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During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds
are formed. The objective of the present work was to adapt computational approaches to analyze
pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and
genetic characterization together with individual must fermentations were performed, and metabolites
relevant to aromatic profiles were determined. Experimental results were projected onto a common coor-
dinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-
correlated features of noteworthy biological importance. The present method allowed, as a breakthrough,
to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficul-
ties in comparing different types of data. Therefore, the proposed computational approach revealed as
successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fer-
mentative conditions. This will allow the identification of combined relevant features with application in
selection of good winemaking strains.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In winemaking, the most relevant families of compounds pro-
duced by yeasts cover a large number of metabolites, including pri-
mary (e.g., sugars, organic acids, amino acids) and secondary
metabolites (e.g., flavonoids and anthocyanins). These compounds
play an important role in the flavor and aroma of wine (Regodón
Mateos, Pérez-Nevado, & Ramírez Fernández, 2006), and
commercial strains are selected for their ability to contribute to
its sensorial profile (Richter, Dunn, Sherlock, & Pugh, 2013;
Rodríguez-Palero, Fierro-Risco, Codón, Benítez, & Valcárcel, 2013;
Suárez-Lepe & Morata, 2012). Saccharomyces cerevisiae is one of
the most versatile microorganisms and therefore the knowledge
of its metabolic profiles during fermentation, together with other
genetic and phenotypic characteristics may be very important to
select strains for biotechnological applications. The development
of data-fusion approaches between genomics and metabolomics
(qualitative versus quantitative information) is one of the major
hurdles for the development of holistic characterization
approaches in biotechnology (Becker & Palsson, 2008). Several
methods are available currently for the inference of genomic vari-
ation between S. cerevisiae strains including microsatellite amplifi-
cation (Legras, Ruh, Merdinoglu, & Karst, 2005), interdelta
sequence typing (Franco-Duarte et al., 2011), comparative genome
hybridization on array (aCGH) (Carreto et al., 2008), and single-
nucleotide polymorphisms (SNPs) detection after sequencing (Liti
et al., 2009; Schacherer, Shapiro, Ruderfer, & Kruglyak, 2009).
Recently developed high-throughput genomic technologies, espe-
cially with the decreasing costs of sequencing, simplified signifi-
cantly the characterization of biological systems at multiple
levels, including detection of genomic variation (Strope et al.,
2015; Via, Gignoux, & Burchard, 2010; Wilkening et al., 2013).

The study of relationships between multi-level data-types has
been hampered due to lack of appropriate data resources.
Within our previous work (Franco-Duarte, Mendes, Umek,
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Drumonde-Neves, & Zupan, 2014; Franco-Duarte, Umek, Zupan, &
Schuller, 2009; Mendes et al., 2013) new approaches were devel-
oped for the study of pairwise relations. In the mentioned publica-
tions, the phenotypic and genetic diversity of groups of S. cerevisiae
strains from different geographical and technological origins was
evaluated, and strain’s phenotypic characteristics were estimated
based on genotypic data, and using computational statistical mod-
eling. In these works, strains were successfully identified as shar-
ing similar genetic characteristics (microsatellite alleles) that
displayed also similar phenotypes, adapting subgroup discovery
techniques. Several other tools became available in the last decade
relating pairwise genomic variables (Boulesteix & Strimmer, 2007;
Devarajan, 2008; Hutchins, Murphy, Singh, & Graber, 2008; Kim &
Park, 2007). Partial least squares regression (PLS-R – reviewed on
(Boulesteix & Strimmer, 2007)) is particularly used in spectroscopy
and chromatography, with successful outcomes in the discrimina-
tion of bacterial (Preisner, Lopes, Guiomar, Machado, & Menezes,
2007) and yeast strains (Kuligowski, Quintás, Herwig, & Lendl,
2012), allowing the prediction of dependent variables from a large
set of independent variables. Although PLS-R is an informative
method for the exploration of common features between two data
sets, with this method alone, not much can be inferred about
pheno-metabolomic diversity.

Advances of computational and bioinformatic tools contributed
to a more powerful data analysis, incorporating integration meth-
ods that address multi-dimensional genomic, phenotypic and
metabolomic data. A particular challenge was the fact that differ-
ent types of genomic data (such as SNPs, microsatellite data, etc.)
have different scales and units, and cannot simply be aggregated
into multiple datasets. A recent breakpoint was achieved by the
development of newmatrix factorization methods, associated with
the projection of multiple types of genomic data into a common
coordinates system (Zhang et al., 2012). With this method it is pos-
sible to break down massive data sets into smaller modules that
exhibit similar patterns, and, after extrapolation and adaptation
of the method to other types of data, it has the potential to reveal
new insights into metabolite formation pathways, which would be
overlooked with only a single type of data.

In this way, our objective was to achieve a holistic characteriza-
tion of a S. cerevisiae strain collection, using phenotypic, genetic
and metabolic methods, and adapt computational approaches for
the analysis of shared features between more than two data sets
together. This strategy allowed, for the first time, a deep strain
characterization using data from several origins, and the identifica-
tion of sets of features for rapid and effective selection of good
winemaking strains.
2. Methods

2.1. Strain collection and phenotypic characterization

The S. cerevisiae collection used in this work comprise 24 strains
from different technological applications or origins (Supplemen-
tary data S1). This collection includes mainly strains used for
winemaking (commercial and natural isolates that were obtained
from winemaking environments – 15 strains), but also strains from
natural environments (soil woodland, plants – two strains), bakery
(one strain), other fermented beverages (fruit juice, palm wine,
ginger beer, cachaça – four strains), and strains from unknown bio-
logical origin (two strains). All strains were stored in cryotubes
containing 1 mL glycerol (30% v/v) at �80 �C.

