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Abstract 

The present thesis intended to contribute for the development of a new generation of high 

durable and sustainable reinforced concrete (RC) beam structures submitted to flexural  

loading, by combining the benefits that Glass Fiber Reinforced Polymers (GFRP) and steel 

bars can provide: the former due to their corrosion immunity, and the latter derived from 

their high ductility. Furthermore, High Performance Fiber Reinforced Concrete (HPFRC) 

was developed to improve the ductility of such innovative structures. To avoid corrosion, 

steel bar was placed with a HPFRC cover thickness, higher than 100 mm, while GFRP bars 

were applied in the near tensile surface of the HPFRC beams. In addition, the GFRP and 

steel bars were applied with a certain pre-stress level. The prestressing optimized their 

reinforcing capabilities, and increased the service load carrying capacity of the beam. On the 

other hand, conventional shear reinforcements were not used, and they were totally replaced 

by HPFRC material. Due to the quite high post-cracking tensile strength and energy 

absorption capacity that HPFRC attained, the composite system showed adequate shear 

resisting, and also enhancement in the structural performance at both Serviceability and 

Ultimate Limit States (SLS and ULS). The work started with the assessment to bond 

behavior between GFRP and HPFRC through experimental tests and analytical 

investigation. The structural performance of this hybrid prestressed GFRP-steel reinforced 

HPFRC was investigated by performing four-point bending tests on beams with I-shaped 

cross section under both monotonic and fatigue loading conditions. Moreover, an extensive 

analytical formulation was developed in order to theoretically address to the main structural 

aspect of the tested beams. The obtained experimental results were captured well using the 

respective results from the analytical study. Finally, finite element (FE) simulations were 

carried out using two well-known modelling approaches available in the literature for 

concrete elements in form of both 2D and 3D models. The results obtained from these models 

were promising, and it can be used for further analyses and developments in the field of 

present study. 
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Resumo 

A presente tese pretende contribuir para o desenvolvimento de uma nova geração de 

estruturas de betão armado, submetidas a esforços de flexão de elevada durabilidade e 

sustentabilidade, combinando os benefícios do uso de varões de polímeros reforçados com 

fibras de vidro (GFRP - Glass Fiber Reinforced Polymers) com os de varões de aço 

convencional: os primeiros devidos à sua imunidade à corrosão, enquanto que os segundos 

devido à sua ductilidade. Para além disso, foi desenvolvido um betão reforçado com fibras 

(HPFRC - High Performance Fiber Reinforced Concrete) de alto desempenho de modo a 

melhorar a ductilidade destas estruturas inovadoras. Para evitar a corrosão, o varão de aço 

foi colocado com um recobrimento superior a 100 mm, enquanto que os varões de GFRP 

foram aplicados junto à superfície mais tracionada das vigas de HPFRC. Adicionalmente, os 

varões de aço e de GFRP e foram aplicados com um determinado nível de pré-esforço. O 

pré-esforço potenciou os reforços usados para o comportamento em serviço da viga. Por 

outro lado, haverá que referir que não foram usadas armaduras convencionais de reforço aos 

esforços transversos (estribos), tendo sido totalmente substituídos pelo HPFRC. Devido à 

elevada resistência à tração e à elevada capacidade de absorção energia na fase de pós-pico 

que o HPFRC apresenta, o sistema estrutural mostrou adequada resistência aos esforços 

transversos, e também melhoria no desempenho estrutural, tanto para os Estados Limite de 

Serviço, bem como Últimos. O trabalho iniciou-se com o estudo da aderência entre o GFRP 

e o HPFRC através de ensaios experimentais e investigação analítica. O desempenho 

estrutural deste sistema híbrido foi investigado através da realização de ensaios 

experimentais em vigas com secção transversal em forma de I, sob quatro pontos de carga, 

em condições de carga monotónicas e de fadiga. Além disso, foi desenvolvida uma 

formulação analítica extensa com o objetivo de contemplar do posto de vista teórico, os 

principais aspetos estruturais das vigas ensaiadas. Os resultados experimentais obtidos foram 

simulados com rigor suficiente por intermédio destes estudos analíticos. Finalmente, foram 

realizadas simulações numéricas com recurso ao método dos elementos finitos utilizando, 

para tal, duas conhecidas abordagens disponíveis na literatura na simulação do HPFRC, 

recorrendo a modelos 2D e 3D. Os resultados obtidos a partir destes modelos numéricos 

foram promissores, podendo ser usados em futuras análises e desenvolvidos no âmbito do 

estudo desta área.  
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 Chapter 1 

1. INTRODUCTION 

1.1 Motivation and objectives 

Steel reinforcing bars in aggressive environmental conditions are generally affected by 

corrosion, which is often responsible for deterioration and damage processes developing in 

reinforced concrete (RC) members. This corrosion phenomenon can occur after carbonation 

(Steffens et al. 2002) of concrete cortical layers in members exposed to water, humidity or 

other severe environmental conditions (Ryu et al. 20001). Then, the possible oxidation of 

steel reinforcements causes the reduction of their cross-section area, concrete spalling and 

possibly the loss of their bond to the surrounding damaged concrete, which can compromise 

the functionality of RC structures, or even their structural stability. Since the rehabilitation 

of corroded RC structures is generally an expensive solution, demolition of such structures 

is a relatively frequent option, though resulting in several unfavorable impacts in terms of 

economic, social and environmental aspects. 

Durability issues related to the possible oxidation of steel reinforcement in concrete 

structures have brought up the attention of civil engineers towards alternative materials for 

reinforcing systems (Saadatmanesh and Ehsani 1991). Fiber Reinforced Polymers (FRPs), 

which were initially developed and employed in the aerospace, aeronautics, naval and 

automotive industries, generally exhibit high mechanical and durability performance. Thus, 

the research activities in this field are supporting the publication of design guidelines on the 
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use of FRP as internal reinforcement of cement-based composite members and, then, FRP 

bars are becoming more common in the construction sector. FRP bars using Aramid, Carbon 

or Glass fibers, namely by AFRP, CFRP and GFRP, respectively, are the most widely 

reinforcing elements that are being used in construction industry. 

The most destroyer disadvantage of FRP bars comparing to steel bars is their cost in 

almost all cases. It is hard to compare the cost of FRP bars with those steel bars due to the 

many factors that may depend on. For instance, the delivery of FRP bars strongly depends 

on where they are ordered and from where they are supplied, and how much. But based on 

a rough analysis, it is expected to be paid almost 3 times as much for GFRP bars and almost 

10 times as much for AFRP and CFRP (Burgoyne 2009). Additionally, this cost difference 

may increase where the high-strength FRP pre-stressing tendons is purposed. To this end, 

almost all FRP Reinforced Concrete (FRP-RC) applications are uneconomic. But, the answer 

to this issue is considering a “whole-life” cost of structures and not a “first-cost” basis. The 

benefits of using FRP bars is to overcome the problem comes from the use of steel 

reinforcements. Thus, few amount of the cost spent for FRP-RCs refunds within the typical 

structure lifetime and many for much longer. 

In addition to the cost issue, FRP bars have lower Young’s modulus and normally lower 

bond performance (especially in case of GFRP and AFRP bars) when they are compared to 

conventional steel bars. Moreover, the lack of yielding phase in stress-strain response 

introduces extra challenges in the behavior of concrete members reinforced with FRP bars 

mainly in terms of accomplishing the requirements for Serviceability Limit States (SLS) 

such as controlling crack width, crack spacing and total deformation (Almusallam 1997, 

Masmoudi et al. 1998, Pecce et al. 2000, Abdalla 2002, Taheri et al. 2012). Finally, the 

change in the material properties of FRP bars in case of exposure to high temperature affects 

the overall structure performance (Kashwani and Al-Tamimi 2014). 

To overcome such problems, using a hybrid flexural reinforcing system by combining 

FRP and steel bars seems to be a promising solution. In this hybrid system, steel 

reinforcement ratio is designed to assure safety and integrity requirements in case of 
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exposure to high temperatures (e.g. fire), and to enhance the structural performance in terms 

of crack width, deformability and ductility. To improve the durability, steel bars are placed 

with relatively larger concrete cover for being better protected against corrosion. Due to the 

corrosion immunity of FRP bars, a minimum concrete cover is used in order to increase their 

structural capabilities. Some attempts have been carried out by combining FRP and steel 

bars (Aiello and Ombres 2002, Qu et al. 2009, Taheri et al. 2011), where it is reported an 

improvement in the flexural performance comparing with FRP-RCs. Furthermore, FRP and 

steel bars can be used with a certain pre-stress level for the optimization of their reinforcing 

capabilities and to overcome the concerns raise due to the lower elasticity modulus of FRP 

bars. 

On the other hand, shear steel reinforcements also need to be protected against corrosive 

agents, as they are more susceptible to corrosion due to the smaller concrete cover. For 

eliminating steel stirrups, a High-Performance Fiber Reinforced Concrete (HPFRC) might 

be a solution, as long as this material provides similar shear reinforcement effectiveness to 

the conventional steel reinforcement (Soltanzadeh et al. 2015). Due to the quite high post-

cracking tensile strength and energy absorption capacity that HPFRC can attain, this 

composite material can be used not only to assure the required shear capacity of RC 

elements, but also to enhance the structural performance at Serviceability and Ultimate Limit 

States (SLS and ULS). 

The main objective of the present work is to develop high effective new reinforcing 

systems for the pre-fabrication industry of concrete beams of longer life span. The beams 

are designed to support severe environmental agents (e.g. in the coastline), in order to 

constitute a competitive alternative to the existing conventional structural solutions. The 

objective is achieved by developing a new generation of pre-fabricated Fiber Reinforced 

Concrete (FRC) beam with pre-stressed hybrid GFRP/steel reinforcing bars. 

1.2 Research steps 

In order to achieve the purpose of the study, the following steps were followed in the 
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present research: 

i. Firstly, the study focused on evaluating bond behavior between GFRP bars and FRC. 

It was also purposed to locate GFRP bars as near as possible to the tensile surface of 

FRC beam element. In fact, the minimum thickness of FRC cover required for GFRP 

bar was assessed by performing bending pullout tests of different FRC cover 

thicknesses. In addition to the experimental pullout tests, extensive analytical was 

carried out for the development of a model to simulate the bond behavior of 

reinforcing bars and FRC. This research us detailed in Chapter 3; 

ii. As the next step, detailed in Chapter 4, a theoretical study on the interaction between 

FRC, GFRP and steel bars have been carried out by taking the bond models proposed 

in the previous step of the work. To this end, FRC member reinforced with GFRP 

and steel bars (hybrid reinforcement) is subjected to uniaxial tension, and its cracking 

and tension stiffening behavior is theoretically studied. The predictive performance 

of this model was validated using some recent experimental results available in the 

literature. 

iii. At third step, the study investigates the structural behavior of beams of high 

performance fiber reinforced concrete (HPFRC), with I-shaped cross-section, 

reinforced in flexural with hybrid prestressed steel strand and GFRP bars. For this 

purpose, the beams were tested in flexure under monotonic and fatigue loading 

conditions, where the reinforcement ratio and pre-stress level of reinforcing bars 

were the main experimental parameters. Then, the main structural parameters such 

as deformation, crack spacing, crack width and ductility under both ultimate and 

serviceability conditions are examined. This work is detailed in Chapter 5; 

iv. Finally, Chapter 6 details the 2D and 3D finite element analysis (FEM) were carried 

out to simulate the results obtained from the experimental tests with good accuracy. 

The models are based on the two well-known modeling approaches that are being 

used to simulate RC structures. 
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 Chapter 2 

2. LITERATURE REVIEW 

2.1 Introduction 

A state of the art with respect to the flexural behavior of concrete (or FRC) beams 

reinforced by FRP bars, mostly GFRP type, is presented in this chapter. Several studies were 

analyzed hereafter and their main outcomes are described and summarized. 

This literature review is divided into four different parts including: 

i. Bond mechanism of GFRP bars as internal reinforcements for concrete members; 

ii. Concrete beams reinforced by longitudinal GFRP bars (GFRP-RC beams); 

iii. Fiber Reinforced Concrete beams reinforced by longitudinal FRP bars (FRP-FRC 

beams); 

iv. Concrete beams reinforced by hybrid reinforcing system including FRP and steel bars 

(hybrid FRP/steel RC beams). 

2.2 Bond mechanism of GFRP bars 

Bond behavior between the reinforcing bars and concrete is an important key issue to 

study the behavior of Reinforced Concrete (RC) members. For this reason, investigation of 

bond behavior of GFRP bars to concrete became a main mechanical property for civil 

engineers as soon as their introduction to construction industry for alternative reinforcing 

system. 
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The bond behavior between GFRP bars and concrete has been extensively studied during 

the last two decades. In contrast with conventional steel bars, GFRP bar has no 

standardization for surface treatments. Many researcher reported that the surface 

characteristics (e.g. sand-coated, indented, ribbed, helical or wrapping) of GFRP bar strongly 

affect the bond shear stress between GFRP and concrete (Rossetti et al. 1995, Pecce et al. 

2001, Achillides and Pilakoutas 2004, Aiello et al. 2007, Hao et al. 2007, Lee et al. 2008, 

Baena et al. 2009). Figure 2-1 shows GFRP bars with different surface configurations. 

Further, Table 2-1 includes the typical nomination of surface treatments of GFRP bars, 

which has been presented in Figure 2-1. 

Table 2-1 Typical nomination of surface treatments for the GFRP bars shown in Figure 2-1 

GFRP types* Surface treatments Abbreviation 

Type 1 Ribbed Surface by grooves RS 

Type 2 Single fiber strand winding (Helically Wrapped surface) HW** 

Type 3 Double fiber strand winding (Helically Wrapped surface) DHW 

Type 4 Helically Wrapped surface with Sand Coating  HWSC 

Type 5 Sand Coating SC 

Type 6 Ribbed surface with Rope Winding RRW 
* See Figure 2-1 for GFRP types; 
** This surface technique in some references it was named as spirally wound technique. But they are categorized as helically 
wrapped surface in this chapter. 

In addition to the surface type, GFRP modulus of elasticity, shear and tensile stiffness of 

GFRP bar, compressive strength of concrete, concrete cover thickness, bar diameter and 

embedment length have been reported as the other effective parameters on the bond 

behavior. Moreover, the bond between GFRP bars and surrounding concrete is controlled by 

several factors, including chemical bond, friction due to surface roughness of GFRP rods, 

mechanical interlock between GFRP bars and concrete, confinement applied to the GFRP 

bars due to concrete shrinkage. The chemical bond (adhesion) is the main resisting 

mechanism during initial pullout. Afterwards, the friction and mechanical interlock become 

the main reinforcing mechanisms. In terms of their relevance for the bond transferred force, 

frictional and mechanical interlock showed an effect that is much higher than the chemical 

bond between GFRP and concrete (Cosenza et al. 1997). 
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Figure 2-1: Different surface configuration of GFRP bars 

2.2.1 Bond evaluation test setup 

The bond test setups most widely used to evaluate the bond behavior are: (i) the direct 

pullout test (with centric or eccentric position of bar), (ii) the beam test, (iii) the splice test 

and (iv) the ring pullout test; being the direct pullout test the most frequent one. Figure 2-2 

shows a schematic representation of these test setups. Despite the direct pullout test has been 

used to compare the effectiveness of the relevant bond parameters, such is the case of bar 

diameter, bar surface treatment, and concrete strength, the obtained results are affected by 

the confinement applied to the surrounding concrete during the pullout process (Aiello et al. 

2007). This type of confinement can be also effective in the ring pullout test (Figure 2-2b), 

due to a similar compression action on the surrounding concrete at the loaded end applied 

by the specimen’s supporting system. These setups, therefore, do not replicate the bond 

conditions of a reinforcing system in a real concrete element. Hence, to avoid the influence 

of concrete confinement, beam test (or splice test) might be a better pullout test for evaluation 

of bond behavior. 

 
Figure 2-2: Schematic illustration of bond test setups: (a) Direct pullout, (b) Ring, (c) Splice, 

and (d) Beam test 
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In the pullout tests, typically, bond behavior of an embedded bar is evaluated by 

recording the applied pullout force against the relative slip between the bar and concrete (i.e. 

 ) at “loaded-end” (the cross-section of the bar at the beginning of the embedded length 

where the pullout load is applied) and “free loaded-end” (the cross-section of the bar at the 

extremity of the embedded length). Then, the bond behavior of the embedded bar is typically 

presented as     curve where   is the bond shear stress. This value can be defined as an 

average bond shear stress over the embedded length, which is calculated by 

 m

e r

F

l P
   (2-1) 

where F , el  and rP  are, respectively, the pullout force, the embedded length and the 

perimeter of reinforcing bar. 

2.2.2 Pullout test results 

In this section, a brief review on the experimental results of GFRP pullout tests is given 

by considering F   curve obtained from test data. The aim is to review the influence of 

some main parameters on the variation of the bond shear strength (i.e. m ) and its 

corresponding slip at loaded end (i.e. m ). Then, these values are compared with those 

obtained for conventional steel bars. 

2.2.2.1 Bond shear strength of GFRP bars 

A summary of the pullout test results in literature for different types of GFRP bars of 

8~10 mm, 12~15 mm and >15 mm of diameter are written, respectively, in Table 2-2, 

Table 2-3, and Table 2-4 in terms of m  and m . Further, Table 2-5 reports the same results 

but for conventional steel bars. The tests were carried out with different concrete types, thus 

the mechanical properties of concrete were different. In order to take into account the effect 

of the diversity of concrete type on the bond behavior, m  is modified by multiplying the 

following coefficient (Aiello et al. 2007): 

 

0.5

c

cREF

f

f

 
 

 
 (2-2) 
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where cf   is the concrete compressive strength at 28th day of concrete curing reported in the 

literature and cREFf   is the reference compressive strength that is assumed to be 30 MPa as a 

moderate value in analysis. 

Table 2-2 Summary of the pullout results for different types GFRP bars (ϕb =6-10 mm) 

Surface Type * 
b  m ** m  e bl   cf   

Reference 

(mm) (MPa) (mm) (-) (MPa) 

Rough surface 

8.5 9.2 1.10 6 

41 
Achillides and Pilakoutas 
2004 

8.5 11.7 1.00 8 

8.5 12.5 1.31 10 

Medium Rough surface with surface 
deformation (24 roving) 

10.5 4.0 0.23 6 

10.5 3.9 0.45 8 

10.5 4.1 0.46 10 

Medium Rough surface with surface 
deformation (36 roving) 

10.5 4.0 0.26 6 

10.5 4.7 0.49 8 

10.5 5.5 0.51 10 

Sand coating, Helical wrapping 

6 12.3 1.35 5 

40 Okelo and Yuan 2005 

10 16.5 1.2 5 

10 13.3 1.2 7 

10 10.8 1.1 9 

Ribbed surface 

10 15.5 0.98 5 

10 15.0 1.34 7 

10 12.7 1.17 9 

Sand coating 10 15.5 0.22 5 

Surface texture 8 11.2 0.76 5 

Fine sand coating and spiral wound 
8.5 15.9  5 

53 Aiello et al. 2007 
8.5 8.7  7 

Fine sand coating 8 3.0 0.45 5 

Coarse sand coating 8 3.0 0.49 5 

Ribbed surface 10 12.5 2.83 4 

27 Hao et al. 2007 

Double strand fiber winding 10 11.0 3.08 4 

Single strand fiber winding 8 17.2 4.48 4 

Single strand fiber winding and sand coating 
6.5 22.2 2.34 4 

9.5 19.3 0.60 4 

Ribbed surface with rope winding 10 9.8 3.00 4 

Helically wrapped and sand coating 9.5 13.5 0.30 5 63 
Davalos et al. 2008 

Sand coating 9.5 14.5 0.40 5 59 

Sand coating 10.2 12.3 1.95 5 53 

Baena et al. 2009 

Sand coating and helically wrapped 9.3 16.6 2.48 5 52 

Ribbed surface (grooves) 8.5 13.2 1.73 5 50 

 8.5 12.5 1.34 5 29 

Helically wrapped 8 22.4 6.38 5 47 

 8 17.1 5.06 5 30 

Ribbed surface (grooves) 
8 13.1 1.76 4 29 

Hao et al. 2009 
10 12.4 2.83 4 29 

* The surface description of GFRP bars is based on what was named by the respective authors; 

**
m
 is the average bond shear strength of pullout specimens, which was modified by coefficient presented by Eq. (2-2) 
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Table 2-3: Summary of the pullout results for different types GFRP bars (ϕb=12-15 mm) 

Surface Type * 
b  m ** m  e bl   cf   

Reference 

(mm) (MPa) (mm) (-) (MPa) 

Spirally wound and sand coated 12.7 11.1 0.46 6 

31 Tighiouart et al. 1998 
Spirally wound and sand coated 12.7 10.4 0.33 10 

Spirally wound and sand coated 12.7 9.84 0.50 16 

Ribbed surface with Rope Winding 12.7 12.1 0.30 10 

Sand Coating, and Helical wrapping 12.7 13.0  5 

34 Katz 1999 

Helical wrapping 12.7 11.5  5 

Sand Coating, Helical wrapping 
(deep dents) 

12.7 3.8  5 

Deformed by resin 12.7 13.7  5 

Smooth bar (no surface treatment) 12 0.9  5 

Deformed by resin  

12.7 12.3 0.68 5 39 

Pecce et al. 2001 12.7 11.7 1.14 10 39 

12.7 5.5 1.28 20 54 

Rough surface 

13.5 8.4 0.62 4 

45 Achillides and Pilakoutas 2004 
13.5 7.4 0.85 6 

13.5 5.9 0.82 8 

13.5 6.1 0.92 10 

Ribbed surface 12.7 10.8 0.59 5 53 Aiello et al. 2007 

Single fiber strand winding 12 10.6 3.03 4 27 
Hao et al. 2007 Single strand fiber winding and sand 

coating 
12.7 12.1 3.32 4 26 

Helically wrapped and sand coating 12.7 14.8 0.70 5 63 Davalos et al. 2008 

Sand coating 12.7 

21.6 0.39 

4 

25 

Lee et al. 2008 

19.9 0.49 35 

18.4 0.42 40 

15.8 0.34 55 

15.4 0.11 75 

14.4 0.12 90 

Helically wrapped 12.7 

20.7 4.34 

4 

25 

18.3 5.23 35 

18.6 4.84 40 

14.7 5.02 55 

15.0 3.97 75 

15.1 0.41 90 

Sand coating 14.13 
11.9 1.91 

5 

53 

Baena et al. 2009 

11.2 1.99 28 

Helically wrapped and sand coating 13.73 
12.9 2.31 52 

9.84 6.54 30 

Ribbed surface 12 
11.3 1.42 54 

8.79 1.42 30 

Helically wrapped 12 
20.7 8.92 47 

16.64 7.07 30 

Ribbed surface 12 10.6 3.03 4 29 Hao et al. 2009 

* The surface description of GFRP bars is based on what was called by the respective authors; 

**
m
 is the average bond shear strength of pullout specimens, which was modified by coefficient presented by Eq. (2-2) 
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Table 2-4: Summary of the pullout results for different types GFRP bars (ϕb >15 mm) 

Surface Type * 
b  m ** m  e bl   cf   

Reference 
(mm) (MPa) (mm) (-) (MPa) 

Spirally wound, Sand coated 

15.9 10.4 0.34 6 

31 Tighiouart et al. 1998 

19.1 7.0 0.18 6 

25.4 6.9 0.20 6 

15.9 7.2 0.54 10 

19.1 6.5 0.39 10 

25.4 6.3 0.39 10 

19.1 6.2 0.60 16 

25.4 5.8 0.49 16 

Ribbed surface with Rope Winding 
15.9 10.6 0.42 10 

25.4 7.3 0.35 10 

Smooth bar 16 1.5 0.65 5 45 Achillides and Pilakoutas 2004 

Sand coating, Helical wrapping 

16 15.5 4.90 5 

40 Okelo and Yuan 2005 

16 15.7 4.32 7 

16 12.8 1.95 9 

19 13.5 3.32 5 

19 12.1 2.90 7 

19 8.1 2.31 9 

Ribbed surface 

19 14.5 0.98 5 

19 10.7 0.81 7 

19 5.5 0.53 9 

Sand coating 
16.4 14.6 1.87 5 53 

Baena et al. 2009 

19.5 11.5 1.53 5 53 

Sand coating and helically wrapped 
16.1 12.3 5.86 5 52 

19.1 11.1 4.99 5 52 

Ribbed surface (grooves) 16 11.0 1.25 5 29 

Helically wrapped 
16 16.5 7.97 5 47 

19 13.2 5.46 5 47 
* The surface description of GFRP bars is based on what was called by the respective authors; 

**
m
 is the average bond shear strength of pullout specimens, which was modified by coefficient presented by Eq. (2-2) 

Table 2-5 Summary of the pullout results for different type conventional steel bars 

Surface Type 
b  m * m  e bl   cf   

Reference 

(mm) (MPa) (mm) (-) (MPa) 

Ribbed surface 

12.7 22.7  6 

31 Tighiouart et al. 1998 
15.9 21.5  6 

19.1 15.7  6 

25.4 13.3  6 

Ribbed surface 12 11.4  5 34 Katz 1999 

Ribbed surface 12 17.4 0.29 5 56 Pecce et al. 2001 

Ribbed surface 10 20.4 0.15 5 40 Okelo and Yuan 2005 

Ribbed surface 12 17.5 1.00 5 53 Aiello et al. 2007 

Ribbed surface 
10 22.2 1.08 4 

27 Hao et al. 2007 
12 21.7 1.24 4 

Ribbed surface 12.7 23.6 0.97 4 25 Lee et al. 2008 

Ribbed surface 

10 22.8 1.30 5 

49 Baena et al. 2009 
12 18.3 1.70 5 

16 17.9 1.62 5 

20 14.5 0.52 5 

*
m
 is the average bond shear strength of pullout specimens, which was modified by coefficient presented by Eq. (2-2) 
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Figure 2-3 is plotted based on the results of pullout tests reported in the literature where 

the embedded length of the bars were 4~6 times of the bar diameter. In this figure, the bond 

shear strength of different GFRP bar’s surfaces, which has been written in Table 2-1, are 

compared with the typical ribbed surface steel bars. The results are categorized by three 

groups of bar’s diameters as mentioned above. According to this analysis, the most widely 

used GFRP bar’s surface was helically wrapped surface with sand coating technique 

(HWSC). However, GFRP bars with only helically wrapped surface technique (i.e. HW) 

show an average bond shear strength higher than HWSC. This is, the combination of sand 

coating and helically wrapped techniques may not lead to a significant improvement in terms 

of the value of m . Ribbed surface (RS) and fine sand coating (SC) are the other common 

type external surface for GFRP bars. Although, the reliability of the results for RS seems to 

be better than SC, both showed almost the same average bond shear strength. 

 
Figure 2-3: Comparison between different GFRP bar’s surfaces and steel bars in terms of the 

average bond shear strength based on the pullout test results 

Double fiber strand winding (DHW) and Ribbed surface with Rope Winding (RRW) are 

two surface’s treatment techniques that were rarely used, hence, a few number of pullout test 

was available for them. In addition, the average bond shear strength for DHW and RRW 

were lower than those from the other surface’s treatments. In addition to the results of GFRP 
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bars, the average bond shear strength of ribbed surface steel bar also shown in Figure 2-3. 

As shown, the average bond shear strength of ribbed conventional steel bar was generally 

higher than all GFRP bar’s surfaces for three bar’s diameter categories. The bond shear 

strength of steel bars can be estimated about 1.2 to 1.5 times of magnitude higher than the 

average bond shear strength of GFRP bar, being dependent on GPFR bar’s surface. It is 

worth noticing that all the values reported in Figure 2-3 are corrected by using coefficient 

presented in Eq. (2-2) in order to minimize the effect of concrete compressive strength on 

the value of m . 

2.2.2.2 Slip at the peak bond shear strength 

Figure 2-4 shows the results of pullout test in terms of m  versus m for different GFRP 

bar’s surfaces and conventional ribbed steel bar. In contrast with the results of steel bars, the 

dispersion of data for GFRP bars even for the same surface configuration is high. Thus, it is 

quite difficult to derive specific conclusion for the relationship between m  and m . The 

variety of modulus of elasticity of GFRP bars (ranged 35-65 GPa), using different resin types 

in the diverse producing processes, diversity of test setup configurations, the error in 

measuring slip during the pullout test among other aspects that can affect the results, can be 

named as the reasons of this fact. As an example, in almost all pullout tests, it is difficult to 

measure the loaded end slip of internal reinforcing bar exactly at the beginning of the 

embedded length due to the distance of this point from the concrete surface. For this reason, 

the slip measuring device (e.g. LVDT: Linear Variable Differential Transformer) is normally 

installed with a prescribed distance from the loaded end section. Thus, the total recorded slip 

needs to be corrected by subtracting the elastic elongation of the bar along this distance, 

which can be a significant value for GFRP bars whose the young’s modulus are lower than 

steel. In the pullout tests that carried out by Okelo and Yuan 2005, the slip was measured 

according to this procedure. However, the other authors did not correct the value of slip, or 

at least they did not mention in their work. 

In addition to the scatter data in Figure 2-4, two lines have been plotted. The sold line is 
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based on the minimum ratio /m m   that covers all the results of steel bars, and the dashed-

line is with the same concept but for GFRP bars. The ratio of the slope of these two lines 

closely represents the ratio between the Young’s modulus of steel and GFRP bars. This 

modular ratio may represent the ratio between the bond stiffness of GFRP bar and steel bar 

for the same level of bond shear strength. 

 
Figure 2-4 Bond shear strength versus the corresponding slip for all GFRP bar's surface type 

and conventional ribbed steel bars based on the data from the literature 

2.2.2.3 Effect of concrete compressive strength 

Based on the results of pullout test in the studies carried out by Lee et al. (2008) and by 

Baena et al. (2009), the bond strength of GFRP bars increased when the concrete 

compressive strength (i.e. cf  ) increased. This is the same as found for conventional steel 

bars. In Figure 2-5, the experimental results of pullout test in terms of bond shear strength 

versus the concrete strength is plotted.  

The following equation is recommended by ACI 440.1R-06 for estimation of bond 

strength of FRP bars, which is function of cf  : 
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b e
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 (2-3) 

where C  is the concrete cover thickness. A comparison between the pullout test results and 

the predictions given by ACI is also depicted in Figure 2-5 for the embedded length of 5 b  

and concrete cover thickness of 3 b . As shown in Figure 2-5, the design equation by ACI 
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estimates reasonably the bond shear strength results in the tests for different GFRP bar type 

in terms of surface treatment and bar diameter. For having more precise result, a care should 

be taken to include the effect of FPR bar’s external surface in this equation. 

 
Figure 2-5: Effect of concrete compressive strength on bond shear strength of GFRP bars 

2.2.2.4 Effect of embedded length 

A small embedment length of 4 to 6 time of bar diameter was usually considered in most 

of the pullout test carried out and found in the literature (data can be found in Table 2-2, 

Table 2-3, and Table 2-4). When the bond shear strength is calculated by Eq. (2-1), the value 

decreases by increasing in the embedded length, which is regardless of the type of 

reinforcement and concrete compressive strength. This effect is shown in Figure 2-6 for 

some results of the pullout in the literature whose values are included in the mentioned tables. 

More discussion will be given in regards to this effect in the next chapter, where the bond 

behavior of GFRP bars utilized in the present study is extensively investigated. 

 
Figure 2-6: Effect of embedded length of FRP bars on the bond shear strength 
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2.3 GFRP-RC beams 

During the last two decades, many attempts have been done to evaluate the structural 

performance of FRP reinforced concrete structures (Benmokrane et al. 1996, Almusallam 

1997, Theriault and Benmokrane 1998, Aiello and Ombres 2000, Alsayed et al. 2000, Pecce 

et al. 2000, Toutanji and Saafi 2000, Abdalla 2002, Toutanji and Deng 2003, Rasheed et al. 

2004, Tavares et al. 2008, Barris et al. 2009). Since the present work will purpose the use 

GFRP bars as internal reinforcing bars for beam members, a brief review is given in this 

section on structural performance of GFRP-RC beams. Due to the lower modulus of 

elasticity and inferior bond strength of GFRP bars comparing with steel bars, it is expected 

that the requirements in terms of serviceability limit states (such as service deflection and 

crack width at service loads) becomes the design criterion for GFRP-RC beams. 

Additionally, due to the lack of yielding phase for GFRP reinforcing bars, their failure mode 

becomes an important issue in terms of ductility. 

Benmokrane et al. (1996) carried out two series of experimental tests on the evaluation 

of the flexural performance of GFRP-RC beams as well as conventional steel RC beams. 

The beams were 3300 mm long with the same reinforcement ratio for both GFRP and steel 

bars, but different rectangular cross-sections of 200×300 mm2 for series S1, and 

200×550 mm2 for series S2. The GFRP-RC beams were over-reinforced for the series S1 of 

tests and under-reinforced for the S2, while steel RC beams were under-reinforced for both 

series. The details regarding to the specimens and test setup are written in Table 2-6. 

Figure 2-7 shows the load-deflection history of the tested beams. Typical respond of GFRP-

RC beams against steel-RC beams can be observed from this figure. For the same level of 

load carrying capacity, much higher deformation was obtained for GFRP-RC beams. As 

shown, ACI formulations were used to predict the force-deflection response of steel RC 

beams, overestimates the force-deflection response of GFRP-RCs due the nature of GFRP 

bars that exhibited larger deformation than steel bars. Moreover, based on the cracking 

pattern of the tested beams, they reported that the average cracking space for GFRP-RCs at 

low loading level (25% of ultimate) was similar to the steel-RC beams for both series of the 
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tests. But for higher level of applied load, the lower average cracking space and wider crack 

were observed for the GFRP-RCs rather than the steel RC beams. 

Table 2-6: Details of specimens and the measured ductility index for the tested GFRP RC 
beams in literature 

Beam 
ID 

Section size 
Span 

(shear span) cf   

Longitudinal reinforcement 

Quantity type 
Tensile strength 

(yielding) 
Modulus  

of elasticity 
ρ * 

(mm×mm) (mm) (MPa)   (MPa) (GPa) (%) 

Benmokrane et al. 1996 

Se
ri

es
 S

1
 ISO1 

300x200 

3300 
(1000) 

43 2Ø20 

GFRP 
640 (-) 40 

1.10 
ISO2 GFRP 

ST1 Steel 
600 (480) 200 

ST2 Steel 

Se
ri

es
 S

2
 ISO3 

550x200 

GFRP 
640 (-) 40 

0.56 
ISO4 GFRP 

ST3 Steel 600 
(480) 

200 
ST4 Steel 

Alsayed 1998 

Series A 210x200 

2700 
(100) 

31 

3Ø14 Steel - (553) 200 0.68 

Series B 210x200 4Ø19 GFRP 700 50 1.34 

Series C 260x200 4Ø12.7 GFRP 886 50 0.64 

Series D 250x200 41 4Ø19 GFRP 700 50 0.90 

Masmousdi et al. 1998 

S1
 

CB2B-1 

300x200 
3000 
(500) 

52 

2Ø14 
GFRP 773 (-) 38 

0.56 

CB2B-2 52 0.56 

ST2B 46 Steel 600 (480) 200 0.42 

S2
 CB3B-1 52 

3Ø14 GFRP 

773 (-) 38 

0.91 

CBSB-2 52 0.91 

S3
 CB4B-1 45 

4Ø14 GFRP 
1.38 

CB4B-2 45 1.38 

S4
 

CB6B-1 45 

6Ø14 
GFRP 

2.15 

CB6B-2 45 2.15 

ST6B 46 Steel 600 (480) 200 2.00 

Toutanji et al. 2003 

1 GB1-1 

300x180 
2800 
(400) 

35 

2Ø12.7 

GFRP 695 (-) 40 

0.52 

 GB1-2 0.52 

2 GB2-1 
3Ø12.7 

0.79 

 GB2-2 0.79 

3 GB3-1 
4Ø12.7 

1.1 

 GB3-2 1.1 

Barris et al. 2009 

C-212-D1 

190x140 

1800 
(600) 

59.8 2Ø12 

GFRP 

1353 (-) 63 0.99 

C-216-D1 56.3 2Ø16 995 (-) 64 1.78 

C-316-D1 55.2 3Ø16 995 (-) 64 2.67 

C-212-D2 

190x160 

39.6 2Ø12 1353 (-) 63 0.99 

C-216-D2 61.7 2Ø16 995 (-) 64 1.78 

C-316-D2 60.1 3Ø16 995 (-) 64 2.67 

* Reinforcement ratio 
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Figure 2-7: Typical load-deflection history of tested beams carried out by 

Benmokrane et al. (1996): (a) series S1 and (b) series S2 

Alsayed (1998) carried out a total of 12 beams divided in four main groups, being each 

group composed of three identical beam specimens. The specimen details of these series of 

beam tests are included in Table 2-6. The force-deflection response of the tested beams are 

shown in Figure 2-8 for the four series of the beams. Alsayed (1998) concluded that for 

GFRP-RC beams that were designed to be failed by crushing of concrete in compression 

zone (i.e. over-reinforced beams), the deflection at service load may be the design criterion. 

Based on the obtained results, the authors also reported that for the same ultimate flexural 

capacity of GFRP-RC and steel-RC beams, the average measured deflection of the GFRP-

RC beams is about 2 times higher than the one obtained in the beams reinforced by steel 

bars. 

Masmoudi et al. (1998) carried out a series of 3000 mm long span beams reinforced by 

GFRP bars and steel bars. The tested GFRP-RC beams were all over-reinforced in order to 

have failure mode in concrete compression zone. The corresponding details about the 

specimens are found in Table 2-6. Their study was focused more on cracking and deflection 

behavior of the tested beams. The typical cracking pattern of GFRP-RC and steel-RC 

obtained from their study for the same reinforcement ratio is shown in Figure 2-9. As they 

concluded, average crack spacing for GFRP-RC beams was similar to the corresponding 

beams reinforced with steel bars at low level of loading (about 25% of ultimate loading 

capacity). However, at moderate and high loading, as shown in Figure 2-9, the average crack 

spacing was less for the GFRP-RC beams than the steel-RC beams. This result was in 
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agreement with the work carried out by the previous authors (Benmokrane et al. 1996 and 

Alsayed 1998). The authors also reported that the effect of the reinforcement ratio on the 

crack spacing is negligible. The results in terms of moment versus crack width are plotted in 

Figure 2-10. The maximum observed crack width in the GFRP-RC beams were three to five 

times higher than the observed values in the steel-RC beams. Further, the maximum crack 

width deceased by increasing FRP reinforcement ratio for the same level of applied moment. 

The authors suggested that the crack width limitation recommended by ACI committee 318 

and Canadian code for conventional reinforced concrete should be modified since the 

corrosion does not exist for GFRP bars. They also stated that the crack width can be 

controlled for reason of undesirable appearance. 

 
Figure 2-8: Force-deflection response of the tested beams by Alsayed (1998) 
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Figure 2-9: Typical cracking pattern of reinforced beams at (a)(c) moderate 50% and (b)(d) 

high 90% level of loading (Masmoudi et al. 1998) 

 
Figure 2-10: Moment versus crack width for the tested beams by Masmoudi et al. (1998) 

An extensive number of concrete beam specimens were tested by Theriault and 

Benmokrane (1998) to evaluate the flexural behavior of GFRP bars as internal 

reinforcement. They obtained similar results to ones obtained by the previous authors. They 

have also showed that the existing formulations in the available codes for steel reinforced 

concrete beams in terms of both serviceability limit state (SLS) and ultimate limit state 

(ULS) had to be modified in order to be applied for GFRP-RC beams. 

In 2000, several GFRP-RC beams were tested by Alsayed et al. and Houssam et al. Their 

main purpose was to recommend some modifications to the currently used ACI 318 model 
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for computing flexural strength, service load defection, and the minimum reinforcement 

required to be used for case of GFRP-RCs. Alsayed et al. (2000) suggested a model to 

estimate the minimum required reinforcement ratio for GFRP-RC beams in order to avoid 

the possibility of a catastrophic failure of GFRP bars. This minimum reinforcement ratio 

was calculated based on a safety factor of 1.5 for GFRP bar, meaning that the ultimate tensile 

strain of GFRP was set to 67% of the corresponding nominal value.  

In 2001, the first version of ACI code by committee 440 as title of “Guide for the design 

and construction of concrete reinforced with FRP bars” was published. So far, it has been 

updated twice, once in 2006 and another recently in 2012. Afterward, many other countries 

have published the codes and guidelines for FRP reinforced concrete members, namely: The 

International Federation for Structural Concrete (CEB-FIB), Canadian Standard Association 

(CSA), and Japan Society of Civil Engineers (JSCE). After 2001, the purpose of most of the 

research studies was to verify the effectiveness of different parameters on the reliability of 

the equations and design formulations that have been recommended by the aforementioned 

codes and guidelines. As example, Toutanji and Deng (2003) carried out a series of six 

GFRP-RC beams in order to verify the effectiveness of high reinforcement ratio on the load-

deflection and crack width prediction provided by ACI 440. Their main focus was to evaluate 

the effects when the reinforcements are arranged in two layers in the section. Figure 2-11 

compares the experimental trends of moment versus crack width and moment versus 

deflection at mid span with those values predicted by ACI 440. In this figure, the three sets 

of GFRP-RC beams named GB1, GB2 and GB3 with reinforcement ratios of 0.52, 0.79 and 

1.2%, respectively, are depicted (the specimens and test setup details can be found in 

Table 2-6). Note that for GB3, GFRP bars were installed in two layers. According to the 

conclusions derived by their study, for GFRP bars placed in one layer, ACI 440 equations 

accurately estimate the crack width, however, this code underestimated for the third series 

of beams (i.e. GB3), where the GFRP bars were arranged in two layers. 

Barris et al. (2009) carried out a set of GFRP-RC beams with ribbed GFRP bar that have 

a relatively high modulus of elasticity (about 64 GPa) comparing to other GFRP types. The 
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main aim of their study was to evaluate the short-term flexural behavior, and to compare 

with the predictions recommended by different design codes. Based on the results obtained 

from the tested beams, they concluded that the code formulations and some available models 

predicted well the behavior up to service load (see Figure 2-12). However, at the ultimate 

limit state, load capacity was underestimated. Note that the reinforcement ratio and depth-

to-height ratio of the tested beams were the main variables (specimen details are given in 

Table 2-6). 

 
Figure 2-11: Comparison between the experimental trends and those predicted by ACI 440: 

moment versus (a) mid span deflection and (b) crack width (Toutanji and Deng 2003); 

 
Figure 2-12: Load versus mid span deflection up to service load for the GFRP-RC beams tested 

by Barris et al. (2009), and the comparison with the theoretical trends 

2.4 FRP-FRC beams 

Many studies have been allocated to the evaluation of the structural performance of FRP-
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RC structures (mostly flexural members) during the last two decades. Furthermore, there are 

several codes and guidelines that have been already published in regards to concrete member 

reinforced by FRP bars, which shows the success of this type of application in construction 

industry. USA, Canada, Switzerland and Germany are the countries that they are widely 

using FRP bars in bridge decks and roads owing to the seasonal use of de-icing salts which 

causes the corrosion of traditional steel reinforcement when is used. Meanwhile, some 

concrete structures require non-metallic material as the constituent, such as the Magnetic 

Resonance Imaging (MRI) rooms in hospitals or research laboratories, as well as the roads 

and bridge decks near electronic toll plazas. In all these applications, FRP bars are good 

substitutions for the conventional steel bars in RC structures (Lau and Pam 2010). But, 

unfortunately, FRP bars are brittle materials, a weakness that decreases the ductility of FRP 

concrete member comparing to conventional steel RCs. This weakness may limit the use of 

FRP bars in many other civil works. For this reason, some trials have been already done in 

the literature in order to improve the ductility of FRP-RCs. These trials can be categorized 

as follow: 

i. Using hybrid FRP reinforcing bars: the first idea of improving the ductility of 

FRP concrete members was to use hybrid FRP rebars. This ductile bars are 

fabricated by combining two or more FRP bars in order to have similar elasto-

plastic behavior of steel bars (See Figure 2-13 for schematic view of this 

composition). Harris et al. (1998) carried out a group of concrete beam specimens 

reinforced with this type of hybrid FRP bars. The hybrid FRP bar showed some 

success in their study, however, complicated and costly manufacturing process 

resulted in limited practical applications; 

ii. Improving concrete properties: FRP reinforced structure are usually over-

reinforced to be failed in crushing of concrete. Therefore, the ductility of FRP-

RCs depends on concrete properties. Hence, improving the concrete properties 

may lead to ductility improvement. One way to improve concrete properties is to 

add discrete fibers into concrete mix, i.e. using Fiber Reinforced Concrete (FRC) 
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instead of plain concrete. A quick review on some already carried out studies in 

this topic is presented in the present section; 

iii. Using hybrid FRP and Steel bars: one of the other trials in literature to improve 

the ductility and structural performance of FRP-RCs is the use of hybrid FRP and 

steel bars in concrete sections. A quick review on literature in this technique is 

described in the next section. 

 

Figure 2-13: Schematic composition of ductile hybrid FRP rebar (Harris et al. 1998) 

Ductility of conventional reinforced structures by steel bars is defined by the ratio of 

post-yield deformation to yield deformation according to yielding phase of steel bars. 

However, this definition cannot be directly extended to FRP-RCs due to the lake of yielding 

phase in the behavior of FRP materials. Energy-based approach and deformation-based 

approach are two widely used methods that are defined in literature to measure the ductility 

index of FRP-RCs (Alsayed and Alhozaimy 1999, Wang and Belarbi 2011). According to 

the Energy-based approach, the ductility is defined as ratio between the total absorbed 

energy ( totalE ) to the elastic energy ( elasticE ). The total energy is simply estimated by 

measuring the area under the load-deflection response of the FRP-RCs. Figure 2-14 shows 

measurement of the elastic energy based on the method presented by Naaman and Jeong 

1995. As shown, the definition of elastic energy depends on the definition of the points of 

Pfailure, P1, and P2 (as defined in Figure 2-14). Naaman and Jeong 1995 proposed the 

following equation for the ductility index: 
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Figure 2-14: Definition of the elastic energy to calculate the ductility index based on the 

energy-based approach (Wang and Belarbi 2011) 

For the deformation-based approach, which was firstly proposed by Jaejer et al. (1997), 

the ductility index is presented by measuring deformability margin between the ultimate 

stage and the service stage taking into account the strength effect ( sC ) as well as the 

deflection effect ( dC ). Note that the deflection can be replaced by curvature for flexural 

members. Jaejer et al. (1997) proposed the service stage being correspond to the compressive 

strain value of 0.001 for concrete in FRP-RCs, which defines the beginning of inelastic 

deformation in concrete in compression. Ultimate stage is also defined as the failing point 

of the member. Therefore, the ductility index based on the deformation-based approach is 

calculated by  

 s dC C    (2-5) 

being sC and dC  calculated by  

 ,u u
s d

SLS SLS

M
C C

M


 


 (2-6) 

where uM  and u  are, respectively, the moment and deflection at ultimate. Further, the 

parameters SLSM  and SLS  are, respectively, the moment and deflection corresponding to 

serviceability limit state. 
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Alsayed and Alhozaimy (1999) presented the results of nine FRC concrete beams 

reinforced by GFRP bars to assess the ductility improvements of the beams due to the 

addition of discrete fibers. The beams were 2500 mm long with cross-section of 

200×210 mm2, which were subjected to 4-point test setup configuration. They added two 

types of hooked and crimped steel fibers to their concrete mix. In addition to that, three 

reference beams with no fibers were tested. Further, the beams were all over reinforced in 

order to be failed by concrete crushing as it is often suggested for FRP-RCs. Table 2-7 

includes the details of these tested beam specimens. The obtained results in terms of the 

applied load versus deflection at mid span are plotted in Figure 2-15. Moreover, the 

calculated ductility index in accordance with the energy-based approach is included in 

the last column of Table 2-7. Note that the failure point was assumed as the point where the 

applied load drops 80% of its ultimate capacity. Also, the elastic energy was calculated 

assuming 75% of total area under the load-deflection curve up to the point of maximum load. 

The results indicate that the ductility index is directly related to the volume fraction of steel 

fibers. The ductility of Group D beams was about 2 times of the reference beams of the first 

series (Group B) and for Group F with hooked steel fibers was about 3 times of Group E. 

Based on these results, they concluded that adding steel fibers to concrete is one of the 

possible methods to improve the ductility of GFRP-RC beams. 

 
Figure 2-15: Load versus deflection for the tested beams by Alsayed and Alhozaimy (1999) 
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Table 2-7: Details of the specimens and the measured ductility index for FRP-FRC RC beams 
in literature 

Beam 
ID 

h b  

(mm×mm) 

Span * 
(mm) 

cf   

(MPa) 

Longitudinal 
reinforcement 

Fiber** Ductility 
index 
  

Quantity Type Vf (%) Type 

Alsayed and Alhozaimy 1999 

A 

B 

C 

D 

E 

F 

200×210 
2700 
(200) 

41.42 

41.42 

42.16 

43.24 

35.90 

36.66 

3Ø14 

3Ø16 

3Ø16 

3Ø16 

3Ø19 

3Ø19 

Steel 

GFRP 

GFRP 

GFRP 

GFRP 

GFRP 

0.0 

0.0 

0.5 

1.0 

0.0 

1.0 

- 

- 

ST-C 

ST-C 

- 

ST-H 

5.37 

2.19 

2.90 

4.50 

2.37 

6.96 

Wang and Belarbi 2011 

P4G 

178×229 
1829 
(-) 

48 5Ø13 GFRP 0.0 - 6.05 

P8G 48 2Ø25 GFRP 0.0 - 7.04 

P4C 48 2Ø13 CFRP 0.0 - 5.50 

F4G 30 5Ø13 GFRP 0.5 PP 8.94 

F8G 30 2Ø25 GFRP 0.5 PP 7.56 

F4C 30 2Ø13 CFRP 0.5 PP 8.35 

Issa et al. 2011 

NO 

150×150 
1500 
(450) 

22.93 

3Ø12 GFRP 

0.0 - 3.6 

HO 52.98 0.0 - 5.9 

NP 31.58 0.5 PP 6.0 

HP 51.42 0.5 PP 8.7 

NG 24.88 0.5 GF 7.7 

HG 43.62 0.5 GF 11.3 

NS 18.38 0.5 ST-H 13.6 

Yang et al. 2012 

CC 

230×250 
1900 
(300) 

75.9 4Ø9 CFRP 0.0 - 1.84 

CC-SN 89.3 4Ø9 CFRP 2.0 SN 1.64 

CC-ST 104.4 4Ø9 CFRP 1.0 ST 1.84 

GG 75.9 6Ø13 GFRP 0.0 - 1.92 

GG-SN 89.3 6Ø13 GFRP 2.0 SN 3.24 

GG-ST 104.4 6Ø13 GFRP 1.0 ST-H 3.43 

* The value inside the parenthesis is the distance of the loading points; ** Vf is volume friction of fibers in the concrete mix; ST-
C: Crimped steel fibers; ST-H: Hooked steel fibers; GF: Glass fibers; SN: synthetic fibers; PP: Polypropylene fibers. 

Wang and Belarbi (2011) carried out two groups of tests on RC beams specimens. In the 

first group, they used plain concrete beam reinforced by FRP bars including GFRP and 

CFRP. For the second group, the plain concrete was replaced by FRC where the 

polypropylene fibers of 57 mm length were added to the concrete mix. The identification of 

the specimens are included in Table 2-7. The applied load versus mid span deflection of their 
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tested beams are shown in Figure 2-16 for the beams reinforced by GFRP bars only. They 

concluded that the various aspects of structural behavior of GFRP reinforced concrete beams 

can be improved by using FRC instead of plain concrete. Based on the obtained results, the 

crack widths of FRC beams were smaller than plain concrete beam, especially at service 

loads. The amount of decrease in the measured values of crack width for the specimens in 

this study are included in Table 2-8. Furthermore, the ultimate concrete strains measured in 

the FRC beams were larger than the plain concrete beams. Therefore, for design purpose, 

they recommended to increase the design value of the ultimate concrete strain to take 

advantage of using discrete fibers in the concrete mix. Based on the deformation-based 

approach, they showed that the ductility index increased by more than 30% by adding 

polypropylene fibers to concrete mix. 

 
Figure 2-16: Load versus deflection for the tested beams by Wang and Belarbi (2011) 

Table 2-8: Comparison of crack width between FRC and plain concrete FRP reinforced beams 
at service loads (Wang and Belarbi 2011) 

Specimens ID P4C P4G P8G F4C F4G F8G 

Crack width (mm) 0.60 0.49 0.45 0.54 0.41 0.36 

% decrease relative to respective plain concrete - - - 10% 16% 20% 

Note: the values are average of two beams 

Issa et al. (2011) carried out a research study with the purpose of evaluating the flexural 

behavior and ductility of concrete beams reinforced by GFRP bar as longitudinal 

reinforcement and different types of discrete fibers in concrete mixes. They tested four 

groups of beams in which the first one was the reference beams with no fibers and the rests 

included concrete mix that was reinforced by polypropylene fibers, glass fibers and hooked 
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steel fibers. The details of the tested specimens are summarized in Table 2-7. Figure 2-17 

shows the load versus mid span deflection curves of the tested beams. Based on the ductility 

index calculated and reported by Issa et al. (2011) (see the last column Table 2-7), a high 

ductility improvement was obtained for the FRC beams comparing with those plain concrete 

RC beams. According to the results from this study, the FRC beams with hooked steel fibers 

attained the highest ductility increment of about 277.8%. Note that the ductility index was 

computed based on the energy-based approach, in which the ductility index was defined as 

the ratio between the energy absorption at the ultimate load (area under load–deflection 

curve up to ultimate load) and the energy absorption at the service load taking the deflection 

limit value of beam span dividing by 180 (Issa et al. 2011). Similar to what was obtained 

from the previous researches, they also reported significant structural improvement in terms 

of value of crack width at service loads and the higher concrete compressive strain at ultimate 

strength, which was reflected in the ductility improvement. 

 
Figure 2-17: Load versus deflection for the tested beams by Issa et al. (2011) 

Finally, an experimental test program of six high-strength concrete beams were recently 

carried out by Yang et al. (2012) where three of them reinforced by GFRP bars and the other 

three by CFPR bars. For each series, one beam was considered as reference beam with no 

fiber in concrete mix, the second reinforced by discrete polypropylene fibers, and the third 

by hooked steel fibers. Details of these specimens are given in Table 2-7. Experimental load-

deflection curves of mid span section for all tested beam are plotted in Figure 2-18. As the 
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obtained results, the following conclusion were derived: 

 
Figure 2-18: Load versus deflection for the tested beams by Yang et al. (2012) 

i. The addition of discrete fibers in concrete mix delayed the crack initiation and 

also decreased the crack widths at service loads. This can be observed by 

comparing the results in terms of the applied load versus maximum crack, which 

is shown in Figure 2-19; 

 
Figure 2-19: Load versus maximum crack width for the tested beams by Yang et al. (2012) 

ii. Although the tested FRC beams reinforced by CFRP bars were over-reinforced 

to be failed by concrete crushing, the beams were failed by CFRP bar rupturing 

due to the increased concrete compressive strain at ultimate load. Also, the 

increased ultimate compressive strain of FRC in the GFRP-RC beams increased 

the ultimate flexural strength of these beams. This can be observed from the 

results plotted in Figure 2-18; 

iii. The ductility indexes of GFRP beams, which were calculated in accordance with 

Eq. (2-4), with steel and synthetic fibers were, respectively, about 70% and 80% 
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higher than the ductility index of GFRP beam with no fibers. The values of the 

ductility indexes are also included in Table 2-7. 

2.5 Hybrid FRP-steel RC beams 

Combining FRP and steel bars as internal reinforcing bars for concrete is one of the way 

to improve the structural performance of FRP-RCs. Since the first idea of using FRP 

materials was to increase the durability of RCs, a question might be raised that why again 

using steel bars? 

