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ABSTRACT — A study on the effects of dry spatial revolute joints with clearance and friction is 

delivered through this work. Both radial and axial clearances are taken into consideration which 

makes the model more realistic for three-dimensional motion. The kinematics of the contact between 

the journal and bearing are assessed, and used to evaluate the intra-joint normal and tangential 

contact forces. Moreover, a spatial slider-crank mechanism is used as an application example. The 

ideal case, the frictionless clearance joint and the joint with clearance and friction were compared, 

and the results show that clearance and friction have a significant impact in the dynamic response 

of the mechanical system. 

1 Introduction 

Revolute joints are used in a wide variety of mechanical systems with high demands on trajectory precision [1, 

2]. The presence of clearance may produce an abnormal loading of mechanism parts [3], and enhance the wear of 

the respective joints [4-7]. In that sense, the study of clearance joints has been addressed during the past years, 

therefore, the effect of several aspects, such as the type of mechanism or the clearance size, have been assessed 

[6, 8, 9]. Manufacturing tolerances, different heat expansion, assemblage errors, wear and material deformation 

constitute the most common reasons for the joints to have clearance. These aspects may lead to significant 

deviations to the dynamic behavior of an ideal system, which generally results in vibration, noise, wear, reduction 

of lifetime and increase of operation costs. 

The modelling of imperfect joints is a widely studied field in which the revolute joints have paramount 

importance [10-12]. This is mainly performed through the analysis of two classical mechanical systems, the four-

bar [3, 6, 13] and the slider crank mechanism [5, 8, 14]. In order to validate the results obtained through the 

dynamic simulation of multibody systems with clearance joints, a significant number of studies present a 

comparison with experimental data [7, 13]. Many different methodologies can be utilized to model the contact-

impact events which occur in systems with imperfect joints. For instance, Brutti et al. [15] modelled the contact 

using finite element analysis. However, most of the utilized approaches consist in considering the joints as 

colliding bodies, and using compliant contact force models based on the Hertzian theory, which generally 

introduce a relationship between the contact force and a pseudo-penetration. On its genesis, the Hertz model were 

purely elastic, however, they evolved to the inclusion of a hysteresis damping which takes into account energy 

dissipation [16, 17]. The reader can found detailed information about these contact forces models in [18, 19]. Thus, 

in order to compare the validity of several force models and their effect in the dynamic response of a multibody 

system, a few studies were conducted [13, 20-22]. Several studies are extended to the quantification of wear 

production due to the presence of clearance [4-6], for this task the Archard’s wear model is commonly utilized, 



2 

 

which estimates the worn volume by using the information about the contact conditions, i.e., the contact pressure 

and the sliding distance. 

Most of these works focus on planar mechanical systems [23-26] and frictionless clearance joints. Indeed, the 

utility of the methodologies developed is somewhat restricted because they cannot be considered for spatial 

multibody systems, such as automobile systems and components, car suspensions, railway vehicles, space 

systems, robotic manipulators, biomechanical models, where the system motion is not limited to be planar. 

Furthermore, even planar mechanisms may exhibit out-of-plane motion due to manufacturing and assembly errors, 

wear, misalignments, justifying, therefore, the development of advanced mathematical models to assess the 

influence of the clearance joints in spatial multibody mechanical systems [15, 27-29]. On the other hand, the 

presence of friction at clearance joints plays a crucial role in the systems’ behavior and cannot be neglected. 

In the context of this work, a comprehensive model of spatial revolute joint is utilized, and the influence of 

friction force models in the dynamic response of a mechanical system is analyzed. The kinematic properties of the 

three-dimensional revolute joint are described, and the forces generated during the contact are defined. 