Phenotypic screening was performed using two sets of tests, the
first consisting of growth tests performed using liquid medium in
96-well microplates, and the second one using agar plates, and
considering a battery of tests previously established to characterize
strains from different proveniences (Mendes et al., 2013). Detailed
experimental conditions can also be found in Mendes et al. (2013).
In order to facilitate mathematical analysis, and considering the
values of optical density, quantity of growth and change of colour
in BiGGY medium, we assigned, in a growing order, the phenotypic
results to classes between 0 and 3.

2.2. Genetic characterization

All 24 strains that constitute the yeast collection used in this
study have been genetically characterized considering allelic com-
binations for 11 described microsatellites: ScAAT1, ScAAT2,
ScAAT3, ScAAT4, ScAAT5, ScAAT6, YPL009, ScYOR267c, C4, C5 and
C11 (Field & Wills, 1998; Franco-Duarte et al., 2014; Legras et al.,
2005; Pérez, Gallego, Hidalgo, & Pe, 2001). Yeast cells cultivation,
DNA isolation, multiplex primers and cycling conditions were per-
formed as previously described (Franco-Duarte et al., 2009).
Briefly, after cultivation of a frozen aliquot of yeast cells in 1 mL
YPD medium (yeast extract 1% w/v, peptone 1% w/v, glucose 2%
w/v) during 36 h at 28 �C (160 rpm), DNA isolation was performed
using a previously described method (Schuller, Valero, Dequin, &
Casal, 2004) and used for microsatellite analysis. Multiplex PCR
mixtures and cycling conditions were optimized and performed
in 96-well PCR plates.

2.3. Individual fermentations and metabolic characterization

Individual fermentations of each strain were carried out at 18 �C
using white grape must (variety Loureiro) in Erlenmeyer flasks
(100 mL) with rubber stoppers perforated with a syringe needle
to allow CO2 release. The used must had the following composition
(w/v), determined by HPLC: glucose – 84.05 g/L, fructose – 54.36 g/
L, tartaric acid – 1.22 g/L, glycerol – 0.19 g/L, acetic acid – 0.05 g/L,
ethanol – 0.14 g/L, total acidity – 6.20 g/L, pH – 3.56. When glucose
concentration was below 5 g/L and no weight variations were
noted, samples were collected and frozen (�20 �C) for metabolic
analysis.

High-performance liquid chromatography with refractive index
(HPLC-RI) was used to quantify ethanol and organic acids (tartaric,
malic, acetic and succinic), in a EX Chrome Elite HPLC, using an
Rezex

�
Ion Exclusion column. Column and refractive index detector

temperatures were 60 �C and 40 �C, respectively, and the flow rate
was 0.50 mL min�1 for 0–9 min, 0.25 mL min�1 for 10–14 min and
0.50 mL min�1 for 15–35 min.

Relevant metabolites (higher alcohols, esters, fatty acids)
known to account for inter-strain differences and that are related
to volatile compounds were determined by gas chromatography
– mass spectrometry (GC–MS), in particular hexyl acetate, buta-
noic acid, hexanoic acid, octanoic acid, decanoic acid, dodecanoic
acid, cis-3-hexenol, ethyl butanoate, ethyl hexanoate, ethyl octano-
ate, ethyl decanoate, ethyl dodecanoate and 2-phenylethyl acetate.
Analyses were performed by solid phase microextraction (SPME),
using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/
CAR/PDMS) 50/30 lm (Supelco, Sigma) fiber for 15 min. under con-
tinuous agitation and heating at 40 �C. 3-Octanol (Sigma-Aldrich,
99% purity) was used as internal standard. Compounds were then
desorbed from the SPME fiber directly and analyzed using a Varian
CP-3800 gas chromatograph (Walnut Creek, CA, USA), equipped
with a Varian Saturn 2000 mass selective detector, as previously
described (Silva Ferreira et al., 2004).

2.4. Integrative data exploration from multiple experiments

Principal component analysis (PCA), available in the
Unscrambler

�
X software, was used for variability analysis, using

phenotypic, genetic and metabolic data.
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A method of nonnegative matrix factorization (NMF) was used,
as adapted from Zhang et al. (2012), to integrate the data obtained:
metabolomic data obtained from GC–MS (concentrations of 13
volatile compounds) and HPLC (concentration of 5 metabolites),
phenotypic results catalogued in four growth classes and
microsatellite allelic presence/absence. In particular, with NMF
method it was possible to integrate the results of multiple experi-
ments within the same data set.

Results from the four experimental analyses were considered,
each one with measured variables, being represented in four data
matrices: X1 (GC–MS), X2 (HPLC), X3 (phenotypic characteriza-
tion), X4 (microsatellite allelic presence/absence). Each of the four
matrices had n = 24 rows, and a different number of columns – 13,
5, 30, 142 – regarding the matrix X1, X2, X3 and X4, respectively.
Before NMF algorithm was applied, data was normalized using
[0-1]-transformation, i.e. from each value the column minimal
value was subtracted, being then the difference divided by the
range. Matrices were then projected onto a common
2-dimensional system, in which each heterogeneous variable was
weighted in the same projected direction forming a multi-
dimensional module (md-module). To clarify, each of this md-
modules contains a sub-set of strains sharing similar information
regarding the experimental data, correlating in this way features
of significant biological relevance. To perform this, each of the data
matrices was decomposed in a common basis matrix (W) and in
different coefficient matrices Hi (H1, H2,. . ., Hn) in a way that:

Xi � W � Hi

Matrices W and Hi have non-negativity constraints (WP 0 and
Hi P 0), and were computed in the way that Xi was as close as pos-
sible to W�Hi, i.e., the sum over all matrices of squared differences
between matrices Xi and W�Hi was as small as possible. In an adap-
tation of Zhang et al. (2012) method, generalized multiplicative
update equations were used to minimize error function (sum of
squared Frobenius norms). The algorithm iteratively computes
the approximations of X1, X2, X3 and X4. Then, from the factoriza-
tions, W�Hi subsets of strains and original variables were further
defined which reflect relationships between four experimental
data sets. To define which values are treated as high, Z-scores were
computed for all rows in matrices H (subtracting the rowmean and
dividing the difference by the row standard deviation). According
with the Z-scored value (greater or lower than the threshold
T = 2) the variable was included or not in the md-module. Within
this definition a particular strain can belong to different md-
modules. The md-modules therefore do not form the partition
since they can overlap and do not necessarily cover all strains.