In hybrid FRP-steel reinforcing system introduced in literature (e.g. Aiello and Ombres 

2002), steel bars are contributed to only improve the structural performance such as 

deformability and ductility of FRP-RCs mainly up to the service loading stage. Therefore, 

in this hybrid system, the steel bars will be placed in the inner layers of concrete section to 

avoid the development of corrosion of such reinforcement, and FRP bars will be placed to 

the near concrete tensile surface. Hence, FRP bars are responsible to take up the strength and 

the steel bars are designed only to increase the minimum serviceability requirements of FRP-

RCs as well as improving the ductility. In this section, a brief review of literature on concrete 

beams that have been reinforced in flexural by this hybrid system are described. Before that, 

a brief description is given about the definition of the balanced reinforcement ratio in hybrid 

system (i.e. hb ). 

For steel-RC beam, the balanced steel reinforcement ratio (i.e. sb ) is defined as a 

condition that the beam fails by crushing of concrete in compression and yielding of steel in 

tension simultaneously. For FRP-RC beam, the balanced FRP reinforcement ratio ( fb ) is a 

condition that the beam fails by the crushing of concrete in compression and the tensile 

rupture of FRP bar simultaneously. When FRP and steel bars are combined in a concrete 

section, the balanced reinforcement ratio for a hybrid FRP-steel RC beam, hb , can be 

defined as a failure condition that crushing of concrete, yielding of steel and tensile rupture 

of FRP occur simultaneously. But, this failing scenario is almost impractical due to the large 

difference between tensile strain of FRP at rupturing and tensile strain of steel at yielding. 



Page | 32 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

That means, steel bars would have been yielded long before the FRP bars break (Lau and 

Pam 2010). Hence, in the structural behavior of hybrid GFRP and steel reinforced FRC 

prestressed beams in literature, the balanced reinforcement ratio defined for hybrid FRP-

steel reinforced beams is a condition that concrete crushing in compression and tensile 

rupturing of FRP bars occur at the same time while the steel bars have already yielded. From 

this standpoint, the proposed balanced reinforcement ratio by ACI 440.1R-06 for case of 

FRP-RC beams can be also adopted for hybrid FRP-steel RC beam (Lau and Pam 2010): 

 10.85 c f c
hb fb

fu f c fu

f E

f E f

 
    

 
 (2-7) 

where 1  is ratio between the depth of equivalent rectangular concrete stress block and the 

neutral axis depth, 0.003c
   extreme fiber concrete compressive strain in conjunction with 

cf  . The parameters fE  and fuf  are, respectively, Young’s modulus and ultimate tensile 

stress of FRP bars. In order to consider the effect by the presence of steel reinforcements, 

the effective reinforcement ratio of hybrid FRP-steel RC beam is defined as follow: 

 ,f eq f sm     (2-8) 

where f  and s  are, respectively, FRP reinforcement ratio and steel reinforcement ratio. 

The parameter m  is defined by (Lau and Pam 2010) 

 y
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f
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f
  (2-9) 

where yf  is yielding stress of steel bar. 

Aiello and Ombres (2002) carried out an experimental program comprising three groups 

of concrete beams in order to evaluate the flexural behavior of the hybrid system. The first 

group (Group A) included hybrid AFRP/steel RC beams, the second group (Group B) 

included two reference beams where one reinforced only by steel bars and another by AFRP 

(Aramid FRP) bars. The last group of beams (Group C) was a hybrid FRP/steel RC beam 

where the steel and AFRP bars were placed at the same level in the concrete section. The 

last group was only carried out in order to analyze the influence of the cover thickness on 

the structural performances of the beams (Aiello and Ombres 2002). The details of these 
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three groups of beams are summarized in Table 2-9. Based on the obtained results from their 

study, the two following conclusion can be derived: 

i. Based on the load-deflection and moment-curvature responses of the tested 

beams (shown in Figure 2-20), the hybrid reinforcing system including AFRP 

and steel bars showed a significant improvements in terms of beams’ 

deformability under service load conditions. However, since the FRP-RC beams 

were over-reinforced, the contribution of steel bars to increase the flexural 

capacity was less than 15% (see specimens A1 and B2 in Figure 2-20); 

 
Figure 2-20: Load versus deflection and moment versus curvature relationships of tested 

beams by Aiello and Ombres (2002) 

ii. Decrease in the measured value of crack width for the hybrid reinforced beams 

comparing to the FRP-RC beam. In Figure 2-21, the comparison among the result 

of tested beams in terms of applied force versus maximum crack width and crack 

spacing is given. 

 
Figure 2-21: Load versus maximum crack width and load versus crack spacing relationship of 

tested beams by Aiello and Ombres (2002) 
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Leung and Balendran (2003) carried out an experimental program of seven beam 

specimens. The tests were conducted in form of two main groups (L and H). For the first 

group, a design value of 30 MPa for concrete strength and for the second group, value of 

50 MPa was considered. In each group of tests, one GFRP-RC beam (indicated by L1 and 

H1) and two hybrid GFRP/steel RC beams (indicated by L2, L5, H2 and H5) were tested. In 

addition to that, one steel RC beam was tested as reference beam of the first group (named 

L0). More details of the tested beams are reported in Table 2-9. The load-deflection response 

of all tested beams by Leung and Balendran (2003) are shown in Figure 2-22. By comparing 

the beams L1 and L2, as well as H1 and H2, the significant increasing in load carrying 

capacity for hybrid system at service stage (i.e. L2 and H2) was obtained. As it was observed, 

the failing point of beams L2 and L5 were in the same level of mid-span deflection of L1. 

However, for series H where the higher concrete strength was used, the failing point of beam 

H2 and H5 occurred at the greater value of mid span deflection rather than H1. This means 

that the ductility improvement of the hybrid beams in group H was much greater than those 

from group L. Based on the results of group L, the initial stiffness of the hybrid reinforced 

beams were similar to the beam L0 (with no FRP bars). Leung and Balendran (2003) did not 

measure the improvement in terms of crack width. Additionally, they reported that the 

ductility improvement of hybrid GFRP/steel RC beams were much pronounced when high 

concrete strength level was used. This may attributed to the fact that the bond behavior of 

GFRP bars are also improved when higher strength concrete is utilized. 

 
Figure 2-22: Load versus deflection for the tested beams by Leung and Balendran (2003) 
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Qu et al. (2009) carried out eight concrete beams including two control beams reinforced 

with only steel or only GFRP bars (named B1 and B2), and six beams reinforced by hybrid 

GFRP-steel bars (named B3 to B8). The reinforcement ratio and the ratio of GFRP to steel 

were the main parameters that the authors investigated (Qu et al. 2009). Table 2-9 includes 

the details of the tested beams by these researchers. The experimental load-deflection curve 

of all tested beams are plotted in Figure 2-23. Based on the obtained results, the following 

conclusions were derived: 

i. The axial stiffness ratio between GFRP and steel bars had little influence on 

ultimate flexural capacity. The balanced effective reinforcement ratio, which 

were reported in Table 2-9, could be used as a criterion to predict the failure mode 

for hybrid FRP-steel RC beams. All the hybrid beams were failed in concrete 

crushing as it was designed, since the effective reinforcement ratio for all of them 

was greater than the calculated balanced reinforcement ratio; 

ii. The steel bars increased the ductility of hybrid GFRP-steel RC beams. Also, an 

increase in the reinforcement ratio of steel bars increased the initial stiffness of 

the load-deflection respond of the hybrid beams; 

iii. The values of crack width measured for the hybrid beams showed significant 

decrease comparing to the GFRP-RC beam. 

Finally, Lau and Pam (2010) carried out a total of 12 concrete beam specimens reinforced 

by steel bars, GFRP bars, hybrid GFRP-steel bars and with no reinforcements (plain 

concrete). They had three main investigation purposes including:  

 Flexural strength and ductility improvement of hybrid system; 

 Minimum content of flexural FRP bar; 

 Effects of 90°and135°hook angle in stirrups. 

For their purpose, they divided the beams in four main groups (A, B, C and D) where the 

tested beams in Group A and B were designed for investigating the flexural and ductility 

improvements of the hybrid GFRP-steel RC beams. Hence, the results of these two groups 

are only discussed. The main difference of these two groups was in the reinforcement ratio 



Page | 36 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

in which the Group A included balanced-reinforced GFRP-RC beams, and Group B included 

over-reinforced GFRP-RC beams. The details of the tested beams in Group A and B are 

included in Table 2-9. Additionally, the measured force-deflection curve at mid-span of the 

tested beam of group A and B are shown in Figure 2-24. As it is observed from this figure 

and also similar to what resulted by the previous authors, adding steel bars to GFRP-RC 

beams enhances the initial stiffness of the load-deflection curves as well as the ductility of 

GFRP-RC beams. 

 
Figure 2-23: Load versus mid span deflection for tested beams by Qu et al. (2009) 

 

 
Figure 2-24: Load versus mid span deflection of the tested beams by Lau and Pam (2010) 
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Table 2-9: Details of the specimens and the measured ductility index for the hybrid FRP and 
steel reinforced concrete beams in the literature 

Beam ID h b  
(mm2) 

Span 
(mm) 

cf   

(MPa) 

Longitudinal reinforcements 

b * 

(%) 

,f eq ** 

(%) 

 
  

(-) FRP f  

(%) 
fd  

 (mm) 
Steel s  

(%) 
sd

(mm) 

Aiello and Ombres 2002 

A1 

200×150 
2700 
(1000) 

45.70 
 

2Ø7.5 0.34 175 2Ø8 0.45 150 0.14 0.47 10.39 

A2 2Ø10 0.60 175 2Ø8 0.45 150 0.21 0.75 7.53 

A3 3Ø10 0.90 175 2Ø12 1.00 150 0.21 1.24 3.95 

B1 - - - 2Ø12 0.86 175 3.56 0.86 - 

B2 2Ø7.5 0.34 175 - - - 0.14 0.34 16.21 

C1 2Ø7.5 0.34 175 2Ø8 0.39 175 0.14 0.45 6.99 

Leung and Balendran 2003 

L0 

200×150 
2200 
(800) 

28.50 

- - - 2Ø10 0.81 130 2.84 0.81 - 

L1 2Ø9.5 0.59 160 - - - 0.45 0.59 - 

L2 2Ø9.5 0.59 160 2Ø10 0.81 130 0.45 0.99 - 

L5 3Ø9.5 0.89 160 2Ø10 0.81 130 0.45 1.29 - 

H1 

48.50 

2Ø9.5 0.59 160 - - - 0.63 0.59 - 

H2 2Ø9.5 0.59 160 2Ø10 0.81 130 0.63 0.99 - 

H5 3Ø9.5 0.89 160 2Ø10 0.81 130 0.63 1.29 - 

Qu et al. 2009 

B1 

250×180 
1800 
(600) 

31.00 

- - - 4Ø12 1.14 220 3.23 1.14 - 

B2 4Ø12.7 1.28 220 - - - 0.40 1.28 - 

B3 2Ø12.7 0.64 220 2Ø12 0.57 220 0.40 0.90 - 

B4 2Ø15.9 1.00 220 1Ø16 0.51 220 0.39 1.27 - 

B5 2Ø9.5 0.36 220 2Ø16 1.02 220 0.34 0.80 - 

B6 2Ø12.7 0.64 220 2Ø16 1.02 220 0.40 1.08 - 

B7 2Ø9.5 0.36 220 1Ø12 0.28 220 0.34 0.49 - 

B8 2Ø15.9 1.00 220 6Ø16 3.35 200 0.39 2.49 - 

Lau and Pam 2010 

Group A             

MD1.3-A90 

380×280 
4200 
(0) 

- - - - 4Ø20 1.31 345 4.71 1.31 - 

G0.8-A90 36.6 4Ø16 0.83 350 - - - 0.75 0.83 - 

G0.3-MD1.0-A90 41.3 1Ø19 0.30 345 2Ø25 1.03 345 0.85 0.89 - 

Group B             

MD2.1-A90 

380×280 
4200 
(0) 

- - - - 4Ø25 2.07 345 5.27 2.07 - 

G2.1-A90 41.3 4Ø25 2.07 345 - - - 0.84 2.07 - 

G1.0-T0.7-A90 39.8 2Ø25 1.03 345 2Ø20 0.66 345 0.81 1.71 - 

G0.6-T1.0-A90 44.6 2Ø19 0.59 350 2Ø25 1.03 345 0.92 1.56 - 

* The balanced reinforcement ratio is calculated by Eq. (2-7) for FRP-RC and hybrid FRP-Steel RC beams. For Steel RC beams, the 
proposed equation by ACI 318M-02 has been used. 
** Calculated by Eq. (2-8). 
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Notations 

b  width of RC beam cross section 
uM  moment carried by RC beam at failure 

C  concrete cover of reinforcing bar 
rP  perimeter of reinforcing bars 

sC  strength effect 
fV  volume fraction of fibers in concrete mix 

dC  deformation effect 
1  factor relating depth of equivalent rectangular 

compressive stress block to neutral axis depth 

fd  distance from extreme compression fiber to 

centroid of FRP bars in RC beam section 
m  slip corresponding to peak bond shear stress 

sd  distance from extreme compression fiber to 

centroid of steel bars in RC beam section 
SLS  deflection of RC beam corresponding to 

serviceability limit state 

elasticE  energy absorbed by RC in elastic domain 
u  deflection of RC beam corresponding to uM  

totalE  total absorbed energy by RC beam 
c
  concrete compressive strain corresponding to 

cf   

cf   concrete compressive strength   ductility index of RC beam 

REFcf   reference compressive strength   reinforcement ratio 

fuf  ultimate FRP tensile stress 
fb  FRP balanced reinforcement ratio 

yf  steel yield tensile stress 
,f eq  equivalent FRP reinforcement ratio in hybrid 

reinforced concrete cross section 

F  pullout force of reinforcing bar 
hb  balanced reinforcement ratio in hybrid 

reinforced concrete cross section 

h  height of RC beam cross section 
sb  steel balanced reinforcement ratio 

el  embedment length 
m  bond shear strength 

m  ratio between steel yielding stress to FRP 

ultimate tensile stress 
b  reinforcing bar’s diameter 

SLSM  moment carried by RC beam corresponding to 

serviceability limit state 
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 Chapter 3 

3 BOND PERFORMANCE OF GFRP BARS IN FRC 

3.1 Introduction 

An experimental program was conducted to evaluate bond behavior between GFRP bars 

and steel fiber reinforced self-compacting concrete (SFRSCC) by carrying out pullout 

bending tests. The effect of GFRP bar diameter, surface characteristics of the GFRP bars, 

bond length, and the thickness of SFRSCC cover on the bond behavior was assessed. In 

addition, a bond analytical formulation was presented by adopting a multi-linear bond-slip 

relationship (    ) for the types of GFRP bars used in the pullout bending tests. The results 

of the experimental program were used to calibrate     diagram and to appraise the 

analytical formulation. Moreover, a parametric study was carried out with aid of the 

analytical formulation in order to evaluate the influence of involved bond-slip law’s 

parameters on the maximum theoretical force transferred by the bond behavior between 

GFRP bar and SFRSCC. Finally, the minimum theoretical bond length (i.e. the development 

bond length) required to achieve the tensile strength of the GFRP bars was determined, and 

the obtained values are compared with the recommendations proposed by design codes. 

3.2 Experimental program 

In the present experimental program, a total of 36 pullout bending tests were carried out 

to evaluate the bond behavior of two types of GFRP bars supplied by European companies. 

The tests were conducted at the laboratory of the Structural Division of the Civil Engineering 
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Department of University of Minho (LEST), Portugal. 

3.2.1 Material properties 

3.2.1.1 GFRP bars 

Two types of GFRP bar in terms of surface treatment were used in this study, and the 

designation of type A and type B was assumed for deformed and smooth bars, respectively. 

The ribs of the deformed surface of type A bar have a constant height of 6% of bar diameter 

and a spacing of about 8.5 mm. Spherical natural quartz-crystal sand with triangular structure 

was used for sand-coating in type B bar. The mechanical properties of bars based on the 

information provided by the manufacturers are included in Table 3-1. A tensile strength 

higher than 1000 MPa was indicated for both types of bar, while values of 60 and 40 GPa 

were suggested for the modulus of elasticity of type A and type B bar, respectively. Direct 

tensile tests were carried out to obtain the modulus of elasticity, whose values are indicated 

in Table 3-1. Two diameters, 8 and 12 mm, were adopted for type A bar, while only one 

diameter (12 mm) was considered for type B bar (see Figure 3-1). The obtained values for 

the modulus of elasticity of both types were higher than those provided by the company; 

exceptionally, when the diameter measured in the bar was considered for Ø12 type A (13.08 

mm instead of 12 mm), the value of the modulus of elasticity (56 GPa) was lower than 60 

GPa reported by the supplier. 

Table 3-1: The mechanical properties of GFRP bars 

T
y

p
e

 

Surface treatment 

Bar diameter 
Density Content of glass Tensile strength 

Modulus 
of elasticity Nominal Measured1 

(mm) (mm) (gr/cm3) (%) (MPa) (GPa) 

A Ribbed 8 8.64 2.23 ~ 75 1500 60 (71 2) [65 3] 

  12 13.08 2.23 ~ 75 1350 60 (67 2) [56 3] 

B Sand-coated 12 12.36 1.9 ~ 70 ~ 1000 40 (53 2) [49 3] 

1 The values are measured by immersing a prescribed length of the bar in water to determine its buoyant weight; 
2 Results obtained from the performed experimental tests by adopting the nominal bar diameter indicated by the supplier (average of 5 specimens); 
3 Results obtained from the performed experimental tests by adopting the measured bar diameter (average of 5 specimens). 
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Figure 3-1: GFRP bars: (a) Sand-coated 12 mm diameter (type B), (b) Ribbed 12 mm diameter 

(type A), and (c) Ribbed 8 mm diameter (type A) 

3.2.1.2 SFRSCC 

A self-compacting concrete reinforced with 60 kg/m3 of hooked end steel fibers was 

used to build the pullout bending specimens. The mix of this concrete is included in 

Table 3-2. Ordinary Portland cement produced according to the standard EN 197-1:2000 

and labeled as CEM I 42.5 R, fine and coarse river sand and crushed granite gravel aggregate 

with maximum size of 12 mm were used, and the water/cement ratio was 0.39. Optimized 

amount of 1.9% superplasticizer was adopted to contribute for the attainment of self-

compacting requisites for the mix. Hooked end steel fibers of 33 mm length ( frl ), 0.55 mm 

diameter ( fr ), aspect ratio (i.e. fr frl  ) of 60, and a tensile strength of about 1100 MPa 

were used. The concrete mixture showed good homogeneity and cohesion, and the total 

spread measured in the slump-flow tests ranged between 680 and 720 mm, with no visual 

sign of segregation. 

Table 3-2: Composition of the SFRSCC 

Components Quantity (kg/m3) 

Cement 412 
Limestone filler 353 
Fine river sand (0-2.38 mm) 179 
Coarse river sand (0-4.76 mm) 655 
Crushed granite (4.76-12.70 mm) 588 
Water 160 
Superplastizier 7.83 
Hooked end steel fibers 60 

  

The SFRSCC compressive strength was determined according to ASTM C39 with 

cylinder samples taken from all batches (three cylinders with 150 mm diameter and 300 mm 
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height for each batch). Prior to those tests, the three cylinders were used to determine the 

Young’s modulus of SFRSCC according to ASTM C469. A total number of five beams with 

dimensions of 600×150×150 mm3 were also cast to determine the flexural tensile strength 

and the flexural residual strength parameters of SFRSCC according to the recommendations 

of RILEM. The average value of the Young’s modulus and flexural tensile strength of 

SFRSCC were 30.36 GPa with a coefficient of variation (CoV) of 15.48%, and 6.28 MPa 

(CoV=17.48%), respectively (see Table 3-3). 

Table 3-3: Properties of the SFRSCC batches 

Batch 
designation 

Compressive 
strength 

Flexural tensile 
strength 

Modulus of 
elasticity 

Bond modified 
factor1 

(MPa) (MPa) (GPa) 

M1 58.58 (3.15%) 

6.28 (17.48%)2 30.36 (15.48%)2 

1.00 

M2 61.45 (4.71%) 0.98 

M3 67.58 (4.86%) 0.93 

M4 64.58 (1.25%) 0.95 

M5 66.38 (4.28%) 0.94 

1 From Eq. (3-1); 
2 The values between parentheses are the corresponding coefficients of variation. 

The average compressive strength for the five SFRSCC batches was varied from 58.58 

to 67.58 MPa (Table 3-3). Since to produce all the specimens for the pullout bending 

program it was necessary to execute five batches, the mechanical properties of SFRSCC 

from the mix batches were slightly different (less than 10% from the average value). 

Assuming that bond stress (and concrete tensile strength) can be related to the square root of 

compressive strength, the differences were taken into account by correcting the bond values 

by applying the following bond modified factor i : 

 , ( 1,2,...,5)cmr
i

cmi

f
i

f
   (3-1) 

where cmif  is the average compressive strength of the thi concrete batch, and cmrf  is the 

reference value. Assuming for cmrf  the average compressive strength of SFRSCC of the 

batch used to produce the first series of pullout specimens (M1), the values of the bond 

modified factor are those included in Table 3-3. 
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3.2.2 Test procedure 

3.2.2.1 Specimens 

A beam test similar to the one recommended by RILEM TC9-RC was adopted in this 

study for assessing the behavior between the GFRP bars and SFRSCC. A schematic 

representation of the specimen is shown in Figure 3-2a. The specimen is composed of two 

prismatic SFRSCC blocks, A and B, which are connected by a GFRP bar as a flexural 

reinforcement at bottom part, and a steel hinge at top zone. Type of GFRP bar’s surface, 

SFRSCC cover thickness, embedment length ( eL ) and bar diameter varied in those 

specimens in order to assess their influence in the GFRP-SFRSCC bond behavior. In the 

front part of each block, in a length of 50 mm (75 mm from the symmetry axis) the bar is 

unbonded to avoid premature fracture of SFRSCC in these zones. The embedded length of 

GFRP bars was only changed in the block A (where debonding failure is supposed to 

develop), while in the block B a constant embedment length of 335 mm was considered for 

all specimens. In order to create an unbonded length at the edge, the GFRP bars were covered 

by 50 mm long plastic tubes with low elastic modulus. 

 
Figure 3-2: (a) Details of the specimen, and (b) test setup (dimensions in mm) 

The specimens are identified by assuming the following labels: the first letter, A or B, 

indicates the type of bar surface; the second set of symbols refers the bar diameter (Ø8 or 

Ø12); the third one, denoted as LXØ, symbolizes the embedment length, being X the multiple 

of the bar diameter (X=5, 10 and 20); the fourth label represents the concrete cover thickness, 

15 mm (C15) or 30 mm (C30); and the last set is a regular counting of the specimens. For 
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example, the label A-Ø8-L10Ø-C30-07 corresponds to the specimen number 7 reinforced 

with a ribbed surface type A bar of 8 mm diameter (Ø8), with an embedment length of 80 

mm (10Ø=10×8 mm), and with a concrete cover of 30 mm (C30). 

3.2.2.2 Test setup and measuring devices 

Figure 3-2b shows the test setup configuration used to study the bond behavior of the 

GFRP bars. To measure the slip at loaded and free ends of GFRP bar, two linear variable 

differential transducers, LVDT 1 and LVDT 2, respectively, were used. LVDT 1 was 

supported on the bar close to loaded end section, and measured the relative displacement 

between this section and the concrete front surface of the block A (see Figure 3-2b), while 

LVDT 2 was fixed to the free extremity of the bar and measured the relative displacement 

between the free end part of the bar and the concrete rear surface. As shown in Figure 3-2b, 

a strain gauge was installed in the cross section of the bar coinciding with specimen 

symmetry axis to record the strains in the bar during the test. Three load cells with a 

maximum load carrying capacity of 200 kN were utilized to determine the applied load in 

each contact point of the specimen with the exterior. Two of these load cells were disposed 

according to the scheme represented in Figure 3-2b, while the third was coupled to the 

actuator. The pullout force (i.e. F ) was calculated by multiplying the evaluated average 

Young’s modulus ( fE ) of the bar by the strain recorded in the strain gauge ( f ) and 

considering the measured cross sectional area of the bar ( fA ), f f fF E A  (see Table 3-1). 

The force installed in the bar was calculated by equilibrium between the applied loads and 

the corresponding reactions to the specimen. The change of the internal arm (distance 

between hinge connection point and the center of the bar) at mid-span was measured by two 

vertical LVDT’s installed in the first 12 specimens (for all 5Ø bond length specimens). The 

force values derived from both methods showed negligible differences, therefore, the one 

based on measuring the strains in the GFRP bars was adopted for all the tested specimens. 

Due to the elastic elongation of GFRP bar between the loaded end section (coinciding with 

the Point x  indicated in Figure 3-2b) and the measuring section of LVDT 1 (front face of 
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the concrete block A), the slip at loaded end ( lps , in mm) was obtained by deducing from 

the displacement measured by the LVDT 1 ( 1LVDTs , in mm) the elastic deformation in this 

segment of the bar ( 50 f , in mm): 

 1 50lp LVDT fs s    (3-2) 

where f  is the strain in the GFRP bars measured by the strain gauge. 

The tests were carried out by using a closed-loop hydraulic system with a servo actuator 

of 200 kN capacity. Two loading phases of different slip rate were adopted by using LVDT 1 

for test control: 3 μm/s up to 5 mm slip, and 5 μm/s up to the end of the test. 

3.3 Test results and discussion 

The results of GFRP bars type A and B, obtained from the pullout bending tests, are, 

respectively, summarized in Table 3-4 and Table 3-5. These tables include the maximum 

pullout force, maxF , the corresponding slip at loaded (i.e. lps ) and free ends (i.e. fps ), the 

maximum average bond stress (i.e. max ) assuming that bond stresses are constant along the 

embedment length (i.e. eL ), modified bond stress normalized by using i  coefficient (to 

account the type of concrete) and the failure mode. 

The relationships between the pullout force and the slip at loaded end ( lpF s ) and free 

end ( fpF s ) are plotted in Figure 3-3, Figure 3-4, and Figure 3-5. In general, the pullout 

force versus slip responses were characterized by a short linear branch, in which damage in 

the debonding process was not sufficiently intense to produce irreversible slip (somehow 

representing chemical and micro mechanical bonds between bar and SFRSCC), followed by 

a nonlinear response up to peak load due to the increase of the damage. The post peak phase 

was characterized by a descending branch of the pullout force with the increase of slip. The 

tests ended with a relatively high residual pullout force due to the friction resistance between 

the GFRP and SFRSCC. As expected, these graphs show that the peak pullout force and its 

corresponding slip increased with the embedment length. Furthermore, at peak load, the free 

end slip was non null in all specimens, confirming that the embedment length was not enough 
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to mobilize the tensile capacity of the utilized GFRP bars. 

Table 3-4: Bond test results of GFRP bar (type A) 

Specimen 
designation 

Concrete 

maxF  lps  fps  
max  

Modified 
bond 
stress 

Failure 
Mode1 

Mix cf   i  

 (MPa) (-) (kN) (mm) (mm) (MPa) (MPa) 

A-Ø8-L5Ø -C15-01 M1 

58.58 1.00 

20.02 0.27 0.23 19.92 19.92 P 

A-Ø8-L5Ø-C15-02 M1 20.73 0.39 0.24 20.63 20.63 P 

A-Ø8-L5Ø-C30-03 M1 20.77 0.31 0.27 20.67 20.67 P 

A-Ø8-L5Ø-C30-04 M1 19.14 0.37 0.27 19.05 19.05 P 

A-Ø8-L10Ø-C15-05 M5 66.38 0.94 32.18 0.88 0.23 16.01 15.05 P 

A-Ø8-L10Ø-C15-06 M5 29.58 0.89 0.07 14.72 13.84 P 

A-Ø8-L10Ø-C30-07 M4 64.58 0.95 35.34 0.85 0.34 17.59 16.71 P 

A-Ø8-L10Ø-C30-08 M4 35.30 0.65 0.31 17.57 16.69 P 

A-Ø8-L20Ø-C15-09 M4 64.58 0.95 56.11 1.67 0.12 13.96 13.26 P 

A-Ø8-L20Ø-C15-10 M4 58.18 1.46 0.11 14.47 13.74 P 

A-Ø8-L20Ø-C30-11 M4 64.66 2.22 0.29 16.10 15.28 P 

A-Ø8-L20Ø-C30-12 M4 68.88 - - 17.13 16.28 R 

A-Ø12-L5Ø-C15-13 M2 61.45 0.98 48.30 0.36 0.31 21.36 20.93 P 

A-Ø12-L5Ø-C15-14 M2 41.22 0.30 0.19 18.23 17.87 P 

A-Ø12-L5Ø-C30-15 M2 57.86 0.26 0.17 25.59 25.08 P 

A-Ø12-L5Ø-C30-16 M2 57.13 0.32 0.29 25.27 24.76 P 

A-Ø12-L10Ø-C15-17 M3 67.85 0.93 - - - - - S 

A-Ø12-L10Ø-C15-18 M3 70.62 0.84 0.16 15.62 14.53 PS 

A-Ø12-L10Ø-C30-19 M3 82.50 1.30 0.31 18.24 16.97 P 

A-Ø12-L10Ø-C30-20 M3 96.57 1.38 0.24 21.35 19.86 P 

A-Ø12-L20Ø-C15-21 M3 67.85 0.93 127.57 2.67 0.10 14.10 13.11 PS 

A-Ø12-L20Ø-C15-22 M3 116.05 2.45 0.12 12.83 11.93 PS 

A-Ø12-L20Ø-C30-23 M3 146.23 3.00 0.16 16.17 15.04 P 

A-Ø12-L20Ø-C30-24 M3 - - - - - S 

1 Failure modes: P - Pullout; PS - Pullout and Splitting crack; R - bar rupture; S - SFRSCC shear failure. 

Table 3-5: Bond test results of GFRP bar (type B) 

Specimen 
designation 

Concrete 

maxF  lps  fps  
max  

Modified 
bond 
stress 

Failure 
mode 1 Mix cf   i  

(MPa) (-) (kN) (mm) (mm) (MPa) (MPa) 

B-Ø12-L5Ø-C15-25 M1 58.58 1.00 40.79 0.46 0.09 18.04 18.04 P 

B-Ø12-L5Ø-C15-26 M2 

61.45 0.98 

43.33 0.49 0.10 19.17 18.71 P 

B-Ø12-L5Ø-C30-27 M2 53.63 0.48 0.10 23.72 23.15 P 

B-Ø12-L5Ø-C30-28 M2 48.00 0.50 0.07 21.23 20.72 P 

B-Ø12-L10Ø-C15-29 M3 

67.85 0.93 

- - - - - S 

B-Ø12-L10Ø-C15-30 M3 62.92 0.81 0.09 13.91 12.94 P 

B-Ø12-L10Ø-C30-31 M3 - - - - - S 

B-Ø12-L10Ø-C30-32 M3 76.64 1.50 0.08 16.95 15.76 P 

B-Ø12-L20Ø-C15-33 M5 

66.38 0.95 

97.70 1.77 0.08 10.80 10.15 P 

B-Ø12-L20Ø-C15-34 M5 99.78 2.31 0.08 11.03 10.36 P 

B-Ø12-L20Ø-C30-35 M5 107.53 2.01 0.10 11.89 11.17 P 

B-Ø12-L20Ø-C30-36 M5 104.94 2.71 0.09 11.60 10.90 P 
1 Failure modes: P - Pullout; PS - Pullout and Splitting crack; R - bar rupture; S - SFRSCC shear failure. 
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Figure 3-3: Pullout force versus loaded and free end slip for type A of Ø8 with 5Ø, 10Ø and 

20Ø bond lengths: (a)-(b) 15 mm concrete cover, (c)-(d) 30 mm concrete cover 

 
Figure 3-4: Pullout force versus loaded and free end slip for type A of Ø12 with 5Ø, 10Ø and 

20Ø bond lengths: (a)-(b) 15 mm concrete cover, (c)-(d) 30 mm concrete cover 
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Figure 3-5: Pullout force versus loaded and free end slip for type B of Ø12 with 5Ø, 10Ø and 

20Ø bond lengths: (a)-(b) 15 mm concrete cover, (c)-(d) 30 mm concrete cover 

3.3.1 Failure modes 

Due to the relative high pullout force supported by specimens reinforced with the larger 

bar diameter and embedment length, the specimens number 17, 24, 29 and 31 failed due to 

insufficient shear resistance of SFRSCC. To avoid this type of failure mode, carbon fiber 

reinforced polymer (CFRP) laminates were applied in the lateral faces of the specimens, 

according to the near surface mounted technique (Sena Cruz 2004), in locations that do not 

affect the GFRP-SFRSCC bond behavior. Hence, except specimen number 12 (A-Ø8-L20Ø-

C30-12), the remaining ones failed by debonding. In case of ribbed bars (type A) with 

concrete cover of 15 mm (specimens number 18, 21 and 22) a single crack appeared along 

the embedment length. This crack had naturally a detrimental effect on the bond performance 

of these specimens, since the concrete confinement decreased with the increase of the 

opening of this crack. However, splitting failure mode never occurred due to the contribution 

of fibers bridging this crack that had maintained the crack width at very small value. 

According to the bond study carried out by Achillides and Pilakoutas (2004), for concrete of 

compressive strength higher than 30 MPa, bond failure partly occurs on the surface of the 
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bar and partly in the concrete by peeling the cortical layer of the bar. Since a relatively high 

concrete compressive strength was used in this study (>50 MPa), the bond failure mode 

significantly depended on the surface treatment of FRP bars. The block A of each specimen 

was cut after testing in order to have a deeper inspection of the failure mode. Figure 3-6a 

shows the damages on surface of GFRP bars after testing. The resin over the surface of 

GFRP bar was chopped and crushed in case of type B, and the ribs were scratched in the 

type A bars. However, in the type A bar of specimens, where a single splitting crack was 

formed, signs of concrete damage was observed at the bottom of the bar’s surface due to the 

lower confinement provided by the cracked concrete cover. This means that the bond failure 

for these specimens was controlled by both type of failure modes at the top and bottom of 

the GFRP-SFRSCC interface (see Figure 3-6b). 

 
Figure 3-6: Type A bar: (a) appearance after specimen has been tested, and (b) mix damage in 

specimens with a splitting crack 

This mixed damage configuration was more prone in the bars of higher flexural stiffness 

surrounded by smaller SFRSCC cover thickness, since the curvature of the GFRP bar along 

the embedment length increased with the reduction of the SFRSCC cover thickness (more 

deformable medium). This favors the increase of the radial stresses applied by the SFRSCC 

to the top surface of the bar, and due to the Mohr-Coulomb effect the shear stresses increase, 

leading to the scratch of the ribs of the bar in these zones. Furthermore, due to the intrinsic 
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nature of SFRSCC casting conditions, at the bottom part of the bar a higher percentage of 

porous and flaws exist. Therefore, the combination of the smaller strength of this material 

with the local radial stresses due to the curvature of the bar justifies the presence of this 

cement paste material in between the GFRP ribs at the bottom part of the bar. 

3.3.2 Effect of bar diameter 

The bond performance of 8 mm and 12 mm GFRP bars type A in terms of  max  is 

compared in Figure 3-7. For the specimens with 15 mm of SFRSCC cover, the maximum 

bond stress achieved in the case of 12 mm bar diameter was almost equal or even smaller 

than the corresponding max  obtained for 8 mm bar. However, in the specimens with 30 mm 

of SFRSCC cover, the maximum bond stress ( max  ) for a bar diameter of 12 mm was higher 

than for the 8 mm with exception of 20 embedment length. It is worth noting that, this trend 

decreased with the increase of eL . By increasing the bar diameter and the bond length, the 

maximum pullout force was conditioned by the splitting strength capacity of SFRSCC cover. 

 
Figure 3-7: Influence of bar diameter of type A bar on the maximum average bond stress: 

(a) SFRSCC cover 15mm, and (b) SFRSCC cover 30mm 

3.3.3 SFRSCC cover thickness 

The increase in max  the for the specimens with 30 mm SFRSCC cover thickness with 

respect to the corresponding values obtained for 15 mm SFRSCC cover is presented in 

Figure 3-8. This analysis was carried out for the three types of bars and for the different 
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values of  eL . The results show higher maximum average bond shear stress, max , when 

30 mm SFRSCC cover thickness was used, with the exception of the 8 mm bar diameter 

with 5Ø embedment length, since in this case the relatively low pullout force is not 

influenced by the splitting strength of the SFRSCC cover. The values of max  were also 

higher in case of ribbed bars (type A) than in sand-coated bars (type B), which reveals the 

influence of the surface treatment and bar stiffness (the type A bar has higher elasticity 

modulus and measured diameter, see Table 3-1). Since the type B bar has a lower elasticity 

modulus and, consequently, lower stiffness, apart the effects pointed out in the last paragraph 

of Section 3.3.1, the higher contraction of the bar in the plane of its cross section due to the 

Poisson’s effect is expected to have contributed for the smaller performance of the type B 

bar. The better performance of the specimens with 30 mm SFRSCC cover can be explained 

by the higher volume of concrete surrounding the bar that promotes the superior 

confinement, and smaller damage in the concrete cover. 

 
Figure 3-8: The comparison between the maximum average bond stress in case of 15 (C15) 

and 30 (C30) concrete cover 

The average residual bond stress, res , is another important parameter characterizing the 

pseudo-ductility of the bond behavior. This value was calculated for a pullout force 

corresponding to a relatively high value of loaded end slip (8 mm), when the debonding 

process is in the post-peak branch of the curve pullout force versus slip for all the specimens. 

The ratio between res   and max   is compared in Figure 3-9 for the type of bars, bar diameter, 

and SFRSCC cover, where it is visible that the maxres    ratio increases with concrete cover. 
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Figure 3-9: Variation between the residual bond shear stress and the average maximum bond 

shear stress 

3.3.4 Embedment length 

The evolution of the maximum average bond stress, max ,  with the embedment length 

(i.e. eL ) is plotted in Figure 3-10a. As expected, the value of max  decreased with the increase 

of eL , which was a consequence of the nonlinear distribution of the bond stress along eL  

(Tighiouart et al. 1998). As shown in Figure 3-10b, the loaded end slip at peak pullout force 

( lps ) increased with eL  and bar diameter. The increase of lps  with eL  is a natural 

consequence of the increase of the maximum pullout force with the increase of eL , and the 

similar stiffness of the lF s  pre-peak phase for the different eL  test series (Figure 3-3, 

Figure 3-4, and Figure 3-5). The increase of lps  with eL  was more pronounced in bars of 

ribbed surface (type A) than in bars of sand coated surface (type B). In fact, lps  was higher 

in type B bar for the smallest eL , almost equal in both types of bars for the intermediate eL , 

and smaller in type B bar for the largest eL . On the other hand, no significant variation was 

observed in terms of free end slip at peak pullout force ( fps ) by increasing eL  (see 

Figure 3-10b). However, the free end slip in type B bar was considerably smaller than in 

type A (0.09 mm against 0.24 mm, respectively), which was a consequence of the larger 

damage introduced by the stiffer type bar A along the embedment length, as already 

discussed in previous sections. 
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Figure 3-10: (a) Maximum average bond stress versus embedment length (b) corresponding 

slip at loaded end for different bar type and embedment length 

3.3.5 Surface treatment 

Figure 3-11a shows that max  was larger in the ribbed GFRP bars (type A) than in the 

sand-coated GFRP bars (type B), regardless of the bar embedment length and SFRSCC 

cover. Figure 3-11b represents a comparison between the pullout force versus loaded end 

slip up to 2mmlps  , for type A and type B bar, in case of 15 and 30 mm SFRSCC cover 

thickness. Figure 3-11b clearly shows that type A bar had a higher bond stiffness and peak 

pullout force than type B bar, which was not only a consequence of the surface characteristics 

of these bars, but also the larger stiffness of the type A bar (larger determined elasticity 

modulus and measured diameter, Table 3-1), as already indicated. The higher pullout force 

in the post-peak phase evidenced by the type A bar (Figure 3-11b) can also be a consequence 

of the higher frictional resistance provided by the ribbed surface characteristics of this type 

of bar.   

 
Figure 3-11: Comparison between two types of GFRP bars: (a) maximum average bond stress; 

(b) Pullout force versus loaded end slip for specimens with 5Ø bond length 
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The relationship between the average strain in the bar at the load end and the slip at this 

loaded end section ( f lps  ) up to peak pullout force for type bar A and B is compared in 

Figure 3-12. For this purpose, the bars of 12 mm diameter with 5eL    were selected, but 

the obtained trends are representative of the behavior registered in the other analyzed cases. 

This figure shows that for any average strain in the loaded end section, the type bar B always 

presented a higher loaded end slip, regardless of the SFRSCC cover thickness. This 

discrepancy between both types of bars increased during the loading process and was higher 

in the specimens of smaller SFRSCC cover thickness. 

 
Figure 3-12: Average strain in the bar versus loaded end slip: (a) 15 mm concrete cover, and 

(b) 30 mm concrete cover 

3.4 Analytical study 

A bond analytical formulation was presented by adopting a multi-linear bond-slip 

relationship (    ) for the types of GFRP bar’s surface (ribbed and sand-coated) embedded 

in SFRSCC tested. The developed model was calibrated by taking the experimental results 

of pullout force versus slip that was obtained from the tests discussed earlier in the previous 

sections. Additionally, a parametric study was carried out using the analytical formulation 

in order to evaluate the influence of involved bond-slip law’s parameters on the maximum 

theoretical force that can be transferred to the surrounding SFRSCC through the bond length. 

Finally, the minimum theoretical bond length required to achieve the tensile strength of the 

GFRP bars was determined, and the obtained values were compared with those 

recommended by some published codes. 
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3.4.1 Bond model 

3.4.1.1 Governing equations 

Neglecting the deformability of surrounding concrete, and assuming a linear and elastic 

behavior for an embedded bar to concrete, the second-order differential equation that 

governs the bond behavior along the bond length can be stated as follow (Russo et al. 1990): 

 
2

2

( )
( ( )) 0

d x
J x

dx


     (3-3) 

where J is the ratio between the perimeter ( fd ) and axial stiffness ( f fE A ) of the bar, being

fd , fE and fA , respectively, the diameter, the longitudinal modulus of elasticity and the 

cross-sectional area of the bar. In Eq. (3-3), ( )x  represents the slip between GFRP and 

surrounding concrete at a section x  from the free end. Based on Hook’s law, the following 

equation can also be deduced: 

 
( )

( )f f

d x
x E

dx


   (3-4) 

where f  is the axial tensile stress of the bar. Further, the distribution of bond shear stress 

along the bond length (i.e. ( )x ) is given by Eq. (3-5) based on Eq. (3-3):   

 
2

2

1 ( )
( )

d x
x

J dx


   (3-5) 

3.4.1.2 Local bond-slip relationship 

A multi-linear diagram presented in Figure 3-13 is proposed as local bond shear stress-

slip (    ) relationship for embedded GFRP bar to SFRSCC in this study. This relationship 

is stated by the following equation: 

  

 

0
0 1

1

1 2

2 2 3
3 2

3
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( )

( )

( )

m

m

m R
m

R

              elastic phase

          plastic phase

   softening phase

                                 frictional phase

  
       

     

   
            

   

   

 (3-6) 

The rigid branch ( 00  ) represents the overall initial shear strength and it is attributable 

to the micro-mechanical and chemical properties of the involved materials and interfaces. 
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The ascending branch represents the bond behavior between the initial bond shear stress 

(i.e. 0 ) and the bond strength ( m ) ends at a slip 1 . Between 1  and 2 , constant bond 

strength, m , simulates the initiation of the damage in the bar-concrete interface. With the 

advance of this damage, the bond stress starts decreasing with the increase of slip, and this 

slip-softening phase, which is governed by friction and micromechanical interlocking along 

the bond length, is simulated by the third branch that ends at a slip 3 , when a residual bond 

shear stress, R , is attained. For 3   , due to friction mechanism between bar and 

surrounding concrete, this residual bond stress is assumed constant, in agreement with 

previous research (Hao et al. 2008; Baena et al. 2009) and results obtained in the 

experimental tests. 

 
Figure 3-13: The adopted bond-slip relationship in the bond model 

3.4.1.3 Theoretical pullout force in case of Infinite Bond Length (IBL) 

Debonding process for infinite bond length of GFRP bar is described hereafter by 

introducing the proposed     relationship in Eq. (3-6) into Eq. (3-3). For each phase, slip 

distribution along the bar, ( )x , required bond transfer length, ( )tr LL  , and corresponding 

pullout force at each section of the bar, ( )F x , are determined for whatever value of loaded 

end slip (imposed slip, L ). These concepts, as well as the definition of the local reference 

systems in elastic ( ex ), plastic ( px ), softening ( sx ) and frictional ( fx ) bond phases, are 

illustrated in Figure 3-14. The study is based on the works carried out by Bianco et al. (2009) 
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and Sena-Cruz and Barros (2004) in the case of NSM-CFRP laminate. 

 
Figure 3-14: Debonding process in case of infinite bond length: pullout force, slip distribution, 

the required transfer bond length, and definition of local reference systems 

Elastic Phase: When the imposed slip is 1L   , Eq. (3-3) is solved in the local reference 

system of ex , and the solution becomes (Bianco et al. 2009): 

 1 2 3( ) e ex xe e e e
ex C e C e C

 
     (3-7) 

with 
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 (3-8) 

and the particular solution is 

 0
3 2

e J
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 (3-9) 

By imposing the following boundary conditions into Eq. (3-7): 
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 (3-10) 

where  ( )e
tr LL   is the bond transfer length corresponding to the first phase ( 1L   ), the 

integration constants are obtained as follows: 
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 2 3 1
e e eC C C   (3-12) 

By imposing the following equilibrium equation along the bond length: 

 
( )

0
( ( )) ( )

tr LL

tr L f e eF x L d x dx


       (3-13) 

( )e
tr LL   becomes 

   3

3

1
arcosh( )

e
e L
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C
L

C

 
  


 (3-14) 

The pullout force at the value of imposed slip can be determined by using Eq. (3-4) 

 

( )
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0
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( ( )) ( ( )) ( ) ( )

e
tr L

e
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e
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tr L tr L f e e f f e

d
F x L F x L d x dx E A

dx


 

          (3-15) 

and the maximum pullout force and maximum bond transfer length undergoing the elastic 

phase ( 1
eF  and 1trL  respectively) are obtained by imposing a loaded end slip equals 1  

 1 1( )e
tr tr LL L     (3-16) 

 1 1( )e e
e trF F x L   (3-17) 

Plastic Phase: the plastic phase corresponds to the loaded end slip in the interval of 

1 2L      and the corresponding bond shear stress remains constant ( ( ) m    ). The 

solution for Eq. (3-3) is a polynomial function in the local reference system of px  as follow 

 2
1 2 3( ) ( )
p p pp

p p px C x C x C     (3-18) 

with 

 1
2

p m J
C


  (3-19)  

The boundary conditions are 
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p p
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 (3-20) 

where ( )p
tr LL   is the bond transfer length in the plastic phase ( 1 2L     ), and the 

integration constants become 
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 (3-21) 
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 13
p

C    (3-22) 

By imposing the equilibrium equation along the bond length (i.e. ( ( ))tr LF x L  

( )

10
( )

p
tr LL e

b p pd x dx F


    ),  ( )p
tr LL   is obtained as the following closed-form equation: 

 1 1 11

1

4 ( )
( )

2

pe e
Lp

tr L p

F F C
L

C

    
   (3-23) 

and the overall bond transfer length is 

 1( ) ( )p
tr L tr tr LL L L     (3-24) 

The pullout force for whatever value of the imposed slip in this phase is  

 
( )

0
( ( )) ( )

p
tr LLp p p

p tr L b m p b tr L mF x L d dx d L


            (3-25) 

and the total pullout force becomes 

 1( ( )) ( ( ))e p p
tr L p tr LF x L F F x L       (3-26) 

The maximum bond transfer length and maximum pullout force undergoing this phase 

can be also calculated by substituting L by 2  in Eqs. (3-23) and (3-25) respectively: 

 2 2( )p
tr tr LL L     (3-27) 

 22 ( )
p p

p trF F x L   (3-28) 

and the total force at the end of this phase becomes 

  2 2 1 2( )
pe

tr LF F x L F F        (3-29) 

Softening Phase: for 2 3L     , the corresponding bond shear stress, ( )L  , decreases up 

to attain the residual bond shear stress, R , at 3L    (Figure 3-14). Introducing into 

Eq. (3-3) the corresponding function in the adopted bond-slip law yields a function in the 

local coordinate system of sx  as follow (Bianco et al. 2009): 

      1 2 3sin coss s s s
s s sx C x C x C         (3-30) 

with 

 3 2

2

( )1

( )m R J

 


  
 (3-31) 

and particular solution becomes 
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 3 22

s m J
C


  


 (3-32) 

By considering the relevant boundary conditions of the softening phase 

 2 at

at

0

( )

s s

s s s
L tr L

x

x L

   

    

 (3-33) 

where ( )s
tr LL    is the bond transfer length in the softening phase ( 2 3L     ), the 

integration constants are obtained from 
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sin ( )

s sm
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J
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 (3-34) 

 2 2 3
s sC C    (3-35) 

The equilibrium condition along the bond length (i.e. ( ( ))tr LF x L    
( )

0
( )

s
tr LL s s

bd x dx


  

12
p eF F  ) is used to derive the bond transfer length as function of L . So, ( )s

tr LL   can be 

expressed by (Bianco et al. 2009) 

 
   

2 2

1
( ) arcsins s
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s s

C
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A B

 
    

   

 (3-36) 

with 

 1 22
pe

sA F F F    (3-37) 
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s bB d


  


 (3-38) 

  3
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s L

d
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J

 
     (3-39) 

and 

 
2 2

asin s

s s

B

A B

 
  
  

 (3-40) 

and the overall bond transfer length at the end of the softening phase is 

 1 2( ) ( )s
tr L tr tr tr LL L L L      (3-41) 

The pullout force for whatever value of imposed slip in this phase is calculated by means 

of the following equation: 
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       (3-42) 

and the total pullout force becomes 

 1 2( ( )) ( ( ))
pe s s s

tr L tr LF x L F F F x L        (3-43) 

The maximum bond transfer length and the corresponding pullout force in this phase are 

calculated for a value of imposed slip equals to 3 : 

 3 3( )s
tr tr LL L     (3-44) 

 3 3( )s s
trF F x L   (3-45) 

and the total force at the end of the softening phase becomes 

 3 3 1 32( ( ))
pe s

tr LF F x L F F F         (3-46) 

Frictional Phase: when 3L   ,  ( )L   equals to a constant value of bond shear stress (i.e. 

R ) due to a stable amount of interfacial friction is established between GFRP and 

surrounding SFRSCC. Therefore, the solution for Eq. (3-3) is a polynomial function similar 

to the plastic phase: 

 
2

1 2 3( ) ( )f f f f
f f fx C x C x C     (3-47) 

with 

 1
2

f R J
C


  (3-48) 

and the relevant boundary conditions are 

 3 at

at

0

( )

f
f

f f
L f tr L

x

x L

   

    

 (3-49) 

where ( )f
tr LL   is the bond transfer length for 3L   . By imposing these boundary 

conditions into Eq. (3-47), the integration constants become 

 
 

2

3 1

2

( ) ( )

( )

f f
L tr Lf

f
tr L

C L
C

L

   



 (3-50) 

 3 3
fC    (3-51) 
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and using equilibrium equation (i.e. 
( )

3 120
( ( )) ( )

f
tr LL ps e

tr L b f fF x L d x dx F F F


          ), 

( )f
tr LL   is calculated by: 

 3 3 1 3

1

4 ( )
( )

2

f
Lf

tr L f

F F C
L

C

   
   (3-52) 

The pullout force for whatever value of 3L    is obtained by using 

 
( )

0
( ( )) ( )

f
tr LLf f f

f tr L b R f b tr L RF x L d dx d L


           (3-53) 

and the total pullout force is calculated by  

 1 32( ( )) ( ( ))
pe s f f f

tr L tr LF x L F F F F x L         (3-54) 

3.4.1.4 Theoretical pullout force for Finite Bond Length (FBL) 

In case of finite bond length, the debonding process for embedded GFRP bars (or other 

types of bars) into concrete can be analyzed by solving Eq. (3-3) imposing appropriate 

boundary conditions for slip at the extremity of the bond transfer length ( trL ), which cannot 

be exceed of an available finite bond length ( fL ). While slip at free end ( f ) is null, i.e. 

f trL L , the pullout force for whatever value of L  is obtained by considering the equations 

for infinite bond length condition (IBL), this is, Eqs. (3-15), (3-26) , (3-43) and (3-54). 

However, when 0F  , i.e. f trL L , and two or more bond-slip phases are acting over fL , 

deriving closed-form equations for pullout force is not straightforward due to the complexity 

of the equations. To overcome this complexity, Bianco et al. (2009) presented a bond model 

for NSM-CFRP strips taking a three-linear bond-slip relationship (one ascending and two 

descending branches) by assuming that the slip distribution (i.e. ( )x ) for the IBL condition 

could also be applied to FBL condition. This is, the closed-form equations developed for 

case of infinite bond length were directly used for finite length by considering the possible 

configurations between fL and trL  (Bianco et al. 2009). In the present study, an analytical-

numerical method is presented to determine the pullout force ( F ) as well as F  for whatever 

value of L  in case of the finite bond length condition ( f trL L ) by taking the relevant 

boundary conditions at free and loaded ends (i.e. L   at fx L and F   at 0x  ). 
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Therefore, for each bond phases, new values are derived for those integration constants in 

Eqs. (3-7), (3-18), (3-30) and (3-47). Calculation of the pullout force, as well as the slip at 

free end for whatever value of the imposed slip in case of FBL condition is described 

hereafter by considering different configurations of the proposed bond phases over fL . 

When one bond phase acting: 

Fully elastic: when 1L    and 10 F    , the bond length, fL , is thoroughly covered by 

the linear elastic phase (see Figure 3-15a). Eqs. (3-11) and (3-12) become 

  1 3

1
( ) 1 f

f f

Le e
L F L L

C C e
e e



 
       
  

 (3-55) 

 2 3 1( )e e e
FC C C     (3-56) 

and using equilibrium condition, leads to express F  as function of L : 

 3
3

( )

cosh( )

e
eL

F
f

C
C

L

 
  


 (3-57) 

The pullout force is calculated by adopting Eqs. (3-55) and (3-56) 

 1 2( ) ( ) ( ( ) ( ) )f fL Le e e
e f f f e f f f L LF x L A x L E A C e C e

 
            (3-58) 

 
Figure 3-15: The configurations for slip and pullout force distribution over the finite length 

when one bond phase is acting: (a) Fully Elastic, (b) Fully Plastic, (c) Fully Softening, and 
(d) Fully Frictional 

Fully plastic: if 1F    and 1 2L     , fL  undergoes only the plastic phase (see 

Figure 3-15b). The integration of constants in Eqs. (3-21) and (3-22) become 

 
 

2

1
2

( )
p

L F fp

f

C L
C

L

  
  (3-59) 
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 3
p

FC    (3-60) 

where F is also determined by considering equilibrium condition 

 
2

1 ( )
p

F L fC L     (3-61) 

and F is simply obtained by using 

 ( )p
p f f f mF x L L d     (3-62) 

Fully softening: for the case shown in Figure 3-15c, fL fully undergoes softening. Hence, 

the integration of constants in Eqs. (3-34) and (3-35) become 

 
 

  1 2

1
cos 1

sin

s m
L F f

f

J
C L

L

  
        

  
 (3-63) 

 2 3
s s

FC C    (3-64) 

and F can be expressed as function of  L  by using the equilibrium condition 

 3 22
cos( ) ( )sm

F L f

J
L C


      


 (3-65) 

Therefore, F is obtained by Eq. (3-65) adopting Eqs. (3-63) and (3-64) 

 
0

0

( ) ( ) ( )

f

f

L
s

Ls
s f f s s f f

s

d
F x L d x dx E A

dx


      (3-66) 

Fully frictional: if 2 3F      and 3L   , the frictional bond phase is acting over fL (see 

Figure 3-15d). Similar to the fully plastic condition, the integration of the constants in Eqs. 

