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Abstract

In this work we extend the results on the existence, uniqueness and
continuous dependence of strong solutions to a class of variational in-
equalities for incompressible non-Newtonian flows under the constraint
of a variable maximum admissible shear rate. These fluids correspond
to a limit case of shear-thickening viscosity, also called thick fluids, in
which the solutions belong to a time dependent convex set with bounded
deformation rate tensors. We also prove the existence of stationary so-
lutions, which are the unique asymptotic limit of evolutionary flows in
the case of sufficiently large viscosity.

Dedicated to Hugo Beirão da Veiga on the occasion of his 70th birthday

1 Introduction

In a recent work [15] it has been shown that thickening a dilatant fluid, i.e. letting the power law in the
relationship between shear rate and shear stress tend to infinity, leads to a new class of “thick fluids”. This
model has been motivated by an increasing interest in complex fluids showing abrupt raising of viscosity at
certain critical levels of shear stress [1], namely in armor applications [9] as highlighted by the feature article
in Physics Today [22].

Here we are interested in the constitutive law for the symmetric part of the velocity gradient Du =
1
2 (∇u+∇uT ) constrained by a variable positive threshold ψ = ψ(x, t):

|Du(x, t)| ≤ ψ(x, t). (1.1)

If we denote by Ω ⊂ Rd a bounded domain, with Lipschitz boundary ∂Ω, d ≥ 2 and QT = Ω × (0, T ),
T > 0, the constraint (1.1) for the velocity field u = u(x, t) of the thick fluid divides, in general, the domain
into two subregions

{
(x, t) : |Du| < ψ

}
and

{
(x, t) : |Du| = ψ

}
. In the first subregion, i.e. strictly below

the threshold, the classical system for the incompressible fluid for the velocity u and the pressure π = π(x, t)
holds:

∂tu− div(S− u⊗ u) +∇π = f , (1.2a)

divu = 0, (1.2b)
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2 On a Variational Inequality for Incompressible Non-Newtonian Thick Flows

as it was observed in [15] for the stress tensor S given by

S = S(Du) := µ|Du|q−2Du, (1.3)

in the special Newtonian case q = 2 with a constant viscosity µ > 0. Here ∂tu = ∂u
∂t and div(u⊗u) = (u·∇)u

represents the usual convective term under the incompressibility condition (1.2b).
In this work we shall consider a more general non-Newtonian fluid by assuming that the stress tensor

S : Ω× Rd2 −→ Rd2 is a Carathéodory function deriving from a scalar potential σ,

∂Dσ(x,D) = S(x,D), (1.4)

such that S(x,0) = 0 and, for q > 1, satisfies the structure conditions

|S(x,D)| ≤ κ
(
1 + |D|q−2)|D|, (1.5a)(

S(x,D)− S(x,E)
)
: (D −E

)
≥

{
µ
(
|D|+ |E|

)q−2|D −E|2if q ≤ 2,

µ
(
1 + |D −E|q−2

)
|D −E|2if q > 2,

(1.5b)

for given positive constants κ, µ, for all D, E ∈ Rd2 and for a.e. x ∈ Ω.
These assumptions include not only shear-thinning fluids with power law (1.3) with 1 < q < 2 but also

the Ladyzhenskaya model [7] for shear-thickening fluids of the type

S = S(Du) := µ∗Du+ µ|Du|q−2Du,

with q > 2. In the case q = 2 we may also include non-Newtonian fluids

S(x,D) = s(x, |D|)D

of potential type with

σ(x,D) =

∫ |D|
0

τs(x, τ)dτ,

provided the function s : Ω× R+ −→ R+ satisfies the condition

0 < µ ≤ ∂
∂τ

(
τs(x, τ)

)
≤ κ, ∀τ ≥ 0, a.e. x ∈ Ω.

To complete the mathematical formulation we shall choose the usual Dirichlet and initial boundary condi-
tions

u = 0 on ∂Ω× (0, T ), u(0) = u0 in Ω.

