
Flávio Luis Portas Pinheiro

outubro de 2015

U
M

in
ho

|2
01

5

Characterization of Self-organization
Processes in Complex Networks

C
é

lu
la

s 
so

la
re

s 
e

 s
e

n
so

re
s 

d
e

 f
ilm

e
 f

in
o

 d
e

 s
ilí

ci
o

 d
e

p
o

si
ta

d
o

s 
sC

h
a

ra
ct

e
ri

za
ti

o
n

 o
f 

S
e

lf
-o

rg
a

n
iz

a
ti

o
n

 P
ro

ce
ss

e
s 

in
 C

o
m

p
le

x 
N

e
tw

o
rk

so
b

re
 s

u
b

st
ra

to
s 

fl
ex

ív
e

is
Fl

áv
io

 L
ui

s 
Po

rt
as

 P
in

he
iro

Universidade do Minho

Escola de Ciências





outubro de 2015

Trabalho realizado com a orientação do

Professor Doutor Jorge M. Pacheco

do

Professor Doutor Nuno M. Peres

e do

Professor Doutor Francisco C. Santos

Flávio Luis Portas Pinheiro

Characterization of Self-organization
Processes in Complex Networks

 
Programa Doutoral em Física (MAP-fis)

Universidade do Minho

Escola de Ciências





!
!
!
!
!

STATEMENT OF INTEGRITY 
!
!
!

I hereby declare having conducted my thesis with integrity. I confirm that I have 

not used plagiarism or any form of falsification of results in the process of the thesis 

elaboration. 

I further declare that I have fully acknowledge the Code of Ethical Conduct of the 

University of Minho 

 
 

University of Minho, 25 October 2015 
 
 
 

Flávio Luís Portas Pinheiro 





– That’s why I like to listen to Schubert while I’m driving. As I said, it’s because all the

performances are imperfect. A dense, artistic imperfection stimulates your conscious-

ness, keeps you alert. If I listen to some utterly perfect performance of an utterly perfect

piece while I’m driving, I might want to close my eyes and die right then and there. But

listening to the D major, I can feel the limits of what humans are capable of – that a

certain type of perfection can only be realised through a limitless accumulation of the

imperfect. And personally, I find that encouraging. Do you see what I’m getting at?

– Sort of . . .

Haruki Murakami, Kafka on the Shore
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R E S U M O

A estrutura de interações sociais numa população é muitas vezes modelada através de uma rede com-

plexa que representa os indivíduos e respetivas relações sociais. Estas estruturas são conhecidas por

afetarem de forma fundamental os processos dinâmicos que suportam. A caracterização desse efeito

é, no entanto, uma tarefa complicada pois o tratamento matemático destes sistemas requer o estudo

de um espaço de estados de grande dimensão, limitando a aplicabilidade de abordagens analíticas e

numéricas. Esta tese teve como objetivo desenvolver métodos, inspirados na Física Estatística dos

Sistemas Fora do Equilíbrio, com o fim de caracterizar processos dinâmicos em redes complexas.

Nesta tese demonstramos que a estrutura de uma população naturalmente induz a emergência de

padrões de correlações entre indivíduos que partilham traços semelhantes, um fenómeno também

identificado em estudos empíricos. Estes padrões de correlações são independentes do tipo de pro-

cesso dinâmico considerado, do tipo de informação que se propaga sendo observados numa classe

alargada de redes complexas. Mostramos também que propriedades como o clustering e a densidade

de ligações da rede têm um papel fundamental nos padrões de correlações emergentes.

Outra questão fundamental diz respeito à relação entre as dinâmicas local e a global em redes sociais.

De facto, as redes sociais afetam de forma tão fundamental os processos dinâmicos que suportam que

em muitas situações o comportamento coletivo observado não tem qualquer relação aparente com a

dinâmica local na sua génese. Este é um problema comum a muitos sistemas complexos e tipicamente

associado a fenómenos emergentes e de auto-organização. Neste trabalho esta questão é explorada

no contexto do problema da Cooperação e no âmbito da Teoria de Jogos Evolutiva. Para esse fim

introduzimos uma quantidade que é estimada numericamente e a que damos o nome de Average

Gradient of Selection (AGOS). Esta quantidade, relaciona de forma efetiva as dinâmicas local e global,

possibilitando a descrição do processo de auto-organização em populações estruturadas.

Através do AGOS mostramos que quando as interações entre indivíduos são descritas através do

Dilema do Prisioneiro, uma metáfora popular no estudo da cooperação, a dinâmica coletiva emergente

é sensível à forma da rede de interações entre os indivíduos. Em particular, demonstramos que quando

a rede é homogénea (heterogénea) no que respeita à distribuição de grau o Dilema do Prisioneiro

é transformado numa dinâmica coletiva de coexistência (coordenação). Mostramos ainda que esta

transformação depende da pressão de seleção (associada ao grau de determinismo no processo de

decisão dos indivíduos) e de taxa de mutações (a adoção espontânea de um novo comportamento por

parte de um individuo) consideradas. A relação entre estas duas varáveis pode também resultar em

alterações de regimes dinâmicos cujo o resultado pode, em casos particulares, resultar no desfecho

drástico para a evolução da cooperação.

Finalmente, fazemos uso do AGOS para caracterizar a dinâmica evolutiva da cooperação no caso em

que a estrutura co-evolve. Demonstramos que na presença de uma estrutura social a dinâmica global

é semelhante à de um jogo de coordenação entre N-pessoas, cujas características dependem de forma
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sensível das escalas de tempo relativas entre a evolução de comportamentos e a evolução da estrutura.

Uma vez mais, a dinâmica global emergente contrasta com o Dilema do Prisioneiro que caracteriza

as interações locais entre os indivíduos.

Acreditamos que o AGOS, que pode ser facilmente aplicado no estudo de outros processos dinâmi-

cos, proporciona uma contribuição significativa para o melhor entendimento de Sistemas Complexos,

em particular aqueles em que as interações entre os elementos constituintes são bem definidos através

uma rede complexa.
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A B S T R AC T

The structure of social interactions in a population is often modeled by means of a complex network

representing individuals and their social ties. These structures are known to fundamentally impact the

processes they support. However, the characterization of how structure impacts a dynamical process is

by no means an easy task. Indeed, the large configuration space spanned tends to limit the systematic

applicability of numerical methods, while analytical treatments have failed to provide a good descrip-

tion of the system dynamics. The aim of this thesis was to develop methods inspired in the Statistical

Physics of Systems far from equilibrium to characterize dynamical processes on complex networks.

In this thesis we show how the structure of a population naturally induces the emergence of correla-

tions between individuals that share similar traits, which is in accordance empirical evidence. These,

so called, ’peer-influence” correlation patterns are independent of the type of dynamical process un-

der consideration, the type of information being spread while being ubiquitous among a wide variety

of network topologies. We have also find evidence that central to the ’peer-influence” patterns are

topological features such as the clustering and the sparsity of the underlying network of interactions.

Another fundamental problem concerns the relationship between local and global dynamics in social

networks. Indeed, social networks affect in such a fundamental way the dynamics of the population

they support that the collective, population-wide behavior that one observes often bears no relation to

the individual processes it stems from. This is in fact a common problem among many Complex Sys-

tems typically associated with self-organization and emerging phenomena. Here we study this issue

in the context of the problem of Cooperation and in the realm of Evolutionary Game Theory. To that

end we introduce a numerically estimated mean-field quantity that we call the Average Gradient of Se-

lection (AGOS). This quantity is able to effectively connect the local and global dynamics, providing

a way to track the self-organization of cooperators and defectors in networked populations.

With the AGOS we show that when individuals engage in a Prisoner’s Dilemma, a popular coop-

eration metaphor, the emerging collective dynamics depends on the shape of the underlying network

of interactions. In particular, we show that degree homogeneous (heterogeneous) networks the Pris-

oner’s Dilemma is transformed into a collective coexistence (coordination) dynamics, contrasting

with the defector dominance of the local dynamics. We further show that the extent to which these

emergent phenomena are observed in structured populations is conditional on the selection pressure

(the uncertainty associated with the decision making) and the rate of mutations (the spontaneously

adoption of new behaviors by individuals) under consideration. Interestingly, the interplay between

selection pressure and mutation rates can lead to drastic regime shifts in the evolution of cooperation.

Finally, we make use of the AGOS to characterize the evolutionary dynamics of cooperation in

the case of a co-evolving social structure. We demonstrate that in an adaptive social structure the

population-wide dynamics resembles that of a N-person coordination game, whose characteristics de-

pend sensitively on the relative time-scales between behavioral and network co-evolution. Once more,
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the resulting collective dynamics contrasts with the two-person Prisoner’s Dilemma that characterizes

how individuals interact locally.

We argue that the AGOS, which can be readily applied to other dynamical contexts and processes,

provides a significant contribution to a better understanding of Complex Systems involving popula-

tions in which who interacts with whom is well-defined by a complex network.
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1

I N T RO D U C T I O N

“Things became duplicated in Tlön; they also tend to become effaced and lose their

details when they are forgotten. A classic example is the doorway which survived so

long as it was visited by a beggar and disappeared at his death. At times some birds, a

horse, have saved the ruins of an amphitheater.”

Jorge Luis Borges, Ficciones

Social structure is often associated with the web of social relationships interconnecting individuals in

a group, community or population [1, 2]. In that context, networks or graphs provide an intuitive and

powerful conceptual tool to model and study the properties of such structures. In a ’Social Network’

nodes correspond to individuals and links, connecting two nodes, highlight the existence of a social tie

between a pair of individuals. Different types of social interactions may lead to different types of social

networks, such as networks of scientific collaborations [3], sexual partnerships [4], communication

[5], friendship [6], among others. Real world social networks are complex, in the sense that they

often exhibit topological features that strongly deviate from the regular and homogeneous topologies

commonly found in Physics textbooks [7] and from the random structures at the genesis of graph

theory [8, 9].

The ubiquity of complex networks far extends social systems. Examples range from Technological

systems (e.g. power grid [10], airline [11], roads [12, 13], telecommunications [14], the Internet

[15]) to Information (e.g. world wide web [16], citations [17], blogs [18]) but are also common in

Biological (e.g. metabolic [19, 20], food web [3], gene regulation [21], protein-protein interactions

[22, 23]), Language (e.g. semantic [24]) and other natural systems. Their abundance has justified the

big effort that has been made to understand how they emerge and the role they play in the functioning

of the different systems at their genesis. In that context, Physics has played an important part, since

as a science it is known for the development of tools that successfully predict the behavior of large

scale systems from the properties of its constituents [25]. Example of that are several review articles

[26, 25, 27, 28, 29] and books [30, 31, 32, 33] that summarize the fundamental contributions of Physics

to the Science of Networks, constituting the backbone of any modern course in Complex Networks.

Section 1.2 provides an introduction to the fundamental concepts of Network Science necessary for a

full comprehension of the topics discussed along the following Chapters.

While the shape of Social Networks stems from individuals’ choices [34], individuals’ dynamical

state and traits are, in the same way, largely influenced by the shape of the social network they are

part of [35]. For instance, the susceptibility of an individual to acquire and infectious disease, such
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Chapter 1. I N T R O D U C T I O N

as flu, is largely influenced by the individuals he chooses to interact with, whose susceptibility, in

turn, depends on whom they interact with, and so forth. Following the same logic, being friends with

a highly popular and, as consequently, highly susceptible individual, certainly increases our chances

of getting infected. In that context Santorras et al [36] have shown that Social Structures decrease

the resilience of populations to epidemic outbreaks, by increasing the susceptibility of individuals to

become infected [37, 38, 39].

Contagious diseases are not the only dynamical element that propagates along the nodes of Social

Networks. Ideas, innovations and behaviors are also transmitted from individual to individual through-

out social interactions. In the same way our opinions and behaviors influence our peers, we are also

influenced by theirs. Furthermore, the ’peer-influence’ patterns found in empirical social networks

show that they extend individuals’ range of interactions, beyond those they are directly connected to.

For instance, Fowler and Christakis [40, 41, 42] have compiled empirical evidence that supports the

idea that individuals’ habits (e.g. smoking) and behaviors are not only influenced by the people we

choose to interact directly with but also by their friends and by their friends’ friends as well. This

phenomenon, coined as the three-degrees of influence, highlights how Social Networks generate non-

intuitive patterns and calls for a closer attention on how these impact the dynamical processes they

support. In Chapter 2 we explore the universality of these network patterns by testing how different

dynamical processes generate similar peer-influence patterns in a wide range of network topologies

[43].

Social structure also plays a central role in the evolution of Cooperative behavior [44]. Mostly

studied employing Evolutionary Game Theory [45, 46, 47], it has been shown theoretically that an

underlying network of interactions between individuals facilitates the emergence of cooperation [48,

49]. This becomes particularly effective when such structure closely resembles the shape of real

world social networks [50, 51, 52, 53]. Empirical evidence is, however, less conclusive. Some studies

support the idea that structure indeed promotes cooperative behavior in human populations[54, 55,

56, 57, 58, 59], while recent studies have raised some questions on that evidence [60, 61, 62, 63,

64]. In Chapter 3 we proposed a novel approach to characterize dynamical processes on structured

populations, thus effectively unveiling the role that different types of social structures have in the

emerging collective dynamics. In Chapters 4 and 5 we extend this approach to more dynamically

complex scenarios.

In the same way we adopt new traits and our health condition changes, we also constantly revise

with whom we interact. Indeed, the assumption that social structures are static, is but a simplification

[65]. The real world social networks are evolving structures driven by decision making of individu-

als. Studying dynamical processes in complex networks thus requires to take into consideration also

this aspect of social structures. In Chapter 6 we explore the evolutionary consequences of adaptive

social networks in the context of the evolution of cooperation by adapting the approach introduced in

Chapter 3.

Dynamical processes are not restricted to situations that involve interactions between pairs of individ-

uals. Indeed, many situations are better understood when interactions between groups are considered

[66]. In that scope, networks, whose structure stems from pairwise relationships, are not necessarily

2



1.1. Overview

the most convenient way to map individuals’ participation in groups [67]. In fact, decision making in

groups have been recently used to study the implication of of individuals’ decision making in inter-

national agreements [68, 69]. Whenever a social network plays a smaller role, we extend the study

of an evolving population in which individuals only interact in pairs to the more complex scenario of

groups of interacting individuals. In Chapter 7 we explicitly explore the evolutionary dynamics of a

population whose individuals participate in repeated group interactions [70]. We consider the entire

strategy space spanned when considering strategies in which individuals react to the actions of the

group in the previous round.

Overall, in this thesis we explore questions that consider finite populations of individuals. We model

both the rules and the scheme (i.e network) of interactions between individuals, our goal being to

characterize the process of self-organizing, emerging collective phenomena. This is a problem well

framed within the Physics of Complex Systems, whose state of the art approaches often stem directly

from tools developed in the scope of Statistical Physics and Dynamical Systems Theory. This is not

surprising, since the study of systems composed by many interacting units is a secular topic in Physics

[71]. Here, in order to characterize the self-organization processes in complex networks we introduce

a novel approach that makes use of Computational Physics methods to run large scale numerical

(Monte-Carlo) simulations to estimate a quantity that proves to be sensitive to the network context in

which it is computed. Furthermore, the work developed in this thesis tackles problems and questions

that are inherently multidisciplinary. For instance, the problem of Cooperation, which is the focus of

Chapters 3 to 7, is considered of major importance in Biological [72] and Social [73, 66] sciences,

where it is believed to be an essential building block to the evolution of complex biological organisms

and of human civilization.

In the next section we provide a brief overview of this thesis, highlighting the main contributions of

each chapter.

1.1 OV E RV I E W

This thesis is organized as a collection of independent articles developed during the time period of

the doctoral program. The modular structure invites the reader to jump to the chapter that he/she feels

more interested in. In the following I provide an overview of the remaining thesis, summarizing the

major contributions per chapter.

The remaining of Chapter 1 is composed by three sections. The first two introduce fundamental

concepts of Network Science (1.2) and Evolutionary Game Theory (1.3) while the third (1.4) reviews

the main results available in existing literature of Evolutionary Games on Structured Populations [53].

Chapters 2, 3, 4, 5, 6 and 7 correspond to articles developed during the doctoral program. Each starts

with an introductory note that contextualizes the reader to the importance of the work included. While

some of these chapters correspond to articles published in peer-reviewed journals (Chapters 2, 3, 4

and 7) others are either submitted or (Chapter 6) close to submission (Chapter 5).

In Chapter 2, entitled Origins of Peer Influence in Social Networks, we study how the empirically

identified ’peer-influence’ patterns of correlations between individuals emerge in networked popula-

tions [43]. We employ a range of models of information spreading, well-known in the Physics of

3



Chapter 1. I N T R O D U C T I O N

Complex Systems, to argue that empirically observed patterns of correlation among peers emerge

naturally from a wide range of dynamics, being essentially independent of the type of information,

on how it spreads, and even on the class of underlying network that interconnects individuals. More-

over, we show that the sparser and clustered the network, the more far reaching the influence of each

individual will be.

In Chapter 3, From Local to Global Dynamics in Social Networks, we study the evolution of co-

operation in networked populations when individuals interact according to the two-person Prisoner’s

Dilemma, the most famous social metaphor of cooperation developed to date [74]. We show how

degree homogeneous networks transform a Prisoner’s Dilemma into a population-wide evolutionary

dynamics that promotes the coexistence between cooperators and defectors, while degree heteroge-

neous networks promote their coordination. Central to this analysis is the development of a novel

methodology to analyze the macroscopic, population-wide dynamics on structured populations. This

is done through the computation of a numerically mean-field quantity that we refer to the Average

Gradient of Selection, which returns dynamical information similar to the classical replicator equa-

tion from Evolutionary Game Theory but with information that is context dependent, namely, that

reflects the nature of the underlying network supporting the evolutionary dynamics.

In Chapter 4, How Selection Pressure Changes the Nature of Social Dilemmas in Structured Popula-

tions, we use the Average Gradient of Selection to investigate how selection pressure (here associated

with the stochasticity of the individuals decision making) contributes to change the fate of the popu-

lation in a broader range of network topologies [75]. We recover the analytical results from degree

homogeneous networks (valid only in the limit of weak section, that is, weak coupling amenable to a

first order perturbation theory analysis), whereas strongly heterogeneous networks are more resilient

to natural selection, dictating an overall robust evolutionary dynamics of coordination. Between these

extremes, a whole plethora of behaviors are predicted, showing how selection pressure can change the

nature of dilemmas populations effectively face. We further demonstrate how the present results for

homogeneous networks bridge the existing gap between analytic predictions obtained in the frame-

work of the pair-approximation from very weak selection and simulation results obtained from strong

selection.

In Chapter 5, Evolution of Cooperation Under Variable Mutation Rates, we use the Average Gra-

dient of Selection to investigate how the introduction of mutation rates in structured population influ-

ences the evolutionary dynamics of cooperation. We show that when individuals engage in a Pris-

oner’s Dilemma game on degree heterogeneous networks, mutation rates induce regime shifts, from

the defection dominance that characterises the standard Prisoner’s Dilemma into a regime of coex-

istence among Cooperators and Defectors, as well as into a regime of coordination, often revealing

more than one basin of attraction. Moreover, we predict that under strong selection regimes, coopera-

tion is undermined by variations in the mutation rate, whereas under weak selection one witnesses a

subtle balance between selection and mutation, which is favourable to defectors. Interestingly, there

exists a range of selection pressures in which structured populations are most resilient to variations in

mutation rates.
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In Chapter 6, Linking Individual and Collective behavior in Adaptive Social Networks, we use the

Average Gradient of Selection to explore the evolutionary dynamics on adaptive social networks, estab-

lishing a link between the global and the local dynamics in co-evolutionary systems. We demonstrate

that adaptive social structures change the two-person social dilemmas locally faced by individuals into

an evolutionary dynamics that resembles that of a N-person coordination game, whose characteristics

depend sensitively on the relative time-scales between behavioral and network co-evolution. Indeed,

we show the that faster the relative rate of adaptation of the network, the smaller the critical fraction

of Cooperators required for cooperation to prevail, thus establishing a direct link between network

adaptation and the evolution of cooperation.

Chapter 7, Evolution of All-or-None strategies in repeated public goods dilemmas, is devoted to

investigate the evolutionary dynamics of direct group reciprocity, considering the complete sub-space

of reactive strategies, where individuals behave conditionally on what they observed in the previous

round [70]. This sub-space, although not complete, is by far the largest strategy subspace employed to

date in the study of reciprocity within groups. We study both analytically and by computer simulations

the evolutionary dynamics encompassing this extensive strategy space, witnessing the emergence of a

surprisingly simple strategy that we call All-Or-None. This strategy consists in cooperating only after

a round of unanimous group behavior (cooperation or defection), and proves robust in the presence

of errors, thus fostering cooperation in a wide range of group sizes. The principles encapsulated in

this strategy share a level of complexity reminiscent of that found already in two-person games under

direct reciprocity, reducing, in fact, to the well-known Win-Stay-Lose-Shift strategy in the limit of the

repeated 2-person Prisoner’s Dilemma.

Finally, Chapter 8 concludes with a recap of the main results obtained during this thesis, a critique to

the work developed during the doctoral program, which also includes work developed and published

during the same period but not included in the thesis, and notes of future research directions.

1.2 T H E S C I E N C E O F N E T W O R K S

A network is any system that admits an abstract mathematical representation as a graph whose

nodes or vertices identify the elements of the system and in which the set of connecting links or edges

represent the existence of a relation or interaction among those elements [35]. In that sense a network

can be represented by a graph G composed by a set Z of Z vertices {n1, n2, ..., nZ−1, nZ} and another

set L of L edges {eij, .., enm} ∀(i, j, n, m) ∈ [1, Z]. Edges connect pairs of vertices and can have

additional properties, for instance a weight (wij) or a direction (i.e. eij 6= eji). A graph is also said to

be sparse if L << Z2 and dense if L = O(Z2).

A network is completely described by means of the so-called adjacency matrix, A. This is a Z× Z
square matrix whose entries aij are 1 when exists a link connecting nodes ni and nj, being 0 otherwise.

In weighted networks, the entries of A are replaced by the respective weights of the edges (i.e. aij =

wij), while in undirected networks A is becomes symmetric since aij = aji. Finally, the diagonal

elements of A concern self-connections or loops, that is, links that start and end at the same node (eij

for i = j).
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Figure 1: Graphical representation of an undirected network and the respective Adjacency matrix
A. Each entry of the adjacency matrix aij is 1 if i is connected to j and 0 otherwise. In
the case of undirected network aij = aji, and moreover when links are weighted, the
entries of the matrix are replaced by the weight.

The maximum number of edges in an undirected graph is Z(Z− 1)/2 while in directed graphs there

are at most Z(Z− 1) edges. A complete graph corresponds to a network whose entries are all 1, i.e.

aij = 1 ∀i, j ∈ {1, ..., Z} ∧ i 6= j. Likewise, cliques refer to fully connected components of graphs.

Although weighted and directed networks provide a more realistic representation of real world sys-

tems, for the purpose of this thesis we shall focus our attention in the simpler case of undirected and

unweighted networks that do not have loops.

1.2.1 Degree

The degree of a node corresponds to the total number of connections a node i is part of, which in

terms of A reads

ki =
Z

∑
j=1

aij (1)

Networks are characterized by the degree distribution, D(k), that corresponds to the fraction of nodes

with degree k. The first moment of D(k) corresponds to the mean degree

〈k〉 =
max(k)

∑
k=1

kD(k) (2)

while the second moment
〈
k2〉 measures fluctuations in D(k). We shall also consider the variance of

D(k), that is given by

var(k) =
〈
k2〉− 〈k〉2 (3)

The Degree distribution (D(k)) is the simplest, yet the most common property used to classify

networks. Indeed, real world networks often exhibit different degree distributions. In particular, when

D(k) falls in the category of heavy-tailed distributions, we face several technical challenges that

undermine a good estimation of the distribution parameters. These are distributions characterized by

a tail that decays slower than an exponential or geometric distribution. As a result empirical samples

6



1.2. The Science of Networks

1

2

3

4 6

5

7

1

2

3

4 6

5

7

1

2

3

4 6

5

7 w67

w57w36

w35w23

w13

w12
w34

w46

w47

Figure 2: Graphical representation of an undirected (left), directed (middle) and weighted net-
work (right). The weighted and undirected graphs are composed by Z = 7 vertices
(nodes) and L = 10 edges (links). In the directed graph arrows point to the direction of
the link and the total number of links is L = 13. In the weighted graph wij indicates the
weight of each link. Graphically, the weight is represented with different thicknesses.

tend to be very noisy for values k >> 1. One approach is to compute the complementary cumulative

distribution (CDF) of D(k), that is defined as

D̃(k) = 1−
k−1

∑
j=1

D(k) (4)

and provides a smother distribution for analysis. Currently the most accepted approached to estimate

the parameters of heavy tail distribution relies on the maximum likelihood fit in conjunction with a

goodness-of-fit test. In reference [76] Clauset et al detail the applicability of this approach to arbitrary

distributions.

Although the degree distribution describes the statistical properties of an uncorrelated network, it

fails to capture degree-degree correlations, which are present in many real world networks [77, 78,

79]. A more general and accurate definition would be provided by the conditional probability that a

node with degree k is connected to a node with degree k′, i.e. D(k|k′). Although such the formal

definition, it is often unfeasible to estimate the conditional distribution from finite size empirical

networks. A more feasible approach to identify and classify degree-degree correlations explores the

so-called average nearest neighbors degree of a node i, which reads as

ki
nn =

1
ki

Z

∑
j=1

aijk j (5)

that allows the computation of the average degree of nearest neighbors of nodes with degree k, denoted

as knn(k), that is

knn(k) = D(k)
z

∑
i=1

δ(k− ki)ki
nn (6)

In the absence of degree correlations knn(k) should be independent of k, while a dependence on this

parameter highlights the existence of correlations.
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Figure 3: Graphic representation of the computation of the Clustering Coefficient of node i in
different iterations of a graph with Z = 4.

Networks showing degree-degree correlations are classified either as assortative if knn(k) increases

with k and disassortative if it decreases with k [80], thus indicating how probable is for nodes of

similar degree to cluster together. Another way to measure degree assortativity is by means of the

Pearson correlation coefficient, r, which is computed as

r =
1
σ2

q
∑
jk

jk(ajk − qjqk) (7)

where qk is obtained from the degree distribution and reads

qk =
D(k + 1)
∑j≥1 D(j)

(8)

and σq the variance of qk. This quantity measures the correlation between the degrees of nodes that

share an edge. A positive (negative) r indicates a correlation between nodes of similar (dissimilar)

degree. In the context of social sciences, assortativity (disassortativity) is associated with homophilic

(heterophilic) behavior in individuals choice of social interactions. Assortativity in social networks is

most likely the result of our natural homophilic behavior [80, 81].

1.2.2 Clustering Coefficient

It is often the case that a network can also be characterized by the abundance of particular arrange-

ments of nodes. These topological building blocks [82], also called motifs, constitute patterns of

interconnections occurring in complex networks at an abundance higher than expected from a random

network. That is, motifs are statistically significant sub-graphs or patterns.

The simplest motif involves three nodes (ni, nj and nk) with at least two (e.g. eij and ejk) and at

most three (e.g. eij, ejk and eki) links, the first case corresponds to an ’open’ and the second to a

’closed’ triangle. The study of the abundance of ’closed’ triangles on networks takes a particular

interest mainly because of its intuitive meaning in real world social networks. For instance in social
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networks, whose nodes correspond to individuals and links to a social tie connecting them, triangles

identify a pair of friends (nodes) of a focal individual (node) that are also friends (connected) between

themselves.

The abundance of triangles is also associated with clustering, that is the tendency for nodes in a

graph to cluster together, in the sense that ’closed’ triangles correspond to a fully connected motif.

Hence, let us consider λi as the number of ’closed’ triangles a node i belongs over the total number

of ’open’ triangles ((ki(ki − 1))/2). The clustering coefficient of individual i is

Ci = 2
λi

ki(ki − 1)
(9)

and the average clustering coefficient of a network G, as introduced by Duncan J. Watts amd Steven

Strogatz [83], becomes

CG =
1
Z

Z

∑
i=1

Ci (10)

Alternatively, one can also compute the distribution of clustering coefficients (C(K)), which corre-

sponds to the average clustering of nodes with degree k

C(k) = D(k)
Z

∑
i=1

δ(k, ki)Ci (11)

where δ(k, ki) is one when k = ki, and zero otherwise.

The shape of C(k) has been connected with the hierarchical structure of networks [84]. In particular,

when C(k) ∼ k−β networks exhibit properties associated with modular hierarchical structure. That

is, one can easily identify nodes that are highly interconnected with each other, but have only a few,

or none connections with nodes outside of the group to which they belong to. This is at the genesis of

the high clustering coefficients that characterize real world structures.

Higher order clustering coefficients, involving an arbitrary number of nodes, have also been pro-

posed [85] although its applicability is always dependent on the problem at hand.

1.2.3 Average Path Length

Networks provide an intuitive and natural metric to measure the distance between the different el-

ements of a system. The distance between the two nodes ds(ni, nj) corresponds to the minimum

number of links a walker starting from one node would need to transverse to reach the other end, that

is

ds(ni, nj) = min(d(ni, nj)) (12)

where d(ni, nj) represents a list of the distances corresponding to all paths that connect nodes ni and

nj. The average (shortest) path length (〈lG〉) of a network is defined as

〈lG〉 =
1

Z(Z− 1) ∑
i 6=j

d(ni, nj) (13)

9
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Figure 4: Graphic representation of the distance between a pair of nodes in a unweighted and
undirected Graph. Highlighted are all equidistant paths connecting nodes 1 and 6.
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Figure 5: Schematisation of Watts-Strogatz Model used to explore the Small-World phenomena
in complex networks. (Left) Relationship between clustering coefficient and Average
Path Length as a function of the probability p of rewiring links. (Right) layout of the
Watts-Strogatz model to generate networks that exhibit the small-world phenomena.

and gives an estimate of the average distance between any two random nodes sampled from the net-

work.

Similarly, the diameter of a network (diam(G)) corresponds to the maximum distance between any

pair of nodes,

diam(G) = max(d(ni, nj)), ∀i, j (14)

Both measures require the network to be composed by a single connected component, that is, there

is at least path connecting every pair of nodes in the network.

One can also expand the notion of degree under the concept of network distance. Hence, the degree

ki of a node ni corresponds to the number of nodes at distance of 1 one link. Likewise we can define

kn
i as the degree of node ni at distance n, that is, how many nodes are at distance of n links from ni.
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1.2.4 Models of Networks

Real world networks exhibit a wide range of properties. Several models have been proposed to ex-

plain how these networks can be generated. These help us explain the identified underlying properties

and patterns of such networks along with the dynamical processes they stem from. The success with

which network science has explained several real world features was one of the major contributors for

its growing popularity in past twenty five years.

Random and Regular Structures

To understand and quantify the properties and patterns of empirical networks we require the un-

derstanding of the shape and structure of a network that is free of correlations and strong generative

assumptions. Such networks can be devised by means of a purely random process. The study of

these structures comprised the bulk of graph theory research for much of the XX century [9]. One

of the most popular methods to generate random networks was proposed by Paul Erdős and Alfréd

Rényi. The algorithm that become known as Erdős–Rényi model [8] considers a set of initially discon-

nected nodes, after which each pair of nodes is independently connected with probability p. For large

networks (Z >> 1) the distribution of degrees is well approximated by a Poisson distribution

D(k) ∼ 〈k〉
k

k!
e−〈k〉 (15)

For this reason, Erdős–Rényi networks are also known as Poisson or Random networks and are by

definition uncorrelated networks, since links are created regardless of the nodes’ degree.