(3-50) and (3-51) become 

 
 

2

1
2

( ) f
L F ff

f

C L
C

L

  
  (3-67) 

 3
f

FC    (3-68) 

and f  is derived as follow 

 
2

1 ( )f
F L fC L     (3-69) 

The total pullout force, F , is simply obtained by using 

 ( )f
f f f f RF x L L d     (3-70) 

When two bond phases acting: 
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When two or more bond phases are acting over fL , a numerical strategy is adopted in 

the present study to obtain the slip and force (or bond stress) distributions. By considering a 

small increment for the imposed slip at ith step of the calculations, i.e. 
1i i

L L L
    , and 

initially using the value of the pullout force at the last step of the calculation, (i-1)th, for each 

bond phase (i.e. 
1( )e iF 
, 

1( )p iF 
, 

1( )s iF 
 and 

1( )f iF 
), a new value of the pullout force is 

calculated: 

Elastic-Plastic (Figure 3-16a): by imposing 
i
L , ( )p i

trL   is calculated by Eq. (3-23) where 

1
eF  is replaced by 1( )e iF . Being obtained ( )p i

trL , ( )e i
trL  is simply derived by ( )p i

f trL L . 

Therefore,  
i

F  and ( )e iF  are calculated by Eqs. (3-57) and (3-58) respectively at 

( )e i
e trx L . The value of ( )p iF  is calculated from Eq. (3-62) at ( )p i

p trx L . The total force 

becomes 

 ( ) ( )i e i p iF F F   (3-71) 

 
Figure 3-16: The configurations for slip and pullout force over the bond length when two 

bond phases are acting: (a) Elastic-Plastic, (b) Plastic-Softening, and (c) Softening-Frictional 

Plastic-Softening (Figure 3-16b): for 
i
L , ( )s i

trL  is calculated by means of Eq. (3-36) where 
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1
eF  is null and 2

p
F  is substituted by 

1( )p iF 
. Being obtained ( )s i

trL , ( )p i
trL  is simply obtained 

by ( )s i
f trL L . Therefore, ( )p iF  and ( )i

F  are calculated by Eqs. (3-61) and (3-62) 

respectively at ( )p i
p trx L . The value of ( )s iF  is calculated from Eq. (3-66) at ( )s i

s trx L , 

and the total pullout force becomes 

 ( ) ( )i p i s iF F F   (3-72) 

Softening-Frictional (Figure 3-16c): here by imposing an increment for the imposed slip, 

( )f i
trL  is calculated by Eq. (3-52) where 1

eF  and 1
p

F  are null, and 3
sF  is substituted by 

1( )s iF 
. Being obtained ( )f i

trL , ( )s i
trL  is simply calculated by ( )f i

f trL L . Hence, ( )s iF  and 

( )i
F  are determined by Eqs. (3-65) and (3-66) respectively at ( )s i

s trx L . The value of 

( )f iF  is also determined by Eq. (3-70) at ( )f i
f trx L . The total pullout force becomes 

 ( ) ( )i s i f iF F F   (3-73) 

When three or more bond phases acting: 

Elastic-Plastic-Softening (Figure 3-17a): for small increment of imposed slip, ( )s i
trL  is 

calculated by Eq. (3-36) where 1
eF  and 2

p
F  are substituted by 

1( )e iF 
 and 

1( )p iF 
 

respectively. Additionally, ( )p i
trL  is determined by Eq. (3-23) where 1

eF  is also replaced by 

1( )e iF 
. Therefore, ( )s i

trL is given by 

 ( ) ( ) ( )e i p i s i
tr f tr trL L L L    (3-74) 

Since the free loaded end undergoes elastic bond phase, ( )i
F  is calculated by Eq. (3-57) at

( )e i
e trx L . Then, ( )e iF  is calculated by Eq. (3-58) at ( )e i

e trx L , ( )p iF  by Eq. (3-62) at

( )p i
p trx L , and ( )s iF  by Eq. (3-66) at ( )s i

s trx L . The total pullout force becomes 

 ( ) ( ) ( )i e i p i s iF F F F    (3-75) 

Plastic-Softening-Frictional (Figure 3-17b): similar to the previous configuration, ( )f i
trL  is 
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calculated by Eq. (3-52) where 1
eF  is null, while 2

p
F  and 3

sF  are substituted by 
1( )p iF 
 and 

1( )s iF 
 respectively. Besides, ( )s i

trL  is determined by Eq. (3-36) where 1
eF  is null, and 2

p
F  

is replaced by 
1( )p iF 
. Finally, ( )p i

trL  is given by 

 ( ) ( ) ( )p i s i f i
tr f tr trL L L L    (3-76) 

Since free end undergoes plastic phase, ( )i
F  is derived by Eq. (3-61) at ( )p i

p trx L . 

Then, ( )p iF , ( )s iF  and ( )f iF  are obtained by Eqs. (3-62) at ( )p i
p trx L , (3-66) at ( )s i

s trx L  

and (3-70) at ( )f i
f trx L  respectively. The total pullout force becomes 

 ( ) ( ) ( )i p i s i f iF F F F    (3-77) 

 
Figure 3-17: The configurations for slip and pullout force over the bond length when three 

bond phases are acting: (a) Elastic-Plastic-Softening and (b) Plastic-Softening-Frictional 

Elastic-Plastic-Softening-Frictional (Figure 3-18): when 3L    and ( )tr L fL L  , fL  

undergoes simultaneously the four proposed bond phases. By imposing a small increment 

for L , the same strategy can be also applied in this case to determine ( )p i
trL , ( )s i

trL  and ( )f i
trL  

AB A
B

AB A
B

(a) (b)

i   calculating stepth

(i-1)  converged step
th

F
s

(     )
i-1

F
e

(     )
i-1

F(     )
i-1 F

s
(     )

i-1

F
i-1

F
i-1

F
s

(     )
i

F
e

(     )
i

F
f

(     )
F
s

(     )i

i

F
i

F
i

Ltr
f(    )
i

Ltr
s

(    )
iLtr

s
(    )

i

Ltr
p

(    )
i

Ltr
f

(    )
i-1

Ltr
s

(    )
i-1Ltr

s
(    )

i-1
Ltr
p

(    )
i-1

F
p

(      )
i-1

f
F
p

(      )
i-1


L

(   )
i-1 

F
(   )

i-1


L

(   )
i-1 

F
(   )

i-1

F
p

(      )
i

F
p

(      )
i


L

(   )
i


L

(   )
i

F
(   )

i


F

(   )
i



Page | 68 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

by initially taking 1
eF , 2

p
F  and 3

sF  equal to 
1( )e iF 
, 

1( )p iF 
 and 

1( )p iF 
 respectively. Then, 

( )e i
trL  is given by 

 ( ) ( ) ( ) ( )e i p i s i f i
tr f tr tr trL L L L L     (3-78) 

and the following equation gives the total pullout force: 

 ( ) ( ) ( ) ( )i e i p i s i f iF F F F F     (3-79) 

 
Figure 3-18: The configurations for slip and pullout force over the bond length when four 

bond phases are acting: Elastic-Plastic-Softening-Frictional 

The flowchart of the proposed analytical-numerical algorithm is presented in 

Figure 3-19. In all above cases, once ( )i
trL  is obtained for the all active bond phase (e.g. 

Elastic, Plastic and Softening are the active bond phase in case of Figure 3-17a), the values 

of 
1( )e iF 
, 

1( )p iF 
, 

1( )s iF 
 and 

1( )f iF 
 are substituted respectively by the new calculated 

values of ( )e iF , ( )p iF , ( )s iF  and ( )f iF . Then, ( )i
trL  is recalculated until achieving a value 

of error less than a tolerance adopted for trL . This calculation loop is also illustrated in the 

flowchart. 
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Figure 3-19: Flowchart of the proposed bond model 
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3.4.2 Predictive performance of the proposed bond model 

To assess the predictive performance of the proposed bond model, the obtained F   

from the model is compared with the results registered in the previously described bond tests. 

The values of the parameters to define the     relationship in the model were calibrated 

using inverse analysis by minimizing the absolute value of error, e , which is defined as 

exp expmodel 100F F FA A A    , where 
exp
FA   is the area under the average F   of the experimental 

curves, and 
model
FA   is the area of the F   obtained theoretically. Table 3-6 presents the 

results of the inverse analysis as well as the error (e), in percentage. In this table, the 

following experimental results are also reported: the maximum pullout force ( maxF ); its 

corresponding loaded end slip ( m ) and the residual pullout force at the end of the tests (i.e. 

resF ) which was calculated for a pullout force corresponding to the relatively high value of 

slip (8 mm), when for all the specimens the debonding process was in the post-peak pullout 

force. 

Table 3-6: Relevant experimental results and values of the parameters of the bond model 
obtained from the inverse analysis 

  Experimental results The results from the bond model  

fL   maxF  m  resF  0  m  R  1  2  3  
R m   e  

  (kN) (mm) (kN) (MPa) (MPa) (MPa) (mm) (mm) (mm) (-) (%) 

Deformed GFRP bar, 12 mm diameter 
5df C15: 44.76 0.33 17.64 1.0 18.1 7.6 0.09 0.15 2.30 41.5 0.87 
 C30: 57.49 0.29 19.75 1.0 23.2 14.8 0.07 0.19 1.50 64.4 0.57 
10df C15: 70.62 0.84 31.59 1.0 14.3 6.8 0.09 0.50 5.0 46.6 0.63 
 C30: 89.54 1.34 40.99 1.0 18.3 8.7 0.15 0.70 5.2 47.4 0.01 
20df C15: 121.81 2.56 50.22 1.0 12.5 5.1 0.12 1.80 7.0 39.0 0.48 
 C30: 146.23 3.00 61.63 1.0 14.9 5.9 0.11 1.20 8.6 33.9 2.63 
Smooth GFRP bar, 12 mm diameter 
5df C15: 42.06 0.47 18.63 1.0 18.0 8.3 0.10 0.16 1.1 47.2 0.80 
 C30: 50.815 0.44 38.73 1.0 21.9 13.1 0.09 0.15 1.1 60.5 0.97 
10df C15: 62.92 0.81 28.08 1.0 14.0 6.0 0.10 0.35 1.9 42.7 1.09 
 C30: 76.64 1.50 42.06 1.0 16.5 9.0 0.10 0.55 2.0 50.5 2.60 
20df C15: 98.74 2.04 54.47 1.0 12.2 5.8 0.10 0.5 2.0 44.7 1.23 
 C30: 106.24 2.36 70.06 1.0 13.2 7.6 0.10 0.7 2.0 50.7 1.20 

             

3.4.2.1 Loaded end slip 

The LF   relationship registered experimentally and determined by the proposed bond 
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model are compared in Figure 3-20a and Figure 3-21a, respectively, for the deformed GFRP 

bars with 15 mm and 30 mm SFRSCC cover thickness. In addition, the same comparison is 

given for the smooth GFRP bar in Figure 3-22a and Figure 3-23a, respectively, with 15 mm 

and 30 mm SFRSCC cover thickness. The results for the 8 mm bar diameter were not 

considered in the present study. This comparison evidences that the proposed method is 

capable of simulating with good accuracy the pullout force versus loaded end slip for the 

two types of GFRP bars. 

 
Figure 3-20: The comparison between theoretical and experimental pullout force versus 

(a) loaded end slip and (b) free end slip for deformed GFRP bar with 15 mm SFRSCC cover  

 
Figure 3-21: The comparison between theoretical and experimental pullout force versus 

(a) loaded end slip and (b) free end slip for deformed GFRP bar with 30 mm SFRSCC cover  
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Figure 3-22: The comparison between theoretical and experimental pullout force versus 
(a) loaded end slip and (b) free end slip for smooth GFRP bar with 15 mm SFRSCC cover 

 
Figure 3-23: The comparison between theoretical and experimental pullout force versus 
(a) loaded end slip and (b) free end slip for smooth GFRP bar with 30 mm SFRSCC cover 
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The experimental and theoretical FF   curves were compared in Figure 3-20b and 
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thickness. The same comparison is also given for the smooth GFRP bar in Figure 3-22b and 
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L  and F  obtained experimentally and theoretically for the specimens with 20f bL d . As 

shown, the L F   curve obtained by the proposed bond model is in agreement with the 

experimental L F   curve for both GFRP bars. This confirms the accurate prediction of the 

obtained ( )x  by the proposed bond model. 

 
Figure 3-24: The relationship between loaded and free end slip for specimen with highest 

bond length 

3.4.2.3 Observations 

“Material” versus “structural” bond-slip property: the slip between bar and 

surrounding concrete is typically measured at the free and loaded ends by using displacement 

transducers. The slip, therefore, is the relative deformation between the concrete zones where 

the transducer is supported, and the section of the FRP bar where the other extremity of the 

sensor is connected. This means that the value recorded by this sensor is always affected by 

the deformation of the concrete zone supporting the transducer, which is a quantity difficult 

to obtain with accuracy. Additionally, bonding strain gauges to the FRP bar along the 

embedment length is another common alternative to measure indirectly the slip. In this case, 

the slip variation along the embedment length can only be representative if a reasonable 

number of strain gauges are applied, which has, however, a detrimental effect on the bond 

conditions between the bar and the surrounding concrete. Furthermore, the strategy of 

converting strain values from these strain gauges into a slip concept between bar and 
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surrounding materials is quite arguable, and only admissible if negligible deformation is 

assumed for the surrounding concrete. Considering all these aspects, a local bond-slip 

relationship only exists, and therefore considered as a material property, when the 

deformation and damage in the surrounding concrete is much smaller than the deformation 

in the FRP bar. This means that a local bond-slip relationship is a material property only if 

assessed from experimental data corresponding to FRP-concrete bond length short enough 

to avoid significant deformation and damage in the surrounding concrete. For the other cases 

the bond-slip relationship is a structural property, since the sensors are affected by the 

relevant deformation and damage formed in the surrounding concrete. Furthermore, due to 

the crack arrestment provided by the fibers bridging the micro-cracks, the damage due to 

crack formation in the surrounding concrete became limited. Therefore, for modeling the 

bond behavior between the GFRP bars and the SFRSCC considered in the present work, the 

bond-slip relationship derived from the tests with the lowest embedment length is 

recommended.  

Theoretical bond strength and its corresponding slip: taking the results from Table 3-6, 

which were obtained from inverse analysis, the influence of the bond length ( fL ) on the 

value of the bond strength ( m ) is represented in Figure 3-25a. The parameter m  shows 

tendency to decrease with the increase in fL  for a fixed SFRSCC cover thickness and type 

of GFRP bar. Additionally, the value of m  in case of 30 mm concrete cover was higher than 

that of 15 mm. It was also higher in deformed bar rather than in smooth bar’s surface. 

However, in case of 15 mm concrete cover thickness, m  was similar for both types of GFRP 

bars, because the relatively low confinement provided by this SFRSCC cover thickness is 

not enough to mobilize the advantages of deformed bar surface characteristics. Hence, cover 

thickness higher than about 15 mm (>1.25Ø) is recommended for deformed GFRP bars in 

order to attain higher magnitude of bond strength ( m ). 

The influence of increasing fL  on the slip at the end of the plastic phase, 2 , is also shown 
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in Figure 3-25b. By increasing fL , 2  increased for both types of GFRP bar. This means 

that 2  is another parameter of the bond-slip constitutive law that increased with increase in 

fL  for the same type of bar, SFRSCC and SFRSCC cover thickness. 

 
Figure 3-25: (a) The analytical bond strength and (b) the corresponding slip at the end of the 

plastic phase versus the variation of bond length 

3.4.3 Parametric study 

Hereafter, a parametric study was carried out to evaluate the influence of some involved 

parameters on the maximum pullout force ( maxF ), namely: the bond shear strength ( m ) and 

its corresponding slips ( 1  and 2 ), bond length ( fL ), longitudinal Young’s modulus of the 

bar ( fE ), and the slip corresponds to the end of softening phase ( 3 ) of bond-slip 

constitutive law (see Figure 3-13). The study comprised six stages and for each stage, the 

influence of one parameter on maxF  was appraised by considering three different values for 

fL  (5, 10 and 20db bond length) while a constant value was given to the rest of the 

parameters. The range of given values to the parameter at each stage are written in Table 3-7. 

The initial bond stress ( 0 ) and bar diameter ( fd ) considered as 1.0 MPa and 12 mm in all 

cases, respectively. The results of the parametric study are plotted in Figure 3-26(a) to (f). 

As shown, the maximum pullout force, maxF , is significantly influenced by fL  and m  (see 

Figure 3-26a and b). The influence of 1  and 3  depends on the value given to δ2. When the 
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difference values of δ2 and δ1 (or δ2 and δ3) are small, their influence on maxF  is more visible 

(see Figure 3-26c and e). In general, the impact of all these slip values and also the magnitude 

of fE  on maxF  are not significant when the 20f bL d . 

Table 3-7: Values of parameters adopted for parametric study 

Study 
bd  0  m  R  1  2  3  fE  fL  

(mm) (MPa) (MPa) (MPa) (mm) (mm) (mm) (GPa) (mm) 

1 12 1 5-25 0.5
m  0.1 0.2 3.0 60 (5-30) bd  

2 12 1 14-18 0.5
m  0.1 0.2 3.0 60 (5-30) bd  

3 12 1 18 0.5
m  0.01-0.5 (1.0-3.0) 1  3.0 60 5,10, 20 bd  

4 12 1 18 0.5
m  0.1 0.1-2 3.0 60 5,10, 20 bd  

5 12 1 18 0.5
m  0.1 (0.1-0.5) 3  1.0-5.0 60 5,10, 20 bd  

6 12 1 18 0.5
m  0.1 0.2 3.0 30-65 5,10, 20 bd  

          

3.4.4 Theoretical development length 

The minimum transferred bond length required to reach the ultimate tensile stress ( fu ) 

in the bar can be predicted by means of the proposed bond model. Based on the results of 

the bond test, the minimum development length of the GFRP bars will be higher than 20 bd  

since no tensile rupture was reported for the GFRP bars in the pullout bending tests (with an 

exception of one specimen). On the other hand, according to the paramedic study presented 

in the previous section, among the set of local bond-slip law’s parameters, only fL  and m  

showed significant influence on the maximum pullout force. Therefore, m  was defined as 

function of the bond length ( fL ) in the proposed bond model. Accepting exponential fit for 

the m fL  , m  can be estimated with the following expression: 

 2
1( ) ( )

b
m f fL b L   (3-80) 

where 1b  and 2b  are the constant values fit the equation with the test results of different bond 

length (see Figure 3-25a). By imposing Eq. (3-80) into the model instead of m , the 

maximum pullout force is obtained for whatever value of fL . The other parameters adopted 
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in the bond model are summarized in Table 3-8. 

 
Figure 3-26: Appraisal of influence of (a) the maximum bond stress, (b) bond length, (c) slip 

at the end of elastic phase (δ1), (d) slip at the end of plastic phase, (e) slip at the end of 
softening phase, and (f) Young’s modulus of the bar on the maximum force transferred 
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Table 3-8: The parameters adopted in the model to obtain the maximum tensile stress for 
whatever value of the bond length 

Type of GFRP  bd  fE  1  2  3  0  
m * 

R  
1b  2b  

  (mm) (GPa) (mm) (mm) (mm) (MPa) (-) (-) (MPa) 

Deformed bar C15: 13.08 56.0 0.10 0.50 3.0 1.0 55.41 -0.276 0.5
m  

        (R2=0.96)**  

 C30: 13.08 56.0 0.10 0.50 3.0 1.0 86.70 -0.323 0.5
m  

        (R2=0.99)  

Smooth bar C15: 12.36 49.0 0.10 0.50 2.0 1.0 58.61 -0.291 0.5
m  

        (R2=0.95)  

 C30: 12.36 49.0 0.10 0.50 2.0 1.0 100.09 -0.373 0.5
m  

        (R2=0.99)  

* Obtained from Eq. (3-80); ** Coefficient of determination; 

The achievable theoretical tensile stress ( f ) for whatever value of ( f bL d ) obtained 

from the bond model is plotted in Figure 3-27. These results were also compared with those 

values calculated from the existing formulations of several codes by means of the following 

equations for given f bL d and bC d : 

 
'0.083

(13.6 340) (ACI2006)
c f f
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1 4

1
1.13 ( )( ) (CSA 2000)f

f c
b b

L C
f

k k d d
    (3-84) 

where   is modification factor which considered as 1.0 for test specimen’s condition. The 

parameter C  indicates the value of concrete cover thickness in millimeters. The compressive 

strength ( cf  ) of SFRSCC reported in Table 3-3. The parameter maxC  is the maximum 

horizontal distance from the bar to concrete surface which equals to 69 mm for position of 

the GFRP bars in the cross-section of the experimental pullout. The parameters 1k  and 4k  

in Equation presented by CSA 2000 are bar location and bar surface factors, respectively. 

The former equals to 1.0 for the installation of the GFRP bars in the test specimens and the 
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later is the ratio between the bond strength of FRP bars to that steel bars with the same 

diameter, but not greater than 1.0. Here, the parameter 4k  is also considered as 1.0. The 

equation given by the CEB-FIB Model Code 2010 is originally used for steel bars; however, 

this equation is also recommended for FRP bars as internal reinforcement for concrete (fib 

Bulletin 40 2007). Note that the confinement effect provided by the transverse reinforcement 

was neglected in the above equations since no stirrup was applied to the test specimens, in 

spite of using SFRSCC. In general, the recommendations included in ACI, JSCE, CEB-FIB 

and CSA do not predict the experiments, particularly for the case of the lower concrete cover 

( 1.25bC d  ). From the obtained results, it can be concluded that these formulations might 

not be straightforwardly considered for the types of GFRP bar and SFRSCC, which were 

used in this present work. 

 
Figure 3-27: The tensile stress of GFRP bars versus the variation of ratio between its bond 

length and bar diameter 

Based on the obtained results, for deformed GFRP bar, the minimum bond lengths 

required to reach the fu  (1350 MPa reported by supplier) are around 38.5 bd  and 30 bd  for 

1.25bC d   and 2.5bC d  , respectively. These values for smooth GFRP bar (with fu  of 

around 1000 MPa specified by the supplier) are 26.5 bd  and 20 bd . Note that the maximum 
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tensile stress obtained in the test for smooth bar were close to 1000 MPa in case of 20 bd  

bond length and 30 mm SFRSCC cover; however, no rupture was reported in the bar. That 

means fu  would be greater than the value reported by the manufacturer. 

3.5 Summary and conclusions 

The bond performance between two types of GFRP bars and steel fiber reinforced self-

compacting concrete (SFRSCC) was investigated by performing thirty-six pullout bending 

tests. The influence of bar diameter (8 mm and 12 mm) and surface configuration (ribbed 

versus sand-coated), concrete cover thickness (15 mm and 30 mm), and bar embedment 

length (5Ø, 10Ø and 20Ø, where Ø is the bar diameter) on the bond performance was 

investigated. From the obtained experimental results the following main remarks can be 

pointed out: 

 In general the specimens failed by debonding, indicating that the bond length to 

attain the ultimate tensile strength of the bars is higher than 20Ø for the two types 

of GFRP bars when embedded in the adopted SFRSCC; 

 For the specimens with a concrete cover of 15mm, mainly in those of higher bar 

diameter, a single crack was formed in the alignment of the bars, which had a 

detrimental effect on the bond performance of these specimens. However, 

splitting failure never occurred because fiber reinforcement mechanisms avoided 

the degeneration of micro into macro-cracks; 

 By observing the surface of the bars after the experimental tests it was concluded 

that the bond failure was, in general controlled by the shear resistance of GFRP 

surface layers. However, in the type A bar of specimens where a single splitting 

crack was formed, a mixed damage configuration in the bar was observed, with 

scratched ribs on the top surface of the bar and inclusions of cement paste in 

between the GFRP ribs at the bottom part of the bar. This type of failure mode 

was more prone in the bars of higher flexural stiffness surrounded by smaller 

concrete cover thickness; 
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 By increasing the bar diameter and the bond length, the maximum pullout force 

become limited by the SFRSCC splitting strength, which increased with the 

concrete cover thickness. The concrete cover had, in fact, an important role on 

the bond behavior of GFRP-SFRSCC, since the maximum average bond shear 

stress for both types of GFRP bars (smooth and ribbed surface) increased with 

the SFRSCC cover; 

 By increasing the concrete cover the post-peak pullout force increased, and 

consequently the average residual bond stress as well, which contributes for a 

better bond behavior by reducing crack width and crack spacing. The higher 

pullout force in the post-peak phase evidenced by the type A bar can also be a 

consequence of the higher frictional resistance provided by the ribbed surface 

characteristics of this type of bar; 

 Type A bar had a higher bond stiffness and peak pullout force than type B bar, 

which is not only a consequence of the surface characteristics of these bars, but 

also the larger stiffness of the type A bar. 

Additionally, a theoretical bond model was developed to calibrate the parameters which 

define a multi-linear bond shear stress–slip relationship (    ) able to estimate the bond 

behavior between SFRSCC and GFRP. The model involved data from the experimental tests, 

and using an analytical-numerical algorithm to solve the governing equation on bond 

phenomenon of the longitudinal bars. The proposed algorithm showed good accuracy 

comparing with the experimental result of bending pullout tests obtaining the distribution of 

the bond shear stress and slip over the bond transfer length. Due to the complexity of taking 

concrete deformation in the second-order differential equations, the relative slip (  ) was 

assumed to be equal to bar’s elongation resulting that the local     is dependent on the 

bond length. When the bond length is increased, the pullout force and consequently the force 

transferred to the surrounding concrete increases and lead to increase the amount of concrete 

damages over the interface which is normally formed as some inclined cracks over the 

embedded bar to concrete. A “material” versus “structural” bond-slip property was 
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introduced. A local bond-slip law is a material property only when it is derived from pullout 

tests where the deformation and damage of the concrete surrounding the embedment FRP 

bar is marginal compared to the deformation of the FRP bar. This law can be used as the slip 

component of the constitutive law of an interface finite element, and a robust and reliable 

model should be adopted for modeling the behavior of the surrounding concrete up to its 

collapse. In the remaining cases the bond-slip relationship is a structural property. 

The bond strength, which was theoretically obtained from the proposed model, was 

utilized to determine the development length of the GFRP bars at the ultimate limit state 

failed by tensile rupture in the bar. The values obtained by the model for the types of GFRP 

bars and concrete considered in this study showed a large discrepancy with the values 

recommended by the guideline of ACI committee 440 (American Concrete Institute ACI 

2006), Japan Society of Civil Engineers (JSCE, 1997), CEB-FIB Model Code 2010 and 

Canadian Standards Association (CSA, 2000). That means, the recommendations by these 

guidelines may not be straightforwardly used for the reinforcing system adopted in this 

study. 
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Notations 

fA  area of the embedded bar cross section 
fE  Young’s modulus of embedded bar 

exp
FA   

area under the experimental curve of F   
cmrf  the reference compressive strength 

Model
FA   

area under the theoretical curve of  F   cmif  the average compressive strength of the ith   

concrete batch 

sA  constant in the expression of the softening 

phase transfer length 
cf   the compressive strength of concrete 

sB  constant in the expression of the softening 

phase transfer length 
F  value of pullout force transferred by bond 

length 

1b
 

first constant value of fitting equation 

expressed 
m fL  relationship 

2F  value of pullout force transferred by elastic 

and plastic bond phases over the bond length  

2b
 

second constant value of fitting equation 

expressed 
m fL   relationship 

3F  value of pullout force transferred by elastic 

and plastic and softening bond phases over 

the bond length  

C  concrete cover thickness from the bottom 

surface 1
eF  

maximum value of force transferred in the 

elastic phase in case of infinite bond length 

maxC
 

maximum concrete cover thickness from the 

concrete surface 

eF  value of force transferred in the elastic phase 

in case of infinite bond length 

sC
 

constant in the expression of the softening 

friction transfer length 

fF  value of force transferred in the friction 

phase in case of infinite bond length 

1
eC  

first integration constant for the elastic phase 
maxF

 
value of the maximum pullout force 

transferred by prescribed bond length (
fL ) 

2
eC  

second integration constant for the elastic 

phase 2
PF  

maximum value of force transferred in the 

plastic phase in case of infinite bond length 

3
eC  

constant value for the elastic phase PF  value of force transferred in the plastic phase 

in case of infinite bond length 

1
fC  

constant value for the friction phase 
3
sF  

maximum value of force transferred in the 

softening phase for the infinite bond length 

2
fC  

first integration constant for the friction 

phase 

sF  value of force transferred in the softening 

phase in case of infinite bond length 

3
fC  

second integration constant for the friction 

phase 
resF  residual pullout force by residual bond shear 

stress over bond length (
fL ) 

1
pC  

constant value for the plastic phase J  constant in the governing differential 

equation with unknown ( )x  

2
pC  

first integration constant for the plastic phase k1 bar location factor in Eq. (3-84) 

3
pC  

second integration constant for the plastic 

phase 

k4 bar surface factor in Eq. (3-84) 

1
sC  

first integration constant for the softening 

phase 
frl  length of steel fibers 

2
sC  

second integration constant for the softening 

phase 
eL  embedment length of reinforcing bar 

3
sC  

constant value for the softening phase 
fL  available finite bond length 

bd
 

diameter of embedded bar 
1trL  maximum invariant value of transfer length 

that can undergo elastic phase 

e  error between experimental and theoretical 

pullout force-slip curves 
2trL  maximum invariant value of transfer length 

that can undergo plastic phase 



Page | 84 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

Notations 

3trL  maximum invariant value of transfer length 

that can undergo softening phase 
1  first value of slip corresponding to peak of 

local bond stress-slip relationship 

trL  transferred bond length corresponding to 

whatever value of the imposed slip 
2  second value of slip corresponding to peak of 

local bond stress-slip relationship 

e
trL  

transferred bond length undergoing elastic 

phase 
3  slip corresponding to the start of frictional 

bond phase in bond stress-slip relationship 

f
trL  

transferred bond length undergoing friction 

phase 
F  free end slip computed at free loaded end 

s
trL  

transferred bond length undergoing softening 

phase 
m  

slip experimentally recorded at the loaded 

end corresponding to Fmax 

p
trL  

transferred bond length undergoing plastic 

phase 
L  imposed slip at the loaded extremity of the 

bar 

fps  slip at free loaded end slip corresponding to 

maximum pullout force 
f  tensile strain of reinforcing bar 

lps  slip at loaded end corresponding to 

maximum pullout force 
  constant entering the governing differential 

equation for elastic phase 

fs  Slip at free loaded end 
f  tensile stress of embedded bar 

ls  Slip at loaded end slip ( )   
local bond shear stress-slip relationship 

LVDT1s  The values of slip recorded by LVDT1 
R  

residual bond shear stress at the friction 

phase of local bond 

  modification factor for recommended 

equation from ACI 
max  maximum average bond stress of embedded 

bar 

  constant entering the governing differential 

equation for the softening phase 
( )x  bond shear stress distribution over 

trL  

i  factor to normalized the experimental value 

of average maximum bond shear stress  
0  

chemical initial bond stress of GFRP-

SFRSCC 

  indication for embedded bar’s diameter in 

the pullout bending test 
m  peak stress of the local bond stress-slip 

relationship 

fr  diameter of steel fibers 
res  residual average bond stress of embedded bar 

  relative slip between reinforcing bar and 

surrounded concrete along the bond length 

  angle necessary to determine the softening 

subject amount of transfer length 
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 Chapter 4 

4 TENSION-STIFFENING OF FRC REINFORCED WITH HYBRID 

FRP/STEEL BARS 

4.1 Introduction 

From the previous chapter it became clear that the interaction between Fiber Reinforced 

Concrete (FRC), Fiber Reinforced Polymer (FRP) and steel bars should be accounted for a 

reliable prediction of the behavior of hybrid FRC members. For this purpose, a FRC member 

reinforced with FRP and steel bars (hybrid reinforcement) was subjected to uniaxial tension, 

and its cracking and tension stiffening behavior was theoretically studied by developing a 

tension-stiffening model for Fiber Reinforced Concrete (FRC) containing both FRP and steel 

bars. The model was developed through an explicit analytical bond formulation based on the 

bond model developed in the previous chapter that was also adopted in this chapter for both 

steel and FRP bars. The adopted multi-linear constitutive law in the tension-stiffening model 

was similar to the bond-slip previously used in the bond model in Chapter 3. However, a 

“hardening” bond phase was also considered in addition to the elastic phase, prior to reach 

the plastic phase. In fact, two linear phases were adopted in the bond-slip law (elastic and 

hardening bond phases) in order to increase the predictive capability of the bond model to 

simulate efficient range of slipping for reinforcing bars in FRC applications. The proposed 

tension-stiffening model was capable of simulating both the fiber reinforcement contribution 

and the yielding stage of steel bar at cracked section. 
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Additionally, a FE Modeling was carried out using a multi-directional fixed smeared 

crack approach for modeling cracking process in FRC, and adopting interface finite elements 

to simulate the bond behavior between reinforcements and FRC, whose constitutive model 

was defined from the aforementioned bond law. 

Finally, an extensive parametric study was performed by using the analytical model, and 

the influence of the involved parameters on the tension-stiffening and cracking behavior of 

hybrid FRP/steel FRC tensile member was investigated. 

4.2 Tension-stiffening model 

A FRC member is considered to be reinforced with a constant reinforcement ratio of FRP 

and steel bars along its longitudinal axis, which is subjected to uniaxial tension load in order 

to analyze the tension-stiffening effect and its cracking behavior. To prevent bending effects 

in the member, symmetric arrangement of the reinforcements is assumed in the FRC cross-

section. 

4.2.1 Crack formation stage 

When the load is applied to the member, it is transmitted to the FRC throughout a part of 

embedded length of reinforcing bar in which the total bond shear force over this distance is 

in static balance with the applied load. This part of embedded length can be named as 

transferred bond length ( trL ), which depends on the bond mechanism between the 

reinforcing bars and surrounding FRC. The part of the member beyond the trL  behaves as a 

real composite element (“tie region” in Figure 4-1), where the slip (   ) between the bars and 

surrounding FRC is null and the total applied force is shared between them in accordance 

with their axial stiffness. Since the total applied load is transferred throughout two different   

trL  that belong to FRP and steel bars, the higher value is adopted to calculate the tie region. 

As long as the FRC tensile stress in the tie region is less than its tensile strength, ctf , the 

member remains un-cracked. At this stage, the fibers are almost inactive. Once ctf  is reached 

in the tie region, a crack is formed over the weakest section (it is assumed that this section 
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is crL   from the specimen’s extremity, see Figure 4-1). At this cracked section, the tensile 

stress of concrete matrix tends to drop to zero with the crack opening, while the tensile 

stresses in the bars and discrete fibers, which are now active, tend to increase. By increasing 

the tensile stresses in the reinforcements, the reinforcing bars and fibers start slipping out 

from the surrounding concrete matrix, leading to an increase of the crack width. The total 

force is redistributed to the concrete, and if once again the tensile strength is reached, a 

second crack is formed. At this stage, the force transferred by fibers at the first cracked 

section also contributes to the formation of the second crack. This process, which named 

“crack formation stage” (CEB-FIB Model Code 2010), continues until all cracks are formed 

along the member and no tie region exists anymore. 

 
Figure 4-1: The transferred bond length and tie region in the primary crack formation stage 

of FRC tensile member reinforced by hybrid FRP-steel bars 

4.2.2 Bond formulation and bond-slip law of the reinforcing bars 

An infinitesimal length dx  of the tensile member at a distance x (see Figure 4-1) is 

shown in Figure 4-2. The equilibrium of this element can be expressed by 
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  ( ) ( ) ( ) ( )c cf c F F s sx x A x A x A F      (4-4) 

where cf  is the local tensile stress of concrete due to the force transferred to the concrete 

matrix by the steel fibers at cracked section in the member. The parameters c , s  and F  

are the tensile stress of concrete matrix, steel bar and FRP bar, respectively. Hereafter, 

subscript “s” is used to designate parameters for steel bar, while “F” is for FRP bar. The 

perimeter of the steel and FRP bars is designated by sP  and FP , respectively, while the cross 

sectional area of these bars is sA  and FA . The concrete axial stiffness becomes c cE A . 

 
Figure 4-2: Infinitesimal dx of the FRC tensile member reinforced by steel and FRP bars (only 

half part is represented) 

The slip (  ) between the reinforcements and FRC is defined by the following equations 

for steel and FRP bar, respectively. 
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where u  and   represent elongation and strain, respectively. By substituting Eqs. (4-1) and 

(4-3) into Eq. (4-5), and also Eq. (4-2) and (4-3) into Eq. (4-6) yield the following set of 

nonlinear differential equations governing the bond problem of the member: 
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where n is the modular ratio ( s s cn E E , F F cn E E ), and ρ is the reinforcement ratio, 

dx
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being s s cA A  and F F cA A  . It should be noticed that the materials are assumed to 

follow the Hook’s constitutive law. Moreover, in the equilibrium conditions expressed in 

Eqs. (4-1) to (4-3), the resisting tensile stress due to the concrete softening at cracked section 

is neglected since this value drops asymptotically to zero for a very small slip of the 

reinforcements. 

To simplify the complexity of solving the set of second-order nonlinear differential 

equations presented in Eqs. (4-7), the elastic deformation of surrounding concrete matrix is 

neglected against the reinforcement’s deformation at the interface ( s cu u  and F cu u ). 

By this assumption, Eqs. (4-5) and (4-6) become 

 
2 2

2 2

( ) ( ) ( ) ( )
,s s F Fd x d x d x d x

dx dxdx dx

   
   (4-8) 

Hence, Eq. (4-7) is derived as 
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Depending on the bond-slip relationship between reinforcing bar and concrete, Eqs. (4-9) 

can be solved explicitly or by using a numerical procedure (Bianco et al. 2009). There are 

several bond-slip constitutive laws in the literature that have been proposed for FRP 

reinforcing bars, namely Malvar Model (Malvar 1995), mBEP Model, CMR Model 

(Cosenza et al. 1997), the model proposed by CEB-FIB Model Code 2010, and etc. In all 

these models, nonlinear formula has been adopted for the first branch of the constitutive law. 

Thus, by substituting any of these models in Eq. (4-9), it does not lead to an explicit solution. 

Then, numerical procedure is required to solve the equation. From this standpoint, a 

multilinear bond-slip diagram, consisting of two linear ascending branches prior to the peak 

bond shear stress, is adopted in the present study to solve Eq. (4-9) for both steel and FRP 
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bars. This multi-linear bond-slip diagram is shown in Figure 4-3a, and is mathematically 

represented by the following equation: 
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 (4-11) 

 
Figure 4-3: Local bond-slip constitutive laws for steel and FRP bars: (a) adopted for the 

proposed analytical model and (b) used in FE model 

4.2.3 Contribution of discrete fibers 

Once the crack formed, the fibers start pulling out from the crack plane with increase in 

crack width. In order to calculate the force transferred by these discrete fibers at the cracked 

plane, two methods can be used according to the data available for modeling the fiber 

reinforcement contribution. If the fiber bond-slip behavior is known, the following equations 

represent the bond problem formulation of each fiber at cracked plane: 
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where the subscript “fr” designates the parameters  for discrete fibers with the same concepts 

as defined previously for reinforcing bars. The local reference of frx  origins at the extremity 

of the effective bond length of a fiber crossed by the cracked plane (see Figure 4-4a). 
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According to the literature, this fiber effective bond length is statistically considered 0.25 of 

total length (Wang 1989, Cunha 2010), leading to pulled out of fiber at one side of the 

cracked plane ( fr crw  ), therefore, Eq. (4-12) can be solved by the following boundary 

conditions 

 
   

 

0 0 0

0.25

fr
fr fr fr

fr fr fr cr

d
x x

dx

x l w


    


  

 (4-13) 

where frl  is the fiber length and crw  is the crack width. Based on what bond-slip constitutive 

law is adopted for fiber, Eq. (4-12) can have an explicit solution, or a numerical procedure 

is required (e.g. Runge-Kutta-Nystrom method (Krayszing 1993). Cunha et al. (2010) 

presented different bond-slip constitutive laws for steel fibers depending on the angle 

between fibers and crack plane they are crossing, as well as the type of steel fibers. 

Therefore, by adopting a proper bond-slip law, the pullout force of steel fibers can be 

calculated using the analytical model proposed by these authors. Lee et al. (2011) developed 

a model named “Diverse Embedment Model (DEM)” to calculate the tensile behavior of FRC 

by considering the pullout characteristics of fibers, as well as the effective orientation of 

fibers in regards to the crack plane. Abrishambaf et al. (2013) also compared different post-

cracking response of steel fiber Reinforced Self-Compacting Concrete (SFRSCC) by taking 

into account fiber’s orientation towards the crack plane. Once the pullout force of each fiber 

is calculated, the total force of fibers can be determined by considering an average number 

of fibers at cracked section in accordance with their volume fraction in concrete mix. 

 
Figure 4-4: Contribution of discrete fibers over a cracked plane: (a) Bond mechanism of each 

fiber with concrete matrix, and (b) FRC post-cracking response 
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On the other hand, if the uniaxial behavior of FRC in tension is known, the contribution 

of fibers may be measured alternatively by subtracting the tension softening diagram of 

concrete from the post-cracking diagram of FRC. The tension softening diagram of concrete 

can be estimated according to the CEB-FIB Model Code 2010 or from available 

experimental data, by considering the effective length equal to distance between two cracks. 

This concept is shown in Figure 4-4b. In the present study, the contribution of fibers is 

calculated based on the average post-cracking response of FRC, which can be obtained by 

performing uniaxial tensile tests or from inverse analysis considering the results recorded in 

three point notched beam bending tests (Pereira et al. 2012, Barros and Sena Cruz 2001). 

Therefore, the total force transferred to the concrete matrix by fibers is calculated by 

 ( ) ( )cr
c fr ct cr cV w A    (4-14) 

where cr
ct  is the concrete crack tensile stress as function of crack width, crw . 

4.2.4 Bond boundary conditions and solutions for reinforcing bars 

Bond mechanism of a reinforcing bar crossing by two consecutive cracks can be analyzed 

solving Eq. (4-9) using boundary condition as follow: 

  0, 0
,

r

b r cr

x
x L
  
   

 (4-15) 

where x  origins from the midway section between two consecutive cracks, bL  is the bond 

length that is equal to 2crL  being crL  the distance between two cracks, and cr  is the slip at 

crack section. Based on Eqs. (4-5) and (4-6), the strain of reinforcing bars at the midway 

section is equal to the derivation of the slip at this point (i.e. ( 0)m
r d x dx    ). The total 

force that is transferred to the concrete matrix by the reinforcing bars is calculated using the 

difference of the tensile strain of reinforcing bars at cracked section ( ( )cr
r bd x L dx    ) and 

at midway section, multiplying by the reinforcing bar’s axial stiffness: 

 ( ) ( )cr m
c r r r r rV E A    (4-16) 

where ( )c rV  is the total force transferred to the surrounding concrete matrix due to the bond 

action of reinforcing bars. Note that the subscript “r” represents parameters for both 
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reinforcing bars, FRP and steel bars. 

During the “crack formation stage”, where the tie region exists in the member, bond 

mechanism at one side of the last formed crack (designated by letter “R” meaning right side) 

undergoes “Infinite Bond Length” (IBL) boundary conditions (see Figure 4-5). IBL 

represents a bond boundary condition where the trL  increases with the pullout force in which 

the slip and its derivative at the extremity of trL  are always null (i.e. ( 0) 0Rx   , 

( 0) 0R Rd x dx   ). 

 
Figure 4-5: Bond mechanism of reinforcing bars in the cracked FRC tensile member 

On the other hand, another side of the last formed crack (designated by letter “L” 

meaning left side) undergoes “Finite Bond Length” (FBL) boundary conditions. FBL 

represents bond boundary condition where the transferred bond length ( trL ) equals to a finite 

bond length (for case of this study / 2b crL L ) and slip at the extremity of this bond length is 

null, while its derivative is not null (i.e. ( 0) 0Lx   , ( 0) 0L Ld x dx   ). Under this 

consideration, at the last formed cracked plane two bond conditions govern the bond 

formulation, where the slips on left and right sides of this crack are not necessarily equal 

(Figure 4-5), and, therefore, Eqs. (4-9) is solved by using the following boundary conditions: 
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side ( )Right
cr  of the last formed crack is not necessarily equal, but due to the compatibility 

of strain at this section, the derivatives of the slip at right and left are equal to the reinforcing 

bar’s strain, cr
r by 

 ( ) ( )cr
r Right Left

R L

d d

dx dx

 
    (4-18) 

By solving the governing equation using FBL and IBL boundary conditions, for whatever 

value of cr , slip distribution, ( )x , reinforcing bar’s tensile strain, ( )r x , and bond shear 

stress, ( )x , as well as the force transferred to concrete by the bond action, ( (x))c rV , are 

calculated throughout crack spacing ( crL ), as will be explained in the following sections. 

The formulations for IBL conditions and its solving procedures are described in detail in 

Chapter 3 for the adopted four-linear bond-slip law (Figure 3-13). However, in Annex 4A, 

the solving formulation derived for the new “hardening” phase is briefly explained. The 

formulation for FBL conditions is summarized hereafter. Note that the FBL condition 

described in the previous chapter was with different boundary conditions that only explain 

the free pullout process of a reinforcing bar (allowing free end slip).  

According to the adopted bond-slip law, see Figure 4-3a, five different bond phases are 

considered during debonding progress, namely: 

1) Elastic phase (e): 1cr    ; 

2) Hardening phase (h): 1 2cr     ; 

3) Plastic phase (p): 2 3cr      ; 

4) Softening phase (so): 3 4cr     ; 

5) Frictional phase (f): 4cr   . 

Based on these five bond-slip phases, substituting Eq. (4-11) into Eq. (4-9), and taking 

FBL boundary conditions indicated in Eq. (4-17) the closed-form solution of Eq. (4-9) for 

each reinforcing bar can be expressed by 
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where the definition of ex , hx , px , sox , fx , e
trL , h

trL , p
trL , so

trL , and f
trL  can be found in 

Annex 4B, as well as how the slip solutions of eC , hC , pC , soC and fC  are determined. Note 

that these solutions are obtained for whatever value of cr  and the transferred bond length of 

each bond phases (i.e. e
trL , h

trL , p
trL , so

trL , and f
trL ). 

By considering the compatibility conditions of the strain at the connection point of two 

consecutive bond phases (found in Annex 4B), as well as the following conditions of the 

bond length ( 1
2b crL L ) with respect to the different stages of cr , the values of e

trL , h
trL , p

trL

, so
trL and f

trL  are calculated for whatever value of cr . Therefore, by imposing , theses 

transferred bond lengths and the slip solutions are found. 

- Stage 1 ( 10 cr    ): the total bond length undergoes only the elastic bond phase, i.e. 

e
b trL L ; 

- Stage 2 ( 1 2cr     ): the total bond length undergoes the elastic and hardening bond 

phases, i.e. e h
b tr trL L L  ; 

- Stage 3 ( 2 3cr     ): the total bond length undergoes elastic, hardening and plastic 

bond phases, i.e. e h p
b tr tr trL L L L   ; 

- Stage 4 ( 3 4cr     ): the total bond length undergoes elastic, hardening, plastic and 

softening bond phases, i.e. e h p so
b tr tr tr trL L L L L    ; 

- Stage 5 ( 4cr   ): the total bond length undergoes all the bond phases, 

i.e. e h p so f
b tr tr tr tr trL L L L L L     . 

If the compatibility conditions of the strain at the connection point of two consecutive 

bond phases (e.g. elastic-hardening or hardening-plastic) are considered, the values of e
trL , 

cr
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h
trL , p

trL , so
trL and f

trL  can be calculated for whatever value of cr . The compatibility 

conditions of each solving stage are included in Annex 4B. 

By imposing a value of  and using the above compatibility conditions, the transferred 

bond lengths, as well as the slip solutions (i.e.  to ) are found. Once ( )x  is found, the 

distribution of tensile strain in the reinforcing bars and also the bond shear stress are given 

by 
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where rJ  is defined in Eq. (4-10) for both FRP and steel bars, and rE  is the elasticity 

modulus of reinforcing bar. The solving procedure of Eq. (4-9) under FBL boundary 

conditions, and the respective formulations, as well as the flowchart of the FBL algorithm 

are given in detail in Annex 4B. 

4.2.5 Secondary crack formation stage 

Once all the cracks are formed at “crack formation stage”, by increasing the slips at 

cracked sections, the tensile strains of reinforcement at crack, cr
r , and midway section, m

r , 

increase. Note that, at this stage no “tie region” exists in the member, and only FBL boundary 

conditions govern the bond formulation. The total value of the force transferred to the 

concrete matrix by the bond mechanism of the reinforcements (both reinforcing bars and 

fibers) is estimated by 

 ( ) ( ) ( )c t c r c frV V V   (4-21) 

where ( )c frV  is the total force transferred to the concrete matrix by fibers, which is calculated 

by Eq. (4-14). In this equation, the value of crack opening, crw , is estimated as double value 

of reinforcing bar’s slip at cracked section due to the symmetric bond action (Visintin 2012), 

which means: 

 2cr crw    (4-22) 

If the value of ( )c tV  reaches the concrete cracking force, cr ct cV f A  , a new crack is 

cr

1C 10C
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formed in the midway section between two consecutive cracks (e.g. section A in Figure 4-5). 

The bond length associated to this new crack is 4crL , and the symmetric section between 

two cracks is now changed from section A to C (see Figure 4-5). This stage can be named 

as “secondary crack formation stage”. 

4.2.6 Updating bond-slip constitutive law during the analysis 

The proposed local bond-slip constitutive law is valid while the slip is increasing. If the 

slip at a local point of interface tends to decrease,     follows an “unloading” branch. If 

the slip at this point once again tends to increase, it follows a “reloading” branch. This 

unloading/reloading branch can be defined by a single linear branch of stiffness /un reK  that 

depends on the maximum slip reached during the loading phase, which is named as m  in 

this study (see Figure 4-6a). If 10 m    , which means the slip is in the elastic bond phase, 

it is assumed that /un reK  is calculated by , ( )un re e m mK      where ( )m   is the corresponding 

value of the bond shear stress at m  (see Figure 4-6a where 10 m    ). For the cases where 

1m   , which means the slip is in the inelastic bond phase, / / ,un re un re inK K  is assumed to be 

equal to 1 1   similar to the idealized unloading/reloading of inelastic materials discussed in 

the plasticity theory (Jones 2009) (see Figure 4-6a where 1 m   ). Therefore, the value of 

/un reK  is given by the following equation: 
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 (4-23) 

In fact, this unloading/reloading branch defines a permanent bond damage at the interface 

between the reinforcing bar and concrete. This damage is theoretically simulated by an 

irreversible slip, ir , that remains in the interface when the applied load is totally removed 

(see Figure 4-6a). For RC member under direct tension, this unloading/reloading phase may 

occur when a new crack formation stage starts (e.g. “secondary crack formation stage”). 

Figure 4-6b compares the slip distribution at primary and secondary crack formation stages. 

As shown, by forming a new crack (section B in Figure 4-6b), slip at this new crack section 
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tends to increase, while it tends to decrease at the already existing cracks. In order to consider 

the effect of increasing/decreasing of the slip in the theoretical formulation, an updated bond-

slip constitutive law is used at the beginning of each new crack formation stage. This updated 

bond-slip law can be calculated using an average value of slip (named as m ) at 2crx L  

from the previous cracking stage, where x  has its origin from section C (see Figure 4-6b). 

Then the value of irreversible slip, ir , is calculated by: 
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1
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m
ir m m
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 (4-24) 

Figure 4-6a shows all possible updated bond-slip law according to the value of m . 

 
Figure 4-6: (a) Updating bond-slip constitutive law due to the unloading and reloading phase 

of slip and (b) Comparison between the slip distribution over the crack spacing at primary 
and secondary cracking stage 

4.2.7 Effect of steel yielding strain on its bond behavior 

The tensile strain of steel bar at cracked section (
cr
s ) can exceed its yielding strain ( sy ), 

even if the mean value of tensile strain of the member is still less than the yielding strain 

(Lee et al. 2013). This means that the steel bar is locally yielded at the cracked section. The 

yielding strain of steel bar affects its bond behavior (Ruiz et al. 2007). Hence, this effect 

should be considered in the formulation. For this purpose, the bK factor proposed by 

Ruiz et al. (2007) is adopted in this study to modify the bond-slip law of steel bar after 

yielding: 
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 mod ( ) ( )s s b s sK      (4-25) 

where 
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After yielding of steel bar, the force transferred to the concrete by steel, ( )c sV , which 

was previously calculated by Eq. (4-16), is now given by 

 ( ) ( )m cr
c s s sy s s s syV A E        (4-27) 

where sy  is the yielding stress of steel bar, and m
s  is the steel bar’s strain at the midway 

section (see Figure 4-5), which is computed by FBL model (see Annex 4B) by considering 

the modified bond shear stress provided by Eq. (4-25). 

4.2.8 Effect of pre-stress of reinforcing bars 

Applying pre-stress on internal embedded reinforcing bars enhances the structural 

performance of RC beams at serviceability limit states (Soltanzadeh et al. 2014, 

Rezazadeh et al. 2014). The pre-stressing force in RC beams creates an initial compressive 

strain in the concrete tensile zones and a negative camber to RC beam, which delays concrete 

to reach its tensile strength (Rezazadeh et al. 2014). However, for uniaxial tensile member 

with a symmetric arrangement of reinforcements, pre-stress theoretically creates only an 

initial compressive strain that can be estimated from: 

 prepre pre
c s s s F F Fn n        (4-28) 

where pre
c  is the initial concrete compressive strain due to the pre-strain applied to steel (i.e. 

pre
s ) and FRP bars (i.e. 

pre
F ). The force due to the pre-stress of reinforcing bars is transferred 

to the member by the bond mechanism between reinforcing bars and surrounding FRC 

throughout the bond transferred length. The bond transferred length due to the pre-stress of 

reinforcing bars (i.e. pre
trL ) can be calculated using IBL boundary conditions: 
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where x  origins from the extremity of the member where the pre-stress force is released. It 

should be noted that the RC system located beyond pre
trL  behaves as a real composite similar 

to the “tie region”, as previously explained. In the next chapter, Eq. (4-29) will be used to 

derive the bond-slip behavior of reinforcing bars used for hybrid reinforcing system (refer 

to Section 5.2.6 in Chapter 5). 

4.2.9 Analysis procedure  

The algorithm of the analysis procedure, which was described in the previous sections, 

is presented in Figure 4-7. At the beginning, the algorithm calculates the total applied force 

(i.e. F ) by using IBL model for both FRP and steel bars until formation of the first crack 

(Module 1). When first crack is formed, the algorithm calculates the total applied force by 

taking the strain compatibility condition of reinforcing bars, which was presented in 

Eq. (4-18), at right (using IBL model) and left sides (using FBL model) of this crack, as well 

as the contribution of fibers (by using Eq. (4-14), where ( ) ( )Left Right
cr cr crw     ), 

(Module 2). If the value of F  reaches the cracking force of the member ( crV ), the next crack 

is formed. The algorithm repeats the calculation process at the location of this new crack, 

which is now the last formed crack. This process continues until the bond progress of the 

reinforcing bars reaches the extremity of the member, by considering that 

 
1

( )
crn

cr i eff

i

L L


  (4-30) 

where crn  is the number of cracks and effL  is the total embedded length of reinforcing bars 

to the surrounding concrete, which is assumed to be equal to member’s length in the further 

analysis. When Eq. (4-30) is satisfied, no “tie region” exists in the member, hence, the 

algorithm moves to Module 3, where the bond length bL  is calculated as half of the average 

value of crack spacing from Module 2: 
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Figure 4-7: The algorithm of crack analysis procedure for hybrid steel/FRP reinforced FRC 

tensile member 
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Then, for each increment of crw , the total applied force is calculated by 

 ( )r c frF F V   (4-33) 

where rF  is the total tensile force of the reinforcing bars, which is given by 

 
cr cr cr

s s s F F F s sy
cr crr

s sy F F F s sy

E A E A
F

A E A

      
 

     
 (4-34) 

where cr
s  and cr

F  are computed by running the FBL model described in the Annex 4A, and 

( )c frV  is determined by Eq. (4-14). 