Several variants of generalized Newtonian fluids of these type without the constraint (1.1) have been
considered in the mathematical literature (see, for instance, the books [8], [10], [11] or the survey [12]). For
instance, the existence of weak solutions for shear-thinning fluids has been shown for d = 3 up to p > 6

5 in [4]
and higher regularity up to the boundary for shear-thickening fluids has been obtained in [2], where additional
references may be found.

The special case of the constraint ψ = 1 has been considered in the the earlier work [19] to obtain the
existence of weak solutions for non-Newtonian flows with rigid bodies in which the inhomogeneous viscosity is
a solution of a transport equation and in the recent work [3] for the steady-state Stokes system with numerical
examples.

It is well known that gradient type constraints arise in the mathematical formulation of several problems
in Mechanics and in Physics, namely in critical state models of plasticity (the elastoplastic torsion problem),
superconductivity (magnetization of type-II superconductors), geophysics descriptions (sandpile growth or
formation of network of lakes and rivers), leading to variational or quasi-variational inequalities (see, for
instance, [14], [16], [13] or [17] and their references). In fluid mechanics, a different kind of variational
inequalities arise also in certain limits of non-Newtonian flows, namely in the case of Bingham fluids, [5], [21],
which correspond also to flows with two phases (rigid if |Du| = 0 for |S| ≤ s∗ and fluid for |S| > s∗ > 0)
although of different nature.

In the next section we introduce the variational inequality associated with the constraint (1.1) and we show
the existence and uniqueness of a strong solution by using a penalization method as in [15], similarly to [18]
and [13]. We complete the well-posedness of the problem by showing its continuous dependence with respect
to the data, including the threshold ψ. Finally, for sufficiently large viscosities, we also show the asymptotic
stabilization as t→∞ towards the steady-state solution.
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2 Existence of strong variational solutions

In order to introduce the variational inequality formulation we set the following notations:

J(Ω) := {ϕ ∈ C∞0 (Ω)d : divϕ = 0},
Lrσ(Ω) := closure of J in Lr(Ω),

Vr(Ω) := closure of J in W 1,r(Ω),

where W 1,r(Ω) is the Sobolev space with 1 < r <∞, Lr(Ω) = Lr(Ω)d and W 1,r(Ω) = W 1,r(Ω)d.
Let ψ = ψ(x, t) : QT −→ R+ be a given function, such that,

ψ ≥ ψ∗ > 0 and ψ ∈W 1,∞(0, T ;L∞(Ω)
)

(2.1)

and let us define the closed convex set

K(t) :=
{
w ∈ Vr(Ω) : |Dw| ≤ ψ(·, t), a.e. in Ω

}
, (2.2)

which is nonempty and, in fact, K(t) ⊂
⋂

1<r<∞ Vr(Ω) ⊂ L∞(Ω), for all t ∈ (0, T ).

Theorem 2.1. Assuming that

f ∈ Lq
′∨2(QT ) and u0 ∈ K(0), (2.3)

with q′ ∨ 2 = max(q/(q − 1), 2), there exists a unique solution

u ∈ L∞
(

0, T ;
⋂

1<r<∞
Vr(Ω)

)
∩H1

(
0, T ;L2

σ(Ω))
)

to the following variational inequality for the incompressible non-Newtonian thick flow problem:

u(t) ∈ K(t) for t ∈ (0, T ), u(0) = u0, (2.4a)

∫
Ω

∂tu · (w − u) +

∫
Ω

S(Du) : D(w − u)−
∫

Ω

(u⊗ u) : ∇(w − u)

≥
∫

Ω

f · (w − u), ∀w ∈ K(t), a.e. t ∈ (0, T ), (2.4b)

Proof. The proof of the existence uses a penalization approach as in [18, 13, 15].
For a positive parameter ε < 1 let κε : R→ R+

0 be the continuous and increasing function such that

κε(s) :=

{
0 if s ≤ 0

e
s
ε − 1 if s ≥ 0

and let us consider the monotone and strictly coercive operator

Sε(x,D) := S(x,D) + κε
(
|D|q − ψq

)
|D|q−2D.