Networks can also be generated following a more constrained set of conditions. Take for instance a

network whose nodes are spatially arranged in a symmetric configuration (e.g. a grid) and where each

node is connected to his closest k neighbors (in an Euclidean metric). The resulting networks exhibit

a regular structure and are commonly known as a Lattices with the degree distribution being charac-

terized by a single peak over k, i.e. D(k) = δ(k) where δ(k) is the Kronecker delta. What Lattices

and Erdős–Rényi networks offer in mathematical simplicity (i.e. high symmetries and regularities in

one case and the absence of correlations in the other) they lack in being good representatives of real

world networks. Indeed, random networks typically exhibit low clustering coefficient levels and a

single scale 1 degree distribution [10]. While the highly constrained topology of Lattices only finds a

real world counter part in the molecular structure of crystals [86]. Despite the lack of similarities with

real networks, the interpolation between these two types of networks (Erdős–Rényi and Lattices) was

central to explain a phenomena that is ubiquitous among real-world social networks: the small world

effect.
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Figure 6: A Schematic representation of the Barabási-Albert Model of growth to generate net-
works. At each time step a new node is added to the network and connects to m pre-
existing nodes. The resulting structure is an Exponential structure (B) if attachment
occurs linearly and Scale-Free network (C) when nodes attached preferentially to the
most connected nodes of the pre-existing nodes. Panels B and C were extracted from
[87].

Small World

If one work has to be regarded as the starting point of modern Network Science, the prize would

be awarded to the 1998 seminal work of Duncan J. Watts and Steven Strogatz [83]. The authors

successfully joined the mathematical framework of graph theory with the real world features that

have been associated with large structured populations.

Let us consider the Watts-Strogatz model [83], which is used to generate the networks represented in

the right panel of Fig. 5. Starting from a regular ring network (nodes are arranged along a circle and

connected to their k nearest neighbors) each node rewires his rightmost k/2 connections with proba-

bility p towards another node of the network. For p = 0 the network retains the initial structure (high

clustering coefficient and large Average Path Length) while for p = 1 the network is qualitatively

equivalent to an Erdős–Rényi network except that kmin = k/2, thus holding no similarities with the

initial network. However, as Duncan J. Watts and Steven Strogatz have shown, it is only necessary to

rewire a few connections (small p ≈ Z− 1) of a ring network drastically decrease the Average Path

Length of the network while retaining the local properties (i.e. the clustering coefficient), a phenom-

ena commonly referred as Small World [83] and which was formulated in mathematical terms, for the

first time, in 1998. Not only did their work explain several properties found in real world networks but

it also draw an amazing parallel with the concept of six degrees of separation popularized by Stanley

Milgram forty years before in the social sciences [88].

In fact, the ideas behind small-world phenomena are older, tracing back to the work of social scientist

de Sola Pool and mathematician Manfred Kochen [89] in the early 1960, which despite having only

published their work after Milgram’s [88] had made available a pre print version of the work since the

early 1960.

1 Implying that the network has a distribution with a well-defined scale, this is the case of the Lattices or any Degree distribu-
tion whose degree distribution decays exponentially.
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Figure 7: Schematic representation of different network topologies (top) and respective degree
distributions (bottom). Degree distributions (D(k)) are plotted in a log-log plot.

The World is Scale-Free

The most recognisable fingerprint of many empirical networks, however, is their distinctive power-

law degree distribution, that is

D(k) ∼ k−γ (16)

This profile, intimately related to scale-invariant behavior in non-linear physical systems, led these

networks to be coined as scale-free. They are characterized for having a few nodes that accumulate a

large number of connections (the hubs) while the majority of the nodes only have a few connections

(the leaves), leading to fat-tail degree distributions. As pointed by Lazlo Barabási and Reka Albert

[90], two important ingredients are necessary to generate scale-free networks: a) the network needs to

be the result of a growth process where nodes are iteratively added over time and b) new nodes should

preferentially connect to pre-existing ones proportional to their degree.

The algorithm proposed by Barabási and Albert to generate scale-free networks starts from a clique

with m + 1 nodes (i.e. a set fully connected nodes) and adds the remaining Z−m− 1 nodes sequen-

tially (growth); each node added connects to other m pre-existing nodes sampled proportional to their

degree (preferential attachment, see illustration in Figure 6). In the limit of large network size Z , this

algorithm generates scale-free networks with a power of γ = 3.0 and average degree of 〈k〉 = 2m
Later adaptions of this model allowed for the generation of scale-free networks with larger clustering

coefficients [91], hierarchical structure [84] or with a particular power [92] of the degree distribution.

When the preferential attachment is replaced by a linear attachment (i.e. nodes connect to pre-existing
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ones at random) the resulting network shows a degree distribution whose tail follows an exponential

distribution

D(k) ∼ e−λk (17)

and that, as we see, is also common in real world networks.

Figure 7 shows a representation of the four network topologies discussed in this section together

with their respective degree distributions. Networks are ordered according to their degree variance

(increasing from left to right).

1.3 E VO L U T I O N A RY G A M E T H E O RY

The central description in Evolutionary Game Theory is the replicator equation [93, 94, 46, 95]. It

corresponds to a set of S − 1 non-linear differential equations describing how the frequencies of S
different types of individuals evolve in a population. It has the form

ẋi = xi( fi −
S

∑
j=1

xj f j) (18)

where xi is the fraction of individuals of type i with fitness fi, and where ∑S
j=1 xj f j is the average

fitness of the population. Here a type is also associated with a strategy. Fitness accounts for the ability

of individuals to replicate themselves. The replicator equation describes the frequency dependent

evolution of an infinite population, in this context fitter individuals replicate more often.

In an evolutionary sense, the replicator equation only accounts for the effects of selection due to

competition. A more general approach would include the role of mutations [96], which can be added

with the introduction of an additional term to Equation 18

ẋi = xi( fi −
S

∑
j=1

xj f j) + µ(1− Sxi) (19)

where µ corresponds to the relative intensity of mutations and S to the number of strategies.

A key insight of Evolutionary Game Theory is that behaviors involve the interaction of multiple

organisms in a population, the success of any organism depends on how its behaviors interacts with

that of others. So, the fitness of an individual organism cannot be measured in isolation; rather it

has to be evaluated in the context of the whole population in which it lives. This opens the door to

a natural game-theoretic analogy: an organism’s genetically-determined characteristics and behaviors

are like strategies in a game, its fitness is like its payoff, and this payoff depends on the strategies of

the organisms with which it interacts.

One of the central assumption in Evolutionary Game Theory is that the evolution of a population de-

pends on the outcome of the interactions that occur between individuals that make it up. So the fitness

of an individual is not an isolated quantity predefined by an individual full set of traits, but rather a

context-dependent quantity. In the sense of Evolutionary Game Theory, interactions between individ-

uals can be modeled in light of Game Theory, in the sense that an individual genetically-determined
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Figure 8: Depiction of the Pairwise Comparison Rule to model Birth-Death processes in finite
populations. In the first step two individuals are randomly selected from the population.
Secondly one of these individuals compares his fitness with the other. Finally, at a third
step with a probability defined by the Fermi Distribution the first individual imitates
the strategy of the second. Disks represent individuals in a population, with different
colors representing different types.

characteristics and behaviors are like strategies in a game, its fitness is a function of the payoff, which

depends on the the strategies adopted/played by the other individuals with whom he interacts [97]. In

simple terms, the fitness is a frequency dependent quantity

fi = fi(x) = fi(x1, x2, ..., xS−1) (20)

that is, it is a function of the composition of strategies in the population. Another important, but im-

plicit, assumption in Evolutionary Game Theory is that individuals are effectively rationality-bounded,

in the sense that individuals are not aware of the payoff structure of the game nor do any consideration

on the rationality of their peers. Individuals behave unconditionally according to their strategy, as if it

was a phenotype in a biological sense. Hence, in a biological sense, evolution is driven by selection,

reproduction and replacement of strategies. In a social scope evolution happens by social learning (e.g.

imitation), or the desire of individuals to adopt the most fitted behaviors, regardless of the strategy that

they stem from.

When mutations are absent (µ = 0) and the population is only composed by individuals of two

strategies (e.g. A and B), Equation 18 simplifies to

ẋ = x(1− x)( fA(x)− fB(x)) (21)

15



Chapter 1. I N T R O D U C T I O N

where x is the fraction of A individuals. This is the most popularized form of the replicator equation,

and also corresponds to the most studied regime (no mutations and two-strategies). This expression

holds two trivial solutions x = 0 and x = 1, while additional fixed points in ]0, 1[ exist for all values

of x that are solution of fa(x) = fb(x). In this context we are left with the definition and computation

of the fitness function for each strategy.

It has been shown that the replicator equation is equivalent to other models in Population Dynamics

[98]. For instance, it can be derived from the Lotka-Volterra system of equations, which is the classical

description for the evolution of species abundances under a predator-prey dynamics [99, 93]. The

derivation requires a rescaling of time and does not result in a one-to-one equivalence, in the sense

that S strategies in the Evolutionary Game Theory description map into N − 1 species in the Lotka-

Volterra.

Furthermore, it has also been shown [100, 101, 102, 103] the replicator equation can be derived from

the exponential growth model

ẏi = yi(t)gi (22)

where yi is the abundance of strategy i and gi = fi(y1, y2, ...yS) its fitness. The equivalence is done

by means of a change of variables

xi =
yi

∑S
i yi

(23)

where it is also fundamental to ensure that fitness is a function of the frequencies of each strategy only

and not of the population size.

1.3.1 Finite Populations

The replicator equation provides a mean-field deterministic description of a population evolutionary

dynamics. This implies studying a population in the limit of an infinite and well-mixed population

driven by a continuous time dynamical process. Such utopian assumptions might hold in the limit of

a very large population, but this is rarely the case of Natural systems where stochastic effects matter.

Let us consider a population of Z individuals of which nA play strategy S1 = A and nB strategy

S2 = B. The population size remains constant (Ż = 0) throughout evolution and corresponds to

Z = nA + nB. Besides a strategy, each individual is also characterised by a fitness ( fi) that translates

his ability to replicate himself.

For S = 2 the population can only be in one of Z + 1 available states. Each state corresponds to one

of the available strategy configurations, i.e. combinations of nA and nB. Each state k is enumerated

according to the number of A individuals in the population (nA = k), since nB = Z− nA this suffices

to have a one-to-one mapping between strategy configurations and system states.

Evolution can be modelled by means of the so-called fermi update or pairwise comparison rule

[104, 105], which considers that at each time step (∆t) a randomly sampled individual (i) compares
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1.3. Evolutionary Game Theory

his fitness with another randomly sampled individual (j). The former (i) adopts the strategy of the

latter (j) with probability given by the Fermi distribution from statistical physics, that is

pi→j =
1

1 + e−β( f j− fi)
(24)

where β plays the role of the inverse of the temperature regulating the stochasticity of the decision

making of i. When β = 0 individuals decide at random regardless of the fitness diference while for

β >> 1 individuals take a deterministic stance revising their strategies as long as | f j − fi| > 0.

The evolutionary dynamics of such population corresponds to a Stochastic Markov, Birth-Death

process whose dynamics becomes fully described upon the computation of all transition probabilities

between available configurations. The state space in this scenario corresponds to a chain, with transi-

tions occurring only between adjacent states (see Figure 9). Transitions that correspond to jumps from

state k to k+ 1 (T+(k)) are associated with a B individual adopting strategy A (T(k)B→A), conversely

jumps from k to k− 1 (T−(k)) correspond to transitions where an individual A changes to strategy B
(T(k)A→B), see Equation 25.

T(k)A→B ≡ T+(k) =
k
Z

Z− k
Z− 1

pA→B

T(k)B→A ≡ T−(k) =
Z− k

Z
k

Z− 1
pB→A

(25)

The transition probabilities allow us to write down the master equation associated with this stochastic

process [106, 107]

p(k, τ + 1)− p(k, τ) =p(k− 1, τ)T+(k− 1)+

p(k + 1, τ)T−(k + 1)−

p(k, τ)T+(k)− p(k, τ)T−(k)

(26)

where p(k, τ) is the probability that the system occupies configuration k at time τ. Solving Equa-

tion 26 for p(k, τ + 1) − p(k, τ) = 0 and τ → ∞ we are left with an eigenvector problem, the

solution of which, after the appropriate normalisation, indicates the likelihood of finding the popula-

tion in each state at the equilibrium or, in other words, the fraction of time the population occupies

each state. In this particular example the solution is achieved upon solving the recurrence relationship

p(k)(T+(k) + T−(k)) = p(k− 1)T+(k− 1) + (k + 1)T−(k + 1) (27)

in order to p(k), which leads [46] to

p(k) =
∏k−1

i=0
T+(i)

T−(i+1)

∑Z
l=0 ∏l−1

i=0
T+(i)

T−(i+1)

(28)

a result that we can obtain from a recurrence relationship in relation to p(k).
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1-T-(k-1)-T+(k-1) 1-T-(k)-T+(k) 1-T-(k+1)-T+(k+1)

Figure 9: Schematic representation the state space of a finite population of Z individuals and two
strategies S1 = A and S2 = B. Each state corresponds to a strategy configuration, that
is a combination nA (number of A individuals) and nB (number of B individuals). Each
state is enumerated according to the number of A individuals in the population (nA)
since Z = nA + nB. Transitions associated with jumps between states are denoted by
T(k)X→Y, where X → Y indicates that an individual with strategy X adopted strategy
Y.

However, if we perform a system size expansion [108, 106] of Equation 26 through a change of

variables k = x/Z and t = τ/Z, while considering ρ(x, t) = Zp(k, τ), we obtain

ρ(x, t + Z−1)− ρ(x, t) =ρ(x− Z−1, t)T+(x− Z−1)+

ρ(x + Z−1, t)T−(x + Z−1)−

ρ(x, t)T+(x)− ρ(x, t)T−(x)

(29)

and Taylor expanding both sides in order to x and t, rearranging terms in powers of Z−1, while

neglecting terms of order above Z−2, yields

d
dt

ρ(x, t) = − d
dx

ρ(x, t)(T+(x)− T−(x))− 1
2Z

d2

d2x
(T+(x) + T−(x)) +O(Z−2), (30)

which holds the form of a Fokker-Planck equation for large but finite population size Z >> 1. In this

expression the term T+(x)− T−(x) corresponds to the drift and T+(x) + T−(x)/Z to the diffusion

Moreover, being the noise uncorrelated, this expression is equivalent to the Langevin description

ẋ = (T+(x)− T−(x)) +

√
T+(x) + T−(x)

Z
η (31)

where η corresponds to white noise. The drift term is of particular interest as it represents the so-called

gradient of selection (g(x)) [104, 109, 110], which for the Fermi update rule takes the form2

g(x) = T+(x)− T−(x) =
k
Z

Z− k
Z− 1

tanh(
β

2
( fA − fB)) (32)

2 We make use of the definition tanh(x) = (ex − e−x)/(ex + e−x) and of equation 24
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where fA and fB are respectively the average fitness of strategy A and B. This quantity provides the

most likely direction of evolution at state x, in the sense that a positive (negative) g(x) indicates that

the number of A tends to increase (decrease).

In the limit Z → ∞ and β → 0, the term g(x) is the only one that does not vanish from from

Equation 31, thus holding the same form of the replicator equation. Moreover if we also consider the

limit of β→ 0, a taylor expansion tanh( β
2 ( fA− fB)) (∝ ( fA− fB)) leads to an expression that holds

the same form of the replicator equation. The replicator description is thus a deterministic limit of the

Birth-Death stochastic processes.

In order to simplify the discussion in the following sections, let us introduce a more general and less

ambiguous notation for the gradient of selection as

gsA,sB(nA, nB) =
nA

Z
nB

Z− 1
tanh(

β

2
( fsA − fsB)) (33)

which refers to the gradient of selection between pair of strategies sA and sB in a configuration with

nA many sA individuals and nB many sB individuals.

In this thesis, we shall focus on the Fermi update rule, as the stochastic process of update to model

evolution. This is so because it offers a broader applicability, in the sense that it can be conceptually

used to model evolution in a biological or social context. In the first, evolution would imply the birth

and death (replication) of individuals of a species, while in the social scope it can be understood

as an imitation dynamics or any other mechanism of social learning. Nevertheless, there are other

stochastic processes of which it is noteworthy to mention the Moran Process for its wide application

in the biological context [111]. Both stochastic processes, Fermi and Moran, have been shown to

correspond to a limit of the replicator equation.

Fixation Probability

One question of particular interest, when dealing with finite populations, concerns the probability of

a population reaching a state dominated by a single species [46]. Let us define by φk as the probability

of a population reaching state Z when starting from state k. In the the absence of mutations, and in a

scenario with only two species there are only two absorbing states: 0 and Z, which imply

φ0 = 0

φZ = 1
(34)

since from k = 0 the system will never reach Z. For the remaining starting configurations we have

φk = φk−1T−(k) + φk(1− T+(k)− T−(k)) + φk+1T+(k) (35)

where T+(k) is the probability to jump from state k− 1 to k and T−(k) the probability to jump from

state k + 1 to k. Equation 35 expresses the probability of reaching Z from k and corresponds to the

sum of three terms: the probability of jumping to state k− 1 and reach Z from there; the probability

of staying in k and reach Z; probability of jumping to state k + 1 and reaching Z from there. This
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k-1
Z

k

k-1

T-(k)
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1-T-(k)-T+(k)

φk
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φk+1

Figure 10: Schematic representation of the terms involved in the computation of the fixation
probability (φk) when starting from state k. Each event is depicted by an arrow, the
fixation probabilities are the sum of the three terms, each term is the multiplication of
all arrows with the same colour. Dashed lines identify transition probabilities between
states, while full lines indicates fixation probabilities. Disks represent individuals in
a population, with different colors representing different types.

is also graphically represented in Figure 10. From this recursive relationship involving φk, and after

some algebra, we arrive at a closed form expression for the fixation probability [46]

φk =
1 + ∑k−1

j=1 ∏
j
i=1 γ(i)

1 + ∑Z−1
j=1 ∏

j
i=1 γ(i)

(36)

where γ(i) = T−(i)/T+(i). Finally, the probability of fixation of a single mutant in a resident

population (i.e. k = 1) simplifies to [46]

φ1 =
1

1 + ∑Z−1
j=1 ∏

j
i=1 γ(i)

(37)

and for the particular case of the fermi update rule the fixation probability becomes [112]

φ
f ermi
1 =

1

1 + ∑Z−1
j=1 ∏

j
i=1 eβ( fSA (i)− fSB (i))

(38)

Small Mutation Limit

When mutations are taken into consideration but at a sufficiently small rates, such that the fixation

time of any mutant in a population is much smaller than the waiting time between any two mutations,

the population is said to be evolving under the small mutation limit [113] and therefore at any moment

in time it hosts a maximum of two different strategies (si and sj).
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1.3. Evolutionary Game Theory

Under these assumptions a system with S strategies can be conveniently described by means of a

reduced Markov chain, where each state is associated with a strategy si and where transitions between

states (Tsisj ) are defined by the renormalised fixation probability

Tsisj =
φsisj

S− 1
, (i 6= j) (39)

where φsisj is the fixation probability of single si mutant in a population composed by Z− 1 sj indi-

viduals.

Upon computing all Tsisj (i.e. φsisj ) we can build a Transition Matrix (i.e. a stochastic matrix)

whose eigenvector (τ) associated with the largest eigenvalue, returns the stationary distribution of the

population [108]. Each entry of τ conveniently describes the average time the population spends in

each of the S possible monomorphic configurations that correspond to states in which all individuals

of the population adopt the same strategy. The small mutation limit provides an approach to inspect

the evolutionary dynamics of systems with a large number of strategies (S > 4) and in which other

conventional approaches become too complicated [114, 115, 116].

Neutral Drift

In the limit in which evolution does not select any of the strategies preferentially, evolution proceeds

randomly without a dominant selection direction. A population evolving under such conditions is said

to be evolving under neutral drift.

This limiting scenario can be recovered in the fermi update rule (see Equation 24) when one consid-

ers β = 0, which results in

pi→j =
1
2

(40)

consequently, gradient of selection is g(x) = 0 over the entire domain of x ∈ [0, 1] and the fixation

probability becomes φk = k/Z.

The study of evolution close to neutral drift has been important in Biology [117]. Moreover, pure

neutral drift provides us with the necessary point of reference to classify and quantify the strength of

different mechanisms in the evolutionary dynamics of populations.

1.3.2 Two Person Games

Let us consider two individuals, A and B, engaging in a single shot interaction. Each is required to

independently and simultaneously choose/play a strategy from a predefined pool with S many strate-

gies, i.e {s1, s2, ..., ssS}. Both individuals have full knowledge of the game but don’t have memory of

past interactions with the opponent. Out of interaction results a payoff to each individual that depends

only on the combination of strategies adopted, that is, A obtains payoff πA
σAσB

and B collects πB
σAσB

where σA and σB are the strategies played respectively by A and B.

All possible outcomes can be represented by means of a S× S payoff matrix, see Figure 11, which

in Game Theory is known as the normal form representation of a game.
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Figure 11: The Payoff Matrix is the normal form representation of two-person and S-strategy
games. Each entry represents the payoffs of each player for a given combination of
strategies.

When πA
σAσB

+ πB
σAσB

= 0, for all σA, σB ∈ {s1, s2, ..., ssS}, the game is said to be zero-sum, since

the gains of a player represent the loss of the other. Moreover a game is said to be symmetric when

payoffs are player independent. That is, the payoff of player A when playing strategy σA = X and

facing player B with strategy σB = Y is the same as the payoff attained by B when playing strategy

σB = X against a player A playing strategy σA = Y. The payoff structure of Symmetric games can

be simplified to

s1 s2 · · · sS

s1 πs1s1 πs1s2 · · · πs1sS

s2 πs2s1 πs2s2 · · · πs2sS
...

...
...

. . .
...

sS πs1sS πs2sS · · · πsSsS

where each entry (πσAσB ) indicates the payoff obtained by a player playing the Row strategy while

facing an opponent adopting the Column strategy. All asymmetric games can be transformed into

symmetric games by assuming that the game is played sequentially and the order of decision of the

players is random [95]. This creates a new game in which the payoffs are linear combinations of the

original game.

Evolutionary Stable Strategies

The concept of Evolutionary Stable Strategy was first introduced in 1973 by John Maynard Smith

[118]. It tries to assess the evolutionary viability of a strategy by analysing the payoff structure of

the game. A strategy si is said to be Evolutionary Stable (ESS) if a population composed only by si

individuals is resilient to the invasion from a mutant of any other strategy.

In a context with S different strategies ({s1, s2, ..., ssS}), a strategy si is ESS if for all si 6= sj we

have that

πsisi > πsisj (41)
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or

πsisi = πsisj

πsisj > πsjsj

(42)

which means that to be an ESS, selection needs to opposes mutant strategies, since the payoff attained

by an individual with strategy si against another individual play si is greater than the payoff of playing

against the mutant individual sj. A weaker definition of ESS assumes that πsisj ≥ πsjsj instead of

πsisj > πsjsj .

Evolutionary Stable Strategies in Finite Populations

The original definition of ESS is based on a pure analysis of the payoff matrix. It provides intu-

ition to the deterministic invasion dynamics of a population, it fails however to take into consideration

stochastic effects in finite populations, since in that situation the probability of a mutant to invade a res-

ident population as non-zero. An alternative definition, can be formalised by means of the likelihood

with which a mutant can invade a resident population (i.e. fixation probability).

Let us consider a population of size Z, and a strategy space with S strategies. Then according to

Nowak et al [113] a strategy si is ESSZ if for all strategies sj 6= si

φsjsi <
1
Z

(43)

and

gsisj(Z− 1, 1) > 0 (44)

where gsisj(Z − 1, 1) denotes the gradient of selection of a single mutant sj in a populations of si,

which for being positive means that selection favours si. Strategies that only hold the condition ex-

pressed in equation 43 are said to be Evolutionary Robust (ERS)[119, 120, 121].

The concepts of ESS, ESSZ and ERS fail to capture other types of stability that do not correspond

to monomorphic configurations of strategies. It is essentially a biological concept which clashes with

the definition of stability in dynamical systems, where stability can also correspond to limit cycles or

strange attractors [108].

1.3.3 Social Dilemmas of Cooperation

Let us a consider a situation in which an individual A has the chance to incur in a cost (c) to offer a

benefit (b) to an individual B. We say that in this situation A plays the role of the donor and B that of

the recipient. The act of paying the cost is associated with Cooperative or Altruistic behaviour while

refusing to do so corresponds to a Defective or selfish action [122]. When both individuals have the

opportunity to act/play simultaneously and independently, the possible outcomes can be summarised

by the payoff matrix

whenever b > c the best action for any rational individual looking to optimise his own gains is to not

contribute, thus avoiding being cheated while trying to exploit any incautious Cooperator. Ironically,
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C D

D b− c −c
C b 0

the expected outcome from two rational individuals, mutual defection, leads to an aggregated payoff

that is smaller when compared with the result from mutual cooperation cooperation (0 < 2(b− c)).
This game corresponds to the so-called Prisoner’s Dilemma [123, 95] and is often considered as

the best metaphor for Cooperative social dilemmas, since it highlights the conflict between self and

collective interests.

We can further generalise the payoff matrix for two-person, two-strategy games by rewriting the

above matrix into a more general form

C D

D R S

C T P

where mutual cooperation is associated with the Reward (R) payoff while mutual defection generates

a Punishment (P) payoff for both players. When a Defector successfully exploits a Cooperator, the

former obtains the Temptation (T) payoff while the latter obtains the Sucker’s payoff (S). Besides the

Prisoner’s Dilemma (T > R > P > S) we can derive three new situations depending on the relative

order of the payoffs, namely the Stag Hunt when R > T > P > S [124], the Snowdrift Game when

T > R > S > P [125, 126] and the Harmony Game for R > T > S > P.

It is common practice to simplify the analysis by normalising the difference R− P = 1 with R = 1
and P = 0 and thus reducing our analysis to the domain bounded by 0 ≤ T ≤ 2 and −1 ≤ T ≤ 1
[127].

Each game presents different metaphors of real-life social dilemmas, thus putting into evidence the

nature of social dilemmas since the solution attained by the players’ rational course of action leads to

an aggregated outcome that is not the best collective outcome.

Evolving Cooperation

Let us consider a population of individuals whose interactions fall in one of the scenarios described

above. Individuals play one of the available strategies, unconditionally, as if the strategy was a be-

haviour or a phenotype. Every now and then, individuals revise their strategies by means of some type

of social learning and in such a way that more successful individuals replicate more often, assuming

that the social success is measured by the expected payoff over many interactions, and is analogous

to biological fitness. Then, the evolution of a well-mixed population can then be described by the

replicator dynamics, and thus we are left with the estimation of the fitnesses.
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Figure 12: Parameter space of the two-person and two-strategy game. The horizontal axis repre-
sented the Temptation (T) payoff, while in the vertical axis is the Sucker’s Payoff (P)
[127]. Each color represents a different game, in particular the Prisoner’s Dilemma
(Right Bottom); the Stag Hunt game (Left Bottom); the Snowdrift Game (Right Top)
and the Harmony Game (Left Top). Grey dashed lines highlight parameterisations of
the Prisoner’s Dilemma commonly found in Literature.

In a well-mixed population of size Z, composed by k cooperators (C) and Z− k defectors (D). The

average fitness of each strategy is

fC =
k− 1

Z
R +

Z− k
Z

S

fD =
k
Z

T +
Z− k− 1

Z
P

(45)

where we take into account that individuals do not play with themselves.

In the limit of Z → ∞ we define k/Z ≡ x and the evolutionary dynamics can be well approximated

by the replicator equation (see Equation 21), which, solving for ẋ = 0, renders, in addition to the the

two trivial solutions x∗ = 0 and x∗ = 1, an additional internal fixed located at

x∗ =
S− P

R + P− T − S
=

S
1− T − S

(46)

when fC − fD = 0.

Because only solutions that lie in the interval [0, 1] are valid, additional fixed points only exist in the

domains defined by S > 0 ∧ T > 1 (Snowdrift Game) or S < 0 ∧ T < 1 ( Stag Hunt). The stability

of the fixed points is readily computed by inspecting the signal of ẋ in the vicinity of x∗.
Hence the Stag Hunt is characterised by an unstable fixed point that renders the evolution a Coor-

dination like dynamics, since the population will converge to either x = 1 or x = 0 depending on

whether the initial fraction of cooperators xi is, respectively, above (xi > x∗) or bellow (xi < x∗) the

internal fixed point x∗. In contrast, the Snowdrift is characterised by a stable fixed point that dictates
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Figure 13: Probability of Fixation, φk, on well-mixed populations with Z = 100 individuals
under weak selection left (β = 0.01) and strong selection right (β = 10.0) regimes
starting with 50 cooperators (φk=50) for the entire parameter space bounded by R =
1, P = 0, 0 ≤ T ≤ 2 and −1 ≤ S ≤ 1. Regions are identified according to
the associated social dilemma, namely Harmony Game (HG), Snowdrift Game (SG),
Stag Hunt (SH) and Prisoner’s Dilemma (PD)

a stable coexistence of strategies, with the population converging for a state with x∗ cooperators and

1− x∗. Because of these two distinct characters the Stag Hunt is often associated with Coordination

Game and the Snowdrift to a Co-existence game.

In the absence of internal fixed points, the dynamics is characterised by the Dominance of one of the

strategies, that is, the population evolves deterministically to a configuration dominated by a single

strategy regardless of its initial composition. In particular, Cooperators dominate in the Harmony

Game (T < 1 ∧ S > 0), as indicated by the positive ẋ in the entire domain, conversely the fully

negative ẋ hints at the Defector dominance that characterises the Prisoner’s Dilemma (T > 1 ∧ S <

0).

Figure 14 shows how these dynamics influence the evolutionary outcome of a finite population

with Z = 103 individuals evolving from an initial configuration with equal composition of strategies.

The outcome for each pair of parameters (T,S) was estimated through Monte-Carlo simulations and

corresponds to the average over the final fraction of cooperation after 106 time steps. A similar result

can be obtained through the estimated value of k from the stationary distribution associated with each

pair (T,S).

1.3.4 Evolving Cooperation

Evolutionary Game Theory provides a powerful mathematical framework to study the evolutionary

dynamics of populations. However, as shown in the previous sections, whenever individuals engage in

26



1.3. Evolutionary Game Theory

0.0 0.5 1.0 1.5 2.0

-0.5

1.0

0.0

0.5

-1.0

Su
ck

er
's

 P
ay

of
f

HG SG

SH PD
0.0

1.0

0.5

Fi
na

l F
ra

ct
io

n 
of

 C
oo

pe
ra

to
rs

Temptation
Figure 14: Level of cooperation on well-mixed population with Z = 103 individuals for the en-

tire parameter space. Evolution proceeds under a strong selection (β = 10.0) starting
from a configuration with equal composition of strategies. Regions are identified ac-
cording to the associated social dilemma, namely Harmony Game (HG), Snowdrift
Game (SG), Stag Hunt (SH) and Prisoner’s Dilemma (PD)

the Prisoner’s Dilemma it leads to the same paradoxical outcome that the theory of Natural Selection

seemingly suggests: The demise of altruistic individuals in favour of those acting selfishly.