Additionally, the total value of force transferred to the concrete matrix by the 

reinforcements, ( )c tV , is calculated using Eq. (4-21). If ( )c tV  reaches the cracking force of 

the member, i.e. crV , the midway section (A in Figure 4-5) cracks, in which the number of 

cracks becomes double, and the bond length becomes half of its value. The bond-slip law of 

the reinforcing bars is updated based on the value of m , which was described in 

Section 4.2.6. 

Module 3 is repeated until FRP bar’s strain meets its rupturing strain. If steel bar yields 

before, the bond shear stress of steel bar is modified based on Eq. (4-25). In the model, a bi-

linear elasto-plastic stress-strain relationship is considered for steel bar in tension. It is 

assumed that the ultimate tensile strain of FRP bar’s ( Fu ) is always reached before the steel 

tensile strain at hardening initiation ( sh ) is attained (Figure 4-8b). 

4.3 Description of finite element (FE) model 

The hybrid FRP/steel FRC tensile member analyzed in the previous section is simulated 

by using Finite Element (FE) models available in FEMIX, a FEM-based computer program 

(Sena Cruz et al. 2007). In this section some relevant information is given about the 

numerical model including FEs and constitutive laws adopted for concrete and 

reinforcements. More description about the modeling approach and the used FEs will be 

given in Chapter 6. The predictive performance of the proposed analytical and FE models 
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are appraised by simulating recent experimental tests dedicated to the tension-stiffening 

phenomenon. 

4.3.1 Finite elements 

Eight-node Plane Stress FEs are used to simulate concrete, with a Gauss-Legendre (G-

L) integration scheme of 2×2, while the reinforcing bars are simulated by using 3-nodes 

Cable 2D elements with 2 G-L integration points. To simulate bond between the 

reinforcements and concrete, 6-nodes 2D Interface FEs are employed by using Gauss-

Lobatto integration scheme of 3 points. 

4.3.2 Constitutive laws for the materials 

A multi-directional fixed smeared crack model described in detail elsewhere 

(Sena Cruz 2004), and available in FEMIX (Sena Cruz et al. 2007), is assigned to the Plane 

Stress FEs to simulate the elasto-cracked behavior of FRC. In this model, a linear and elastic 

constitutive law is adopted for concrete in compression and also in tension prior to crack 

initiation. When the tensile strength is attained in a certain integration point, a four-linear 

constitutive law (the constitutive law shown in Figure 4-8a) is followed in order to simulate 

the post-cracking response of FRC. 

 
Figure 4-8: Constitutive laws of materials in tension: (a) Four-linear stress-strain diagram to 

simulate the fracture mode I crack propagation of FRC and (b) steel and FRP bars 

In this figure, the parameter fG  is the mode I fracture energy of FRC (Barros and 

Sena Cruz 2001) and the parameter bl  is the crack band width, which is assumed equal to 

the square root of the area assigned by each integration point in order to assure that the results 
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are not dependent of the FE mesh refinement. cr
n  and cr

n  are the crack tensile strain and 

stress components, respectively, normal to the crack plane. The coefficients i  and i  

being 1,2,3i   define the transition points of the branches of the diagram. More detail about 

the smeared crack modeling approach for concrete material will be given in Chapter 6. 

The linear-elastic stress-strain diagram represented in Figure 4-8b is adopted for FRP 

bars, where Fu  is the ultimate strain, while an elasto-plastic model (Sena Cruz 2004) is 

employed to simulate the tensile behavior of steel bars, by using the following equation 

(Figure 4-8b): 

 

( )

( )
( )( )

0

s s s sy

sy s sh sh sy s sh

psu ss s
su sh su sh s su

su sh

s su

E

E

   
          


             
   
   

 (4-35) 

where 

 ( ) ( )sy sh sy sh syE       (4-36) 

and sy , sh , su , sy , sh  and su  are defined in Figure 4-8b. The parameter p  normally 

ranged between 1 and 4. 

4.3.3 Interface behavior 

The sliding component of the constitutive model for the Interface FEs is defined by the 

bond-slip relationship represented in Figure 3b, which is characterized by the following three 

branches (Pepe et al. 2013, Sena Cruz 2004): 

 1

2

1 1 1

2 1 2

2 2

τ ( ) 0

( ) τ τ ( )

τ τ ( )

m

m





        


           


      

 (4-37) 

where 11
1 2 1( )m


     . 

4.3.4 Geometry, mesh and boundary conditions 

The typical scheme of tension-stiffening specimens used in experiments, as well as the 

mesh and geometry of FE model proposed in the present study are shown in Figure 4-9. 
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As shown, the FE model has a line of symmetry through its axis at center of the section. The 

interface elements are located at this symmetric line, where the axial stiffness of the 

reinforcing bar sets as half value. The interface elements are assigned only to the bonded 

area as shown in this figure. 

 
Figure 4-9: Typical scheme for tension stiffening test specimen and FE simulation 

4.4 Model validation 

Two sets of data of RC in direct tension tests have been selected from the literature. The 

first is GFRP-RC carried out by Baena et al. (2011), and the second belongs to the work 

recently carried out by Moreno et al. (2014) on Hybrid Fiber-Reinforced Concrete (named 

as “HyFRC”) containing conventional steel bar. For the second one, the bond-slip law 

suggested by CEB-FIB Model Code 2010 for steel bars is adopted. However, for the first 

one, the local bond-slip law of the used GFRP bar is calibrated by employing the bond model 

proposed in Chapter 3 by fitting the theoretical pullout force versus loaded end slip to the 

experimental results of the direct pullout tests presented by the same authors in 2009 

(Baena et al. 2009). It is worth noticing that the bond length in their tests was five times of 

the GFRP bar’s diameter. The values that define the bond-slip law used in the proposed 

numerical models are included in Table 4-1, Table 4-2 contains the relevant properties of 

the used concrete and FRC, and reinforcements, which were reported by the studies carried 

out by (Baena et al. 2011 and Moreno et al. 2014). 

Additionally, the post-cracking behavior of “HyFRC” is simulated by the diagram 

represented in Figure 4-8a, whose data for its definition ( i , i  and fG ) was obtained by 
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fitting the post-cracking response recorded in the uniaxial tensile tests carried by 

Moreno et al.  (2014). 

Table 4-1: Bond-slip law’s parameters used in the proposed models 

Data source 
 

Specimen’s name 
 

Bond-slip law’s parameters 

1  2  3  4  0  1  m  R  1  2  

(mm) (mm) (mm) (mm) (MPa) (MPa) (MPa) (MPa) (-) (-) 

Baena et al. 2011: GFRP-RC member 

13-170 0.60 2.0 6.5 12.0 3.0 11.5 17.5 3.0 0.30 0.75 
16-170 0.35 1.8 5.5 12.5 3.0 14.0 17.0 5.5 0.35 0.75 
19-170 0.45 1.9 5.0 10.0 2.5 11.0 14.5 4.0 0.40 0.75 

Moreno et al. 2014: Steel-HyFRC member 

HyFRC 0.10 1.0 2.0 11.0 3.0 8.0 14.0 5.6 0.40 0.40 

           

Table 4-2: Geometry and material properties of the test specimens from the literature 

N
a

m
e

 o
f 

sp
e

ci
m

e
n

 
 

Geometry Reinforcement Concrete (or FRC) 

S effL  a × a  Dia. (ρ) |s fE E   |sy fu    ctf  cmf  cE  1 2 3, ,    1 2 3, ,    fG  

(mm) (mm) (mm2) (mm) (%) (GPa) (%) (MPa) (MPa) (GPa)   N/mm 

Baena et al. 2011: GFRP-RC member 

13-170 1300 1200 170×170 13.7(0.51) 37.6 2.05 1.75 48.4 27.3 - - 0.141 

16-170 1300 1200 170×170 16.9(0.71) 41.7 2.47 2.58 48.1 27.3 - - 0.141 

19-170 1300 1200 170×170 19.1(0.99) 40.7 1.60 2.10 56.2 33.3 - - 0.151 

Moreno et al. 2014: Steel-HyFRC member 

HyFRC2 1041 813 127×127 16 (1.2) 192.2 0.23 2.30 31.0 31.33 
0.004,0.014,0.14 

(0.006,0.021,0.14)4 

0.74, 0.85,0.22 
(0.56,0.78,0.22)4 

5.55 

1 Fracture energy calculated according to recommendations of Model Code 2010; 
2 Average results of 4 tested specimens by Moreno et al. 2014; 
3 Not reported by author; calculated according to the recommendations of Model Code 2010; 
4 The values in parentheses correspond to the strict contribution of fibers (see Figure 4-10a); 
5 Calculated by measuring the area under the experimental stress-strain curve and assuming for the crack band width the value 
of 197mm, as reported by Moreno et. al 2012). 

In case of analytical model, the contribution of fibers are obtained by subtracting the 

concrete softening from the given post-cracking response of “HyFRC” (Moreno et al. 2012). 

The concrete softening is obtained by using the bi-linear diagram recommended by CEB-

FIB Model Code 2010. Figure 4-10a shows the contribution of fibers, and the total post-

cracking stress-strain diagram of “HyFRC” that is used in the analytical model and FE 

model, respectively. In Figure 4-10b, Figure 4-11a, b and c the experimental results are 

compared to those obtained by the proposed analytical and FE models. By giving the relevant 

input data that defines the material properties of concrete, reinforcing bar, and the bond-slip 

law’s parameters, the models predict well the experimental results. Moreover, Figure 4-10c 

and Figure 4-11d compare the crack pattern obtained experimentally (in red) and 

numerically (in blue). The FE model predicts fairly in an acceptable way the experimental 
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crack pattern registered in the GFRP-RC specimens. However, in the simulation of the 

tensile response of “HyFRC” the crack pattern obtained by FE model showed some 

differences in terms of number of cracks and crack spacing since the model is not simulating 

the influence of fiber distribution and orientation on the post-cracking behavior of “HyFRC”. 

To take these aspects into consideration, more sophisticated models should be used, like the 

one detailed in (Cunha et al. 2011). 

 
Figure 4-10: (a) Uniaxial tensile response of “HyFRC” developed by Moreno et al. in 2012, (b) 
Comparison between theoretical and experimental results, and (c) Comparison between the 

experimental and numerical crack patterns at the member mean strain of 0.2% 

 
Figure 4-11: Comparison between theoretical and experimental results (Baena et al. 2011) 

for the specimen: (a) 13-170, (b) 16-170, (c) 19-170, and (d) Comparison between the 
experimental and numerical crack patterns of specimen 13-170 
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4.5 Parametric study 

By using the proposed analytical model, two groups of parametric studies, A and B, are 

carried out to evaluate the influence of the main model parameters on the variations of tensile 

stress of reinforcing bars due to their bond interaction to surrounding concrete, which is 

defined as tension-stiffening effect ,r TSf  hereafter. For this purpose, a FRC tensile member 

containing FRP and steel bars in a symmetric arrangement in the concrete section is 

considered to be subjected to direct tension load. The effective embedded length of the 

reinforcing bars ( effL ) is assumed equal to 1000 mm. The properties of the adopted FRP bars 

correspond to the type of ribbed GFRP bars previously used in the bond tests (Chapter 3) 

were considered in this parametric study. The typical properties of mild steel that is being 

used in construction industry are also taken for the steel bars in this study. 

Table 4-3: Values of parameters adopted for parametric studies of Group A 

S
tu

d
y

 FRP 1 Steel 2 
 3 

(%) 
Type 4 

Concrete (or FRC) 

bd  
Fn  

F  
bd  

sn  
s  ctf  

cE  
cmf  

1 2 3, ,    1 2 3, ,    fG  

(mm)  (%) (mm)  (%) (MPa) (GPa) (MPa)   (N/mm) 

1 4×Ø8 2.0 0.65 Ø12 6.7 0.37 1.02 PC 3.0 30 50   0.14 

2 4×Ø8 2.0 0.65 Ø14 6.7 0.50 1.15 PC 3.0 30 50   0.14 

3 4×Ø8 2.0 0.65 Ø16 6.7 0.65 1.30 PC 3.0 30 50   0.14 

4 4×Ø8 2.0 0.65 Ø20 6.7 1.02 1.48 PC 3.0 30 50   0.14 

5 4×Ø8 2.0 0.65 Ø25 6.7 1.60 2.25 PC 3.0 30 50   0.14 

6 4×Ø8 + Ø16 2.0 1.30 - - - 1.30 PC 3.0 30 50   0.14 

7 - - - 4×Ø8 + Ø16 6.7 1.30 1.30 PC 3.0 30 50   0.14 

8 4×Ø8 2.0 0.65 Ø16 6.7 0.65 1.30 FRC1 3.0 30 50 0.03,0.06,0.2 0.3,0.50,0.17 3.81 

9 4×Ø8 2.0 0.65 Ø16 6.7 0.65 1.30 FRC2 3.0 30 50 0.02,0.05,0.2 0.5,0.67,0.33 6.21 

10 4×Ø8 2.0 0.65 Ø16 6.7 0.65 1.30 FRC3 3.0 30 50 0.01,0.04,0.2 0.67,0.83,0.50 8.61 

1 Young’s modulus of FRP bar and its ultimate tensile strain are 60 GPa and 1.67%, respectively; 
2 Young’s modulus of steel bar and its yielding tensile strain are 200 GPa and 0.3%, respectively; 
3 Total reinforcement ratio: F s   ; 

4 PC: Plain Concrete with no fibers. 

Finally, three types of FRCs (named FRC1, FRC2 and FRC3), with different values of 

mode I fracture energy ( fG ), are considered to be representative of a concrete mix with 

different volume fraction of fibers. Figure 4-12 compares the post-cracking behavior of 

FRC1, 2 and 3 in terms of the parameter   versus   as they were defined earlier in 

Figure 4-4b, and the respective values are given in Table 4-3. The contribution of fibers after 
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cracking is simply defined by using the same four-linear post-cracking response of FRC 

shown in Figure 4-12, but having the first point starts at (0, 0), that is null values for the both 

  and   (see dotted line in Figure 4-12). This represents in a simple manner how the pullout 

force by fibers starts increasing from null value while the crack is opening (or increase in 

crack strain). 

 
Figure 4-12: Comparison between the post-cracking responses of the adopted FRCs for the 

parametric studies 8 to 10 

4.5.1 Studies of Group A 

Group A includes 10 different studies that are focused on the influence of the steel versus 

FRP reinforcement ratio (i.e. /s F  ) and concrete fracture energy mode I, . Although 

different bars’ diameter are used in Group A, the bond-slip law’s parameters are kept 

constant in order to neglect the effect of bond-slip law’s parameters in these studies. 

Table 4-3 reports the properties of the used materials in Studies 1 to 10. The values that 

define the bond-slip relationship for these studies are indicated in the first row of Table 4-4. 

Studies 1 to 5: the steel reinforcement ratio, s , is varied by adopting different steel bars in 

terms of diameter (Ø12, 14, 16, 20 and 25 mm), while the properties of concrete and GFRP 

reinforcement ratio (4Ø8 GFRP) are kept constant. Plain concrete (without fibers) is used in 

these studies. 

Studies 6 to 7: the reinforcement arrangement of Study 3 (i.e. 4×Ø8 GFRP + 1×Ø16 steel) 

with a total reinforcement ratio of 1.30%s F      is adopted in these studies, but for 
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Study 6, s  is assumed to be null, which means no steel bars are used (i.e. (4×Ø8+1×Ø16) 

GFRP), while in Study 7 no GFRP bars are applied (i.e. (4×Ø8+1×Ø16) Steel). 

Studies 8 to 10: the hybrid reinforcement of Study 3 is used for studies 8 to 10, but the fG

varies by taking FRC type 1, 2 and 3. 

Table 4-4: Values of bond-slip parameters adopted in parametric studies (Group A and B) 

Study 
 

Bond-slip law’s parameters 

Steel GFRP 

0  1  m  R  1  2  3  4  0  1  m  R  1  2  3  4  

1K  2K  
(MPa) (MPa) (MPa) (MPa) (mm) (mm) (mm) (mm) (MPa) (MPa) (MPa) (MPa) (mm) (mm) (mm) (mm) 

1-10 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.50 1.50 3.0 7.0 16.0 7.0 

11 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.20 1.20 3.0 7.0 40.0 7.0 

12 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.30 1.30 3.0 7.0 26.7 7.0 

13 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.40 1.40 3.0 7.0 20.0 7.0 

14 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.50 1.00 3.0 7.0 16.0 14.0 

15 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.50 2.00 3.0 7.0 16.0 4.7 

16 2.5 10.0 18.0 7.0 0.10 0.8 1.2 5.0 1.5 8.0 15.0 2.0 0.50 2.50 3.0 7.0 16.0 3.5 

                   

4.5.2 Studies of Group B 

Group B includes 6 studies, 11th to 16th, that aim to assess the influence of the bond-slip 

law’s parameters of GFRP bars on the variation of ,r TSf . The type of concrete, the 

reinforcement ratio and arrangement are those adopted in Study 3. Note that the bond-slip 

law’s parameters of steel bar are constant in the analysis of Group B. Table 4-4 includes the 

bond-slip law’s parameters adopted in all the studies. As shown in Figure 4-13, the alteration 

of the stiffness of the pre-peak branches can be simulated by changing the power value of 

1  with a bond-slip diagram similar to the one adopted in the FE model (Figure 4-3b), which 

has already been used by many authors (Baena et al. 2013, Lee et al. 2013, Sena Cruz 2004, 

and Focacci et al. 2000). 

Studies 11 to 13: the stiffness of the first and second linear branches of   diagram (shown 

in Figure 4-3a) are defined as 1K  and 2K , respectively. Then, they are calculated by 
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In Studies 11 to 13, the value of 1K  is varied by changing the value of 1  (Figure 4-13a). 

However, the value of 2  is adjusted in order to keep the value of 2K  constant and equals 

to the value defined in Study 3. In this case, 2  is calculated by 

 1
2 1

2

( )m

K

  
     (4-39) 

The values of 1  and m  are those adopted in Study 3, since the concrete compressive 

strength ( cmf ) is considered equal in all studies, and considering that the bond strength of a 

bar-concrete interface is commonly presented as function of cmf . 

Studies 14 to 16: the value of 2K  is varied by changing only the value of 2  (Figure 4-13b). 

The other parameters are the same adopted in Study 3. 

 
Figure 4-13: Concept of changing the stiffness of the first and second branches of bond-slip 

constitutive law: (a) K1, and (b) K2 

4.5.3 Results and discussion 

The tension-stiffening effect, ,r TSf , is defined as the portion of tensile stress of 

reinforcing bars at crack section that is carried by the surrounding concrete due to the bond 

behavior of reinforcing bars. Based on this definition, ,r TSf  is determined by: 
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( )r TS r bare

c

f F F
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   (4-40) 

where bareF  is the tensile force of bare bars (un-bonded bars): 

 ( )bare s s F FF E A E A    (4-41) 

being   the mean strain of member, if the elastic deformation of FRC between cracks is 

neglected, the mean value is simply obtained by: 

 cr
cr

cr

w

L
     (4-42) 

where crL  and crw  are obtained according to Eqs. (4-31) and (4-32), respectively, and cr  is 

the elastic mean strain of member at cracking point. By substituting Eq. (4-34) into 

Eq. (4-40), ,r TSf  becomes 

 ,

( ) ( )

( ) ( )

cr cr cr
s s s F F F s sy

cr crr TS
s sy s F F F s sy

E E
f

E E

          
 

          
 (4-43) 

Hereafter the normalized tensile stress, , /r TS ctf f , is used being ctf  the concrete tensile 

strength. 

4.5.3.1 Normalized , /r TS ctf f  versus member’s mean strain 

Figure 4-14a and b present the results of the parametric study of group A (studies 1 to 5, 

and 8 to 10), and Figure 4-14c and d show the results obtained from the parametric study of 

group B (studies 11 to 16), both in terms of , /r TS ctf f  versus mean strain of the member 

(i.e.  ), which is calculate by Eq. (4-42). In accordance with the tension-stiffening 

responses obtained from the results of the parametric study, a multi-linear diagram presented 

in Figure 4-15 can be proposed for tension-stiffening model of concrete (or FRC) member 

reinforced by hybrid FRP/steel bars. This diagram can be defined by three coefficients, 

namely j , i , and i  (i= 1 to 3, j=1 to 4 and j= 1 to 5) where: 

- Values of j cr   define the level of concrete tensile strain ( ct ) due to the tension-

stiffening effects, in which 1  corresponds to the concrete crack tensile strain at the 

beginning of the primary crack formation stage, 2  corresponds to the concrete 
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tensile strain at the initiation of steel yielding at crack section while 3  defines the 

concrete tensile strain equals to steel yielding strain (i.e. 30ct sy cr     ), 4  defines 

the concrete crack tensile strain corresponding to reinforcing bar’s slip ( cr ) at the 

end of the elastic bond phase ( 1 ), and finally, 5  defines the concrete tensile strain 

at rupture of FRP bar; 

 
Figure 4-14: Influence of the following parameters on the normalized tensile stress  versus 
mean strain of the member: (a) steel to FRP reinforcement ration , (b) Mode I FRC fracture 

energy , (c) K1 , and (d) K2 

- Values of i ctf  define the level of concrete tensile stress ( ct ) due to the tension 

stiffening, in which 1  to 4  define the crack tensile stress corresponding to 1  to 

4 , respectively; 
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- Values of i cE  define the stiffness of the ascending linear branches of the model 

(pseudo-hardening stages), in which i  corresponds to the axial stiffness of the 

reinforcing bars, as well as their bond stiffness by     diagram.  

By fitting the proposed diagram to the tension-stiffening responses shown in Figure 4-14, 

the variation of these coefficients versus the parametric variables of /s F  , fG , 1K  and 

2K  are determined, and plotted in Figure 4-16. 

 
Figure 4-15: Tension-stiffening model proposed for hybrid FRP/steel reinforcing system 

Effect of increasing the steel reinforcement ratio ( s F  ): when the steel 

reinforcement ratio increases, the average crack spacing ( crL ), as well as the bond length (

bL ) decreases. Hence, by increasing the slip of reinforcing bars at crack section, the 

difference between cr
r  and m

r  in Eq. (4-16) for both FRP and steel bars decreases, and 

based on Eq. (4-42), the mean value of   approaches to the value of 
cr
r . Therefore, the 

tension-stiffening effect calculated by Eq. (4-43) decreases. This was evidenced from the 

obtained results plotted in Figure 4-14a, as well as the decrease in the value of coefficients 

i  versus /s F   in Figure 4-16. Before yielding of steel bar, by increasing s , 1  increase 

due the increase in the axial stiffness of the steel bars. However, after yielding of the steel, 

the value of 2  and 3  decrease due to the significant drop in the axial stiffness of steel bar 
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at cracked section, as well as the increase in its bond stiffness (by Eq. (4-25)). Additionally, 

when ( )cr
r    decreases, the coefficients 2  and 5  increase, in which 2  gets closer value 

to 30sy cr   , and 5  to the level of strain at the rupture of FRP ( 167fu cr   ). 

 
Figure 4-16: The variation of the tension-stiffening model coefficients versus the parametric 

variables 

Effect of increasing the fracture energy of FRC: when of the mode I fracture energy of 

concrete ( fG ) increases, the number of cracked sections in the member increases 

significantly, leading to a smaller average crack spacing. Therefore, similar to what already 
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explained, the ( )cr
r    parcel of Eq. (4-43) decreases with the increase of the slip at cracked 

section. Since in these studies the reinforcement ratios ( F  and s ) are constant, the 

decrease in the tension-stiffening effect calculated by Eq. (4-43) is more noticeable 

(comparing the obtained results in Figure 4-14a and Figure 4-14b). The same tendency that 

was previously obtained for i , i  and j  when s  is increased, is also obtained with the 

increase of fG . However, in the present studies the 1  is almost constant since the axial 

stiffness of the steel bar does not change (see Figure 4-16, variation of the model coefficient 

versus fG ). 

Effect of increasing the stiffness of elastic bond phase of FRP bar ( 1K ): by increasing 

the stiffness of the elastic branch of bond law assumed for FRP bar (i.e. 1K ), the tension-

stiffening effect of reinforcing bars increases. This can be evidenced by the obtained results 

shown in Figure 4-14c, as well as the increase in coefficient i  versus the variation of 1K  

in Figure 4-16. When 1K  increases, the parcel ( )cr m
r r   of Eq. (4-16) increases, and 

considering that m
r    (Eq. (43)), the ,r TSf  determined from Eq. (4-43) also increases. On 

the other hand, if the parcel ( )cr
F    increases, FRP bar attains its ultimate strain ( Fu ) at 

lower level of the concrete crack tensile strain, which can be seen by the variation of 4  

versus 1K  in Figure 4-16. Additionally, 1  and 2  increase with 1K , while 3 is not 

significantly affected for the variation of this parameters because for 3ct cr     the slip of 

FRP bars at crack section is not in its elastic bond phase. 

Effect of increasing the stiffness of hardening bond phase of FRP bars ( 2K ): for the 

material properties and the bond-slip relationship adopted in this study, Figure 4-14d shows 

that 2K  has a negligible effect on the variation of tension stiffening ,r TSf . Only the stiffness 

of the third linear branch ( 3 ) is influenced by the variation of 2K . This is due to the fact 

that for the concrete cracking strain greater than 3 cr  , the slip of FRP bar at crack section is 

beyond the elastic bond phase of the bond diagram, and consequently it is influenced by the 

value of 2K . 
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4.5.3.2 Total force versus the average crack width and the mean strain 

In Figure 4-17a the total force versus the average crack width (i.e. crw ) obtained in the 

studies 6 and 7, corresponding to the GFRP-RC and Steel-RC tensile member, are compared 

to the hybrid GFRP-Steel RC tensile member of Study 3. The enhancement in terms of crack 

width by adding steel reinforcement to the GFRP-RC member is observable. Note that the 

same total reinforcement ratio of 1.3% was adopted for the three studies. However, after 

yielding of steel, the crack width increases considerably due to the significant loss in the 

steel axial stiffness, as well as its bond to concrete. 

 
Figure 4-17: GFRP-RC, Steel-RC and hybrid GFRP-Steel RC member: (a) Total force versus the 

average crack width and (b) Total force versus the mean strain 

In addition to the analytical results obtained from the parametric studies of 3, 6 and 7, 

FE analysis were carried out by using FEMIX, and the results obtained from the simulation 

are compared with the analytical ones in terms of the total force versus average crack width 

and mean strain, which are plotted in Figure 4-17a and b, respectively. The average crack 

width in the FE model was obtained by computing the average value of inelastic deformation 

of the integration points at the location of the main cracks for different load combinations. 

The inelastic deformation of the integration points was calculated by multiplying the crack 

tensile strain in loading direction by the crack band width ( bl ). As a results, a good 

agreement between both models was achieved. 

4.5.3.3 Post-cracking response of FRC including tension-stiffening effect 

In case of modeling of RC members, if the bond-slip behavior of reinforcing bars and 

concrete is not simulated, the tension-stiffening effect due to the reinforcements is normally 
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performed through the concrete tensile stress-strain relationship in order to get more accurate 

results. This is the same concept when S- FRC or FRP reinforced FRC members are 

simulated. The tension-stiffening of FRP and steel bars due to their bond behavior with FRC 

should be included in the post-cracking behavior of FRC, which is normally obtained by 

uniaxial tensile tests. In this context, if the tension-stiffening response obtained from the 

parametric studies of 8 to 10, shown in Figure 4-14b, is added to the respective post-cracking 

response of FRCs, shown in Figure 4-12, the total post-cracking response of hybrid 

FRP/steel reinforced FRC including the tension-stiffening effect of the reinforcing bars is 

attained. Figure 4-18 compares the post-cracking response of FRC1, 2 and 3 with and 

without the tension stiffening effect. This figure is plotted in terms of dimensionless 

coefficient of   versus  , where the black dots show the failure of FRP bars corresponding 

to the attainment of the ultimate tensile strain adopted for FRP bars (see Table 4-3). The 

post-cracking response of hybrid reinforced FRC is appropriate to be used in the finite 

elemental or sectional analysis where the interfacial bond behavior between reinforcing bar 

and FRC is ignored. 

 
Figure 4-18: Post-cracking response of FRC including the tension-stiffening effect 
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hybrid reinforcement system composed by fiber reinforced polymer (FRP) and steel bars and 

surrounding fiber reinforced concrete (FRC) was theoretically investigated through an 

explicit analytical formulation. The analytical model is based on the bond-slip behavior of 

the reinforcing bars and the surrounding FRC, as well as the post-cracking response of FRC 

in tension. The tension-stiffening effect was also investigated by employing 2D interface 

finite elements using a constitutive model that simulates the bond behavior of reinforcing 

bars and concrete. This interface was used to connect 2D Cable elements to 2D Plane Stress 

finite elements, which simulate concrete employing a multi-directional smeared crack 

approach. With a basis of the results from the proposed model, the following conclusion can 

be drawn: 

1) The two analytical and numerical models showed a good agreement with some recent 

experimental tests available in the literature in case of GFRP reinforced tensile 

member and S-FRC tensile member, leading to show their capability to address to 

the tension-stiffening effect of such reinforced members; 

2) The post-yielding of steel bar as well as the loss in its bond to concrete was modeled 

through an empirical coefficient. This gives possibility of modeling the decrease in 

tension stiffening effect of steel-RC element after yielding of steel bar; 

3) Based on the results of parametric study, increasing in mode I fracture energy of FRC 

will reduce the tension-stiffening effect by reinforcing bars in reinforced FRC 

members. This is attributed to the fact that the higher fracture energy results in higher 

number of cracks and lower crack spacing, and consequently, lower bond length. If 

the bond length decreases, tension stiffening significantly decreases. On the other 

hand, the higher fracture energy decrease the average crack width, which is beneficial 

for serviceability limit state requirements; 

4) An improve in terms of crack width and load carrying capacity can be observed for 

the hybrid FRP-steel reinforced FRC member if the steel reinforcement ratio 

increases. However, after yielding of the steel bar, this hybrid system showed the 
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higher average crack width when it compares with the FRP reinforced FRC member 

without steel bar (in case of the same total reinforcement ratio for both reinforced 

member); 

5) The tension-stiffening effect of hybrid steel/GFRP reinforced FRC element was 

introduced as a modified crack stress-strain diagram of FRC in which a fracture 

energy higher than its original value was adopted before rupturing strain of GFRP. 

This modification is based on the properties of the reinforcing bars and their bond-

slip characterizations. The modified crack tensile stress-strain diagram is functional 

to be used in the sectional or finite elemental analysis of hybrid FRP/steel reinforced 

FRC elements where no attempt is made to simulate the effect of bond-slip behavior 

of the reinforcing bars. 

It should be noticed that the influence of concrete cover, reinforcing bar’s diameter, and 

concrete splitting are not considered in the proposed model. However, their effectiveness 

can be simply added to the model if the relevant bond-slip law including those effect is 

adopted in the model. In addition, the discrete crack analysis proposed in this study may not 

be functional for cement-based composite materials that exhibits strain-hardening behavior 

after cracking. 
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Notations 

a  width of concrete tensile member’s cross 

section 
cmf  the mean value of concrete (or FRC) 

compressive strength 

cA  area of concrete member cross section 
ctf  concrete (or FRC) tensile strength 

sA  area embedded steel bar’s cross section ,r TSf  tension-stiffening effect due to the reinforcing 

bars  

FA  area embedded FRP bar’s cross section F  value of pullout force transferred by bond 

length of reinforcing bar 

frA  area of steel fiber’s cross section 
bareF  tensile force of bare bar 

1C  first integration constant for the elastic phase 
FF  value of pullout force transferred by bond 

length of FRP bar 

2C  second integration constant for the elastic 

phase 
rF  value of pullout force transferred by bond 

length of either steel or FRP bar  

3C  first integration constant for the hardening 

bond phase 
sF  value of pullout force transferred by bond 

length of steel bar 

4C  second integration constant for the hardening 

bond phase 
fG  mode I fracture energy of concrete (or FRC) 

5C  first integration constant for the plastic bond 

phase 
frJ  constant in the governing differential equation 

with unknown ( )x  for steel fibers 

6C  second integration constant for the plastic 

bond phase 
FJ  constant in the governing differential equation 

with unknown ( )x  for FRP bar 

7C  first integration constant for the softening 

bond phase 
rJ  constant in the governing differential equation 

for either FRP or steel bar 

8C  second integration constant for the softening 

bond phase 
sJ  constant in the governing differential equation 

with unknown ( )x  for steel bar 

9C  first integration constant for the frictional 

bond phase 
1K  stiffness of the first linear branch in bond-slip 

relation 

10C  second integration constant for the frictional 

bond phase 
2K  stiffness of the second linear branch in bond-

slip relation 

eC  constant value for the elastic phase 
bK  modified factor for bond shear stress of steel 

bar due to its yielding phase 

fC  constant value for the frictional bond phase 
/un reK  slop of the unloading/reloading branch of 

bond-slip relation 

hC  constant for the hardening bond phase 
frl  length of steel fibers 

soC  constant for the softening bond phase 
bL  bond length of reinforcing bar 

pC  constant for the plastic bond phase 
crL  crack spacing 

bd
 

diameter of embedded bar 
crL  the average crack spacing in the analysis 

procedure 

cE  Young’s modulus of concrete (or FRC) 

material 
effL  the effective embedded length of the 

reinforcing bars in concrete tensile member 

FE  Young’s modulus of FRP bar 
trL  transferred bond length corresponding to 

whatever value of the slip at crack section 

frE  Young’s modulus of steel fibers e
trL  

transferred bond length undergoes only elastic 

bond phase 

sE  Young’s modulus of steel bar f
trL  

transferred bond length undergoes only 

frictional bond phase 
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Notations 

h
trL  

transferred bond length undergoes only 

hardening bond phase 
i  residual tensile stress factors define the post-

cracking behavior of FRC ( 1,2,3i  ) 

p
trL  

transferred bond length undergoes only 

plastic bond phase 
1  factor defines the post-peak behavior of bond-

slip relation used in numerical model 

pre
trL  

transferred bond length due to prestress in 

the embedded reinforcing bars 
2  factor defines the post-peak behavior of bond-

slip relation used in numerical model 

so
trL  

transferred bond length undergoes only 

softening bond phase 

  constant entering the governing differential 

equation for the softening phase 

crn  number of crack along the concrete tensile 

member counted in the crack analysis 
  relative slip between reinforcing bar and 

surrounded concrete (or FRC) 

Fn  modular ratio between FRP and concrete (or 

FRC) material 
1  first value of slip corresponding to the initial 

bond shear stress 

sn  modular ratio between steel and concrete (or 

FRC) material 
2  second value of slip corresponding to peak of 

local bond stress slip relation 

FP  perimeter of FRP bar’s cross section 
3  third value of slip corresponding to peak of 

local bond stress slip relation 

frP  perimeter of steel fiber’s cross section 
4  slip corresponding to the start of friction phase 

in the local bond stress slip relation 

rP  perimeter of either FRP or steel bar’s cross 

section 
cr  slip of embedded reinforcing bar at crack 

section 

sP  perimeter of steel bar’s cross section 
fr  slip of steel fibers at crack section 

S  total length of the experimental tensile 

member 
ir  slip remains in the interface when the applied 

load is totally removed 

cu  concrete deformation at concrete-FRC or 

concrete-steel bar interface 
m  

the maximum slip reached during the loading 

phase 

Fu  FRP bar’s deformation at FRP-concrete (or -

FRC) interface 
( )r x  slip distribution of reinforcing bar either FRP 

or steel bar 

su  steel bar’s deformation at steel-concrete (or -

FRC) interface 
  mean strain of reinforced concrete tensile 

member 

crV  cracking force of concrete (or FRC) tensile 

member 
c  concrete (or FRC) tensile strain 

( )c frV  The total force that is transferred to the 

concrete matrix by the steel fibers 
cr  the elastic mean strain of member at cracking 

point 

( )c rV  The total force that is transferred to the 

concrete matrix by the reinforcing bars 
fr  tensile strain of steel fibers at crack section 

( )c tV  The total force that is transferred to the 

concrete matrix by the reinforcements 
fu  the ultimate tensile strain of FRP bar at failure 

crw  crack mouth opening at crack section 
F  FRP bar’s tensile strain 

cuw  the ultimate crack opening corresponding to 

zero residual tensile stress in concrete or 

FRC 

pre
F  pre-strain of FRP bar due to prestressing 

crw  average crack width in the crack analysis 

procedure 

cr
n  crack tensile strain of concrete (or FRC) in 

numerical model 
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Notations 

cr
r  tensile strain of FRP (or steel) bar at crack 

section 

cr
ct  crack tensile stress of concrete (or FRC) 

s  steel bar’s tensile strain cr
n  concrete crack tensile stress of concrete (or 

FRC) in the numerical model 

sh  strain of mild steel at the initiation of the 

hardening phase in its direct tensile behavior 
F  FRP bar’s tensile stress 

pre
s  pre-strain of steel bar due to prestressing 

s  steel bar’s tensile stress 

sy  Yielding strain of steel bar 
sy  yield stress of steel bar 

i  factors define the proposed tension-stiffening 

model ( 1,2,3,4,5i  ) 
( )   

local bond shear stress-slip relationship 

i  factors define the slopes in the proposed 

tension-stiffening model ( 1,2,3i  ) 
0  

initial bond shear stress 

1  constant entering the governing differential 

equation for elastic bond phase 
1  bond shear stress at the beginning of the 

hardening bond phase 

2  constant entering the governing differential 

equation for hardening bond phase 
F  bond shear stress of FRP bar 

i  crack opening factors define the post-

cracking behavior of FRC ( 1,2,3i  ) 
m  peak stress of the local bond shear stress-slip 

relationship 

  reinforcement ratio ( )r x  bond shear stress distribution over bond length 

for either FRP or steel bar 

F  FRP reinforcement ratio 
R  residual bond shear stress in the local bond-slip 

relationship 

s  steel reinforcement ratio 
s  bond shear stress of steel bar 

c  tensile stress of concrete mod
s  modified bond shear stress of steel bar due to 

initiation of its yielding phase 

cf  the local tensile stress of concrete due to the 

force transferred by the steel fibers at cracked 

section 

i  factors define the proposed tension-stiffening 

model ( 1,2,3,4i  ) 
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 Chapter 5 

5 HYBRID GFRP/STEEL REINFORCED HPFRC PRESTRESSED BEAM 

5.1 Introduction 

The chapter investigates the structural behavior of I-shaped cross-sectional beams 

flexurally reinforced by hybrid prestressed steel strand and glass fiber reinforced polymer 

(GFRP) bars, and made by High Performance Fiber Reinforced Concrete (HPFRC) for 

eliminating steel stirrups since they are quite susceptible to corrosion. Combining 

prestressed GFRP bars of relatively low elasticity modulus, but immune to corrosion 

(positioned with a small concrete cover), with prestressed steel strand (with higher concrete 

cover to avoid corrosion), a good compromise in terms of reinforcement effectiveness, 

ductility, durability and cost competitiveness can be obtained. The steel strand aids also to 

assure the necessary flexural strengthening of the beams if GFRP bars become ineffective in 

case of fire occurrence. This work presents and discusses the results obtained from the 

experimental study of the beams flexurally tested under monotonic loading conditions. 

Additionally, the predictive performance of the available formulation in the design codes for 

the case of Fiber Reinforced Concrete (FRC) and FRP reinforced Concrete (FRP-RC) was 

assessed to be used for the proposed hybrid system. 

5.2 Experimental program 

The experimental program is described hereafter has been conducted at the laboratory of 
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the Structural Division (LEST) of the Civil Engineering Department of University of Minho 

in Portugal funded by National Funds through FCT—Portuguese Foundation for Science 

and Technology under the project reference PTDC/ECM/105700/2008, and named 

“DURCOST: Innovation in reinforcing systems for sustainable pre-fabricated structures of 

higher durability and enhanced structural performance”. 

5.2.1 Material properties 

The materials used in the fabrication of the I-Beam specimens were GFRP bar and steel 

strand as longitudinal reinforcements, and high performance self-compacting concrete mix 

reinforced by hooked steel fibers (90 kg/m3). 

5.2.1.1 Steel strand and GFRP bars 

Two types of longitudinal reinforcements, composed of FRP and steel materials, was 

used in the present experimental study: ribbed surface GFRP bar of 12 mm diameter; 9 and 

15 nominal size of steel strand of Grade 1725 (formed by uncoated seven-wires), which is 

normally used for pre-tensioned or post-tensioned in construction industry. The GFRP bar’s 

ribs have a constant height of 6% of bar diameter and rib’s spacing of about 8.5 mm. Some 

nominal mechanical properties of the reinforcements, based on the information given by the 

manufacturers, are included in Table 5-1. These two reinforcements are shown in 

Figure 5-1a, and their typical tensile stress-strain diagram are compared in Figure 5-1b. 

  
Figure 5-1: GFRP bar and steel strand: (a) comparison between their appearance and 

(b) comparison between their stress-strain curves 
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Table 5-1: Nominal properties of the longitudinal reinforcements used in the present study 

Type 

diameter 
(mm) 

Cross section 
area 

(mm2) 

Young’s 
Modulus 

(GPa) 

Yielding 
strain 

(%) 

Yielding 
stress 
(MPa) 

Ultimate 
stress 
(MPa) 

Ultimate 
strain 

(%) 
Weight 
per 1m 
(gr/m) 

,f s   ,f sA A  ,f sE E  sy  syf  ,fu suf f  ,fu su   

Steel strand 15 15.2 139.4 187.5 0.85 ~1600 ~1900 >3.5 1094 

Steel strand 9 9.5 51.6 187.5 0.85 ~1600 ~1900 >3.5 405 

GFRP bar 13.1 134.7 60.0 - - 1350 2.25 317 

 

5.2.1.2 High Performance FRC (HPFRC) 

The HPFRC used in the present experimental program was prepared based on the mix 

method developed by Soltanzadeh et al. (2015). The used materials were cement, CEM I 

42.5R, fly ash class F, limestone filler, superplasticizer, water, three types of aggregates 

(containing fine and coarse river sand, and crushed granite) and hooked end steel fibers of 

35 mm in length, aspect ratio of 64 and yield stress of 1100 MPa. The geometrical properties 

of hooked steel fibers and its tensile strength are reported in Table 5-2. More details about 

the designed mix and the properties of mixed material can be found in the work published 

by Soltanzadeh et al. (2015). The mix compositions is given in Table 5-3. 

Table 5-2: Geometrical properties of hooked steel fibers 

Fiber diameter ( sf ) sfh  l   l   sfl  sf sfl   Tensile strength 

(mm) mm mm mm (mm) (-) (N/mm2) 

0.55 1.8 ~23 4 35 64 [1224-1446] 

 

 

Table 5-3: HPFRC compositions (Soltanzadeh et al. 2015) 

Cement Fly ash 
Limestone 

filler 
Water SP* 

Fine 
sand 

River 
Sand 

Coarse 
Aggregate 

ST** 

(kg/m3) (kg/m3) (kg/m3) (Litr/m3) (Litr/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

462 138 139 208 16 99 697 503 90 

* SP: Superplastizier; ** ST: Steel fiber. 

 Compressive strength: 

Since to produce all the I-Beam specimens it was necessary to execute ten HPFRC mix 

sfh

l 

Fiber diameter

l 

sfl
 sf
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batches, the compressive strength of each mix batch was obtained using HPFRC cylinders 

of Ø150×300 mm according to ASTM C39. The average results of the compressive test for 

different HPFRC batches in terms of the compressive strength are summarized in Table 5-4. 

In addition, three cylinder specimens was tested using deformation controlled manner in 

order to capture the whole stress-strain response of HPFRC in compression. The average 

curve of these stress-strain responses will be later used in the numerical simulation described 

in Chapter 6. 

Table 5-4: The compressive strength and the elastic Young's modulus of HPFRC 

 Mix Batch 
Number of  
specimens 

Compressive strength 

( cf  ) 

Elastic Young’s modulus 

( cE ) 
Age 

(MPa) (GPa) (days) 

G
ro

u
p

 A
 

M1 2 70.55 33.9 49 

M2 1 72.59 34.5 53 

M3 3 69.71 34.9 76 

M4 1 70.14 35.1 69 

G
ro

u
p

 B
 

M5 3 76.94 37.2 70 

M6 3 72.09 35.3 99 

M7 3 80.96 36.7 98 

M8 3 66.77 34.0 97 

M9 3 78.73 36.5 130 

M10 3 76.89 36.1 126 

 Total/Average 25 73.13 (CoV=6%) 35.4 (CoV=3%) - 

 M11 * 3 65.10 30.02 28 

* HPFRC mix batch to characterize the properties at 28th days of curing. 

 Elastic Young’s modulus: 

The same cylinder specimens that were used to measure the compressive strength was 

utilized to measure the elastic Young’s modulus of HPFRC in compression. This test was 

carried out according to ASTM C469 where the cylinders were experienced the compressive 

load up to 40% of its ultimate load. The ultimate compressive load was estimated based on 

the primarily compressive test that had been executed to characterize the developed HPFRC 

(Soltanzadeh et al. 2015). The elastic Young’s modulus of HPFRC batches are included in 

Table 5-4. 
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 Flexural strength: 

In regards to the behavior of HPFRC in tension, which is the behavior most benefited by 

fiber reinforcement, five simply supported notched beams of 150×150 mm2 cross section 

and 600 mm in length were subjected to three point loading conditions to characterize and 

classify of the post-cracking response of HPFRC according to CEB-FIP Model Code 2010. 

Nominal values of the flexural properties of HPFRC can be determined by considering the 

diagram of the applied force ( F ) versus the Crack Mouth Opening Displacement (CMOD). 

Parameters, ,R jf , representing the residual flexural tensile strength, are evaluated from the 

F CMOD  relationship, as follows: 

 , 2

3

2

j

R j

n sp

F l
f

b h
  (5-1) 

where jF  is the applied load corresponding to jCMOD  ( 1 0.5CMOD  mm, 2 1.5CMOD 

mm, 3 2.5CMOD  mm and 4 3.5CMOD  mm), l  is the beam’s span, while nb  and sph  is the 

width of the cross section and the distance between the notch tip and the top of the specimen, 

respectively. Figure 5-2a shows the geometry of notched beam test setup. In addition, the 

results of the notched beam tests in terms of the applied load (F) versus CMOD are plotted 

in Figure 5-2b. The residual flexural tensile stress parameters of HPFRC are included in 

Table 5-5. 

 
Figure 5-2: (a) Notched beam test setup and geometry, and (b) F-CMOD results 
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Table 5-5: The residual flexural tensile stress parameters of HPFRC 

Notched 
beam 

Specimens 
ID. 

Residual flexural tensile strength parameters Limit of 
proportionality* CMOD1=0.5 CMOD2=1.5 CMOD3=2.5 CMOD4=3.5 

F1 fR,1 F2 fR,2 F3 fR,3 F4 fR,4 FL fct,L 

(kN) (MPa) (kN) (MPa) (kN) (MPa) (kN) (MPa) (kN) (MPa) 

B1 30.34 11.47 30.13 11.39 27.60 10.43 24.27 9.18 15.64 5.91 
B2 32.06 12.12 32.70 12.36 29.76 11.25 27.17 10.27 16.12 6.13 
B3 30.79 11.64 30.93 11.69 28.22 10.67 25.32 9.57 14.26 5.39 
B4 31.40 11.87 32.28 12.20 29.77 11.26 26.41 9.99 15.62 5.91 
B5 28.65 10.83 28.03 10.60 25.88 9.78 23.15 8.75 16.23 6.14 

Average: 30.65 11.59 30.81 11.65 28.25 10.68 25.26 9.55 15.57 5.90 

* Calculated by Eq. (5-1) for CMOD=0.05 (RILEM TC 162-TDF). 

5.2.2 Beams: manufacturing, geometry, reinforcements and pre-stress level 

A total of ten I-shaped cross-sectional HPFRC beams reinforced by passive or 

prestressed GFRP bars, and passive or prestressed steel strand was simply supported and 

subjected to four-point bending test under monotonic and fatigue loading conditions. The 

experimental variables were the reinforcement ratio of hybrid GFRP/steel strand and the 

level of prestress in GFRP bars (i.e. pfP ). Note that the prestress level of GFRP bars (i.e. 

pre
ff ) is calculated as a percentage of its ultimate tensile stress (i.e. fuf ), and prestress level 

of steel strand (i.e. pre
sf ) is calculated as a percentage of its yielding stress ( syf ): 

 pre
f pf fuf P f   (5-2) 

 pre
s ps syf P f   (5-3) 

where pfP  and psP  are the percentage of prestress in GFRP bar and steel strand, respectively.  

The tests were carried out in two groups. The Group A included four prestressed I-Beams 

reinforced by non-prestressed GFRP bars and prestressed steel strand, while the Group B 

was composed by six prestressed I-Beams where the prestressed force was applied to both 

reinforcements. In each group, a non-prestressed beam was casted as a reference beam. The 

identification, reinforcement data, and the prestress level applied to both types of bars are 

indicated in Table 5-6. Additionally, dimension of the beams and their reinforcement details 

are shown in Figure 5-3. In Group B, IB7 and IB9 beams (with the same configurations as 

IB6 and IB8, respectively) as well as IB10 were subjected to fatigue loading conditions. 
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Figure 5-3: Dimension and reinforcing configuration of the specimens (dimension in mm) 

Table 5-6: The beam identification, the reinforcement content and the prestress level 

 

Specimen ID Mix batches 
,f eq

a

d
1 

  At jacking 

f 2 s 3 pre
sf  

pre
ff  psN 4 pfN 5 

(%) (%) (MPa) (MPa) (kN) (kN) 

G
ro

u
p

 A
 IB1 M1 3.48 0.29 0.18 0.0 0.0 0.0 0.0 

IB2 M2 3.48 0.29 0.18 400 0.0 55.6 0.0 

IB3 M3 3.48 0.29 0.18 800 0.0 111.2 0.0 

IB4 M4 3.42 0.43 0.18 800 0.0 111.2 0.0 

G
ro

u
p

 B
 

IB5 M5 3.62 0.29 0.07 0.0 0.0 0.0 0.0 

IB6 M6 3.62 0.29 0.07 800 200 41.3 53.8 

IB7 6 M7 3.62 0.29 0.07 800 200 41.3 53.8 

IB8 M8 3.62 0.29 0.07 800 400 41.3 107.6 

IB9 6 M9 3.62 0.29 0.07 800 400 41.3 107.6 

IB10 6 M10 3.62 0.29 0.07 800 540 41.3 145.3 
1 The parameter is the shear span, and is defined later by Eq. (5-41);  

2 GFRP bar reinforcement ratio: 
f f fA bd  ; 

3 Steel strand reinforcement ratio: 
s s sA bd  ;  

4 Prestressed force due to the steel strand;  
5 Prestressed force due to the GFRP bars;  
6 reserved to be subjected to fatigue loading conditions. 
 
 

The manufacturing processes of prestressed HPFRC I-beams reinforced by GFRP bars 

and steel strand is briefly described as the following steps, and schematically illustrated in 

Figure 5-4: 

a) The beam framework of 4 m length was placed in the Prestressing line; 

b) GFRP bars and steel strand were crossed along the framework, and passed 

through the holes that had been made at two extremities of the mold. The holes 

were located in accordance with the height level of the reinforcements from the 

bottom surface of the beam as shown in Figure 5-3. 
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Figure 5-4: Prestressing process of the beam specimens 

c) The bars and strand were pulled out by using three hydraulic actuators from one 

side of the prestressing line, while they were anchored at opposite side. The 

amount of pre-strain was controlled by the values given by the strain gauges that 

were previously installed on the reinforcements as well as the load cell at the 

location of the actuators. For group A of the specimens with non-prestressed 

GFRP bars, the plastic spacers were used to hold GFRP bars to their position at 

the bottom of the framework; 

d) HPFRC mix batch was prepared and placed inside the frame work, and it was 

cured for three days; 

e) The framework was removed; 

f) The applied pre-strain in the reinforcements was released, while the value of 

strain gauges and load cells were being monitored by a data logger, being able to 

control the rate of releasing, which was about 0.1 kN/sec for all the specimens. 

This monitoring was continued after releasing to measure the possible loss of pre-

strain; 

g) Two days after releasing, the measuring instruments were unplugged, the 

reinforcements were cut, and finally the beam was taken out from the prestress 

line and stored for the testing day. 



Chapter 5: Hybrid GFRP/Steel Reinforced HPFRC Prestressed beam Page | 133 

 

5.2.3 Test setup and monitoring system 

The beam specimens were subjected to a four-point bending test configuration by using 

a servo-hydraulic actuator of 500 kN loading capacity under monotonic loading condition. 

The points loading distance (indicated by “bending zone” in Figure 5-5) was 750 mm for the 

Group A of the beams, while this value was decreased to 500 mm for the Group B. The tests 

were displacement-controlled by imposing a speed of 0.01 mm/sec to the piston of the 

actuator. Five Linear Variable Differential Transducers (LVDTs) were installed along the 

span length of the beam, according to the schematic representation in Figure 5-5. This figure 

also includes the disposition of the seven strain gauges installed on the materials for 

measuring their strain during loading (indicated as ‘SG’ for GFRP bars, ‘SGst’ for steel 

strand, and ‘SGc’ for HPFRC in Figure 5-5). 

 
Figure 5-5: Test setup and measuring instruments used in the experimental study 

Three photos of final installation of these three types of strain gauges are shown in 

Figure 5-6. The test setup and the other measuring instruments are shown in Figure 5-5. It 

should be noticed that a total of six additional strain gauges were installed at two extremities 

of GFRP bar and steel strand to study the distribution of pre-strain in this region during the 

releasing (the respective analysis will be discussed later in Section 5.2.6). 
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Figure 5-6: Photos of the installation of the strain gauges on the materials: steel strand (SGst), 

GFRP bars (SG), and HPFRC (SGc) 

5.2.4 Test procedure 

All the beam specimens in group A, i.e. IB1 to 4, plus three beams in group B, i.e. IB5, 

6 and 8, were subjected to monotonic loading conditions, while the remained three beams of 

group B, i.e. IB7, 9 and 10, were subjected to the Constant-Amplitude (CA) fatigue loading 

condition. The monotonic loading template was displacement-controlled manner, where the 

speed of the actuator moving in the tests was controlled at 0.01 mm/sec. Prior to the mid 

span displacement magnitude of 15 mm (which corresponds to the value of about 250S

defined as the maximum beam deformation at serviceability limit state, being S  beam span), 

six pauses of 60 sec (sustained loading condition) were arranged for measuring CMOD of 

the formed cracks at the level of the reinforcing bars by using a microscope device with 

1 20 mm of measuring precision. After the sixth pause, the loading was continued with the 

same speed until the failing of the specimens. The template of this monotonic loading 

condition is shown in Figure 5-7a. 