For each ε, using Galerkin method and the estimates below(see [10]) we may guarantee the existence and
uniqueness of

uε ∈ Lr
(

0, T ;
⋂

1<r<∞
Vr(Ω)

)
∩H1(0, T ;L2

σ(Ω)
)

solving the penalized problem∫
Ω

∂tuε ·ϕ+

∫
Ω

Sε(Duε) : Dϕ−
∫

Ω

(uε ⊗ uε) : ∇ϕ =

∫
Ω

f ·ϕ, ∀ϕ ∈ Vq, a.e. t ∈ (0, T ), (2.5a)

uε(0) = u0. (2.5b)
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Indeed, the solutions uε satisfy the following a priori estimates, independently of ε:

‖κε
(
|Duε|q − ψp

)
|Duε|q‖L1(QT ) ≤ C0, (2.6)

‖κε(|Duε|q −ψq)‖L1(QT ) ≤ C1, (2.7)

‖Duε‖Lr(QT ) ≤ C2, ∀ 1 ≤ r <∞, (2.8)

‖∂tuε‖L2(QT ) ≤ C3. (2.9)

Testing equation (2.5a) with ϕ = uε the estimate (2.6) follows at once, obtaining in addition the usual
energy estimates

‖uε‖L∞(0,T ;L2(Ω)) ≤ C0 and ‖Duε‖Lq(QT ) ≤ C0.

It is immediate to conclude that∫
QT

κε
(
|Duε|q − ψq

)(
|Duε|q − ψq

)
≥ 0 (2.10)

since, by construction, κε(s) = 0 for s ≤ 0 and κε(s) > 0 for s > 0.
Recalling that ψ∗ is a positive lower bound to the constraint function ψ and taking into account (2.10),

we get∫
QT

κε
(
|Duε|q − ψq

)
≤
∫
QT

κε
(
|Duε|q − ψq

)ψq
ψq∗

=
1

ψq∗

(∫
QT

κε
(
|Duε|q − ψq

)(
ψq − |Duε|q

)
+

∫
QT

κε
(
|Duε|q − ψq

)
|Duε|q

)
≤ 1

ψq∗

∫
QT

κε
(
|Duε|q − ψq

)
|Duε|q

so, estimate (2.7) follows from (2.6).
Observing that, for s ≥ ε, κε(s) = e

s
ε − 1 ≥ sη

η! εη , defining

Dε :=
{

(x, t) ∈ QT : |Duε|q − ψq ≥ ε
}
,

from the estimate (2.6) we have

C0 ≥
∫
QT

κε
(
|Duε|q − ψq

)
|Duε|q ≥

∫
Dε

(
|Duε|q − ψq

)η
η! εη

|Duε|q

enabling us to conclude (2.8) by arguing as in Lemma 4 of [16] (see also the proof of Proposition 3.14 of [17]).
Choosing r > 2, the estimate (2.8) allows the control of the convection term:∫
QT

(uε⊗uε) ·∇∂tuε =

∫
QT

(uε ·∇)uε ·∂tuε ≤ Cr‖uε‖2
L

2r
r−2 (QT )

‖Duε‖2Lr(QT ) +
1

3
‖∂tuε‖2L2(QT ). (2.11)

Letting formally ϕ = ∂tuε in (2.5a), we have∫
Ω

|∂tuε|2 +

∫
Ω

S(Duε) : ∂tDuε +

∫
Ω

κε
(
|Duε|q − ψp

)
|Duε|q−2Duε : ∂tDuε

=

∫
Ω

f · ∂tuε +

∫
Ω

(uε ⊗ uε) : ∇∂tuε.