2 Kinetics of Revolute Clearance Joints 

In a simple way, a dry spatial revolute joint is composed of two mechanical components, namely the bush or 

bearing, and the pin or journal, as represented in Fig. 1. Due to the presence of the radial and axial clearances, 

under certain working conditions, the bearing and journal can collide with each other, being the contact treated as 

coupled forces. The intra-joint contact-impact forces developed between each pair of contacting bodies are equal 

and opposite, and the magnitude and direction are evaluated based on the geometry of the joint and on the positions 

and velocities of the bodies that constitute the joint. Most of works found in the literature only consider the effect 

of radial clearance, which is mainly valid for planar movement. In the current work, both radial and axial clearance 

are taken into consideration, therefore, their size can be calculated as follows 

 
r i jc R R   (1) 

 ( ) / 2a i jc L L   (2) 

where cr and ca denote the radial and axial clearance, respectively, Ri and Rj are the radii, and Li and Lj are the 

lengths of the bodies. For sake of simplicity, the two extremities of the bodies were named A and B, as depicted 

in Fig. 1. Furthermore, the bearing and journal are completely defined by their middle point P and the unit vector 

of orientation a. 

 
Fig. 1: Representation of a spatial slider-crank mechanism 
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The modelling of spatial revolute joint with radial and axial clearances involves the awareness of several 

contact scenarios. Hence, thirteen different types of motion were identified. A generic contact configuration of a 

misalign joint is presented in Fig. 2, in which are represented two types of contact, one radial contact in end A and 

one axial contact in end B. From each contact case, two contact points have to be identified which are denoted by 

C, with the subscripts i and j for bearing or journal, respectively, and the superscripts a and r represent the type of 

contact, axial and radial. The superscript also includes the extremity where it occurs. For more detailed information 

in this contact detection methodology, the reader can be directed to [30] 

 
Fig. 2: Generic configuration of a spatial revolute joint with axial and radial contact 

At this point, it is possible characterize the contact kinematics for each collision as function of the contact 

points in the bearing and journal, respectively, Ci and Cj. The normal unit vector of the contact was already defined 

for some cases, but it can be, generically, given as 
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where 
Cir  and 

C jr  are the coordinate vectors in the global system of the bearing and journal contact points, 

respectively. The penetration depth, δ, can be expressed by 

  C Cj i  r r  (4) 

Moreover, the penetration velocity,  , can be determined as it follows 

  C C

v
j i

T

  r r n  (5) 

where 
Cir  and 

C jr  are the linear velocities of the bearing and journal in the contact points, respectively. Finally, 

the relative tangential velocity can be obtained recurring to the following expression 

    C CC C

T v v
j ji i

T

   v r r r r n n  (6) 

The kinematic properties in the contact points plays an important role in the evaluation of the contact-impact 

forces described in the following section. 

(i)

(j)
Pi

ai

Pj

aj

Ci
A,r

Cj
A,r

Cj
B,a

Ci
B,a

Bj Bi

Ai

Aj



4 

 

3 Dynamics of Revolute Clearance Joints 

For modeling revolute joints with clearance, it is of paramount importance to select a suitable contact force model. 

The normal and tangential contact models should properly define the forces acting in the journal and bearing 

during the contact-impact events. 

Thus, for this application, it will be employed a model based on Hertzian theory, which, in its genesis, 

considered elastic impacts. Hunt and Crossley [31] proposed a methodology to take into account the energy 

dissipation through the inclusion of a damping term, and it can be expressed in a general form as  

 N

n nF K     (7) 

where K is the contact stiffness, χ is the hysteresis damping factor, and n is an exponent that defines the degree of 

nonlinearity. This approach was the basis for the development of other contact force models, as the work of 

Lankarani and Nikravesh [16] which is here utilized. In this model, n is 3/2, and the hysteresis damping factor is 

given by 

 
 2
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( )
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4

c K


 


  (8) 

where ce is the coefficient of restitution, and ( )   is the initial impact velocity. 

Introducing Eq. (8) into Eq. (7), the expression to determine the normal contact force can be rewritten in the 

following form 
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 (9) 

This contact model exhibits a good numerical stability for low impact velocities, and shows an accurate 

damping effect for impacts with high coefficient of restitution. Normally, the contact stiffness can be calculated as 

a function of the geometry and material properties. 

In what concerns to the tangential forces, their evaluation is highly dependent on the relative tangential 

velocity, as well as the normal contact force, which are given by Eq. (6) and Eq. (9), respectively. Several complex 

phenomena are associated to friction, those properties led to the development of wide range of friction force 

models which are divided into two main groups, namely the static and dynamic friction models [32]. Bearing that 

in mind, two static models, Coulomb friction [33] and Stribeck [34], and two dynamic models, Dahl [35] and 

LuGre [36], will be considered. 