The CA fatigue loading template included three stages, which were all loaded-controlled 

manner. In the first stage, the load was monotonically applied with rate of 0.2 kN/sec until 

reaching maxF , which will be explained later in Section 5.4.6. The second stage was the 

sinusoid loading condition, in which one million loading cycles were applied considering 

the constant loading amplitude of 30 kN within 0.5 sec for each cycle (meaning 2 Hz of 

frequency). After one million cycles, in third stage, the load was monotonically removed 

with the rate of 0.5 kN/sec. The CA fatigue loading template is shown in Figure 5-7b. For 

each fatigue beam, the CA fatigue loading template was repeated twice. Hence, a total of 

two million sinusoid loading cycles of 2 Hz frequency was applied to the fatigue beam 

specimens of IB7, 9 and 10. 
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Figure 5-7: Template of (a) the monotonic loading condition, and (b) CA fatigue loading 

condition 

5.2.5 Pre-strain loss of the reinforcements 

In Group A, the prestress force was controlled using only the force value registered in 

the load cell (no strain gauge was installed on the steel strand), while in the Group B the 

prestressing process was performed by monitoring both the force in the load cell and the 

strain recorded in the strain gauges installed on the reinforcements. Table 5-7 includes the 

average results of the pre-strain of the reinforcements recorded by the strain gauges at 

pulling, releasing, and testing days. 

Table 5-7: Pre-strain loss of the prestressed beams for the group B of specimens 

Beam 
ID 

Design 
Prestress 

Level 1 

Design  
pre-

strain 
 level 2 

Reinforcing 
line 

Average value of strain in the reinforcements 
pre
s and 

pre
f  at 

Loss 

Prestress 
level 3 

psP or pfP  
Pulling → Releasing → 

Testing 
day 

 (%) (%)  (%) days (%) days (%) (%) (%) 

IB6 
50 0.43 Steel 0.44 4 0.41 95 0.40 9 47 
15 0.34 GFRP 1 0.35 4 0.33 95 0.30 14 13 
15 0.34 GFRP 2 0.37 4 0.36 95 0.32 14 14 

IB7 
50 0.43 Steel 0.46 4 0.45 94 0.41 11 48 
15 0.34 GFRP 1 0.35 4 0.34 94 0.30 14 13 
15 0.34 GFRP 2 0.36 4 0.34 94 0.31 14 14 

IB8 
50 0.43 Steel 0.45 4 0.44 93 0.41 9 48 
30 0.68 GFRP 1 0.68 4 0.65 93 0.58 15 25 
30 0.68 GFRP 2 0.69 4 0.67 93 0.60 13 26 

IB9 
50 0.43 Steel 0.45 4 0.42 126 0.40 11 47 
30 0.68 GFRP 1 0.69 4 0.67 126 0.60 13 26 
30 0.68 GFRP 2 0.68 4 0.63 126 0.58 15 25 

IB10 
50 0.43 Steel 0.45 4 0.44 122 0.41 9 48 
40 0.90 GFRP 1 0.94 4 0.88 122 0.83 11 37 
40 0.90 GFRP 2 0.93 4 0.86 122 0.81 14 36 

      Average: Steel 9.8%  

        GFRP 13.6%  

1 It is defined as the value in percentage that is calculated by dividing the nominal prestress value in the reinforcements by the yield stress 

in case of steel strand and by the ultimate tensile stress in case of GFRP bar; 
2 It is defined as the strain value in percentage calculating by multiplying the design prestress level by the yield strain in case of steel 

strand and the ultimate tensile strain in case of GFRP bar; 
3 It is calculated according to the value of prestress in the reinforcements after the possible losses. 
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The pre-strain losses in the reinforcements were computed based on the measured values 

of strain at pulling and testing days. These pre-strain losses (indicated in Table 5-7) are 

mainly due to the elastic deformation of HFRRC beams, creep and shrinkage of HPFRC, 

and the relaxation of the reinforcements. The average pre-strain loss at the day of testing was 

about 13.6% and 9.8% regarding the pre-strain at the pulling day for GFRP bars and steel 

strand, respectively.  Additionally, the value of prestress in steel strand and GFRP bars after 

the strain losses (i.e. psP  and pfP ) is reported in last column of Table 5-7, and will be used 

later in the theoretical formulation. 

5.2.6 Transferred bond length of reinforcements due to the prestress 

The prestressed force of the reinforcement was released after three days of curing. During 

the releasing process, the prestressed force is transferred to the surrounding HPFRC through 

the transferred bond length ( pre
trL ) of each reinforcement due its bond behavior with HPFRC. 

When the applied prestressed force is totally released, the reinforcement’s tensile strain at 

the beginning of pre
trL ( 0x  ) is null, while the strain beyond the pre

trL ( pre
trx L ) is equal to 

pre
r  being the subscript “r” representative of the tensile strain due to prestressing for either 

steel strand or GFRP bars. In order to evaluate experimentally the value of pre
trL , a total of 

three strain gauges were installed on the steel strand as well as GFRP line 2 near to the 

extremity of the beams at loading side (Figure 5-8a). These strain gauges were designated 

by letter a, b and c and installed, respectively, at section distanced 50, 100 and 150 mm from 

the end section in IB7, IB9 and IB10 (Figure 5-8a). The values of tensile strain measured by 

these strain gauges are plotted in Figure 5-8a in terms of strain versus the distance from the 

extremity of the beam (loading side of the beam where the actuators were located). By the 

relevant boundary condition that was presented in Eq. (4-29) in Chapter 4, the IBL algorithm 

described in Annex 4B can be employed to obtain the distribution of the tensile strain of the 

prestressed reinforcing bars after releasing. By fitting the obtained theoretical diagram to the 

results measured by the strain gauges, the bond-slip constitutive law of each reinforcing bar 

can be calibrated. This calibration can be only done for the elastic and hardening bond phases 
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(as discussed in Chapter 4) due to the limited value of prestressed force. However, the 

calibrated bond-slip laws will be still relevant for future crack analysis procedure in this 

chapter. The results of this calibration in terms of bond-slip constitutive law for GFRP bars 

and steel strand is plotted in Figure 5-8b. 

 
Figure 5-8: Transferred bond length due to the prestressed force; (a) distribution of tensile 

strain of reinforcements, and (b) calibrated bond-slip law 

5.3 Theoretical investigation 

In this section, nominal flexural strength, as well as moment-deflection and moment-

crack width responses of the tested beams were theoretically investigated. A new concept of 

balanced reinforced ratio was defined for the proposed hybrid system in this study in order 

to establish a design criteria for addressing different flexural response of the HPFRC 

prestressed beams. Due to the complex behavior of the HPFRC I-beams under flexure-shear 

mechanism, and also many involved parameters that should be known to understand their 

shear behavior, the nominal shear strength of the beams was evaluated through a simplified 

flexure-shear mechanism that is based on an unified approach dealing with the moment-

rotation presented by Oehlers et al. (2011). Moreover, the formulation recommended by 

CEB-FIB model code 2010 for calculation of the nominal shear strength of FRC beams 

reinforced by conventional steel reinforcements and without shear reinforcements was used 

to predict the shear resistance of the tested beams. These results were compared with the 
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experimental results in the Section 5.4. 

Finally, using the bond model previously presented in Chapter 3, and considering the 

concepts of tension-stiffening of the hybrid FRC system discussed in Chapter 4, the crack 

spacing of the tested beams was theoretically determined. By employing the FBL model 

described earlier in Chapter 4 (presented in Annex 4B), and considering the compatibility of 

deformation at crack section based on the moment rotation approach (Visintin 2012), the 

crack width of the beam under service load condition was predicted for each step of the 

applied moment. The calculated theoretical crack width was validated by the CMOD 

measured during the monotonic tests. 

5.3.1 Balanced reinforcement ratio 

For conventional steel reinforced RC beams, the balanced steel reinforcement ratio, i.e. 

sb , is a condition that beam fails by crushing of concrete in compression and yielding of 

steel in tension simultaneously. For FRP reinforced RC beams, the balanced FRP 

reinforcement ratio, fb , is a condition that the beam fails by crushing of concrete and 

rupture of FRP reinforcement simultaneously. When these two cases are combined in hybrid 

reinforced beams, the balanced reinforcement ratio is defined as a failure condition in which 

concrete crushing, yielding of steel, and rupture of FRP occur at the same time. However, 

this situation is almost impractical. Therefore, the balanced reinforcement ratio may be 

defined as a situation that concrete crushing in compression and rupture of FRP bars happen 

simultaneously, while the steel reinforcement has already yielded. From this standpoint, the 

hybrid balanced reinforcement ratio of FRP/steel RC beam, hb , is calculated using the 

following equation (Leung and Balendran 2003, Lau and Pam 2010): 

 1 1
c f c

fb s s

fu f c fu

f E
m

f E f

 
     

 
 (5-4) 

where 1  and 1  are the parameters defining the rectangular stress block, as illustrated in 

Figure 5-9. The parameter 1  is the ratio between the equivalent average concrete 

compressive stress and the concrete compressive strength, cf  , while the parameter 1  is a 
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factor relating the depth of equivalent rectangular concrete compressive stress block to 

neutral axis depth., c ( bc  in the balanced conditions). The parameter c
  in Eq. (5-4) is the 

concrete compressive strain corresponding to cf   (it is assumed equal to 0.0035). The 

parameters fuf  and fE  are the ultimate tensile stress and Young’s modulus of FRP bar, 

respectively (Table 5-1). Moreover, the second term on the right side of Eq. (5-4) intends to 

simulate the presence of yielded steel reinforcement in the balanced section, in which sm  is 

 
Figure 5-9: Balanced section of HPFRC beam reinforced by hybrid prestressed steel and FRP 

bars (not to scale) 

 sys
s

f fu

fd
m

d f
  (5-5) 

where sd  and fd  are the internal arm of steel and FRP reinforcement, respectively, as 

represented in Figure 5-3. For the case of hybrid GFRP/steel reinforced HPFRC prestressed 

beams, Eq. (5-4) has to be modified by considering the effect of prestressing in FRP and 

steel, as well as the post-cracking response of HPFRC. By assuming that plane section 

remains plane during the loading process of the beam (Bernoulli), the strain compatibility 

shown in Figure 5-9 allows determination of the b fc d  ratio in terms of the installed strains 

at the balanced section: 

 b c

pre
f c fu f

c

d




    
 (5-6) 

where pre
f  is the average pre-strain of FRP bar reported previously in Table 5-7. Note that 

the possible losses of pre-strain due to the creep and shrinkage of HPFRC, elastic shortening 

pre
f fu f    

22
b b b
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3
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2
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syf
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of HPFRC, and etc. are all included in the value of pre
f . From the equilibrium condition at 

balanced section of the hybrid HPFRC beam, the compressive force due to HPFRC, ,
HPFRC

c bF , 

is in static balance with the tensile force due to the yielded steel strand, syF , tensile force 

due to the FRP bars at the balanced condition, ,f bF , and tensile force due to the fibers at 

balanced section condition, ,fr bF . Hence 

 , , ,
HPFRC

c b sy f b fr bF F F F    (5-7) 

with 

 , 1 1 2
HPFRC

c b c bF f c b     (5-8) 

where 2  is the parameter that takes into account the particular geometry of the adopted I 

shape cross section, giving by 

 
1

12
1 2

2

1

1 ( ) c
2

b

b
w b

c h
c h

b b h h
bh


       


 (5-9) 

The tensile force of reinforcing bars are 

 sy s s syF d bf   (5-10) 

 ,f b f f fuF d bf  (5-11) 

Therefore, by substituting Eqs. (5-8), (5-10) and (5-11) into Eq. (5-7), and dividing the 

both sides of the equation by fd , Eq. (5-7) becomes 

 ,

1 1 2

fr bb s
c f fu s sy

f f f

Fc d
f b bf bf

d d d
        (5-12) 

By considering an equivalent average value of crack tensile stress of HPFRC over the 

distance bh c  at the balanced section (i.e. ,
cr
ct b  shown in Figure 5-9), ,fr bF  becomes 

 , , ,
cr

fr b ct b ct bF A   (5-13) 

where ,ct bA  is the tensile area of the section as shown in Figure 5-9, and it is derived by 

 , 2( )ct b g bA A c b    (5-14) 

where gA  is the gross area of HPFRC beam section. Eq. (5-14) can be rewritten as follow 
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 , 2
b

ct b c f

f

c
A bd

d

 
    
 

 (5-15) 

with 

 g

c

f

A

bd
   (5-16) 

Therefore, Eq. (5-13) becomes 

 , , 2
cr b

fr b ct b c f

f

c
F bd

d

 
     

 
 (5-17) 

By substituting Eq. (5-17) into Eq. (5-12), and taking b fc d  from Eq. (5-6), the value of 

f  in Eq. (5-12) is found as the balanced reinforcement ratio in hybrid FRP/steel HPFRC 

prestressed beam, giving by 

 
1 1 2 ( )c c

hb fr s s fr cpre
fu c fu f

f
m m m

f

 
         

    
 (5-18) 

where 

 ,
cr
ct b

fr

fu

m
f


  (5-19) 

The value of ,
cr
ct b  can be estimated by considering the stress-strain diagram of HPFRC 

in tension (i.e. ct ct  ) similar to the recommendations by RILEM TC 162-TDF for design 

purpose of fiber reinforced concrete (FRC). This stress-strain diagram is plotted in 

Figure 5-10a for compressive strain and in Figure 5-10b for tensile strain. The mathematical 

expression of this diagram is given by: 

 

1

2 1
1 1 1 2

2 1

3 2
2 2 2 3

3 2

0

( )( ) , ( )

( )

c ct ct

c c c cp
ct ctc c ct ct

c c cp

ct ct

E

E

f

    

                              
          

  

 (5-20) 

Where c  and ct  are, respectively, the compressive and tensile strain of HPFRC, while cp  

defines the threshold of plastic limit for HPFRC in compression (shown in Figure 5-10a), 

which is taken as c cf E . Further, 1 , 2  and 3  are calculated based on the residual 

flexural tensile strength, which were obtained based on the residual tensile strength from the 
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notched beam bending test (see Table 5-5), giving by the following equations: 

 
Figure 5-10: Stress-strain diagram for design purpose of FRC material based on 

recommendation of RILEM in (a) compression, and (b) tension 

 1 ,0.7 ct Lf   (5-21) 

 2 ,10.45 R hf    (5-22) 

 3 ,40.37 R hf    (5-23) 

where h  is the size factor that is 

 
125

1.0 0.6
475

h

h 
    (5-24) 

and it is calculated 0.53h   for case of this study. The strain values of 1 , 2  and 3  are 

calculated using the following equations (RILEM TC 162-TDF): 

 1
1

cE


   (5-25) 

 2 1 0.01%     (5-26) 

 3
fu

fu

f

f

E
     (5-27) 

where fu  is the ultimate tensile strain of FRP bar. Note that the average values were 

included in Table 5-4 are used for cE  and cf  , and the average values were included in 

Table 5-5 for ,ct Lf , ,1Rf  and ,4Rf . The stress-strain diagram defined in Eq. (5-20) is plotted 

in Figure 5-11 for the developed HPFRC. As shown, the crack tensile strain is only defined 

up to the tensile strain at failing of FRP bars (i.e. 3 fu   ). Based on this diagram, the 

ct

1 3 fu  2

3
2
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average crack tensile stress of HPFRC at the balanced section can be estimated by 

 , 2 3 ,1 ,4

1
( ) (0.45 0.37 )

2 2

cr h
ct b R Rf f


       (5-28) 

In the balanced section condition, the compressive strain is 0.2%c cp     at level of 

3
7 bc  measured from the top surface (RILEM TC 162-TDF), as shown in Figure 5-9. 

Therefore, the equivalent rectangular HPFRC stress block in compression can be defined by 

3 1 4
7 2 71 ( )( ) 0.714    , if 1 1  . 

In order to verify the reliability of Eq. (5-18) to calculate the balanced reinforcement 

ratio, hb , a sectional analysis is carried out by using a software named DOCROS (Design 

Of CROss Section) that calculates the moment–curvature relation as well as the strain 

distribution along the section by taking into account the constitutive laws of the materials, 

the kinematic and the equilibrium conditions (more detail about this analysis can be found 

from the study carried out by Varma et. al. 2013, Barros et al. 2006, and Taheri et al. 2011). 

For this purpose, the cross section was discretized in layers of 5 mm (Numerical section 

shown in Figure 5-9), and the constitutive model of the intervening materials (shown in 

Figure 5-11) were assigned to their respective layers. In this software, the compressive stress 

strain relationship is simulated according to the model proposed by Barros et al. (2008), and 

the post-cracking response of HPFRC was defined based on the average tensile stress-crack 

opening diagram obtained by an inverse analysis technique using the F-CMOD response of 

the notched beam tests. The inverse analysis consisted in applying a numerical strategy 

similar to the one described in the work carried out by Cunha (2010).  This inverse analysis 

will be described later in Chapter 6. The average 4-linear diagram of the stress-crack opening 

from this inverse analysis is plotted in Figure 5-11c. The stress-crack opening diagram is 

converted to the stress-strain diagram by considering the structural characteristic length csl  

(CEB-FIB Model Code 2010). Based on the Model Code 2010, this value can be taken as 

the smaller value of the average crack spacing and the distance between the neutral axis and 

the tensile side of the section. For case of the tested beams, csl  is taken as the average final 

crack spacing (i.e. crS ) that is computed later in Section 5.3.5. This stress-strain diagram is 
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plotted in Figure 5-11b, and it is compared with the one recommended by RILEM. 

Additionally, the tensile stress-strain of the steel strand and GFRP bars are plotted in 

Figure 5-11d and e, respectively. The respective values that define the aforementioned 

diagrams of HPFRC in tension are included in Table 5-8. The hybrid balanced reinforcement 

ratio, hb , was found by changing the value of f  in DOCROS software for a situation that 

the compressive strain at top surface was 0.0035c
  , and simultaneously the tensile strain 

of FRP bars was fu . Note that the values of pre-strain (see Table 5-7) were assigned to the 

respective layers for FRP bars and steel strand, which results in negative value for curvature 

at the initiating of the analysis. 

 
Figure 5-11: Constitutive laws of the materials: (a) HPFRC compressive stress-strain, (b) 
crack tensile stress-strain of HPFRC, (c) crack tensile stress-crack opening of HPFRC, (d) 

tensile stress-strain of steel strand, and (e) tensile stress-strain of GFRP bar 

Table 5-8: The values that define the stress-strain and stress-crack opening relationship of 
HPFRC (see Figure 5-11a, b and c) 

 Point 1 Point 2 Point 3 Point 4 Point 5 

 
Strain 

(%) 
Stress 
(MPa) 

Strain 
(%) 

Stress 
(MPa) 

Strain 
(%) 

Stress 
(MPa) 

Strain 
(%) 

Stress 
(MPa) 

Strain 
(%) 

Stress 
(MPa) 

By RILEM 0.012 4.13 0.022 2.76 2.25 1.87 - - - - 

By inverse analysis 
(total response) 

0.010 3.50 0.017 4.30 0.68 3.10 2.47 1.20 5.00 0.0 

 Point 1 Point 2 Point 3 Point 4 Point 5 

 
CMOD 
(mm) 

Stress 
(MPa) 

CMOD 
(mm) 

Stress 
(MPa) 

CMOD 
(mm) 

Stress 
(MPa) 

CMOD 
(mm) 

Stress 
(MPa) 

CMOD 
(mm) 

Stress 
(MPa) 

By inverse analysis 
(total response) 

0.0 3.50 0.007 4.30 0.67 3.10 2.46 1.20 5.00 0.0 

By inverse analysis 
(By fibers) 

0.05 3.57 0.20 3.95 0.67 3.10 2.46 1.20 5.00 0.0 
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Eq. (5-18) and by the sectional analysis using DOCROS software are written in Table 5-9. 

According to the results, the first three specimens in Group A (i.e. IB1, 2, and 3) are nearly 

balanced-reinforced beams, while the last specimen in this group is over-reinforced. Besides, 

the beams in group B are all under-reinforced. 

Table 5-9: The balanced reinforcement ratio of the tested beams 

G
ro

u
p

 

 Specimen 
ID 

f  s  2  pre
f  

 By Eqs. (5-6)
and (5-18) 

 
By DOCROS 

 

Over/under 
reinforced  

bc  hb   
bc  hb   

(%) (%) (-) (%)  (mm) (%)  (mm) (%)  

A 

IB1 0.29 0.18 1.00 0.0  63.3 0.25  66.2 0.23  ~Balanced 

IB2 0.29 0.18 1.00 0.0  63.3 0.25  66.2 0.23  ~Balanced 

IB3 0.29 0.18 1.00 0.0  63.3 0.25  66.2 0.23  ~Balanced 

IB4 0.43 0.18 1.00 0.0  63.3 0.25  66.2 0.23  Over 

B 

IB5 0.29 0.07 1.00 0.0  63.3 0.36  66.2 0.33  Under 

IB6,7 0.29 0.07 0.99 0.31  71.8 0.43  75.1 0.40  Under 

IB8,9 0.29 0.07 0.95 0.59  81.8 0.49  86.1 0.48  Under 

IB10 0.29 0.07 0.90 0.82  92.4 0.53  98.2 0.56  Under 

 

The balanced reinforcement ratio increase by increasing the amount of prestress in FRP 

bars, but, it is not influenced by the amount of the prestress in the steel reinforcement. This 

is due to the fact that the yielding of steel always occurs prior to the concrete crushing or 

FRP bar rupturing. As mentioned earlier in Chapter 2, the presence of prestressed steel 

reinforcements in the hybrid system is to increase the serviceability requirements of FRP 

reinforced beams as well as providing the minimum structural requirements in the case of 

failing of FRP reinforcements due to the high temperature (e.g. fire). 

5.3.2 Nominal flexural strength 

If the hybrid reinforced HPFRC prestressed beam is under-reinforced, i.e. f fb   , a 

tension-controlled section condition occurs as a result of FRP bars rupture before crushing 

of HPFRC in compression (i.e. f fu    and 0.0035c c
    ). Conversely, if f fb  , a 

compression-controlled section condition occurs in which the HPFRC crushes with no 

failure of the FRP bars (i.e. f fu    and 0.0035c c
    ). Note that in both cases, it is 

assumed that the steel strand has already yielded. These two nominal flexural failing 

conditions are illustrated in Figure 5-12. If the linear distribution of strain along the depth of 

the section is adopted (Bernoulli assumption), the calculation of the nominal flexural 
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strength incorporates two unknown parameters: the level of neutral axis (i.e. c ) and the 

tensile strain of FRP bars for condition 1, or the compressive strain of HPFRC for 

condition 2. The depth of neutral axis, i.e. c , can be efficiently approximated by equalizing 

the variation of force between the section at the nominal failing condition and the balanced 

failing condition: 

    HPFRC HPFRC
, , ,( )c c b f f b fr fr bF F F F F F      (5-29) 

where HPFRC
cF  and frF  are the compressive force and the tensile force assured by HPFRC at 

nominal failing condition, while fF  represent the tensile force due to FRP bars at this 

section. Note that it is assumed that the steel already yielded, hence, the tensile stress 

variation in this reinforcement is null. Eq. (5-29) can be written as follow: 

 1 2 2 , 2( )( ) ( ) ( )( )cr
c b fu f f fb ct b bm f b c c m f bd b c c           (5-30) 

where 1m  and 2m  are the modification factors that take into account, respectively, the 

change of HPFRC compressive rectangular stress block and the tensile stress of FRP bar, at 

the nominal failing condition with respect to the balanced failing conditions. Eq. (5-30) 

becomes 

  b f fbc c      (5-31) 

with 

 2

2 1 ,( )

fu
fcr

c ct b

m f
d

m f
 

 
 (5-32) 

where bc  and fb  can be calculated by Eqs. (5-6) and (5-18), respectively. The definition of 

the modification factors, 1m  and 2m  are not straightforward since they are dependent on the 

depth of neutral axis, c . But, in order to proceed with the calculation of c , they can be 

approximated by the following equations, depending on the ratio between f  and hb : 

   1
1 2

1

1 1
,f hb f hb f hb

hb f f hbf hb

m m
         

         
 (5-33) 

where the parameter 1  corresponds to the compressive strain of c
 , and the parameter 2  is 

calculated for the value of bc  from Eq. (5-9). 
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Figure 5-12: Nominal flexural failing conditions of strain being over- or under-reinforced 

condition for hybrid FRP/steel reinforced HPFRC prestressed beams 

By having obtained the value of c , the nominal flexural strength of the hybrid FRP/steel 

reinforced HPFRC prestressed beam, nM , is calculated under the following two conditions: 

Condition 1 ( f hb   ): considering the strain compatibility, the concrete compressive strain 

at top surface is 

 
( )

pre
fu f

c

f

c
d c

  
 


 (5-34) 

Since the tensile strain of FRP equals to its ultimate value, the average tensile stress of 

HPFRC is taken to be equal to the respective value at the balanced section (i.e. ,
cr
ct b , from 

Eq. (5-28)). Hence, the nominal flexural strength can be determined by summation of 

moments about the centroid of HPFRC rectangular stress block, giving 

 1 1 1
, 2( ) ( ) ( ) ( )

2 2 2

cr
n sy s fu f ct b g fr

c c c
M F d F d A c b d

  
            (5-35) 

where 2  is given by Eq. (5-9) for the value c  that replaces bc , and the coefficient 1  that 

defines the rectangular HPFRC stress block in compression is calculated based on the 

following equation, depending on c : 

 1

1

2
0.714

1
1

2

c c
c cp
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cp

cp c c

c

E

f


   

    
       

 

 (5-36) 
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In addition, the parameter frd  is computed based on different configurations of HPFRC 

tensile area with the depth of neutral axis, as shown in Figure 5-13. The calculation of frd  

is given in Annex 5A. However, as a simpler way, frd  may be given by 

 
1

( )
2

frd h c   (5-37) 

 
Figure 5-13: different configuration of HPFRC tensile area with variation of the depth of the 

neutral axis 

Condition 2 ( f fb   ): considering the similar triangles, the tensile strain of FRP bars is 

determined as 

 1 pref
f c f

d

c

 
      

 
 (5-38) 

Under this condition, the average tensile stress of HPFRC (i.e. cr
ct ) can be given by 

Eq. (5-39), which is based on the average tensile stress of HPFRC between 2  and the 

tensile stress ct  for ct f    in Eq. (5-20): 

 2
2 3 2

2

1
2 ( )

2

cr f
ct

fu

    
       

     
 (5-39) 

Hence, the nominal flexural strength, nM , can be determined by summation of moments 

about the centroid of rectangular HPFRC stress block, giving 

  1 1 1
2

2 2 2

cr
n f f sy s ct g fr

c c c
M F d F d A c b d

       
                

     
 (5-40) 

where 1 0.714  , and 2  is determined by Eq. (5-9) for value of c  instead of bc . The 

calculated values of the nominal flexural strength of the tested beams by Eq. (5-35) or (5-40) 
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are included in Table 5-10. 

Table 5-10: The nominal flexural strength of the tested beams 

 By using the proposed analytical formulation   

By DOCROS 

Specimen 
ID 

c  
f  

Maximum HPFRC strain 
By Eq. (5-35) or 

(5-40) 

 

Tension ct  Compression c  nM  
 

nM  yM * 

(mm) (%) (%) (%) (kN.m)  (kN.m) (kN.m) 

IB1 66.89 2.11 2.23 0.35 269.9  256.8 214 

IB2 66.89 2.11 2.23 0.35 269.9  257.1 202 

IB3 66.89 2.11 2.23 0.35 269.9  256.8 189 

IB4 79.45 1.72 1.84 0.35 302.3  296.3 242 

IB5 57.02 2.25 2.41 0.31 222.7  218.8 165 

IB6,7 59.23 2.25 2.09 0.29 225.9  220.8 155 

IB8,9 63.85 2.25 1.78 0.26 228.8  222.9 175 

IB10 70.86 2.25 1.46 0.23 226.7  224.4 190 

* It is obtained using DOCROS software, which correspond to yield initiation in the steel strand for tensile stress of about 1600 MPa at the 

bending zone. 
 

 

Moreover, by performing a sectional analysis using the DOCROS software, the nominal 

flexural strength ( nM ) of the tested beams can be calculated, considering the two 

aforementioned conditions. If the beam is under-reinforced, reaching FRP bar to its ultimate 

tensile strain is stop condition criteria in the analysis. On the other hand, if the beam is over-

reinforced, reaching the compressive strain of HPFRC at top layer to the value of 0.35% is 

the stop condition. The results of this analysis is also written in Table 5-10. The results of 

the nominal flexural strength from the proposed equations are in a good agreement with the 

results by DOCROS. Additionally, the values of the depth of neutral axis calculated by 

Eq. (5-31) are quite close to those determined by DOCROS. This proofs that the analytical 

formulation is an efficient tool for design purposes. 

5.3.3 Nominal shear strength 

The RC beams are normally designed based on their nominal flexural strength, but, they 

can only reach their flexural strength if shear reinforcements are enough to resist the possible 

external shear forces. The shear resistance is normally provided by internal steel or FRP 

stirrups, or external shear reinforcements such as NSM FRP laminates (Dias and 

Barros 2013), FPR sheets (Norris et al. 1997) or ETS bars (Breveglieri et al. 2015).  

However, in the present research study, HPFRC with 90 kg/m3 steel fibers was utilized to 

resist the shear force and no other shear reinforcements were used. 
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The nominal shear strength of HPFRC is analyzed based on a fracture mechanism 

approach, which accounts for the fact that HPFRC prestressed beam fails in shear due to the 

propagation of a critical diagonal crack (named as CDC). By analyzing this crack through 

the equilibrium equations as well as compatibility relationships for the respective 

deformations, the maximum shear force that carried by the prestressed beam before its 

failure is determined, and it can be considered as the nominal shear strength, i.e. nV . 

For the loading configuration adopted in this study, the effective shear zones can be 

considered as two gray areas highlighted in Figure 5-14. These areas can be identified using 

the equivalent depth of the beam, i.e. ,f eqd , as shown in Figure 5-14. The value of ,f eqd  is 

defined as the distance between the top surface of HPFRC and the centroid of equivalent 

longitudinal reinforcements at the bottom, giving by 

 ,

,

r s s f f
f eq

f eq

n d d
d

 



 (5-41) 

 
Figure 5-14: The critical diagonal crack (CDC) in shear span for the loading configuration of 

the tested beams 

where the parameter ,f eq  is the effective reinforcement ratio 

 ,f eq r s fn     (5-42) 

with 

 s
r

f

E
n

E
  (5-43) 

For relatively long shear span, ,3 f eqa d , the CDC may be taken as a diagonal line with 

an inclination of   in respect to the longitudinal axis of the beam, as shown in Figure 5-14. 

,3 f eqa d

,f eqd

,f eqd

nV

nV

Effective shear zone
Critical diagonal crack

(CDC)
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nV

,f eqd



Chapter 5: Hybrid GFRP/Steel Reinforced HPFRC Prestressed beam Page | 151 

 

5.3.3.1 Flexure-shear mechanism 

To analyze the CDC, a flexure-shear mechanism similar to the one discussed by Oehlers 

et al. 2010 can be followed. The internal forces that are acting over the CDC are shown in 

Figure 5-15. The line ‘OA’ in this figure is the compressive part, and line ‘OB’ is the CDC 

face. The value of vc  defines the depth of the neutral axis where the longitudinal strain is 

null (i.e. point ‘O’). The internal forces shown in this figure have to be in static balance with 

the external shear force and its moment. It is easier to consider the line ‘OC’ instead of ‘OA’ 

for deriving the equilibrium equations. Hence, in the vertical direction 

 , , ,cos sinfr n fr v c vV F F F    (5-44) 

where ,c vF  is the resultant of tangential force at the compressive zone along the line ‘OC’. 

This component is negligible since the value of vc  becomes small at the failure stage. The 

force ,fr nF  is the resultant of normal tensile force due to the steel fibers at tensile zone of the 

crack, while ,fr vF  is the tangential force of HPFRC over the line ‘OB’. 

Additionally, the horizontal equilibrium condition leads to: 

 ,sin( )fr f s c nF F F F     (5-45) 

where   is the angle between the total resultant of the residual force due to the HPFRC (i.e. 

2 2
, ,fr fr n fr vF F F  ) and the corresponding normal component (i.e. ,fr nF ) as shown in 

Figure 5-15. More details about the angle of   will be discussed later in Section 5.3.3.2. 

Further, ,c nF  is the compressive force of HPFRC normal to the line ‘OC’ shown in 

Figure 5-15, which may be obtained by the equivalent rectangular stress block using 

Eq. (5-8). fF  and sF  are the tensile force of the FRP bars and steel strand respectively, 

giving by 

    pre pre
f f f f f f f f f fF E bd E A          (5-46) 

 
   pre pre pre

s s s s s s s s s s sy s
s pre

sy s s sy s s sy s

E bd E A
F

f bd f A

             
 

      

 (5-47) 

where the parameters in the above equations were all defined previously in Section 5.3.2. 
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Note that the constitutive laws plotted in Figure 5-11d and Figure 5-11e are used for defining 

the behavior of the longitudinal reinforcement in tension. 

Finally, if it is assumed that the compressive wedge ‘OAC’ becomes small at the failure 

stage, the summation of moment about the centroid of this compressive wedge can be 

expressed as the following equation:  

    1 1 1
, cossec cot

2 2 2

v v v
f f s s fr n fr v

c c c
F d F d F d V a c

       
             

     
 (5-48) 

 
Figure 5-15: Illustration of internal forces acting over the critical diagonal crack (CDC) 

where a  is shear span, frd  is depth of ,fr nF  as illustrated in Figure 5-15, which is calculated 

by Eq. (5-59). The parameter  V  is the reaction of the applied load at location of the beam 

support being equal to the half value of the total applied load (i.e. P ) due to the static 

balanced condition of the whole beam. The coefficient 1  defines the depth of the equivalent 

HPFRC stress block as previously defined in 5.3.2 (assuming linear distribution of 

compressive strain along ‘OC’). Note that the moment due to ,fr vF  is assumed to be 

negligible based on the assumption that the compressive wedge of ‘OAC’ becomes small at 

the failure stage. 

According to the above equilibrium equations, two scenarios can be theoretically taken place 

at the failure stage: 

1) By increasing the shear force in shear span, the crack tip (near to point ‘O’) grows 

through the compressive zone in order to provide larger crack face (i.e. vc  is getting 
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smaller), leading to increase the residual tensile force of HPFRC in order to resist the external 

shear force (as it will be also discussed in Section 5.3.4.1). On the other hand, the 

compressive force increases significantly since the compressive zone is becoming smaller. 

The failure can be assumed when the balanced force in the horizontal direction (Eq. (5-45)) 

is no longer satisfied. Therefore, the maximum shear resistance is attained when the 

compressive force reaches its maximum value 

 , 1 2( )( )c n v cF c b f     (5-49) 

where 1 0.714   using the bi-linear law for concrete in compression as plotted in 

Figure 5-10, and 2 1   for 1c h ; 

2) While the crack tip grows through the compressive zone, the crack width becomes wider 

at the location of the longitudinal reinforcements due to the imposed rotation to the CDC by 

the applied moment. The second scenario is when the longitudinal reinforcements reach their 

ultimate tensile strain prior to the maximum value of the concrete in compression. This 

scenario seems realistic if very low reinforcement ratio is utilized. However, the lower 

reinforcement ratio leads to more possibly having the failing of the beam in the pure bending 

zone rather than in shear span. 

In order to determine the nominal shear strength, the equilibrium equations (i.e. 

Eqs. (5-44), (5-45), and (5-48)) are solved for value of V by considering the first scenario. 

Such analysis incorporates many unknown parameters that becomes complex to solve. 

Therefore, the compatibility relationships among the deformations of the intervening 

materials are required to reduce the number of unknown parameters. 

In a flexure-shear crack, due to the existence of shear stress over the crack plane and its 

variation along the crack, the crack plane does not remain plane. It is assumed that the 

maximum crack opening occurs at the junction between web and flange due to the lower 

thickness of the beam, as well as its higher shear stress concentration when it compares with 

the bottom flange. Therefore, it is more realistic to consider the variation of crack width 

along the crack face as two linear profiles. This adopted deformation profile is illustrated in 

Figure 5-16, where the maximum crack opening, i.e. crw , takes place at the above indicated 
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transition zone, while the crack width at the bottom of the flange can be defined as 3 crw , 

where 30 1  . Hence, the variation of the crack width along the flexure-shear crack plane 

is defined by 

 
Figure 5-16: Compatibility of the tensile deformations along the CDC 
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 (5-50) 

with the following definition: 

  ( )cosseccr vl h c    (5-51) 

  , 1 2( )cosseccr fll h h    (5-52) 

and 

 , ,cr w cr cr fll l l   (5-53) 

where x  origins from point ‘O’ toward the CDC (line ‘OB’ in Figure 5-16). The relation 

between the crack width and the slip of the reinforcements can be determined by 

     
1

cossec
2

s s s vw x d c      (5-54) 

     
1

cossec
2

f f f vw x d c      (5-55) 

where f  and s  are the slip of FRP bars and steel strand, respectively, at the CDC. The 

slip of the longitudinal reinforcements can be calculated, by imposing crw . Once these slips 

are obtained, the FBL model (Annex 4B) is employed to calculate the tensile strain of the 

b

( )w x

3 crw

crw

ls

lf



vc



O
fd

s vd c

Steel

FRPs

Critical Diagonal
 Crack (CDC)

Actual
Profile

h


O
x,cr wl

,cr fll
crl

1h

2h

A

B

wb



Chapter 5: Hybrid GFRP/Steel Reinforced HPFRC Prestressed beam Page | 155 

 

reinforcements taking into account the bond-slip behavior of the reinforcements, which was 

calibrated in Section 5.2.6. Note that the bond length is taken as the final crack spacing, 

which will be discussed later in Section 5.3.5. Alternatively, the tensile strain of the 

longitudinal reinforcements can be simply calculated by dividing the slip by the crack 

spacing. This means a linear slip distribution over the crack spacing is assumed. By having 

obtained the tensile strain of FRP bars, i.e. f , and the tensile strain of steel strand, i.e. s , 

from the FBL model, their tensile force are computed by Eqs. (5-46) and (5-47). Moreover, 

the value of ,fr nF  in Eq. (5-44) can be determined by 

 ,
0

( ( ))
crl cr

fr n w ctF b w x dx   (5-56) 

where ( ( ))cr
ct w x  is the normal tensile stress of HPFRC as function of the crack width, which 

can be determined from direct tensile test (or in-direct tensile test using back analysis 

technique). The coefficient   takes into account the degradation of the normal tensile stress 

due to existence of shear stresses over the crack, which is described in 5.3.3.2. 

In addition, the tangential force of HPFRC over the line ‘OB’ (i.e. ,fr vF ) is determined 

by 

 

m

,

,

( )

tan ( )

cr w v a

fr v

fr n a

b l w x w
F

F w x w

 


 
 

 (5-57) 

where m
cr  is the mean crack shear stress, which is effectively due to the frictional behavior 

of the crack face, and aw  is a limit value of crack opening over which the frictional stress 

can be assumed almost null for ( ) aw x w . Consequently, vl  is defined as a distance of the 

diagonal crack that the frictional behavior due to the crack surface is still active, given by 

 ,
a

v cr w

cr

w
l l

w
  (5-58) 

Finally, the value of frd  in Eq. (5-48) can be determined by the following integral: 

 0

0

( ( ))
sin

( ( ))

cr

cr

l cr
ct

fr v l cr
ct

w x xdx
d c

w x dx


  






 (5-59) 
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By substituting Eq. (5-44) into Eq. (5-48), and Eq. (5-49) into Eq. (5-45), a set of two 

nonlinear equation is obtained in which the unknown parameters are the values of vc and 

crw  for the predefined values of  ,  ,   , m
cr , aw   and 3 . A numerical procedure is 

employed to solve this set of non-linear equations. The algorithm for solving the equations 

to derive the value of the nominal shear strength, nV , is presented in Annex 5B. For this 

purpose, the 4-linear stress-crack opening law ( cr
ct w  ) plotted in Figure 5-17 is used for 

modeling the post-cracking behavior of HPFRC in tension.  

 
Figure 5-17: Normal tensile stress versus crack opening obtained from the back analysis of 

the notched beam specimens taken from the web plate of the tested I-beams (from Chapter 6) 

The original diagram shown in Figure 5-17 is obtained from the back analysis of the F-

CMOD results of a series of notched beam bending tests that were carried out using the 

notched beam specimens taken from the HPFRC web plate of the I-beam specimens after 

the bending test (the un-cracked part of the web plate at the two extremities). More details 

about these series of notched beam tests, and the respective results of the back analysis will 

be given later in Chapter 6. Furthermore, the obtained cr
ct w   diagram may not be directly 

used for the analysis of the CDC, since the crack sliding due to the existing shear stress at 

crack face influences this diagram. This phenomena is discussed in the next section where 

the parameters of   and   are defined. 
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5.3.3.2 Definition of   and   

For case of HPFRC crack with no tangential force, and tensile force normal to the crack 

plane as shown in Figure 5-18a, the area under the curve of tensile force versus CMOD (or 

w ) can be defined as the total fracture energy that is consumed in the direction normal to 

the fracture surface. The normal crack tensile stress (i.e. cr
ct ) is calculated by dividing the 

tensile force by the area of the crack plane in which the normal tensile stress versus crack 

width ( cr
ct w  ) is obtained. The area under this diagram is typically defined as the mode I 

fracture energy (i.e. I
fG ) to propagate a tensile crack of unit area. 

 

Figure 5-18: Concept of angle φ in HPFRC crack: (a) without tangential force, (b) with only 
tangential force, (c) with both tangential and normal force, (d) degradation of normal tensile 

stress-crack opening diagram due to the sliding, and (e) increase in the Mode II fracture 
energy 

For the case shown in Figure 5-18b, the crack is under only shear force, however, due to 

the elongation and slipping of the steel fibers, splitting of the surrounding paste at the exit 

point of the fibers, as well as the frictional behavior of crack surface (e.g. overlapping of 

aggregates), the crack is always opening while it is sliding (  ). After a certain crack opening 

of aw , it can be assumed that the crack opening is only due to the slipping and elongation 

of the steel fibers, and frictional behavior due to the roughness of crack face does not 

anymore exist. Hence, in an idealized manner, the resultant of residual tensile force of the 

crack has the same inclination with the fibers in respect to the crack plane. Therefore, the 

aw iw

cr
ct

cr

,fr vF

,fr nF

crcr
ct

w

w

w

45  

0 

0 45   

(a)

(b)

(c)

0 

w 

w 

w  frF

( )cr
ct w

w

0 

0 ( )cr
ct iw

(d)



Steel fibers

Steel fibers

Steel fibers

Steel fibers

( )cr 

a

(e)

max
cr

due to Steel
fibers

Energy spent
in Mode II

( )cr
ct iw



Page | 158 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

angle   may be defined as follow: 

 arctan ( )aw w
w

 
   

 
 (5-60) 

Based on the shear tests carried out by Soltanzadeh et al. (2015) on the same type of 

HPFRC, it has been obtained that the average value of   and w  are almost equal for the 

same level of applied shear force, leading to define 45   (see Figure 5-19). 

 
Figure 5-19: Average sliding and opening versus the average shear force (based on the results 

obtained by Soltanzadeh et al. 2015 from a direct shear test) 

Furthermore, if the crack is under the shear force and the tensile force simultaneously (as 

shown in Figure 5-18c), the rate of opening is higher than sliding, which leads to have the 

value of   ranged between 0 45   for aw w . Typically, cr
ct w   diagram obtained 

from direct tensile test is considered for the case that 0   and 0  , hence, the resultant of 

residual tensile force due to the fibers is assumed normal to the crack face (i.e. ,fr nF ). 

However, when 0  , the normal residual tensile force cannot be calculated from the 

original cr
ct w   response where 0  , since the fibers are inclined due to the sliding, and 

consequently they have a tangential component along the crack face. Therefore, after crack 

opening of aw , the normal tensile force decreases based on the angle of  , which is 

estimated from Eq. (5-60). Based on what shown in Figure 5-18d, the value of tangential 

over the infinitesimal tensile area of ctdA  for iw w  (when 0  ) can be expressed by 

 , ( ) ( ) ( )n
fr n ct i ct i adF w dA w w     (5-61) 
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Based on the expression given in Figure 5-18d (for 0  ), the value of tangential over 

the infinitesimal tensile area of ctdA  is given by 

 , ( ) ( ) ( ) (1 ( )) ( ) ( )n n n
fr v ct i ct ct i ct ct i ct i adF w dA w dA w dA w w           (5-62) 

where   is a coefficient that takes into account the reduced portion of the normal tensile 

stress of steel fibers due to the sliding. On the other hand, based on the definition of   

 , ,tanfr v fr ndF dF   (5-63) 

Hence, substituting Eqs. (5-61) and (5-62) into Eq. (5-63) leads to derive 

 
1

( )
1 tan

  
 

 (5-64) 

In fact,   is a coefficient that takes into account the reduced portion of the Mode I 

fracture energy that is spent in Mode II for aw w  (see diagram of cr
ct w   and cr    in 

Figure 5-18d and Figure 5-18e, respectively). The mode II fracture energy (i.e. II
fG ) is 

defined as the area under the curve of crack shear stress versus sliding for unit of area. For 

case of Steel Fiber Reinforced Concrete (SFRC), this energy is not independent from the 

Mode I, and it can be accounted as the fracture energy due to the frictional behavior of crack 

face (i.e. ,
II
f aG ) for aw w  (e.g. aggregate interlocking), plus a portion of I

fG , giving 

  , 1 ( )II II I
f f a fG G G     (5-65) 

More studies are required with respect to the definition of angle  , and the coefficient 

of  . However, in the present work, the nominal shear strength of the beams are analyzed 

for intermediate values of   ranged [10 35 ]    where 0.15aw  mm. Note that the value 

of aw  is taken from the average crack opening at the peak shear force in the direct shear 

tests carried out by Soltanzadeh et al. (2015) on the same type of HPFRC. 

Based on the adopted values of   and aw , the modified diagrams of cr
ct w   are plotted 

in Figure 5-17. Since the diagram is defined by means of 4 linear branches, the modification 

factor,  , is multiplied by the crack tensile stress values at the connection points of these 

lines (i.e. P1 to P4). Note that the modification procedure is based on this assumption that 
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most of the fibers are pulled out, hence, the same value of ultimate crack opening is adopted. 

5.3.3.3 Results of the flexure-shear analysis 

The results of the nominal shear strength based on the proposed flexure-shear analysis 

are plotted in Figure 5-20 and Figure 5-21, for group A and B of the test specimens, 

respectively. 

 

 
Figure 5-20: Results of the flexure-shear analysis: (a) IB1, (b) IB2, (c) IB3, and (d) IB4 

 

 
Figure 5-21: Results of the flexure-shear analysis: (a) IB5, (b) IB6, (c) IB8, and (d) IB10 
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different range values of  ,  . The effectiveness of m
cr  was not so significant on the 

nominal shear strength due to the small length of vl  at the failure stage. Hence, m
cr  is 

empirically taken as constant value of 1.0 MPa (Baghi 2015). The average computed values 

of vc  corresponding to whatever value of 3  for different tested beams is plotted in 

Figure 5-22a and b. 

 
Figure 5-22: The average depth of the neutral axis obtained from the flexure–shear analysis: 

(a) IB1, IB2, IB3, and IB4, (b) IB5, IB6, IB8, and IB10 

5.3.3.4 Nominal shear strength of FRC by Model Code 2010 

In the lack of formulation in the available guidelines to calculate the nominal shear 

strength of the hybrid FRP/steel reinforced HPFRC prestressed beams proposed in this study, 

the recommendation by CEB-FIB Model Code 2010, which applies to prestressed or none-

prestressed FRC beams containing conventional steel reinforcement, is used to predict the 

shear capacity of the beam specimens: 
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 (5-66) 

where pre
c  is the average compressive stress acting over the gross section due to the 

prestressed force: 

 
ps pfpre

c

g

N N

A


   (5-67) 

where psN  and pfN  are, respectively, the axial forces due to prestress in steel strand and 

FRP bars, which have been given in Table 5-6. The parameters  ,f eqd  and ,f eq  were 

previously defined in Eqs. (5-41) and (5-42), respectively. The coefficient k  is derived by 
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k
d

    (5-68) 

Additionally, the parameter Ftuf  is the characteristic value of the ultimate residual 

tensile strength for HPFRC, and determined by (CEB-FIB Model Code 2010) 

 ,3 ,1

3

( 0.5 0.2 ) 0u
Ftu Fts Fts R R

w
f f f f f

CMOD
      (5-69) 

where 

 ,10.45Fts Rf f  (5-70) 

and  uw  is the maximum crack opening accepted for structural design, which is set to be 

1.5 mm (CEB-FIB Model Code 2010). By substituting Eq. (5-70) to Eq. (5-69), Ftuf  is 

simply obtained as follow: 

 ,1 ,30.06 0.3Ftu R Rf f f   (5-71) 

Meanwhile, ctf  in Eq. (5-66) is assumed equal to ,0.7 ct Lf  (RILEM TC 162-TDF). The 

partial safety factor, i.e. c , is taken 1.0 since the formulation is used to predict experimental 

results, and average data for the material properties is used. The results of nominal shear 

strength obtained by Eq. (5-66) and the respective values of the parameters defined in this 

equation are included in Table 5-11. , the maximum moment supported by the tested I-beams 

in the present study, can be taken as the minimum value between nM  and vM , where vM  

is the maximum moment corresponding to the nominal shear strength. For the case of the 

loading configuration adopted in this study, vM  is given by  

 v nM V a   (5-72) 

where a  is the shear span of the beam. The calculated values of vM  for the tested beams are 

included in Table 5-11. Based on the results for all the beams v nM M , which shows that 

the beams would have been failed in shear. These results will be compared with the values 

obtained from the experimental tests in Section 5.4 and further discussion in this respect will 

be given in order to highlight the benefits of prestress level in this type of structural system. 
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Table 5-11: Nominal shear strength of the tested beams by CEB-FIB Model Code 2010 

Specimen 
ID 

,f eqd  ,f eq  k  ctf  Ftuf  pre
c  

 
nV  vM  cdV * 

cdM ** 

(mm) (%) (-) (MPa) (MPa) (MPa)  (kN) (kN.m) (kN) (kN.m) 

IB1 424 2.40 1.69 4.13 3.90 0.0  98.6 145.4 49.5 73.0 

IB2 424 2.40 1.69 4.13 3.90 0.83  102.3 150.9 53.2 78.5 

IB3 424 2.40 1.69 4.13 3.90 1.65  106.0 156.3 56.8 83.8 

IB4 431 2.79 1.68 4.13 3.90 1.65  112.8 166.3 60.3 88.9 

IB5 442 1.40 1.67 4.13 3.90 0.0  85.5 136.8 42.6 68.2 

IB6,7 442 1.40 1.67 4.13 3.90 1.42  92.1 147.4 49.5 79.2 

IB8,9 442 1.40 1.67 4.13 3.90 2.14  95.5 152.7 52.8 84.5 

IB10 442 1.40 1.67 4.13 3.90 2.73  98.2 157.1 55.6 89.0 
* the shear resistance of the member without fibers; 
** calculated by Eq. (5-72), replacing Vn by Vcd. 
 

5.3.4 Theoretical deflection 

In order to predict theoretically the maximum deflection of the tested beams, two 

methods are followed in this study: 

1) The beam is discretized in Euler-Bernoulli beam element of 2 nodes. Then, the moment-

curvature relationship that was obtained from DOCROS software is assigned to each 

element to compute the flexural stiffness by using a matrix displacement approach. This 

analysis procedure is done by using Def-DOCROS analysis software, which is described 

in detail elsewhere (Barros et al. 2005 and Varma 2013); 

2) Using a direct method similar to the one suggested by ACI318, and it was followed by 

subsequent ACI guidelines for concrete structures reinforced by FRP bars (ACI440-1R), 

and prestressed concrete structures with FRP tendons (ACI440-4R). Based on this 

method, an effective moment of inertia ( effI ) of the beam section is determined using 

moment of inertia of the cracked section ( crI ) at flexural failing, which corresponds to 

the nominal flexural strength ( nM ). This method is explained in this section.  

Based on the traditional mechanics of material, the maximum deflection of the tested beam 

determined by 

 
2 23

max 4
( )

6

a

c g

M
D L a

E I
   (5-73) 

where gI  is the gross moment of inertia of un-cracked section. Further, L  and a  are, 

respectively, the beam span and beam shear span. ACI suggests to replace  gI  in Eq. (5-73) 
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by an effective moment of inertia ( effI ) of cracked beam to obtain its deflection in inelastic 

stage, giving by (ACI440-1R): 

 
 

3
g a cr

eff cr
cr d g cr a cr

a

I M M

I M
I I I M M

M




  
    

 

 (5-74) 

where d  is a factor that takes into account the relatively smaller tension stiffening effect 

when FRP reinforcements are used, giving by 

 
1

1.0
5

f
d

fb

 
   

 
 (5-75) 

In Eqs. (5-73) and (5-74), the parameter aM  is the maximum moment of the beam for 

each level of loading, and crM  is the cracking moment that can be calculated by 

 
,2( )pre

ct c m g

cr

f I
M

h

 
  (5-76) 

where ,
pre
c m  is the compressive stress introduced in the bottom surface of the beam’s cross 

section due to the eccentrically applied prestress force: 

 ,
2

ppre pre
c m c

g

M h

I
     (5-77) 

with 

    1 1
2 2p ps s pf fM N d h N d h     (5-78) 

The concept of the proposed effective moment of inertia ( effI ) by Eq. (5-74) is 

schematically illustrated in Figure 5-23a (shown by dotted-line) for a concrete member 

reinforced with FRP bars (FRP-RC). Before reaching the cracking moment, i.e. a crM M , 

it is assumed that eff gI I . After crack initiation, effI  decreases with the increase of the ratio 

between the cracking moment and the applied moment (i.e cr aM M ), getting the moment 

of inertia of the cracked section crI  at the flexural failing. 

According to the ACI 440-1R-06 design guidelines for concrete structure reinforced with 

FRP bars, the moment of inertia of the cracked section (i.e. crI ) can be determined by 
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3

2( )
3

cr f f f

bc
I n A d c    (5-79) 

where fn  is ratio between the modulus of elasticity of FRP bars and the modulus of elasticity 

of concrete ( f cE E ). However, in this study, the moment of inertia of the cracked hybrid 

FRP/steel reinforced HPFRC prestressed beam at failure is determined by calculating the 

curvature of the cracked section, giving by 

 
( )

( )

h n n f
cr h pre

c cr c f f

M M d c
I

E E


 

   
 (5-80) 

with f  given by  

 
1

fu f fb

preff
c f f fb

d

c

   

            

 (5-81) 

where cr  is the respective curvature corresponding to the nominal flexural strength (i.e. 

nM ). 

 
Figure 5-23: (a) Effective moment of inertia versus the maximum applied moment, 
(b) decreasing pattern of the effective moment of inertia at cracking initiation, and (c) effect of 
flexure-shear crack propagation of HPFRC on the decrease in the effective moment of inertia 

The nominal flexural strength can be calculated using Eq. (5-35) or Eq. (5-40) depending 

on being under or over-reinforced section conditions, respectively. Note that in the above 

equation, the value of c  is computed using Eq. (5-31), which is the level of neutral axis for 

a nM M  in the bending zone. 

The effective moment of inertia presented in Eq. (5-74) by ACI is relevant for reinforced 
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concrete beams and not reinforced HPFRC beams. For case of plain concrete in FRP-RC 

beam, the tensile stress of concrete drops to almost zero after crack initiation (following 

typical tension-softening of plain concrete), which introduces significant loss in the effective 

moment of inertia, effI , after crack initiation. Additionally, the axial stiffness of FRP bars, 

as well as their bond performance to plain concrete are normally lower than conventional 

steel bars. Therefore, the tension-stiffening exhibited by FRP bars at crack initiation is less 

than steel bars. For this reason, the ACI committee 440 recommends the coefficient d  that 

is defined by the simple relation given in Eq. (5-75) depending on the ratio f fb  , in which 

the decrease level of the effective moment of inertia is governed by the coefficient d , as 

illustrated in Figure 5-23a. 