Setting φε(s) =
∫ s

0
κε(τ) dτ and, from (1.4), recalling that S is potential, integrating the last expression up

to time t ∈ (0, T ], we obtain∫
Qt

|∂tuε|2 +

∫
Ω

σ(Duε(t)) +
1

q

∫
Ω

φε
(
|Duε(t)|q − ψ(t)q

)
+

∫
Qt

κε
(
|Duε|q − ψq

)
ψq−1∂tψ

=

∫
Qt

f · ∂tuε +

∫
Qt

(uε ⊗ uε) : ∇∂tuε +

∫
Ω

σ(Du0).
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Applying Hölder inequality and taking into account (2.11) we obtain

‖∂tuε‖2L2(QT ) ≤ C
(
‖f‖2L2(QT ) + ‖uε‖2

L
2r
r−2 (QT )

‖Duε‖2Lr(QT )

+ ‖κε
(
|Duε|q − ψq

)
‖L1(QT )‖ψq−1‖L∞(QT )‖∂tψ‖L∞(QT ) + 1

)
which proves (2.9).

Hence, by compactness (see [20]), there exists

u ∈ Lr
(

0, T ;
⋂

1<r<∞
Vr(Ω)

)
∩H1

(
0, T ;L2

σ(Ω)
)
, with u(0) = u0,

such that, at least for a subsequence ε→ 0,

uε → u in C (QT ),

Duε ⇀ Du in Lr(QT )-weak, ∀ 1 ≤ r <∞,
∂tuε ⇀ ∂tu in L2(QT )-weak.

The limit function u(t) belongs to the convex set K(t), for a.e. t ∈ (0, T ). Indeed, splitting QT in the sets

Aε :=
{

(x, t) ∈ QT : |Duε(x, t)|q − ψ(x, t)q <
√
ε
}
,

Bε :=
{

(x, t) ∈ QT : |Duε(x, t)|q − ψ(x, t)q ≥
√
ε
}
,

we observe that

|Bε| =
∫
Bε

1 ≤
∫
Bε

κε(|Duε|q − ψq)
e

1√
ε−1

≤ C1

e
1√
ε − 1

−→
ε→0

0,

and we conclude that |Du(t)| ≤ ψ(t) a.e. in QT from∫
QT

(|Duε|q − ψq)+ ≤ lim inf
ε→0

∫
QT

(|Duε|q − ψq) ∨
√
ε

≤ lim inf
ε→0

∫
Aε

√
ε+ lim inf

ε→0

∫
Bε

(|Duε|q − ψq)

≤ lim inf
ε→0

∫
QT

(|Duε|q − ψq)χBε

≤ lim
ε→0
‖|Duε|q − ψq‖L1(QT )|Bε| −→

ε→0
0.

It remains to prove that u solves de variational inequality (2.4). For w = w(t) ∈ K(t), testing equation
(2.5a) with w − uε we obtain∫

Ω

∂tuε · (w − uε) +

∫
Ω

Sε(Duε) : D(w − uε)−
∫

Ω

(uε ⊗ uε) : ∇(w − uε) =

∫
Ω

f · (w − uε).

Since Sε is a monotone operator, we have

Sε(Duε) : D(w − uε) ≤ S(Dw) : D(w − uε)
+ κε

(
|Dw|q − ψp

)
|Dw|q−2Dw : D(w − uε) = S(Dw) : D(w − uε)

and so∫
Ω

∂tuε · (w − uε) +

∫
Ω

S(Dw) : D(w − uε)−
∫

Ω

(uε ⊗ uε) : ∇(w − uε) ≥
∫

Ω

f · (w − uε).

Passing to the limit in ε we obtain, using Minty’s Lemma,∫
Ω

∂tu · (w − u) +

∫
Ω

S(Du) : D(w − u)−
∫

Ω

(u⊗ u) : ∇(w − u) ≥
∫

Ω

f · (w − u).
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In order to prove the uniqueness of the solution to problem (2.4) it is crucial the control of the convective
terms of any two solutions u1 and u2, in terms of their difference w = u1 − u2. In fact, by regularity we
have that u1 and u2 are in fact in L∞(QT ) and so, using Korn inequality,∣∣∣∣∫

Ω

(u1 ⊗ u1 − u2 ⊗ u2) : ∇w
∣∣∣∣ ≤ ∫

Ω

|(u1 ⊗w +w ⊗ u2) : ∇w|

≤ c1‖w‖L2(Ω)‖∇w‖L2(Ω) ≤ c2‖w‖L2(Ω) ‖Dw‖L2(Ω). (2.12)