Coulomb [33] presented the first friction model, in which the friction always opposes the relative motion 

between contacting bodies, and that the magnitude of the friction force is proportional to the normal contact force. 

This model depends on the relative velocity direction, and can described as 

  F C TsgnFF v  (10) 

where 

 C k NF F  (11) 

in which FC is the magnitude of Coulomb friction, μk denotes the kinetic coefficient of friction, sgn is a function 

which returns a unit vector with the direction of the relative velocity, and FF represents the friction force. 

Bo and Pavelescu [34] introduced an exponential function, which is widely utilized to describe the Stribeck 

effect and can be expressed as follows 

       
2

T S

C S 2F T TC sgn
v

F F F e 


   
v

v vF  (12) 

with 
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 S s NF F  (13) 

where vS is the Stribeck velocity, FS denotes the magnitude of static friction, and σ2 is the viscosity coefficient. 

Moreover, Dahl [35] developed the first dynamic friction model based on Coulomb’s friction with the 

inclusion of the pre-sliding displacement through an extra state variable z given by 

  0
T T

C

1 sgn
d

dt F

 
   
 

z
z v v  (14) 

where σ0 is the stiffness coefficient, and the friction force can be thus evaluated as 

 F 0F z  (14) 

The LuGre model [36] is also based in Dahl model, taking into account the Stribeck effect, the viscous friction, 

as well as the frictional lag. The model follows as 

 
 

 0
T T

T

1 sgn
d

dt g

 
    
 

z
z v v

v
 (15)  

  F 0 1 T

d
f

dt
   

z
F z v  (16)  

in which σ0 denotes the damping coefficient, f(vT) is an arbitrary function that describes the viscous effect, and 

g(vT) is an arbitrary function that accounts for the Stribeck effect. 

4 Formulation of Spatial Multibody Systems 

The equations of motion for a dynamic multibody system with holonomic constraints are given by the assemblage 

of the Newton-Euler equations for a constrained multibody system and the accelerations constraint equations, 

which results in the following system [37] 

 

T     
    

     

q

q

M q g

0



  
 (17) 

with the reference frame placed at the center of mass for each body, M  is the system mass matrix, q  is the 

Jacobian matrix of constraint equations, the vector q  contains the generalized state accelerations, λ  is the vector 

that contains the Lagrange multipliers, g  is the vector of generalized forces and γ  is the vector of quadratic 

velocity terms. 

In order to solve Equation (17) through the time domain, a set of initial conditions (positions and velocities) 

is required to start the dynamic simulation. The selection of the appropriate initial conditions plays a key role in 

the prediction of the dynamic performance of mechanical system. This methodology consists in replacing the 

kinematic constraints by forces constraints. These force elements are introduced as external generalized forces, 

and they are evaluated as a function of the contact cases. When there is no contact, the joint does not establish any 

force element. If any contact scenario occurs, the contact points and the local deformations should be identified 

in pursuance of the determination of the generated loads. Thus, to solve the contact dynamics, two main phases 

have to be considered, (i) the contact detection (section 2), and (ii) the determination of the produced forces 

(section 3). 

5 Demonstrative Example of Application 

In order to implement this methodology to simulate the behavior of a revolute joint with clearance, it is considered 

the spatial slider-crank mechanism represented in Fig. 3. The revolute joint with clearance is located at the 

connection between the crank and the ground. The bearing is placed in the crank, while the journal belongs to the 

ground. The length and the inertial properties of each body can be found in Tab. 1. Moreover, to perform a 

multibody system simulation is of paramount importance to properly define the initial conditions, namely positions 
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and velocities. The initial conditions involve the crank in a vertical position, and with an angular velocity of 2π 

rad/s in the negative direction of y-axis. The remaining positions and velocities must fulfill the constraint equations 

for when all the joints are assumed to be ideal, i.e., without clearance. For the following simulations, beyond the 

inertia and reaction forces, only gravitational forces are taken into account, which are applied in the negative 

direction of z axis (g=9.81 m/s2). 