The failure to understand how evolution might select Cooperative behaviour in the Prisoner’s Dilemma

has been regarded as one of the major scientific questions or our times [128]. For the past sixty years,

several solutions have been proposed. To date, five canonical mechanisms are accepted to facilitate

the evolution of cooperation. Even though other mechanisms have been proposed, these five these

constitute the main line of research.

Direct Reciprocity

Direct reciprocity was originally proposed in 1971 by Robert Trivers [129] as a mechanism to ex-

plain the evolution of Cooperation. It is based on the idea that repeated interactions between indi-

viduals facilitate the coordination towards an outcome that is best for both, whichm in the context of

Cooperation Social Dilemmas, is mutual cooperation.

The central situation studied in direct reciprocity considers a pair of individuals, A and B, playing

iterated rounds of the Prisoner’s Dilemma. At each round, individuals need to decide simultaneously

whether to Cooperate (donate) or Defect (do not donate). Contrarily to the one-shot scenario, consid-

ered so far, in repeated games individuals have memory of the previous interactions, thus strategies
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are necessarily conditional on the opponent previous actions. A new round is played with probability

w. A central result is that cooperation becomes favourable if

w >
c
b

(47)

which means that the probability of a new round should be greater than the cost-benefit ratio of an

altruistic action.

Direct Reciprocity became widely popular with a series of computer tournaments organised by

Robert Axelrod [73] in the late 70s, which pitted different strategies – submitted by independent

researchers – in an evolutionary contest. Surprisingly, the winner in both occasions was a simple

strategy of Tit-for-Tat (TFT) that consists on Cooperating in the initial round and then do exactly the

same as the opponent did in the previous round. Tit-for-Tat was able to outperform other strategies

while, at the same time, attaining high levels of Cooperation, which supported the argument that Direct

Reciprocity could effectively support the evolutionary emergence of cooperative strategic profiles.

However, Tit-for-That suffers from several drawbacks, the major being its lack of resilient to be-

havioural errors [130, 131]. In its place, it was suggested a strategy of Win-Stay Lose-Shift [132,

133, 134] (WSLS), which in the Prisoner’s Dilemma implies that individuals should Cooperate after

a round of mutual behaviour and defect otherwise. This strategy also exhibits a strong Cooperative

character while performing better in noisy environments.

Repeated games can be extended to Public Goods Game [135]. In that scope, recent works have

shown that a strategy of Contributing to the Public Good only after a round of group unanimity out-

performs all other strategies in an evolutionary sense [70]. This strategy of All-or-None is resilient to

mild behavioural errors rates and follows a similar philosophy to the Win-Stay-Lose-Shift. This work

is discussed in Chapter 7

Another variant of the Repeated Prisoner’s Dilemma considers probabilistic strategies. For instance,

assuming that players only have 1-step memory, strategies correspond to a vector with four compo-

nents: {pcc, pcd, pdc, pdd}. Each entry pXY represents the probability of Cooperating after a round

where the focal player adopted strategy X and the opponent strategy Y. Making use of this nota-

tion Tit-for-Tat corresponds to {1, 0, 1, 0} and Win-Stay Lose-Shit to {1, 0, 0, 1}. In this context,

behavioural errors can be accounted by a adding/subtracting a real-valued error probability ε ∈]0, .5]
to each component pXY.

A recent work by Press and Dyson [136] has shown that if individuals are able to adjust the prob-

abilities from round to round, then exists a class of strategies – so called Zero-Determinant – that

are able to manipulate the game in such a way that long term payoffs of players can be controlled,

despite the opponent intentions. Initial research focused in a subclass of Zero-Determinant strategies

that guarantees, to the player adopting it, a better payoff than the opponent, or in the worst case sce-

nario, the payoff for mutual defection. Such extortionist strategy showed to be quite successful, but

its aggressivess and unfriendly stance contrasts with the nice character Tit-for-Tat and Win-Stay-Lose-

Shift. This finding largely revived the study in directed reciprocity [137, 138, 121, 139, 140]. One

noteworthy result shows that despite its success in the Game Theoretical sense, the Zero-Determinant

Extortion strategies have a perform poorly in an evolutionary context [120, 141, 142].

28



1.3. Evolutionary Game Theory

Kin Selection
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Group Selection
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Figure 15: Schematic representation of the five fundamental mechanisms for the evolution of
cooperation, inspired by [143]. Direct reciprocity implies the repeated interaction be-
tween individuals. Indirect reciprocity is sustained by a reputation dynamics. Kin
selection operates between individuals that are relatives. Group or multi-level selec-
tion implies that selection might not act on the individuals but on higher order scales,
for instance selecting the most sustainable groups. Population structure allows for
cooperators to outcompete defectors in local clusters.

Indirect Reciprocity

The emergence of cooperation is not limited to the repeated and direct interaction between indi-

viduals. Indeed, in one-shot interactions it suffices to provide the donor with indirect information

on whether the recipient is worth or not cooperating with. Such information can be provided by a

Reputation based system [144] that continuously monitors and scores individuals’ according to their

actions. This is the main concept behind the so called Indirect Reciprocity [145, 146]: a population

of individuals co-evolving strategies and Reputations.

The evolution of Reputation is largely driven by a Social Norm3, that is, a set of rules that classify

the donor whether as Good or Bad depending on his action and the context they are embedded in

[147, 148, 149]. One can devise Norms with different levels of complexity: first order Norms only

take into account the action of the donor; second order Norms that take into account the donor action

and the recipient reputation; third order Norms involve additionally the reputation of the donor besides

the actions of the latter. On the other hand, strategies4 employed by individuals are conditional to the

recipient and donor reputations.

3 In some literature Social Norms are also called Rules of Assessment, since they assess the individual Reputation after a
given action

4 In the context of Indirect Reciprocity strategies are also known as action rules, since they are a set of rules that dictate how
individuals act, given the reputations of the opponents (or even self reputations).
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Ohtsuki & Iwasa [150, 151] have shown that only 8 of the 4096 combinations of the 256 third order

norms with the 16 available strategies are evolutionary stable and effectively promote cooperation.

These correspond to eight norms supported by a single strategy of Cooperating against good guys

and Defecting bad guys. Later Pacheco et al [152] used a model with multi-level selection to show

that a Norm of Stern Judging is the most evolutionary sucessful among all third order norms. This

norm classifies as good donors that cooperate with a good or refuse to help to a bad recipient, whereas

refusing help to a good recipient or helping a bad one leads to a bad reputation.

Empirical evidence supporting Indirect Reciprocity has come mostly from Economical experiments

[153, 154, 155] but also from field experiences [156, 157].

Kin Selection

Kin Selection builds on the idea that cooperating towards a closely related individual can favour the

evolution of Cooperation. This concept builds on the notion of Inclusive Fitness, which assumes that

one’s fitness is not only a measure of his direct reproduction but also accounts for indirect reproduction

of individuals that share similar traits. The reasoning is that close relatives will, somehow, contribute

to the evolutionary success of one’s traits. The theory of Inclusive Fitness was initially developed

by W.D. Hamilton [158] and was latter mathematically formalised by George R. Price [159]. One of

its the major results is the so called Hamilton’s rule, which states that the emergence of cooperative

behaviour requires the relatedness, r, between individuals to exceed the cost-to-benefit ratio of an

altruistic act:

r >
c
b

(48)

where r is a measure of the genetic distance between individuals.

Kin selection has been used to explain the emergence of Eusociality [160] in biological commu-

nities. Following previous works [161, 162, 163], Nowak et al [164] have recently argued that the

assumptions underlying inclusive fitness theory are unnecessary since its predictions can be explained

through other, more well founded and simpler, mechanisms such as multilevel selection. These ideas

have however been received with strong criticism [165, 166], particularly from the Biological commu-

nity.

Group Selection

Selection can also act on groups, by selecting groups that are more fitted in detriment of others

[167, 168, 169]. This concept is contrary to the traditional biological view that selection acts solely

on individuals or on genes. It is straightforward to understand why Group selection would be advan-

tageous for Cooperation, since groups composed mostly by Cooperators benefit from the fact that a

Cooperator in a group increases the overall fitness of the group while Defectors decrease it.

Several theoretical works have supported the idea of group selection [170, 171]. Nowadays it is

usual to refer to Group Selection as Multi-level Selection, as it is a more accurate definition for the

different selection forces that drive evolution.
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Population Structure

So far we have dealt with models and situations that consider well-mixed populations. However, as

shown in Section 1.2, the real world is hardly close to the a well-mixed scenario. Indeed, individuals

tend to interact with a limit number of peers either for cognitive or spatial constrains. One way to cap-

ture this structure in evolutionary models is by assuming that individuals of a population correspond to

nodes of a complex network, with interactions constrained to nodes directly connected through links.

It was shown that structured populations prompt a more beneficial scenario for the emergence of

Cooperation. This is in part because small groups of Cooperators are able to cluster and "solve" the

collective dilemma, opening the chance for them to invade, fixate and "dominate" the whole popula-

tion.

Section 1.4 summarises the most important results that involve static and dynamical Population

Structures in the scope of the Cooperation problem.

Additional Mechanisms

Besides the five canonical mechanisms described above, others have been suggested to promote

the emergence of cooperation. For instance peer and pool punishment of free riders has been shown

to be an effective mechanism both theoretically [172, 173, 174, 175, 176, 177, 178, 179, 180] and

experimentally [181, 182]. On the other hand, Cooperation can be facilitated by the presence of

additional strategies [183, 184, 185, 186, 187], which can include Punishers or a strategy of Voluntary

participation.

The addition of cooperation thresholds [110, 188] and risk perception of collective failure [189, 190,

191] have also been shown to facilitate the emergence of cooperation in Public Goods Games, a class

of games that involves interactions between groups of individuals.

Diversity in both social networks or among individual’s traits is also pointed as one of the main

drivers of cooperation [192, 52, 193, 53].

Moreover, Matjaz Perc has reviewed the impact of different co-evolutionary dynamics [194] that

show a positive impact in the evolution of cooperation. In this context, co-evolution implies that,

alongside strategy abundance, an additional trait co-evolves. Examples range from the co-evolution

of social structure [195, 196, 197, 65, 198, 59, 199], population size [200, 201], learning rate [202,

192, 203], mobility [204, 205], individuals ageing [206, 207], etc.

While many of these mechanisms are additive [208], in the sense that two mechanisms together facil-

itate even more cooperation than each alone, some are not. For instance, Vukov et al [209] has shown

that depending on the choice of parameters on the Prisoner’s Dilemma in a structured population,

evolution might result in a worse outcome when peer-punishment is considered.

1.4 E VO L U T I O N A RY G A M E S I N S T RU C T U R E D P O P U L AT I O N S

Since the 1992 seminal work by Nowak and May [211] that others have explored the role of popula-

tion structure in the evolutionary dynamics of Cooperation [49].
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fB = (         )R + (         )S

fA = (               )T +     P

Figure 16: One individual is selected at random from the population (A) and a second (B) is se-
lected at random from the neighbourhood of A. The fitness of each individual is now
context dependent and is a function of the accumulated payoff over all interactions
with their neighbours [210].

While theoretical works support the idea that population structure does indeed facilitate the emer-

gence and sustainability of Cooperative behaviour, empirical evidence is not so clear: some authors

argue that indeed static [54, 55, 56] and adaptive [57, 58, 59] structures promote cooperation, others

say the opposite [60, 61, 62, 63, 64]. The latter have been criticise for not exploring the right con-

ditions and to reach conclusions based in insufficient data to be statistically sound. The former for

performing experiments under unrealistic conditions.

Update Rule on Structured Populations

In order to account for the effects of structure we need to revise our stochastic update rule. Hence,

instead of sampling two individuals (say i and j) at random from the population, the second is sampled

from the sub-set of individuals that are directly connected with the first. In other words, the focal

individual can only revise his strategy by looking at his nearest neighbours.

Moreover, the fitness now corresponds to the accumulated payoffs over all interactions individuals

that engage with the nearest neighbours. For instance, if we consider a two-person, two-strategy game,

the fitness f si
i of an individual i adopting strategy si is

f C
i =kC

i R + kD
i S

f D
i =kC

i T + kD
i P

(49)

where kC
i and kD

i are respectively the number of Cooperators and Defectors in the neighbourhood of

i, with kC
i + kD

i = ki.

1.4.1 Homogeneous Networks

Figure 18 shows the average final fraction of cooperators obtained along the T× S domain for three

distinct network topologies: Square Lattice (left), Regular Ring (middle) and Homogeneous Random
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Figure 17: Level of Cooperation measured through the expected Final Fraction of Cooperators
[127, 53] for three types of degree Homogeneous networked populations in the entire
space of parameters and under a strong selection regime (β = 10.0). Regions are
identified according to the associated social dilemma, namely Harmony Game (HG),
Snowdrift Game (SG), Stag Hunt (SH) and Prisoner’s Dilemma (PD)

Graph (right). The latter being obtained by the complete randomisation of the links ends from any of

the two first topologies [212]. All three networks are characterised for having all nodes engaging in

the same number of interactions, thus leading to a degree distribution that corresponds to a peak over

〈k〉.
Homogenous networks allow Cooperators to form clusters [48, 213, 214]. In this context, clustering

implies that cooperators are more likely to interact with other cooperators, and therefore to achieve

higher fitnesses. However, these are only stable for a narrow range of the parameters in the Prisoner’s

Dilemma (that is, in comparison with the well-mixed scenario, see Figure 14) and highly dependent

on the selection pressure [215, 216, 217, 75].

The consistency of such clusters depends on the payoff structure of the game. For instance, Hauert

and Doebeli [218, 219] showed that, in homogeneous structures, cooperation can be inhibited in the

Snowdrift domain. They concluded that the clusters that form in this scenario tend do be smaller and

more disperse, when compared with what is observed in the Prisoner’s Dilemma [220], since players

benefit from playing with individuals of the opposite strategy.

Ohtsuki et al [221] suggested that selection favours cooperation whenever

b
c
> 〈k〉 (50)

where b is the benefit and c the cost of an altruistic act, with 〈k〉 being the average degree of the

network. This result, derived analytically and derived resorting to the pair-approximation [222], is

based on the idea that the fixation probability (φk) of a single Cooperator is greater than the outcome

of neutral drift (1/Z) when this condition holds. The results show a good agreement with numerical

simulations on regular networks with low degree, low selection pressure (β), however it fails for

networks with that exhibit degree heterogeneity.
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Cooperator Defector

Snowdrift Game Prisoner’s Dilemma

Figure 18: Snapshot of the typical spatial patterns found in the Snowdrift Game (left) and Pris-
oner’s Dilemma (right) games played on a squared lattice. Both situations correspond
to parameters close to the D-Dominance parameter region. Both panels are found in
[219]

1.4.2 Heterogeneous Networks

Figure 19 shows the average final fraction of cooperators obtained along the T× S domain for three

heterogeneous network topologies: Erdős–Rényi Random (left), Exponential (middle) and Barabási-

Albert Scale Free (right). From left to right in Figure 19, the diversity5 in the interaction patterns

of the population increases. Empirical distributions collected from real-world social networks fall

somewhere between the limits bounded by these structures [223, 25, 10]. Hence it is without surprise

that they are the best at promoting the emergence and sustainability of cooperation for a broader

domain of the Prisoner’s Dilemma.

In heterogeneous structures, different individuals typically participate in a different number of in-

teractions, as dictated by the position occupied by each individual in the social network and pattern

of connectivity. Given that the fitness of each individual is directly related with his success, social

diversity will certainly impact social evolution. Moreover, because the position that each individual

occupies largely defines who he is able to imitate and who imitates him, heterogeneous networks

prompts a diversity in the influence of individuals: highly connected individuals (hubs) are imitated

more often than individuals with few connections.

Underlying the ability of heterogeneous networks to promote cooperation is the interplay between

these two types of social diversity: diversity in fitness and diversity of influence. The positive impact

of heterogeneous networks in the evolution of cooperation was first shown in 2005 by Pacheco and

Santos [50, 212, 127, 53] in the context of two-person games and later extended to Public Goods

Games [52] by the same authors. Many other works have studied the role of heterogeneous networks

in the evolution of cooperation, exploring, for instance, the impact of different topological features

[224, 225, 226, 227, 228, 229, 127, 212, 230, 231, 232, 109].

5 Here diversity is measured in terms of the variance of the degree distribution D(k), that is var(k) = 〈k〉2 −
〈
k2〉
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Figure 19: Level of Cooperation obtained on three types of degree Heterogeneous networked
populations [127, 53] along the T × S parameter space and under a strong selection
regime (β = 10.0). Degree Heterogeneity is here associated with the variance of
the degree distribution D(k) and it increases from the left to the right. Regions are
identified according to the associated social dilemma, namely Harmony Game (HG),
Snowdrift Game (SG), Stag Hunt (SH) and Prisoner’s Dilemma (PD)

While the spatial nature of regular structures, like the Lattice, allows for a intuitive visual inspection

of the patterns generated by the evolutionary process, in more complex structures this approach is

often unfeasible. Alternatively, one can resort to the study of prototype, and simpler network structures

(i.e. motifs) that play capture the functioning of the structure under analysis. In the particular case of

scale-free networks a motif of particular interest considers two connected stars [52, 233], see Figure 20

sheds some light on the hub centric dynamics that drives the evolution on strongly heterogeneous

populations. In Figure 20, two stars i and j are completely surrounded by Cooperators. However i
is a Defector and j a Cooperator. The centre of the stars correspond to high fitness positions. As a

consequence, i will be imitated by the individuals around him, same for j, who is resilient to invasion

as he holds a relatively high fitness. Ironically, j becomes a victim of his early success and ends at

the centre of a star surrounded by Defectors, deeming him with a relatively low fitness. At this stage

j becomes a role model for i, and the latter is likely to change his strategy to Cooperator. Finally,

because i occupies a position in which he is imitated more often than he imitates, his influence ends

up turning all the Defectors surrounding him to Cooperation.

Scale-free networks provide the ideal conditions for the hub-hub dynamics describe above. Indeed,

they are often characterized for having interconnected hubs with a broad range of connectivities, cre-

ating star-like structures of different sizes, in which Cooperators may play a central role with a high

resilience to the invasion of Defectors, as a result of the large number of mutual Cooperative inter-

actions they participate. Moreover, the role of these highly influential individuals have also been

analyzed trough the study of the fixation probability. It was shown that the fixation of a single mutant
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Figure 20: Dynamics of a double star. In the context of the Prisoner’s Dilemma ( T > R >
P > S), when a Defector i invades the centre of a star he positions himself in a high-
fitness location. The natural process is for the leaves around his position to change to
Defector, which in turn decrease the fitness of i leaving him vulnerable to be invaded
by j. Ironically i is a victim of his own success. For more details see [52]

Cooperator is strongly correlated with the degree, thus the influence, of the initial location: a mutant

invading a hub has more chances of invading the network [234, 235].

1.4.3 Gradient of Selection in networks

Several works have explored the impact of population structured in the evolutionary dynamics

through analytical inspection. The accuracy and validity of the used techniques often require as-

suming the limiting scenario of weak-selection (β << 1) [221, 236, 237, 238, 239] and/or fairly

unrealistic population structures [49]. The quantities obtained, are in most cases of little interest to

the understanding of how population structure shapes the evolutionary dynamics as they tend to focus

in the fixation probabilities, a question of more relevance to biology.

A more adequate approach to quantify the role of population structure in the evolutionary dynamics

of populations is to the estimate the gradient of selection, see Section 1.3.1. This quantity indicates the

expected direction of selection. In network populations it is difficult to derive a closed form expression

for the gradient of selection, it can, however, be estimated numerically. And since it is qualitatively

similar to the replicator equation and to its analogous in finite well-mixed populations, it allows us to

assess the role of population structure in the evolutionary dynamics.
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In that scope, let us define as ξ±(k) the probability to increase/decrease the number of cooperators

by one in a structured population composed by k Cooperators and Z− k Defectors. The equivalent to

the gradient of selection becomes

Γ(k) = ξ+(k)− ξ−(k) (51)

thus being positive/negative if the number of cooperators is more likely to increase/decrease. We are

left with the estimation of ξ±(k), which requires computing

ξ±(k) =
1
Z

Z

∑
i=0

1
ki

∑
j∈ζi

sj(1− si)

1 + e±β( f j− fi)
(52)

where ζi is the set of neighbours of j and si is 1 if i is a Cooperator and 0 if a Defector. To estimate

ξ±(k) we sum all available transitions available, which requires iterating over all pairs of connected

individuals with different strategies.

By estimating Γ(k) numerically we obtain a context dependent (in the sense that it effectively differ-

entiates different topologies) mean-field description for structured populations which contrasts with

other techniques, e.g. pair-approximation that only works for regular and random structures[240, 241,

242, 243, 221, 49].

Strategy Assortment

To compute Γ(k) we need to somehow place k cooperators along the nodes of the network. Differ-

ent assortments k will likely return different values of Γ(k). Choosing the right one from the total

(maximum) of Z!/(k!(Z− k)!) can be a daunting task.

We want to know why evolution promotes cooperation when the population structure of interactions

follows a specific pattern. Unfortunately evolution does not occupy each configuration with equal

probability. This is because there are transitions between strategy assortments that are more probable

than others. For instance, it is more likely that evolution leads to assortments where strategies become

clustered, more on this bellow.

Furthermore, since we are dealing with extremely large space state, the computation of the transition

probabilities between states is humanly and computationally impossible. This is, after all, the main

challenge of studying dynamical processes on networks: the size of the strategy assortments space

state and the asymmetry of their likelihood does not allow us to properly average Γ(k).
Nevertheless, we can make some good educated guesses about some extreme conditions. For in-

stance, and by definition, at the beginning of evolution, strategies are randomly placed along the

nodes of the network. This allows to estimate Γ(k) for all k ∈ [0, Z] by performing a sample average

over many randomly picked strategy assortments. The result is shown in panels A and B of Figure 21

for Homogeneous Random and Heterogeneous networks respectively. Despite quantitatively different,

Γ(k) < 0 for all k ∈ [0, Z] suggests that at the beginning of the evolution is more probable for the

number of cooperators to decrease. This is the same paradoxical result that is obtained for well-mixed

populations.
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Figure 21: Gradient of Selection in Structured populations [109]. Top panels consider a situation
where both Cooperators and Defectors are placed at random along the nodes of the net-
work. Bottom panels consider a scenario where Cooperators are placed preferentially
around other Cooperators, thus generating a positive assortment among Cooperators.

However as evolution proceeds, we observe the building-up of correlations between individuals of

the same strategy. The nature of these correlations are complex, which clearly bounds our ability

to predict them. They stem from the balance of two processes. On one hand the stochastic birth-

death process is associated with dynamics of Cooperators breeding Cooperators and that Defectors

breeding Defectors [109]. While in the other, the nature of the interaction structure gives rise to

different patterns depending of the particular features of the network topology under study.

Hence, at the other extreme of evolution, it is more likely to find Cooperators closer to other Co-

operators and Defectors close to other Defectors. However, because as we seen with the dual star

example discussed previously, only Cooperative clusters remain sustainable and thus we could argue

that a possible strategy assortment would percolate k cooperators. Panels C and D of Figure 21 show

the impact of such assortment strategy in the shape of Γ(k) for the network topologies. In particular

homogeneous networks change the nature of the Prisoner’s Dilemma from a Defector-Dominance to a

Co-existence game. On the other hand, heterogeneous networks change the Prisoner’s Dilemma from

a Defector-Dominance to a Coordination game.

This connection implies that studying a Prisoner’s Dilemma in a complex network is similar to study

a different game in a well-mixed scenario. The new game is conditional to the underlying structure of

interactions between individuals. More importantly, although individual pairwise interactions follow

the Prisoner’s Dilemma, the collective dynamics of populations becomes very different.
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The proposed approaches to distribute strategies along the nodes of the network are: at random and

with a positive assortment of Cooperators [109]. These two extreme scenarios fail to captures the

true strategy assortments that emerge with evolution. In chapter 3 we introduce a way to estimate

such assortments that allow us to estimate expected Γ(k) (gradient of selection) for a predefined time-

window of the evolutionary process. More interestingly, we can capture the evolution of the effective

dilemma along the the evolutionary dynamics.

1.4.4 Co-Evolutionary Dynamics

Population structure is not static, for instance, we often change our e-mail contacts, our social in-

teractions and the internet is constantly changing shape as we add new devices to replace old ones

[244, 245, 246]. Hence, studying evolutionary processes on static networks, is but an approximation

that allows us to characterise the scheme of interactions of a system along a particular time interval of

observation. Through the repeated observation of a system along successive time intervals one often

unveils a structure evolving under its own set of rules. The characterization of these rules largely

defines the study of dynamical networks [247, 65]. Although these rules are in most cases local, i.e.

take place at the level of the node, they can lead to dramatic changes in the global topology of the

network, identified by phase transitions along paths established by different order parameters. For

instance, the Watts-Strogatz model may be (qualitatively) associated with a dynamical process6 that

leads to the emergence of an entirely different network topology with respect to the topology of the

initial structure [83].

Adaptive Networks

Apart from the evolutionary process of strategy adaptation, it is also reasonable to expect that indi-

viduals try to exert some local control over their gains by choosing with whom they interact [248, 249].

In particular, when interactions conform with the Prisoner’s Dilemma [250, 251], one should expect

that rational individuals look to avoid interactions with defectors, which would spare them from ob-

taining the Sucker’s or the Punishment payoffs. In a dynamical network, one can model this behavior

by either assuming that individuals break their connections with defectors or that they opt to rewire

from non-beneficial interactions towards another individual of the population.

To account for the evolution of both processes it is appropriate to consider that each evolves indepen-

dently of the other and thus allow for separate timescales: one for strategy evolution (τS) and another

for network adaptation (τN). Let us define the ratio of both timescales as

W =
τS

τN
(53)

and assume that τS = 1. Then, at each time step, a strategy update event shall occur with probability

pstrategy = (1 + W)−1 and a network update with pnetwork = 1 − pstrategy. Here W provides a

measure of population inertia to react to their rational choices: Large W reflects populations in which

6 Although a strongly constrained dynamics which bears no comparison with any real world process
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Population Structure

Population State
x

B

A

B

A

Individual State Update

Network Dynamics

determines

affects

affects

determines

Figure 22: Scheme that summarizes the feedback between Strategy and Structure Evolution. The
assortment of strategies in a network dictates the effective dilemma as identified by
the Gradient of Selection thus affecting strategy update, which determines how the
frequency of strategies in the population changes in time. In turn the amount of indi-
viduals of each type affects the underlying decision making driving network dynam-
ics, thus determining the interaction structure of the population.

individuals react promptly to adverse ties, whereas small W reflects the overall inertia for topological

change (compared with strategy change) [252].

In the previous section, by using the gradient of selection, we explored the idea that population

structure fundamentally changes the effective dynamics of strategy evolution and more importantly

how different types of structures lead to distinct dynamical portraits. Now, on the other hand, we

realize that the evolution of structure seemingly depends on both the composition of strategies in

the population as well as their particular assortment along the network. Thus, although formally

independent, both processes remain coupled through the seemingly feedback that is schematized in

Figure 22 [65, 253, 254].

Active Linking

Two limits bring us back to charted territory. In the limit of W → 0 the static network scenario

is recovered and the evolutionary dynamics of structured populations can be extracted through the

computational computation of Γ(k). When W → ∞ the network evolution is much faster than strategy

evolution and reaches a stationary topology in between any pair of strategy update events. In this

limit, and under additional constraints, it is also possible to understand and quantify the impact of the

network dynamics on the strategy evolution of the population.
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Concerning the latter case (W → ∞), a very successful approach known as Active Linking [254,

255, 256, 199, 196, 195] considers the state space spanned by the different types of links7 plus their

rates of creation (αsisj for all i, j ∈ {C, D})) and destruction (βsisj for all si, sj ∈ {C, D})). Each state

in this space, that we call Active Linking configuration space, is defined by a different combination of

the total number of links of each type in the population. In this framework the creation and destruction

of links does not depend on the composition of strategies of the population, thus the fraction of active

links is governed by a set of ordinary (linear) differential equations of the form

ψ̇sisj = αsisj(ψ̄sisj − ψsisj)− βijψsisj (54)

where ψsisj is the fraction of links that connect individuals of strategy si to individuals of strategy sj,

and (ψ̄sisj is the maximum possible number of links of each type. The computation of the equilibrium

fraction of active links in the steady state (ψ∗sisj
) leads to an expression that depends only on the

quantities αsisj and βsisj ,

ψ∗sisj
= ψ̄sisj ηsisj = ψ̄sisj

αsisj

αsisj + βsisj

(55)

The computation of the equilibrium fraction of each type of link introduces a correction to the replica-

tor equation. Hence in the case of a two-person and two strategy the resulting effective evolutionary

dynamics corresponds to a rescaling of the payoff matrix of the form,

C D

C ηCCR ηDCS

D ηDCT ηDDP

which, as pointed out by Pacheco et al [196, 195, 257, 254], under the right conditions can prompt

a milder dilemma, distinct from Prisoner’s Dilemma initially faced by individuals. Surprisingly, the

results computed with the Active Linking tend to hold for a wide range of timescales (W >> 1) [254].

A similar description with qualitatively the same results, but that takes into account the stochastic

effects that arise from the finite number of links, was developed by Bin Wu et al [256].

In sum, both Active Linking (for adaptive networks) and the Γ(k) (on static networks) suggest that

the introduction of structure shifts the population-wide dynamics towards a milder dynamical scenario

(compared to the Prisoner’s Dilemma) that allows for the emergence and evolution of cooperation.

This can be interpreted as if the population-wide dynamics in structured populations is akin to study

a well-mixed population evolving under a different dilemma [74, 195].

Co-evolutionary Dynamics

Ecosystems hardly evolve under such limiting conditions, i.e. in an overly fast adaptation or in a

static scenario. In fact, it is more reasonable to expect that real world systems support both processes

to co-evolve with timescales of a similar order of magnitude (W ≈ 1), a scenario for which we are left

7 In a population where individuals are either Cooperators or Defectors there are three types of links: those connecting two
cooperators, those connecting two defectors and links that connect cooperators and defectors.
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without an appropriate approach to extract/compute the evolutionary dynamics of strategy and struc-

ture co-evolution at a macro-level. So far, several works have inspected this regime resorting mostly

to Monte-Carlo simulations [258, 259, 260], concluding that the co-evolution of network structure

and strategy composition promote cooperation as long as W is above a certain critical threshold Wcrit

[197].

In contrast with the Active Linking, where the network dynamics is introduced by means of the

rates of creation/destruction of links, the slower timescale of network update in the regime Wcrit

requires a more microscopic modeling of the network update process. The simplest process would

consider that at each network update event a random individual breaks a link with a Defector and

creates a new one towards another individual in the population, thus keeping the number of links

constant. Several variations of this model consider that the target individual is selected proportional

to his age, degree or fitness potentially leading to different evolutionary outcomes. Contrary to the

Active Linking framework, it is common in this regime (Wcrit) to quantify the resulting structure [197],

although this is not in the scope of this thesis.

In Chapter 6 we propose a methodology to adapt the computation of Γ(k) to this co-evolutionary

scenario. As we show this methodology provides a dynamical analysis that is independent of the

relative times scales.
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[48] György Szabó and Csaba Tőke. Evolutionary prisoner’s dilemma game on a square lattice.