Conversely, for the case of hybrid reinforced HPFRC beam, HPFRC material provides 

high residual tensile stress after crack initiation (normally following a slight tension-

hardening branch in its direct tensile behavior as shown by P2 in Figure 5-11b and c), which 

reduces the decreasing rate of the effective moment of inertia at cracking stage. This trend 

in both FRP-RC beam and hybrid HPFRC beam is schematically compared in Figure 5-23b. 

Due to this difference, the function that reduces the effective moment of inertia, presented 

in Eq. (5-74), cannot be directly used for case of hybrid HPFRC beam when a crM M . In 

order to adjust Eq. (5-74) for this type of beams, the concrete tensile strength (i.e. ctf ) is 

recommended to be replaced by the limit of proportionality, ,ct Lf , which is included in 

Table 5-5, and calculated using Eq. (5-1) for jF  corresponding to 0.05 mmCMOD   in the 

standard notched beam test. Hence, the cracking moment is replaced by L
crM , which is 

computed by the following equation 

 
, ,2( )pre

ct L c m gL
cr

f I
M

h


  (5-82) 

The difference between considering crM  or L
crM  in Eq. (5-74) can be realized from the 

schematic illustration given in Figure 5-23a and b. With this strategy, the effective moment 

of inertia is assumed gI  for L
a crM M , which introduces a slight error in calculation of 
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deflection for L
cr a crM M M  , however, it gives accurate results for L

a crM M , as it will be 

discussed later in Section 5.4. Based on the above explanation, the following equation is 

proposed for the calculation of the effective moment of inertia in case of the proposed hybrid 

system: 
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 (5-83) 

where the value of d  is recommended to be assumed unit value for case of the hybrid 

HPFRC beams proposed in this study. It should be noticed that h
effI  is also influenced by the 

propagation of flexure-shear cracks in shear span, as it is discussed in the next section. 

5.3.4.1 Effect of shear crack propagation on the effective moment of inertia  

For case of reinforced FRC beams without shear reinforcements, the effective moment 

of inertia of the member calculated by Eq. (5-83) is influenced by the propagation of shear 

cracks in the effective flexure-shear zones (as defined in Figure 5-14). This is attributed to 

the fact that the average curvature of HPFRC beam in shear span gets higher magnitude 

rather than when the beam with no fibers, and it is shear reinforced with steel stirrups. This 

can be explained by the following two aspects: 

- When compared to the conventional beams of plain concrete shear reinforced with 

steel stirrups, FRC beams do not including steel stirrups, as is the case of the present 

beams, develop larger curvature for the same applied moment. Figure 5-24a and b 

evidence this effect, where for assuring force equilibrium in the crack section of a 

FRC beam, the neutral axis needs to progress further due to the tensile softening 

character of the post-tensile behavior of FRC instead of the tensile hardening effect 

provided by steel stirrups; 

- In the shear span of FRC beams, the shear component in the crack face promotes the 

occurrence of micro-spalling of the paste at the exit point of the fibers 

(Cunha et al. 2010), whose occurrence introduces an instantaneous increase of crack 
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opening with a direct consequence on the decrease of the post-cracking tensile 

capacity of the cracked section (Figure 5-24a, typical tension-softening diagram with 

shear force). 

 
Figure 5-24: Comparison between the depth of neutral axis in a flexure-shear zone for 

(a) hybrid HPFRC beam with no conventional shear reinforcements, and (b) FRP-RC beam 
reinforced in shear by steel stirrups 

While experimental results are not available for more reliable approach, the decrease 

level in the moment of inertia caused by these effects are simulated by the second linear 

parcel introduced in Eq. (5-83)  for a cdM M , where cdM  defines the applied moment 

corresponding to the nominal shear strength of the beam only due to the concrete (i.e. cdV ). 

This can be taken as the values recommended by the CEB-FIB Model code 2010 calculated 

in Table 5-13, however, it should not be obviously taken smaller than L
crM . This reduction 

is schematically illustrated in Figure 5-23c. The modified equation of the effective moment 

of inertia for HPFRC reinforced beams considering the increase in the curvature of beam 

due to the cracks in shear span may be given by 
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The parameter sh  takes into account the rate of the linear decrease in h
effI  with increasing 

the maximum applied moment. The minimum value of h
effI  at failure may be defined based 

on the ratio of v nM M : 

 ( ) where h hv
eff a v cr v n

n

M
I M M I M M

M

 
   

 
 (5-85) 

When v nM M , the minimum value of h
effI  at failure can be equal to h

crI  from Eq. (5-80). 

The coefficient sh  can be obtained by substituting Eq. (5-85) into Eq. (5-84) for a vM M

: 
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L L
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n v v
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 (5-86) 

5.3.5 Theoretical crack spacing 

The average crack spacing of the hybrid FRP/steel HPFRC prestressed beams (i.e. crS ) 

can be obtained through a crack analysis procedure that takes into account the bond behavior 

between the reinforcements and surrounding HPFRC. It is assumed that the first crack occurs 

at section ‘A’ in the bending region as shown in Figure 5-25 for a total applied load crP , 

which creates the cracking moment of crM . For a value of crack width at the level of FRP 

bars (i.e. fw ), the slip of FRP bars can be assumed as half value of the crack width: 

 
2

f
f

w
   (5-87) 

If it is assumed that section remains plain after rotation of  , similar to compatibility of 

deformation by the moment-rotation approach discussed by Oehlres et al. (2010) and Barros 

et al. (2015), the slip of steel strand becomes 
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s s
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w d c
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 (5-88) 

where c  is the depth of the neutral axis, and s  is slip of steel strand at the crack section. 

Once the values of f  and s  are obtained, the transferred bond length of the longitudinal 

reinforcing bars (i.e. ,tr fL  and ,tr sL ), as well as the distribution of the tensile strain, stress, 
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and bond shear stress over this length can be obtained using the ‘IBL algorithm’ (Annex 4A), 

which was previously described in Chapter 4. The bond-slip relationships that were 

calibrated in Section 5.2.6 for steel strand and FRP bars, are now used for calculation of the 

transferred bond length. The magnitude of slip at this stage deals with small values, hence, 

the transferred bond length can be computed using the following equation, which is based 

on the analytical bond model described in Chapter 3 for the bond solution in the elastic bond 

phase (see Figure 3-13 in Chapter 3): 

 ,
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where rJ  is the ratio between the perimeter ( r ) and axial stiffness of the reinforcing bar 

(i.e. r rE A ). The subscript ‘r’ defines the parameters for either steel strand or FRP bar. The 

parameters 1,r , 0,r  and 1,r  define the elastic bond phase of the bond-slip constitutive law 

of the reinforcements (see Figure 3-13 in Chapter 3). 

The second crack occurs when the tensile strain of HPFRC due to the tension-stiffening 

effect of the reinforcements (i.e. fibers, FRP bars and steel strand) in the HPFRC tensile 

prism at bottom flange of the beam (see Figure 5-25) reaches its cracking strain (i.e. cr ). 

This crack occurs at Section B, as shown in Figure 5-25, for the reason that the tensile force 

transferred to the surrounding HPFRC due to the bond behavior of the reinforcements is 

maximum at this section, which is located at 0x   where x  origins from the beginning of 

trL  (  , ,max ,tr tr s tr fL L L ) towards section A as illustrated in Figure 5-25. As shown in this 

figure, two tensile prisms in accordance with the recommendations by CEB-FIB 

Model Code 2010 are considered to calculate the crack spacing. The first one comprises 

almost all area of the bottom flange including both longitudinal reinforcements, while the 
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second is considered only the effective tensile area around the GFRP bars, which is the closer 

reinforcement to the maximum tensile surface. The crack spacing is the smaller value that is 

calculated considering these two tensile prisms. The average tensile strain of these two 

tensile prisms can be given as follow: 

 
1
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ct
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2

2

( )f fr f
ct

c p c

P w

E A E


    (5-93) 

 
Figure 5-25: Illustration of the effective tensile area of the beam and the crack spacing 

where 1pA  and 2pA  are the cross-section area of the first and second tensile prisms shown in 

Figure 5-25, and fr  is the average tensile stress in the tensile prism due to the tension–

stiffening effect of the steel fibers at the crack section. This value can be computed using the 

4-linear law plotted in Figure 5-11c in which the tension-softening law due to concrete 

matrix is subtracted by the obtained post-cracking law for HPFRC. The respective values 

define in this diagram is included in Table 5-8. The parameter sP  and fP  are the maximum 

tensile force transferred to the tensile prism due to bond behavior of the steel strand and FRP 

bars, respectively, which are given by 
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where ( )s x  and ( )f x  define the distribution of bond shear stress of the steel strand and 

FRP bars, respectively over trL . Additionally, s  and f  are the tensile strains of the steel 

strand and FRP bars, respectively, at Section A. For 1,s s    and 1,f f   , the tensile strain 

in the reinforcing bars at section “A” can be obtained by the following equation (based on 

Eqs. (3-4) and (3-7) from Chapter 3): 

 , ,
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By substituting Eqs. (5-94) and (5-95) into Eqs. (5-92) and (5-93), and considering the 

cracking strain (i.e. cr ct cf E  ) of HPFRC for both values of 1ct  and 2ct , the tensile strain 

of FRP bars corresponding to the cracking of section B is given by the two following 

equations for the adopted prism 1: 

  1
( )

p s
f ct fr s f r s

f f f

A A
f n

E A A
         (5-99) 

and for the adopted prism 2: 

  2
( )

p
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f w
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    (5-100) 

where rn  is given by Eq. (5-43). Based on the above equations, the primary crack spacing 

can be calculated through a trial and error procedure in which for a given value of f , the 

tensile strain of FRP calculated by Eq. (5-96) and Eq. (5-99) (or Eq. (5-100)) must be equal. 

Hence, the calculated value of trL  by Eq. (5-89) can be considered as the primary crack 

spacing. Moreover, to calculate s  from Eq. (5-88), the value of c  is unknown. This value 

can be computed by using the equilibrium conditions over the crack section. However, the 

slip of steel strand (i.e. s ) can be efficiently estimated as a constant portion of the slip in 

FRP bars (i.e. f ). Based on Eq. (5-88), the relation between s f   and c  is plotted in 



Chapter 5: Hybrid GFRP/Steel Reinforced HPFRC Prestressed beam Page | 173 

 

Figure 5-26 or the value of c  ranged 1
2nc c h  , where nc  is the depth of neutral axis 

corresponding to the nominal flexural failing of the beam, and it is given by Eq. (5-31) (see 

Table 5-10 for calculated values of for the tested beams). As shown in this figure, the 

variation of s f  versus the depth of neutral axis is not so significant. Therefore, the slip in 

steel strand can be on average taken as 75% of the slip in FRP bars. 

 
Figure 5-26: The ratio between the slip in steel strand and slip in FRP bar versus the depth of 

neutral axis 

A simple algorithm presented in Annex 5C is employed for the trial and error procedure 

of calculating the primary crack spacing. The calculated values of crS  for the tested beams 

are included in Table 5-12. 

Table 5-12: Results of the analysis to calculate the crack spacing 

S
p

e
ci

m
e

n
 

ID
 

 First prism  Second prism 

crS  crS ** RILEM
crS *** 

crM  fw  f * trL   fw  f * trL  

(kN.m) (mm) (%) (mm)  (mm) (%) (mm) (mm) (mm) (mm) 

IB1 25.7 0.051 0.058 392  0.042 0.048 190 190 95 97 

IB2 39.3 0.051 0.058 392  0.042 0.048 190 190 95 97 

IB3 53.0 0.051 0.058 392  0.042 0.048 190 190 95 97 

IB4 53.0 0.048 0.055 386  0.039 0.045 182 182 91 77 

IB5 25.7 0.052 0.059 302  0.042 0.048 190 190 95 97 

IB6,7 52.1 0.052 0.059 302  0.042 0.048 190 190 95 97 

IB8,9 67.9 0.051 0.058 306  0.042 0.048 190 190 95 97 

IB10 80.4 0.051 0.057 308  0.042 0.048 190 190 95 97 
* The tensile strain of FRP bars at primary cracking stage excluding the amount of pre-strain in the bar, this value is 
equivalent with the tensile strain of FRP bar at “crack formation stage”, which is discussed in the next section where the value 
of crack width is calculated; 
** The secondary crack spacing taken by the half value of the primary crack spacing; 
*** calculated by Eq. (5-101) based on the recommendation by RILEM TC 162-TDF. 
 

The secondary crack spacing can be taken as the half value of the primary crack spacing 

(if applicable) for the reason that the midway section between two consecutive cracks 

theoretically has the highest degree of force that is transferred by the bond behavior between 
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the reinforcements and concrete. The possibility of having secondary cracking stage or 

additional cracking stage can be verified through the same analysis procedure, however, at 

this time, the FBL algorithm, which was described in Chapter 4 and presented in Annex 4B, 

has to be employed. This verification is done by using the algorithm that will be described 

in Section 5.3.6, where the crack width for each level of the applied moment is calculated. 

In fact, after first cracking stage, the tensile strain of the prisms due to the bond behavior of 

the reinforcing bars are calculated by taking the difference value between the strain of 

reinforcing bars at crack section and the midway section between two consecutive cracks. 

In addition to the above crack analysis approach, the crack spacing may be calculated by 

using the equation recommended by RILEM TC 162-TDF for case of FRC beams reinforced 

by conventional steel bars, but, replacing the respective values of steel bars by those for FRP 

bars. Hence, the equation becomes 

 
2RILEM

1 2

50
50 0.25

/

p f

cr

f sf sf

A
S k k

A l

   
    

  
 (5-101) 

where sfl  and sf  are the length and diameter of the hooked steel fibers, which was reported 

in Table 5-2. The parameter f  is the FRP bar’s diameter. The coefficients 1k  and 2k  are 

the factors that take into account, respectively, the bond quality and the form of strain 

distribution. Based on the recommended values by RILEM TC 162-TDF, 1 0.8k   for having 

good bond quality, and 2 0.5k   for bending condition. The calculated values of the crack 

spacing by Eq. (5-101) are included in Table 5-12. The crack spacing calculated by using 

Eq. (5-101) are close to those obtained as the secondary crack spacing using the proposed 

analysis procedure. Due to the good bond quality obtained between the utilized GFRP bars 

and FRC in this study (discussed in Chapter 3), the recommendation in terms of crack width 

and crack spacing for FRC beams reinforced by steel bars may be effectively used for case 

of FRC beams reinforced by GFRP bars. 

5.3.6 Theoretical crack width 

In order to predict theoretically the value of crack width for the I-beam specimens, two 
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methods are followed in this study: 

1) Using moment-rotation approach and mechanics based beam hinge model in the 

bending zone discussed by Visintin et al. (2012) and by Barros et al. (2015), as well 

as employing the bond model developed in Chapter 3 and 4 of this study. This method 

is briefly explained in the present section; 

2) Using the equations recommended by RILEM TC 162-TDF for case of FRC beam 

reinforced by steel bars as well as the design crack width recommended by ACI 440-

1R-06 for case of FRP-RCs. 

The obtained crack width by these two methods are compared with those values obtained 

from the tests in the next section. 

5.3.6.1 Moment-rotation approach and mechanics based beam hinge model 

A rotation of   at cracked section ‘A’ as shown in Figure 5-27 is considered in the 

bending zone. For the idealized tensile and compressive deformation at section ‘A’ shown 

in this figure, the following compatibility conditions can be derived: 
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where fw  and sw  are the crack mouth opening at level of FRP bars and the steel 

reinforcement, respectively. Additionally, the maximum compressive deformation at top 

surface becomes: 
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 (5-104) 

where crw  is the crack mouth opening at the bottom surface. On the other hand, the 

longitudinal equilibrium condition leads to derive 

 c fr f sF F F F    (5-105) 

where fF  and sF  are, respectively, the tensile forces due to the FRP bars and steel strand, 

which are calculated from the values of tensile strains obtained by employing the ‘FBL 
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model’ (Annex 4B) for input values of 2f  and 2s , respectively, where the bond length 

equals to 2crS . The bond-slip law calibrated in Section 5.2.6 is adopted in this model. 

 
Figure 5-27: Mechanics based beam hinge model and the idealized deformation, stresses, and 

forces along the crack section 

By assuming linear deformation profile in compression, and considering the bi-linear 

constitutive law previously presented in Figure 5-11a for the behavior of HPFRC in 

compression, the compressive force, cF , becomes 
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with the following definitions: 

  
1

1 2 1 2

2

( ) ( )
c

c w c c

w c

b y h
b y b b b y h h h y h

b h y h




     
  

 (5-107) 

 
( )

( ( ))
( ) ( )

c c c cp
c c c

c c c c c cp

f D y D
D y

E D y D y D

 
   

 (5-108) 

where cy  is defined in Figure 5-27, and it origins from the top surface. The parameter cpD  

is the compressive deformation corresponding to the threshold of the plastic phase adopted 

in the bi-linear law of HPFRC in comparison (see Figure 5-11a), estimating by 

 cp cp crD S   (5-109) 

Furthermore, ( )c cD y  defines the linear compressive deformation profile, and it is given 

by 

  ( )c c cm cm cD y D D c y   (5-110) 

and the tensile force due to HPFRC, i.e. frF  , can be given by 
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with the following definition in accordance with the linear tensile deformation profile shown 

in Figure 5-27: 

  ( )t cr cr tw y w w h c y    (5-112) 

where w  is the linear function of crack width along the section. The parameter ty  has its 

origin from the bottom surface, as shown in Figure 5-27. The parameter ( )tb y  is computed 

using Eq. (5-107), replacing cy  by ty . Further, ( ( ))ct tw y  defines the tensile stress diagram 

of HPFRC at crack section as function of the crack width. 

At the right side of Figure 5-27, the elastic and inelastic tensile deformation profile at the 

crack section are compared using an adequate magnification. As shown, moving from the 

crack tip toward the bottom surface (i.e. 0ty  ), the total tensile deformation is effectively 

due to the inelastic deformation (crack opening) as the elastic deformation can be assumed 

almost null. However, for the tensile deformation less than crD  (i.e. ( )t crw y D ), which 

defines the maximum elastic tensile deformation corresponding to the concrete tensile 

strength, the deformation is only due to the elastic behavior of HPFRC, and consequently, 

inelastic tensile deformation is null. The parameter crD  may be estimated by 

 cr cr crD S   (5-113) 

where cr  is the cracking strain of HPFRC, and it can be taken as the value written in 

Table 5-8 (Point 1 in Figure 5-11b). Hence, ( ( ))ct tw y  is given by 
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 (5-114) 

where ( ( ))cr
ct tw y  is the crack tensile stress of HPFRC, and it is defined based on the 4-linear 

stress-crack diagram that was previously presented in Figure 5-11c. 

In addition to the longitudinal equilibrium condition, summation of the moment about 

the top surface of the section to derive the following equation: 

 a c c f f s s fr frM F d F d F d F d     (5-115) 

where cd  and frd  are, respectively, the internal arm of the resultant of the compressive and 



Page | 178 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

tensile force due to HPFRC in respect to the top surface (as shown in Figure 5-27) with the 

following mathematical expression 

 0
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Eqs. (5-105) and (5-115) are solved for the unknown parameters of fw  (or crw ) and c . 

For this purpose, a numerical procedure is employed in which for each given value of fw , 

the value of c  is calculated by solving Eq. (5-105). Hence, the respective moment ( aM ) is 

calculated using Eq. (5-115). To calculate the tensile and compressive force due to HPFRC, 

the presented integrals in the above equations are solved by discretizing the beam to thin 

layers (e.g. 5 mm), similar to the numerical section adopted for DOCROS software. The 

solving procedure is presented in the algorithm given in Annex 5D. Note that the solving 

procedure requires predefinition of the crack spacing (i.e. crS ). At the beginning, this value 

is defined as the primary crack spacing written in Table 5-12 for case of the second tensile 

prism. In consequence, the possibility of forming the second crack at midway section 

between two consecutive cracks is verified by calculating the tensile strain of the second 

HPFRC tensile prism using Eq. (5-93). At this stage, fP  is computed by the following 

equation 

  m
f f f f fP E A     (5-118) 

where m
f  is the tensile strain of GFRP bars at the midway section between two consecutive 

cracks (i.e. at distanced 2crS  from the crack section) as it was previously introduced in 

Chapter 4. This value is obtained as the output value of the FBL model described in Annex 

4B. If the tensile strain of the second HPFRC prism calculated by Eq. (5-93) reaches the 

cracking strain (i.e. cr ), another crack is formed, and consequently the crack spacing is 

taken as its half value for the further increment of the crack width ( fw ) in the crack analysis 
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procedure. Due to the relatively large distance between the FRP and steel longitudinal 

reinforcements (~75 mm), the first HPFRC tensile prism, which includes both FRP and steel 

reinforcements (as shown in Figure 5-25), is not the effective tensile area to detect the 

secondary crack section. As a general case, the maximum tensile force transferred to the first 

tensile prism by both FRP and steel longitudinal reinforcements can be computed as follow: 

    m m
f s f f f f s s s sP P P E A E A          (5-119) 

where s
f  is the tensile strain of steel strand at the midway section between two consecutive 

cracks, which can be obtained as the output value of the FBL model. 

5.3.6.2 Design crack width by codes 

ACI 440-1R-06, guideline for design of FRP RCs, recommends the following equation 

for the calculation of crack width: 

 
2

22
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f
f b f
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f s
w k d

E

 
    

 
 (5-120) 

where fd   and s  are FRP bar’s concrete cover and spacing, respectively. Further, the 

parameter   is defined as the ratio of distance between neutral axis and tension face to 

distance between neutral axis and centroid of reinforcement. The factor bk  takes into 

account the degree of bond between FRP bars and surrounding concrete. According to 

ACI440-1R-06, the value of bk  is ranged from 0.6 to 1.7 depending on the bond degree. 

RILEM TC 162-TDF recommends the design crack width calculating by multiplying the 

average value of tensile strain of the reinforcing bars by the crack spacing. Though, the 

recommendation is for case of FRC beams reinforced by conventional steel bars, the same 

strategy may be suitable for case of the present study, replacing the respective parameters of 

steel bars by those from GFRP bars. Hence, the design crack width becomes: 

 RILEM
k f f crw w S   (5-121) 

where   is a coefficient relating the average crack width to the design value, which is set 

unit value to compare with the measured crack width from the tests. The parameter f  is the 

mean value of GFRP bar’s stain over the crack spacing, given by 
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 (5-122) 

where ff  is the tensile stress of GFPR bars at crack section (excluding prestress). The 

coefficient 3k  and 4k  are factors taking into account, respectively, the bond quality and the 

duration of the loading or of repeated loading which both set equal to 1 for case of this study. 

Further, the value of sr  is the tensile stress of GFRP bars calculated on the basis of a 

cracked section under loading conditions causing first cracking. This value can be calculated 

using equation recommended by CEB-FIB Model Code 2010, depending on the adopted 

HPFRC tensile prism. In case of adopting 1pA  : 
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and in case of 2pA  
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where fn  is the modular ratio between GFRP bars and concrete (HPFRC for case of this 

study, i.e. f cE E ). The value of Ftsf  was previously defined in Eq. (5-70), and it equals to 

,10.45 Rf . However, ,10.45 Rf  is greater than ctf  for case of HPFRC in the current study, hence, 

the parcel  ct Ftsf f  in Eq. (5-123) is taken null, meaning that the tensile stress of FRP bars 

at “crack formation stage” is almost negligible. In the current study, for the calculation of 

f  from Eq. (5-122), it is proposed that sr  is calculated using the following equation: 

 ,sr f f cfsE    (5-125) 

where ,f cfs  is the tensile strain of GFRP bars at “crack formation stage” (CEB-FIB Model 

Code 2010), and it can be taken as the tensile strain of FRP bars obtained from the analysis 

procedure described in the previous section to calculate the primary crack spacing. The 

computed values for the tested I-beams are included in Table 5-12. Based on the calculated 

values in this table, the tensile stress of GFRP bars at “crack formation stage” in average is 

about 30 MPa, which is definitely small. 
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The obtained results of the crack width in terms of f fw f  diagram will be compared 

with those obtained by the experiments in the next section. 

5.4 Results and discussion 

The experimental results of the tested I-beams are presented and discussed in this section 

on the following aspects: 

i. Flexural strength and failure modes; 

ii. Force-deflection response; 

iii. Ductility; 

iv. Cracking behavior; 

v. Tensile strain of the reinforcing bars. 

Moreover, the experimental results are compared to the respective results obtained from 

the theoretical investigation in order to evaluate the capability of the theoretical formulation 

to predict the structural behavior of the proposed hybrid reinforcing system. 

Finally, the results of the fatigue tests on specimens IB7, 9 and 10 are presented at the 

end of this section, where and the influence of this loading condition on the structural 

performance of the hybrid HPFRC prestressed I-beams is discussed. The loss of both the 

material’s strength and flexural stiffness of the tested beams due to the fatigue loading 

condition is determined. 

5.4.1 Flexural strength and failure mode 

The maximum experimental moment (i.e. ,expuM ) carried by the tested beams was 

calculated from the respective maximum load (i.e. maxP ) that was registered during the 

monotonic tests, giving by 

 ,exp max

1

2
uM a P   (5-126) 

The calculated values of ,expuM  are included in Table 5-13 for group A and B of the 

specimens. With the aim of the results obtained from DOCROS software, the theoretically 

values of the maximum applied moment that reasons yielding in the steel strand (defined as 
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yM ) are calculated and included in the last column in Table 5-10 for the tested beams. By 

comparing between ,expuM  and yM , it may be stated that the steel strand reached the 

yielding stress for the group B of the specimens (with the exception of IB5 as the reference 

beam), while no beam in group A experienced the maximum applied moment greater than 

yM . For this reason, the failing of the beams in group A was “shear failure”, while the 

failing of the prestressed I beams in group B was “flexo-shear failure” with the exception of  

reference IB5 as indicated in Table 5-13. It should be noticed that it was unlikely to have the 

strain gauge “SGst” installed on the steel strand working up to the steel yielding strain of 

about 1% ( 1%sy  ). Consequently, the steel yielding strain could not be evidenced by 

means of the strain gauge “SGst” during the test. 

Table 5-13: Nominal flexural and shear strength of the tested beams 

B
e

a
m

 I
D

     By CEB-FIB  Flexure-shear analysis 4    

,expu

n

M

M
 

Steel  
yielded? 

Mode  
of failure ,expuM  

SLSM 1 
 

yD 3 
nV  

vM   nV  
vM  

f  crw  
vc   nM   

(kN.m) (kN.m)  (mm) (kN) (kN.m)  (kN) (kN.m) (%) (mm) (mm)  (kN.m)  

IB1 175 111  36 67.5 99.6  118 174 0.75 1.55 27  257  0.74 No Shear failure 

IB2 179 119  32 71.3 105.1  123 181 0.60 1.45 28.5  257  0.76 No Shear failure 

IB3 180 132  31 74.9 110.5  130 192 0.50 1.30 30  257  0.76 No Shear failure 

IB4 142 135  30 79.6 117.4  137 202 0.45 1.15 31  296  0.59 No Shear failure 

IB5 148 100  38 58.6 93.8  97 155 1.10 2.30 25  219  0.67 No Shear failure 

IB6 186 128  23 65.2 104.3  106 170 1.25 1.80 26.5  221  0.84 Yes Flexo-shear failure 

IB7 171 2 116  23 65.2 104.3  106 170 1.25 1.80 26.5  221  0.77 Yes Flexo-shear failure 

IB8 201 147  21 68.5 109.6  117 187 1.35 1.60 28.5  223  0.90 Yes Flexo-shear failure 

IB10 210 2 157  20 71.3 114.1  125 200 1.45 1.40 30  224  0.94 Yes Flexo-shear failure 
1 Calculated from the experimental results of force-deflection corresponding to the mid span deflection of about L/250~15 mm; 
2 Obtained from the monotonic test after two million fatigue cycles; 
3 mid span deflection calculated by Def-DOCROS, which corresponds to My from Table 5-10; 
4 The average values from the results plotted in Figure 5-20, Figure 5-21, and Figure 5-22. 

 
 

Additionally, the final crack pattern and the failing mode of the tested beams are 

illustrated in Figure 5-28 for group A, and in Figure 5-29 for group B (Note that the taken 

photos of the failure modes of the tested beams are all given in the Annex 5E). As shown in 

these two figures, all the beams failed by the propagation of diagonal crack in the shear span 

starting from the bottom flange toward the loading point, with the exception of IB4 (over-

reinforced condition). IB4 was failed by progressing a shear crack from the loading point 

through the transition zone between the flange and web of the beam for the maximum applied 

moment less than the value registered for IB3 beam. The premature rupture of the IB4 beam 
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was mainly caused by the increase of the flexural reinforcement, since this increased the 

stiffness of the bottom flange of the beam, as well as the dowel effect. These two factors 

contributed for the higher resistance of the flange zone to be crossed by a shear crack, which 

promoted its propagation at the interface between bottom flange and web. Since this 

interface had no stirrups resisting to these in-plane shear stresses, and the percentage of fibers 

giving effective contribution for shear resistance was relatively small (the fibers have the 

tendency to get a horizontal direction in accordance to the work carried out by 

Abrishambaf et al. (2013), a premature failure occurred in this beam. 

 
Figure 5-28: Ultimate crack pattern and failure mode of the tested beams in group A 

Moreover, the adopted range for the angle of the CDC (i.e. 25 to30    ) in the flexure-

shear analysis is illustrated in Figure 5-28 and Figure 5-29. It can be fairly accepted that the 

experimental failure crack is in the adopted range of   (except IB4). In order to determine 

the nominal shear strength (i.e. nV ) from the proposed crack analysis in Section 5.3.3.1, 

whose results were plotted in Figure 5-20 and Figure 5-21, a proper value of 3  shall be 

taken. Based on the adopted bi-linear profile for tensile deformation of the CDC shown in 
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Figure 5-16, the parameter 3  is defined as the ratio between the crack mouth opening of 

HPFRC at the level of GFRP bars and the crack mouth opening at the connection of the 

bottom flange and the web plate. This definition is not straightforward since the values of 

crack opening at CDC are unknown. 

 
Figure 5-29: Ultimate crack pattern and failure mode of the tested beams in group B 

In order to proceed with the definition of 3  for design purpose, it is proposed to be 

computed based on geometry adopted for beam cross section. A proposal is given in 

Figure 5-30 in terms of different tensile deformation profile at the CDC for two typical 

geometries adopted for beam’s cross section in RC applications. As shown in this figure, the 

parameter  3  is recommended unit value (i.e. 3 1  ) for T-shaped cross section, the 

following equation is proposed for case of I-shaped cross section: 
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(after 2M fatigue cycles)

(after 2M fatigue cycles)
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 3 ( 0.35 forcaseof this study)wb

b
    (5-127) 

 
Figure 5-30: Definition of parameter β3 based on the typical geometries adopted for cross 

section in RC beam applications 

Based on the results obtained from the flexure-shear analysis (plotted in Figure 5-20 and 

Figure 5-21), the nominal shear strength tends to decreases when 3  decreases. Hence, 

considering the definition given in Eq. (5-127), an increase in the bottom flange width 

decreases the shear capacity of HPFRC I-beams (for beam without shear reinforcements). 

Based on this, T-shaped is proposed to be optimized beam’s cross section in terms of 

carrying shear loads, even though, it is not the optimized section with respect to flexural 

capacity, when I-shaped is considered for comparison purposes. The obtained nominal shear 

strength, nV  and its corresponding moment (i.e. vM ), as well as the respective values of the 

maximum crack width, tensile strain of GFRP, and the depth of neutral axis at failure (i.e. 

vc ) are included in Table 5-13. These results have been extracted from the results of the 

flexure-shear analysis plotted in Figure 5-20, Figure 5-21, and Figure 5-22 in Section 5.3.3.3 

for 3 0.35   (see the vertical dotted-line in these figures). 

In addition to these results, the calculated nominal shear strength based on Eq. (5-66) by 

the Mode Code 2010 (i.e. Eq. (5-66)) are included in Table 5-13. In Figure 5-31, the 

maximum moment that was reached during the monotonic test ( ,expuM ) is compared with 

the nominal flexural strength (i.e. nM ) in Section 5.3.2, as well as vM  from the flexure-

shear analysis, and vM  from Eq. (5-66) by Model Code 2010. The equation by CEB-FIB 

underestimates the moment capacity of the beams in shear span, however, the range of the 

nominal flexural strength calculated by the flexure-shear crack predicts with an acceptable 
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accuracy the results of the tested beams, mainly, the group B of the specimens that are all 

under-reinforced. Due to the unexpected failing of IB4, both results overestimate the shear 

capacity of this beam. IB1, IB2 and IB3 reached about 75% of their nominal flexural strength 

( nM ) in which no significant change that was observed by increasing the prestress level of 

the steel strand. On the other hand, increase in the level of prestress in GFRP bars showed 

significant influence on increasing the flexure-shear strength of the tested beams in group B, 

in which the non-prestressed beam, IB5, reached about 67% of its nominal flexural strength 

at the bending zone, while this value was about 94% for IB10 with 40% of prestress in GFRP 

bars. Note that the amount of prestress level in steel strand was 50% for all the prestressed 

specimens in group B. 

 
Figure 5-31: Comparison between the experimental and theoretical flexural strength of the 

tested beams 

5.4.2 Force-deflection response 

In this section, the flexural stiffness of the tested beams is discussed by comparing their 

force-deflection response at mid span, as well as the concept of the effective moment of 

inertia that was previously presented in Section 5.3.4. 

5.4.2.1 Effective moment of inertia 

The experimental effective moment of inertia (i.e. ,exp
h
effI ) of the tested beams is 

calculated using Eq. (5-73) and taking the experimental results of the applied moment versus 
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mid span deflection. Hence, the experimental effective moment of inertia becomes 

 
2 23

4
,exp
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h a
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c
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E D


  (5-128) 

where maxaM D  is taken from the test results. The calculated results are plotted in 

Figure 5-32a for group A, and in Figure 5-32b for group B. These figures evidence that the 

increase of the flexural stiffness of the beams with the applied prestress level. Although the 

tested beams showed different load carrying capacities, the ultimate ,exp
h
effI  at failure was 

almost same for all the beams (see the graph with higher magnification in Figure 5-32). This 

means that the ultimate ,exp
h
effI  is not influenced by the level of prestress in the 

reinforcements. In fact, the cracking moment is the main benefited aspect by the increase of 

the prestress level applied to the reinforcements. 

 
Figure 5-32: Comparison between the theoretical and experimental effective moment of 

inertia: (a) group A, and (b) group B 

Additionally, the h
eff aI M  relationship according to Eq. (5-84) is plotted in Figure 5-32. 

As shown, the proposed equation can predict with an acceptable accuracy the experimental 

results in terms of h
eff aI M . The coefficient sh  was defined to consider the effect of shear 
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applied moment, ,exp
h
effI  starts decreasing with a higher rate rather than the theoretical h

effI  . 

In fact, when the applied shear load in shear span gets higher value than about the shear 

strength of concrete beam, 
cdV  concrete without fibers, the effective moment of inertia of 

the beam starts increasing with a higher rate of magnitude. In Table 5 11, the value of 
cdV   

was obtained about 50kN for IB6, which gives cdM  = 80 kN.m as indicated in Figure 5-33. 

When h
effI   is determined by considering the coefficient sh  obtained from Eq. (5-83), a good 

agreement between the theoretical and experimental trends is ensured. 

 
Figure 5-33: Effect of coefficient βsh on the calculation of the effective moment of inertia 
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The applied force versus mid span deflection obtained from the tested beams is plotted 
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proportionality ( ,ct Lf ) is quite relevant to estimate the crack initiation response of HPFRC 

prestressed beams. 

 For mid span deflection between 9 to 15 mm (or service moment, SLSM  included in 

Table 5-13), the precision of both theoretical approaches to predict the results from group B 

was acceptable. On the other hand, the results from Def-DOCROS overestimated the results 

of beams in group A, while the experimental results were captured well using the direct 

method (except IB5). This is mainly due to the different loading point configurations adopted 

for test specimens in groups A and B (750 mm loading distance for group A and 500 mm for 

group B). Due to the lower shear span in group A rather than group B, the effect on the beam 

curvature by the propagation of shear cracks occurred for a lower value of mid span 

deflection. Therefore, the results from Def-DOCROS, which did not consider this effect, 

overestimated the experimental results for mid span deflection between 9 to 15 mm. 

 
Figure 5-34: Applied moment versus mid span deflection up to the serviceability limit state: 

(a) group A, (b) group B 

The difference between the experimental force-deflection response of IB1 and the 

corresponding response from Def-DOCROS was exceptionally less than the difference 

between this experimental response and the one by the direct method. This was due to the 

fact that the applied load in IB1 specimen was not distributed uniformly to the two loading 

points during the test. This non-uniform response is more visible in the total force-deflection 

response of IB1, as it will be shown in the next section. 
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5.4.2.3 Total force-deflection response 

The force-deflection response up to the failure at mid span is plotted in Figure 5-35 and 

Figure 5-36, respectively, for groups A and B. In addition to the experimental results, the 

force-deflection response from the Def-DOCROS software, and the results obtained by the 

direct method, are shown in these figures. The direct method, which is based on the proposed 

effective moment of inertia by Eq. (5-84), estimates with an acceptable accuracy the force-

deflection response of the beams up to the ultimate stage. However, the force-deflection 

response obtained by Def-DOCROS overestimated the experimental responses. This is due 

to the fact that the numerical model does not simulate the shear stiffness degradation 

occurred during the loading process in the matrix displacement method that it is based on 

the work carried out by Barros et al. (2005). 

 
Figure 5-35: Applied force versus mid span deflection of the tested beams in group A 
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Figure 5-36: Applied force versus mid span deflection of the tested beams in group B 
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load drops was observed in the recorded force-deflection response. The reason of this 
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zones, which may cause asymmetrical behavior of the whole system. It should be noticed 

that in some cases, this phenomena can be beneficial as, for example, in the case of specimen 

IB1, the higher load carrying capacity was attained in IB1 when compared to the results from 

the direct method. However, in general, attaining the minimum requirements for HPFRC 

strength and fibers distribution in all part of RC structure should be always under control.  

 
Figure 5-37: Critical diagonal shear crack in IB1 at left and right sides of beam in shear span 

Furthermore, the theoretical “yielding point” that is defined as the theoretical maximum 

moment of the beam and its corresponding mid span deflection at yield initiation of the steel 

strand, being respectively, yM and yD , is demonstrated in Figure 5-35 and Figure 5-36 for 

all tested beams. Note that yM  was obtained as the output results from DOCROS software 

that was included in Table 5-10, while yD  was obtained as the output results from Def-

DOCROS software whose values were included in Table 5-13. As mentioned earlier, none 

of the beams in group A was carried the applied moment higher than yM . Conversely, the 

maximum applied moment for the beams in group B (with the exception of IB5 as the 

reference beam) was higher than yM , meaning that steel strand yielded for this group of 

specimens. This gave higher ductility to the beams in group B as it is discussed in the next 

section.  

5.4.3 Ductility and deformability 

Deformability is an important aspect for determining the safety of FRP prestressed 

beams. Since FRP bars are brittle materials, a care should be taken to ensure sufficient 

warning for these structures. Based on the deformability-approach that was previously 

defined in Chapter 2, and firstly proposed by Jaejer et al. (1997), ductility of FRP-RCs can 
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be measured taking into account the following effects: 

1) The strength effect nominated by sC , and defined as the ratio between the flexural 

strength of the beam at ultimate limit stage (ULS) and service limit stage (SLS): 

 u
s

SLS

M
C

M
  (5-129) 

where SLSM  is the applied moment corresponding to SLS for mid span deflection 

being equal to 250L  (included in Table 5-13), and uM  is the maximum moment 

that carried by the beam at ultimate limit stage; 

2) The deformation effect nominated by dC , and it is defined as the ratio between the 

maximum deflection of the beam at ULS and SLS: 

 
250

u
d

D
C

L
  (5-130) 

where uD  is the maximum deflection that corresponds to the peak load in the force-

deflection response. 

The ductility index is defined by multiplying these two factors. The calculated ductility 

index (i.e.  ), as well as the strength and deformation effects of the tested beams are 

compared using three column charts presented in Figure 5-38. To understand better the 

ductility improvements of the tested beams, the deformation and strength effects calculated 

by using the force-deflection response obtained from the Def-DOCROS software are also 

presented in these figures. The reason of this comparison is that Def-DOCROS was 

developed for simulating the behavior of elements failing in bending. Therefore, the force-

deflection response of the I-beams from Def-DOCROS is only governed by flexural 

deformation of the beam. Hereafter, the force-deflection response of beam by Def-DOCROS 

is known as “reference response”. 

5.4.3.1 Strength effect 

From Figure 5-38a, the strength effect sC , calculated from the experimental force-

deflection response are totally lower than the respective value calculated from the “reference 

response”. By increasing the prestress level of the beam, the difference between these two 
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values becomes smaller in which for IB10 with the highest amount of prestress level the 

difference is almost negligible. 

 
Figure 5-38: Comparison between the ductility index of the tested beams with the reference 
response by Def-DOCROS: (a) strength effect, (b) deformation effect, and (c) ductility index 

5.4.3.2 Deformation effect 

In Figure 5-38b, the deformation effect dC , that is calculated from experimental force-

deflection response are compared with those obtained from the “reference response”. With 

an exception of the non-prestressed I-beams, dC  increases for all the prestressed I-beams. 

This increase is much higher for the case of under-reinforced beams in group B, in which 

the value of dC  from the experiments is about two times higher than the calculated dC  from 

the “reference response”. 

5.4.3.3 Ductility index 

The ductility index,  , of the tested beams is compared with the ones obtained from the 

“reference response”. As shown in Figure 5-38c, the ductility corresponding to elements 
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governed by flexural deformation was not attained in over-reinforced beams (group A), 

while it was exceeded in the under-reinforced beams (group B). In fact, the prestressed IB6, 

IB8 and IB10 can exhibit enough deformation at the ultimate stage before failing with no 

loss of the strength. This can be a great achievement in terms of structural performance of 

the proposed hybrid HPFRC prestressed beams, in which the beams behaves efficiently 

similar to its “reference response” up to the service loads, afterward, at ultimate limit stage, 

the progressive degradation of beam curvature in the flexure-shear region introduces higher 

deformation to the global response of the beam, while the beam can maintain the flexural 

strength. 

5.4.4 Cracking behavior 

To analysis the cracking behavior of the tested beams, the obtained crack pattern and the 

measured value of CMOD are evaluated under service load. From what was discussed in the 

previous sections, the under-reinforced I-beams in group B showed better structural 

performance rather than the beams in group A. For this reason, the cracking analysis is 

restricted to group B of the specimens in the next sections. 

5.4.4.1 Crack pattern 

The crack patterns of IB5, IB6 and IB8 at mid span deflection of about 15 mm are 

compared in Figure 5-39. Based on the experimental crack pattern, the following results can 

be remarked: 

- The cracking length of the tested beams decreases with the increase of the prestress 

force of the reinforcements at the same level of deflection at mid span. The cracking 

length is simply defined by the distance between two beam’s sections at two sides of 

the shear zones that are remained uncracked, and it may be experimentally 

approximated by the distance between the last two formed cracked at two sides of the 

beam, as shown in Figure 5-39. The decrease in the cracking length is due to the fact 

that the prestress in reinforcing bars increases the cracking moment of the beam 

because of the initial confinement and negative camber that imposes by the applied 
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prestress force; 

 
Figure 5-39: Crack pattern of the monotonically tested beams for the mid span deflection 

corresponding to SLS 

- The prestress level of the longitudinal reinforcements showed no significant effect 

on crack spacing of the beams. The average crack spacing measured for IB5, IB6, 

and IB8 is written in Figure 5-39 (indicated as exp
crS ). The measured crack spacing is 

in good agreement with the final crack spacing proposed by the analysis procedure 

in Section 5.3.5 (the values were included in Table 5-12), as well as the crack spacing 

recommended by RILEM from Eq. (5-101); 

- The theoretical level of the neutral axis obtained by DOCROS at SLS is illustrated in 

Figure 5-39 using a bold dashed-line. On the other hand, the position of crack tips in 

the constant moment region can approximately represent the experimental depth of 

the neutral axis in this region. As it is observed, the theoretical and experimental 

crack pattern are in a good agreement. This may proof that assuming linear 

distribution of strain (Bernoulli assumption) up to SLS is quit acceptable for the 

proposed hybrid system in this study. 
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5.4.4.2 Crack width 

The value of maximum crack with, i.e. fw , versus the average tensile stress of GFRP 

bars, i.e. f , are plotted in Figure 5-40 for IB5, IB6, IB8 and IB10. The average tensile stress 

of GFRP bars were obtained using the recorded strain by means of the installed strain gauges 

SG2, SG3 and SG4 at bending zone. Note that the results of IB10 are from the monotonic 

test before the fatigue load cycles. 

Additionally, the theoretical f fw f  obtained from the crack analysis procedure 

described in Section 5.3.6 and designated as “proposed model”, is plotted in Figure 5-40 for 

IB5, IB6, IB8 and IB10. The proposed model is based on the moment-rotation approach and 

mechanics based beam hinge model (discussed by Visintin et al. 2012 and by Barros et al.  

2015) that considers the bond-behavior of the reinforcing bars, as well as the post-cracking 

behavior of HPFRC. As shown in Figure 5-40, the model predicts with a good accuracy the 

experimental value of the crack width up SLS. On the other hand, based on the equation 

given by ACI, a wide range of crack width is obtained for FRP-RCs depending on the 

adopted value for bk  (see the plotted pattern in Figure 5-40). As shown, the highest accuracy 

is obtained when 0.6bk  , which represents a good bond degree between GFRP bars and 

HPFRC. However, this equation may be modified in order to take into account explicitly the 

effect by the HPFRC residual tensile stress after cracking and the HPFRC-FRP bond strength 

in the calculation of crack width. Additionally, the equation given by RILEM in case of 

Steel-FRC beams is plotted in Figure 5-40. As shown, this equation predicts well the 

experimental results of crack width. In this equation, also, the bond quality between GFRP 

and HPFRC was taken as the highest value by giving 1.0 to the parameter 3k .  

Finally, by using the proposed model, the theoretical curve of the applied moment versus 

the crack width (i.e. a fM w ) for IB8 is compared in Figure 5-41 (as an example) with the 

case when  HPFRC is replaced by plain concrete. Note that the same concrete compressive 

strength is adopted, and the bi-linear concrete softening law recommended by Model Code 

2010 is taken into account for the behavior of plain concrete in tension. Based in this 

comparison, the value of crack width significantly increases in case of the plain concrete 
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prestressed beam for the same level of applied moment. The difference between these two 

theoretical curves in Figure 5-41 may reveal the contribution by steel fibers at crack section 

to maintain the crack narrower. It should be noticed that the same bond-slip behavior is 

adopted for GFRP bars and steel strand in the analysis. 

 
Figure 5-40: Comparison between the theoretical and experimental crack width up to SLS 

The bond behavior between reinforcing bars and FRC is commonly better than bond 

between bars and plain concrete for the same level of the compressive strength. However, 

this effect was not taken into account in the analysis presented in Figure 5-41, since for the 

range of the bar’s slip at SLS, the difference between bond quality of bar-concrete and bar-

FRC may not be significant. In fact, the significant damage occurred in the bar-FRC interface 

when slipping of bar is in the plastic, softening or frictional bond phases (Figure 3-13 in 

Chapter 3), and the steel fibers can effectively influence the debonding progress by bridging 

the cracks at interface. Therefore, for the small range of slip at SLS, the bond-slip behavior 

of bar-concrete and bar FRC may be almost similar for the same class of the concrete 
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Figure 5-41: Comparison between the applied moment versus crack width of hybrid 

FRP/steel RC and HPFRC prestressed beams 

5.4.5 Strain results 

The tensile train of GFRP bars measured by the strain gauges SG2, SG3 and SG4 (see 

Figure 5-5) are plotted in Figure 5-42 for IB5, IB6, IB8 and IB10. Additionally, the 

compressive strain of HPFRC measured by SGc (see Figure 5-6) at mid span section is 

presented in Figure 5-42. 

It was unlikely to have the strain gauge of steel strand working for the strain values 

greater than the yielding strain because of the section configuration of this steel strand. The 

steel strand is formed by seven steel wires (see Figure 5-1), hence, the average value of strain 

by these seven wires can be a good representative of the strain value in steel strand. But, the 

strain gauges was installed only on a single wire as shown in Figure 5-6, and it was quite 

impractical to have many of them installed at the same section. As an example, the recorded 

strain by this strain gauge for IB8 is plotted in Figure 5-42c. As shown, for the value of strain 

higher than about 0.8%, which is close to its yielding strain, the data logger started recording 

abnormally higher rate of increase in this strain gauge, and in short time after, the strain 

gauge was failed. The same happened for this strain gauge in IB6, and unfortunately, the 

strain gauge of steel strand was failed at the beginning of the test in IB5 and IB10. Besides, 

the strain gauges for GFRP bars worked in a better way, and much higher range of strain 

was measured for GFRP bars before failing of the beams. 
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Figure 5-42: Tensile strain of the longitudinal reinforcements and compressive strain of 

HPFRC at mid span during the monotonic tests: (a) IB5, (b) IB6, (c) IB8, and (d) IB10 

The measured values of tensile strain at SLS, the maximum recorded value of strain 

before failing of the I-beams for both GFRP bars and steel strand, and the value of 

compressive strain of HPFRC at mid span measured by SGc are all included in Table 5-14. 

Table 5-14: Tensile strain of the longitudinal reinforcements as well as the compressive 
strain of HPFRC at service limit state and failing stage 

B
e

a
m

 I
D

 GFRP bars Steel strand HPFRC 

SLS
f * f

** f fu    SLS
s * s

** s sy    SLS
c * c

** c c
    

(%) (%) (-)  (%) (%) (-)  (%) (%) (-)  

IB5 0.49 1.05 0.47  - - -  0.093 0.180 0.51  

IB6 0.81 1.90 0.84  0.74 - -  0.077 0.190 0.54  

IB8 1.09 2.13 0.95  0.82 1.17 1.17  0.120 0.320 0.91  

IB10 - 2.12 0.95  - - -  - 0.270 0.77  
* value of strain at service limit state; 
** the last value of strain recorded during the monotonic test. 

For case of IB8 and IB10, the tensile strain of about 2.12% was recorded for GFRP bars 

in the bending zone, which is about 95% of its ultimate tensile strain as reported by the 

manufacturer (written in Table 5-1). Note that the tensile strain reported in Table 5-14, and 

plotted in Figure 5-42, is the total tensile strain of reinforcements including the initial pre-
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strain due to the prestressing process. In addition to the experimental results, the theoretical 

values of the applied moment versus the strain obtained from DOCROS software, as well as 

the respective values obtained from the proposed model in section 5.3.6 are plotted in 

Figure 5-42. As shown, both models captured with an accepted accuracy the experimental 

trends. However, for high level of the applied moment near to the failing point, the measured 

strain showed higher increasing rate rather than the theoretical values (see the plotted curves 

in Figure 5-42b, c and d). This is mainly due to: 

1) Decrease in the Young’s modulus of GFRP bars for the high level of strain near to 

the ultimate tensile strain. In fact, the stress-strain behavior of GFRP bar is not 

perfectly linear elastic up to failing. Based on the results reported by manufacturer, 

there is slight decrease in the stiffness of this diagram when the strain approaches to 

its ultimate value; 

2) Occurrence of the higher deformation effect in the tested I-beams when it compares 

with the “reference response” from Def-DOCROS. This concept will be discussed in 

the next section. 

5.4.5.1 Higher longitudinal tensile strain at the vicinity of failure stage 

As already mentioned in Section 5.4.3.2, the tested beams showed higher deformation 

effect rather the “reference response” by Def-DOCROS. This higher deformation effect 

resulted in the higher curvature in the beam, led to impose an extra deformation to the 

reinforcing bars at the mid span. Note that this higher deformation effect was imposed from 

the shear span to the mid span. The difference between the effective curvature (i.e. eff ) of 

the beam, and the curvature calculated by DOCROS (which was used as the input data for 

Def-DOCROS) in the constant moment region for the same level of applied moment is a 

relevant parameter to modify the value of strain of the longitudinal bars at mid span section. 

The effective curvature, eff , can be calculated by means of the effective moment of inertia 

(i.e. h
effI ): 

 a
eff h

c eff

M

E I
   (5-131) 
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The value of tensile strain of GFRP bars can be simply modified by adding the following 

value to the calculated tensile strain by DOCROS: 

     f f eff D fd c d c         (5-132) 

where D  and c  are, respectively, the calculated curvature and the level of neutral axis by 

DOCROS, which correspond to the applied moment of aM . This modification by 

Eq. (5-132) has been implemented to the results obtained by DOCROS for the case of IB8 

(as an example), and it is plotted in Figure 5-43. As can be seen, by considering the effect 

that is due to the higher deformability caused by the higher curvature in the shear span, it 

fits the modified tensile strain of GFRP bars to the experimental measurement of strain. Note 

that this modification is relevant only for the high value of the applied moment near to the 

failing stage of beam, where the beam curvature significantly increased. 

 
Figure 5-43: Comparison between the modified tensile strain of GFRP bars and the measured 

values during the test 

5.4.5.2 Difference between moment-rotation and moment-curvature approach 

Based on the results of strain that was presented in Figure 5-42, a slight difference is 

observed between the theoretical trend by DOCROS and by the proposed model described 

in Section 5.3.6, which is based on the moment-rotation approach. The main difference of 

these two models is related to the assumption of the deformation profiles along the section. 

In DOCROS, a linear strain profile is adopted along the section, in which the crack tensile 

strain of HPFRC and the tensile strain of reinforcing bars are assumed equal at the level of 
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reinforcements. However, for the proposed model, a linear deformation profile is adopted 

along the section, in which the half value of tensile deformation of HPFRC at crack section 

(i.e. half of crack mouth opening) is taken as the bar’s slip. By having this slip at crack 

section, the tensile strain of the reinforcing bars is obtained by solving their governing bond 

formulation, which was previously described using two FBL and IBL models in Chapter 4. 

Therefore, the strain profile at the crack section is not necessarily linear. Note that the crack 

spacing (i.e. crS ) is taken as the bond length (i.e. bL ) in FBL model (Annex 4B). On the 

other hand, the crack tensile stress in the model was calculated using directly the tensile 

stress-crack width diagram of HPFRC plotted in Figure 5-11. However, the crack tensile 

stress of HPFRC in DOCROS software is calculated by the converted stress-crack width 

diagram to stress-strain diagram using the concept of an effective crack band width that is 

taken equal to the crack spacing, which is named as the structural characteristic length, csl , 

by Model Code 2010. Although the models consider two different strain profile at crack 

section, the results of these two models are close, and are in good agreement with the test 

results. This is attributed to the fact that when csl  is taken as crS  for converting the stress-

crack width to stress-strain for HPFRC, it means the tensile strain of the reinforcement over 

crS  is considered constant, which, consequently, introduces a linear distribution profile of 

bar’s slip over the crack spacing: 

 cr cr
ct r

cr

w

S
     (5-133) 

where cr
ct  is the crack tensile strain of HPFRC at the level of reinforcements. On the other 

hand, the distribution of slip obtained by FBL model over the crack spacing is properly close 

to the adopted linear distribution by Eq. (5-133). To understand better this concept, the 

distribution of the slip and the tensile strain of the GFRP bar over the crack spacing by FBL 

model are compared, respectively, in Figure 5-44a and b with the respective distribution 

considered in DOCORS model. As shown, the distribution of slip of reinforcement between 

two consecutive cracks can be sufficiently taken linear. However, a slight difference is 

observed by assuming a constant tensile strain of bar over the crack spacing. 
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Figure 5-44: Distribution of slip and tensile strain of GFRP bars over the crack spacing 

5.4.6 Fatigue results 

The beams IB7, IB9 and IB10 were subjected to the fatigue loading conditions based on 

the loading template presented in Figure 5-7b. A total of 2 million cycles of sinusoid 

Constant-Amplitude (CA) loading conditions with 2Hz frequency was planned to apply to 

the beam specimens. It is unlikely that fatigue will be a problem in the un-cracked beam 

since the stress ranges in the prestressed GFRP bars and steel strand under repeated loading 

are small. Additionally, it was impractical to implement with high frequency the fatigue 

cycles starting from elastic to in-elastic domain due to the great loss of flexural stiffness, 

which leads to a high magnitude of deformation. Therefore, the range of fatigue cycles was 

selected in the elasto-cracked at service loading conditions. The maximum applied load was 

calculated based on the total flexural strength of the monotonically tested beams (i.e. IB6 

and IB8). However, for IB10; the theoretical force-deflection response was taken into 

account, since there was no corresponding specimen submitted to monotonic load 

conditions. The value of maximum applied load in the fatigue cycles (i.e. maxF  shown in 

Figure 5-7) was taken about 70% of the peak applied load in the monotonic test (about 90% 

of the maximum service moment SLSM ), while the minimum value of the applied load (i.e. 

minF  shown in Figure 5-7) was about 55% of the peak applied load. Based on this range, a 

constant amplitude of 30kN was determined for all the specimens. The range of the applied 

moment during the fatigue cycles is schematically illustrated in Figure 5-45. Furthermore, 

the amplitude of applied moment and load during the fatigue cycles are written in Table 5-15. 