With this as basis, 100 md-modules were analyzed. These mod-
ules provided an insight into the data set according with the fol-
lowing principles: (i) the closer the variables come, the higher is
their similarity in the impact on the projection, and more related
they are to each other; and (ii) the influence of a certain variable
in the spatial projection is as high as their apartness from the ori-
gin. As follows, data from different matrices are projected onto a
common coordinate system and correlative relationships can be
inferred in the form of md-modules.
3. Results

3.1. Phenotypic and genetic characterization

A screening approach was devised, taking into consideration 30
phenotypic tests, including tests that are important for winemak-
ing strain selection, to evaluate the extent of phenotypic variation.
High-throughput testing in microplates was performed using sup-
plemented grape must, and optical density (A640) was measured
after 22 h of incubation. Growth in solid culture media was evalu-
ated by visual scoring. All phenotypic results are summarized in
Supplementary Table S2. The patterns of phenotypic variation
obtained by principal component analysis can be visualized in
Fig. 1, showing panel B the segregation of all 24 strains (scores)
and panel A the loadings for the phenotypic variables, in the first
two PCA components. 720 data points were obtained from the
characterization of the 24 strains using 30 tests, and PC-1 (33%)
and PC-2 (17%) explained 50% of strain variability, segregating
strains by phenotypic behavior, as shown in Fig. 1B. No clear pat-
terns were observed in relation to the strains technological group,
being wine strains spread through both components. This fact
shows the absence of a clear influence by any phenotypic test,
which if present would separate strains clearly to a quadrant or
to a direction in the PCA visualization. This demonstrates the
heterogeneity of the strain collection, which is easily explained
by their different locations and years of collection. The highest
strain variability was associated with the growth in the presence
of potassium bisulphite (KHSO3) at both tested concentrations, at
40 �C, and regarding resistance to ethanol in liquid media (10
and 14%, v/v), as shown in Fig. 1A.

The 24 strains were also genetically characterized for allelic
combinations using 11 S. cerevisiae specific microsatellites ScAAT1,
ScAAT2, ScAAT3, ScAAT4, ScAAT5, ScAAT6, YPL009, ScYOR267c, C4,
C5 and C11. A total of 142 alleles was obtained for the 24 strains
(Supplementary Table S3). Microsatellites C5 and C11 were the
most polymorphic ones with 18 different sized alleles obtained.
Microsatellite ScAAT6 was the less polymorphic (6 different alle-
les). The genetic diversity of the collection is illustrated in the
PCA plot of Fig. 2A, where 52% of genetic diversity is explained
by the first two components (PC-1 – 32%, PC-2 – 20%). According
to the PCA, microsatellites ScYOR267c, C4 and YPL009 were the
most heterogeneous ones, explaining the larger part of the genetic
variability observed (Fig. 2A) with some visible patterns of genetic
relatedness between strains sharing the same technological group
(Fig. 2B). Two of the strains obtained from fermented beverages
other than wine ( ) were located far on the right of the PCA, apart
from all the other strains. These two strains, being collected from
the fermentation of beverages cachaça and palm wine, showed
higher sized alleles from microsatellite C4 than the remaining
ones, together with small sized alleles for locus YPL009c
(Fig. 2A). Also, two wine strains ( ) were located apart in the
PCA, namely one strain from France, located at the top of the PCA
of Fig. 2A (higher alleles of microsatellite ScYOR267c) and one
commercial wine strain located under the influence of PC-1 (right
part) and the influence of PC-2 (upper part). Finally, one strain ( )
obtained from nature (in detail, obtained from the plant bertram
palm), was located far down on the PCA, showing one very small
sized allele of locus ScYOR267c, not shared by any other strain.

3.2. Bioanalytical analysis

Bioanalytical analysis was accomplished with samples obtained
at the end of fermentations from the 24 strains, to identify chem-
ical compounds that enable the separation of wine strains from the
others. A very good reproducibility was obtained between the
three fermentation replicates (data not shown).

Strain-dependent differences could be observed concerning
organic acids (tartaric, malic, succinic and acetic) and ethanol after
HPLC quantification (Fig. 3). Tartaric acid concentration ranged
between 0.9 and 1.2 g/L, whereas malic, acetic and succinic acids
ranged between 5.7 and 7.3 g/L, 0.1 and 0.9 g/L, and 0.5 and
0.85 g/L, respectively (Fig. 3A). Final concentration of ethanol ran-
ged between 103 and 121 g/L (Fig. 3B). PCA plots of HPLC data
(panels C and D) explained 82% of strain variance in the first two
components (PC-1 – 65%, PC-2 – 17%) and showed that strain



Fig. 1. Phenotypic diversity obtained for 24 Saccharomyces cerevisiae strains, as revealed by principal component analysis. A: loadings – 30 phenotypic tests. B: scores – 24
strains distribution. Symbols represent the strains technological applications or origin: – wine; – other fermented beverages; – natural isolates; – bread; –
unknown biological origin.

Fig. 2. Genetic diversity obtained for 24 Saccharomyces cerevisiae strains, as revealed by principal component analysis. A: loadings – 11 microsatellite loci. B: scores – 24
strains distribution. Symbols represent the strains technological applications or origin: – wine; – other fermented beverages; – natural isolates; – bread; –
unknown biological origin.
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variability was mainly influenced by acetic acid production. These
results, although not showing an evident separation according to
the strains technological application or origin, allow to establish
some patterns of distribution. In particular, acetic acid concentra-
tion discriminated strains along the first PCA component, and
was highest in a natural isolate ( , panel C), and in three strains
from fermented beverages other than wine ( ), and lower in
strains from unknown biological origins ( ).Wine and vine
strains ( ) were spread throughout the PCA, showing no influence
by the concentration of any compound, with the exception of a
slightly lower concentration of acetic acid, as settled by their ten-
dency to be located in the left part of the PCA.