Physical Review E, 58(1):69, 1998.

[49] György Szabó and Gábor Fáth. Evolutionary games on graphs. Physics Reports, 446(4):97–

216, 2007.

44



1.5. Bibliography

[50] Francisco C Santos and Jorge M Pacheco. Scale-free networks provide a unifying framework

for the emergence of cooperation. Physical Review Letters, 95(9):098104, 2005.

[51] Julia Poncela, Jesús Gómez-Gardeñes, LM Floría, and Yamir Moreno. Robustness of coopera-

tion in the evolutionary prisoner’s dilemma on complex networks. New Journal of Physics, 9

(6):184, 2007.

[52] Francisco C Santos, Marta D Santos, and Jorge M Pacheco. Social diversity promotes the

emergence of cooperation in public goods games. Nature, 454(7201):213–216, 2008.

[53] Francisco C Santos, Flavio L Pinheiro, Tom Lenaerts, and Jorge M Pacheco. The role of

diversity in the evolution of cooperation. Journal of Theoretical Biology, 299:88–96, 2012.

[54] David G Rand, Martin A Nowak, James H Fowler, and Nicholas A Christakis. Static network

structure can stabilize human cooperation. Proceedings of the National Academy of Sciences,

111(48):17093–17098, 2014.

[55] James H Fowler and Nicholas A Christakis. Cooperative behavior cascades in human social

networks. Proceedings of the National Academy of Sciences, 107(12):5334–5338, 2010.

[56] Coren L Apicella, Frank W Marlowe, James H Fowler, and Nicholas A Christakis. Social

networks and cooperation in hunter-gatherers. Nature, 481(7382):497–501, 2012.

[57] David G Rand, Samuel Arbesman, and Nicholas A Christakis. Dynamic social networks pro-

mote cooperation in experiments with humans. Proceedings of the National Academy of Sci-

ences, 108(48):19193–19198, 2011.

[58] Jing Wang, Siddharth Suri, and Duncan J Watts. Cooperation and assortativity with dynamic

partner updating. Proceedings of the National Academy of Sciences, 109(36):14363–14368,

2012.

[59] Katrin Fehl, Daniel J van der Post, and Dirk Semmann. Co-evolution of behaviour and social

network structure promotes human cooperation. Ecology Letters, 14(6):546–551, 2011.

[60] Arne Traulsen, Dirk Semmann, Ralf D Sommerfeld, Hans-Jürgen Krambeck, and Manfred

Milinski. Human strategy updating in evolutionary games. Proceedings of the National

Academy of Sciences, 107(7):2962–2966, 2010.
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O R I G I N S O F P E E R I N F L U E N C E I N S O C I A L N E T W O R K S

Physical Review Letters, 112, 098702 (2014)

Flávio L. Pinheiro, Marta D. Santos, Francisco C. Santos and Jorge M. Pacheco

Social networks pervade our everyday lives: we interact, influence, and are influenced by our friends

and acquaintances. With the advent of the World Wide Web, large amounts of data on social networks

have become available, allowing the quantitative analysis of the distribution of information on them,

including behavioural traits and fads. Recent studies of correlations among members of a social net-

work, who exhibit the same trait, have shown that individuals influence not only their direct contacts

but also friends’ friends, up to a network distance extending beyond their closest peers. Here, we

show how such patterns of correlations between peers emerge in networked populations. We use

standard models (yet reflecting intrinsically different mechanisms) of information spreading to argue

that empirically observed patterns of correlation among peers emerge naturally from a wide range of

dynamics, being essentially independent of the type of information, on how it spreads, and even on

the class of underlying network that interconnects individuals. Finally, we show that the sparser and

clustered the network, the more far reaching the influence of each individual will be.

2.1 M A N U S C R I P T

Human societies are embedded in complex social networks on which information flow — associated

with traits such as emotions, behaviors, ideas or fads — is ubiquitous [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

What determines the patterns observed has become extremely valuable, with applications extending

to all areas of human activity. Several studies have focused on the role played by social networks on

the spread of information between individuals, by making use of email and blog databases, and online

social networks such as Twitter [4, 6] and Facebook [7, 8]. Such empirical studies have shown how

social networks affect the propagation of health issues [13, 14], ideas [15], criminal behavior [16, 17],

economic decisions [18, 19], school achievement [20] and cooperation [21, 22], among other human

traits.

In what concerns the correlation patterns observed, Fowler and Christakis [23, 22, 24, 25] recently

proposed a 3 degrees of influence rule based on the statistical analysis of the Framingham Heart study

database, from which a social network was inferred. Correlations among individuals were analyzed for

traits as diverse as smoking habits, alcohol consumption, loneliness, obesity, cooperation or happiness.

These correlations reflected the relative increase in probability — when compared with a random
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Figure 23: Peer Influence Patterns in Homogeneous Networks. (a) Network distance of a
given node to the focal individual (black circle) defined as the smallest number of
network links that separate the two (given by the number inside each circle). (b)
Examples of correlation patterns as a function of j/Z (where j is the number of coop-
erators present in a population of size Z), emerging from the evolutionary PD game
in homogeneous small world networks of size Z = 103 and degree 〈k〉 = 4; the ratio
δn(j/Z)/δ1(j/Z) provides an adequate normalisation which renders the correlation
patterns approximately constant for most values of j/Z. Similar patterns are obtained
both for VM and SIR dynamics.

arrangement — that two individuals share the same trait as a function of the network distance, defined

as the smallest number of links connecting those individuals in the network (see Fig. 23a). They found

that similar and non-trivial correlations emerge from distinct traits and persist in the period studied,

suggesting the validity of a 3 degrees of influence on social networks. In other words, not only our

friends, but also our friends’ friends together with their friends exhibit a positive correlation of traits.

More recently, analysis of cooperation on social networks of hunter-gatherers revealed a degree of

influence of 2 [26].
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2.1. Manuscript

Here we investigate the degree of peer influence that emerges from different dynamical processes

representative of a large plethora of phenomena oCCurring in networked populations — the spread of

cooperative strategies, opinions and diseases. Individuals are assigned to nodes of a complex network,

whereas links between them represent interactions. We show that, for each network class considered,

different processes often lead to the same degrees of influence, suggesting that peer influence is in-

sensitive to the process at stake. On the other hand, we find that simple topological properties of the

underlying networks, such as the average connectivity (〈k〉) and the clustering coefficient, ultimately

determine the number of degrees of influence observed, which systematically falls between 3 and 2, in

agreement with the results stemming from empirical analyses of correlations in present [23, 22, 24, 25]

and past [26] social networks.

We start by studying the evolutionary dynamics of cooperation [27, 11], modeled as peer-to-peer

interactions by means of the famous Prisoner’s Dilemma (PD) metaphor [27]. The word dilemma in

the PD stems from the decision conflict that occurs when 2 individuals must simultaneously decide

whether to Cooperate (C) or to Defect (D) towards the other. The game returns R = 1 for mutual

cooperation, P = 0 for mutual defection, S = −λ when playing C against a D, and T = 1 + λ

when playing D against a C (λ > 0 measures both the temptation to defect and the fear of being

cheated [28]). The ranking T > R > P > S implies that maximizing one’s own payoff leads each

individual to choose D, irrespective of the decision of the other, such that the outcome will be mutual

defection (pure Nash equilibrium for λ > 0). This outcome, however, is not the best for the pair,

as mutual cooperation would lead to a better outcome for both of them. In the evolutionary version,

the accumulated return from the interactions with all neighbors is interpreted as a measure of success

(or fitness), such that some strategies – (C) or (D) – may become more attractive than others. We

assume that individuals revise their behavior based on the perceived success of others: an individual

A imitates a randomly chosen neighbor B with probability

p =
1

1 + e−β( fB− fA)
(56)

where fA ( fB) stands for the fitness of A (B) and β denotes the intensity of selection [29]. In the

mean-field limit, in which everyone is equally likely to interact with anyone else (also known as well-

mixed population approximation, this dilemma inexorably condemns cooperation to extinction [27],

a fate which may change when individuals are embedded in a social network represented by means of

a graph, in which structural diversity is ubiquitous[1, 2, 10, 11, 8, 3, 12, 9, 22, 23, 24, 25, 26, 28, 30,

31, 32, 33, 34, 35].

Moreover, information transmission has been sometimes regarded as contagious [15, 36], similar

to the propagation of infectious diseases [9]. Hence, we also study a widely used model of disease

spreading — the Susceptible-Infected-Recovered model (SIR) [37], in which individuals can be either

in a Susceptible (S), Infected (I) or Recovered (R) epidemiological state [9, 37]. An infected individ-

ual can either infect a susceptible neighbor at an infection rate α, or recover and become immune at a

recovery rate γ.
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Figure 24: Peer influence in social networks. Upper panels. δn/δ1 for Recovered and Infected
individuals in the SIR Epidemic Model taking place in (a) Homogeneous small world
networks; (b) Heterogeneous small world networks; (c) Exponential networks and
(d) Scale-free networks. Lower panels. Critical degree of peer-influence nc (defined
as the largest network distance n for which δn > 0) for different values of average
degree 〈k〉 and network classes shown in the top panels, for the following traits and
processes (see main text for details): (e) Recovered and Infected individuals in the
SIR Epidemic Model (as above), (f) Individuals with the same opinion in the VM,
and (g) Cooperators in the evolutionary PD game. All panels correspond to networks
of size Z = 103 and results in the upper panels were obtained for networks with an
average degree 〈k〉 = 6. For larger network (and population) sizes, the negative val-
ues of the peer-influence correlation amplitudes that one obtains above nc (see upper
panels) will slowly approach 0 — highlighting the importance of finite-size effects in
evaluating peer-to-peer processes. The reason for the negative correlation values for
n > nc in finite (and small) networks is clear: at a network distance nc, most of the
individuals with the same trait have been already sampled (see Fig. 2 in Section 2.2);
thus, for larger network distances, negative correlations will inevitably build up. At
any rate, it is possible to clearly identify two regions of influence separated by nc (see
Section 2.2 for additional details).

Given the structural diversity of social networks [10, 33, 2, 34] in which some individuals interact

and/or are taken as role models more and more often than others, we investigate the role played by

the distribution of the number of first neighbors of each individual (the degree distribution, [2]) and

clustering [2, 35] (a measure of the number of individuals’ neighbors who are also neighbors of each

other) in the emerging patterns of correlations. To this end, we employ four network classes [33] 2.2

with increasing variance of the degree distribution and similar low levels of clustering: homogeneous
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and heterogeneous small-world networks, and exponential and scale-free networks [10, 33, 2]. Homo-

geneous small-world (HoSW) networks were obtained by repeatedly swapping the ends of pairs of

randomly chosen links of a regular ring. Scale-free networks (BA) were obtained combining growth

and preferential attachment, following the model proposed by Barabási and Albert [2]. Exponential

networks (EXP) were obtained by adopting the same algorithm, with preferential attachment replaced

by random attachment [2]. Heterogeneous small-world (HeSW) networks were built adopting the

limit p = 1 of the Watts-Strogatz model [35], in which all links are rewired. Results reported in the

main text refer to networks with Z = 103 (see Fig. 24) nodes, of the same order of magnitude of

those investigated in [23, 22, 24, 25] and for which finite-size effects are non-negligible. In ??, we

investigate in detail the behavior of correlations as a function of the network size.

To obtain εn(j/Z) we compute, for each network configuration, the average fraction of nodes that

exhibit the same trait at a distance n. Hence, for each dynamical process, εn(j/Z) results from

averaging over 106 independent network configurations. For the PD and VM processes, simulations

where carried out starting from random configurations of traits; configurations included in the average

were extracted after a transient of 103 generations (1 generation = Z iterations). For the SIR process,

each simulation was started with a single I in a population of S; α and γ where defined such that the

population would often reach a state with no Is left, see Section 2.2.

The upper panels of Fig. 24 illustrate the normalized correlation values — δn/δ1, which, as shown

in Fig. 23b, are approximately independent from j/Z — obtained for the SIR dynamics in HoSW,

HeSW, EXP and BA networks. We observe that, regardless of the network topology, nc = 3 as in

Refs. [23, 22, 24, 25, 26]. Similar trends are also obtained for the two other dynamical processes

introduced above, see Section 2.2. This is shown in the lower panels of Fig. 24, which also show

how the critical network distance (nc) stabilizes at nc = 2 with increasing network connectivity

(e.g., 〈k〉), independently of the network structure, cluster coefficient and dynamical process (see also

Section 2.2). On the contrary, deviations from this universal behavior of nc are obtained only whenever

networks become very sparse, associated with the smallest values of the average connectivity. Counter-

intuitively, the sparser the underlying network, the more far-reaching the influence of each individual

will be, extending beyond the most pervasive value of 2. Needless to say, the absolute values of the

correlations, depicted in the upper panels, will depend on the specific model parameters, but not the

final value of nc.

Besides being heterogeneous, social networks often exhibit sizable levels of clustering [2], contrary

to the negligible values that characterize the ones utilized in Fig. 24. To evaluate the impact of this

property, we generate, in 2.2, networks with arbitrary clustering for each network class [34]. We

show how nc remains limited between 2 and 4 for each of the three heterogeneous networks under

study, irrespectively of their clustering coefficient and average degree. Nonetheless, we observe that

increasing levels of clustering act to enlarge nc, mostly whenever networks are very sparse, thus

increasing sizeably their average path length, see Section 2.2.

Overall, our results suggest that the extent of peer influence emerges as a natural outcome of dy-

namical processes on structured populations, being pervasive in a wide-range of phenomena ccurring

in social networks. Despite the importance of social networks in defining the paths and ends of the
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Figure 25: Network Properties. Average Path Length as a function of the average degree (left
panel) and cluster coefficient (right panel). Different colors are used for each of the
topologies studied (as indicated). Each network has Z = 103 individuals; each data
point corresponds to an average over 100 different networks.

dynamical processes they support, showing how important it is to address and understand population

dynamics from a complex networks perspective [9, 11, 31, 32, 38], the patterns of peer-influence

they exhibit are surprisingly independent of their structure. On the other hand, when networks are

very sparse, different network properties may contribute to enlarge the sphere of influence of each

individual. Our results also show how networks naturally entangle individuals into interactions of

many-body nature: Indeed, social networks effectively extend, in non-trivial ways, the dyadic inter-

actions we started from. The fact that the network distance between any two individuals in social

networks is small [2, 10] and comparable to nc further enhances the significance of the present results,

as they stress how our individual actions may have wide scopes and counter-intuitive repercussions.

2.2 S U P P L E M E N TA L M AT E R I A L

This section provides supplementary information on the models and methodologies employed for

the computation and analysis of the Peer Influence patterns discussed in section ?? of this chapter.

2.2.1 Social Structure

Let us consider a population of Z individuals embedded in a complex network of social interactions,

where each node represents an individual and an undirected link a social interaction between two

individuals. All links have the same weight equal to 1. The total number of interactions an individual

i engages defines his degree ki, while the fraction of individuals with degree k is given by the degree

distribution D(k). We shall refer to a network as homogeneous if all individuals have the same degree

and heterogeneous otherwise. Moreover, we quantify the level of degree heterogeneity of a network

by the variance of the degree distribution (σ2(k)) [39].

62



2.2. Supplemental Material

1.0

fr
ac

tio
n 

of
 in

di
vi

du
al

s

network distance, n

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

103 104 105

HoSW HeSW

EXP BA

Z

100 101 102

10-5

10-4

10-3

10-2

10-1

100

100 101 102

10-5

10-4

10-3

10-2

10-1

100

100 101 102

10-2

10-1

100

D
(z

)

z

10-4

10-3

10-5

100 101 102

10-5

10-4

10-3

10-2

10-1

100

100 101 102

10-5

10-4

10-3

10-2

10-1

100

100 101 102

10-2

10-1

100

D
(z

)

z

10-4

10-3

10-5

100 101 102

10-5

10-4

10-3

10-2

10-1

100

100 101 102

10-5

10-4

10-3

10-2

10-1

100

100 101 102

10-2

10-1

100

D
(z

)

z

10-4

10-3

10-5

10-5

10-4

10-3

10-2

10-1

100

100 101

10-2

10-1

100

D
(z

)

z

10-4

10-3

10-5

Figure 26: Average fraction of nodes at distance n, η(n) from a random node of the popula-
tion. Each panel shows the results for a different type of network: Homogeneous
Small World networks (upper left panel); Heterogeneous Small World networks (up-
per right panel); exponential networks (bottom left panel) and scale-free networks
(bottom right panel). Dashed lines denote the accumulated distribution, that is the
fraction of nodes at a nork distance lower or equal to n. Different colors refer to
networks with different size: Z = 103 (black); 104 (green) and 105 (red).

Four different network topologies with different degree distributions are investigated in this work:

Homogeneous Small World (HoSW) networks; Heterogeneous Small World (HeSW) networks; Ex-

ponential (EXP) and scale-free (BA) networks. Among these popular network types, BA and EXP

networks are often regarded as good models of real world networks [33].

HoSW networks were generated by repeatedly swapping the ends of links from an initially regular

network [40]. As a result all node-node correlations are eliminated while retaining their homogeneous

character. HeSW networks were generated by rewiring half of the links of each node of a regular ring

graph to a new random node in the population [35], forbidding link duplication and requiring overall

network connectivity. The resulting degree distribution follows a Poisson distribution with k above

〈k〉/2 [35], where 〈k〉 is the average connectivity of the network.

EXP networks are characterized by a degree distribution that follows an geometric distribution (ex-

ponential in the limit of very large populations) and were obtained by means of a growth mechanism

with linear (random) attachment [10]. Similarly, BA networks were constructed by means of a growth
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mechanism combined with preferential attachment, which generates power law degree distribution

[10, 2] characterized by the existence of a small group of nodes with a large number interactions,

while the majority of the population engages in few.

Apart from the degree distribution, two other quantities of interest are used to characterize network

topology: The clustering coefficient (CC) and the average path length (APL). The first concerns the

fraction of neighboring individuals that share a common neighbor [41] and the second the average

network distance (measured in terms of links traversed) between any two random individuals of the

network [41].

By default, each network has a low CC (< 0.035); thus in order to inspect the impact of increas-

ing CC on each topology we employ an algorithm proposed in [42] that increases the CC without

changing the degree distribution, and that works as follows: at each iteration the ends of two ran-

domly selected links are swapped; if the resulting network has a higher CC we validate this rewiring;

otherwise we return to the initial network. These steps are repeated until the desired CC is attained.

Figure 25, shows how the APL changes with the 〈k〉 (left panel) and CC (right panel) for each of

the topologies under study (Z = 103). Naturally, for a fixed CC, increasing 〈k〉 leads to a decrease of

the APL; on the other hand, increasing CC for fixed 〈k〉 leads to an increase in the APL. Figure 26, in

turn, shows the impact of network size on the average fraction of nodes at a distance of n links from

any random node, a distribution that we denote as η(n).
This network property provides a valuable indicator within this context, as it provides a measure of

the sampling size available for each network distance and network topology (see Section 2). Interest-

ingly, η(n) peaks at different values of n for different population sizes (Z), shifting to larger n with

larger Z, allowing for better statistics to be obtained for larger values of n. In the following sections

we provide results of extensive numerical simulations in which we investigate the impact of different
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Figure 28: Peer Influence patterns on Homogeneous (upper panel) and Heterogeneous (bottom
panel) Small World populations with different sizes. We assume populations com-
posed by Z = 103 (gray), 104 (yellow) and 105 (black) individuals and average degree
〈k〉 = 4 and show how the correlation values vary with the network distance.

dynamical processes on the peer influence patterns of structured populations with Z = 103, 104 and

105. This is done for different levels of clustering coefficient CC and average degree 〈k〉.

2.2.2 Peer Influence

Let us consider a population of Z individuals in which j share a common trait. We designate by trait

configuration any of the Z + 1 available states of the population characterized by j, that is 0 ≤ j/Z ≤
1.

Let us define εn(j/Z) as the probability that for a given j/Z two individuals at the distance of n links

share the same trait. Therefore, if traits are distributed at random along the nodes of the population

we expect εn(j/Z) to be, on average, equal to j/Z. The existence of positive/negative correlations

of traits between individuals at a distance of n links can be conveniently measured by computing

εn(j/Z)− j/Z, where positive (negative) correlations of traits stand for individuals being assorted

preferentially close to (away from) individuals with a similar trait.

For convenience, we also define δn(j/Z) as the average correlation of traits (normalized) between

two nodes at the distance of n links, that is

δn(j/Z) =
εn(j/Z)− j/Z

j/Z
(57)

65



Chapter 2. O R I G I N S O F P E E R I N F L U E N C E I N S O C I A L N E T W O R K S

111 222 333 444 555 666 777 888 999 101010

0.
47
1

0.
47
2

0.
47
2

0.
24
1

0.
24
7

0.
24
7

0.
14
0

0.
15
8

0.
16
1

0.
07
2

0.
12
4

0.
13
6

-
0.
01
0

0.
09
1

0.
12
7

-
0.
10
7

0.
03
3

0.
10
8

-
0.
20
3

-
0.
05
1

0.
06
0

-
0.
27
3

-
0.
14
9

-
0.
01
6

-
0.
23
8

-
0.
10
9

-
0.
29
1

-
0.
20
9

δ n
(j/

Z)
, j

/Z
 =

 0
.5

103 104 105Z

network distance, n

111 222 333 444 555 666 777 888 999 101010

0.
48
4

0.
48
5

0.
48
6

0.
22
3

0.
22
7

0.
22
8

0.
08
4

0.
10
5

0.
11
2

0.
00
1

0.
05
5

0.
07
8

-
0.
08
7

0.
00
2

0.
04
8

-
0.
17
8

-
0.
07
3

-
0.
00
4

-
0.
24
4

-
0.
15
9

-
0.
07
9

-
0.
22
0

-
0.
17
0

-
0.
29
1

-
0.
23
6

-
0.
27
5 B

A
EXP

Figure 29: Peer Influence patterns on Exponential (upper panel) and scale free (bottom panel)
populations of different sizes. We assume populations composed by Z = 103 (gray),
104 (yellow) and 105 (black) individuals and average degree 〈k〉 = 4 and show how
the correlation values vary with the network distance.

where the division by j/Z provides the convenient normalization that allows an easy interpretation

and comparison with other works in the literature [23, 22, 24, 25].

The computation of δn(j/Z) requires the analysis of the network patterns of traits (that we refer to

as network configurations) generated by each dynamical process under analysis. This task is divided

in two steps: (1) a set of m network configurations produced by a dynamical process are extracted

and (2) for each network configuration we compute δn(i; j/Z) (correlation at distance n for network

configuration 1 ≤ i ≤ m). The first step depends on the dynamical process at hand and hence the

extraction of the network configurations is detailed at the beginning of the following three subsections.

As for the second step, δn(j/Z) is computed as the average of δn(i; j/Z) over all m samples while

the error bars shown in Figures below correspond to the expected deviations from the average, that is,

σn(j/Z)/
√

m .

The quantity of interest in our analysis is the critical network distance above whichδn(j/Z) becomes

statistically negative, nc, that is, when δn(j/Z)− σn/
√

m < 0.

2.2.3 SIR Dynamics

SIR models and extensions have been extremely successful in investigating the propagation of con-

tagious diseases from which individuals are able to acquire immunity. Chickenpox, measles and

seasonal flu are a few real life examples of diseases that fall in this category. Here we follow closely

the model studied in reference [43].
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Figure 30: Critical network distance on heterogeneous social networks with different average
degree and cluster coefficient. Populations have Z = 103 individuals. Each colored
cell denotes a different network and circles correspond to their average path length
(APL), which decreases with increasing average degree (〈k〉) and decreasing cluster
coefficient (CC).

Consider a population composed by individuals that can be, at any time, in one of three states:

S (Susceptible); I (Infected) and R (Recovered), evolving under an asynchronous dynamics where at

each time-step a recovery event occurs with probability otherwise, with probability 1− p, an infection

event occurs. Additionally, at each time step an individual A is selected at random from the population;

if A is in state I and a recovery event was selected then I becomes R with probability α; however if A

was in state S and an infection event was selected then A becomes I with probability β if a randomly

chosen neighbor of A is also in state I. For the purpose of computing correlations between traits, we

consider correlations between S and both R and I, in the sense that the network pattern stems from the

same dynamical event: S’s becoming I’s.

Each network configuration was extracted from a simulation that starts with a single source of infec-

tion. The outbreak evolved until the population reached the desired trait configuration. This procedure

was repeated as many times as needed .

An appropriate β/α was chosen to ensure that most of the population becomes infected from a single

infected individual regardless of the population structure, that is, above the most demanding epidemic

threshold [44]. The peer influence patterns detected are, however, consistent for a wide range of β/α

under this regime, thus providing a convenient set up in which to analyze the peer influence patterns

that emerge for the entire domain of trait configurations.

Besides the results already shown in 24, Figure 27 shows how nc changes with the CC (between 0
and 0.35, the range in which values obtained for real world networks fall) on heterogeneous popula-

tions.

Figure 27 evidences how nc increases with increasing APL. This feature is explained by the fact that

the network diameter (the maximum distance between any two nodes) follows the same trend of the

APL, thus increasing with increasing CC and decreasing 〈k〉.
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Figure 31: Peer Influence patterns on Homogeneous (upper panel) and Heterogeneous (bottom
panel) Small World populations with different sizes. We assume populations com-
posed by Z = 103 (gray), 104 (yellow) and 105 (black) individuals and average degree
〈k〉 = 4 and show how the correlation values vary with the network distance.

Figures 28 and 29 show how the impact of population size (103, 104 and 105) on the peer influence

patterns generated from the SIR dynamics, putting in evidence the role of finite size effects. Values

in the figures below (above) the bars identify a positive (negative) δn(j/Z). The absence of values

above/bellow a certain value of n implies that there are no nodes at a distance of n links for that

particular network size. Finally, bars of different colors represent populations of different sizes (gray

correspond to 103, yellow to 104 and black to 105).

For populations with 103 individuals, δn(j/Z) monotonically decreases with increasing n on all

topologies. Thus there is a well defined critical network distance nc above which δn(j/Z) become

(increasingly) negative. For larger populations, however, this pattern is only kept on strongly hetero-

geneous populations (EXP and BA), while on Small World networks (HoSW and HeSW) δn(j/Z)
tends to zero with increasing n, thus becoming difficult to identify nc.

2.2.4 Voter Model

The Voter Model presents a simple yet highly successful framework in which to study opinion for-

mation [9, 38, 45, 46]. Here we assume a structured population of individuals. Each individual can

have one of two possible traits Si = 0 or 1. At each time-step (iteration) a randomly selected individ-

ual from the population imitates the trait of a randomly selected neighbor with probability p, which,

without loss of generality, we consider equal to one.
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Figure 32: Peer Influence patterns on Exponential (upper panel) and scale free (bottom panel)
populations of different sizes. We assume populations composed by Z = 103 (gray),
104 (yellow) and 105 (black) individuals and average degree 〈k〉 = 4 and show how
the correlation values vary with the network distance.

Each network configuration was extracted from populations that evolve from an initially random

configuration of traits for a period of τt = 1.5× 103.

A transient of τt = 103 generations was considered. After the transient regime, network configura-

tions associated with the desired trait configuration (j∗/Z) were stored with probability 10−3, thus

avoiding the same network configuration to be stored in consecutive time-steps. Once again we found

that the critical network distance, nc, tends to increase with increasing APL (white disks), see Figure

30. This happens for decreasing 〈k〉 or increasing CC. Figures 31 and 32 show the impact of popula-

tion size (103, 104 and 105) on the peer influence patterns generated from Voter Model dynamics.

Similar to the results obtained with the SIR dynamics, for populations with 103, δn(j/Z) decreases

monotonically with increasing network distance on all topologies. These results, however, contrast

with the pattern of δn(j/Z) on larger populations that, overall (BA topologies constitute an exception)

tend to zero with increasing network distance on all topologies.

2.2.5 Prisoner’s Dilemma

Making use of Evolutionary Game Theory (EGT) [27, 47, 11, 48, 49] we now study the patterns

of peer influence generated by a fitness driven evolutionary dynamics. Here we consider the most

popular social dilemma of cooperation: The Prisoner’s Dilemma (PD [27].

Let us consider that each individual adopts unconditionally one of two strategies (to Cooperate or

to Defect). Each interaction entails a payoff to both participating individuals that depends only on
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the pair strategy. If both individuals cooperate each earns the reward (R) for mutual cooperation; if

both defect each gets the punishment (P) for mutual defection; finally a cooperator facing a defector

obtains the sucker?s payoff (S) for being cheated upon, whereas the defector obtains the so called

temptation (T) payoff. Here we shall adopt a standard parameterization of these four payoffs, making

R = 1.0, P = 0.0, T = 1 + λ and S = −λ; under these assumptions, λ > 0 ensures that individuals

engage in a PD.

At each time-step a randomly selected individual A updates his/her strategy by imitating the strategy

of a randomly selected neighbor B with probability [47, 11]

p f ermi =
1

1− exp(−β( fB − fA))
(58)

where β is the intensity of selection (which regulates the randomness of the decision making process)

and fi is the fitness of individual i, which here is simply the accumulated payoff from all his interac-

tions. Consequently, individuals imitate preferentially those peers that have a higher fitness, which

may also be interpreted as a measure of social success.

Each network configuration was extracted from a time range of 2000 generations after an initial

transient of 5 generations. Each evolution started from a random configuration of traits. During the

observation time window, and whenever the system was at the desired trait configuration j/Z, the

associated network configuration was stored with probability ≈ 10−3, thus lowering the chances of

storing two consecutive network configurations.

On both HoSW and HeSW networks we analyze the peer influence patterns for λ = 0.01 while on

EXP and BA populations we considered a harsher social dilemma with λ = 1.25. These values of λ

can be shown to encapsulate the regimes of interest for the networks topologies under consideration

[32, 28, 50].

70



2.3. Bibliography

111 222 333 444 555 666 777 888 999 101010

0.
33
8

0.
34
0

0.
33
9

0.
11
4

0.
11
7

0.
11
6

0.
03
5

0.
03
9

0.
03
8

0.
00
7

0.
01
2

0.
01
2

-
0.
00
3

0.
00
3

0.
00
4

-
0.
00
7

0.
00
0

0.
00
1

-
0.
00
9

-
0.
00
1

0.
00
0

-
0.
01
1

-
0.
00
1

0.
00
0

-
0.
28
2

-
0.
00
1

0.
00
0

0.
00
0

δ n
(j/

Z)
, j

/Z
 =

 0
.5

103 104 105Z

network distance, n

111 222 333 444 555 666 777 888 999 101010

0.
37
5

0.
37
8

0.
37
8

0.
15
7

0.
16
1

0.
16
2

0.
06
5

0.
07
1

0.
07
3

0.
02
8

0.
03
9

0.
04
1

0.
00
7

0.
02
7

0.
03
0

-
0.
01
9

0.
02
0

0.
02
6

-
0.
06
0

0.
00
9

0.
02
4

-
0.
11
4

-
0.
01
5

0.
02
0

-
0.
20
0

-
0.
05
6

0.
00
8

-
0.
11
7

-
0.
01
8 H

eSW
H

oSW

Figure 34: Peer Influence patterns on Homogeneous (upper panel) and Heterogeneous (bottom
panel) Small World populations with different sizes. We assume populations com-
posed by Z = 103 (gray), 104 (yellow) and 105 (black) individuals and average degree
〈k〉 = 4 and show how the correlation values vary with the network distance

Once again we found that the critical network distance, nc, tends to increase with increasing APL
(white disks) – see Figure 33 – increasing as well with decreasing 〈k〉 or increasing CC.