Based on the adopted loading amplitude, the range of strain in the intervening materials 

at the beginning of the fatigue cycles were measured by means of the installed strain gauges. 
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These calculated values are included in Table 5-16. With an exception of IB9, which failed 

after about 1.82 million cycles, IB7 and IB10 successfully carried 2 million fatigue cycles at 

2Hz. After these cycles, the beam was unloaded, and monotonically tested up to its failure. 

Unfortunately, the strain gauge of steel strand failed at the beginning of the test for IB10, 

and no strain was measured during fatigue cycles for the steel strand. 

 
Figure 5-45: The range of applied moment during the fatigue cycles: normalized applied 

moment versus mid span deflection 

Table 5-15: Range values of the applied moment and load during the fatigue cycles 

Beam ID SLSM  minM 1 maxM 2 uM  minF 3 maxF 4 min uM M  max uM M  min maxM M  

(kN.m) (kN.m) (kN.m) (kN.m) (kN) (kN) (-) (-) (-) 

IB7 125 100 124 186 125 155 0.54 0.67 0.81 
IB9 147 112 136 201 140 170 0.56 0.68 0.82 

IB10 157 120 144 212 150 180 0.57 0.68 0.84 
1 the minimum applied moment during the fatigue cycles, corresponding to Fmin; 
2 the maximum applied moment during the fatigue cycles, corresponding to Fmax; 
3 the minimum applied moment during the fatigue cycles; 
4 the maximum applied moment during the fatigue cycles. 

Table 5-16: The lower and upper value of strain in the material, and the beam curvature at 
the beginning of fatigue cycle 

B
e

a
m

 I
D

 GFRP bars Steel strand HPFRC Flexural stiffness 

l
f * 

u
f *  R ** l

s  
u
s   R  l

c  
u
c   R  l

eff  
u
eff  u

***  R  

(%) (%)  (-) (MPa) (MPa)  (-) (MPa) (MPa)  (-) (mm-1) (mm-1) (mm-1)  (-) 

IB7 0.45 0.56  0.8 1022 1162  0.88 24.2 29.0  0.83 3.7e-6 7.9e-6 6.0e-5  0.47 
IB9 456 511  0.81 1087 1125  0.87 29.2 34.6  0.86 3.4e-6 6.9e-6 5.7e-5  0.50 

IB10 553 703  0.79 - -  - 32.3 40.7  0.79 3.6e-6 7.9e-6 5.4e-5  0.46 
* superscript “l” indicates lower stress limit, while “u” is for upper stress limit during the first fatigue cycle; 
** Factor R is defined as the ratio between the lower strength and upper strength during the fatigue cycles; 
*** Curvature of beam at failing (ultimate static curvature). 

In Figure 5-46, the evolution of the strain versus the number of fatigue cycles is plotted 

for the tensile strain of GFRP bar and steel strand at mid span, as well as the compressive 

strain of HPFRC on top surface. As shown In Figure 5-46a, the strain in the prestressed 

GFRP bars has increased with the number of cycles. The different strain gradient due to the 
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different prestress level is observable for the tested beams. The same increasing rate was 

obtained for the tensile strain of GFRP bars in IB7 and IB10 under the fatigue cycles. 

However, the rate of this increase was higher in IB9. The evolution of strain in steel strand 

is shown in Figure 5-46b for IB7 and IB9. The strain of strand increases with the number of 

fatigue cycle in IB7, however, in IB9, the value of strain gauge abnormally showed a 

decrease tendency by increasing the number of cycles. The two following reasons might be 

the answer to this abnormal behavior: 

 
Figure 5-46: Strain evolution of the intervening materials in hybrid steel/GFRP HPFRC 
prestressed beams: (a) GFRP bar, (b) Steel strand, and (c) HPFRC (compressive strain) 

1) It might be possible that the wire with the strain gauge installed on, locally yielded 

near to the mid span section, hence, the stress level, and consequently strain 

decreased for this wire. Since this beam was unexpectedly failed before termination 

of 2 million cycles, the early yielding of the steel strand at least in one or two wires 

might be the reason; 

2) Secondly, based on the results obtained from the monotonic tests, it was almost 

unlikely to have this strain gauge working near or after its yielding phase due to the 
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section configuration of strand. Note that the yield initiation is between about 0.8% 

and 1% reported by the manufacturer. Therefore, the abnormal results of strain might 

be a sign of failure in the strain gauge; 

The obtained results in terms of the compressive strain of HPFRC is plotted in 

Figure 5-46c. The absolute value of this strain showed an increasing tendency as obtained 

for the tensile strain of longitudinal reinforcement. As shown in the figure, the compressive 

strain of HPFRC showed higher strain gradient in IB9 comparing with the other two beams, 

as the same approach obtained from the strain results of GFRP bar and steel strand in IB9. 

Additionally, the degradation of flexural stiffness of the prestressed I-beams is evaluated 

in terms of increase in the effective curvature of the beam (i.e. eff ). The effective curvature 

of the beam can be simply calculated by 

 
 2 23

4

6a mid
effh

c eff

M D

E I S a
  


 (5-134) 

where midD  is vertical deflection of mid span section measured by LVDT3 (see Figure 5-5). 

The upper and lower effective curvature at the beginning of the fatigue cycles are included 

in Table 5-16. It should be noticed that the ultimate curvature reported in Table 5-16 was 

determined from the results of the monotonic tests taking the ultimate deflection 

corresponding to the peak applied load at mid span section. Figure 5-47 compares the 

degradation of the flexural stiffness of the fatigue specimens. As shown, the stiffness of IB9 

showed a significant decrease during the fatigue cycles. In fact, to compare with the other 

two fatigue beams, this beam abnormally lost its stiffness, which might be due to an 

uncommon failure of GFRP bar or steel strand. Because, in IB10 that the range of stress of 

GFRP bars was even higher than IB9, no sign of failure was observed after two million 

fatigue cycles.  

As Figure 5-48 shows, IB9 failed in bending followed by the abrupt tensile rupture of 

the GFRP bars. No sign of failure in shear span was detected since the crack pattern was 

almost the same since the beginning of fatigue cycles. This can be confirmed that the beam 

failed due to its significant stiffness loss at mid span, which results in the tensile failure of 
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the longitudinal reinforcements at mid span. Based on the obtained results of the flexural 

stiffness shown in Figure 5-47, after 2 million fatigue cycles, in total, IB7 has lost about 8% 

of its stiffness comparing to the static case (i.e. monotonic load), and this value was about 

5% for IB10. 

 
Figure 5-47: Evolution of the effective curvature of the tested beam under the fatigue loading 

condition 

 
Figure 5-48: Failure of specimen IB9 after about 1.82 Million of fatigue cycles 

The beams IB7 and IB10 were subjected to monotonic test after the fatigue cycles. The 

monotonic response of these two beams are plotted in Figure 5-49. The force-deflection 

response of IB6, which has the same configuration of IB7, as well as the theoretical force-

deflection response predicted for IB10 by using the direct method, are compared in 

Figure 5-49. It is versified that IB6 and IB7 showed a slight decrease in terms of flexural 

strength. On the other hand, IB10 showed no loss in the flexural strength and ductility index 

when compared to the theoretical curve by the direct method. It should be noticed that the 

reloading branch plotted in Figure 5-49 was recorded by means of the data logger when the 
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beam was unloading in accordance with the reloading template shown in Figure 5-7b. 

 
Figure 5-49: Force-deflection response of IB7 and IB10 from the monotonic tests after 2 

million of fatigue cycles 

5.5 Summary and conclusion 

In this chapter, the structural performance of prestressed HPFRC I-shaped cross sectional 

beams reinforced by hybrid steel strand and GFRP bars was experimentally and theoretically 

investigated. The tested beams were categorized in two main test groups. The first group of 

the tested beams included three beams with nearly balanced reinforced condition and one 

beam with over-reinforced condition, while the second group included six beams with under-

reinforced condition. The tested beams were subjected to monotonic and fatigue four-point 

loading conditions. The structural response of the tested beams including, cracking, 

deformation, reinforcement strain, and HPFRC strain in compression were monitored during 

the tests. In addition to the experiments, a comprehensive analytical formulation was 

developed in order to address theoretically the structural responses of the hybrid reinforced 

beams. Based on the obtained results from both analytical and experimental research 

activities, the following remarks can be drawn: 

 Since no HPFRC crushing in compression or rupture of FRP bar in tension 

occurred at the failure stage of the tested beams, it can be concluded that none of 

the beams reached their maximum flexural capacity. However, by increasing in 

the amount of prestressed in the longitudinal reinforcements, the load carrying 
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capacity increased at both SLS and ULS conditions, in which the I-beam with the 

highest prestressing level (i.e. IB10) could reach 94% of its maximum nominal 

flexural strength. The strain of GFRP bars for this prestressed beam was about 

95% of its nominal ultimate strain at the failure stage; 

 Although all tested beam failed in the shear zone through propagation of a critical 

diagonal crack at shear span, a very ductile behavior, particularly for second 

group of the beams (under-reinforced beams) was observed. This ductility was 

measured by multiplying the strength effect by the deformation effect, which 

were firstly defined by Jaejer et al. (1997). The calculated ductility index from 

the experimental force-deflection was compared to the ductility index calculated 

by means of the “reference response”, which was based on the force-deflection 

response governed by flexural deformation only (obtained from Def-DOCROS 

software). This comparison showed that the ductility of the under-reinforced 

prestressed beam was significantly increased in respect to the corresponding 

values by the “reference response”. This can be a great achievement in terms of 

ductility for the beams reinforced by prestressed FRP bars, where are categorized 

as RC beams with brittle failure mode; 

 The shear failure process in case of beams in the present study was not as brittle 

as what is typically known for concrete beams failing in shear, since the proposed 

system could carry the load up to a very high deflection at mid-span section. 

During the crack formation process in the HPFRC, high amount of fracture 

energy in both mode I and mode II was released, resulting shear resisting at the 

flexure-shear zones. This fracture energy was spent while HPFRC cracks were 

opening and sliding (i.e. propagation of shear cracks), and at the same time the 

applied load was gradually increasing. This behavior of HPFRC under flexure-

shear fracture mechanism gives high deformability to the prestressed beams 

similar to deformability that is typically obtained in conventional steel RC beams 

after yielding of longitudinal steel bars; 
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 No significant loss was observed in the flexural stiffness of the beams with 15% 

and 40% of prestress level in GFRP bars (IB6 and IB10) after two million fatigue 

loading cycles. However, for the beam with 30% prestress level in GFRP bars 

(IB9), the beam failed after about 1.8 million loading cycles. Unfortunately, due 

to the limited amount of the specimen in this series, no straight conclusion can be 

drawn from the obtained results; 

 The prestressing in the longitudinal reinforcements increased the load carrying 

capacity at both SLS and ULS stages. At SLS, the load carrying capacity and 

other structural response of the prestressed beams were captured well by the 

results obtained using DOCROS sectional analysis software. The linear strain 

profile for each section of the beam is the fundamental assumption in the analysis 

by this software. However, at ULS, the results from this section analysis 

overestimated the experimental results. In case of ULS, the proposed direct 

method to calculate the maximum deflection response of the beam, which is a 

modified version of the direct method recommended by ACI code, can be an 

accurate alternative. This method is based on the calculation of the effective 

moment of inertia of the tested beams. The results from this method were 

promising when compared with the experimental force-deflection responses;  

 The flexure-shear analysis proposed in the present study was capable of 

predicting the shear strength of the tested beam with acceptable accuracy for 

design purpose. The proposed analysis was based on the mode I fracture energy 

of HPFRC material, and also considers its interaction with the mode II fracture 

energy, which is fundamental in elements governed by the mixed fracture modes, 

such is the case of the tested beams; 

 

 

 

 



Page | 212 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

Notations 

a  shear span of beam 
cpD  

HPFRC compressive deformation 

corresponding to onset of the plastic phase 

,ct bA  tensile area of beam’s cross section under 

level of neutral axis at balanced condition 
crD  tensile deformation of HPFRC in direct tension 

that causes cracking 

fA  area of GFRP bar’s cross section 
midD  mid span deflection of tested beams 

gA  gross area of HPFRC beam’s cross section 
uD  mid span deflection at peak force-deflection 

response of the tested beam 

sA  area of steel strand’s cross section 
yD  

mid span deflection corresponding to yielding 

of steel strand 

1pA  the first effective tensile area of hybrid 

reinforced HPFRC beam’s cross section 
cE  Young’s modulus of HPFRC material 

1pA  the second effective tensile area of hybrid 

reinforced HPFRC beam’s cross section 
fE  Young’s modulus of GFRP bar 

b  width of bottom flange in HPFRC beam’s 

cross section  
sE  Young’s modulus of steel strand 

nb  width of beam in the notched beam bending 

tests  
cf   the compressive strength of HPFRC 

wb  width of web in HPFRC beam’s cross section  
ctf  HPFRC tensile strength 

c  the depth of neutral axis 
,ct Lf  limit of proportionality calculated for CMOD 

=0.05 mm in standard notched beam test  

bc  the depth of neutral axis at the balanced 

section condition 

pre
ff  prestress of GFRP bar 

nc  the depth of neutral axis at nominal flexural 

failing condition (corresponding to 
nM ) 

fuf  the ultimate tensile stress of GFRP bars 

vc  the depth of neutral axis in a flexure-shear 

crack in shear span 
Ftsf  the residual flexural stress of HPFRC defined 

by Model Code 2010 

1
eC  first integration constant for the elastic phase 

Ftuf  the residual flexural stress of HPFRC defined 

by Model Code 2010 

2
eC  second integration constant for the elastic 

phase 
,R jf  the residual flexural stresses of HPFRC defined 

by Model Code 2010 ( 1,2,3,4j  ) 

dC  the strength effect in calculation of ductility 

index 

pre
sf  prestress of steel strand 

sC  the deformation effect in calculation of 

ductility index 
suf  the ultimate tensile stress of steel strand 

fd  the arm of tensile force of GFRP bars at 

HPFRC beam’s cross section 
syf  yielding stress of steel strand 

fd   HPFRC concrete cover of GFRP bars 

(measured from bottom surface of section) 
cF  the resultant of compressive force at cracked 

HPFRC beam’s cross section 

,f eqd  the arm of tensile force of equivalent GFRP 

bars at HPFRC beam’s cross section 
,c bF  

the resultant of compressive force at balanced 

cracked HPFRC beam’s cross section 

frd  the arm of the resultant of the residual tensile 

force by fibers at beam’s cross section 
,c nF  

the resultant of compressive force in horizontal 

direction at a flexure-shear crack 

sd  the arm of tensile force of steel strand at 

HPFRC beam’s cross section 
,c vF  

the resultant of compressive force in vertical 

direction at a flexure-shear crack 

cmD  maximum compressive deformation at top 

HPFRC beam’s cross section 
fF  the tensile force of GFRP bars at cracked 

HPFRC beam’s cross section 
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,f bF  
the tensile force of GFRP bars at balanced 

cracked HPFRC beam’s cross section 
,exp

h
effI  The experimental effective moment of inertia 

of hybrid GFRP/steel HPFRC beam 

jF  the applied force in notched beam test 

corresponding to ,R jf  
rJ  constant in the governing differential equation 

for either GFRP or steel bar 

maxF  the maximum applied force in the fatigue 

loading template 
k  the factor in calculation of nominal shear 

strength of beam by Eq. (5-66) 

minF  the minimum applied force in the fatigue 

loading template 
1k  the factors that take into account the bond 

quality (Eq. (5-101)) 

frF  the resultant of tensile force at cracked 

HPFRC beam’s cross section (due to fibers) 
2k  the factors that take into account the form of 

strain distribution (Eq. (5-101)) 

,fr bF  
the resultant of tensile force at balanced 

cracked FRC beam’s cross section by fibers 
3k  factors taking into account the bond quality 

(Eq. (5-122)) 

,fr nF  
the resultant of tensile force by fibers in 

normal direction to crack plane 
4k  factors taking into account the duration of the 

loading or of repeated loading (Eq. (5-122)) 

,fr vF  
the resultant of tensile force in tangential 

direction to crack plane 
bk  the factors that take into account the bond 

quality (Eq. (5-120)) 

sF  the tensile force of steel strand bars at 

cracked HPFRC beam’s cross section 
l  span of the standard notched beam test 

syF  
yielding force of steel strand l   the length of un-hooked part of the steel fiber 

I
fG  the mode I fracture energy l   the length of hooked part of the steel fiber 

II
fG  

the mode II fracture energy 
csl  characteristic length defined by Model Code 

2010 

,
II
f aG  

the portion of the mode II fracture energy due 

to frictional behavior of fracture surface 
crl  the length of the flexure-shear crack 

h  height of I shaped HPFRC beam’s cross 

section 
,cr fll  

the length of the flexure-shear crack crossing 

flange of the beam 

1h  height of the flanges in I shaped HPFRC 

beam’s cross section 
,cr wl  

the length of the flexure-shear crack crossing 

web of the beam 

2h  height of the flanges in I shaped HPFRC 

beam’s cross section 
sfl  total length of hooked steel fiber 

3h  height of the web in I shaped HPFRC beam’s 

cross section 
vl  the length of a flexure-shear crack with 

activated frictional stresses 

sfh  the hook height of the utilized steel fibers L  span of the I shaped hybrid HPFRC prestressed 

beam 

sph  height of the notched section in the standard 

notched beam benign test 
bL  bond length of reinforcing bar 

crI  the moment of inertia of cracked FRP-RC 

beam’s cross section 
trL  transferred bond length corresponding to 

whatever value of the slip at crack section 

h
crI  the moment of inertia of cracked hybrid 

FRP/steel HPFRC beam’s cross section 
,tr fL  

transferred bond length of GFRP bar 

corresponding to the slip at crack section 

effI  the effective moment of inertia of FRP-RC 

beam 
,tr rL  

transferred bond length of either GFRP or steel 

strand corresponding to the slip at crack section 

h
effI  the effective moment of inertia of hybrid 

GFRP/steel HPFRC beam 
,tr sL  

transferred bond length of steel strand 

corresponding to the slip at crack section 

gI  the moment of inertia of uncracked hybrid 

GFRP/steel HPFRC beam 
sm  factor to calculate balanced reinforcement ratio 

by Eq. (5-18) 
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frm  factor to calculate balanced reinforcement 

ratio by Eq. (5-18) 

RILEM
crS  crack spacing calculated by Eq. (5-101) 

1m  modified factor to calculate the depth of 

neutral axis by Eq. (5-31) 
R  factor defines the ratio between the lower 

strength and upper strength in fatigue cycles 

2m  modified factor to calculate the depth of 

neutral axis by Eq. (5-31) 
V  the applied shear force in shear span of beam 

aM  the maximum applied moment carried by I 

shaped HPFRC beam at each level of loading 
cdV  the shear resistance of beam due to only 

concrete 

crM  the cracking moment of I shaped HPFRC 

beam 
nV  the nominal shear strength of hybrid reinforced 

HPFRC prestressed beam 

cdM  the moment corresponding to cdV  w  crack width at cracked section 

L
crM  

the cracking moment of I shaped HPFRC 

beam calculated, replacing ctf  by ,ct Lf  
aw  the limited crack width in which for aw w  

the frictional shear stress of crack face is null 

nM  the nominal flexural strength of beam 
fw  crack width at the level of GFRP bars at 

cracked section 

pM  
moment due to the eccentrically applied 

prestress force 
kw  design crack width 

SLSM  the applied moment corresponding to 

250L  
uw  the ultimate crack width with null value of 

crack tensile stress 

uM  the peak applied moment in moment-

deflection response of beam  

  the angle of the critical diagonal crack (CDC) 

in the flexure-shear analysis 

,expuM  the peak applied moment in moment-

deflection response of the tested beams 
1  the parameter define the rectangular HPFRC 

compressive stress block of at crack section 

vM  the moment corresponding to nV    coefficient relating the average crack width to 

the design value 

yM  the applied moment corresponding to yield 

initiation of steel strand 
1  the parameter define the rectangular HPFRC 

compressive stress block of at crack section 

rn  the ratio between the Young’s modulus of 

steel strand and GFRP bar 
2  parameter that takes into account the particular 

geometry of the adopted I shape cross section 

fn  the ratio between the Young’s modulus of 

GFRP bar and HPFRC 
3  the factor defines the bi-linear tensile 

deformation of the flexure-shear crack 

fpN  axil prestressed force applied to beam due to 

GFRP bars 
d  factor that takes into account the relatively 

smaller tension stiffening effect of FRP bars  

spN  axil prestressed force applied to beam due to 

steel strand 
sh  factor that takes into account the crack shear 

propagation in the proposed direct method  

fP  the maximum tensile force transferred due to 

bond behavior of the GFRP bars 

  factor to calculate the depth of neutral axis by 

Eq. (5-31) 

maxP  the peak applied force in force-deflection 

response of the tested beams 
c  safety factor in calculation of the nominal shear 

strength by Eq.  (5-66) 

sP  the maximum tensile force transferred due to 

bond behavior of the steel strand 
f  slip of GFRP bar at cracked section 

s  horizontal distance between GFRP bars at 

beam’s cross section 
s  slip of steel strand at cracked section 

crS  crack spacing 
1  the first strain point in the proposed tensile 

stress-strain diagram of HPFRC by RILEM 



Chapter 5: Hybrid GFRP/Steel Reinforced HPFRC Prestressed beam Page | 215 

 

Notations 

2  the second strain point in the proposed tensile 

stress-strain diagram of HPFRC by RILEM 
  rotation at the crack section due to the opening 

3  the third strain point in the proposed tensile 

stress-strain diagram of HPFRC by RILEM 
h  the size factor defined by Eq. (5-24) 

c  HPFRC compressive strain 
r  constant entering the governing differential 

equation for elastic bond phase 

c
  HPFRC compressive strain corresponding to 

its compressive strength 

  ductility index of beam 

cp  HPFRC compressive strain at onset of its 

plastic behavior 
c  defined by Eq. (5-16) 

ct  HPFRC tensile strain 
eff  effective reinforcement ratio 

1ct  mean tensile strain in the first adopted 

HPFRC tensile prism 
f  GFRP reinforcement ratio 

2ct  mean tensile strain in the second adopted 

HPFRC tensile prism 
fb  FRP balanced reinforcement ratio 

cr  cracking strain of HPFRC 
,f eq  equivalent GFRP reinforcement ratio 

f  tensile strain of GFRP bars 
hb  hybrid balanced reinforcement ratio 

f  mean tensile strain of GFRP bars at distance 

between two consecutive cracks 
s  steel strand reinforcement ratio 

,f cfs  the tensile strain of GFRP bars at “crack 

formation stage” 
1  the first stress point in the proposed tensile 

stress-strain diagram of HPFRC by RILEM 

l
f  lower limit of GFRP bar tensile strain during 

the first fatigue cycle 
2  the second stress point in the proposed tensile 

stress-strain diagram of HPFRC by RILEM 

m
f  tensile strain of FFRP bar at midway section 

between two consecutive cracks 
3  the third stress point in the proposed tensile 

stress-strain diagram of HPFRC by RILEM 

pre
f  pre-strain of GFRP bars 

ct  tensile stress of HPFRC 

fu  the ultimate tensile strain of GFRP bars cr
ct  equivalent average value of crack tensile stress 

of HPFRC 

u
f  upper limit of GFRP bar tensile strain during 

the first fatigue cycle ,
cr
ct b  

equivalent average value of crack tensile stress 

of HPFRC at balanced condition 

s  tensile strain of steel strand pre
c  average compressive stress acting over the 

gross section due to the prestressed force 

l
s  lower limit of steel strand tensile strain 

during the first fatigue cycle ,
pre
c m  

average compressive stress over the section due 

to the prestressed force and its moment 

pre
s  pre-strain of steel strand 

fr  the average tensile stress in the HPFRC tensile 

prisms by the tension–stiffening of fibers 

su  breaking tensile strain of steel strand  
sr  tensile stress of reinforcements at crack 

formation stage defined by Eq. (5-125) 

u
s  upper limit of steel strand tensile strain 

during the first fatigue cycle 

m
cr  the mean crack shear stress effectively due to 

the frictional behavior of the crack face 

sy  yielding strain of steel strand   the angle between 
,fr nF  and 

frF  defined in the 

flexure-shear analysis 
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D  the obtained curvature by DOCROS 
u  the effective curvature of beam at peak load in 

force-deflection response 

h
cr  the curvature of cracked section 

corresponding to nM  
  coefficient takes into account the degradation 

of the normal tensile stress due to existence of 

shear stresses over the crack 

eff  the effective curvature of beam 
f  diameter of GFRP bars 

l
eff  lower limit of beam curvature during the first 

fatigue cycle 
s  diameter of steel strand 

u
eff  upper limit of beam curvature during the first 

fatigue cycle 
sf  diameter of steel fibers 
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 Chapter 6 

6 NUMERICAL SIMULATION 

6.1 Introduction 

In this chapter, numerical simulations are carried out to address the structural behavior 

of the hybrid GFRP/steel reinforced HPFRC prestressed beams, and to introduce a reliable 

method to design this reinforcing system. For this purpose, a 2D model using Concrete 

Smeared Crack (CSC) approach, as well as a 3D model using Concrete Damage Plasticity 

(CDP) approach are employed to simulate the fracture mechanism of HPFRC after cracking. 

The CDP model also accounts for the nonlinear behavior of HPFRC in compression. An 

elasto-plastic model is used for simulating the steel strand, while a linear elastic behavior up 

to the ultimate tensile strain is assigned for tensile behavior of GFRP bars. The results 

obtained from these numerical simulations will be compared with those obtained by the 

experimental tests, which are presented in Chapter 5. 

Additionally, a 2D numerical simulation of two series of notched beam tests is 

implemented using back analysis technique in order to obtain the stress-crack width diagram 

of HPFRC that is being used for the tension softening behavior of HPFRC in both 2D/CSC 

and 3D/CDP models. The 2D/CSC numerical simulations were carried out using FEMIX 

program (Sena Cruz et. al 2007), while, the 3D/CDP simulations were carried out using 

Abaqus. 

In this chapter, a brief description of CSC and CDP model approaches for concrete is 



Page | 218 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

firstly given in Sections 6.2 and 6.3, respectively. Afterward, the back analysis to obtain the 

crack stress-CMOD of the HPFRC material will be described in Section 6.4. Finally, the 

numerical 2D and 3D simulations of the prestressed beams and their respective results will 

be presented and compared with the experimental results in Sections 6.5 and 6.6.  

6.2 Concrete Smeared Crack (CSC) approach 

Bazant and Oh (1983) firstly used the concept of “smeared cracking” as they modeled 

concrete by using a fracture process employing a band of smeared crack with a fixed length 

(named as crack band width lb). The basic assumption of smeared crack modelling of 

concrete is to decompose the concrete strain, after crack initiation, into an elastic (i.e. strain 

associated to the elastic concrete between cracks) and an inelastic components (strain 

component associated to the crack face) at each material sampling point (e.g. Gauss 

integration point within the frame work of a finite element model). The smeared crack 

approach, in general, is a modelling approach that is used for reinforced concrete elements, 

in which the concrete behavior is modeled independently of the reinforcing rebars. Then, the 

effect associated to the interaction between concrete and rebars is typically modeled by 

introducing “tension stiffening” in the tensile behavior of concrete or, sometimes, changing 

its axial stiffness of the tensile rebars. Alternatively, this interaction can be modeled 

employing interfacial finite elements that connect concrete element to bar’s element, and 

using a constitutive model that simulates the bond behavior between them. 

6.2.1 Crack detection 

A simple Rankine criterion is used to detect crack initiation. This states that a crack forms 

when the maximum principal tensile stress attains the concrete tensile strength. This crack 

detection criterion is shown in Figure 6-1 for plane stress element.  

When a crack occurs, its orientation is stored for the subsequent calculations. After crack 

initiation, the CSC implemented into FEMIX allows the formation of more cracks, if the 

following conditions are satisfied simultaneously: 

1) The principal stress in the integration point reaches the actual concrete tensile 
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strength; 

2) The angle between the direction of the existing cracks and the direction of the new 

crack is higher than a user-defined threshold value (threshold angle th ). 

 
Figure 6-1: Rankine criterion for crack detection in plane stress state 

In this multi-directional fixed smeared crack model, when a new crack is formed in the 

cracked material point, the fracture energy that is assigned to the new crack is calculated by 

the following equation (Barros, 1995): 

 
2

, ,( )
/ 2

p

new th
f f f a f aG G G G

 
   

 
 (6-1) 

where 2p  is a parameter that, currently, can be taken the values of 1, 2 or 3, th  is the angle 

(in radians) between the new and the previous cracks, and 
,f aG  is the available fracture 

energy of the previously formed crack. This value is calculated subtracting the fracture 

energy consumed by the previously formed crack, pre
fG , from the total given fracture energy, 

limited by the critical fracture energy defined elsewhere (Barros 1995): 

 ,
pre

f a f fG G G   (6-2) 

The following crack status define the behavior of each crack: “opening”, “closing”, “fully 

opened”, and completely closed (Barros 1995). 

6.2.2 Fracture mode I process 

In case of an element in 2D plane stress state, two deformation components are 

considered for a formed crack line: the normal and tangential deformations represented by, 

2 / ctf

1 / ctf1

1
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respectively, opening (i.e. w ) and sliding (i.e.  ) components, as shown in Figure 6-2a for 

case of FRC. Since a smeared crack approach is adopted, a crack should be regarded as a 

smeared crack band. Therefore, the respective strain components are derived by means of 

“crack band width” (i.e. bl ), meaning that normal crack strain (i.e. cr
ct ) is computed dividing 

w  by bl , and the tangential strain (i.e. cr ) is computed dividing   by bl . The crack band 

width in FEMIX is calculated based on the geometry of FE mesh characteristics in order to 

assure that the results are not dependent of the mesh refinement. This value can be assumed 

equal to the square root of the area of the finite element for plane stress element, but in the 

present simulations the first option was adopted. 

 
Figure 6-2: (a) deformation components of crack in concrete or FRC, and (b) tension-

softening diagram of concrete or FRC 

The incremental behavior of the residual stresses versus the respective value of crack 

strain is typically defined as constitutive law of crack. The component of this constitutive 

law that defines the crack opening process (‘Tension softening’ or “tension stiffening”), is 

simulated by the stress-strain diagram shown in Figure 6-2b, where the crack normal strain 

and the crack normal stress are normalized by, respectively, the ultimate crack normal strain 

and concrete tensile strength. 

It should be noticed that in adopted CSC model (NLMM104 in FEMIX), the behavior of 

HPFRC in compression is considered linear and elastic. 

6.2.3 Fracture mode II process 

Cracking behavior is predominantly influenced by crack opening process that is based 

on the mode I fracture energy, tensile strength and shape of the tensile stress vs. crack width 
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relationship. However, to allow the simulation of structures governed by the mixed mode 

fracture mechanisms, such is the case of the beams tested in the present work, the crack 

sliding behavior and its dependence on the crack opening process should be modeled as 

accurately as possible. The crack shear behavior is governed by the Mode II fracture 

mechanism, and mainly two available methods in the literature are proposed to simulate the 

Mode II fracture behavior, both of them available in FEMIX. 

6.2.3.1 Shear retention factor 

Although the crack initiation is based on Mode I fracture only, post cracking behavior 

also depends on the Mode II fracture process. Based on the experimental evidences, the crack 

shear stress transfer depends on the crack opening evolution. Therefore, the crack shear 

modulus, cr
IID , is defined as function of the crack opening, according to Eq. (6-3), where cr  

is the shear retention parameter obtained according to Eq. (6-4) that depends on the actual 

crack normal strain ( cr
ct ) and the ultimate crack normal strain ( cr

ctu ). In Eq. (6-3), the 

parameter cG  is the shear modulus of un-cracked and cracked concrete, while in Eq. (6-4) 

the parameter 1p  defines the decrease rate of cr  in terms of the cr
ct  variation: 

 
1

cr cr
II c

cr

D G





 (6-3) 

 

1

1

p
cr
ct

cr cr
ctu

 
     

 (6-4) 

The parameter 
1p  can be taken as 1, 2 or 3, which, respectively, represents linear, 

quadratic and cubic shear retention power law. When crack is closed (i.e. 0cr
ct  ), a full 

interlock is assumed for the crack, while for cr cr
ct ctu    the crack is completely opened and 

shear stress cannot anymore be transferred between both faces of the crack. 

6.2.3.2 Shear softening law 

The previous approach based on the concept of shear retention factor is appropriate for 

concrete structures where cracking process is predominantly influenced by the fracture mode 

I parameters, such is the case of structures failing in bending. To simulate the concrete 
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structures that are supposed to fail by the propagation of critical shear cracks, the shear 

retention factor does not assure accurate results (Ventura-Gouveia 2011). For attending for 

these cases, FEMIX has a constitutive model where a shear softening diagram is proposed 

to simulate the fracture mode II process (Ventura-Gouveia 2011). In this approach, the crack 

tangential deformation is simulated independently from its crack normal deformation, by 

using the shear softening diagram shown in Figure 6-3 (Ventura-Gouveia 2011).  

 
Figure 6-3: Shear softening diagram 

The crack shear stress increases linearly until the crack shear strength is reached ( cr
m ), 

afterward, it is followed by a descending branch (softening) up to the ultimate crack shear 

strain ( cr
u ). Several authors demonstrated the good applicability of this approach for RC 

elements failing in shear (Ventura-Gouveia 2011, Barros et al. 2013, Breveglieri 2015, 

Baghi 2015), therefore it will be also used for simulating the beams tested experimentally in 

the scope of the present thesis. 

6.3 Concrete Damage Plasticity (CDP) approach 

The CDP model available in Abaqus provides a general capability to capture the effects 

of irreversible damage associated with the failure mechanisms that occur in concrete and 

other quasi-brittle materials. Even though it is primarily developed for the analysis of 

reinforced concrete structures, it can be also applied to modeling of plain concrete. In this 

chapter, the model will be used to simulate the behavior of reinforced HPFRC beams that 
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was detailed in Chapter 5. The CDP model in Abaqus is based on the plastic-damage 

modeling approach proposed by Lubliner et al. (1989) and by Lee and Fenves (1998). The 

CDP model uses concepts of isotropic damaged elasticity in combination with isotropic 

tensile and compressive plasticity to represent inelastic behavior of concrete, and it is 

designed for applications in which concrete is subjected to monotonic, cyclic, or dynamic 

loading conditions. However, the CDP model is only applicable for concrete under low 

confining pressure, because the brittle behavior of concrete disappears when the confining 

pressure is sufficiently large to prevent crack propagation. Modeling the behavior of concrete 

under large hydrostatic pressures is out of the scope of the CDP model. A brief description 

about the CDP model is given in the following subsections. 

6.3.1 Uniaxial tension and compression behavior 

The CDP model assumes two stages in uniaxial tensile and compressive behavior of 

concrete: elastic and plastic responses. The material starts within its linearly elastic behavior 

up to the “failure stress” in tension, which can be defined as the stress at crack initiation (i.e. 

0t ), and initiation of “yield stress” in compression (i.e. 0c ). The failure stress in uniaxial 

tensile, and yield stress in uniaxial compressive behavior of concrete is shown in Figure 6-4. 

When the failure stress or yield stress is reached, the stress-strain relation is defined 

independently for tension and compression as follows: 

 (1 ) ( )pl
ct t c ct ctd E      (6-5) 

 (1 ) ( )pl
c c c c cd E      (6-6) 

where pl
ct  and pl

c  are the plastic strains, respectively, in tensile and compression domains. 

The parameters td  and cd  are the damage parameters (ranged between 0 and 1) to define 

the degradation of the elastic stiffness of the material after initiation of the in elastic 

deformation (as shown in Figure 6-4). Note that the uniaxial stress-strain curves are 

converted into stress versus plastic-strain curves in the model after occurrence of inelastic 

deformation. 

The tensile plastic strain is calculated using: 
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 (6-7) 

while the plastic strain in compression is obtained from: 

 0

(1 )

pl c c
c c

c c

d

d E


   


 (6-8) 

where 0c  is the compressive stress the threshold of the plastic behavior of concrete in 

compression as shown in Figure 6-4. More sophisticated aspects are considered in the 

uniaxial behavior of concrete under cyclic and dynamic loading conditions, however, the 

details about this type of behavior are not given in this study since no cyclic behavior is 

intended to model. In a general form, multiaxial stress-strain relation can be written as 

follow: 

 
Figure 6-4: Response of concrete to uniaxial loading in compression (left) and tension (right) 

  
(1 )

pl
cE

d


     


 (6-9) 

where d  is the stiffness reduction variable,   and   are the stress and strain tensors of 

concrete, while   is the equivalent stress tensor. 

6.3.2 Yield surface 

In multiaxial conditions, the yield stress is presented as a “yield surface” (conceptually, 

this should be named “failure surface” for tension, however, for sake of brevity, the yield 

surface is also adopted for tensile behavior). The CDP model uses a yield condition based 

on the yield function proposed by Lubliner et al. (1989) and incorporates the modifications 

proposed by Lee and Fenves (1998) to account for different evolution of strength under 

(1 )t cd E

ct

pl
c

cE

(1 )c cd E

c

c

Initiation of yield stress
in compression

0c

c

pl
c

cE

ct

ct

Failure stress
in tension (stress at crack
initiation)

0t ctf 



Chapter 6: Numerical simulation Page | 225 

 

tension and compression. This yield surface can be considered by means of a relationship 

between the equivalent pressure stress, named as p , and the Von Mises equivalent deviatoric 

stress, named as q , which is known as p q  plane (known also as meridian plane) shown 

in Figure 6-5a, and they are given by: 

 
1

: I
3

p     (6-10) 

 
3

:
2

q S S  (6-11) 

where I is the identity matrix,   is the concrete stress tensor, and S  is derived by 

 IS p   (6-12) 

Note that the symbol “:” is Frobenius inner product in matrix multiplications. 

 
Figure 6-5: Illustrative of the failure surfaces in: (a) p-q plane, and (b) the deviatoric plane for 

compression, corresponding to different values of Kc 

In the p q  plane, the yield surface is defined in a general form as follow: 

  max max

1
ˆ ˆ( , ) ( 3 ) 0

1

pl pl
c cF q p            


 (6-13) 

with the following definition: 
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max̂  : is the maximum principal effective stress. Note that the Macauley bracket  is 

defined by  1
2

x x x  ; 

0 0( )b c  : is the ratio of initial biaxial compressive yield stress to initial uniaxial 

compressive yield stress; 

The coefficient   takes part in the yield surface only for stress states of triaxial 

compression, i.e. 
max

ˆ 0  . This coefficient can be determined by comparing the yield 

conditions along the tensile and compressive meridians. The tensile meridian (TM) and 

compressive meridian (CM) for 
max

ˆ 0   are defined as a particular form of Eq. (6-13), 

given as follows: 
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 (6-16) 

    
1

1 3 1 (CM)
3

cq p
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If the ratio between the tensile meridian, i.e. TMq  , to that of the compressive meridian, 

i.e. CMq , is assumed as c TM CMK q q  , then, cK  is given by  

 
3

2 3
cK

 


 
 (6-18) 

being cK  constant is not in contrast with experimental evidence (Lubliner et al. 1989). 

Therefore, the coefficient   is evaluated as 

 
 3 1

2 1

c

c

K

K


 


 (6-19) 

The parameter cK  ranges between 0.5 and 1.0. For 2 3cK  , which is typical for 

concrete,    becomes 3.0. The typical yield surface considered by CDP is shown in 

Figure 6-5 in the deviatoric plane for different value of cK . It should be noticed that the 

parameters to define this yield surface for concrete can be adopted for the HPFRC, since for 

the current content of fibers applied in practical applications, only the post peak tensile and 

compressive residual strength capacity is increased with the efficiency of the reinforcement 

mechanisms of fibers bridging the formed cracks, but the shape of the yield surface does not 
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change significantly. For the specific case of max
ˆ 0  , Eq. (6-13) is the well-known 

Drucker-Prager failure surface, which was firstly developed for soils. 

6.3.3 Flow potential 

The most important aspect of the plastic behavior in CDP modelling is the incremental 

behavior of the plastic strain (or stress) beyond the yield surface, and it is defined as plastic 

flow potential. The CDP model assumes the Drucker-Prager hyperbolic function (named 

as G ) for flow potential of the yield surface, which is derived by 

 2 2( tan ) tanctG e f q p       (6-20) 

where   is the dilation angle measured in the p q  plane at high confining pressure, and e  

is a parameter, referred to as the eccentricity, that defines the rate at which the function G  

approaches the asymptote (the flow potential tends to a straight line as the eccentricity tends 

to zero). A hardening potential flow rule is schematically illustrated in Figure 6-6a for the 

Drucker-Prager hyperbolic function in p q  plane. A non-associated flow rule is adopted 

the dilation angle,  , and the material friction angle,  , are different. The definition of 

material friction angle is also given in Figure 6-6a. In fact, the direction of the incremental 

equivalent plastic strain, pld  , is not perpendicular to the yield surface in case of non-

associated flow rule.  

 
Figure 6-6: (a) Schematic illustration of a hardening non-associated flow potential considered 

in CDP modeling approach, and (b) The physical interpretation of the dilation angle 
associated with sliding along fracture surface (Modified from Zhao and Cai 2010) 

For case of plain concrete, the dilation angle is recommended being between 30 and 40 

degrees (Ren et al. 2014). Later in this chapter, it will be shown that for HPFRC material (or 
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FRC in general), smaller values in this interval best fit the experimental results. In order to 

understand better the concepts behind the parameters   and  , their physical interpretation 

is shown in Figure 6-6b on a fracture surface in case of normal and fiber-reinforced concrete. 

It should be noticed that the parameters , e ,   and cK  are the main input variables to 

identify the CDP model in Abaqus. 

6.4 Inverse analysis to obtain post-cracking behavior of HPFRC 

Typically, the diagram of stress-crack opening or stress-strain diagram, as well as the 

mode I fracture energy of HPFRC are obtained by performing direct tensile test (e.g. using 

dogbone specimen as shown in Figure 6-7c). However, in the lack of data available from 

this test setup, the stress-crack opening relationship of HPFRC (or FRC material in general) 

can be obtained by simulating numerically indirect tensile tests (e.g. splitting test and 

notched beam bending test as shown, respectively, in Figure 6-7a and b), performing a back 

analysis technique that fits, as accurately as possible, the experimental results obtained in 

these tests (for instance the total applied force vs. deflection or CMOD in case of notched 

beam bending tests). In the back analysis, the stress-crack width diagram, as well as the 

mode I fracture energy of FRC are the input variables in the model to reach a desired error 

between the experimental and numerical curves. In this study, due to the lack of data 

available from the direct tensile test of HPFRC, the stress-crack width law is obtained by 

means of a back analysis technique using the experimental force-CMOD response from 

notched beam bending tests. 

 
Figure 6-7: Typical test setups to measure tensile stress versus crack opening for FRC 

materials: (a) splitting test, (b) notched beam bending test, and (c) dogbone test 

(a) (b) (c)
Measuring device

Measuring deviceMeasuring device
Crack

Crack

Crack
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6.4.1 Notched beam bending tests 

A total of two series of notched beam bending tests, composed of 5 specimens per each 

series, was carried out to characterize the post-cracking behavior of the HPFRC. The first 

series of these tests was similar to the standard notched beam bending test setup 

recommended by CEB-FIB Model Code 2010, and the obtained force-CMOD curves are 

those presented in Section 5.2.1.2 in Chapter 5.  

The second series of test was carried out with notched beam specimens that were cut 

from the undamaged parts of both extremities of the tested HPFRC I-beams. The geometry 

of this series of notched beam test is shown in Figure 6-8. The results of the five notched 

beam bending tests with these specimens, in terms of the normalized applied force versus 

CMOD, is plotted in Figure 6-9b, and it is compared with the same results obtained from the 

standard notched beam tests (i.e. first series plotted in Figure 6-9a). The calculated value of 

the residual flexural tensile stress parameters of the second series of notched beam test are 

included in Table 6-1. As shown in Figure 6-9b, the scatter of the results for specimens taken 

from HPFRC web plate of the I-Beam specimens is much higher than the standard notched 

beam specimens. This is due to significant difference of steel fiber distribution and 

orientation between these two series of notched beam specimens. When a smaller fracture 

surface of FRC material is analyzed (like the case of HPFRC web plate in I-Beam 

specimens), the post-cracking behavior is significantly influenced by the number and 

orientation of fibers crossing this fracture surface. Therefore, the fracture energy of FRC 

material is significantly influenced by the location of the fracture surface at HPFRC web 

plate. The homogeneity and isotropy are two fundamental assumptions in almost all the 

available macro scale models for cement-based materials. However, for FRC materials, their 

post-cracking behavior strongly depends on the geometry of the specimen, rheology 

characteristics, and casting conditions. 
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Figure 6-8: (a) the location that notched beam specimens were taken, and (b) Notched beam 

bending test setup for second series 

 
Figure 6-9: Normalized applied force versus CMOD obtained from the notched beam tests: 

(a) first series (standard test), and (b) second series 

Table 6-1: The residual flexural tensile stress parameters of the second series of notched 
beam bending test 

Notched 
beam 

Specimens 
ID. 

Residual flexural tensile strength parameters Limit of 
proportionality* CMOD1=0.5 CMOD2=1.5 CMOD3=2.5 CMOD4=3.5 

F1 fR,1 F2 fR,2 F3 fR,3 F4 fR,4 FL fct,L 

(kN) (MPa) (kN) (MPa) (kN) (MPa) (kN) (MPa) (kN) (MPa) 

B1 2.35 8.31 2.42 8.57 2.30 8.14 2.09 7.42 1.85 6.56 

B2 1.65 5.84 1.50 5.31 1.22 4.32 1.11 3.93 1.58 5.62 

B3 3.35 11.87 3.62 12.82 3.35 11.86 3.12 11.05 1.71 6.04 

B4 3.31 11.57 3.59 12.71 3.32 11.76 2.99 11.59 2.31 8.18 

B5 1.21 4.29 1.20 4.25 1.09 3.86 1.00 3.55 1.62 5.77 

Average: 2.37 8.37 2.47 8.73 2.25 7.99 2.06 7.51 1.81 6.43 

* Calculated by Eq. (5-1) in Chapter 5 for CMOD=0.05. 

6.4.2 Strategies to perform the inverse analysis 

In order to obtain more reliable results from the inverse analysis, the following strategy 

was adopted: 

I-Beam specimen

Notched beam specimen

500

600
Test setup

70

70

55
250

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.25

0.50

0.75

1.00

(a)

N
o

rm
al

iz
ed

 a
p

p
li

ed
 f

o
rc

e 
(k

N
)

CMOD (mm)

 B1

 B2

 B3

 B4

 B5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.25

0.50

0.75

1.00
N

o
rm

al
iz

ed
 a

p
p

li
ed

 f
o

rc
e 

(k
N

)

CMOD (mm)

 B1

 B2

 B3

 B4

 B5

(b)



Chapter 6: Numerical simulation Page | 231 

 

- The inverse analysis is performed by considering the force-CMOD response of each 

individual notched beam specimen. This helps to consider not only the values 

obtained by the experimental test, but also the real shape of the experimental curve, 

which represents the real behavior of the fracture surface at notched section for each 

specimen. In other word, the average result of force-CMOD response of HPFRC is 

not used in the analysis; 

- The force-CMOD response of each individual specimen will be analyzed separately 

in three distinguished stages: stage 1, 2 and 3 that correspond, respectively, to CMOD 

of 0 to 0.2, 0.2 to 1, and 1 to 5 mm; 

- For each phase, the difference between the numerical and experimental curves is 

minimized for a desired value of error; 

- The previous steps conducted to a scatter of results in terms of crack tensile stress 

versus crack opening, as well as a range of values for Mode I fracture energy. 

Figure 6-10 briefly describes the procedure of the adopted inverse analysis to determine 

the properties that define the post-cracking tensile behavior of HPFRC. As shown, in the 

first stage, three parameters are changed in the analysis: tensile strength (i.e. ctf ) and the 

slope of the first linear branch (i.e. 1 , 1 ). The numerical results are fitted to the respective 

experimental results up to CMOD=0.2 mm. In the second stage, the slope of the second 

linear branch (i.e. 2 2,  ) is changed while the rest of the parameters are kept constant. The 

difference between the numerical and experimental curves are minimized in the range of 

CMOD=[0.2-1.0] mm. At this point, if the response from the first stage changed, the values 

of 1  and 1  are modified while the slope of the first linear branch is kept constant. Finally, 

in the third stage, the slope of the third linear branch is changed while the difference between 

the experimental and numerical curves are minimized in range of CMOD=[1.0-5.0] mm. At 

this point, if the numerical curves in the second stage changed, the values of 2  and 2  are 

modified while the slope of the second linear branch is kept constant. It should be noticed 

that the last linear branch did not have influence on the numerical results of force-CMOD up 

to CMOD=5.0 mm. Therefore, no verification was made for the ultimate crack opening. The 
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ultimate crack opening should be less than the effective bond length of steel fibers (fiber 

length~ 30 mm), which is about 25% of total fiber length according to the literature (Wang 

1989). The empirical value of 5 mm was taken for the ultimate crack opening. 

 
Figure 6-10: Procedure of the back analysis to reach the post-cracking tensile response of 

HPFRC 

6.4.3 2D model used in the back analysis of the notched beam tests 

The geometric and meshing details of the models that were used to simulate the two 

series of notched beam bending tests are illustrated in Figure 6-11. Eight-node Plane Stress 

FEs were employed to simulate HPFRC, with a Gauss-Legendre (G-L) integration scheme 

of 2×2. The diagram composed of four-linear branches, shown in Figure 6-2b, was used to 

simulate the post-cracking tensile behavior of HPFRC. Note that in the back analysis, the 

compressive behavior of HPFRC was assumed linear-elastic. 

 
Figure 6-11: Geometry, mesh and boundary conditions of the numerical modelling of notched 

beam bending tests 

6.4.4 Results of the inverse analysis 

Based on the procedure explained in the previous sections, the obtained results in terms 
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of applied force versus CMOD are plotted in Figure 6-12 and Figure 6-13, respectively, for 

the first and second series of notched beam bending tests. Additionally, the respective 

parameters that define the obtained 4-linear diagram of HPFRC post-cracking response (5 

points) are written in Table 6-2. Note that all analysis were performed with FEMIX computer 

program. 

 
Figure 6-12: Results of the back analysis for first series of notched bending beam tests: 

(a) obtained stress-crack width, (b) the respective comparison between the experimental and 
numerical results 

 
Figure 6-13: Results of the back analysis for second series of notched beam bending tests: 

(a) stress-crack width, (b) the comparison between the experimental and numerical results 

Table 6-2: The values that define the post-cracking behavior of HPFRC (unit: N, mm) 

Series Beam ID 
Point 1 Point 2 Point 3 Point 4 Point 5  

ctf  1  1  2  2  3  3  uw * I
fG  

First series B1 3.5 0.0013 1.31 0.091 1.03 0.33 0.37 5.0 10.44 
 B5 3.5 0.0013 1.14 0.091 0.71 0.33 0.31 5.0 8.20 
 Average 3.5 0.0013 1.23 0.091 0.89 0.33 0.34 5.0 9.38 

Second series B1 3.0 0.007 0.90 0.03 0.90 0.32 0.27 5.0 6.52 
 B2 2.8 0.007 0.50 0.03 0.68 0.32 0.14 5.0 3.96 
 B4 3.2 0.007 1.13 0.03 1.34 0.32 0.22 5.0 8.18 
 B5 3.0 0.007 0.73 0.03 0.43 0.32 0.07 5.0 2.59 
 Average 3.0 0.007 0.73 0.03 0.87 0.32 0.17 5.0 5.28 
* The ultimate crack opening. 
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6.4.5 Post-cracking behavior of HPFRC 

Based on the results of the back analysis, the obtained post-cracking responses of HPFRC 

is plotted in Figure 6-14a and b, respectively, for the first and second series of the notched 

beam tests. The scatter of the results from the smaller notched beam specimens (second 

series), which were cut from the undamaged part of the I-beam specimens, is higher than 

those by the standard notched beam bending tests (first series). The average fracture energy 

obtained from the standard notched beam bending tests ( 8.0N/mmfG  ) is about two times 

of the average value for the second series ( 4.0N/mmfG  ). This attributes to the fact when 

the analysis focuses on a smaller fracture surface, the fracture energy will strongly depend 

on the fiber distribution and orientation, as well as the number of fibers per unit area. In 

addition, the casting procedure might be another reason of this fact.  This confirms that in 

the simulation of FRC structures, the isotropic assumption for FRC post-cracking behavior 

is too arguable, since this behavior strongly depends on the fiber distribution and orientation. 

Assigning an unique value for fracture energy (i.e. fG ) to all FRC elements in a FE model 

of FRC structure may overestimate (in case of higher fracture energy) or underestimate (in 

case of lower fracture energy) the global behavior of the structure. 

 
Figure 6-14: Post-cracking behavior of HPFRC from the back analysis of: (a) first series, and 

(b) second series of notched beam bending specimens  

6.5 Numerical simulations of hybrid HPFRC prestressed beams 

The description of the FE models employed for the numerical simulations of the 

experimental hybrid HPFRC prestressed I-Beams is given in the present section. This 

description includes details of the adopted FE mesh, boundary conditions, and the respective 
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constitutive laws and parameters that define the models. The numerical simulations are 

carried out in form of both 2D and 3D modelling. The 2D models are based on the CSC 

modeling approach, while 3D models are based on CDP modeling approach. The 2D model 

is described in Section 6.5.1, and 3D model in Section 6.5.1.3. Afterward, a comparison 

between results of the numerical models and those from the experiments is given in 

Section 6.6 in terms of force-deflection response, crack pattern, strain of reinforcements, and 

the ultimate failing of the tested beams. 

6.5.1 Model 2D based on CSC approach 

6.5.1.1 Geometry, meshes, and boundary conditions 

Plain Stress FE with 4 nodes and 3 by 2 Gauss-Legendre integration points are used for 

simulation of HPFRC material. Additionally, 2D cable elements by using a 2 Gauss-

Legendre integration scheme (one degree-of freedom per node), are employed for simulating 

the reinforcing bars (i.e. GFRP bars and steel strand). Finally, interface FE are utilized to 

simulate the bond conditions between the reinforcements (i.e. GFRP bar and the steel strand) 

and surrounding HPFRC. The geometric details, as well as the FE mesh characteristics of 

the 2D model implemented in FEMIX is shown in Figure 6-15. More details about the 

interface FE element can be found elsewhere (Sena Cruz 2004). 