Fig. 3. HPLC analysis results obtained with 24 Saccharomyces cerevisiae strains. A: concentration of tartaric ( ), succinic ( ), acetic ( ) and malic acids ( ). B:
concentration of ethanol. C: PCA plot of HPLC data showing the distribution of the 24 S. cerevisiae strains (scores) in the two first principal components. Symbols represent the
strains technological applications or origin: – wine and vine; – commercial wine strain; – beer; – baker; – sake; – other fermented beverages; – clinical; –
natural isolates; – laboratory; – unknown biological origin. D – PCA plot of HPLC data showing the distribution of the quantified compounds (loadings) in the two
first principal components.
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GC–MS analysis after solid phase microextraction (SPME) was
used to determine aromatic compounds from the final fermenta-
tion stage. Table 1 shows the concentration of the 13 quantified
volatile compounds, including the respective sensorial thresholds
and odor descriptors. Concentrations above the sensorial detection
threshold described for wines were detected for 8 of the 13 com-
pounds: ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl
decanoate, 2-phenylethyl acetate, hexanoic acid, octanoic acid
and decanoic acid. Ethyl hexanoate and ethyl octanoate were
observed for all the 24 strains. A large variance among strains
was observed for other compounds, being some of them produced
in concentrations above the sensorial threshold by a small number
of strains, such as hexanoic acid (4 strains) and decanoic acid (6
strains). Hexyl acetate, ethyl dodecanoate, butanoic acid, dode-
canoic acid and cis-3-hexenol were produced in concentrations
below the detected threshold by all strains.

The PCA plotted in Fig. 4 segregated the strains (panel A – load-
ings; panel B – scores) according to the aromatic profiles, and the
first two components explained 70% of the observed variability
between isolates (PC-1 – 53%, PC-2 – 17%). A clear separation of
strains according to the type of compound produced was revealed
by PCA (Fig. 4A): esters were located in the upper-right part of the
PCA, whereas acids were predominant in the lower-left part, under
influence of both principal components. This division was not
clearly related with the strains technological origin, but particular
groups of strains showed a different behavior regarding these com-
pounds (Fig. 4B): (i) wine strains ( ) showed intermediate concen-
trations of both esters and acids; (ii) strains from unknown
biological origin ( ) showed a high production of esters, with
a particularly higher production of hexyl acetate by one of the iso-
lates; (iii) some strains from fermented beverages other than wine
( ) positioned in the right part of the PCA plot mainly due to a
higher production of decanoic acid and ethyl decanoate, among
others; (iv) natural isolates ( ) and isolates from bread ( ) were
positioned near the plot origin, showing no significant influence
by any particular compounds. The position of wine strains as inter-
mediate producers of both esters and volatile acids, in opposition
for example to strains from other fermented beverages, is in agree-
ment with the importance of both families of compounds in the
aromatic profiles.

3.3. Pheno-metabolome portrayal by identification of multi-
dimensional modules

From the initial data set (30 phenotypic tests with results cata-
logued in classes from 0 to 3, 142 microsatellite allelic sizes,



Table 1
Concentration (mg/L) of aromatic compounds determined by GC–MS in the sub-group of 24 Saccharomyces cerevisiae strains. Concentrations above the sensorial threshold are underlined.

Compounds Hexyl
acetate

Butanoic
acid

Hexanoic
acid

Octanoic
acid

Decanoic
acid

Dodecanoic
acid

Cis-3-hexenol Ethyl
butanoate

Ethyl
hexanoate

Ethyl
octanoate

Ethyl
decanoate

Ethyl
dodecanoate

2-Phenylethyl
acetate

Sensorial threshold 0.640 2.200 8.000 8.800 6.000 0.610 0.400 0.200 0.005 0.002 0.200 Not
available

0.250

Odor description Sweet,
aromatic,
fragrant

Cheese,
rancid

Cheese,
sweaty

Rancid,
harsh

Fatty Soapy,
waxy

Green leefs, banana,
sweet; herb

Acid fruit Green
apple

Sweet,
soap

Pleasant,
soap

Soapy,
estery

Fruity,
flowery with
a honey note

References Etiévant
and
Etievant
(1991) and
Meilgaard
(1975)

Meilgaard
(1975)

Amerine
and
Roessler
(1976)

Salo
(1970)

Amerine
and
Roessler
(1976)

Vilanova,
Genisheva,
Masa, and
Oliveira
(2010)

Cullere, Escudero, Cacho,
Ferreira, and Culleré (2004),
Escudero et al. (2004), Ferreira,
López, Cacho, Lo, and Lopez
(2000) and Gewu and Guth
(1997)

Gewu and
Guth
(1997)
and
Meilgaard
(1975)

Gewu and
Guth
(1997)
and
Meilgaard
(1975)

Gewu and
Guth
(1997)
and
Meilgaard
(1975)

Ferreira
et al.
(2000)
and
Meilgaard
(1975)

Siebert et al.
(2005)

Lilly et al.
(2000)