We take into account the impact of each type of topology in the evolutionary dynamics of populations

engaging in a PD by dividing our analysis in two different levels of λ : λ = 0.01 (Figure 34) and

λ = 0.25 (Figure 35).

Figures 34 and 35 show the impact of population size (103, 104 and 105) on the peer influence

patterns generated from the EGT dynamics.

On HoSW populations we observe a consistent pattern that tends to zero with increasing network

distance n. On heterogeneous populations, such as HeSW, EXP and BA, we obtain qualitatively the

same pattern found in previous dynamics: a monotonic decrease with increasing network distance.
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PLOS ONE, 10.1371/journal.pone.0032114 (2012)

Flávio L. Pinheiro, Jorge M. Pacheco and Francisco C. Santos

In the previous chapter we developed a methodology to study and characterise the emerging peer

influence patterns in complex networks. This was done for three different dynamical processes and

tested over several network topologies. We have shown that these are a natural consequence of dy-

namical processes in complex networks, being largely independent of the way information spreads on

a network, and that they show similar properties to the patterns already observed in empirical studies.

A more fundamental problem concerns the relation between local and collective dynamics in com-

plex networks, similar to what happens in many other areas of Physics. Indeed, social networks affect

in such a fundamental way the dynamics of the population they support that the global, population-

wide behaviour that one observes often bears no relation to the individual processes it stems from. Up

to now, linking the global networked dynamics to such individual mechanisms has remained elusive.

Here we study the evolution of cooperation in networked populations and let individuals interact via a

2-person Prisoner’s Dilemma – a characteristic defection dominant social dilemma of cooperation. We

show how homogeneous networks transform a Prisoner’s Dilemma into a population-wide evolution-

ary dynamics that promotes the coexistence between cooperators and defectors, while heterogeneous

networks promote their coordination. To this end, we define a dynamic variable that allows us to track

the self-organisation of cooperators when co-evolving with defectors in networked populations. Using

the same variable, we show how the global dynamics – and effective dilemma – co-evolves with the

motifs of cooperators in the population, the overall emergence of cooperation depending sensitively

on this co-evolution.

3.1 M A N U S C R I P T

3.1.1 Introduction

Dynamical processes involving populations of individuals constitute paradigmatic examples of com-

plex systems. From epidemic outbreaks to opinion formation and behavioral dynamics [1, 2, 3, 4, 5,

6, 7, 8, 9], the impact of the underlying web of ties in the overall behavior of the population is well

known. In this context, Evolutionary Games [10, 11] provide one of the most sophisticated examples

of complex dynamics in which the role of the underlying network topology proves ubiquitous. For
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instance, when cooperation is modeled as a Prisoner’s dilemma game, cooperation may emerge (or

not) depending on how the population is networked [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].

Up to now, it has been hard to characterize in detail the global dynamics by which local self-

regarding actions lead to a collective cooperative scenario, relating it to the network topology. Indeed,

most network studies have been focused on the analysis of the evolutionary outcome of cooperation

[14] – either by means of the numerical analysis of steady states [12, 16, 18, 19, 24, 25, 30, 33, 35, 36,

39, 40, 41] or by means of the analytical determination of the conditions for fixation in the population

or by means of the determination of positive inclusive fitness effects for particular homogeneous net-

work interaction structures and low intensities of selection [17, 20, 22] – without characterizing the

self-organization process by which one of the strategies outcompetes the other. Here we show how

networked individuals, engaging in a Prisoner’s dilemma (PD) of cooperation, give rise to a global,

population wide, behavioral dynamics which deviates strongly from the original PD, depending sensi-

tively on the underlying network of contacts: Homogeneous networks promote a coexistence dynam-

ics between cooperators and defectors – akin to the Chicken or Snowdrift game [11, 39, 42, 43, 44]

– whereas heterogeneous networks, from broad scale to scale-free [4, 27], favor the coordination be-

tween them, similar to the Stag-hunt game [45].

To this end we define a time-dependent variable – that we call the average gradient of selection

(AGoS) – and use it to track the self-organization of cooperators when co-evolving with defectors

under network reciprocity. Similar to existing analytical approaches [44, 46], the AGoS is able to

provide a measure of the change in time of the frequency of cooperative traits under selection. The

AGoS can be computed for arbitrary intensity of selection (see Section 3.1.5), arbitrary population

structure and arbitrary game parameterization. We further prove that the global games are not fixed:

they change in time, co-evolving with the motifs of cooperators in the population. The evolutionary

outcome of such a self-organization process will depend sensitively on this co-evolution, which can

be followed using a time-dependent AGoS.

3.1.2 Dynamical Model

Let us consider pairwise interactions between individuals who can behave either as a Cooperator

(C) or Defector (D). Whenever cheated by a D, a C receives a payoff S (the sucker’s payoff), while

the D receives T (temptation to defect). Mutual cooperation provides R (reward) to each player, while

mutual defection provides P (punishment). One obtains the Prisoner’s dilemma (PD) – the most

famous metaphor of cooperation – whenever T > R > P > S. We formalize the dilemma in terms

of a single parameter b (benefit) by defining T = B > 1, R = 1, S = 1− B and P = 0. The results

remain quantitatively unaltered if one adopts the more popular parameterization T = b, R = b− c,

S = −c and P = 0.

In the framework of evolutionary game theory, we adopt a stochastic update rule of social learning,

where in each time step a random individual i imitates the strategy of a randomly selected neighbor

j with a probability that increases with the fitness difference between them [14, 24, 48, 49, 50, 51]

(see Section 3.1.5). In the limit of well-mixed populations of size N [10, 11], the frequency j/N of
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Figure 36: Time-independent AGoS. (a) We plot GA(j) for a population of players interacting
via a PD in a homogeneous random network, for two values of the benefit b. Glob-
ally, GA(j) indicates that the population evolves towards a co-existence scenario. (b)
Stationary distributions showing the pervasiveness of each fraction j/N in time. In
line with the AGoS in a), the population spends most of the time in the vicinity of the
stable-like root xR of GA(j). When j/N ≈ 0, Cooperators become disadvantageous,
giving rise to an unstable-like root xL of GA(j) which, however, plays a minor role
as shown (N = 103, < k >= 4 and β = 1.0). Homogeneous random networks
were obtained by repeatedly swapping the ends of pairs of randomly chosen links of
a regular lattice [47].

Cooperators will increase (decrease) in time depending on whether the gradient of selection [52, 53]

G(j) = T+(j)− T−(j) is positive (negative), where T± [48] represent the probabilities to increase

and decrease the number of Cooperators in the population by one. For the PD, G(j) < 0 for all j
and, as a result, cooperation will most probably die out. The same scenario is obtained when N → ∞,

where we recover the scenarios described by the famous replicator dynamics [11, 48, 49, 50, 51]. The

elegance of this result (despite the doomsday scenario for Cooperators) is best appreciated when we

realize that the population ends up adopting the Nash-equilibrium of a PD game interaction between

two individuals: everybody defects. Consequently, there is no difference in the outcome of the game,

from an individual or from a (collective) population wide perspective, a feature that, as discussed

below, will not remain true in structured populations.
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3.1.3 Results

The previous analysis assumes finite yet structureless populations, a feature which is seldom ob-

served in practice, with strong implications in many natural phenomena. A homogeneous network

of size N represents the simplest case of a structured population, where all individuals engage in the

same number of games k with their first neighbors, also imitating their behavior. Let us consider a

homogeneous random network – also called a regular random graph – in which all links are randomly

connected, while all nodes have each the same number of links [4, 54, 47]. In this case, individuals

with the same strategy no longer share the same fitness: fitness becomes context-dependent. The

same happens to G(j), becoming hard to define it analytically. Consequently, we define the AGoS –

denoting it by GA(j) – as the average i) over all possible transitions taking place in every node of the

network throughout evolution, and ii) over a large number of networked evolutions (see Section 3.1.5).

This AGoS, which must be computed numerically, becomes therefore network dependent but context

independent, as it recovers its population averaged, or mean-field, character. Hence, the AGoS may

constitute a powerful tool to understand dynamical processes at a population-wide scale stemming

from individually defined, but often seemingly unrelated, rules.

The results for GA(j) on homogeneous networks of size N = 103, k = 4 and different values of

a are shown in Fig. 36a. Unlike well-mixed populations where cooperation has no chance, homoge-

neous networks can sustain cooperation [12, 14, 15, 24, 47]. The shape of GA(j) no longer pictures a

defection dominance dilemma typical of a PD, but a gradient of selection similar to what one observes

under co-existence dilemmas in well-mixed populations [44]. In other words, even though every indi-

vidual engages in a PD, from a global, population-wide perspective, homogeneous networks are able

to create an emerging collective dynamics promoting the co-existence between Cooperators and De-

fectors. As we show below, the emergence of an unanticipated global (macroscopic) dynamics from a

distinct individual (microscopic) dynamics pervades throughout all evolutionary dynamical processes

in structured populations studied here. The co-existence point xR (see Fig. 36a) is associated with the

internal root (xR ∈]0, 1[) of GA(j) – inexistent in well-mixed populations – whose location decreases

with increasing B. Together with xR one obtains a coordination root (xL ≈ 0, see Fig. 36a) of GA(j)
since, in the absence of cooperative partners, Cooperators will always be disadvantageous. However,

the impact of xL is minor, as shown in Fig. 36b (see discussion below). Remarkably, this charac-

terization remains valid for other types of homogeneous networks, such as lattices and regular rings

(as well as for other possible mechanisms of strategy update) whereas differences in the positions of

the stable root (xR) in of GA(j) and their dependence on b correlate perfectly with results obtained

previously [14, 18, 24, 47, 55, 56, 57, 58], where steady-states of evolution were analyzed for such

structures (see Section 3.2.1).

Fig. 36a shows that, as we change focus from an individual to a population wide perspective, one

witnesses the emergence of an effective game transformation, as evidenced by GA(j), which brings

along important consequences: For instance, the fixation time – the time required for cooperators to

invade the entire population –becomes much larger in homogeneous networks when compared to well-

mixed populations, as the population spends a large period of time in the vicinity of the xR, mainly

when selection is strong (see Section 3.1.5). This, in turn, is responsible for computer simulations to
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Figure 37: Time-dependent AGoS. (a) We plot GA(j, t) for three different instants of evolu-
tionary time. Each line provides a snapshot for a given moment, portraying the
emergence of a population-wide (time-dependent) co-existence-like dilemma stem-
ming from an individual (time-independent) defection dominant dilemma (PD). (b)
The circles show the position of the different interior roots of GA(j, t), whereas the
solid (dark blue) line and (light blue) crosses show two independent evolutionary runs
starting from 50% of Cooperators and Defectors randomly placed in the networked
population. Open (full) circles stand for unstable, xL (stable, xR) roots of GA(j, t)
(b = 1.01, N = 103, < k >= 4 and β = 10.0).

spend arbitrary amounts of time in the same configuration, even when, in the absence of mutations

(as is the case here), the only absorbing states are associated with monomorphic configurations of the

population, that is, with configurations comprising cooperators-only or defectors-only. The stationary

distribution (Fig. refpone2012:Fig1b), which represents the pervasiveness of each fraction of Coop-

erators in time, confirms the scenario portrayed by in Fig. 36a, stressing the similarities with the

evolutionary dynamics in (finite) well-mixed populations under co-existence dilemmas [51, 59, 60],

and putting in evidence the marked difference between individual preferences and the population-wide

dynamics.

In Fig. 36, our analysis was limited to GA(j) that is, we averaged over the entire time span of all

runs. However, the AGoS itself evolves in time – GA(j, t) – as detailed in section 3.2.1. Let us explore
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this time dependence of the AGoS. If, at the beginning of each simulated evolution, Cooperators and

Defectors are randomly spread in the network, the occurrence of clusters of the same strategy will

not occur in general. Hence, for the PD we have that GA(j, t = 0) < 0 in general. As populations

evolve, Cooperators (Defectors) breed Cooperators (Defectors) in their neighborhood, promoting the

assortment of strategies, with implications both on the fitness of each player and on the shape (and

sign) of GA(j, t). In Fig. 37a we plot for three particular generations, whereas Fig. 37b portrays

the time evolution of the internal roots of GA(j, t), on which we superimposed two evolutionary runs

starting with 50% of Cooperators randomly placed in the population. As GA(j, t = 0) < 0, the

fraction of cooperators will start decreasing (Fig.37a). However, with time, strategy assortment leads

to the emergence of a co-existence root, toward which the fraction cooperators converges. The ensuing

coexistence between Cooperators and Defectors, entirely described by the shape of GA(j, t), steams

from the self-organization of Cooperators and Defectors in the network, defining a global dynamics

which is impossible to foresee solely from the nature of the local (PD) interactions.

It is now generally accepted, however, that homogeneous networks provide a simplified picture of

real interaction networks [5, 27, 61, 62]. Most social structures share a marked heterogeneity, where

a few nodes exhibit a large number of connections, whereas most nodes comprise just a few. The

fingerprint of this heterogeneity is provided by the associated degree distributions, which exhibit a

broad-scale shape, often resembling a power-law [4, 27, 61]. In the following we use GA(j, t) to

understand how heterogeneity shifts the internal roots in Fig. 36 to the right, thereby transforming a

co-existence scenario into a coordination one. To this end, we compute GA(j, t) employing scale-free

(SF) networks of Barabási and Albert (BA) (see Section 3.2.1) [61].

Fig. 38a shows GA(j) forBAnetworks of N = 103 nodes and an average degree k = 4, whereas

the circles in Fig. 38b portray the time evolution of the internal roots of GA(j, t). Heterogeneous net-

works lead to a global dynamics dominated by a coordination threshold, originating the appearance

of two basins of attraction split by an unstable root xSkyrms : 2001aaL of GA(j, t), analogous to the

evolutionary dynamics under 2-person and N-person Stag-hunt dilemmas in unstructured populations

[45, 52, 63, 64]. This unstable root represents the critical fraction of Cooperators above which they

are able to assort, thereby invading highly connected nodes, rendering cooperation an advantageous

strategy, as Cooperators acquire a higher probability of being imitated than Defectors. On SF net-

works the requirement to reach the hubs, which ensures the formation of cooperative star-like clusters

[40, 53], makes invasion harder for isolated Cooperators. This moves the unstable root located close

to j/N ≈ 0 in homogeneous networks (see Fig. 36) to higher fractions of Cooperators. Yet, once this

coordination is overcome, Cooperators benefit from the strong influence of hubs to rapidly spread in

the population, eventually leading to fixation. As a result, the stable internal root which characterizes

GA(j) in homogeneous networks collapses into the vicinity of j = N on heterogeneous structures,

promoting the evolution towards fully cooperative populations. Naturally, the location of the unstable

root of GA(j) is an increasing function of b (see Fig. 38a)1.

1 It is noteworthy that our results remain qualitatively valid for other update rules, such as the discrete analogue of the replica-
tor dynamics on graphs, used in many references, e.g., [16, 28, 39, 65]. In fact, the AGoS is capable of identifying particular
features of such dynamics: For instance, the partially deterministic nature of such update rule may lead to evolutionary
deadlocks in heterogeneous (scale-free) networks, creating stationary states close to full cooperation [16, 28]. In such situa-
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The existence of a coordination barrier for Cooperators in heterogeneous networks, which must

first occupy the hubs before outcompeting Defectors, leads to an intricate interplay between the time-

dependent decline of xL (see Fig. 36b) and the global fraction of Cooperators. In Fig. 38b we

show, with full lines, two evolutions inBAnetworks (for the same value of b = 1.25): One, which

fixates in full cooperation and another, which fixates in full defection. Whenever the fraction of

cooperators j/N remains sizeable for long enough, xL will eventually decrease to values satisfying

j/N > xL, such that the global coordination barrier is overcome and the population will fixate into

full cooperation (light blue line). Otherwise, j/N may remain always below xL with the population

fixating into full defection (dark blue line). Clearly, heterogeneous networks lead to the emergence of

a global coordination barrier and associated basins of attraction that evolve in time, in a way which is

well described by the time-dependent AGoS.

3.1.4 Discussion

To establish the link between individual and collective behavior constitutes, undeniably, one of the

main goals of the analysis of any complex multi-particle or multi-component system [66]. Here we

establish such a link showing how it depends on the underlying network topology. Our study shows

that behavioral dynamics of individuals facing a cooperation dilemma in social networks can be under-

stood as though the network structure is absent but individuals face a different dilemma: The structural

organization of a population of self-regarding individuals helps circumventing the Nash equilibrium

of a cooperation dilemma by creating a new dynamical system that can be globally characterized by

two internal fixed points, xL (unstable) and xR (stable). While a single defector will be always advanta-

geous (creating an unstable fixed point at x = 1.0), a single cooperator will be always disadvantageous

(prompting a stable equilibrium at x = 0.0). As cooperators assort into stable clusters, they may also

become advantageous above a certain critical fraction of cooperators (k/N > xL, associated with

a critical cluster size) and below another critical fraction of cooperators xR, above which defectors

will be able to ripe again the benefits of exploiting the many surrounding cooperators. Whereas in

homogeneous networks the stable equilibria dictate the overall dynamics – as in co-existence dilem-

mas – heterogeneous networks create a global dynamics mainly dominated by the unstable equilibria,

creating a coordination problem.

Strictly speaking, such a dynamical system resulting from individuals interacting (locally) via a two-

person game, cannot be mapped onto a two-person evolutionary game in a well-mixed population,

since the latter can only comply with a maximum of one internal fixed point [44]. On the contrary,

such dynamics resembles that from, e.g., N-person dilemmas [67, 68] in the presence of coordination

thresholds [52, 64, 69]. It is as if the global dynamics of a 2-person dilemma in structured popula-

tions can be properly described as a time-dependent N-person dilemma, in which the coordination or

co-existence features emerge from the population structure itself, with different network topologies

emphasizing differently this co-existence/coordination dichotomy.

tion, the AGoS will reflect the occurrence of these stationary configurations by shifting to the left-hand side the stable (xR)
equilibrium, which may no longer coincide with j = N, remaining, however, in its vicinity.
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Figure 38: AGoS on BAnetworks. (a) Starting from a defection dominant PD played at an in-
dividual level, a coordination dynamics emerges at a global, population-wide scale,
for the three values of b depicted. (b) Evolution of the unstable root xL of GA(j, t)
(open circles), exhibiting the time-dependence of the global dynamics; solid (dark
blue) line and (light blue) crosses show two independent evolutionary runs starting
from 50% of Cooperators and Defectors randomly placed. The ultimate fate of Coop-
erators in each run depends on whether the population composition crosses over the
time-dependent value xL of GA(j, t) thereby overcoming the dynamical coordination
barrier during evolution. (b = 1.25, N = 103, < k >= 4 and β = 0.1).BAnetworks
were obtained combining growth and preferential attachment, following the model
proposed by Barabási and Albert [61].

It is worth emphasizing that the approach developed here in the context of the two-person PD may

be useful – and immediately applicable – in understanding the evolutionary dynamics of other game

interactions, as well as in understanding other aspects of human sociality that extend beyond coopera-

tion. From human behaviors and ideas, to diseases spreading or to individual preferences, most have

been modeled as a person-to-person spreading process embedded in a social network [5, 8, 62]. In

such frameworks, the identification and categorization of the global, population-wide dynamics which

emerges from the apparently unrelated nature of the local interactions may enable one to anticipate

the emergent outcomes of such complex biological and social systems.

3.1.5 Methods

Evolution is modelled via a stochastic birth-death process [48, 70, 71]. Each individual x adopts the

strategy of a randomly selected neighbour y with probability given by the Fermi function p = [1 +
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exp(−β( fy − fx))]−1 [14, 48], where fx ( fy) stands for the accumulate payoff of x (y) and controls

the intensity of selection. In structured populations, the difference of the probabilities to increase and

decrease the number of Cooperators (G(j) = T+(j)− T−(j)) becomes context dependent, but can

be computed numerically. For each individual i we compute the probability of changing behavior at

time t,

Ti(t) =
1
ki

n̄i

∑
m=1

[1 + exp(−β( fm − fi))]
−1, (59)

where ki stands for the degree of node i and n̄i for the number of neighbors of i having a strategy

different from that of i. The time-dependent AGoS at a given time t of simulation p, where we have j
Cooperators in the population of size N, is defined as

Gp(j, t) = T+
A (j)− T−A (j) (60)

where

T±A (j, t) =
1
N

AllDs/AllCs

∑
i=1

Ti(t) (61)

For a given network type, we run Ω = 2x107 simulations (using 103 randomly generated networks)

starting from all possible initial fractions j/N of cooperators. Each configuration of the population is

defined here by the fraction j/N of cooperators. Evolutions run for Λ = 105 time steps. Hence, the

overall, time-independent, AGoS is given by the average

G±A (j) =
1

ΩΛ

Λ

∑
t=1

Ω

∑
p=1

Gp(j, t) (62)

over all simulations and time-steps. The time-dependent gradients GA(j, t0) for a particular gener-

ation t0 (and corresponding roots shown in Fig. 36 and 36b) were computed averaging over the

configurations occurring during N previous time-steps (1 generation):

G±A (j, t0) =
1

ΩΛ

Λ

∑
t=t0−N

Ω

∑
p=1

Gp(j, t). (63)

The stationary distributions pictured in Fig. 36b were obtained computing the fraction of time the

population spent in each overall configuration j/N. In some specific limits – in particular, for weak

selection or well-mixed populations – our numerical approach will provide results analogous to those

obtained with other methods (see for instance [20, 22, 44, 46, 48, 51, 60, 71, 72, 73, 74]).

Homogeneous random networks were obtained by repeatedly swapping the ends of pairs of ran-

domly chosen links of a regular network [47].BAnetworks were obtained combining growth and pref-

erential attachment, following the model proposed by Barabási and Albert [4, 61]. All networks used

have N = 103 nodes and an average degree k = 4.
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Figure 39: Evolutionary dynamics cooperation in homogeneous networks. We plot the inte-
rior roots xR of (circles) for a PD (T = b, R = 1, P = 0, S = 1− b) in homogeneous
networks, from random networks (black circles) to ordered lattices (red circles), as a
function of the benefit b. indicates that the population evolves towards a stationary
fraction xR of Cooperators. This is confirmed by the stationary states (lines) obtained
via computer simulations starting from 50% of Cooperators and Defectors randomly
placed in each network. (N = 103, k = 4 and β = 0.1).

3.2 S U P P O RT I N G I N F O R M AT I O N

3.2.1 Evolutionary steady states in homogeneous networks

As we argue in the main text, the shape of the time independent GA(j) obtained for homogeneous

networks indicates that these topologies induce a co-existence game dynamics in a population of

individuals engaging in a Prisoner’s Dilemma (PD). Moreover, the stationary regime is associated

with the interior root of GA(j). Thus, it is reasonable to expect that the stable roots of GA(j) will

coincide with the steady states obtained from computer simulations carried out on the same networks.

In Fig. 39 we compare the interior roots of GA(j) (circles) with the stationary states (lines) ob-

tained via computer evolutions [1, 2, 3, 4, 5] carried out for several values of the benefit b and for

homogenous networks, ranging from ordered lattices (Lattice) to random networks (HoRand). Fig.

39 confirms that the information offered by remains valid and strikingly accurate for a broad range of

game parameters for both types of networks. In accord with the results in the main text, the stationary
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states were computed for networks with N = 103 individuals and an average connectivity of z = 4.

As before, each individual revise his or her strategy adopting the one of a randomly selected neighbour

with probability given by the Fermi function (see Section 3.1.5) [2, 6]. Each equilibrium fraction of

cooperators in a simulation was obtained by averaging over 500 generations after a transient period

of 104 generations starting from 50% of Cooperators randomly placed on the network. Both red and

black lines in Fig. 39 correspond to a subsequent average over 104 simulations.

GA(j) and its interior roots (full circles in Fig. 39) were computed for the same game and network

parameters by averaging GA(j, t) over 100 generations after a transient of 50 generations (see Section

3.1.5 for details of computation of GA(j, t)).
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H OW S E L E C T I O N P R E S S U R E C H A N G E S T H E NAT U R E O F S O C I A L

D I L E M M A S I N S T RU C T U R E D P O P U L AT I O N S

New Journal of Physics, 14, 073035 (2012)

Flávio L. Pinheiro, Francisco C. Santos and Jorge M. Pacheco

In Chapter 3 we have introduced a new methodology to characterize the evolutionary dynamics of

cooperation in structured populations. We have shown that the degree distribution of the underlying

network of interactions between individuals plays an important role in defining the emerging collec-

tive behavior of the population. In particular, when individuals interact according to the Prisoner’s

Dilemma we concluded that degree homogeneous networks, in which individuals share a similar num-

ber of neighbors, lead to a population-wide coexistence dynamics. In contrast, degree heterogeneous

networks prompts a coordination towards a monomorphic configuration dominated either by Cooper-

ators or Defectors. Both these global, population-wide dynamics present a milder challenge for the

evolution of cooperation when compared with the Prisoner’s Dilemma locally faced by individuals.

Here, we investigate the role of selection pressure (associated with the stochasticity of the decision

making of individuals) in the the emergence of these collective scenarios. We find that homogeneous

networks are very sensitive to selection pressure, whereas strongly heterogeneous networks are more

resilient to natural selection, dictating an overall robust evolutionary dynamics of coordination. Be-

tween these extremes, a whole plethora of behaviors is predicted, showing how selection pressure can

change the nature of dilemmas populations effectively face. We further show how the present results

for homogeneous networks bridge the existing gap between analytic predictions obtained in the frame-

work of the pair-approximation from very weak selection and simulation results obtained from strong

selection.

4.1 M A N U S C R I P T

4.1.1 Introduction

Complex networks are ubiquitous and known to profoundly affect the processes that take place on

them [3, 4, 5]. From a theoretical perspective, some of the most complex processes studied to date,

occurring on complex networks, are related with behavioral dynamics and decision-making, often

described by means of social dilemmas of cooperation [6]. Among these, the Prisoner?s Dilemma

(PD) provides the most popular metaphor of such dilemmas, given that its only Nash equilibrium is
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Figure 40: Effective games in structured populations. Depending on the underlying network
structure, the evolutionary dynamics of a population may exhibit an Average Gradi-
ent of Selection (AGOS) which may coincide with the expectations from standard
evolutionary game theory (panel A), or not (panels B and C), reflecting the fact that
the network structure changes the effective game played at a population-wide level.
Similar to the replicator equation [1], the AGoS [2] provides a characterization of the
change in time of the fraction of cooperators under natural selection, being positive
(negative) when the fraction of cooperators tends to increases decreases.

mutual defection, despite mutual cooperation providing higher returns [7] – thus the dilemma. We

may also assume a dynamical (evolutionary) approach to game theory [1, 8] where individuals revise

their behavior based on the perceived success of other individuals, creating a gradient of selection [9]

which dictates the evolution of cooperation in time. In this context, such gradient of selection will

always favor free-riders irrespectively of the fraction of cooperators and of the relative importance of

fitness in the evolutionary process, a result that dictates the demise of cooperation in the population

[8].

This result, which translates the forecast stemming from a game-theoretical analysis based on the

Nash-equilibrium into a population-wide, dynamical setting, assumes that populations are large and

well mixed, that is, everyone interacts with everyone else with equal probability [1]. Yet, when mem-

bers of a population interact along the links of an underlying complex network this scenario is altered,

as the assumption of a well-mixed population no longer holds [6, 10, 11]. Only recently it has become

possible to analyze the population-wide evolutionary dynamics of a game played on an arbitrarily

complex network, very much in the same manner that games were analyzed in well mixed popula-

tions [2]. The so-called Average Gradient of Selection (AGOS, see Section 4.1.2 for details) has

unraveled the fundamental changes in evolutionary game dynamics introduced in populations struc-

tured along the links of complex networks. The results show that, at a population-wide level (what
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we call macro-dynamics) the effective game at stake can be very different from that in which pairs

of individuals engage (what we call micro-dynamics). In particular, homogeneous networks seem to

favor the coexistence of strategies, whereas heterogeneous networks, in turn, favor their coordination

[2], irrespective of the fact that the game individuals perceive and play, individually, is a PD – see

Fig. 40.

The scenarios illustrated in Fig. 40, however, do not take into account the role of selection pressure

in the overall evolutionary dynamics of a networked population [12, 13, 14, 15]. Selection pressure

provides the relative significance of individual fitness in the evolutionary process, as opposed to an ar-

bitrary or random adoption of strategies. This is important, as selection pressure can be very different

depending on the processes at stake. Indeed, in many social interactions, errors in decision making,

perhaps induced by stress or exogenous confounding factors, which often translate into a bounded

rational behavior of the players [16], may lead to an overall weak selection environment. This con-

trasts with many situations in nature where selection may be strong [17] as well as in cases where

cultural evolution is at stake [8]. Moreover, the fate of cooperation in social networks may depend on

how the success of the others are locally perceived – which is related with the number of partners of

each player and their social context [10, 15, 18, 19] – turning selection pressure into a central variable

in the ongoing challenge of understanding the impact of each social structure on global outcomes

[6, 10, 11, 2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].

Here we study the role played by selection pressure in the overall evolutionary dynamics of a pop-

ulation. We find that, for a given class of population structure, there is an optimum level of selection

pressure for which cooperation is maximized. We stick here to paradigmatic examples of homoge-

neous and strongly heterogeneous classes of population structure, deferring to section 4.2 the study

of other classes of population structure which enlarges the variety of topological features studied here,

thereby providing an overall view of the role of selection pressure in a wider range of contexts.

4.1.2 Model

We take a population of individuals organized by means of a complex network of social interactions,

where individuals are placed on the nodes and interactions are restricted to individuals connected

by links. We focus on two classes of population structures: homogeneous, where every individual

shares the same number of neighbors, and heterogeneous, where individuals have variable number

of partners. For the former class, we adopt Homogeneous Random networks (HR) that are built by

randomizing the links of initial homogeneous regular ring networks [39], whereas for the latter we

choose the strong heterogeneous case of Scale-free network structures generated with the Barabási-

Albert algorithm (BA) of growth and preferential attachment [40]. All networks have an average

degree of 4 and population size is N = 1000. In section 4.2 we extend our analysis to other classes of

population structures [5] [4] [41], in order to ensure a more complete picture of the effect under study:

Exponential (EN) [42], Random (RN) [43] and the highly clustered Scale-free networks generated

with the Minimal Model algorithm (MM) [44]; these, while having a degree of heterogeneity similar

to BA networks, exhibit a high cluster coefficient, in stark contrast with BA networks. We confirmed

that our results, obtained for N = 1000, remain valid for much larger population sizes.
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Individuals can assume one of two possible strategies: to Cooperate or to Defect. Each strategy

obtains a payoff that depends on the strategy composition of its neighborhood, given by Πi =

nC(Si(R− T) + T) + nD(Si(S− P) + P), where nC (nD) is the number of cooperators (defectors)

in the vicinity of node i while Si is 1 if individual i is a Cooperator (C) or 0 if a Defector (D). Finally

T (Temptation), R (Reward), P (Punishment) and S (Sucker’s Payoff ) are the game parameters that

define all possible pair outcomes in a symmetric two-person-two-strategy interaction (from a game

theory perspective). Here we consider R = 1.0, P = 0.0, T = λ and S = 1− λ, where λ > 1 stands

both for the temptation to defect towards a C and for the fear of being cheated [18, 45], thus combin-

ing two social tensions in a single parameter. Given that λ > 1.0, we have that T > R > P > S,

which means that the game at stake is a Prisoner’s Dilemma (PD). Further social dilemmas can be

considered for different rankings of the game parameters, in particular the Stag Hunt (a coordination

dilemma, for which R > T > P > S) and the Snowdrift Game (a coexistence dilemma, for which

T > R > S > P).

