the correlation
structure evaluation. Another important consideratfor model selection was the analysis of the
model parameters’ sign. The parameters’ sign meistampatible with the expectation from a traffic
engineering point of view.

3.2. Model Assessment

Three elements were considered for examining thedigess-of-fit for each CPM generated: the
cumulative residual test (CURE), the marginalaRd the Akaike’s information criterion (AIC) ineh
GEE, which is called the quasi-likelihood inforneticriterion (QIC) and cross validation.

The CURE test considers the difference betweemuheber of observed and predicted collisions (the
residual) as the basic element for judging the GRN¥Hauer, 2004) The CURE plot allows for the
examination of the cumulative residuals againstviméable of interest, which is théolume; (AADT
observed at segmemtover timet) for the present study. A good fit means that @i¢RE plot
oscillates around the zero value of the cumulatgduals. Additionally, the CURE plot presents two
additional curves formed by acceptable limits fa@ tumulative, as described (Hauer, 2004)

One fit measure introduced by Zheng (2000) for nwdejusted with GEE was?Rnarginal, for
which it is necessary to calculate the predictddesfor the model in order to get thé Rarginal
value and then, these values are compared to enaul values. The’Rnarginal value indicates
how much the response variable variance is expldiyethe variability of the fitted model.

In 2001, was proposed a modification for the AlCtlve GEE (Pan, 2001Yhe modification was
developed to address a model selection problerhdnGEE concerning the selection of the type of
correlation among observations in a given clustarking correlation structure). The modification
involves using the quasi-likelihood constructedrirthe estimating equations (QIC) using the working
independence model and any general working coioalatructure in the GEE. To select a working
correlation structure in the GEE, it is necessarygdlculate the QIC for various candidate working
correlation structures (independent — Ind, exchablge- Ex and autoregressive — Ar). The correlation
structure to be adopted is the structure that resithe smallest QIC.

In order to ensure that the models developed sghidy represent the population (generalizatiod) a
are appropriate to the conditions they are useddpitity), the theory of validation is used. Inigh
study to validate the models the cross-validat®onded as suggested by Hastie et al. (2009).ah is
alternative when the ability to collect new datdirnigsited or impractical due to factors like costdan
time because the original sample is used. The aoftwsed in the study was SAS 9.3®.

4. RESULTS AND DISCUSSION

The main results for the models generated in tisexaf the 200-m-long and 400-m-long segments
are presented in Table 5. The AADT of grouped olz@mns segments (2-year, 3-year, 4-6-year and
year) was calculated as the arithmetic mean oftithe interval considered, while collisions were
summed up in this period. From Table 5, it can lbseoved that according to the QIC parameter, the
correlation structure that best fits the longitiadidata considered is the exchangeable correlé&dion
the first four models (1-year, 2-year, 3-year, drngbar), according to which the correlations betwee
any two observations within a group is constantenghs for the latter model (6-year) the best
correlation structure was the independent.
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Table 5: Model Estimates for Road Segments

Correlation Structure (200-m-long)

Correlation Stanet(400-m-long)