A1 0.247 0.461 4.201 11.496 1.464 0.151 0.153 0.181 0.666 1.807 0.140 0.008 0.285
A2 0.234 0.786 8.487 14.131 6.258 0.255 0.185 0.211 0.889 1.880 1.126 0.039 0.279
A3 0.197 0.509 5.387 14.869 5.459 0.110 0.152 0.109 0.760 0.987 0.245 0.007 0.266
A4 0.165 0.641 7.043 19.455 8.499 0.157 0.161 0.191 0.720 1.555 0.984 0.014 0.287
A5 0.214 0.298 5.139 11.503 4.928 0.155 0.125 0.098 0.552 1.427 0.840 0.015 0.229
A6 0.282 0.455 11.194 20.128 10.413 0.323 0.173 0.202 0.950 3.101 1.774 0.057 0.419
A7 0.206 0.605 8.465 16.930 7.269 0.243 0.162 0.266 0.805 1.364 0.797 0.031 0.610
A8 0.207 0.469 5.369 11.774 4.547 0.179 0.144 0.080 0.777 1.490 0.520 0.012 0.255
A9 0.517 0.625 5.136 12.785 2.696 0.116 0.133 0.308 1.090 2.284 0.253 0.013 0.462
A10 0.223 0.498 4.521 13.656 1.209 0.058 0.165 0.247 0.712 1.213 0.107 0.003 0.212

A11 0.414 0.474 6.142 17.507 4.543 0.126 0.144 0.079 0.991 2.623 0.652 0.014 0.300
A12 0.220 0.479 5.257 14.320 4.213 0.304 0.139 0.250 0.736 0.997 0.283 0.014 0.285
A13 0.203 0.377 4.070 10.849 1.506 0.141 0.135 0.161 0.717 1.054 0.055 0.009 0.210

A14 0.253 0.475 4.473 13.909 2.483 0.075 0.122 0.247 0.590 1.381 0.262 0.009 0.201

A15 0.249 0.653 6.451 11.805 3.490 0.190 0.181 0.238 1.000 2.291 0.330 0.020 0.349
A16 0.229 0.582 8.812 30.719 11.497 0.511 0.141 0.123 0.947 2.510 0.854 0.013 0.253
A17 0.242 0.352 3.960 11.553 2.311 0.052 0.115 0.202 0.596 1.219 0.219 0.005 0.254
A18 0.413 0.699 5.244 12.057 2.816 0.120 0.193 0.218 0.873 2.031 0.458 0.017 0.364
A19 0.351 0.560 7.341 18.477 7.735 0.278 0.132 0.255 1.084 2.175 0.873 0.019 0.313
A20 0.230 0.455 4.385 9.449 1.854 0.078 0.164 0.204 0.555 1.342 0.334 0.009 0.231

A21 0.085 0.492 5.411 18.661 3.782 0.105 0.117 0.265 0.536 0.764 0.207 0.008 0.094

A22 0.093 0.484 3.395 8.065 1.322 0.086 0.117 0.183 0.386 0.681 0.098 0.005 0.184

A23 0.253 0.543 5.453 16.448 2.482 0.151 0.123 0.228 0.786 1.894 0.195 0.015 0.303
A24 0.326 0.370 3.401 9.668 1.867 0.090 0.148 0.188 0.581 1.319 0.231 0.006 0.442
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Fig. 4. Principal component analysis of GC-MS data for 24 Saccharomyces cerevisiae strains. A: loadings: 13 metabolic compounds. B: scores: 24 strains distribution. Symbols
represent the strains technological applications or origin: – wine; – other fermented beverages; – natural isolates; – bread; – unknown biological origin.
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concentration of 13 compounds obtained by GC–MS analysis and
concentration of 5 metabolites determined by HPLC) across 24
strains, features present in less than 5% of the strains were
removed. From this new data set (26 phenotypic tests, 66
microsatellite alleles and 13 + 5 metabolic compounds) a common
basis matrix (W) was composed, as described in Section 2. Matrix
W projection is presented in Supplementary data S4, showing also
how variables correlate between each other. As closer to each
other, more similar is their impact on the projection and when they
are more apart from the origin, the correlation coefficient
increases. With this approach an attempt was explored to search
how variables correlate in a way that we can group them in terms
of similar behavior in certain conditions. After parameter optimiza-
tions, the 4 large matrices were broken down into basic building
blocks, from which 100 multi-dimensional correlated modules
(md-modules) were obtained. For clarification, these md-modules
consists of sub-sets of most related data obtained from the projec-
tion presented in Supplementary data S4, and are composed by a
certain number of strains that have a similar behavior for the vari-
ables tested. In Table 2 and Supplementary data S5, the 17 statisti-
cal most relevant md-modules are presented, combining for the
first time, sets of most-correlated features of significant biological
relevance. Three of the 17 modules contain only strains from wine
environments: modules number 29, 34 and 47. Good capacity to
grow in cycloheximide and at 18 �C was a transversal feature to
the three modules, which was already shown in our previous work
to be a phenotypic trait associated with wine strains (Mendes et al.,
2013). Cycloheximide is an inhibitor of protein synthesis, and it
was shown that spontaneous mutants of S. cerevisiae that are resis-
tant to this compound can be isolated from industrial fermenta-
tions (Perez, Regodon, Valdes, De Miguel, & Ramirez, 2000). In
md-module number 29 it was possible to associate the phenotypic
characteristics of growth in cycloheximide, iprodion, 18 �C and
ethanol 6% (w/v) of the four mentioned wine strains, with the
results obtained in the GC–MS quantification for 2-phenylethyl
acetate. This compound contributes to the fruity and flowery
aroma of wines (Lilly, Lambrechts, & Pretorius, 2000), but may
mask some varietal aromas if present in high concentrations. The
formation of this ester is especially promoted in slow fermenta-
tions, at low temperatures and in the absence of oxygen
(Ribéreau-Gayon, 2000). These facts are in agreement with the
relations found with phenotypic characteristics of module 29,
especially the temperature of 18 �C (strains having the highest
growth at this temperature were integrated in this module) and
the presence of ethanol (strains obtaining the highest growth class
in the presence of 6% (w/v) ethanol). In this way, results show that
some features have high potential to be used in strain selection,
especially directed for winemaking application. Particularly, some
features were present in the md-modules in a higher proportion
than others, having also a particular predominance in modules
with only winemaking strains: good capacity to grow (highest phe-
notypic class) in cycloheximide (both at 0.05 or 0.1% w/v) – 19
occurrences; good capacity to grow (highest phenotypic class) in
iprodion (0.05 or 0.1% w/v) – 13 occurrences; capacity to grow at
18 �C (phenotypic class 1) – 9 occurrences; presence of homozy-
gous alleles ScAAT6-256 and ScAAT5-256 – 7 and 4 occurrences
respectively; good production of the compounds 2-phenylethyl
acetate and ethyl butanoate (4 occurrences each), and also of the
compounds ethyl hexanoate and ethyl octanoate (3 occurrences
each).
4. Discussion