Observing that u1 and u2 satisfy for a.e. t the inequality∫
Ω

∂tw ·w +

∫
Ω

(
S(Du1)− S(Du2)

)
: Dw ≤

∫
Ω

(u1 ⊗w +w ⊗ u2) : ∇w,

taking into account (1.5b) and that Du1 and Du2 are in L∞(QT ), by (2.12) we obtain,

d

dt
‖w‖2L2(Ω) + c3‖Dw‖2L2(Ω) ≤ c2‖w‖L2(Ω) ‖Dw‖L2(Ω)

and therefore we get
d

dt
‖w‖2L2(Ω) ≤ c‖w‖

2
L2(Ω).

Observing that w(0) = 0, Gronwall’s inequality implies the uniqueness of the solution of (2.4).

3 Continuous dependence and asymptotic stabilization

In fact, the properties of the strong solutions, the strict coercivity of S and an argument of [18] concerning
the continuity of the convex set (2.2) with respect to the threshold ψ allows us to obtain an estimate on the
continuous dependence with respect of the data.

Theorem 3.1. Let, for i = 1, 2, ui denote the solution to the variational inequality (2.4) with data ψi,
satisfying (2.1), f i and ui0 , as in (2.3). Then, there exists a positive constant C = C(T ) such that

‖u1 − u2‖2L∞(0,T,L2(Ω)) + ‖D(u1 − u2)‖2L2(QT )

≤ C
(
‖f1 − f2‖2L2(QT ) + ‖u10

− u20
‖2L2(QT ) + ‖ψ1 − ψ2‖L∞(QT )

)
. (3.1)

Proof. Let ψi, i = 1, 2, be given threshold functions satisfying (2.1) and denote by Ki(t) the corresponding
convex sets defined in (2.2). For i, j = 1, 2, i 6= j, and for any ui ∈ Ki(t), there exists uji ∈ Kj(t) such that

‖D(ui(t)− uji(t))‖Lq(Ω) ≤ Cβ(t), where β(t) := |ψi(t)− ψj(t)‖L∞(Ω).

Indeed, following [18], it is enough to choose

uji(t) :=
ψ∗ui(t)

ψ∗ + β(t)
and C ≥ 1

ψ∗
‖Dui(t)‖Lq(Ω).

Considering, for i = 1, 2, the solution ui of the variational inequality (2.4) associated to the constraint ψi,
using uij , j = 1, 2, j 6= i, as test function, we have∫

Ω

∂tui · (ui − uij) +

∫
Ω

S(Dui) : D(ui − uij) ≤
∫

Ω

(ui ⊗ ui) : ∇(ui − uij) +

∫
Ω

f i · (ui − uij)

and so∫
Ω

∂tui · (ui − uj) +

∫
Ω

S(Dui) : D(ui − uj)

≤
∫

Ω

(ui ⊗ ui) : ∇(ui − uj) +

∫
Ω

f i · (ui − uj) +

∫
Ω

∂tui · (uij − uj)

+

∫
Ω

S(Dui) : D(uij − uj) +

∫
Ω

(ui ⊗ ui) : ∇(uj − uij) +

∫
Ω

f i · (uj − uij).
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Adding inequalities we obtained in the former expression to (i, j) = (1, 2) and (i, j) = (2, 1), denoting
w = u1 − u2 we get∫

Ω

∂tw(t) ·w(t) +

∫
Ω

(S(Du1(t))− S(Du2(t)) : Dw(t)

≤
∫

Ω

(u1(t)⊗ u1(t)− u2(t)⊗ u2(t)) : ∇w(t)

+

∫
Ω

(f1 − f2) ·w(t) + Θ(t) + Υ(t), (3.2)

where

Θ(t) :=

∫
Ω

∂tu1(t) · (u12(t)− u2(t)) +

∫
Ω

∂tu2(t) · (u21(t)− u1(t))

+

∫
Ω

S(Du1(t)) : D(u12(t)− u2(t)) +

∫
Ω

S(Du2(t)) : D(u21(t)− u1(t))

+

∫
Ω

f1 · (u2(t)− u12(t)) +

∫
Ω

f2 · (u1(t)− u21(t))

and

Υ(t) :=

∫
Ω

(u1(t)⊗ u1(t)) : ∇(u2(t)− u12(t)) +

∫
Ω

(u2(t)⊗ u2(t)) : ∇(u1(t)− u21(t)).