Evolutionary dynamics proceeds as long as individuals with higher fitness will tend to reproduce

more or, in the context of cultural evolution and social learning, successful individuals will be imitated;

in both cases, the fitter behavior will spread in the population. Here we adopt the pairwise comparison

rule [46, 47, 48] which allows us to explore in terms of a single parameter (β) the full range of possible

selection pressures, from neutral evolution to pure imitation dynamics. At each time step we allow

one randomly chosen individual, i, from the population to imitate the strategy of a randomly chosen

neighbor, j, with probability p given by (1 + exp(−β( f j − fi)))
−1 where fi denotes the fitness of

individual i (here associated with the accumulated payoff obtained from playing with all neighbors).

As stated above, β ≥ 0 defines the selection pressure: for β = 0 we obtain neutral evolution, in which

case the evolutionary dynamics proceeds by random drift; at the other extreme, for very large values

of β, imitation becomes deterministic, in the sense that any chosen neighbor who is more fit will be

always imitated.

The final fraction of cooperators were computed by averaging over 2.5× 105 evolutionary runs, after

a transient of 5× 103 generations starting with a population composed by equal fractions of strategies

randomly placed on the network. We also computed the quasi-stationary distributions, corresponding

to the fraction of time that the population spent in each non-absorbing state during the first 5× 103

generations over 2.5× 105 distinct evolutions that started with a random initial condition.

The Gradient of Selection is defined as G(i) = T+(i) − T−(i) [9], where T+(i) (T−(i)) is the

probability of increasing (decreasing) the number of cooperators by one in a population with i coop-

erators. For structured populations this quantity becomes context dependent, but can be computed

numerically [14]. For each individual i we compute the probability of changing behavior at time t, ,

where stands for the degree of node i and for the number of neighbors of i having a different strategy.

At a give time t of simulation p the Averaged Gradient of Selection (AGOS), is defined as , with for

a state with j Cs in a population of size N. The time-dependent AGOS, GA(j, g), for a particular

generation g is thus computed by averaging over N time-steps (1 generation) , where cj(g) accounts

for the number of times the system was observed in state j at generation g. For a given network type,
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Figure 41: Average Gradient of Selection (AGOS) on HR structured populations. A: time-
dependent AGOS for populations engaging in a PD with λ = 1.01 and λ = 1.0
at 4 different generations (g = 5, 10, 25 and 100) showing that the position of xR
does not change after the 25th generation. B: Location of the internal fixed points of
the time-dependent AGOS, at the 100th generation, for a broad range of values of β
(λ = 1.01). The color gradient is used to plot the quasi-stationary distribution (see
Section 2), i.e., the prevalence in time of each fraction of cooperators.

we run Ω = 2.5× 107 simulations (using 103 networks of each type) starting from random initial

conditions.

4.1.3 Results and Discussion

As discussed in [14], the evolutionary game dynamics taking place on structured populations leads

to the emergence of an effective game, at a macro (population-wide) level, characterized by exhibiting,

typically, a pair of internal roots (of coordination and coexistence type) in the AGOS, more akin to

the dynamics of N-Person games [9, 15, 49, 50, 51, 52]. However, as shown, while in homogeneous

population structures the dynamics is dominated by the coexistence root, in heterogeneous populations

the coordination root characterizes the overall dynamics (cf. Fig. 41).

In Fig. 41A we show a typical profile of the AGOS at different moments of the evolutionary dynam-

ics of a PD played in a population structured according to a HR network, for β = 1.0 and λ = 1.01.

We observe a gradual stabilization of the overall shape of the AGOS such that, by the 100th genera-

tion, the internal fixed point (and the shape) of the AGOS has already stabilized. Hence, in Fig. 41B,

we show the location of the internal fixed points of the AGOS at the 100th generation, as a function

of β, on top of the corresponding quasi-stationary distributions computed along the lines specified in

Section 2.
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B shows the position of the internal points of the AGoS at the 100th generation for
different values of λ, dashed (full) lines follow the trajectory of coordination (co-
existence) points

Fig. 41B shows that, whenever β < 0.3 the AGOS indicates no trace of internal roots, which in-

dicates that we are in a PD (or defector dominance) regime, approaching random drift as β → 0
(leading to a flat quasi-stationary distribution). As soon as β > 0.3 the effective dilemma changes

abruptly, associated with the appearance of two internal points. The dynamics becomes mainly domi-

nated by the co-existence point (xR, whereas the coordination point xL essentially collapses to x = 0),

a feature also reflected in the contour profiles displayed for the quasi-stationary distribution. It is note-

worthy the excellent agreement between the AGOS results and those obtained for the quasi-stationary

distribution. For β > 50 we observe the appearance of yet another pair of fixed points between xR

and x = 0.0, in an overall dynamical scenario close to a defection dominance. Hence, homogeneous

networks are able to promote cooperation within a small window of selection pressures in which

cooperators may co-exist with defectors.

In Fig. 42 we show the same results as in Fig. 41 but now for a population structured along the

links of a BA network. Again, by the 100th generation, roots of the AGOS have stabilized, and hence

in Fig. 3B the location of the internal fixed points (computed at the 100th generation) is shown as a

function of β. Whenever β < 0.28 the macro-dynamics is dominated by a single coordination point

xL that moves closer to x = 0.0 for increasing β. However for β > 0.28 a pair of internal points

appear bellow x = 0.1 which occurs simultaneously with the slight increase in the location of the

coordination point (xL) above which the population reaches full cooperation. For increasingβthe co-

existence point (xR) reaches almost x = 1.0. The discussion of the detailed mechanisms giving rise

to these roots near the monomorphic states falls beyond the scope of the present work, and will be

deferred to future work, being related with multitude of evolutionary deadlocks that may appear at the

leaves of scale-free networks [26], which become more significant for high selection pressure.
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Figure 43: Final Fraction of Cooperators on networked populations. Panels A and B ? We plot
the final fraction of cooperators as function of both the intensity of selection (β) and
of the temptation (λ) for BA and HR structured populations, respectively. Panels
C and D – Examples of the final fraction of cooperators for fixed temptation values
(λ = 1.025 and 1.35) as a function of β (these results correspond to the dashed
white lines in upper panels). In both cases there is an optimal value of β for which
cooperation is maximized.

In both cases (HR and BA, see Figs. .41 and .42 ) the positions of the internal points of the AGOS
put into evidence the existence of an optimal selection pressure for which cooperation levels are

maximized.

Fig. 43 shows the result of standard computer simulations (e.g., see [6]) in which, starting from

50% Cs (xi = 0.5) placed at random in the population, one computes the stationary final fraction of

cooperators (FFC) as a function of β and λ. Fig. 43A shows results for HR networks, whereas Fig.

43B shows the corresponding results for BA networks. For a wide range of values of λ, there is a

value of β that optimizes the final fraction of Cs in both network types. We have confirmed that this

behavior is independent of both λ and the population structure.

For strong selection (β� 1.0) individuals approach a more deterministic regime in which the update

process consists of copying the strategy of their neighbors whenever these are doing better, however

slightly. In such a regime, the population outcome is strongly dependent on the population structure.
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such strategy and structural class in population configurations comprising an equal
fraction of Cs and Ds, randomly distributed (λ = 1.25). To simplify the discussion
in connection with Fig. 45 below, we label each node by a number (square box in the
corner of each node).

Between these two extremes one obtains a transition region, characterized by the existence of a local

maximum of the FFC in β for a given λ.

On HR populations, as long as Cs succeed in forming compact clusters, they may prevent the inva-

sion from Ds [6, 11]. Given that the underlying game is a PD, for weak selection, clusters of Cs are

easier to form, but errors in imitation also allow their destruction and/or invasion by Ds.

As we increaseβwe decrease the incidence of errors of imitation, hindering the feasibility of forming

clusters of Cs, but also hindering the feasibility of them getting destroyed or invaded as a result of

errors of imitation. Hence, it is not surprising that the population evolves to a stationary regime in

which Cs and Ds may coexist in the population. From a population wide perspective, the macro-

dynamics will be characterized by an effective co-existence dilemma as was shown in Fig. 41.

On BA heterogeneous populations the situation is more complex, although we can identify the basic

mechanism that leads to the results shown in Fig. 43. Indeed, we observe a decoupling in the effective

intensity of selection between interactions that involve at least one hub (nodes of high degree) and

those that involve none (involving mostly leaves, that is, nodes of smallest degree). Because hubs are

able to accumulate a large fitness – at least one order of magnitude higher than that of other nodes

(see below) – they are seen as preferential role models. Hence, potential behavioral imitation between

hubs and leaves occur at an effectively higher β than interactions among leaves. This mechanism is

discussed in further detail in Section 3.3.
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From an individual perspective this mechanism hints at how each individual should interact with his

peers so that cooperation levels at the population-wide level are maximized: imitate deterministically

the strategy of the most influential (high fitness) individuals and less so all those that are at a similar

level of influence than you. In sum, for a greater good, social and context diversity must be taken

seriously [19, 53].

To put into evidence the mechanism responsible for the optimal intensity of selection in what regards

cooperation levels in BA populations, we divide the nodes of a BA network into three degree classes,

similar to [57]. We classify nodes as High Degree Nodes (HDN) if ki > kmax/3 , Medium Degree

Nodes (MDN) if z < ki ≤ kmax/3 or Low Degree Nodes (LDN) whenever ki < z .

Taking into account that a node from a degree class can either be a C or a D we consider six possible

classes of nodes. We can thus collapse all interactions between nodes in the original network into

interactions taking place on a meta-network of 6 (meta-) nodes, where we shall consider only links

between nodes of different strategies. Fig 5 exemplifies such a meta-network. The values provided

for each node correspond to the average payoff of nodes of the respective class computed for 103

configurations obtained by randomly distributing an equal fraction of Cs and Ds on BA networks. Fig

5 shows that, indeed, HDN can accumulate payoffs one order of magnitude higher than nodes of other

classes.

We can take the average payoffs of each type of node and compute the average probabilities of

imitation in each possible C-D link of the meta-network. Whenever any of these processes occurs

under weak selection we expect to obtain a probability of imitation near 0.5, whereas deterministic

imitation occurs whenever probabilities approach 1.0.

In Fig 45 we show the probability of imitation between nodes with different strategies as a function

of β. The lines in each panel correspond to the links in the meta-network identified using the node-

numbers in Fig. 44. Black dashed lines display the corresponding FFC.

For low β all three types of transitions occur near random imitation (p = 0.5) but as we increase β we

observe a change of behavior, as some transitions reach a deterministic regime (p = 1.0) before others,

that is, for lower values of β. On the other hand, for high β all transitions group again and become

deterministic. This trend is observed in all panels. In Fig 45A we plot the probability of imitation

for transitions between nodes of the same degree class but different strategy, whereas in Figs 45B and

45C we show how the probability of imitation changes with the intensity of selection for transitions

that involve at least one HDN. Clearly, these interactions reach a deterministic regime for values of

β below those in Fig 6A. This is so because the higher fitness difference between hubs and leaves

leads to an effect similar to what one would obtain for smaller fitness differences but high intensity of

selection β. Note further that the values ofβat which we observe the transition in these interactions fit

quite well the sharp increase of FFC with β. For the other type of interactions available, involving a

MDN and a LDN (see Fig 45D), we observe that the transition to a deterministic regime occurs for

higher values of β (compared to the other panels in Fig. 45), leading to a ?decoupling? between these

transitions and those discussed before. In fact it appears that the transition to a deterministic regime

in these interactions is positively correlated with the decrease of the FFC.
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Figure 45: Probability of imitation in the meta-network. Colored curves represent the probability
of imitation between different nodes in the meta-network (as depicted in Fig 44), the
color and type of the line is associated with a different link of Fig 44 connecting the
nodes shown in the Legend. The dashed black lines in all panels represents the final
fraction of cooperators for λ = 1.25 and is associated with the scale in the right side
of the frame.

In this manuscript we have shown that the macro-dynamics of a population – whose individuals

engage in a Prisoner’s Dilemma of cooperation – strongly depends on two aspects: the network of

interactions in which individuals are embedded on and of the intensity of selection associated with

strategy revision. For scale-free populations the macro-dynamics is more akin to a coordination game,

regardless of the intensity of selection, whereas for homogeneous networked populations it depends

on the intensity of selection: for strong selection we observe a dynamics similar to a co-existence

game while for weak selection regimes we recover a typical dynamics of a Prisoner’s Dilemma.

The fact that the game at the macro-level remains a Prisoner’s Dilemma, in which Cs have no

chance, has been obtained previously for homogeneous random graphs, in the framework of the pair-

approximation [28, 54, 55]. The pair-approximation, however, was leading to an apparent contradic-

tion with early results from computer simulations by Szabó and collaborators (see [6] for details),

which were evidencing a window of opportunity for the Prisoner’s Dilemma game played on ho-

mogeneous networks under strong selection. The present results resolve the apparent contradiction,

showing how the macro-game changes with β.

The present work also provides evidence for the existence of an optimal intensity of selection at

which levels of cooperation on structured populations are maximized. We discussed the fundamental
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Figure 46: Final Fraction of Cooperators for a Scale Free (SF) population structured according
to the Minimal Model of [44] as a function of the temptation (λ) and of the intensity
of selection (β).Initially, the population was composed by equal frequencies of each
strategy placed at random. We observe that for fixed λ there is an optimal value of
β at which cooperation levels are maximized. These results show the same type of
behavior identified in the other SF populations discussed in the main text

topological and dynamical mechanisms that led to these results on both homogeneous and scale free

networks. In section 4.2 we further discuss these issues for other types of networks.

On scale free populations the mechanism that induces the existence of an optimal level for coop-

eration results from the high levels of social diversity [19](here, network heterogeneity) that give to

a decoupling in the effective intensities of selection at which the imitation between individuals of

different degree classes occur.

4.2 A D D I T I O N A L R E S U LT S

In Fig 46 we show the final fraction of cooperators (FFC) for a scale-free population whose structure

was generated with the Minimal Model (MM) algorithm [44], which unlike BA exhibit high values of

the Cluster Coefficient (CC) [5].

The behavior obtained is similar to that already identified and discussed in Figs 42 and 43 of

the main text, allowing us to conclude that the underlying mechanism that generates this optimal

behavior for a specific intensity of selection (β) does not depend on the CC. Instead these results

seem to be a direct consequence of the SF nature of the network of interactions that give rise to the

decoupling mechanism discussed in Section 3.3. Moreover, Fig. 46 corroborates the idea [56, 18]
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Figure 47: Evolutionary Dynamics on Random Networked Populations. A shows the internal
points of the AGoS at the 100th generation as a function of the intensity of selection
with λ = 1.05. B final fraction of cooperators, starting from 50% placed at random
in the population, as a function of the Temptation (λ) and of the intensity of selection
(β). Dashed line represents the results that correspond to the AGoS shown in A.

that high clustering combined with a heterogeneous network structure offers a clear enhancement of

cooperation, when compared to the results obtained in the absence of such clustering.

Fig 47 shows the overall dynamics of a population that is organized by means of Erdős- Rényi

random networks of interactions. We used random networks with 1000 nodes and average degree of

4 [5]. These random networks possess a low level of heterogeneity, exhibiting a single-scale degree

distribution [41].

Fig. 47 A shows the internal points of the AGoS at the 100th generation as a function of the intensity

of selection, where one observes that that the macro-dynamics is mainly dominated by a coordination

point that, for strong selection regimes (β > 1.0) is located close to x = 0.0, in agreement with the

final fraction of cooperators shown in Fig 47B.

Figure 48 shows the overall dynamics of populations organized on random networks exhibiting an

exponential degree-distribution. Such exponential networks with 1000 nodes and average degree of

4 were generated using an algorithm similar to the Barabási and Albert [6], in which preferential

attachment is replaced by random attachment [5, 57]. These networks exhibit levels of heterogeneity

which fall in between those accruing to random and to scale free networks [41].

Figure 48A shows the internal fixed points of the AGoS at the 100th generation as a function of the

intensity of selection. Again we see a population-wide dynamics dominated mainly by the coordina-

tion point that, for strong selection regimes (β > 1.0) is located close x = 0.0, making the game

resemble a Harmony Game, a Cooperation dominance dilemma.

These results are in full agreement with what we observe in Figure 48B for the final fraction of

cooperators as a function of the intensity of selectionβand of the temptation parameter λ. The results

in both Figures 47 and 48 show no evidence for the existence of a value of β at which cooperation

is maximized; instead, we obtain a threshold value, above which cooperation is sustained. Further-

more, the analysis of these two cases puts into evidence the impact of degree heterogeneity on the
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Figure 48: Evolutionary Dynamics on Exponential Networked Populations. A shows the internal
points of the AGoS at the 100th generation as a function of the intensity of selection
on Exponentially structured populations with λ = 1.1. B final fraction of coopera-
tors, starting from 50% Cs placed at random in the population, as a function of the
temptation (λ) and of the intensity of selection (β). Dashed line represents the results
that correspond to the AGoS shown in A.

overall cooperation dynamics, as cooperation successfully dominates for a broad range of intensities

of selection and temptations to defect in populations structured by Exponential networks.
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[48] György Szabó and Csaba Tőke. Evolutionary prisoner’s dilemma game on a square lattice.

Physical Review E, 58(1):69, 1998.

[49] Max O Souza, Jorge M Pacheco, and Francisco C Santos. Evolution of cooperation under n-

person snowdrift games. Journal of Theoretical Biology, 260(4):581–588, 2009.

[50] Francisco C Santos and Jorge M Pacheco. Risk of collective failure provides an escape from

the tragedy of the commons. Proceedings of the National Academy of Sciences, 108(26):10421–

10425, 2011.

[51] João A Moreira, Flavio L Pinheiro, Ana Nunes, and Jorge M Pacheco. Evolutionary dynamics of

collective action when individual fitness derives from group decisions taken in the past. Journal

of Theoretical Biology, 298:8–15, 2012.

[52] Sven Van Segbroeck, Jorge M Pacheco, Tom Lenaerts, and Francisco C Santos. Emergence of

fairness in repeated group interactions. Physical Review Letters, 108(15):158104, 2012.

[53] Francisco C Santos, Marta D Santos, and Jorge M Pacheco. Social diversity promotes the emer-

gence of cooperation in public goods games. Nature, 454(7201):213–216, 2008.

[54] Hisashi Ohtsuki, Jorge M Pacheco, and Martin A Nowak. Evolutionary graph theory: breaking

the symmetry between interaction and replacement. Journal of Theoretical Biology, 246(4):

681–694, 2007.

[55] Hisashi Ohtsuki, Martin A Nowak, and Jorge M Pacheco. Breaking the symmetry between

interaction and replacement in evolutionary dynamics on graphs. Physical Review Letters, 98

(10):108106, 2007.

[56] F C Santos, J F Rodrigues, and J M Pacheco. Graph topology plays a determinant role in the

evolution of cooperation. Proceedings of the Royal Society B: Biological Sciences, 273(1582):

51–55, 2006.

[57] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews

of Modern Physics, 74(1):47, 2002.

108



5

E VO L U T I O N O F C O O P E R AT I O N U N D E R VA R I A B L E M U TAT I O N R AT E S

To be Submitted

Flávio L. Pinheiro, Francisco C. Santos and Jorge M. Pacheco

In this work we analyze how constant and variable mutation rates influence the evolutionary dy-

namics of cooperation in structured populations. In biology, mutations account for mistakes in the

replication process, whereas in behavioral dynamics they can account for innovations and exploration

of new strategies, ideas or traits. In a sense, mutations equip an evolving system with the necessary

stochasticity to explore the strategy space independent of the current state of a population .

While many works have explored the impact of mutations in the context of population dynamics,

few have studied how mutations impact the evolutionary dynamics in structured populations. Here

we show that when individuals engage in a Prisoner’s Dilemma game in heterogeneous networks,

the introduction of mutation rates induce striking regime shifts, from the defection dominance that

characterizes the standard Prisoner’s Dilemma into a regime of coexistence among Cooperators and

Defectors, as well as into a regime of coordination, often revealing more than one basin of attraction.

Moreover, we show that under strong selection regimes, cooperation is undermined by variations in

the mutation rate, whereas under weak selection one witnesses a subtle balance between selection and

mutation, which is favorable to defectors. Interestingly, there exists a range of selection pressures in

which structured populations are most resilient to variations in mutation rates.

5.1 M A N U S C R I P T

Selection and Mutation are two of the fundamental mechanisms that drive the evolutionary dynam-

ics of social and biological systems [1]. Both these mechanisms have an intuitive interpretation from

a biological point of view: Mutations account for mistakes during the replication of individual’s traits,

giving rise to new types; Selection exists as long as different types of individuals reproduce at different

rates by consequence of environmental or/and peer pressure. In many respects, cultural/social evolu-

tion, and many socio-economic systems proceed in a way which closely mimics that of its biological

counterpart [2, 3]. We replicate behaviours of others by means of social learning and peer-influence

[4, 5, 6] with mutations accounting for errors or innovations [7]. Moreover, we all recognize that

certain behaviours are favoured with respect to others, thus being preferentially selected, depending

on the context they are embedded in.
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Figure 49: Internal points of the gradient of selection Gµ(k) on finite and well-mixed popula-
tions for a wide range of mutation probabilities. Each panel concerns different game
parameters as indicated. We used β = 1.0 and, given the well-mixed nature of the
dynamics, used the average payoff as a measure of individual fitness. Arrows point
towards the direction of selection.

Theoretical models, in turn [8, 9, 10, 11, 12, 13, 14, 15], often rely on a constant selection pressure

and mutation rates to investigate the evolution of traits within a population. This line of research

collides with the evidence that populations undergo changes in mutation rates, as stated above. It is

thus important to understand the impact of a variable mutation rate in the evolutionary outcome of

populations. This is the purpose of this work, in which we investigate the role of a variable mutation

in what concerns the evolution of cooperation in both well-mixed and structured populations. To this

end, we adopt an Evolutionary Game Theory [1] framework and consider the Prisoner’s dilemma [16],

which is commonly regarded as the prototypical social dilemma of cooperation.

Following past works [8, 10, 14, 17] we model population structure by means of a complex network,

where individuals correspond to nodes and interactions are defined by the links connecting pairs of

nodes. We shall focus in a network structure that mimics the topology of scale-free networks [18],

which are commonly regarded as good representatives of the heterogeneous nature of real-world so-

cial networks. Recent works have shown that, in the absence of mutations, the evolutionary dynamics

in structured populations is decoupled from the dilemma faced locally by individuals [9, 19]. In-

deed, in strongly heterogeneous populations it was found that the global dynamics is dominated by a

coordination of strategies, which closely resembles a Stag Hunt game on a well-mixed population.

In the following section we shall start by detailing the model adopted and discuss how variable

mutations impact the evolutionary dynamics of the Prisoner’s Dilemma and Stag Hunt games in well-

mixed populations, thus providing the necessary intuition to understand the unfolding dynamic on

networked populations (see Section 5.1.3).

5.1.1 Model

Let us consider a finite population of individuals that adopt one of two possible behaviours/strategies:

to Cooperate (C) or to Defect (D). Each individual collects a payoff from each interaction he/she

participates with his/her neighbours. The total payoff gathered by an individual is computed by Πi =
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Γµ(k, g), location which is denoted by a red cross. Other parameters are T = 1.25,
S = −0.25, Z = 103, and average degree of 4.

nC
i (Si(R− T) + T) + nD

i (Si(S− P) + P) where nC
i (nD

i ) is the number of cooperators (defectors)

in the vicinity of i while Si is 1 if individual i is a C being 0 when he is a D. The parameters T
(Temptation), R (Reward), P (Punishment) and S (Sucker’s Payoff) define the social dilemma faced

locally by each individual in a two-person-two-strategy interaction. It is customary to consider a

simplified domain of parameters bounded by R = 1.0, P = 0.0, −1 ≤ S ≤ 0.0 and 0.0 ≤ T ≤ 2.0
[17], thus depending on the ordering of the parameters one can define the Stag Hunt (R > T > P > S)

[20] or the Prisoner’s Dilemma (T > R > P > S) [16].

Here we shall consider that the change of strategy abundance in the population is modelled by means

of a stochastic Birth-Death process, in which Selection is implemented by the pairwise-comparison

rule [11] and mutation occurs at different rates. The co-evolution of both processes can be summarized

as follows: at each time step a randomly selected individual, A, adopts a different strategy (selected

at random) with probability µ or, with probability 1− µ, imitates the strategy of a random neighbour,

B, with probability p = [1 + exp(−β( fB − fA)]
−1, where fi denotes the fitness of individual i and

β the intensity of selection.

T+
µ (k) =(1− µ)

Z− k
Z

k
Z− 1

1
1 + exp(−β( fC − fD)

+ µ
Z− k

Z

T−µ (k) =(1− µ)
k
Z

Z− k
Z− 1

1
1 + exp(β( fC − fD)

+ µ
k
Z

(64)

When populations are well-mixed the dynamics is fully characterized by the gradient of selection

(with mutations) Gµ(k) = T+
µ (k) − T−µ (k), where T+

µ (k) (Equation 66 refers to the probability

of increasing the number of Cs by one and T−µ (k) (Equation 66) the probability of decreasing the

number of Cs by one, for a given configuration with k Cs [11]. Hence from T+
µ (k) and T−µ (k), Gµ(k)

simplifies to

Gµ(k) = (1− µ)
Z− k

Z
k

Z− 1
tanh(

β∆ f
2

) + µ(1− 2k
Z
) (65)
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where ∆ f = fC− fD. This quantity when negative (positive) implies that the tendency of cooperators

to decrease (increase). It is intuitive to conclude that there is a critical mutation probability µC above

which the second term of Equation 65 dominates, and selection will not operate at a population-wide

level. Thus, in the extreme scenario of µ = 1.0 the population evolves towards a stationary state

in which half of the individuals are Cooperators and the remaining half are Defectors, resembling a

coexistence dynamics characterized by a stable probability attractor (a finite population analogue of a

stable fixed point) located at x ≡ k
Z = 0.5. This strong mutation limit is indicated by a blue dashed

line in Figure 49, 51 and 52.

On the other hand, when µ = 0.0 each social dilemma/game prompts a characteristic dynami-

cal picture: for T < R and S < P the Gµ is dominated by an interior unstable fixed point at

x∗ ≡ (k/Z)∗ ≈ (P − S)(R + P − S − T)−1, which works as a probability repeller resulting in

coordination-like dynamics of a Stag Hunt game; in the Prisoner’s Dilemma ( T > R and S < P)

Gµ(k) is negative for all values of k and defectors are always advantageous, irrespectively of their

prevalence.

The addition of mutations prompts the emergence of additional internal fixed points. In the case of

the Stag Hunt we see the emergence of two stable fixed points near x = 0.0 and x = 1.0 (xL and xU

respectively), while in the Prisoner’s Dilemma we see the emergence of a single stable fixed (xL) point

near x = 0.0. In both cases the internal fixed points xL and xU move towards x = 0.5 with increasing

µ. Hence when S > T − 1 (< T − 1) the repeller (x∗) lies bellow (above) 0.5 and will coalesce with

xL (xU) at a critical µC, as exemplified in Figure 49A for T = 0.5 and S = −1.0. When S = T − 1
the internal repeller is located at x∗ = 0.5 leading to a bifurcation at µC. In the case of the Prisoner’s

Dilemma the single probability attractor xL that emerges move towards x = 0.5 with increasing µ, as

shown in Figure 49B. It is noteworthy that the particular choice of game parameters and intensity of

selection (β) influence the value of µc (see Equation 65, and Section 5.1.3).

The above-mentioned dynamical portraits can generate distinct outcomes when a well-mixed popu-

lation faces variations in the overall mutation rates. Let us now consider a case in which, during the

course of evolution, a population that started from a monomorphic configuration (i.e. entirely com-

posed by Cs or Ds) experiences a transition from a low to a high level of mutation rate (for instance,

a change of the habitat due to a radioactive exposure) followed by a return to its initial state (the time

scales of these two processes may be very different, a feature we are not including here). Let us fur-

ther assume that the mutation rate rises above the critical value µC, that is, into a scenario dynamically

dominated by the mutation process.

When well-mixed populations inexorably evolve into full defection as the mutation rate decreases.

Thus, under a Prisoner’s Dilemma, the evolutionary dynamics remains, on average, unchanged by

variations in the mutation level. A different outcome is observed in the other social dilemmas, in

particular under the Stag Hunt game (see Figure 49A), the existence of an unstable internal fixed

point (i.e. a coordination dynamics) implies that the outcome will be dictated by the largest basin of

attraction — full cooperation for S > T − 1 or full defection if S < T − 1 – regardless of the initial

composition of strategies prior to variations in mutation levels. Hence, variation in mutation rates

may imply regime shift for a population that was initially composed solely by Cs. Finally, it is worth
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Figure 51: Level of cooperation under variable mutations for a wide range of selection pressures
(panel A) and decaying time scales (panel B) on structured populations. Panel A
shows the average final fraction of cooperation under variable mutation (black disks)
when compared with the level of cooperation attained in a scenario without mutations
(orange squares). Dashed lines indicate the values used in Figure 51. Panel B shows
the average final fraction of cooperation for different decaying time scales of the
mutation rate for different selection pressures. Other parameters are S = −0.25,
T = 1.25, Z = 103 and average degree of 4.

mentioning that variations of the selection pressure do not change qualitatively these scenarios they

do however change the values of µ at which the fixed points bifurcate.

5.1.2 Materials and Methods

The gradient of selection Gµ(k), as defined in the previous section, is not valid for structured popu-

lations. An analytical estimation is also hard to compute in closed form, since transition probabilities

depend on the particular assortment of strategies in the network, thus Gµ(k) is context and time depen-

dent. To overcome such limitations we numerically compute an average over all possible transitions

through simulations, obtaining an average gradient of selection (AGoS, denoted by Γµ(k, g)). This

approach has the advantage of being independent of the network structure, mutation probabilities and

intensity of selection. The AGoS is defined as Γµ(k, g) = ξ+µ (k, g)− ξ−µ (k, g), where ξ+µ (k, g) and

ξ−µ (k, g) account for the population averaged probability to increase and decrease the number of Cs

by one (i.e. the numerical equivalents of T+(k) and T−(k) respectively) at the gth generation, for

mutation probability µ and for a given configuration with Cs.