 

Fig. 3: Representation of a spatial slider-crank mechanism 

Body Length [m] Mass [kg] 
Principal Moments of Inertia [kg m2] 

Iξξ Iηη Iζζ 

Crank 0.10 0.12 0.0001 0.0001 0.00001 

Rod 0.29 0.5 0.004 0.0004 0.004 

Slider - 0.5 0.0001 0.0001 0.0001 

Tab. 1: Dimensional and inertia properties of each body 

The dimensional properties of the journal and bearing, as well as the parameters for the normal and tangential 

contact force models utilized in the context of this work are listed in Tab. 2. Furthermore, it was employed a 

fourth-order Runge-Kutta integrator, and the time step had to be reduced to provide an accurate contact detection.  

 

Parameter Value Parameter Value 

Bearing Radius, Ri 10 mm Bearing Length, Li 20 mm 

Journal Radius, Rj 9.5 mm Journal Length, Lj 19 mm 

Radial Clearance, cr 0.5 mm Axial Clearance, ca 0.5 mm 

Contact Stiffness, K 6.71∙1010 N/m3/2 Coefficient of Restitution, ce 0.9 

Kinetic Coefficient of Friction, μk 0.1 Static Coefficient of Friction, μs 0.2 

Stiffness Coefficient, σ0 105 N/m Damping Coefficient, σ1 105/2 Ns/m 

Coefficient of Viscosity, σ2 0 Ns/m Stribeck Velocity, vs 0.001 m/s 

Reporting Time Step 1∙10-5 s Simulation Time 1 s 

Tab. 2: Parameters for the dynamic simulations of clearance joints 

The dynamic behavior of the system is analyzed through the motion of the slider, by plotting the slider position, 

slider velocity, and slider acceleration, as well as the phase portrait of position-velocity and velocity-acceleration, 

as depicted in Figs. 4a to 4e, respectively. In addition, the variation of mechanical energy for frictionless clearance 

joint and clearance joint with different friction models is plotted in Fig. 4f. From the plots presented, it can be 

observed that the clearance and friction at a mechanical joint affects the system’s response. The presence of 

z

yx
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clearance when comparing with the ideal case shows a more unstable behavior which results in higher peaks in 

the acceleration plots, as shown in Fig. 4c. This phenomenon is also observed by the dense overlapping lines in 

the phase portrait of Fig. 4e. Moreover, the inclusion of friction presents a smoother behavior by having lower 

acceleration peaks, and it introduces a much higher component of energy dissipation, as it can be depicted by the 

significant reduction of position and velocity ranges in Figs. 4a and 4b. From the analysis Fig. 4f, it can be 

concluded that considering friction itself, regardless of the model, introduces a large amount of energy dissipation. 

   
 (a) (b) 

   
 (c) (d) 

   
 (e) (f) 

Fig. 4: (a) Slider position; (b) Slider velocity; (c) Slider acceleration; (d) Phase portrait position-velocity; 

(e) Phase portrait velocity-acceleration; (f) Mechanical energy variation.  
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6 Conclusions 

In this work, a methodology for modelling and simulation spatial revolute joints with axial and radial clearance 

was described. The joint elements, the journal and the bearing, were treated as colliding bodies, therefore, the 

evaluation of intra-joint normal contact forces was held by a continuous dissipative contact model, and the 

tangential forces were calculated through four different friction force models. A spatial slider-crank mechanism 

was utilized as an example of application. The study of spatial revolute joint with clearance was performed for the 

frictionless case, and naturally extended to the frictional scenarios. The inclusion of friction itself provokes a 

significant increase in the energy dissipation. It should be put in evidence the difficulties that the dynamic friction 

models have in capturing some frictional properties, such as pre-sliding displacement or friction lag, when in the 

presence of impact motion. The dynamic models use extra state variables which have to be integrated together 

with the state properties of the system, and if their derivatives are not correctly captured, it might result in an 

inaccurate evaluation of the friction forces. The impacts produce rapid changes in the contacting kinematics and, 

therefore, provoke more difficulties to use properly a dynamic model. Finally, the clearance and friction at a real 

joint induces nonlinear behavior and increases the level of energy dissipation. 
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