Time Parameter| Ind Ex Ar Ind Ex Ar
Coeff. p Coeff. P Coeff. p Coeff. p Coeff. p Coeff. p
Intercept -4.70 <.01| -4.87 <.01| -4.71 <.01| -13.85 <.01| -13.94 <.01| -13.75 <.01
In (AADT) 0.31 0.04| 0.33 0.03 0.31 0.04 0.76 <.01 0.77 <.01 0.76 <.01
LW na na na Na na na 1.62 0.05 1.62 0.05 1.60 0.05
HS na na na Na na na -0.01 0.04 -0.01 0.04 -0.01 0.04
1 year VS 0.03 0.01 0.03 0.01 0.03 0.01 0.03 <.01 0.03 <.01 0.03 <.01
DAP 0.09 <.01 0.09 <.01 0.09 <.01 na na na na na na
DPC na na na Na na na 1.17 <01 1.17 <01 1.18 <.01
QlC 1327.15 1326.12 1329.76 623.21 622.74 624.5
R? marg 0.03 0.03 0.03 0.11 0.11 0.11
Number of observations in the database = 1,056 béwmof observations in the database = 384
Intercept -4.25 <01| -445 <01| -432 <.01| -13.16 <.01| -13.22 <.01 -12.8 <.01
In (AADT) 0.34 0.03 0.36 0.02 0.35 0.02 0.76 <.01 0.76 <.01 0.74 <.01
LW na na na na na na 1.62 0.05 1.62 0.05 1.58 0.04
HS na na na na na na -0.01 0.03 -0.01 0.03 -0.01 0.03
2 years VS 0.03 0.02 0.03 0.02 0.03 0.01 0.03 <.01 0.03 <.01 0.03 <.01
DAP 0.08 <.01 0.08 <.01 0.08 <.01 na na na na na na
DPC na na na Na na na 1.18 <.01 1.18 <.01 1.18 <.01
QlC 916.39 915.83 928.81 313.36 313.28 323.48
R? marg 0.06 0.06 0.06 0.19 0.19 0.19
Number of observations in the database = 528 Nuwiabservations in the database = 192
Intercept -3.78 0.01| -3.89 0.01] -3.78 0.01| -1256 <.01| -1256 <.01| -12.89 <.01
In (AADT) 0.33 0.03 0.35 0.03 0.34 0.03 0.75 <.01 0.75 <.01 0.75 <.01
LW na na na na na na 1.60 0.05 1.60 0.05 1.69 0.04
HS na na na na na na -0.01 0.02f -0.00 0.02f -0.01 0.02
3 years VS 0.02 0.02 0.02 0.02 0.03 0.02 0.03 <.01 0.03 <.01 0.03 <.01
DAP 0.08 <.01 0.08 <.01 0.08 <.01 na na na na na na
DPC na na na na na na 1.19 <01 1.19 <01 1.18 <.01
QlC 648.38 647.91 659.45 121.94 121.94 123.71
R? marg 0.07 0.07 0.07 0.22 0.22 0.22
Number of observations in the database = 352 Numwib@bservations in the database = 128
Intercept -3.52 0.02] -3.59 0.02] -3.55 0.02| -12.69 <.01| -12.61 <.01| -12.86 <.01
In (AADT) 0.34 0.03 0.34 0.03 0.34 0.03 0.78 <.01 0.77 <.01 0.78 <.01
LW na na na na na na 1.65 0.04 1.64 0.04 1.68 0.04
HS na na na na na na -0.01 0.01f -0.00 0.01f -0.01 o0.01
4 years VS 0.02 0.02 0.02 0.02 0.02 0.02 0.03 <.01 0.03 <.01 0.03 <.01
DAP 0.08 <.01 0.08 <.01 0.08 <.01 na na na na na na
DPC na na na na na na 1.19 <01 1.19 <.01 1.19 <.01
QlC 478.38 478.07 479.69 -3.53 -3.56 -3.52
R? marg 0.09 0.09 0.09 0.25 0.25 0.25
Number of observations in the database = 264 Numwibe@bservations in the database = 96
Intercept -3.19 0.04] -3.19 0.04] -3.19 0.04| -12.63 <.01| -12.21 <.01| -12.21 <.01
In (AADT) 0.35 0.03 0.34 0.03 0.34 0.03 0.80 <.01 0.77 <.01 0.77 <.01
LW na na na na na na 1.68 0.04 1.64 0.04 1.64 0.04
HS na na na na na na -0.01 0.01 -0.01 0.01 -0.01 0.01
6 years VS 0.02 0.02 0.02 0.02 0.02 0.02 0.03 <.01 0.03 <.01 0.03 <.01
DAP 0.08 <.01 0.08 <.01 0.08 <.01 na na na na na na
DPC na na na na na na 1.20 <.01 1.20 <.01 1.20 <.01
QiC 221.89 221.90 221.90 -158.36 -159.50 -159.50
R? marg 0.11 0.11 0.11 0.30 0.30 0.30

Number of observations in the database = 176

Numbeabservations in the database = 64

na = not applicable
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Table 5 shows that for the 400-m-long segment&xisbangeable correlation is also found for the firs

four models (1-year, 2-year, 3-year, and 4-yean).the 6-year model, the results show that both the
exchangeable and autoregressive correlation stascare valid. The independence correlation, which
allows the longitudinal data to be treated as ieddent records, is only suitable for the current

database for the 200-m-long segments over 6-ymar pieriod.

All CPMs developed are acceptable from both astiedl and traffic engineering point of view. In
these models it is possible to verify that among tontributing variables studied, the major
contributing factors to the collision frequency dhe traffic volume, expressed in terms of annual
average daily traffic (AADT), the lane width (LW}he horizontal sinuosity (HS), the vertical
sinuosity (VS), the density of access points (DA density of pedestrian crossings (DPC). All of
these variables have a positive impact on the abpervariable (coefficients with positive sign).€n
important aspect to highlight is that the lane Wil the database varies from 3.05 m to 4.23 m.tWha
the results show, therefore, is that in this rateyger traffic lanes can have a negative effedraiffic
safety. As a final evaluation of the previously sidiered acceptable models, the CURE plot for each
case was developed. Figure 1 shows these plogdfm-long and 400-m-long segments.
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Figure 1: CURE Plots for the CPMs

Finally, it is necessary to ensure that the devedomodels represent the population (generalization)
and are appropriate to the conditions they are (sedability). Therefore, in this section is shalve
the validation of the CPMs fitted for road segme(280-m-long and 400-m-long). The results
obtained in this study are presented in terms airenodels. The statistical parameter used in the
analysis of the validation of these models wagdloe mean square error (RMSE).

The validation of CPMs was taken through the K-fofdss-validation type leave one out, since the
sample size of the models allowed to leave onecoogs-validation without much computational
costs. Therefore, the fitted model can be consitleedid if it presents error (RMSE) similar to the
ones obtained by the cross-validation method.