The Γµ(k, g), was numerically estimated during the first 150 generations (1 generation corresponds

to Z time steps), which accounts for a total of tmax = Z × g = 1.5× 105 iterations. In order to

obtain a good estimate of these quantities a total of Ω = 2.5× 107 independent simulations were

conducted, each starting from a random configuration with Cs. A total of 103 Scale-Free networks

were generated and used in the simulations.
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Finally, for each simulation ξ+µ (k, g) and ξ−µ (k, g) account respectively for the average probabilities

to increase and decrease the number of Cs by one at generation (g) in configuration (k), which can be

written as

ξ−µ (k, g) =
1− µ

Λg(k)

Ω

∑
ω=1

tmax

∑
t=1

[δ(k, kt)Θ(
t
Z

, g)
1
Z

Z

∑
i=1

1
zi

∑
j∈ζi

Si − SjSi

1 + exp[−β( f j − fi)]
]

+ µ
k
Z

ξ+µ (k, g) =
1− µ

Λg(k)

Ω

∑
ω=1

tmax

∑
t=1

[δ(k, kt)Θ(
t
Z

, g)
1
Z

Z

∑
i=1

1
zi

∑
j∈ζi

Sj − SiSj

1 + exp[−β( f j − fi)]
]

+ µ
Z− k

Z

(66)

where Si is 1 (0) if the strategy of individual i is C (D), Λg(k) is the number of times the system was

observed at configuration k of generation g, δ(a, b) is equal to 1 if a = b being 0 otherwise, Θ(a, b)
is one when b− 1 ≤ a < b and 0 otherwise. The first summation is over all time-series, the second

is over all iterations of a given time-series, the third is over each individual in the population and the

fourth along the entire neighborhood of an individual. The internal points of Γµ(k, g) in Figure 50

concern the results at the 100th generation at which the evolution of Γµ(k, g) arrived has achieved an

equilibrium.

5.1.3 Results and Discussion

The previous considerations set the right framework and stage for the ensuing analysis, in which we

abandon the assumption that populations are well-mixed. In fact, this is usually a strong assumption

that is seldom realized. In some simple cases, one may have populations spatially and quasi-regularly

distributed [10]. More often, populations exhibit sizable levels of irregularities, which translate into

a population structure well represented by heterogeneous graphs, often exhibiting fat-tails whenever

populations are sufficiently large [18]. Hence, in the remainder of the manuscript we probe the impact

of variable mutation levels on structured populations [9], where structure will translate into scale-free

complex networks of interactions, generated using the Barabási-Albert algorithm of growth and prefer-

ential attachment [18]. Consequently, the structures we will consider exhibit sizable heterogeneity in

what concerns the distribution of the number of interactions, a feature which is found to be ubiquitous

in real world networks [21, 22].

Figure 50 shows the location of internal roots of Γµ(k, g) (the equivalent of Gµ(k) in structured

populations, see Section 5.1.1) for a broad range of (fixed) mutation rates (10−4 ≤ µ ≤ 1.0) and

for the case with T = 1.25 and S = −0.25 (Prisoner’s Dilemma domain). Each panel of Figure 50

shows the results obtained for different selection pressures: β = 0.01 (panel A), β = 0.1 (panel B)

and β = 10.0 (panel C).

For µ = 0.0 with β = 0.001 and β = 0.01 the population-wide dynamics is dominated by a

single internal probability repeller at x∗. For strong selection additional roots appear in the vicinity

of x = 1.0 and x = 0.0 which, while playing no relevant role in the present analysis, result from
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Figure 52: Time evolutions under variable mutation rates on structured populations. Each evo-
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1.0 (panel B), S = −0.25, T = 1.25, Z = 103 with average degree of 4.

specific assortments of strategies which lead, in the absence of mutations, to long fixation times [19].

The coordination nature of the population-wide dynamics implies that an increasing µ leads to the

emergence of two internal probability attractors near x = 1.0 (xU) and x = 0.0 (xL), that move

towards x = 0.5 with increasing µ.

From Figure 50 one may easily infer that, as in many other complex adaptive systems [2, 23, 24,

25, 26], evolution in structured populations portrays critical thresholds (or tipping points) at which

the population-wide dynamics abruptly shifts from one regime to another. In this case, two distinct

dynamical pictures result with increasing µ, depending on the selection pressure. For β = 0.01
(Figure 50A) x∗ coalesces with xL (similar to the results on well-mixed populations whenever x∗ <
0.5), whereas for β = 0.01 and 10.0 (Figure 50B) x∗ coalesces with xU . Hence, and unlike the

scenario associated with well-mixed populations, the evolutionary outcome under variable mutation

rates on structured populations will also depend on the overall selection pressure: An increase in the

mutation rate will drive populations towards a coexistence of strategies, regardless of both i) initial

configuration of the population and0 ii) selection pressure. However, a decrease in the mutation rate

implies the demise of cooperation for a wide range of selection pressures (β < 0.1 and β > 0.5, see

panel A of Figure 51). However in between these two domains (0.1 < β < 0.5) coordination is again

favored, thus recovering the initial dynamics. These results highlight the idea of the existence of an

optimal selection pressure in what concerns the evolution of cooperation.

In the following we check the evolutionary dynamics discussed in Figure 50 by simulating the evo-

lution of cooperation on structured populations undergoing a transition between strong and weak

mutation regimes. Hence, let us consider a structured population evolving from an initially random

composition of strategies with constant T, S and β and initial µ0 = 1.0. At the end of each period

(τ) of ∆ generations the population undergoes a decrease in the mutation levels according to the ex-

pression µτ+1 = 0.95µτ; this process is repeated 180 times, that is, while µ > 10−4. Figure 51A
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shows the final fraction of cooperators under variable mutations (black dots) and in the absence of

mutations (orange squares) for a wide range of selection pressures. Figure 51B shows the dependence

of cooperation on the adopted decaying timescale, for different selection pressures.

A population undergoing a period of variable mutation rates (as described above) will always at-

tain lower levels of cooperation, which for β > 0.5 results in the complete demise of cooperation.

For lower selection pressures the stochastic effects compensate the harsher dynamical picture (also

evidenced in Figure 50A). Moreover, as shown in Figure 51B, the decrease of cooperation becomes

emphasized whenever the mutation rates decay slowly (that is, for higher ∆).

Finally, as suggested by the dynamical picture of Figure 50B and 3A there is window of hope for

cooperators within a range of selection pressures (around β = 0.1) which optimizes the resilience

of populations to such events of variable mutation rates. In what concerns the time scale of decay

(Figure 50B), for β = 0.01 the evolutionary outcome remains unchanged for periods larger than

∆ > 8.

Figure 52 shows how the cooperation levels change with the decrease of the mutation rates for

β = 0.1 and β = 1.0. In both panels, each dot represents the level of cooperation at the end of each

period of 25 generations before the decrease of the mutation rates. Each example reflects the predicted

dynamical picture discussed in Figure 50.

In sum this work shows how mutation rates and its variation impact the evolutionary outcome of

cooperation on well-mixed and structured populations. When populations are taken as well-mixed,

four prototype scenarios were identified in the domains of the Stag Hunt and Prisoner’s Dilemma,

which are qualitatively invariant for changes in the selection pressures (see Figure 49). For the more

realistic case of structured populations we have shown the important role of selection pressure in

providing the population with resilience to defectors fixation, identifying a range of selection pressures

that optimize populations resilience to changes in the mutation rates (see Figure 50 and 51).
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6

L I N K I N G I N D I V I D UA L A N D C O L L E C T I V E B E H AV I O R I N A DA P T I V E

S O C I A L N E T W O R K S

Submitted

Flávio L. Pinheiro, Francisco C. Santos and Jorge M. Pacheco

In the previous chapters we have dealt with the characterization of dynamical processes on complex

networks. So far we have assumed that networks are static, that is, individuals interactions remain

fixed along the entire timespan of the evolutionary dynamics. This assumption, however, is but a

simplification that does not take into account the natural adaptive nature of social structures. Indeed,

individuals not only adapt their dynamical states (i.e. behaviors, traits, etc) they also choose with

whom they interact. It is thus important to consider the co-evolution of structure along with the

evolution of traits.

Previous works have shown that adaptive social structures promote the evolution of Cooperation.

However, up to now the characterization of the macroscopic, population wide dynamics hat stems

from such co-evolutionary processes has remained illusive, mainly due to the same challenges already

faced in the characterization of dynamical processes in static networks. Here we establish such link

by connecting individual decision making to the self-organizing collective behavior in a manner that

allows to study and compare the results with the previous analysis and thus factor the contribution that

co-evolution of structure introduces to the overall dynamical portrait.. We demonstrate that adaptive

social structures change the 2-person social dilemma locally faced by individuals into an evolutionary

dynamics that resembles that of a N-person coordination game, whose characteristics depend sensi-

tively on the relative time-scales between behavioral and network co-evolution. Indeed, we show that

faster the relative rate of adaptation of the network, the smaller the critical fraction of Cooperators

required for cooperation to prevail, thus establishing a direct link between network adaptation and the

evolution of cooperation. The framework developed here is not only general but readily applicable

to other dynamical processes occurring on adaptive networks, notably the spreading of contagious

diseases or the diffusion of innovations.

6.1 M A N U S C R I P T

Complex networks provide a rich and powerful representation of the underlying web of social ties

that interconnects individuals in a given community, society or population [1, 2, 3, 4]. As time unfolds,
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individuals adapt their behaviors and preferences in the context of the position they occupy in the

social network they are part of [5, 6], adaptations that often induce changes in the structure of the

social network. Hence, the socially heterogeneous structures ubiquitous among empirical analysis are

but the natural result from the interplay between the co-evolvution of the different mechanisms.

The emerging features of an evolving structure are contingent on the underlying mechanism driving

interactions between peers. For instance, if what is at stake is the spreading of a disease, healthy

individuals ought to break (secure) the links with infected (healthy) individuals, provided they know

they are (not) infected [7, 8], while social dilemmas of cooperation [9, 10] often pitch individuals

with competing preferences, which unfolds into a more complex decision process. To understand the

time dependence of both social structure and individuals’ choices it is necessary a co-evolutionary

process [11] where individual behavior is allowed to evolve at par with the structure of the under-

lying interaction network. The latter implies that links are possibly rewired depending on whether

individuals are satisfied or not with a given interaction. A simple implementation of such a model

[11, 12, 13, 14, 15, 16, 17, 18] is expected to account for many of the stylized facts that characterise

social-structure [19]: individual preferences; resolution of conflicts of interest and an adaptive hetero-

geneous network that co-evolves with the process at stake.

Figure 53 provides an overview of what is known to date by means of computer simulations, regard-

ing the co-evolution of cooperation and network topology [11], when the social dilemma at stake is

a Prisoner’s Dilemma (PD) of cooperation (details provided below). The relative time-scales of net-

work adaptation and behavioral evolution are controlled by the parameter τ: When τ = 0 no network

adaptation occurs; when τ = 1 no behavioral adaptation occurs. Inspection of Fig. 1 clearly shows

that adaptation favors cooperation, and not defection, at a population wide level. Consequently, and

despite the fact that, individually, every individual engages in a PD game, globally, the game being

played must be a different one.

But which one? Of which type? With which features? These questions remain open and are of fun-

damental importance given that, often, all we can gather empirically (e.g. from microbes populations

or human societies [20, 21, 22]) are time-series of aggregate information at a population wide scale,

without direct information on individual behavior. An intuitive example of our empirical constraints

regards epidemic outbreaks: What one often collects is aggregate statistical information of the com-

munity as a whole, instead of individual information that may allow practitioners to infer directly from

the data the characteristics of the, say, virus infectiousness [7]. Thus, and similar to many other areas

of Physics, it becomes ubiquitous to establish a (reversible) link between individual and collective

behavior in the analysis of co-evolutionary processes.

In the simulations in Fig. 1 one starts from a homogeneous network [23], where all individuals have

the same number of links, and let individual behavior and network structure co-evolve at variable

rates. Individuals engage in a PD in which mutual cooperation provides a reward R = 1, mutual

defection a punishment P = 0, whereas when a C meets a D , the C gets a sucker’s payoff S = −λ

while the D gets a temptation T = 1 + λ (λ ≥ 0 is the dilemma strength, such that increasing λ

implies a stronger attraction into a Full-D configuration). Time proceeds in discrete steps, with the

co-evolutionary process allowing, in each step, for link-rewiring with probability τ and behavioral
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Figure 53: Level of Cooperation and network heterogeneity under co-evolutionary dynam-
ics. A) We computed numerically the level of cooperation in the domain bounded by
0.0 ≤ λ ≤ 1.0 and 0.0 ≤ τ ≤ 1.0. It corresponds to the average final fraction of
cooperators after 5× 103 generations (1 generation equals Z discrete strategy time
steps, where Z is the population size) and averaged over 105 independent simula-
tions starting from a configuration with equal abundance of strategies. Orange (blue)
regions denote parameter values for which Cooperators (Defectors) dominate.These
two regions are separated by a narrow transition line, interpolated from the simula-
tions to allow an easier visual inspection. B) Variance of the degree distribution of
the equilibrium network as a function of λ, obtained along the curve τ(λ). Clearly,
the stronger the social dilemma, the more heterogeneous the network becomes, in this
way allowing for cooperators to increase their chances of overturning defectors in the
population. Furthermore, network heterogeneity is most pronounced along the line
τ(λ) marking the transition between full cooperation and full defection [11]. Other
parameters are β = 10.0, Z = 103 and average network connectivity of 〈k〉 = 8.

update with probability (1− τ). Behavioral update is modelled via the so-called pairwise comparison

rule [24, 25], a birth-death process in which an individual i with strategy si (here C or D) imitates

a neighbor m with (a different) strategy sm with probability given by the Fermi distribution from

statistical physics (where the inverse temperature β provides here a measure of the strength of natural

selection): pi,m = [1 + exp(−β( fm − fi))]
−1, with f j accounting for the fitness of individual j,

associated with the payoff accumulated over all interactions with her/his neighbors[24, 25]. Network

adaptation assumes that Cs (Ds) seek for Cs to cooperate with (to exploit), while avoiding connections

with Ds. Thus, an individual is satisfied with all his C-neighbors, being dissatisfied with the remaining.

Hence, given a link between individuals A and B, if A is satisfied, she will try to keep the link; if

dissatisfied, she will try to rewire the link to one of her second neighbors, accounting for the myopic

nature of individuals regarding the entire social network. Following [11], when linked individuals A

and B have a conflict regarding rewiring, resolution is fitness driven, the will of A prevailing with

probability σ = [1 + exp(−β( fA − fB))]
−1. Different variants of this model have been considered

[12, 13, 14, 15, 16, 17, 18], leading to qualitatively similar results. Naturally, the methods and results

discussed below are applicable to other choices of link rewiring.
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Figure 54: Global Evolutionary Dynamics in Adaptive Networks. Evolution of the internal
fixed points of for the different rewiring probabilities τ indicated. Solid lines display
two prototype time-series that start at k/Z = 0.5, one co-evolving towards 100%
Ds (τ = 0.25) and the other co-evolving towards 100% Cs (τ = 0.35) this latter
succeeding after crossing the coordination threshold provided by ΓA(k, tg). Other
parameters are λ = 0.2, β = 10.0, N = 103 and network average connectivity
〈k〉 = 4.

As is well known [10, 26, 27, 28], in the mean-field approximation (a structureless, well-mixed

population), Cs are not evolutionary viable. But when individuals interact with their peers along the

links of a social network, Cs do not necessarily get extinct [29], even when no network adaptation

takes place (τ = 0), as shown at the bottom of Figure 53A. Most importantly, however, network

adaptation paves the way for cooperation to prevail, even for game parameters that would render

cooperation unfeasible in non-adaptive networks, as one can easily check by following trajectories of

constant λ in Figure 53A. The faster the rate τ of network adaptation, the more Cs get an evolutionary

edge over Ds. Moreover, for τ > 0, our results suggest that the adaptive nature of the network nicely

accounts for the heterogeneity observed in realistic social networks [1, 2, 3], in which a minority of

nodes has a much larger degree than the majority. This is shown in Figure 53B, where we plot the

degree variance of the networks emerging from co-evolutionary simulations, as a funtion of λ (and

τ) as we move along the critical line τ(λ) depicted in Figure 53A. Figure 53B clearly shows how

heterogeneous network structures prevail in the transition between Full C and D, highlighting also the

tight interplay between the behavioral and network evolution.

To shed light on the link between individual and collective behavior, let us consider a network with

Z nodes and L (undirected) links, and let every pair of linked individuals play a PD game of strength

λ. Let us consider a large ensemble (Ω) of co-evolutionary time-series, each of which starting from

an arbitrary fraction k/Z of Cs placed at random on the initial network, that we shall take to be a

homogeneous random network of degree 〈k〉 [23, 30]. At any time t and co-evolutionary simulation
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w, we compute the quantity Ti,w(k, t) = 1
ki

∑ki
m=1 pi,m[1− δ(si, sm)], where δ(a, b) = 1 if a = b,

being 0 otherwise, and pi,m stands for the probability that an individual i imitates a neighbor m (see

above). Making use of Ti,w(k, t) we can now compute the (ensemble) average probability that, in each

behavioral update time step t, the number of Cs in the population increases (+) or decreases (−) by

one individual:

T±(k, t) =
1

ZΩ(k)

Ω(k)

∑
w=1

Ds,Cs

∑
i=1

Ti,w(k, t) (67)

In Eq. 1, Ω(k) (0 ≤ Ω(k) < Ω) is the number of times that a population configuration containing

k Cs was observed at time t in the ensemble Ω of all simulations performed. Equation 1 allows us

now to numerically compute the (time-dependent) drift term

ΓA(k, t) = T+(k, t)− T−(k, t) (68)

that constitutes a network (mean-field) analog of the gradient of selection used in the analysis of the

stochastic evolutionary dynamics in finite well-mixed populations [28, 25]. Thus, ΓA(k, t) provides a

population-wide information of the co-evolutionary dynamics, which now carries, nonetheless, (mean-

field) information on the adaptive network structure. In the following, we shall re-write ΓA(k, t) in

generation units (by performing a partial time average over 1 generation, given by Z discrete behav-

ioral update steps) as ΓA(k, tg) =
1
Z ∑

Ztg

t=Z(tg−1) ΓA(k, t).
Figure 2 shows what happens at a population-wide scale as a function of time tg in the co-evolution

of cooperation and adaption. At tg = 0, the whole population engages in a PD game; this means

that ΓA(k, 0) < 0 for any value of k. At this stage, what is best for an individual is also true for the

population as a whole. As time unfolds, however, there is typically a critical number of generations

(gC) above which we observe the emergence of two (finite population analogues of) internal fixed

points, that we denote by xL and xR; systematically, xL has the structure of a probability repeller

(analogue of an unstable fixed point, represented by open circles) whereas xR has the structure of a

probability attractor (analogue of a stable fixed point, solid circles).

As Figure 54 shows, xL and xR separate from each other with time until they reach a stable location

associated with a stationary phase of ΓA(k, tg). Importantly, the emergence of xL and xR depends

sensitively on the value of τ: The larger the value of τ, the sooner xL and xR emerge as a result of

the co-evolutionary process. This is clearly shown in Figure 54, where the order of appearance of the

pair (xL,xR) follows the values of τ from top to bottom in the Figure legend. Needless to say, the

sooner the emergence of the pair (xL,xR), the more likely the process of self-organization of Cs and

Ds will favor Cs to fall into the basin of attraction of xR, which will dictate the overall prevalence of

cooperation. This, of course, reflects the predominant scenario, which is valid in a stochastic sense.

Solid lines in Figure 54 display the evolution of Cs for two representative co-evolutionary time-

series, where the initial fraction of Cs is 50%. Their color code uniquely identifies the rewiring

probability τ (τ = 0.25 for the orange line – lower curve, and τ = 0.35 for the brown line – upper

curve). At start, and in both simulations, the number of Cs tends to decrease, as one would expect

under a population-wide PD-like evolutionary dynamics. However, as we have discussed, this is a
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transient regime: As strategy correlations build up at par with a co-evolving network, we observe the

emergence of a new population-wide dynamics at gC, where the pair (xL,xR) emerges into the dynam-

ics. In this new co-evolutionary landscape, Cs are now able to succeed provided x > xL. Failing

to achieve that will lead to the demise of Cooperation. Both outcomes are illustrated in Figure 54.

Indeed, while for τ = 0.35 the transient state is short enough (≈ 6 generations) thus allowing the

survival of a sufficiently large fraction of cooperators x to remain above the time dependent location

of xL, for τ = 0.25 the transient is so large (≈ 20 generations) that by the time the pair (xL, xR)

appears, x is already below xL (recall we started from 50% Cs in the population), compromising the

viability of cooperators in the population, as shown by the corresponding solid line.

This analysis shows that, in adaptive networked populations, there will be a critical value of τ above

which cooperation prevails (in a stochastic sense). This prevalence is associated with the capacity of

the population to overcome the coordination barrier that emerges, at a population-wide scale, out of

the co-evolutionary processes of strategy and structure adaptation. Naturally, the larger the rewiring

probability, the easier it becomes to solve the coordination dilemma.

It is also worth commenting on the significance and impact of the emergence of the pair of internal

equilibria (xL, xR). As Figure 54 suggests, this pair converges to the approximate limits xL ≈ 0
and xR ≈ 1 as tg → ∞. This is, however, highly unlikely, mostly for large values of the selection

pressure β, for which strategy update becomes increasingly deterministic. Strictly speaking, a single

D in a population of Z − 1 Cs will always be advantageous, independent of the underlying network

structure, whereas a single C in a population of Z− 1 Ds will always be disadvantageous, and thus the

pair (xL,xR) cannot converge exactly to (0,1). However, network adaptation, which naturally induces

a network heterogeneity that is maximal at the critical point when Cs overturn Ds in the population

(see Figure 53) optimizes the error in the approximate limit above and, to the extent that xR emerges

at values higher than the actual fraction x of Cs present in the population at that time, xR will foster

the increase of Cs in the population, which in turn will promote an increase in the value of xR. In this

sense, the role of xL is more important than that of xR in what concerns the viability of cooperation.

This said, however, it is also important to note that, work carried out in the framework of N-person

coordination games shows that one of the most prominent features of the associated evolutionary

dynamics resides, precisely, in the emergence of a pair (xL,xR) with exactly the same structure and

nature [28], in a wide region of the game parameter spectrum, a feature that does not occur in 2-person

games, such as the PD we started from here. Thus, and qualitatively, one may state that, globally, 2-

person games on adaptive networks are transformed into effective N-person coordination games. This

is more so if we establish the analogy that, on networked populations, the average connectivity of

the network provides the natural proxy for the average group size appearing in N-person coordination

games.

Overall, both processes under consideration – strategy evolution and structural evolution – contribute

to a positive assortment of Cs. Indeed, the strategy update process leads to what can be qualitatively

described as a “Cs (Ds) breed Cs (Ds)” type dynamics. As already discussed before [31], however,

the complexity inherent to the underlying PD social dilemma leads to an asymmetry in the outcome of

the update process, in which, unlike Cs, Ds become victims of their own success: When co-evolving
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Figure 55: Level of Cooperation (panel A) and degree Heterogeneity (panel B) as a function
of the rewiring probability (0.0 ≤ τ ≤ 1.0) and the dilemma strength parameter
(0.0 ≤ λ ≤ 1.0). Black/white line divides the parameter space in two regions: one of
Cooperation dominance and another of Defectors dominance. Other parameters are,
β = 10.0, Z = 103 and 〈k〉 = 8.

at par with network adaptation, this evolutionary asymmetry is further extended to links that connect 2
Cs and links that have at least one D: the former are resilient to adaptation, contrary to the latter, which

will be resilient only if Ds are much more fit than Cs. As our results demonstrate, such asymmetry

also contributes to an assortment of Cs at the same time that it fosters the segregation of Ds. The joint

contribution of both processes facilitates the emergence of cooperation, which becomes feasible in the

entire parameter range of the PD as long as network adaptation proceeds fast enough. This prevalence

results from the emergence of a pair (xL, xR) at a global scale that appears the sooner the faster the

rate of adaptation of the underlying network of contacts. Moreover, as time proceeds, one observes a

systematic separation between the two internal fixed points (xL, xR) which, as tg → ∞, approach 0
and 1 asymptotically.

A crucial issue of complex systems research and, more recently, of computational social science,

is to understand how societies behave as a collective, knowing beforehand how individuals interact

with each-other. Conversely, if all we know is how societies behave collectively (as happens all too

often in micro-biology) is there anything we can say about how individuals interact with each-other?

This manuscript shows how to develop a reversible link between individual and collective behavior.

We show how network adaptation changes the cooperation dilemma, as it is locally perceived, into a

coordination problem at a global level. Interestingly, such coordination problem ultimately dictates

the collective dynamics and therefore each individual’s choices, even if, locally, individual perception

remains unchanged and individuals cannot observe or even anticipate such global dynamics. The

simplicity of the present implementation renders this framework readily applicable to other time-

dependent processes that occur on adaptive networks, notably the spreading of contagious diseases

and the diffusion of innovations [6].

125



Chapter 6. L I N K I N G I N D I V I D UA L A N D C O L L E C T I V E B E H AV I O R I N A D A P T I V E S O C I A L N E T W O R K S

!"
(k,

 t g
=

20
)

1.5x10-4

1.0x10-4

0.5x10-4

0.0
-0.5x10-4

-1.0x10-4

-1.5x10-4

fraction of cooperators
0 0.2 0.4 0.6 0.8 1.0

2.0x10-4

-2.0x10-4 xRxL

Coordination Coexistence

%&=&0.40
%&=&0.35

%&=&0.325
%&=&0.30

%&=&0.25

1.0x10-4

0.0

0 0.2 0.4 0.6 0.8 1.0

B
2.0x10-4

-1.0x10-4

-2.0x10-4

3.0x10-4

4.0x10-4

-3.0x10-4

-4.0x10-4
xRxL

%&=&0.525
%&=&0.500
%&=&0.475

%&=&0.400

%&=&0.450

A

Figure 56: Time-Dependent Gradient of Selection in Adaptive Networks. Profile of the average
gradient of selection,ΓA(k, tg), after tg = 20 generations, plotted for different values
of the rewiring probabilities τ. Panel A corresponds to 〈k〉 = 4 and panel B to
〈k〉 = 8. Other parameters are λ = 0.2, β = 10.0 and Z = 103.

6.2 S U P P L E M E N TA L M AT E R I A L

6.2.1 Computer Simulations

In order to validate the results obtained with the Averaged Gradient of Selection and to have a better

grasp of the parameter space under analysis we have also run extensive Monte Carlo simulations.

These allow us to evaluate the evolutionary outcome of populations that translates into the expected

level of cooperation.

In each independent simulation a population of individuals starts from a Homogeneous Random

Network [23] with a total of Z 〈k〉 /2 links. The number of links remains constant throughout the

evolutionary process, thus the average degree 〈k〉 also remains constant. However, as individuals

adapt their social network, the distribution of degrees D(k) changes its shape, from the single-peak

over 〈k〉 into a broader distribution. This naturally implies that the variance of the degrees changes

with the evolutionary process.

At the beginning of each simulation an initial fraction (xi) of individuals are randomly selected

to be Cooperators, while the remaining (1 − xi) are Defectors. Simulations run for a total of 106

generations1 or until the population reaches a monomorphic configuration. The level of cooperation

is thus the number of cooperators in the population at the end of a simulation. We average this quantity

over 105 independent simulations. At each time step we follow the update dynamics described in the

manuscript, namely the pairwise comparison rule [25, 32] for strategy update and its counterpart

[11] for structure adaptation. Figure 55 depicts the level of cooperation (panel A) along with the

average degree heterogeneity (panel B) of the population structure that results from the evolutionary

process. In Figure 53B of the main manuscript shows the degree heterogeneity along the white line of

1 A generation corresponds to Z strategy updates
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Figure 57: Shape of the Time-Independent Gradient of Selection as a function of the rewiring
probability (τ). A and C show the Bifurcation diagram that depicts the trajectories of
the internal fixed points of ΓA(k) for changes in the rewiring probabilities, τ. Dashed
lines indicate the level of cooperation for simulations with an initial fraction of coop-
erators of xi = 0.5 for each of the scenarios. B and D show the shape of for different
rewiring probabilities, τ. A and B show results for 〈k〉 = 8 while C and D consider
〈k〉 = 6. Other parameters are βs = 10.0, βr = 10−3 and Z = 103.

Figure 53B, which corresponds to the parameters and that divides the parameter space in two regions:

one characterized by Full Cooperation and another by Full Defection evolutionary outcomes.

6.2.2 Time-Dependent Gradient of Selection

Figure 56 shows the shape of ΓA(k, tg) after tg = 20 generations for different values of the rewiring

probabilities τ. It supports the idea that faster network adaption prompts a faster response of the

population to the social dilemma at hand and, thus, generates a population-wide dynamics that is

more favorable for the emergence of cooperation.

As mentioned in the main manuscript, the shape of ΓA(k, tg) closely resembles that of a N-Person

coordination game [33], characterized by a coordination threshold (xL) and a basin of attraction dom-

inated by a coexistence point (xR), which does not correspond to the Full Cooperation configuration.

Figure 54 of the main manuscript shows the positions of the internal roots of ΓA(k, tg), which fully

describe the evolutionary dynamics of the population at each generation.
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6.2.3 Time-Independent Gradient of Selection

The Time-Dependent description conveyed by ΓA(k, tg) allows us to better understand how the

emerging strategy assortments (i.e. correlations between strategies), that naturally arise from the

ensuing co-evolutionary dynamics, lead to a reshape of the population-wide social dilemma along its

evolutionary pathway.

However, in order to compare with other quantities that measure the evolutionary outcome of popula-

tions and that are widely popular in the literature, it is useful to define a Time-Independent description

of the gradient of selection.

Let us denote by ΓA(k) the Time-Independent Gradient of Selection, which is defined as ΓA(k) =
T+(k)− T−(k), where

T±(k) =
1

ZΘ(k)

Θ(k)

∑
w=1

Ds,Cs

∑
i=1

1
ki

ki

∑
m=1

pi,m(1− δ(si, sm)) (69)

where Θ(k) is the number of times the population was observed in a configuration containing k Co-

operators during the time of integration (from tg = 0 to tg = 150), which effectively corresponds to

the quasi-stationary distribution. Moreover, as defined in the main manuscript pi,m is the probability

that an individual i imitates a neighbour m, which is given by the Fermi Distribution (see Main text),
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and δ(a, b) is the Kronecker delta being 0 if a 6= b and 1 otherwise. Hence we have a quantity that

measures the direction of selection at each configuration of k over the entire time of evolution. As

we show bellow, many of the patterns and conclusions attained from the analysis of ΓA(k, tg) are

recovered through ΓA(k) as well.

Figure 57 shows how the internal fixed points of ΓA(k) change with different rewiring probabilities

(τ) under fixed βr and βs and three values of λ. In all cases there is a critical rewiring probability

that leads to a bifurcation and corresponding emergence of two internal fixed points. The location

of ΓA(k) the internal fixed points of are a good indicator of the evolutionary fate of populations

and particularly of the coordination threshold that characterizes the evolutionary dynamics of the

population. In particular, as shown in Figure 58, it predicts very well the necessary initial fraction of

cooperators required for the evolutionary dominance of Cooperation

6.2.4 Selection Pressure

In the implemented model two parameters regulate the stochasticity of each decision making process.

Namely βr regulates how deterministic is the rewiring process of an individual when choosing whether

to maintain or severe a link, and βs plays a similar role for the behavioural dynamics in strategy update.

In both cases, the probability of an event is conveniently computed from the Fermi Distribution. This

distribution traces back to Statistical Physics, and in that context β plays the role of the inverse of the

temperature, thus here when β → ∞ implies that individuals take a deterministic action (always take

the most advantageous action) while with β→ 0 individuals decide at random.