In recent years, research has focused on the investigation of
relationships between metabolic pathways and phenotypic and
genetic fingerprints. However, systematic analysis of such multi-
dimensional data to discover biological patterns is still a difficult
task. A great number of tools were developed for 1- or, at most,
2-dimensional data, with satisfactory results. In our previous work
we developed computational methods to establish associations
between phenotypes and genotypes of S. cerevisiae yeasts from dif-
ferent origins (Franco-Duarte et al., 2009; Franco-Duarte et al.,
2014; Mendes et al., 2013). In the present work computational
approaches were improved to be applied to multi-dimensional
data, obtained through metabolic, phenotypic and genetic charac-
terization of the yeast collection, which was not yet routinely pos-
sible. Computational biology can benefit from this knowledge,



Table 2
Summary of the most relevant multi-dimensional modules detected by the nonnegative matrix factorization method, out of the 100 modules tested. Only the modules with at
least three strains and two different features were considered.

MN S TG W Phenotypic
test

PC W Microsatellite
allele

H W HPLC quantified
compound

NC/QC W GC–MS quantified
compound

NC/QC W

2 A14 Wine and
vine

2.85 Cycloheximide
(0.1 lg/mL)

3 0.10 2-Phenylethyl
acetate

0.61/0.37 0.02

A7 Unknown 1.82 Procymidon
(0.1 mg/mL)

3 0.06 Ethyl hexanoate 0.67/0.73 0.02

A23 Wine and
vine

1.23 Iprodion
(0.1 mg/mL)

3 0.03 Ethyl octanoate 0.50/1.55 0.02

3 A19 Wine and
vine

1.18 Cycloheximide
(0.1 lg/mL)

3 0.05 C5-111 2 0.02 Ethyl dodecanoate 0.36/0.02 0.02

A2 Other fb 1.13 Iprodion
(0.1 mg/mL)

3 0.03 Dodecanoic acid 0.41/0.21 0.01

A5 Other fb 0.95 18 �C 1 0.03 Ethyl butanoate 0.60/0.19 0.01
A1 Natural

isolate
0.59

8 A1 Natural
isolate

2.90 Iprodion
(0.05 mg/mL)

3 0.05 2-Phenylethyl
acetate

0.44/0.27 0.02

A13 Wine and
vine

1.22 Ethanol 6%
(v/v) - lm

3 0.03

A23 Wine and
vine

0.99 Iprodion
(0.1 mg/mL)

3 0.03

18 �C 1 0.02
Procymidon
(0.1 mg/mL)

3 0.02

Wine
+ glucose
(0.5% w/v)

1 0.01

Cycloheximide
(0.1 lg/mL)

3 0.01

9 A13 Wine and
vine

3.98 KCl (0.75 M) 2 0.06 ScAAT4-329 2 0.20

A1 Natural
isolate

3.51 H2S
production

3 0.03 ScAAT6-256 2 0.03

A9 Unknown 1.77
A16 Wine and

vine
1.72

10 A18 Wine and
vine

3.45 Cycloheximide
(0.05 lg/mL)

3 0.03 ScAAT6-256 2 0.07 2-Phenylethyl
acetate

0.58/0.35 0.03

A20 Wine and
vine

2.37 Iprodion
(0.1 mg/mL)

3 0.03 ScAAT5-256 2 0.05 3-Methyl-1-
butanol

0.89/0.37 0.03

A9 Unknown 1.91 Cycloheximide
(0.1 lg/mL)

3 0.03 Hexyl acetate 0.75/0.39 0.03

KCl (0.75 M) 2 0.03 Cis-3-hexenol 0.85/0.16 0.02
Ethyl butanoate 0.79/0.24 0.02
Butanoic acid 0.75/0.59 0.02
Hexanoic acid 0.44/4.92 0.02
Ethyl octanoate 0.61/1.89 0.02

12 A17 Wine and
vine

5.72 H2S
production

3 0.16 ScAAT5-256 2 0.05

A1 Natural
isolate

4.69 CuSO4 (5 mM) 1 0.15 ScAAT5-219 2 0.05

A9 Unknown 3.53 NaCl (1.5 M) 1 0.13 ScAAT6-256 2 0.04
Iprodion
(0.05 mg/mL)

3 0.05

18 �C 1 0.05
Cycloheximide
(0.1 lg/mL)

3 0.04

15 A9 Unknown 3.27 Galactosidase
activity

3 0.26 Ethyl butanoate 0.78/0.24 0.05

A19 Wine and
vine

3.25 Cycloheximide
(0.05 lg/mL)

3 0.05

A14 Wine and
vine

2.36

A7 Unknown 2.23
A16 Wine and

vine
2.08
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Table 2 (continued)

MN S TG W Phenotypic
test

PC W Microsatellite
allele

H W HPLC quantified
compound

NC/QC W GC–MS quantified
compound

NC/QC W

18 A1 Natural
isolate

3.84 Wine
+ glucose
(0.5% w/v)

1 1.00 ScAAT6-256 2 0.02

A23 Wine and
vine

2.48 40 �C 2 0.08

A13 Wine and
vine

2.23 Ethanol 6%
(v/v) – lm

3 0.04

Iprodion
(0.1 mg/mL)

3 0.04

18 �C 1 0.02

20 A11 Wine and
vine

4.06 Ethanol 6%
(v/v) – lm

3 0.08 ScAAT4-329 2 0.14 Hexyl acetate 0.75/0.39 0.04

A9 Unknown 3.40 Iprodion
(0.1 mg/mL)