In Table 6 are described the statistical parametfeitse analysis of validation. The variation of BH
was -1.6% to -0.8%, for 200-m-long and 400-m-loegreents, respectively. Therefore, the models
fitted for collisions discussed here can be comsidiealid, since they had small differences between
the statistics of validation and adjustment. Finatl can be concluded that the best CPM is fifeed

400-m-long segments and 6 years data aggregation.
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Table 6: Statistical Parameters of the CPMs anthefLeave One Out Cross-Validation

Correlation Fitted Cross-Validation

: 2
Segment Time Means QiC Structure R mar RMSE RMSE ARMSE
200m 6 years 1.72 221.89 Ind 0.11 1.75 1.72 -1.6%
400m 6 years 3.58 -159.50 Ex/Ar 0.30 2.70 2.68 %0.8

5. SUMMARY AND CONCLUSIONS

The main objective of the present study was thatifieation of the major contributory factors toaa
collision frequency for road segments of Portugueselane highways located in the northern region
of the country, through of the analysis the impafctlifferent database structures in time and space.
The importance of this work is to contribute to gremotion of road safety in the Portuguese norther
national road system, which serves many citiesirehaistrial zones.

The initial database considered for this study feasied by the fatal and injury collision frequency,
the average annual daily traffic (AADT) and the metric characteristics of eighty-eight 200-m-long
segments during the years 1999 to 2010. This dsg¢atiantains 1,056 data records, of which 815 have
zero annual collisions. To reduce the number ob zmsllision records, different databases were
developed from the initial database by taking axtoount variations on the space and time scaleeof t
data, as suggested by Lord et al. (2005). In tainane, four options for aggregating the data were
considered, all of which were aimed at including ail the 12-year data available. These options
included 2-year groups, 3-year groups, 4-year ggoand 6-year groups. For the space scale, in
addition to the 200-m-long original segments, 4006ng segments were also considered. Therefore,
including the 1-year collision data, ten differelatabases were analyzed.

For the studied databases of the 200-m-long rogoheets, the results showed that the models were
able to capture the same significant contributamstdrs to the observed collision frequencies. These
factors were the traffic volume (expressed in AADV@rtical sinuosity (VS), and density of access
points (DAP). As these factors result in positiveeficients in the models, which are acceptable,
when they increase, it is reasonable to expectfigatollision frequency increases as well. Morepve
in the studied databases of the 400-m-long roadheets, the results also showed that the models
were able to capture the same significant contityufactors to the observed collision frequencies.
However, these factors were the traffic volume (egped in AADT), lane width (LW), horizontal
sinuosity (HS), vertical sinuosity (VS), and densif pedestrian crossings (DPC). As these factors
also result in positive coefficients in the modeldyich are acceptable, when they increase, it is
reasonable to expect that the collision frequencyeiases as well.

Another important finding is that the applicatioh tbe GEE procedure showed that for the road
segments (200-m-long and 400-m-long), the traftadobservations (two or more) are effectively
correlated; the corresponding correlation structuas the exchangeable correlation (exceptionally 6-
years observations for the 200-m-long segmentsreletion structure independent). So, this means
that the presence and type of correlation amon@liservations in the database must be investigated
before the development of the CPM when each locdsegment or intersection) is observed over
different time periods.

Regarding the validation of CPMs, with the resoltgross-validation leave one out it was possible t
verify that the models perform well, which is triated by low values of the statistics parameters
obtained in the fit of the models and in the vdioia
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Finally, the study shows that the database with-m@d@ng road segments and with collision data
grouped for a 6-year period produces the bestfatzeptable collision prediction model accordmg t
the statistical and traffic engineering analyseslRE plots and marginal ‘R developed for the
different combinations studied. Therefore, it isselved that the different aggregations time of the
collision data does not affect the contributingdas of the models, but the spatial aggregatioacadgt

The main limitation in this study was the numbef00 meters homogenous segments included in the
sample, 88, partly due to the high costs associatttdthe data collection and the lack of logistica
resources and equipment. This sample size mayihgpexred the identification of the significance of
some of the researched variables. Other limitatvas the lack of detailed information related to all
the interventions that took place in the studied WRich didn’t allow the inclusion of other variaisl
related to the road conditions in the models (mathce, friction coefficient, others).

Considering the promising results already obtaiitestas concluded that the current study should be
continued. From the databases already createdintpact of modelling with random parameters
model (using GEE with trend) on the identificatimincontributing factors for collisions in the stadi
highways will be investigated, whereas this techaigllows to incorporate in the model the effedts o
the missing variables. Studies presented in lileeaindicate that this type of modelling is promgsi
and it is particularly useful for complementary lgses using CPMs such as before-and-after studies
and studies aimed at identifying accentuated variatin collision frequencies in the road elements
researched throughout the units of time includettiénanalysis’ period.
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