Overall in the main manuscript we explore a situation where βr � 1 and βs = 10.
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Figure 59 shows the trajectory of the internal fixed points of the ΓA(k) along changes of the net-

work adaptation selection pressure (βr). It shows that the under variation of βr the system interpolates

between two regimes: under strong selection pressures (β > 10−1) evolution is dominated by De-

fectors as indicated by the fully negative ΓA(k); for weaker selection pressures βr < 10−1 we see

the emergence of internal fixed points of ΓA(k) lead to a more favourable evolutionary dynamics for

cooperation.
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E VO L U T I O N O F A L L - O R - N O N E S T R AT E G I E S I N R E P E AT E D P U B L I C

G O O D S D I L E M M A S

PLOS Computational Biology, 10.1371/journal.pone.0032114 (2014)

Flávio L. Pinheiro, Vitor V. Vasconcelos, Francisco C. Santos and Jorge M. Pacheco

The previous chapters discuss how complex networks impact the dynamical processes they support.

We have considered dynamical processes that only involve pairwise interactions between individuals

and exploredin particular the problem of Cooperation, which in turn is not limited to the study of

pairwise interactions. Indeed many problems of Cooperation involve repeated interactions among the

same groups of individuals. When collective action is at stake, groups often engage in Public Goods

Games, where individuals contribute (or not) to a common pool, subsequently sharing the resources.

Such scenarios of repeated group interactions materialize situations in which direct reciprocation to

groups may be at work. Here we study direct group reciprocity considering the complete set of reac-

tive strategies, where individuals behave conditionally on what they observed in the previous round.

We study both analytically and by computer simulations the evolutionary dynamics encompassing

this extensive strategy space, witnessing the emergence of a surprisingly simple strategy that we call

All-Or-None (AoN). AoN consists in cooperating only after a round of unanimous group behavior

(Cooperation or Defection), and proves robust in the presence of errors, thus fostering Cooperation in

a wide range of group sizes. The principles encapsulated in this strategy share a level of complexity

reminiscent of that found already in 2-person games under direct and indirect reciprocity, reducing, in

fact, to the well-known Win-Stay-Lose-Shift strategy in the limit of the repeated 2-person Prisoner’s

Dilemma.

7.1 M A N U S C R I P T

7.1.1 Introduction

The emergence and sustainability of Cooperation constitutes one of the most important problems

in social and biological sciences [1]. It revolves around the clash between individual and collective

interest, which becomes particularly clear when one considers the evolution of collective action in-

volving Public Goods Games (PGG), such as the stereotypical N-person Prisoner’s Dilemma (NPD)

[2, 3]. In the absence of additional mechanisms, such as the presence of thresholds [4, 5], risk [6],

an embedding network of interactions [7, 8, 9, 10, 11, 12], institutions [13, 14, 15], punishment or
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voluntary participation [16, 17, 18, 19], evolutionary game theory predicts a population fated to fall

into a tragedy of the commons [20].

Collective action problems, however, often involve repeated interactions between members of the

same group [21, 22, 23], as exemplified by the repeated attempts from country leaders to cooperate in

reducing emissions of greenhouse gases [6, 24, 25, 26, 27, 28, 29] or in finding a solution to the Euro

monetary crisis [30, 31, 32]. In such scenarios, where collective action is more difficult to achieve

in larger groups [6], one is naturally led to question whether a generalization of the direct reciprocity

[33] mechanism to problems of collective action may provide an escape hatch to the aforementioned

tragedy of the commons. Moreover, N-player interactions pose many additional difficulties, in par-

ticular in what concerns the emergence of reciprocation: If one interacts repeatedly in a group of

N-players it is hard to identify towards whom should one reciprocate [3]. In fact, only recently direct

reciprocity has been generalized to PGGs [22, 23], studying the co-evolution of unconditional defec-

tors with generalized reciprocators, that is, individuals who, in a group of size N, only cooperate if

there were at least M (0 ≤ M ≤ N) individuals who cooperated in the previous round. Results show

[22, 23] that generalized reciprocators are very successful in promoting Cooperation. Moreover, for a

given group size N, there is a critical threshold level of fairness, M∗, at which reciprocation optimizes

the emergence of Cooperation [22].

Generalized reciprocators [22] provide an intuitive generalization of the TFT strategy to repeated

N-player games. However, and despite the underlying intuition, they constitute but a small subset of

all possible individual (reactive) strategies one can envisage in a group of size N. Here we explore

the complete set of reactive strategies that individuals may adopt when engaging in repeated Public

Goods Games with N− 1 other individuals, assuming that the decision to cooperate or not is based on

the behavioral decisions of the group in the previous round (see below). We find that, in the context of

Public Goods Games, a reactive strategy not belonging to the set of generalized reciprocators emerges

as ubiquitous, ensuring the emergence and sustainability of Cooperation.

7.1.2 Model

Let us consider a finite and well-mixed population of Z individuals, who assemble in groups of

size N randomly formed, and play a repeated version of the NPD [34]. In each round individuals

either cooperate (C) by contributing an amount c to a public good or defect (D) by not doing so. The

aggregated contributions of the group are multiplied by an enhancement factor F and equally divided

among the N individuals of the group. Hence, in each round, Ds achieve a payoff of πD(k) = kFc/N,

while Cs attain πC(k) = πD(k) − c where k is the number of contributions in that round. We

consider a repeated PGG with an undetermined number of rounds, such that at the end of each round,

another round will take place with probability w [3], leading to an average number of rounds – m
– given by m = (1− w)−1. At the beginning of each round (with the exception of the first), each

individual decides to contribute (i.e. to play C) or not (i.e. to play D), depending on the total number

of contributions that took place in the previous round.

Each strategy Si defines how an individual behaves in each round (i.e. if she/he decides to coop-

erate or defect) and is encoded in a string with N + 2 bits (b−1b0b1...bN−1bN). The first bit (b−1)
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Figure 60: Stationary bit distribution as a function of N. Each bit (square) corresponds to the
weighted sum of the fraction of time (i.e. the analytically computed stationary dis-
tribution) the population spends in strategy configurations in which bq = 1. Blue
(red) cells identify those bits that are employed at least 3/4 of the time with value
bq = 1.0 (bq = 0.0). The analysis provided extends for groups sizes (N) between 2
and 10 (rows). Other model parameters: Z = 100, β = 1.0, F/N = 0.85, w = 0.96,
ε = 0.05,µ << 1/Z.

dictates the behavior in the initial round, while the remaining N + 1 bits (b0b1...bN−1bN) correspond

in sequence to the player’s behavior depending on the number of Cs in the previous round. In this

definition a bit 1 corresponds to a cooperative act and a bit 0 to a defective one. Hence, one obtains

a maximum of 2N+2 strategies, corresponding to all possible combinations of 0s and 1s in a string of

size N + 2.

We consider groups of N individuals, randomly sampled from a finite population of size Z, playing

a repeated NPD. Individuals revise their strategies through the Fermi update rule [35, 36, 37, 38], a

stochastic birth-death process with mutations. At each time step a randomly selected individual A

(with strategy SA and fitness fSA ) may adopt a different strategy i) by mutation with probability µ

or ii) by imitating a random member B of the population (with strategy SB and fitness fSB ) with

probability

(1− µ)(1 + e−β( fSA− fSB )) (70)

where β is the intensity of selection that regulates the randomness of the decision process. The fitness

of each strategy fSi is the average payoff attained over all rounds and possible groups by individuals

adopting strategy Si. It is well known that execution errors profoundly affect the evolutionary dynam-

ics of repeated 2-person games [39, 40, 41, 42, 43, 44, 45]. Consequently, we shall also consider that,
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Figure 61: Stationary bit distribution as a function of the error rate. We plot (log-linear scale)
the fraction of time the population spends in a strategy with bq = 1 for a broad range
of error probabilitiesε. Circles on the left indicate the values obtained for ε = 0.0,
gray areas show the range of values for which bits were defined to have a dominant
behavior. Note that for ε = 0.5 all strategies behave randomly. The bar plot on the
right shows the results for ε = 0.06 (vertical dashed line). Other model parameters:
Z = 100, β = 1.0, N = 5, F/N = 0.85, w = 0.96 and µ << 1/Z. .

in each round, and after deciding to contribute or not according to bq, an individual may act with the

opposite behavior (1− bq) with a probability ε, thus making an execution error.

7.1.3 Results and Discussion

Let us start by investigating the evolutionary dynamics of the population in the small mutation limit

approximation [46]. This allows us to compute analytically the relative pervasiveness of each strategy

in time. It is noteworthy, however, that the results obtained through this approximation remain valid

for a wide range of mutation probabilities, as we show explicitly in Section 7.2.1 via comparison with

results from computer simulations. In a nutshell, and whenever mutations are rare, a new mutant

that appears in the population will either get extinct or invade the entire population before the occur-

rence of the next mutation. Hence, in each time-step there will be, at most, 2 strategies present in the

population, which allows one to describe the evolutionary dynamics of the population in terms of an

embedded (and reduced) Markov Chain with a size equal to the number of strategies available. Each

state represents a monomorphic population adopting a given strategy, whereas transitions are defined

by the fixation probabilities of a single mutant [47]. The resulting stationary distribution τi will then

indicate the fraction of time the population spends in each of the 2N+2 states (or strategies Si). We
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shall also make use of τi to compute the fraction of time the population spends in a configuration/s-

trategy with bq
i = 1, a quantity we call stationary bit strategy, defined as

b̄q =
sN+2

∑
i=1

τib
q
i (71)

where bq
i corresponds to the bit q of strategy i. The stationary bit strategy allows us to easily quantify

the relative dominance of each behavior and extract the most pervasive strategic profiles.

Figure 60 shows the stationary bit distribution, b̄q , for different group sizes. Colored cells highlight

those bits (bq) that retain the same value more than 75% of the time, with bq ≥ 0.75 (blue) and

bq ≤ 0.25 (red). For simplicity, we associate this feature with what we call dominant bit.

Analysis of the stationary bit distributions for different group sizes under small error probabilities

puts into evidence the overall evolutionary success of strategies that conform with a particular profile:

b0 = bN = 1 and bq = 0 for 0 < q < N. A similar trend is obtained if instead we analyze

the stationary distribution τi for all possible strategies Si: This strategy – or minor variations on this

profile (see below) – shows the highest prevalence for a wide range of parameters even in the absence

of errors of execution (see Section 7.2.1). The philosophy encapsulated in this strategy is a simple yet

efficient one: cooperating only after a round of unanimous group behavior (Cooperation or Defection).

Hence we refer to this strategy as All-Or-None (AoN), highlighting the two situations in which these

individuals are prone to cooperate. As group size increases, so does the number of expected errors per

round, which leads to an overall reduction of the number of dominant bits found in the intermediate

sector (i.e. bq for 0 < q < N) without affecting the “edge bits”, which again reveals the prevalence

of AoN behaviour in the population.

A monomorphic population of AoN players can easily sustain unanimous group Cooperation, even

in the presence of errors. Indeed, after an occasional individual Defection, a round of full Defection

ensues, resuming back to unanimous Cooperation in the following round. Therefore, AoN allows a

prompt recovery from errors of execution, which constitutes a key feature that allows Cooperation to

thrive.

To investigate the robustness of AoN we show, in Figure 61, the effect of execution errors on the

stationary bit distribution (b̄q) for a fixed group size (here N = 5): Clearly, both b0 and bN remain

associated with Cooperation for a wide range of error probabilities (µ ≤ 0.2). The internal bits,

in turn, remain qualitatively close to the AoN profile (i.e. bq = 0 for 0 < q < N), undergoing

changes as the error rate increases, allowing an efficient resume into full Cooperation, after (at least)

one behavioral error. In particular, for 0.01 < ε < 0.1, evolution selects for Defection in bits b1 to

bN−1, with particular incidence to adjacent bits of b0 and bN , allowing a fast error recovery. This

feature gets enhanced with increasing ε. For larger values of ε (ε > 0.1), unanimity becomes less

likely and we witness an adaptation of the predominant strategy that acts to reduce the interval of

bits in which Defection prevails. In other words, it is as if execution errors redefine the notion of

unanimity itself or, alternatively, individuals become more tolerant as execution errors become more

likely. It is also noteworthy that the non-monotonous response to errors shown in Figure 61 has been

previously observed in other evolutionary models of Cooperation [48] where intermediate degrees of
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game between ALLD and AoN (b−1 = 0, N = 5, w = 0.96 or m = 25; other model
parameters: Z = 100 and β = 1.0).

stochasticity emerge as maximizers of Cooperation. We confirmed that the results remain qualitatively

equivalent for different group sizes.

In the following we investigate the relevant issue of asserting whether the introduction of this strategy

can efficiently promote the average fraction of cooperative actions. The level of Cooperation, η, may

be defined as the average number of contributions per round divided by the maximum number of

contributions possible. Denoting by Ci the average number of contributions per round associated with

strategy Si, η reads

η =
1
N

2N+2

∑
i=1

τiCi (72)

where τi is the fraction of time the population spends in the configuration Si and N is the group size.

As shown in Figure 62, the overall levels of Cooperation remain high as long as the average number

of rounds is sizeable (left panel, for different values of the PGG enhancement factor F).

The success of AoN can also be inferred by assessing its evolutionary chances when interacting

with unconditional defectors (AllD). To do so, we compute the gradient of selection [5] – G(k) –

which provide information on the most likely direction of change of the population configuration

with time. This is given by the difference between the probabilities of increasing and decreasing the

number of AoN players in a population of k AoNs and Z− k AllDs. The result is depicted in the right

panel of Figure 62, a profile characteristic of a coordination game, in which case the AoN strategy

dominates whenever the population accumulates a critical fraction of AoN players. Moreover, the

size of coordination barrier decreases with increasing values of the enhancement factor F. In Section

7.2.1 we further show that the location of the coordination point is rather insensitive to other game

parameters, in particular when the number of rounds is large. Notably, the evolutionary chances of the

AoN strategy remain qualitatively independent from alterations on the first bit (b−1). Similarly, we

have checked the robustness of the AoN strategy when interacting with random strategists (RS), i.e.,
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individuals that cooperate or defect with equal probability. It can be shown that both AoN and AllD

are advantageous with respect to RS strategists (regardless of their prevalence in the population), while

these should drive AllC to extinction. Finally, contrary to the generalized versions of TFT strategies,

in the presence of errors, the AoN strategy is robust to invasion of unconditional cooperators (AllC)

by random drift, as the former can efficiently exploit the latter.

To sum up, we have shown that the strategy AoN emerges as the most viable strategy that leads to

the emergence of Cooperation under repeated PGGs. This strategy, despite its remarkable simplicity,

cannot be encoded within the subspace of generalized reciprocators studied before in this context [22].

When we consider individuals capable of making behavioral errors, AoN is dominant as suggested

by analyzing both the stationary bit strategy (Figures 60 and 61) and the stationary distribution in the

monomorphic configuration space (see Section 7.2.1). More importantly, our results suggest that AoN
dominates independently of the group size and over a wide range of error rates.

Previous works have identified similar strategy principles in different contexts. For instance, the

Win-Stay-Lose-Shift [39, 40, 41, 49] strategy discovered in the context of the repeated 2-person Pris-

oner’s Dilemma constitutes the N = 2 limit of AoN. In the context of repeated N-Person games

on the multiverse [34], the strategy entitled generic Pavlov [50] encapsulates a behavioral principle

which is similar to that underlying AoN. In fact, one may argue that the principles underlying AoN
may very well be ubiquitous: The simplicity of this strategy can be seen as equivalent – in the con-

text of problems of collective action [5, 6, 14] involving Public Goods Games – to the simplicity of

tit-for-tat or Win-Stay-Lose-Shift strategies discovered in the context of 2-person direct reciprocity, or

the stern-judging social norm of indirect reciprocity [51]. In these cases, we observe a fine balance

between strict replies towards defective actions and prompt forgiving moves, allowing the emergence

of unambiguous decision rules (or norms) that may efficiently recover from past mistakes. Thus, de-

spite the inherent complexity of N-person interactions and the individual capacity to develop complex

strategies, it is remarkable how evolution still selects simple key principles that lead to widespread

cooperative behaviors.

7.2 S U P P O RT I N G I N F O R M AT I O N

7.2.1 The Small Mutation Limit

Whenever a population evolves under sufficiently small mutation rates, such that the fixation time

of any mutant in a population is much smaller than the waiting time between any two mutations, the

population is said to be evolving under the small mutation limit [46] and therefore at any moment in

time it hosts a maximum of two different strategies (Si and Sj).

Under such conditions the stochastic evolutionary dynamics may be conveniently described by

means of a reduced Markov Chain, whose transitions Tij between configurations are defined by the

renormalized fixation probabilities ρij, that is

Tij =
ρij

2N+2 (i 6= j) (73)
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… …

Figure 63: Markov Chain that depicts the Z + 1 configurations and respective one-step transi-
tions, which describes the evolution of a system composed by Z individuals that can
adopt one of two strategies.

The fixation probability (ρij) represents the probability with which a mutant with strategy Sj is able to

invade a resident population, reaching fixation, using strategy Si. For birth-death processes, as is the

case, this quantity can be computed whenever all transition probabilities between configurations are

known (see Fig. 63).

Let us consider that each configuration corresponds to a different combination (k, Z − k) of two

strategies in a population with Z individuals, where k is the number of individuals with the first

strategy and Z − k the remaining individuals, adopting the other strategy. Probability of transitions

that increase the number individuals with the first strategy by one (from configuration k to k + 1)

are written as T+(k) while those that decrease that number by one are written as T−(k). This can

be used to compute the fixation probability of a mutant i in a population of Z − 1 m’s. Following

[52, 53, 47, 35] this can be written as

ρij =

(
1 +

Z−1

∑
l=1

l

∏
k=l

T+(k)
T−(k)

)−1

(74)

For the particular case of the fermi update rule [35] the fixation probability is given by

ρij =

(
1 +

Z−1

∑
l=1

l

∏
k=l

eβ( fSi (k)− fSj (k))
)−1

(75)

where β is the intensity of selection and fSi(k) the fitness of strategy Si. These fitnesses are computed

by averaging the payoffs ΠSi(l) and ΠSj(l) over all groups of size N composed by l other individuals

playing Si:

fSi(k) =
(

Z− 1
N − 1

)−1 N−1

∑
l=0

(
k− 1

l

)(
Z− k

N − 1− l

)
ΠSi(l + 1)

fSi(k) =
(

Z− 1
N − 1

)−1 N−1

∑
l=0

(
k
l

)(
Z− 1− k
N − 1− l

)
ΠSj(l)

(76)

Both ΠSi(l) and ΠSj(l) are computed numerically given the large number of strategies under study

for all 0 ≤ l < N.
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Figure 64: Stationary-bit-Strategy in the absence of behavioral errors. Rows refer to different
group sizes (N) and columns to different strategy bits (bq). Each cell indicates the
fraction of time the population spends in a strategy with bit bq = 1. Blue (red) cells
highlight group for which the population spends more (less) than 3/4 of the time
employing strategies with bq = 1. Parameters are Z = 100, β = 1.0, N = 5,
F/N = 0.85, w = 0.96, ε = 0.00 and µ << 1/Z.

The set of transition probabilities Tji build up a Transition Matrix (a stochastic matrix) whose eigen-

vector associated with the largest eigenvalue (i.e. 1) returns the stationary distribution (τi) of the

population [54]. τi conveniently describes the average fraction of time the population spends in each

of the 2N+2 possible monomorphic population configurations corresponding to situations in which

every member employs the same strategy.

7.2.2 Evolution without errors

The exponential growth of strategies that takes place with increasing group size precludes the use

of numerically computed fixation probabilities or stationary distributions to carry out a detailed com-

parison of strategy profiles involving different group sizes. Instead, it is convenient to compute, nu-

merically, the stationary bit strategy (see main text and previous section for details) which amounts

to compute the pervasiveness, in time, of bit bq = 1 in the population. Indeed, this quantity allows

us to best assess the evolutionary dynamics of populations, as shown in Fig. 64 in the case where no

execution errors are allowed. Fig. 64 stands as the counterpart of Fig. 60 of main text where execution

errors occur with probability ε = 0.05.

The results in Fig. 64 confirm the trend already present in Fig. 60 of main text pointing out to the

emergence of the AoN as the prevailing strategic profile. In the absence of errors, Fig. 64 shows that
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Figure 65: Comparison between numerical simulations and analytical results under the small
mutation limit in the absence of errors (ε = 0.0). Dots represent the results from
numerical simulations with different levels of mutation probability whereas dashed
lines display the results obtained in the small mutation limit. Different colors are
associated with the different bits indicated.

the remaining (intermediate) bits are weakly dominated by defective behavior. The values obtained

for N = 5 correspond to the positions of the dots in the left panel of Fig. 61 of main text.

7.2.3 Validity of the Small-Mutation Limit

In what follows, we check the validity of the small mutation limit comparing the results obtained for

N = 3 with numerical simulations. Fig. 65 shows the stationary bit strategy obtained for a population

of Z = 100 individuals evolving for a wide range of mutation probabilities (µ from 10−4 to 10−2).

Dots represent the results of computer simulations while dashed lines reproduce the results under the

small mutation limit. Each simulation starts from a random configuration of strategies and evolves for

106 generations after an appropriate transient of 103 generations. In order to compute the stationary

bit strategy we computed the average frequency of strategies along the 106 generations over a total

of 150 different evolutions. As depicted in Fig. 65 the agreement between numerical and analytical

results is good and holds in general for µ < (10× Z)−1.

7.2.4 All-or-None versus ALLD

Here we determine the location of the internal roots of the gradient of selection [7] for evolutionary

games between AllD and AoN as a function of the number of rounds. The first bit (b− 1) of strategy

AoN – dictating the behavior in the initial round – is assumed to be 0 (Defection), yet the results remain
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qualitatively equivalent whenever one assumes b−1 = 1. We obtain a single coordination point (see

Fig. 66) below which greedy AoN is driven towards extinction, while above it AoN outcompetes AllD.

Above m ∼ 20, the location of the coordination point converges, for every value of F, to a constant

value. Moreover, increasing F also increases the basin of attraction of the AoN.
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8

C O N C L U S I O N

"There is no perfection, only life."

Milan Kundera

The structure of social interactions in a population is often modeled by means of a complex network

representing individuals and their social ties [1]. These structures are known to fundamentally impact

the dynamical processes they support [2]. The characterization of how structure impacts a dynamical

process is by no means an easy task. Indeed, the large configuration space spanned tends to limit the

systematic applicability of numerical methods, while analytical treatments have failed to provide a

good description of the system dynamics. The goal of this thesis was to develop methods and tools

inspired in statistical and computational physics in order to obtain a deeper insight on how population

structure, modeled in terms of a complex network, impacts dynamical processes.

Chapter 2 explored the nature of correlations among members of a social network that do emerge as

a result of different interaction processes [3]. These correlations, associated with the likelihood with

which a trait is shared by two individuals that are at a given social distance1, provide a convenient

way to peer through the influence that individuals exert on each other in social networks. Empirical

evidence suggests that individuals tend to be positively correlated with others up to a social distance

of three contacts, a phenomena coined as the three degrees of influence [4]. Our work shows that these

’peer-influence’ patterns are universal and emerge as a natural consequence of having dynamical pro-

cesses (e.g. opinion formation, behavior evolution and disease spreading) on structured populations.

We have also shown that, counter-intuitively, the range of influence of individuals increases with in-

creasing network sparsity, that is, with decreasing density of the network connectivity, and increasing

clustering. Future work should explore how peer-influence patterns are affected by i) topological fea-

tures not considered in our study (e.g. hierarchal organization) and by ii) dynamical processes that

rely on group interactions (e.g. Public Goods Games) contrary to the pairwise scheme that we have

studied.

A central question associated with the study of dynamical processes in complex networks, and to

a certain extend with the entire field of complex systems, concerns the dichotomy between the dy-

namical rules that govern pairwise interactions (local scale) and the collective dynamics exhibited

1 In a social network the social distance between two individuals is measured as the minimum number of links that separates
them.
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by the population (global scale). Here we approached this question formulating it as a problem of

Cooperation [5], resorting to Evolutionary Game Theory [6].

Chapter 3 introduces a numerically computed mean-field quantity that captures the evolutionary

dynamics of structured populations [7]. This quantity, coined as the Average Gradient of Selection,

returns a dynamical description that is qualitatively similar to that conveyed by the replicator equation

but that takes into account the topological features of the network of interactions between individuals.

Moreover, since it is computed through the analysis of all pairs of connected individuals in a popu-

lation, it effectively connects both local and global scale dynamics. With the Average Gradient of

Selection we have shown a fundamental connection between the connectivity structure of the under-

lying network of interactions and the resulting collective dynamics. In particular, when individuals

interact according to the two-person Prisoner’s Dilemma, degree homogeneous networks2 promote a

population-wide coexistence dynamics, while degree heterogeneous networks3 lead to a coordination

of strategies. These scenarios, that result from the different connectivity structures of the interaction

network, are dynamically similar to other social dilemmas of Cooperation, namely to the N-person

variants of the Snowdrift Game (coexistence) and the Stag Hunt (coordination) games, which in turn

contrast with the defector dominance dynamics characteristic of the Prisoner’s Dilemma that individ-

uals face locally. Hence, population structure effectively leads to the emergence of a collective social

dilemma, whose dynamical properties contrast with the social dilemma that individuals face locally

and that constitutes a milder challenge for Cooperation. It is precisely because of this transformation,

induced by networks, that Cooperation has a chance of being evolutionary (self)-sustainable in a pop-

ulation. In this sense, not only Cooperation (modeled in terms of a Prisoner’s Dilemma) requires at

least two individuals to emerge, it becomes inherently a collective phenomenon.

Chapters 4, 5 and 6 made use of the Average Gradient of Selection to characterize the evolutionary

dynamics of the Prisoner’s Dilemma in structured populations under different dynamical conditions.

In particular, Chapter 4 explored how selection pressure (the uncertainty associated with the deci-

sion making) impacts the population-wide dynamics of structured populations [8]. We show that

the coexistence dynamics, characteristic of homogeneous networks, only emerges under strong selec-

tion regimes. In heterogeneous networks the coordination dynamics is independent of the selection

pressure. However, the specific features depend on the particular choice of selection pressure. Further-

more, we show that in both topological scenarios there is an optimal selection pressure that optimizes

the level of Cooperation, while the underlying mechanism from which it stems is distinct in both

cases.

Chapter 5 explores how the introduction of mutations (the spontaneously adoption of new behaviors

by individuals) impacts the evolutionary dynamics of Cooperation in structured populations. We show

that when individuals engage in a Prisoner’s Dilemma game in heterogeneous networks, the introduc-

tion of mutation rates induce drastic regime shifts, from the defection dominance that characterizes

the standard Prisoner’s Dilemma into a regime of coexistence among Cooperators and Defectors, as

well as into a regime of coordination, often revealing more than one basin of attraction. Moreover,

we show that the evolutionary outcome in heterogenous networks that results from variations in the

2 A network whose degree distribution has zero variance.
3 A network whose degree distribution has non-zero variance.
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mutation rates is quite sensible to the particular selection regime under which population evolves. In

particular we show that under strong selection regimes, Cooperation is undermined by variations in

the mutation rate, whereas under weak selection one witnesses a subtle balance between selection and

mutation, which is favorable to defectors. Interestingly, there exists a range of selection pressures in

which structured populations are most resilient to variations in mutation rates.

Chapter 6 extends the methodology employed for the computation of the Average Gradient of Selec-

tion to the co-evolutionary scenario where structure evolves along with strategy. We show that the fate

of Cooperation is directly related with the relative time-scales of both dynamical processes and that

for increasing rates of structure adaptation it becomes easier for cooperators to coordinate towards a

full Cooperation scenario. Furthermore, the collective dynamical profile that emerges is similar to that

found in games that involve interactions between groups of individuals.

In sum, the Average Gradient of Selection constitutes a powerful tool to study evolutionary dynam-

ics of Cooperation in structured populations. It provides a context dependent description that is both

sensitive to the underlying structure of interactions and to different dynamical scenarios, being able,

for instance, to account for co-evolutionary dynamics, the presence of mutations and variations in the

dynamical parameters (e.g. selection pressure and payoff parameters). These aspects, which have a

dramatic impact in the dynamics of structured populations and that are an important part of the real

world systems that we aim at modeling, are not accountable, at present, by current alternatives. For

example, pair-approximation techniques [9] are unable to distinguish between networks with similar

degree distributions but distinct topological features, fail also to account for degree heterogeneity and

are unable to take into account the impact of mutations. On the other hand, the major drawback of

the Average Gradient of Selection is that it is computed numerically, thus, being constrained to the

computational resources available. Despite of this, we and others [10] believe that at the present the

Average Gradient of Selection provides the most promising and efficient means to characterize the

evolutionary dynamics in structured populations, being able to establish a reversible link between

individual and collective behavior in those populations. The usefulness of the Average Gradient of

Selection should not be limited to dynamical processes involving decision making modeled in terms

of games. Indeed, in a broad perspective the methodology here developed should be considered as a

contribution to the characterization of Complex Systems involving populations in which who interacts

with whom is well-defined by a complex network. Future work should extend its applicability to other

dynamical processes, such as disease spreading and opinion formation, and also to non-trivial interac-

tion structures that involve multiplex or interdependent structures [11, 12]. The ongoing improvement

of the computational efficiency in the computation of Average Gradient of Selection should remain a

goal of future work.

The problem of Cooperation is not limited to the study of situations/games involving only two indi-

viduals, neither it is restricted to the characterization of the role of population structure in the evolution

of Cooperation. Indeed, many situations are better modeled by assuming group interactions [13]. In

that context, Chapter 7 explores the evolutionary dynamics of a population whose individuals engage

in a repeated Public Goods Games [14]. We resort to the small mutation limit to explore the strategy

space of strategies in which individuals’ actions are conditional to the group achievements in the pre-
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vious round. We have found that a strategy of All-or-None, in which individuals only cooperate after

a round of unanimous group behavior, outperforms all other strategies. All-or-None is also resilient

to behavioral errors, performing well when individuals are prone to commit decision errors, in the

sense of not acting according to what is defined by their strategies. The All-or-None strategy profile

provides a quick route for coordination towards to the best group outcome (full Cooperation) in error

prone environments, is risk-dominant against free-riders, leads to (overall) high levels of cooperative

behavior and builds from the same (simple) intuition found in strategies studied in the scope of the

two-person repeated Prisoner’s Dilemma, namely the famous Pavlov and Win-Stay-Lose-Shift strate-

gic profiles [15, 16, 17]. Future work should look to understand the robustness of All-or-None in the

space of more generic strategies that do not imply explicitly a conditional action towards the group’s

previous achievements.

Not included in this thesis are other works to which I have contributed and that explore the evo-

lutionary dynamics of Cooperation. In [18] we explore the impact of fitness delay in the N-Person

games with payoff thresholds. In this context, fitness delay implies that the payoff attained through

game theoretical interactions only contributes to the fitness in the future. In [19] we provide a sum-

mary of previous works, detailing how social diversity, when modeled through different perspectives,

seems to be a key ingredient for the evolution of Cooperation. In [20] we have used the Average

Gradient of Selection to characterize the evolutionary dynamics of N-Person Snowdrift Games in

structured populations. Finally, in [21] we have shown that the joint effect of population structure

and peer-punishment (another mechanism regarded to provide a positive impact for the evolution of

Cooperation) does not necessarily generate a better scenario for Cooperation.
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