3 0.03 Ethyl hexanoate 0.93/1.01 0.03

A16 Wine and
vine

2.02

29 A15 Wine and
vine

2.29 Cycloheximide
(0.1 lg/mL)

3 0.08 2-Phenylethyl
acetate

0.52/0.32 0.03

A12 Wine and
vine

1.19 Ethanol 6%
(v/v) – lm

3 0.06

A22 Wine and
vine

1.01 18 �C 1 0.02

A24 Wine and
vine

1.00 Iprodion
(0.05 mg/mL)

3 0.02

Iprodion
(0.1 mg/mL)

3 0.02

Cycloheximide
(0.05 lg/mL)

3 0.02

34 A16 Wine and
vine

3.65 SDS (0.01%
w/v)

1 0.13 YPL009c-307 2 0.05

A12 Wine and
vine

3.46 Iprodion
(0.1 mg/mL)

3 0.04 ScAAT5-219 2 0.05

A13 Wine and
vine

1.86 Iprodion
(0.05 mg/mL)

3 0.03

NaCl (1.5 M) 1 0.03
18 �C 1 0.02
Cycloheximide
(0.05 lg/mL)

3 0.02

47 A20 Wine and
vine

5.25 KHSO3

(300 mg/L)
3 0.13 ScAAT2-378 2 0.15

A19 Wine and
vine

5.07 18 �C 1 0.06 ScAAT5-256 2 0.05

A15 Wine and
vine

3.22 H2S
production

2 0.06 ScAAT6-256 2 0.03

Cycloheximide
(0.1 lg/mL)

3 0.04

61 A22 Wine and
vine

1.84 Iprodion
(0.05 mg/mL)

3 0.08 ScAAT6-256 2 0.04

A13 Wine and
vine

1.46 CuSO4 (5 mM) 1 0.05

A1 Natural
isolate

1.24 Cycloheximide
(0.1 lg/mL)

3 0.04

A15 Wine and
vine

0.94

A12 Wine and
vine

0.90

71 A19 Wine and
vine

2.53 Cycloheximide
(0.05 lg/mL)

3 0.05 ScAAT5-256 2 0.06 Ethyl hexanoate 0.96/1.04 0.03

A9 Unknown 1.62 Cycloheximide
(0.1 lg/mL)

3 0.03 ScAAT6-256 2 0.04

A16 Wine and
vine

1.61 Iprodion
(0.1 mg/mL)

3 0.02

18 �C 1 0.02

78 A13 Wine and
vine

3.86 Wine
+ glucose
(1% w/v)

1 0.24 ScAAT5-256 2 0.04 Acetic acid 0.64/0.44 0.04

A3 Bread 2.24 Galactosidase
activity

2 0.06 ScAAT5-219 2 0.04

A12 Wine and
vine

1.82

(continued on next page)
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Table 2 (continued)

MN S TG W Phenotypic
test

PC W Microsatellite
allele

H W HPLC quantified
compound

NC/QC W GC–MS quantified
compound

NC/QC W

80 A6 Other fb 3.30 KCl (0.75 M) 2 0.05 ScAAT3-241 2 0.11 Hexyl acetate 0.47/0.24 0.04
A2 Other fb 2.24 Cycloheximide

(0.1 lg/mL)
3 0.05 Ethyl octanoate 0.69/2.14 0.03

A5 Other fb 2.03 Cycloheximide
(0.05 lg/mL)

3 0.04 Ethyl decanoate 0.70/1.25 0.02

18 �C 1 0.04
Ethanol 14%
(v/v) – lm

2 0.02

85 A4 Natural
isolate

3.02 H2S
production

2 0.09 Ethyl decanoate 0.32/0.57 0.02

A18 Wine and
vine

2.17 Procymidon
(0.1 mg/mL)

3 0.08 Ethyl butanoate 0.71/0.22 0.02

A14 Wine and
vine

1.65 Cycloheximide
(0.05 lg/mL)

3 0.06

MN – module number; S – strains characterizing the module; TG – technological group; W – weight of the feature in the module; PC – phenotypic classes (0–3) according to
the amount of growth (see Section 2); H – heterozygous alleles (1) or homozygous allele (2); NC/QC – normalized concentration (g/L) and quantified concentration according
to the mentioned method; lm – liquid must; fb – fermented beverages.
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since the development of effective methods that are able to com-
bine numeric and alfa-numeric data types in an easily-extendible
way is an important objective of nowadays research.

Phenotypic characterization of the 24 S. cerevisiae strains was
performed based on approaches that are generally applied for the
selection of yeast winemaking strains (Mannazzu, Clementi, &
Ciani, 2002). This assessment revealed a high phenotypic diversity,
which is in agreement with other studies using natural yeast
populations (Camarasa, Sanchez, Brial, Bigey, & Dequin, 2011;
Franco-Duarte et al., 2015; Goddard, Anfang, Tang, Gardner, &
Jun, 2010; Liti et al., 2009; Schacherer et al., 2009; Warringer
et al., 2011). This high intra-strain diversity can be explained by
genetic rearrangements which are characteristic for this species
(Dunn, Levine, & Sherlock, 2005; Schuller et al., 2007). Also,
Camarasa (Camarasa et al., 2011) provided evidence for phenotypic
evolution driven by environmental adaptation, namely some phe-
notypes (resistance to high sugar concentrations, ability to com-
plete fermentation and low acetate production) that were
capable to distinguish groups of strains according to their ecologi-
cal niches. In parallel with the phenotypic characterization, a high
genetic diversity (Fig. 2, Table S3), was obtained for the collection
of 24 isolates, with a total of 142 alleles obtained with 11 polymor-
phic microsatellites. Contrarily to our previous studies (Franco-
Duarte et al., 2009) using microsatellites to characterize yeast
strains, the most polymorphic microsatellites were C5 and C11, fol-
lowed by ScAAT1 and ScAAT5 (Table S3). This seems to indicate
that when considering a strain collection more biased to winemak-
ing, the higher genetic variation occurs in the allele size of these
loci, pointing to their importance in the choice of winemaking can-
didate strains.