 
Figure 6-15: Geometrical details of numerical 2D model of the experimental hybrid 

GFRP/strand HPFRC I beams (dimensions in mm) 

As shown in Figure 6-15, only half of the I-beam is simulated due to its symmetry 
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conditions. The thickness of Plane Stress FE located at the bottom and top flange varied 

according to the real shape of the I-beam specimens presented in Chapter 5. This thickness 

variation is implemented to the nodes at the same horizontal level in respect to its height. 

For example, 135 mm thickness is assigned to the nodes located at 105 mm height, which is 

the midway between the web and bottom flange of the beam. 

6.5.1.2 Constitutive models and parameters 

HPFRC material: Assumed with a linear-elastic behavior in compression. The tensile 

behavior of HPFRC is defined by the four-linear constitutive law shown in Figure 6-2a, and 

it is based on the average curve between the two average post-cracking diagrams obtained 

in Section 6.4.5, as shown in Figure 6-16. In addition, the respective values that define these 

average diagrams are written in Table 6-3. The diagrams are presented in terms of the crack 

tensile stress versus crack width, which is converted to the crack tensile stress-strain 

constitutive law during the analysis by means of constant “crack band width” (i.e. bl ). The 

value of crack band width is taken the square root of the area assigned by each integration 

point. 

 
Figure 6-16: Average post-cracking tensile 

behavior of HPFRC adopted in 2D FE models 

Table 6-3: The values define the post-
cracking tensile behavior of HPFRC 

Point stress Crack width 
(MPa) (mm) 
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PT0 3.5 0.0 
PT1 3.8 0.01 
PT2 2.5 0.70 
PT3 0.75 2.50 
PT4 0.0 5.0 

 Gf 6.07 N/mm 
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parameters that define the shear retention factor (i.e. cr , 1p  and cr
ctu ), or define the shear 

softening law (i.e. cr , cr
m  and II

fG ) may be obtained by using a proper material test that 

includes the mixed fracture mechanism of flexural and shear behavior of the material. 

However, in the lack of available data from such material test, the shear parameters are 

defined by using a back analysis technique taking into consideration the results of the non-

prestressed beams in terms of the force-deflection response. The calibrated shear behavior 

will be used for the further simulation of the prestressed I-beams. It should be noticed that 

the mode II fracture energy II
fG  utilized in shear softening diagram cannot be calibrated 

using a direct shear test, because, a pure shear behavior is only a particular case of a fracture 

mechanism in which the normal stress is almost null. For each intermediately mixed modes 

behavior (ratio of the crack normal stress to the crack shear stress), the mode I and II fracture 

energies need to be dependently updated in order to reflect the correct behavior of the 

fracture surface. 

Longitudinal reinforcements: For GFRP bar, a linear elastic tensile behavior is assumed 

up to its failure, while an elasto-plastic behavior is employed for steel strand. These two 

behaviors are plotted in Figure 6-17. The values that define the elasto-plastic stress-strain 

relationship are provided in Table 6-4. The experimental tensile stress-strain response of 

steel strand, which was reported by the manufacturer, is also plotted in Figure 6-17. 

 
Figure 6-17: Tensile behavior of reinforcing bars 

Table 6-4: The values define the tensile 
behavior of reinforcing bars 

Parameter value unit 
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Simulation of bond between reinforcement and HPFRC: the interface FE is employed 

to simulate the bond shear stress-slip behavior between the reinforcing bars and HPFRC. 

Figure 6-18 shows the bond shear stress versus slip diagram to define the constitutive law of 

this interface element. In addition, the values that define this constitutive law are indicated 

in Table 6-5. These values are defined using Figure 5-8. More details about this constitutive 

model and interface FE can be found elsewhere in the study concluded by Sena Cruz in 2004. 

 
Figure 6-18: Bond shear stress-slip behavior 

of interface FEs 

Table 6-5: The values define the bond-slip 
behavior of GFRP bar and steel strand 

Parameter 
Value for 

GFRP bars 
Values for 

Steel strand 

0  (MPa) 11.1 7.8 

m (MPa) 21.5 18.1 

0 (mm) 0.12 0.09 

m (mm) 0.62 0.72 

1 (-) 0.40 0.40 

2 (-) 0.40 0.40 

nK (N/mm)* 106 106 

* Normal stiffness in interface FE 
 

6.5.1.3 Modeling of prestress in reinforcements 

The prestress effect of reinforcements is included by giving the equivalent pre-strain 

magnitude to the 2D Cable FE using a thermal loading condition. In respect with the value 

of “thermal expansion coefficient” (i.e. T ) defined for the reinforcement, the required 

temperature variation to exhibit a desired amount of pre-strain in the reinforcement can be 

simply obtained by the following equation: 

 /pre
r TT     (6-21) 

where T is the temperature variation, and 
pre
r  is the value of pre-strain in the 

reinforcement due to the prestressing, which should be taken as the value of pre-strain after 

calculating of the possible loss (refer to Table 5-7). In order to simulate releasing condition 

of the prestressing force, the temperature variation must be negative, meaning that the 

reinforcement is being contracted. Therefore, by giving 0.01T   , the given temperature 

variation ( T ) becomes equal to the pre-strain of reinforcement in percentage. 
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6.5.2 Model 3D based on CDP approach 

The details of 3D numerical simulation in terms of geometry, mesh, constitutive models 

and values of the model parameters are provided in this section. 

6.5.2.1 Geometry, meshes, and boundary conditions 

The geometrical details of the 3D models are shown in Figure 6-19. Only one fourth of 

the I-beam is modelled due to two symmetrical planes, at mid span and through the beam 

longitudinal axis. This will be beneficial in terms of computational time efficiency. Standard 

Solid Hex FE with 8-nodes and 2×2×2 integration points are employed to simulate the 

behavior of HPFRC materials. In addition, the reinforcing bars are simulated employing 

truss FE embedded to the surrounding solid elements at the location of the reinforcements. 

This can be seen in Figure 6-19 for both steel strand and GFRP bar. By using this embedment 

technique, the strain in the embedded truss FE follows the strain of its host element (i.e. the 

surrounded solid element) during the analysis, which represents a perfect bond condition 

between bar and HPFRC. Later in this chapter, an attempt will be made to simulate the effect 

of slipping of reinforcing bars (truss element) inside the host element. 

 
Figure 6-19: Geometrical details of numerical 3D model of the experimental hybrid 

GFRP/steel strand HPFRC I beams (dimensions in mm) 

6.5.2.2 Constitutive models and parameters 

HPFRC material: The CDP modelling behavior approach is assigned to the HPFRC 
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solid Hex FE, which is based on the damage-plasticity model described in Section 6.3. The 

uniaxial compressive behavior of HPFRC is defined according to the average experimental 

data obtained from the uniaxial compressive tests on the HPFRC cylinders described in 

Section 5.2.1.2. The average curve from these results are shown in Figure 6-20. The data 

points that define this average curve in the 3D models are included Table 6-6. The uniaxial 

tensile stress-strain of HPFRC is defined by computing the average value of mode I fracture 

energy, I
fG , between the two average values that was obtained from the back analysis of the 

two series of notched beam bending tests in Section 6.4.5. The “failure stress” (the crack 

initiation of HPFRC) is considered to be equal to the average tensile strength (i.e. ctf ). The 

tension softening law is taken as a linear diagram defined according to the calcualted value 

of I
fG . The adopted range of tensile softening in 3D models are shown in Figure 6-21. 

 
Figure 6-20: The average compressive stress-

strain of HPFRC adopted in 3D FE models 

Table 6-6: The values define the 
compressive stress-strain of HPFRC 

stress Strain 
(MPa) (%) 

30 0.09 
45 0.17 
58 0.24 
65 0.30 
68 0.39 
60 0.48 
50 0.55 
35 0.71 
28 0.80 
22 1.00 

Ec 35 GPa 
 

The other required parameters to define the CDP model for HPFRC material are reported 

in Table 6-7. The parameters cK , e , and   are taken as the values normally recommended 

for plain concrete (see Table 6-7). However, the dilation angle (i.e.  ), which is the most 

effective parameter to simulate the fracture mechanism of HPFRC in this type of model, is 

calibrated considering the results of the non-prestressed beam. 
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Figure 6-21: The post-cracking behavior adopted in 3D models based on the CDP modeling 

approach 

Table 6-7: The values define the CDP model for HPFRC material in numerical 3D models 

Parameter 
ctf  cE   * cK  e    

(MPa) (GPa) (-) (-) (-) (degree) 

Values 4.0 35 1.16 0.67 0.1 [15-45] 

* from Eq. (6-14) 

Longitudinal reinforcement: the same tensile behaviors considered for the 2D Cable 

FEs is also given to the truss FE in 3D model. In addition, the thermal loading condition 

adopted in 2D model to simulate the prestressing effect of the reinforcements, is also used 

in the 3D models. 

Slipping of the longitudinal reinforcements: When the truss elements (as “slave” 

elements) are embedded into the solid elements (as “master” elements or “host” element), a 

perfect bond condition is being considered between the reinforcement and HPFRC. This is 

due to the fact that the strain of reinforcement follows the equivalent tensile strain of the 

master element in the direction of the truss FE during the analysis. Hence, no slipping 

between these two elements is simulated. In order to include the effect of slipping in the truss 

elements while it is embedded into the solid elements, a degradation method is applied to 

the modulus of elasticity of the reinforcing materials in which by increasing the strain of the 

master element, the tensile stress (or axial stiffness) given to the system of the analysis by 

truss FE decreases, therefore, the slipping effect is indirectly modelled between these two 

elements.  

An incremental deformation of the master element in the axial direction of the embedded 
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truss FE is shown in Figure 6-22a for two cases: 1) “Perfect bond” condition (no slipping); 

2) “Slipping allowed”. When the slipping is allowed, the deformation of the truss FE is lower 

than the master element, leading to obtain a lower value for its tensile stress. The relation 

between the deformation of the master element, m , and slipping in relation to the slave 

element, s , can be defined by angle r  measured from the perfect bond condition line 

plotted in Figure 6-22b. This relation is mathematically expressed by 

  tan 1s m
r       (6-22) 

 
Figure 6-22: (a) concept of the perfect bond and slipping allowed in embedded truss 

elements, (b) definition of slipping rule, and (c) the degradation rule of the Young’s modulus 
of the reinforcement 

The value of s increases with the m , and it ends up to a deformation of the master 

element in which the slave element fails ( u ). If a linear relation is assumed between r  

and m , the Eq. (6-22) is known for a given value of 
u  and ru  as defined in Figure 6-22b. 

Therefore, the updated value of the tensile stress in the truss element (i.e. mod
r ) due to the 

slipping effect can be obtained by 

  mod /s
r r r r bE l         (6-23) 

where bl  is the length of the master element in the direction of the slave element, and r  is 
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the tensile stress of the slave element at each step of the analysis. Hence, by substituting 

Eq. (6-22) to Eq. (6-23), and taking the tensile strain of reinforcements equal to  /m
r bl    

at each step of the analysis, the updated value of Young’s modulus of the reinforcing bars to 

include the slipping effect is derived as 

  mod 2 tanr r rE E     (6-24) 

where rE  is the original elastic Young’s modulus of the reinforcing bars measured from a 

direct tensile test (see Figure 6-17), and mod
rE  is the modified Young’s modulus of the 

reinforcing bars that is updated at each step of the analysis. The definition of these two 

Young’s modulus are illustrated in Figure 6-22c. Further, the angle r  is given in degree by 

  45r ru ru r       (6-25) 

where r  is the value of reinforcing bar’s strain at each step of the analysis, which is equal 

to the tensile strain of the master element (host element). In addition, the value of ru  is the 

strain of reinforcement at failing in case of GFRP bars, and it is the yielding strain in case of 

steel strand. Note that after yielding, the yield stress is assumed constant for whatever value 

of plastic strain (shown in Figure 6-22c). The value of r can be theoretically between 45 

and 90 degree, however, for internal reinforcing bars utilized in concrete structures, it may 

be ranged between 45 to 55 degree depending on bond quality of reinforcement to concrete. 

Therefore, the given value of 5ru   for both steel strand and GFRP bars showed good 

agreement with the experiment as it will be shown in the next section. The calibration of ru  

by a pullout test is someway difficult, because, ru  value is based on the absolute difference 

between concrete’s deformation and bar’s deformation at their interface at failure stage (if 

concrete does not fail earlier). This value may be calibrated by using a pullout test in which 

several strain gauges are installed on the bar. 

The updated Young’s modulus from Eq. (6-24) is implemented in 3D models in Abaqus 

by using an “user field variable” which is defined through a simple subroutine given in 

Annex 6A. The main value passed in the subroutine is the tensile strain of the truss element 
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(i.e. r ) at each iteration of the analysis. The Young’s modulus assigned to this truss 

elements is set to be dependent on the defined “user field variable”, while r  is given to this 

“user field variable” inside the subroutine. Note that for case of the prestressed beams, the 

value of r  is replaced by  pre
r r    in Eq. (6-25). 

6.6 Results and discussion 

In this section, the results of the numerical simulations from both 2D and 3D models are 

discussed and compared with those obtained from the experiments. In Section 6.6.1, the 

adopted parameters in CSC and CDP models will be firstly validated by using the 

experimental results of the non-prestressed beam (i.e. IB5). Later, in the subsequent sections, 

the validated models will be employed to simulate the behavior of the prestressed beams 

(IB6, IB8 and IB10) in terms of force-deflection response, strain of the reinforcements, crack 

pattern and failure mode, respectively, in Sections 6.6.2, 6.6.3, and 6.6.4. 

6.6.1 Model validation 

The results of the 2D and 3D models is validated by comparing to the respective results 

of the non-prestressed beam in terms of the force-deflection response at mid span section. 

6.6.1.1 2D/CSC model 

In case of 2D/CSC model, the parameters in regard to the shear behavior of HPFRC are 

defined by using two available methods: 1) the shear retention factor, 2) the shear softening 

law. For case of the traditional shear retention factor, the force-deflection response is plotted 

in Figure 6-23a for 1 1, 2, and 3p   (the parametric study ‘a’ in Table 6-8). As shown, for a 

deflection higher than of about 15 mm at mid span, which is close to the serviceability 

deflection, the behavior of tested beam is overestimated by the 2D model. Further, no 

significant change is observed by adopting different values for 1p . In fact, due to the very 

high value of crack opening defined for HPFRC in normal direction when it compares to 

plain concrete, the progressive degradation of crack shear modulus based on Eq. (6-3) is very 

small. Therefore, crack shear stiffness degradation is not simulated as intensive as occurred 
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in the experimental tests, and these numerical simulations predict a flexural failure mode, 

which is similar to the response obtained from Def-DOCROS software in Chapter 5. The 

force-deflection response from Def-DOCORS is also included in the figure. 

Table 6-8: Adopted parameters in the parametric studies in 2D/CSC model 

 Shear softening Shear retention factor  
Parameter 

 
Study 

cr  II
fG  

cr
m  1p  

(-) (N/mm) (MPa) (-) 

Study a - - - 1, 2 , and 3 

Study b 0.05, 0.1,  0.5 2.5 0.75 - 

Study c 0.1 1.0, 1.5, 2.5 0.75 - 

Study d 0.1 2.5 0.75, 1.0, 1.5 - 

Final 2D model 0.1 2.5 0.75 - 

     

On the other hand, based on the shear softening law presented in Figure 6-3, three 

parameters must be defined: 1) constant shear retention factor, 
cr , that defines the first slope 

of diagram, 2) the crack shear strength, cr
m , that defines where the ascending branch ends, 

and 3) the mode II fracture energy that defines the softening stage by allocating the amount 

of area under the bi-linear diagram of the shear softening. A parametric study is carried out 

in order to investigate the influence of these parameters on the force-deflection response of 

the beam. The respective results are plotted in Figure 6-23b, c, and d. Further, the range of 

adopted values for these parameters are included in Table 6-8. It should be noticed that in 

these models, the number of cracks allowed at each integration points is 2, and the threshold 

angle (i.e. th ) is set to 30 degree. For study “b”, which the results plotted in Figure 6-23b, 

no significant influence was observed by changing the value of 
cr . In study “c”, by 

decreasing the mode II fracture energy, 
II
fG , the stiffness and load carrying capacity of the 

beam decrease in the last stage of its response, as shown in Figure 6-23c. Finally, in study 

“d”, the influence of the crack shear strength, cr
m , is plotted in Figure 6-23d. As shown in 

this figure, the force deflection response of the beam is efficiently influenced by the variation 

of 
cr
m . When the higher value is taken for the crack shear strength, the force-deflection 

response approaches to the curve obtained by means of the traditional shear retention factor. 
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Unlike, by using the smaller value for cr
m , 0.75 MPa, the experimental response is fitted 

accurately. 

 
Figure 6-23: Validation of the shear parameters in CSC model: (a) power law in shear 

retention factor, (b) parameter β, (c) Mode II fracture energy, and (d) crack shear strength in 
shear softening law. 

According to the parametric study, by adopting a set of values for the shear softening 

parameters ( cr , cr
m and II

fG ), the numerical force-deflection response predicts appropriately  

the respective results from the experimental tests. However, in order to assess the reliability 

of this result, the obtained crack pattern from the 2D model (whose the shear softening 

parameters are included in Table 6-8, the last row, the final model) is compared with the one 

obtained from the experimental test in Figure 6-24. As can be seen in this figure, the mode 

of failure in the model is different of what was obtained in the test. In 2D model, the junction 

between the bottom flange and the web plate is the weakest section in transferring shear 

stress due to its smaller thickness as well as the higher shear stress concentration provided 

by the reinforcements. The crack shear strength is reached at the junction prior to other 

section in the beam, and it forms a failure crack along this shear transition zone. Therefore, 
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a very high value of II
fG  (about 2.5 N/mm) is required in order to slow down the progressive 

failure of the beam at this section (see the change in the slope of the force-deflection response 

in Figure 6-23d). Besides, the failure mode obtained in the experimental test is different. The 

crack failure started from the bottom flange (at the location of the reinforcement) and 

progressed towards the point load. In fact, no sign of failure occurred in the junction of the 

tested beam (i.e. IB5) as it was observed in the model. Due to the lack of flexure-shear crack 

localization at the bottom flange in the 2D model, the concentration of the shear stress at the 

junction between the web and flange increased. As it was discussed in Section 5.3.3.2 in 

Chapter 5, the mode II fracture energy, II
fG , is not independent from the mode I fracture 

energy, I
fG . After a certain crack opening, the flexure-shear behavior of HPFRC material is 

predominantly influenced by the mixed modes fracture mechanism in which these two 

energies must be dependently updated during a flexure-shear analysis (such as the flexure-

shear analysis of the tested beams in the shear span).  However, in the shear softening 

approach, II
fG was defined 2.5N/mm for all the plane stress FEs in shear span, while the 

mode I fracture energy was given the same value as defined in the bending zone (the zone 

that was mainly governed the flexural deformation). That means, the mode I fracture 

behavior of HPFRC was not influenced by the existence of shear stresses. 

 
Figure 6-24: Comparison between crack pattern obtained from the test and from the 2D 

model 
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Although this shear softening law is unfortunate to capture the exact flexure-shear failure 

obtained in the tested beams, this approach is still relevant to predict the force-deflection 

response of the beam. In addition, as it will be seen later, the results in terms of tensile strain 

of the reinforcements will be well predicted by the model. 

6.6.1.2 3D model 

The results of 3D numerical model of the non-prestressed beam (IB5) is plotted in 

Figure 6-25 in terms of the total applied load versus mid span deflection. As reported in 

Table 6-7, a range of values between 15 and 45 degrees is considered for the dilation angle 

(i.e.  ) in the model, due to the lack of data from material tests to obtain this value. As 

shown in Figure 6-25, by decreasing the value of dilation angle, the load carrying capacity 

of the beam decreases, and the numerical force-deflection curve approaches to the curve 

obtained experimentally. Note that in these simulations the dilation angle is the unique 

model’s parameter that has varied. Furthermore, the slipping effect explained in 

Section 6.5.2.2 was not activated in these simulations. In order to understand better the 

influence of the dilation angle on the behavior of beam, in Figure 6-25a and b the field of 

the principal plastic strains for case of 15   is compared with the corresponding field 

obtained when a 45   is adopted. In addition, the crack pattern registered in the 

experimental test before failing, at mid span deflection about 55 mm, is shown in 

Figure 6-26c. When the value of dilation angle is lower, the rate of the softening flow 

potential is higher in the model (higher difference between   and  ). Therefore, the 

damage introduced in shear zone of the beam is much higher than the case with higher value 

of the dilation angle. This can be observed by looking at Figure 6-26a and b. The total load 

carrying capacity of the beam in the model with 15   is lower than the model with that 

45   was adopted. The maximum principal plastic strain field shown in case of 15   

shows a good agreement with the experimental crack pattern in Figure 6-26c. The failure 

crack shown in the experimental crack pattern was opened about 5 mm in a rough 

measurements from the captured image. However, in case of model shown in Figure 6-26b 
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( 45  ), the maximum principal plastic strain is less than 0.02. Hence, if the average length 

of the HPFRC element assumed about 25 mm, the maximum equivalent crack width in this 

figure is about 0.5 mm. But, this value in the case of model with 15  , it can be 

approximately calculated around 3.0 mm (maximum principle plastic strain of about 0.13). 

 
Figure 6-25: Validation of 3D model by using experimental result of the non-prestressed 

beam: influence of the dilation angle on the force-deflection response at mid span 

For the numerical results plotted in Figure 6-25, a mode I fracture energy of 

4.0N/mmII
fG   was adopted, which was taken as the average value between the two average 

values were obtained from the results of the back analysis in Section 6.4. In order to see this 

dependency of the 3D model on II
fG , two models were implemented by taking higher (i.e. 

6.0 N/mm) and lower (2.0 N/mm) values of I
fG  in relation to the one obtained from the back 

analysis. The variation of I
fG  is mainly due to the fiber orientation (in respect to the fracture 

surface), fiber distribution, and the number of fibers bridging the crack plane in the matrix. 

The “failure stress” (or tensile strength) was taken as 4 MPa for both the model following a 

linear softening branch. The results of these two models in terms of the total force versus 

mid span deflection are plotted and compared with the experimental results in Figure 6-27. 

Note that in these models, the dilation angle was kept constant as 15 degree. Based on the 

results, the intermediate value of 4 N/mm seems assure that the numerical simulation fits 

better the experimental curve.  

In order to include the slipping effect of the reinforcement in the 3D model, the proposed 

parameter r  described in Section 6.5.2.2 is considered for 15   and 4.0N/mmfG  . The 
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results of this model and the model without slipping effect were compared with the 

experimental response in Figure 6-28. As can be seen, taking value of 49 degree for r can 

assure a best fit of the experimental response. This effect is predominant for case of 

prestressed beams as it will be shown later in the next section. 

 
Figure 6-26: Comparison between the maximum principal plastic strain field for 3D model 

with: (a) dilation angle 15, (b) dilation angle 45, and (c) experimental crack pattern 

 
Figure 6-27: Validation of 3D model by using experimental result of the non-prestressed 

beam: influence of the mode I fracture energy on the force-deflection response at mid span 
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Figure 6-28: Validation of 3D model by using experimental result of the non-prestressed 

beam: influence of the slipping parameter, αr , on the force-deflection response at mid span 

 
Figure 6-29: The applied force versus mid span deflection obtained by CSC and CDP models, 

and from the tests 

6.6.2 Force-deflection response 

The model calibrated in the previous section is now employed to simulate the structural 

behavior of the prestressed beams. In Figure 6-29, the results of the 2D models (by FEMIX) 

and 3D models (by Abaqus) are compared with the obtained results from the tests in terms 

of the total applied force versus mid span deflection. In addition to the mid span deflection, 
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(results of LVDT1 in Section 1 shown in Figure 5-6) is also plotted in Figure 6-30. The 

results from both models show a good agreement with the experimental results. In fact by 

means of both CSC and CDP model, the flexural stiffness of the beam under monotonic 

loading condition was effectively predicted.  

 
Figure 6-30: The total applied force versus deflection at shear span (Section 1 measured by 

LVDT1 and 5) obtained by CSC and CDP models, and from the tests 

6.6.3 Strain of the longitudinal reinforcements 

The tensile strain of GFRP bar was measured during the test by means of the installed 

strain gauges in both bending and shear zones. The installation of these strain gauges was 

previously shown in Figure 5-6 from Chapter 5. The strain gauges named by SG1 and 5 were 

installed in shear span, SG2 and 4 at the section under the loading point, and SG3 at mid 

span deflection. A comparison is given between the results of tensile strain obtained from 

the numerical models and those measured from the tests in Figure 6-31, Figure 6-32, 

Figure 6-33, and Figure 6-34, respectively, for IB5, IB6, IB8 and IB10. The tensile strain of 

GFRP bar in 3D model was calculated using the results of tensile stress, giving by 
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where f  is the tensile stress of GFRP bar at each step of the analysis, fE  is the Young’s 

modulus of GFRP bars obtained from a direct tensile test, and 
f  is the calculated tensile 

strain for GFRP bar. The results of tensile stress is used because the Young’s modulus of 

GFRP bar was updating at each step of the analysis to include the slipping effect according 

to the technique described in 6.5.2.2 by using Eq. (6-24). However, in 2D model by FEMIX, 

the strain was directly obtained from the output results of the analysis since the interface FE 

was implemented to simulate the slipping of the reinforcements. 

A very good agreement is achieved between the numerical and experimental results of 

the tensile strain of GFRP bar for all the tested beams at both bending and shear zones. This 

proofs the reliability of these models to predict the tensile behavior of the internal 

reinforcements. The comparison for results of the strain in steel strand is plotted in 

Figure 6-35. Unfortunately, the respective results for IB5 and IB10 are not presented since 

the strain gauges installed on steel strand failed at the beginning of the test. Based on the 

results plotted for IB6 and IB8, a good agreement was also achieved in terms experimental 

and numerical tensile strain in steel strand. It was very unlikely to have the strain gauge 

installed on steel strand working after yielding of steel. As shown in Figure 6-35, the tensile 

strain of strand was failed before 1% of strain, which is approximately the yielding strain of 

steel strand. 

 
Figure 6-31: Comparison between the values of tensile strain obtained by the numerical 

models and the test for IB5 
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Figure 6-32: Comparison between the values of tensile strain obtained by the numerical 

models and the test for IB6 

 
Figure 6-33: Comparison between the values of tensile strain obtained by the numerical 

models and the test for IB8 

 
Figure 6-34: Comparison between the values of tensile strain obtained by the numerical 

models and the test for IB10 
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Figure 6-35: Comparison between the values of tensile strain in steel strand obtained by the 

numerical models and the experimental tests (by SGst) in IB6 and IB8 at mid span  

6.6.4 Crack pattern and Failure 

To verify the failure mode obtained from the models and the failure mode occurred in 

the experimental tests, the experimental crack pattern is compared with the maximum 

principal plastic strain field obtained in Abaqus, as well as with the crack pattern obtained 

from FEMIX. These comparisons are made in Figure 6-36, Figure 6-37, and Figure 6-38 for, 

respectively, IB6, IB8 and IB10. 

 
Figure 6-36: The ultimate failure obtained from the 2D Model, 3D Model and from the test for 

IB6 
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load (the same as the results of 2D model of non-prestressed beam discussed earlier). 

However, in the test, no sign of failure was seen in the junction, and the failure crack starts 

from the bottom flange of beam. In case of 3D modeling, by adopting a proper value for the 

dilation angle and also the technique to include the slipping effect of the reinforcement, the 

localization of shear cracks at bottom flange of the beam is somehow captured by the model. 

This, at the end, led to a failure mode fairly similar to what obtained from the tests. 

 
Figure 6-37: The ultimate failure obtained from the 2D Model, 3D Model and from the test for 

IB8 

 
Figure 6-38: The ultimate failure obtained from the 2D Model, 3D Model and from the test for 

IB10 
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6.7 Summary and conclusion 

In this chapter, 2D and 3D numerical models were employed to simulate the structural 

behavior of the hybrid reinforced HPFRC prestressed beams. These two models were 

basically based on two different approaches. The 2D model was based on a multi-directional 

fixed concrete smeared cracking (CSC) approach while the 3D model was based on the 

concrete damage-plasticity (CDP) model. The main parameters that define these two models 

were validated in this chapter in order to be used for case of HPFRC modeling. 

For the CSC approach, two modeling methods were considered for shear behavior of 

cracked concrete: 1) shear retention factor, 2) shear softening law. The traditional shear 

retention factor showed deficiency to predict the shear behavior of cracked HPFRC. This 

was due to the fact that the basic assumption behind this method is not in agreement with 

the behavior of cracked fiber reinforced concrete (FRC) in shear. FRC material normally 

exhibits a large non-linear deformation in the normal direction to the fracture surface due to 

the efficient performance of fibers at this direction. But, the shear modulus of crack is 

significantly diminished while the crack is opening. However, the relation between the shear 

modulus and crack opening introduced by the adopted equation in the shear retention factor 

(i.e. Eq. (6-3)) is unable to model the rate and form of this degradation. On the other side, 

the developed crack shear softening law (Ventura-Gouveia 2011) available in FEMIX 

computer software gives the possibility of defining the degradation of crack shear modulus 

using a bi-linear softening law independently from the behavior of crack in the normal 

direction. This strategy gives better prediction to the behavior of FRC material in shear. 

Also, the method provides computational efficiency in numerical analysis since the global 

stiffness matrix of the system of the analysis will be kept symmetry. However, this shear 

modelling approach always relies on the empirical evidence and verification because the 

dependency of the mixed modes behavior of FRC is ignored. Additionally, the calibration 

of the mode II fracture energy cannot be obtained by direct shear test.  

In case of CDP modelling approach, the model is more sophisticated to account for the 

modeling of mixed modes behavior. In this modeling approach, the combined 



Page | 258 Structural behavior of hybrid GFRP and steel reinforced FRC prestressed beams 

 

multidirectional nonlinear behavior is analyzed by means of “yield surface” and its flow 

potential rule. The flow rule of this yield surface is non-associated flow meaning that the 

increment of the equivalent plastic strain tensor (for case of hardening or softening) is not 

necessarily in the same direction with the defined material friction angle. This friction angle 

is basically defined in accordance with the traditional Mohr-Coloumb theory that was 

initially developed for soils, and then developed to be sued for concrete and rock. Therefore, 

this will be given the flexibility to the model for controlling inelastic behavior of the adopted 

brittle material in a mixed modes behavior (shear stress being dependent on normal stress). 

In this study, a constant value of 15 degree for the dilation angle (i.e.  ) gave a good fit to 

the results from the experiments. However, more studies are required in this field to obtain 

a proper constitutive law between the dilation angle and the change in the plastic components 

of strain or stress tensors. 
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Notations 

d  the stiffness reduction variable in CDP model 
1p  the decrease rate of  cr in shear retention 

model 

cd  damage parameters to define the degradation 

of the elastic stiffness in compression 
2p  

parameter defined in Eq. (6-4) for shear 

retention model 

td  damage parameters to define the degradation 

of the elastic stiffness in tension 
q  the Von Mises equivalent deviatoric stress 

cr
IID  shear modulus of cracked concrete w  crack width 

,1
cr
IID  the stiffness of the first linear branch in shear 

softening diagram 

  parameter to define yield surface in CDP 

modeling approach 

,2
cr
IID  the stiffness of the second linear branch in 

shear softening diagram 
i  residual tensile stress factors define the post-

cracking behavior of FRC ( 1,2,3i  ) 

e  CDP model’s parameter defines the rate G 

approaches the asymptote 
r  angle measured the slipping of embedded truss 

FE in respect with the host FE (Eq. (6-22) 

cE  Young’s modulus of concrete material 
ru  the ultimate value of r  where truss FE failed 

fE  Young’s modulus of GFRP bar 
th  threshold angle in radian (Eq. (6-1) 

rE  Young’s modulus of reinforcements obtained 

from standard direct tensile test 
T  thermal expansion coefficient  

mod
rE  modified Young’s modulus of reinforcements 

during the numerical analysis 
  parameter to define yield surface in CDP 

modeling approach 

ctf  concrete tensile strength 
cr  shear retention factor 

,ct Lf  limit of proportionality calculated for CMOD 

=0.05 mm in standard notched beam test 
1  factor defines the post-peak behavior of bond-

slip relation used in numerical model 

,R jf  the residual flexural stresses of HPFRC 

defined by Model Code 2010 ( 1,2,3,4j  ) 
2  factor defines the post-peak behavior of bond-

slip relation used in numerical model 

jF  the applied force in notched beam test 

corresponding to ,R jf  

  parameter to define yield surface in CDP 

modeling approach 

G  Drucker-Prager hyperbolic function cr  
crack shear strain 

cG  shear modulus of un-cracked concrete cr
m  

crack shear strain corresponding to the peak 

crack shear stress in shear softening diagram 

I
fG  the mode I fracture energy of HPFRC cr

u  
the ultimate crack shear in shear softening 

diagram 

,
I
f avgG  the average mode I fracture energy of 

HPFRC 
  crack sliding 

II
fG  the mode II fracture energy of HPFRC 

0  slip corresponding to bond shear stress 0  

,f aG  the fracture energy available for the new 

formed crack 

m  equivalent deformation of mother element in 

direction of the embedded element 

new
fG  the fracture energy of new formed crack at 

material point 

s  slip of embedded truss FE in respect with its 

host element 

I  identity matrix T  temperature variation to include the prestress 

effect in numerical analysis 

cK  ratio between the tensile meridian and 

compressive meridian in CDP model 

  strain tensor in numerical analysis 

bl  crack band width (or length of HPFRC FE 

element) 

pl
c  compressive plastic strain 

p  the equivalent pressure stress cr
ctu  the ultimate crack tensile strain 
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Notations 

pl
ct  tensile plastic strain 

c  concrete compressive stress  

cr
ct  crack tensile strain 

ct  concrete tensile stress  

f  GFRP tensile strain cr
ct  crack tensile stress 

pl  plastic strain tensor in 3D numerical analysis 
0c  concrete compressive stress at onset its plastic 

behavior 

pre
r  pre-strain of reinforcement 

max̂  the maximum principal effective stress 

sh  strain of mild steel at the initiation of the 

hardening phase in its direct tensile behavior 
0t  concrete tensile stress at crack initiation 

sy  Yielding strain of steel bar 
r  tensile stress of truss element in 3D model 

during the analysis 

i  crack opening factors define the post-

cracking behavior of FRC ( 1,2,3i  ) 

mod
r  modified tensile stress of embedded truss 

element due to slipping effect 

  concrete stress tensor 
s  steel bar’s tensile stress 

  equivalent concrete stress tensor 
sy  yield stress of steel bar 

1  principal stress in plane stress FE cr  crack shear stress 

2  principal stress in plane stress FE cr
m  the peak crack shear stress in shear softening 

diagram 

0b  initial biaxial compressive yield stress   the dilation angle in CDP modeling approach 
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 Chapter 7 

7. SUMMARY AND CONCLUSION 

7.1 Main conclusion remarks 

The main aim of the present study (detailed from Chapters 3 to 6) is to introduce a durable 

and sustainable pre-fabricated concrete beam elements for our future building and 

construction, which is made of HPFRC material reinforced with hybrid steel and GFRP 

reinforcing bars. Under scope of this main objective, and based on the study carried out in 

the present work, the following conclusion remarks can be drawn: 

7.1.1 Bond performance of GFRP bars 

The first part of the present study was focused on the evaluation of bond behavior 

between GFRP bars and FRC material. It was found that the same parameters that normally 

influence the bond behavior of embedded steel reinforcing bars in concrete (such as bar 

diameter, concrete cover thickness, and surface characterization) also effect the bond 

behavior of GFRP bars and FRC. Due to the presence of discrete fibers at interface between 

GFRP bar and concrete matrix, a higher confinement was achieved at this interface resulting 

in high residual bond shear stress for GFRP bar in debonding process. Moreover, for the two 

adopted FRC concrete cover thicknesses, no sign of splitting was obtained (not even for the 

highest bond length adopted in the experiments, i.e. 20 times of bar diameter). This provides 

possibility of installing GFRP bars as near as possible to the outer surface of the concrete 
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element, which is beneficial in terms of structural performance of the reinforcing bar.  Based 

on the bond test results, the appropriate FRC cover thickness, as well as the better type of 

GFRP bar in terms of bond quality was selected to be considered in the further steps of the 

research. Additionally, an analytical bond model was developed (second part of Chapter 3), 

and validated with the results obtained from the bond tests in order to be used for the further 

analysis in the subsequent research steps. 

7.1.2 Structural performance of hybrid reinforced FRC in tension 

The structural behavior of a RC element in tension is the most important aspect of the 

behavior for designing purpose. The second part of the present research was focused on the 

evaluation of cracking behavior of a FRC tensile member reinforced by hybrid GFRP and 

steel bars. This evaluation was carried out by considering the relevant boundary conditions 

that governed the bond problem of the reinforcing bars at distance between cracks. The 

governed bond formulations were solved by using the analytical bond model developed in 

the first step of the research, which was named as FBL model and detailed in Annex 4A. 

By using the developed FBL model and a crack analysis procedure described in Chapter 

4, the tension-stiffening effect of hybrid steel/GFRP reinforced FRC element was introduced 

as a modified crack stress-strain diagram for FRC. The modified crack tensile stress-strain 

diagram can be used in the sectional or finite elemental analysis of hybrid FRP/steel 

reinforced FRC elements where no attempt is made to simulate the effect of bond-slip 

behavior of the reinforcing bars. 

7.1.3 Structural performance of hybrid steel/GFRP reinforced HPFRC prestressed 

beams 

At the third step, the structural performance of beam made by HPFRC material and 

reinforced by GFRP bars and steel strand were experimentally and theoretically evaluated. I 

shaped cross section was adopted for the beams in order to optimize their flexural 

performance. This geometry of the cross section is beneficial in an economical point of view 
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when it compares to the rectangular cross section beam with equal volume of concrete 

material per unit length.  The flexural stiffness of I shaped cross section is about 3 to 4 times 

higher than the equivalent rectangular cross section (For the same volume of concrete and 

HPFRC materials per 1 meter length of beam). 

In addition, conventional shear reinforcements (e.g. steel stirrups) were totally replaced 

by HPFRC material in the proposed reinforcing system. Based on the results from the 

experiments, all tested beams failed in the shear zone through propagation of a critical 

diagonal crack at shear span. Despite of the obtained failure mode, a very ductile behavior, 

was observed, particularly, for second group of the tested beams (under-reinforced beams). 

For this group of beam, it was evidenced that the steel strand was yielded before the shear 

failure in shear span. The shear failure process in case of beams in the present study was not 

as brittle as what is typically known for concrete beams failing in shear, since the proposed 

system could carry the load up to a very high deflection at mid-span section. 

Based on the developed analytical formulation in Chapter 5, a new concept was defined 

for the balanced reinforcement ratio in hybrid reinforcing system. To calculation of this 

balanced ratio, the mode I fracture energy of HPFRC (due to the contribution of steel fibers) 

and the steel reinforcement ratio were taken into account. This new balanced reinforcement 

ratio can be introduced as a new design criterion for the proposed hybrid system, in which 

the type of failure and the other structural behavior may be dependent on. Based on the 

results obtained from the experiments, it can be concluded that the prestressed GFRP 

reinforcement ratio in the proposed reinforcing system should be considered lower that the 

proposed balanced reinforcement ratio in order to optimize the flexural performance of the 

beam at ultimate limit state. This is in contrast with design procedure of FRP-RC beams that 

are commonly recommended to be over-reinforced in order to be failed in crushing of 

concrete.  

Up to service load (i.e. mid span deflection of about 250L , being L  the beam span), the 

force-deflection response of the tested prestressed beams was effectively predicted by the 

theoretical results obtained from DOCROS software (sectional analysis software), and by 
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the direct method presented in Chapter 5. By increasing in the amount of prestressed level 

in the longitudinal GFRP bars and steel strand, the service load carrying capacity increased. 

For the tested beam with the highest prestressing level, the strain of GFRP bars at mid-span 

section reached about 94% of its nominal ultimate tensile strain at rupture. 

For the applied load higher than service load, the tested beams were efficiently influenced 

by the propagation of the flexure-shear cracks in the shear span. Although all tested beam 

failed in the shear zone through propagation of a critical diagonal crack at shear span, a very 

ductile behavior, particularly for second group of the beams (under-reinforced beams) was 

observed. This ductility was measured by multiplying the strength effect by the deformation 

effect, which were firstly defined by Jaejer et al. in 1997. The calculated ductility index from 

the experimental force-deflection was compared to the ductility index calculated by means 

of the “reference response”, which was based on the force-deflection response that was 

governed by flexural deformation only (obtained from Def-DOCROS software). This 

comparison showed that the ductility of the under-reinforced prestressed beam was 

significantly increased in respect to the corresponding values by the “reference response”. 

In fact, the propagation of shear cracks reduced the effective moment of inertia of the beam, 

and imposed higher curvature to the beam. This shear cracks propagation on one side, and 

the yielding of steel strand on the other side, gave a high ductility to the force-deflection 

response of the under-reinforced prestressed beams after service load. This can be a great 

achievement in terms of ductility for the beams reinforced by prestressed FRP bars, where 

are categorized as RC beams with brittle failure mode 

7.1.4 Numerical simulation of hybrid reinforced HPFRC prestressed beams 

In Chapter 6, 2D and 3D numerical models were employed to simulate the structural 

behavior of the hybrid reinforced HPFRC prestressed beams. The 2D model was based on a 

multi-directional fixed concrete smeared cracking (CSC) approach while the 3D model was 

based on the concrete damage-plasticity (CDP) model. The main challenge in these two 

models was simulation of the shear behavior of HPFRC (or in general steel FRC) in a mixed 
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modes fracture mechanism. 

In case of the CSC model, it was found that the shear retention factor presented basically 

for shear modeling in case of plain concrete, it was not capable of simulating the shear 

behavior of HPFRC material in mixed modes fracture behavior (i.e. flexure-shear behavior). 

The obtained results of the 2D models by using this shear modeling approach overestimated 

the results obtained from the tested beam, and it was similar to the obtained results from 

Def-DOCROS (the results that was governed by flexural deformation of beam only). On the 

other hand, the 2D model with the shear softening model was capable of predicting with an 

acceptable accuracy the force-deflection response, as well as the tensile strain of the 

longitudinal reinforcements for all level of applied load. However, adopting the parameters 

that define this shear softening law in not straightforward. These parameters may be 

calibrated by using a series of material test that represents the behavior of HPFRC under 

different ratio between the crack shear and normal stresses. In the lack of data from such 

material test, the shear softening diagram was validated using the experimental results of the 

reference HPFRC beam (non-prestressed beam, IB5), and the obtained values were adopted 

for simulation of the prestressed beams. With this strategy in the numerical analysis, a good 

predictive performance was achieved from the 2D models in terms of the prestressed beams. 

In case of 3D model, the concrete damage-plasticity (CDP) approach (available in 

Abaqus software) was employed to simulate the inelastic behavior of HPFRC. The CDP 

model does not deal with cracks at each material point as the CSC model does, but, the 

deformation at each material point is decomposed to elastic and plastic components. In this 

model, once the material point reaches the failure surface in tension, it enters to the plastic 

stage. The failure surface is defined as the yield function proposed by Lubliner et al. (1989) 

and incorporates the modifications proposed by Lee and Fenves (1998) to account for 

different evolution of strength under tension and compression. After failure, the plastic 

deformation of material point is obtained based on a Drucker-Prager hyperbolic function that 

defines the hardening or softening flow potential rule of the failure surface. The obtained 

results from the 3D model was succeed in predicting the structural response of the tested 
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beam. The main parameters to define the flow potential rule in CDP modeling approach was 

the dilation angle (as defined in Chapter 6). This parameter was the main parameter to 

distinguish between fracture mechanisms of different brittle materials under mixed modes 

fracture mechanism (shear and normal stress). A constant value of 15 degree for the dilation 

angle gave a good fit to the results from the experiments. However, more studies are required 

in this field to obtain a proper constitutive law between the dilation angle and the change in 

the plastic components of strain or stress tensors. 

7.2 Recommendation for future research 

In this section, a list of relevant research topics are recommended for doing further 

research and developments in the field of the present study. 

- Deflection and cracking behavior of the proposed hybrid HPFRC prestressed beams 

under sustained loading conditions. 

- Evaluation of the structural performance of the proposed hybrid HPFRC prestressed 

beam under corrosive environmental conditions. 

- Evaluation of the structural performance of the proposed hybrid HPFRC prestressed 

beam exposing to high temperature conditions. 

- A study should be carried out to evaluate the influence of different HPFRC strength 

class on the post-cracking behavior of HPFRC, as well as on the structural behavior 

of prestressed HPFRC beams reinforced with hybrid FRP-steel bars. 

- Evaluation of the fracture behavior of steel fiber reinforced concrete (FRC) under 

flexure-shear loading conditions in order to develop macro modeling approach to 

address accurately the cracking behavior of this material under mixed modes fracture 

mechanism. 
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Annex 4A 

 

Figure 4A. 1: Algorithm of IBL model 
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Annex 4B 

 
Figure 4B. 1: Algorithm of FBL model 
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by Eq. (B1)1 2,C C

by Eq. (A3)
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m
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m
r
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trL
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e
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h
trL
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i cr error   
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trL
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trL

by Eq. (A11)p
trL
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by Eq. (B2)1 2,C C

i cr error   

No

by Eq. (A7)
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Annex 4B 

 
Figure 4B. 2: Schematic illustration of the reference coordinate system, as well as the 

transferred bond length of each bond phases 
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Annex 5A  

Calculation of frd  

 

Case 1: 

 31 2 2
1 2 3 4

2 2
, , ,

2 2 2 3

w w

w w

b b h b bh h h
y y y y

b b b b

    
      

    
 (A-1) 

      2 2
1 1 2 3 3 4 5, , , ,

2 2
c c w c w c w c

h h
A bh A b b A b h A b b A b h c         (A-2) 

 
   1

1 1 2 3 1 2 3 5 12

1 2 3 5

( )

2

c c c c

fr

c c c c

A y A h A h h y A h h c
d

A A A A

      


  
 (A-3) 

Case 2: 

 
  1 2

2

w

w

b b h h c
b b

h

  
    (A-4) 

 
     1 1 2 1 2 3 1 2 3 4 4

1 2 3 4

c c c c

fr

c c c c

A y A h y A h h y A h c y
d

A A A A

       


  
 (A-5) 

Case 3: 

  3 1 2 3c wA h h h c b     (A-6) 

  3 1 2 3

1

2
y h h h c     (A-7) 

 
   1 1 2 1 2 3 1 2 3

1 2 3

c c c

fr

c c c

A y A h y A h h y
d

A A A
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Case3 Case2 Case1

cA cA cA
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Annex 5B 

Algorithm to calculate the nominal shear strength ( nV ) 

Start

   , 1 2 3 , 1 2 , ,csc , csc ,cr w cr fl cr cr w cr fll h h h c l h h l l l         

  ,v a cr cr wl w w l

Loop 1:    1 2 1 2: to 0.05vc h h h h 

Loop 2: 0: tocr uw w w

,

,

3
, ,

,

0

( )
(1 )

( )

cr
cr w

cr w

cr
cr cr w cr w cr

cr fl

w
x x l

l
w x

w
w x l l x l

l


  


  
    


( ( )) ( )
( ( ))

( ( )) ( )

cr
cr ct a

crct
ct a

w x w x w
w x

w x w x w

 
  

 

 
1

( ) 1 tan


    

End loop 3

0

0

( ( ))
sin

( ( ))

cr

cr

l cr
ct

fr v l cr
ct

w x xdx
d c

w x dx


  







max

, ,
0

,

( )
( ( )) ,

tan ( )

cr
cr w v al cr

fr n w ct fr v

fr n a

b l w x w
F b w x dx F

F w x w

 


   
 



     
1 1

csc , csc
2 2

s s s v f f f vw x d c w x d c         

   pre pre
f f f f f f f f f fF E bd E A        

   pre pre pre
s s s s s s s s s s sy s

s pre
sy s s sy s s sy s

E bd E A
F

f bd f A

             
 

      

Material properties

      max, , , , , , , , , , , ,pre pre cr
f fu f f s sy s s ct cr ct c a crE A E A w f E w      

Geometry

 1 2 3, , , , , , , , ,w s fb b h h h h S a d d

Definition of some parameters

 1 0, , , , , ,cr uS w w   

1 1 1
1 ,

2 2 2

v v v
f f s s fr n fr

c c c
M F d F d F d

       
          

     

 2 cotn vM V a c  

1 2M M M  

1 sin( )fr f sF F F F    

2 1 2( )( )v cF c b f   

1 2F F F  

, ,cos sinn fr n fr vV F F   

End loop 2

End loop 1

(If variation is less than 0.1kN then break)

(If variation less than 0.1kN.m then break)

Loop 3: : 0 to crx l

,s f
s f

cr crS S

 
    (assuming linear distribution of slip between two consecutive crack)
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Annex 5C 

Calculation of primary crack spacing ( crS ) 

Start

Material properties

      , , , , , , , , , ,pre pre
f fu f f s sy s s fr cr cr cE A E A w E      

End loop 2

Geometry
 1 2 3, , , , , , , , , , ,w s f f f g gb b h h h h d d d A I 

Bond-slip parameters

    0 1 1 2 0 1 1 2, , , , , , , , ,m mFRP steel
         

Calculation of the cracking moment

,pre pre
ps s s s pf f f fN E A N E A   

( 2), ( 2)ps ps s pf pf fM N d h M N d h   

2 2

ps pf ps pfpre
c

g g g

N N M h M h

A I I


   

2( )
pre

ct c g

cr

f I
M

h

 


1
2

4

n
n

cr

M
c c h

M

 
  

 

1
2f fw 

Vf , Lb is calculated calling IBL Model

2

p2

( )f fr f
ct

c c

V w

E A E


  

Loop 2: : 0.01 to 0.2fw

    2 min 2.5 2 ,2.5p f f fA d h d   

(If the strain reaches its cracking strain then break)

,1 ,cr b fS L

End loop 2

1
2

, s
f f s f

f

d c
w

d c

 
     

 
Vf , Lb,f is calculated calling IBL Model for FRP bars

Loop 2: : 0.01 to 0.2fw

 1 2.5p effA h d 

(If the strain reaches its cracking strain then break)

,1 , ,max( , )cr b s b fS L L

Vs , Lb,s is calculated calling IBL Model for FRP bars

 ,1 ,2min ,cr cr crS S S

1

p1

( )s f fr s f
ct

c c

V V

E A E

    
  

Defined some paramters

 4,nM 
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Annex 5D 

Calculation of applied moment versus crack width ( a fM w ) 

 

Start

    1
2

,f f cr f fw d c h c w w      

   pre pre pre
s s s s s s s s s s sy s

s pre
sy s s sy s s sy s

E bd E A
F

f bd f A

             
 

      

Geometry

 1 2 3, , , , , , ,w s fb b h h h h d d

Definition of some parameters

 0, ,cr uS w w

End loop 2

End loop 1

Bond-slip parameters

    0 1 1 2 0 1 1 2, , , , , , , , ,m mFRP steel
         

is calculated by calling FBL Model for FRP barsf

   pre pre
f f f f f f f f f fF E bd E A        

       a s s f f fr fr c cM d c F d c F d c F c d F       

    1
2

,s s f f s sw d c d c w w      

is calculated by calling FBL Model for steel strands

%% Calculation of tensile force in FRP bars

%% Calculation of tensile force in steel strand

%% Calculation of tensile and compressive force of HPFRC  , /c cr c c crD c h c w D S     

 ,cp cp cr cr ct c crD S D f E S  

End loop 3

Loop 3: : 0 to ( )y h c

 ( ) cr crw y w w h c y  

 

0
( ) ( ( ))

h c

fr ctF b y w y dy


 

1

2 1 2

2

( ) ( )w

w

b y h
b y b b b y h h y h

b h y h


    

 

( ) / ( )
( ( ))

( ( )) ( )
c cr cr
crct
ct cr

E w y S w y D
w y

w y w y D

 
   

   

0 0
( ( )) / ( ( ))

h c h c

fr ct t t t ct t td h w y y dy w y dy
    

      
    

Loop 2: 1
2

: 0.1 toc h

Loop 1: 0: tocr uw w w

End loop 3

Loop 4: : 0 toy c

   0 0
( ) / ( )

c c

c c c c c c c cd y y dy y dy   

( )
( ( ))

( ) ( )
c c cp

c c
c c c cp

f D y D
D y

E D y D y D

 
   

0
( ) ( )

c

c cF b y y dy 

Material properties

      , , , , , , , , , , ,pre pre cr
f fu f f s sy s s ct cr ct c cE A E A w f E f      

 ( )c c cD y D D c y 

( )c s f frF F F F F     (If variation is less than 0.1kN then break)
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Annex 5E 

Photos from the failure of the tested beams in Chapter 5 
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Annex 6A 

User subroutine implemented in Abaqus (VUSDFLD) 

      subroutine vusdfld( 

c Read only - 

     *   nblock, nstatev, nfieldv, nprops, ndir, nshr,  

     *   jElem, kIntPt, kLayer, kSecPt,  

     *   stepTime, totalTime, dt, cmname,  

     *   coordMp, direct, T, charLength, props,  

     *   stateOld,  

c Write only - 

     *   stateNew, field ) 

c 

      include 'vaba_param.inc' 

c 

      dimension jElem(nblock), coordMp(nblock,*),  

     *          direct(nblock,3,3), T(nblock,3,3),  

     *          charLength(nblock), props(nprops),  

     *          stateOld(nblock,nstatev),  

     *          stateNew(nblock,nstatev), 

     *          field(nblock,nfieldv) 

      character*80 cmname 

c 

c     Local arrays from vgetvrm are dimensioned to  

c     maximum block size (maxblk) 

c 

      parameter( nrData=6 ) 

      character*3 cData(maxblk*nrData) 

      dimension rData(maxblk*nrData),jData(maxblk*nrData) 

c 

   jStatus = 1 

   call vgetvrm( 'LE', rData, jData, cData, jStatus )    

c 

   if( jStatus .ne. 0 ) then 

  call xplb_abqerr(-2,'Utility routine VGETVRM '// 

     *       'failed to get variable.',0,zero,' ') 

  call xplb_exit 

   end if 

c 

   call setField( nblock, nstatev, nfieldv, nrData,  

     *    rData, stateNew, field, coordMp, stateOld, 

     *    cmname, jElem ) 

c 

      return 

      end 

c 

      subroutine setField( nblock, nstatev, nfieldv, nrData,  

     *   strain, stateNew, field, coordMp, stateOld, cmname, jElem) 

c 
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      include 'vaba_param.inc' 

c 

      dimension stateNew(nblock,nstatev), stateOld(nblock, nstatev), 

     *   field(nblock,nfieldv), strain(nblock,nrData), coordMp(nblock,*) 

     *   , jElem(nblock) 

c 

      do k = 1, nblock 

c 

c strain of truss elements at each step of the analysis 

   er = strain(k,1) 

   stateNew(k,1) = er 

c 

c modifying the Young's modulus for GFRP bars 

      if (cmname .eq. 'GFRP') then 

c    given value for alpha_ru, e_ru and E 

  e_ru = 0.025 

  alpha_ru = 49.0 * 4 * ATAN(1) / 180.0 

  Er = 60000.0 

c    calculation of alpha_r 

  alpha_r = 45 + (alpha_ru / e_ru) * er 

c  calculation of modified E 

  E_mod = Er * (2 - TAN(alpha_r)) 

  field(k,1) =  1.0 - E_mod / Er 

      endif 

c 

c modifying the Young's modulus for steel strand 

      if (cmname .eq. 'Strand') then 

c    given value for alpha_ru, e_ru and E 

  e_ru = 0.01 

  alpha_ru = 49.0 * 4 * ATAN(1) / 180.0 

  Er = 187500.0 

c    calculation of alpha_r 

  alpha_r = 45 + (alpha_ru / e_ru) * er 

c  calculation of modified E 

  E_mod = Er * (2 - TAN(alpha_r)) 

  field(k,1) =  1.0 - E_mod / Er 

      endif 

c 

      end do 

c 

      return 

      end 
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