The estimates (2.8) and (2.9) and the structural condition (1.5a) allow us to conclude that there exists a
positive constant C such that, for any t ∈ (0, T ),∫ t

0

(
Θ(τ) + Υ(τ)

)
≤ C‖ψ1 − ψ2‖L∞(QT ). (3.3)

Integrating (3.2) in time, using (2.8), (2.12) and (3.3) we obtain

‖w(t)‖2L2(Ω) + C1

∫ t

0

‖Dw‖2L2(Ω) ≤ C2

∫ t

0

‖w‖L2(Ω)‖Dw‖L2(Ω)

+ C3

∫ t

0

‖f1 − f2‖L2(Ω)‖w‖L2(Ω) + ‖w(0)‖2L2(Ω) + C4‖ψ1 − ψ2‖L∞(QT ) (3.4)

and so,

‖w(t)‖2L2(Ω) ≤ C5

∫ t

0

‖w‖2L2(Ω) + C6

(
‖f1 − f2‖2L2(QT ) + ‖w(0)‖2L2(Ω) + ‖ψ1 − ψ2‖L∞(QT )

)
.

By the integral Gronwall’s inequality we conclude that there exists a positive constant C, depending on T ,
such that

‖w‖2L∞(0,T ;L2(Ω)) ≤ C
(
‖f1 − f2‖2L2(QT ) + ‖w(0)‖2L2(Ω) + ‖ψ1 − ψ2‖L∞(QT )

)
.

Returning to (3.4), the last inequality allows us to conclude (3.1).

Given
f∞ ∈ L

1(Ω), ψ∞ ∈ L∞(Ω) such that ψ∞(x) ≥ ψ∗ > 0 a.e in Ω, (3.5)

and setting the convex set
K∞ :=

{
w ∈ Vq : |Dw| ≤ ψ∞, a.e. in Ω

}
,

we consider now the stationary variational inequality: Find u∞ ∈ K∞, such that,∫
Ω

S(Du) : D(w − u)−
∫

Ω

(u⊗ u) : ∇(w − u) ≥
∫

Ω

f · (w − u), ∀w ∈ K∞. (3.6)
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Theorem 3.2. Under the assumptions (3.5) the steady-state variational inequality (3.6) has a solution u∞ ∈
K∞ ∩ C 0,γ(Ω̄)d, 0 ≤ γ < 1. Moreover, there exists a constant µ∗ > 0, such that, if µ > µ∗ in (1.5b), the
solution is unique.

Proof. The existence of a solution follows by the general theory for pseudo-monotone operators exactly as in
[15].

Considering two solutions of the problem, u∞1 and u∞2, denoting w∞ = u∞1 − u∞2, the following
inequality is satisfied∫

Ω

(
S(Du∞1)− S(Du∞2)

)
: D(w∞) ≤

∫
Ω

(u∞1 ⊗ u∞1 − u∞2 ⊗ u∞2) : ∇w∞.

By (1.5b), there exists a positive constant C1 such that∫
Ω

(
S(Du∞1)− S(Du∞2)

)
: D(w∞) ≥ µC1‖Dw∞‖2L2(Ω)

and, as in (2.12), using Poincaré and Korn inequalities,∣∣∣∣∫
Ω

(u∞1 ⊗ u∞1 − u∞2 ⊗ u∞2) : ∇w∞
∣∣∣∣ ≤ C2‖w∞‖L2(Ω) ‖Dw∞‖L2(Ω) ≤ C3‖Dw∞‖2L2(Ω).