After phenotypic and genetic characterization, strains were also
analyzed regarding their metabolic profiles by HPLC and GC–MS.
These methods revealed to be accurate to determine aromatic
and volatile compounds from the final fermentation stage. HPLC
analysis revealed an opposite contribution of acetic acid and the
remaining acids and ethanol regarding the first PCA component
(PCA, Fig. 3), which is in agreement with reported effects of acetic
acid on the fermentation yield and yeast growth (Maiorella, Blanch,
& Charles, 1983; Taherzadeh, Niklasson, & Lidn, 1997; Thomas,
Hynes, & Ingledew, 2002). Acetic acid is an important end-
product of energy metabolism (Tielens, van Grinsven, Henze, van
Hellemond, & Martin, 2010), and is used as an antimicrobial agent
in the food and beverage industries (Luck & Jager, 1997) due to the
enhanced production of its precursor acetyl-CoA. Results obtained
in several organisms showed the association of acetic acid with the
capacity to survive to unfavorable conditions (Tielens, Rotte, van
Hellemond, & Martin, 2002). In this way, the significant presence
of acetic acid in the end of fermentation, mainly in natural isolates
in opposition to wine strains, is in agreement with the survival of
these strains in environmental conditions.

GC–MS was able to detect concentrations above the sensorial
detection thresholds in 8 compounds, from the 13 quantified
(Table 1). The main limitation of using GC–MS approaches is the
difficult identification of compounds in an unsupervised way,
due to the inexistence of a universal spectral library. PCA of these
results revealed a clear separation between acids and esters, in
terms of concentrations produced by the strains (Fig. 4). Esters,
produced by yeasts during alcoholic fermentation, are known, both
in the case of ethyl acetate esters and fatty acid esters, to have a
significant influence on the fruity aromas of the final product as
documented in Table 1. In the case of volatile fatty acids, their
concentration influenced also the PCA position of wine strains.
Concentration of these compounds in wine were reported as being
usually between 500 and 1000 mg/L (Swiegers, Bartowsky,
Henschke, & Pretorius, 2005). The concentration of volatile acids
is of particular relevance, being associated with unpleasant odors
and tastes in concentrations above 300 mg/L, such as a pungent
smell and taste. In concentrations below that level, volatile acids
can have a positive impact with fruity and floral aromas
(González Álvarez, González-Barreiro, Cancho-Grande, & Simal-
Gándara, 2011), mainly due to the obstruction of their esters
hydrolysis.

An holistic matrix factorization approach was assessed and
adapted from Zhang et al. (2012) to project data onto a common
system of coordinates, in which the most related variables were
weighted together and placed apart from the axis origin. The used
NMF approach provided two major advantages as being applied to
our data: (a) it reduced the complexity across multiple data sets
contrarily to other available algorithms, once that the discovered
md-modules (modules composed with strains sharing identical
experimental results) identified vertical associations between mul-
tiple data sets which would be ignored if only one (PCA) or two
(PLS) data sets were used; (b) provided a global overview of the
inherent structure of our data, because the modular approach cap-
tured the associations among sets of different types of variables
(GC–MS, phenotypic results, microsatellite allelic presence/
absence) and md-modules identification stratified strains into dis-
tinct groups, which helped to identify the complex associations
between the three analyzed data sets. From NMF analysis, a sub-
set of 17 statistical significant multi-dimensional modules
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(md-modules) were revealed (Table 2), combining for the first
time, sets of most-correlated features of significant biological
relevance.

The method presented revealed to be a successful way to reduce
the dimensionality of the data and/or to uncover hidden patterns,
to combine significant multi-scale information from different
analytical origins, being its wider application to facilitate the
interpretation of the data. It has to be mentioned that some of
the associations found relate to phenotypes with small interest
for the winemakers. However, it was important for the objectives
of the present work not to focus only on tests relevant for
winemaking and/or strain selection. In this way, the associations
found were important to obtain the exploratory method that can
now be easily extendible to other phenotypes or other sets of
numeric or alfa-numeric data types.

By identifying md-modules it was possible to break down data
sets into smaller blocks, and search for correlated patterns. This
method has the potential to be easily applied to any sets of data,
allowing the identification of good strains in selection programs
without the need of extensive and laborious characterizations.
5. Conclusions

In the present work powerful data analysis techniques were
adapted to the results obtained with the selected S. cerevisiae strain
collection, in order to contribute to two current challenges in
todaýs science: i) analytical methods allow the debit of several
gigabytes of data in just a fewminutes, but data analysis is not cap-
able to scrutinize them in a proper way, ignoring a large part of its
potential; ii) although several methods have been suggested and
improved to find associations between two data sets, no method
allowed yet the comparison between three or more sets of data.

The focus of this work was to develop and adapt already exist-
ing strategies to combine multi-scale data from different origins
(phenotypes, microsatellites and metabolic data). We consider
our approach to be successful and innovative, by the use of new
approaches of matrix factorization that allow the identification of
multi-dimensional correlated modules with significant biological
relevance. Our work shed light into the possibility of obtaining a
holistic view of the S. cerevisiae pheno-metabolome, which was
not yet routinely possible with the current state of the art methods.
These findings may be of great importance for several biotechno-
logical applications, namely identification of strains to be used in
winemaking by the replacement of extensive and laborious exper-
iments. In particular the presented method allowed to focus in
specific features that were shown to be associated with good
winemaking strains: good capacity to grow in cycloheximide, in
iprodion and at 18 �C, presence of homozygous alleles ScAAT6-
256 and ScAAT5-256, good production of the compounds 2-
phenylethyl acetate, ethyl butanoate, ethyl hexanoate and ethyl
octanoate.
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