The last three inequalities leads to
(µC1 − C3)‖Dw∞‖L2(Ω) ≤ 0

and so, if µ > C3

C1
, we have uniqueness.

Remark 3.3. We observe that, as in the stationary Navier-Stokes equation (see, for instance, [8, p. 118])
we have uniqueness of the solution for large viscosities (or low Reynold’s numbers), but here the lower bound
µ∗ = C3

C1
may be calculated in terms of the L∞ norm of the data ψ∞, in order to control the constants C3 and

C1. Note that, by (1.5b), C1 = 1 if q = 2 but if 1 < q < 2 or q > 2 we could not find a similar uniqueness
result in the literature even for the corresponding equation.

Theorem 3.4. Let u = u(t) be the solution of problem (2.4) with T =∞ under the assumptions

f ∈ L∞
(
0,∞;Lq

′∨2(Ω)
)
, ψ ∈W 1,∞(0,∞;L∞(Ω)

)
and ψ ≥ ψ∗ > 0

and let u∞ be the unique solution of problem (3.6), under the assumptions (3.5) by assuming there exists a
constant µ∗ > 0, such that, if µ > µ∗ in (1.5b).

Suppose also that there exists δ > 1
2 , such that, for t > t0

β(t) := ‖ψ(t)− ψ∞‖L∞(Ω) ≤
1

tδ
(3.7)

and

ϕ(t) :=

∫ t+1

t

∫
Ω

|f(τ)− f∞|dτ −→
t→∞

0. (3.8)

Then
ζ(t) := ‖u(t)− u∞‖2L2(Ω) −→t→∞ 0.

Proof. Denoting ρ(t) := λ∗
λ∗+β(t) and arguing as in the proof of Theorem 3.1, we set w∞ = ρ(t)u(t) ∈ K∞

in (3.6) and w = ρ(t)u∞ ∈ K(t) in (2.4). Denoting v(t) := u(t)− u∞, we obtain∫
Ω

∂tu(t) · v(t) +

∫
Ω

(
S(Du(t))− S(Du∞)

)
: Dv(t)

≤
∫

Ω

(f(t)− f∞) · v(t) + ρ(t)

∫
Ω

(
(u∞ ⊗ u∞) : ∇u(t)− (u(t)⊗ u(t) : ∇u∞)

)
+
(
1− ρ(t)

) ∫
Ω

∂tu(t) · u∞ + Θ(t) (3.9)
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where

Θ(t) :=
(
1− ρ(t)

) ∫
Ω

∣∣S(Du(t)) : Du∞ − S(Du∞) : Du(t) + f∞ · u(t)− f(t) · u∞
∣∣.

Using the properties of S, as in (2.12), we obtain from (3.9)

d

dt
‖v(t)‖2L2(Ω)+µC1‖Dv(t)‖2L2(Ω) ≤ C2‖f(t)−f∞‖L1(Ω)+C3‖Dv(t)‖2L2(Ω)+C4β(t)

∥∥∂tu(t)‖L2(Ω)+2Θ(t).

As we are assuming that µ is large enough, we obtain, applying Poincaré and Korn inequalities, that

d

dt
‖v(t)‖2L2(Ω) + C‖v(t)‖2L2(Ω) ≤ Υ(t),

where
Υ(t) := C2‖f(t)− f∞‖L1(Ω) + C4β(t)‖∂tu(t)‖L2(Ω) + 2Θ(t).

By the proof of estimate (2.9) we conclude that there exists a constant D, independent of t ≥ 1 such that

‖∂tv‖2L2(Qt)
≤ Dt,

so, assumptions (3.7) and (3.8) leads to ∫ t+1

t

Υ(τ)dτ −→
t→∞

0.

By a well-known result (see, for instance [6, p. 268]), we may conclude

ζ(t) = ‖v(t)‖2L2(Ω) ≤ e
−Ct2 +

1

1− e−C
sup
s≥ t2

∫ s+1

s

Υ(τ)dτ −→
t→∞

0.
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