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• Stable N-bump solutions in a field with N localized inputs are analyzed.
• Conditions for the shape of the input distribution ensure the existence.
• The effect of spatial interactions in a continuous attractor network is discussed.
• For a given finite field interval, the maximum number of bumps can be determined.
• The results are discussed in terms of a precise spatial memory mechanism.
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a b s t r a c t

We study the conditions for the formation of multiple regions of high activity or ‘‘bumps’’ in a one-
dimensional, homogeneous neural fieldwith localized inputs. Stablemulti-bump solutions of the integro-
differential equation have been proposed as amodel of a neural population representation of remembered
external stimuli. We apply a class of oscillatory coupling functions and first derive criteria to the input
width and distance, which relate to the synaptic couplings that guarantee the existence and stability of
one and two regions of high activity. These input-induced patterns are attracted by the corresponding
stable one-bump and two-bump solutions when the input is removed.We then extend our analytical and
numerical investigation to N-bump solutions showing that the constraints on the input shape derived for
the two-bump case can be exploited to generate a memory of N > 2 localized inputs. We discuss the
pattern formation process when either the conditions on the input shape are violated or when the spatial
ranges of the excitatory and inhibitory connections are changed. An important aspect for applications is
that the theoretical findings allow us to determine for a given coupling function the maximum number
of localized inputs that can be stored in a given finite interval.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the analysis of pattern formation in neural
field models of cortical tissue has been a very active area of re-
search in the emerging field of mathematical neuroscience (for
reviews see [1,2]). These models take the form of nonlinear
integro-differential equations on a spatially extended domain.
Their dynamics is known to support a large variety of coherent
structures observed in neural population activity including station-
ary ‘‘bumps’’ of localized excitation, aswell as spatial or spatiotem-
poral oscillation patterns, and traveling waves. The mathematical
analysis of field models has provided new insight into the
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conditions of excitatory and inhibitory interactions within neural
populations, which ensure the existence and stability of these pat-
terns. In a complementary line of research, bump attractors of neu-
ral population dynamics have been applied as models of cognitive
processes such as visual attention, motor planning, decision mak-
ing andworkingmemory in biological and artificial agents ([3–10];
for reviews see [11,12]). In these applications, the neural fields are
defined over continuous metric dimensions such as movement di-
rection, retinal position, color or tone pitch. Due to the assumed
translation invariance of neural interactions, the field supports a
spatial continuum of persistent localized activity patterns known
as a ‘‘continuous attractor’’ [13]. Transient input from external
sensors representing information about a specific value along the
coded dimension defines the field location where a self-stabilized
bump evolves. While the peak position may serve a memory func-
tion in the case of a single cue, the situation is more complex
when two or more localized stimuli are applied simultaneously.
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Since bumps are neutrally stable to perturbations in their position
[14,13], the spatial interactions between several bumps in the field
mediated by the recurrent architecture of the local network may
lead to changes in their position. These interactions may thus re-
sult in a stationary pattern for which the number and positions
of peaks do not match the number and locations of the external
stimuli. As was previously qualitatively discussed by Amari [14]
for the case of a connection function of ‘‘Mexican-hat’’ type (i.e., lo-
cal excitation and surround inhibition), depending on the precise
shape of the spatial couplings two input-induced local excitations
separated by a certain distance may repel or attract each other. In
the case of attraction, the two regions of excitation may eventu-
ally combine into a single bump at an intermediate position be-
tween the stimulated sites. While this behavior can be exploited
to model for instance experimental findings in certain oculomotor
decision tasks [8], it is obviously inadequate for the representation
of a short-term maintenance of the two inputs (but see [15] for
behavioral evidence of an attraction effect of neighboring items in
working memory). In applications requiring the storage of a series
of distinct cues with high precision [10,16], the impact of the mu-
tual interactions between input-induced local excitations on the
evolvingmemory representation should beminimal. Furthermore,
since a single localized input may activate more than one bump,
depending on its width, it is not only the relative position of the
individual inputs that matters, but also their very size.

The main goal of the present study is to extend previous formal
arguments for the existence and stability of multi-bump solutions
in spatially homogeneous fields without external stimuli [17,18]
to the case of a field dynamics in the presence of one or more
localized inputs. More specifically, we establish conditions for
the width and relative distance of the external stimuli, in terms
of the coupling function, in order to ensure a precise multi-
item memory representation in a continuous attractor network.
The rigorous analysis allows us to better understand the pattern
formation process when the conditions on the shape of the input
distribution are violated. In particular, we study, both analytically
and in numerical simulations, how changes in the spatial ranges of
the excitatory and inhibitory couplings (e.g., during development
and learning [15,7]) affect the field response to a given input
distribution.

We investigate a particular formulation of a dynamic field first
introduced and analyzed by Amari [14] and subsequently used in
many applications [12,11]:

∂u(x, t)
∂t

= −u(x, t) +


∞

−∞

w(x − y)f (u(y, t)) dy

− h + S(x, t). (1)

Here, u(x, t) represents the average level of activity (e.g., volt-
age) of a neuron at spatial position x and time t along a one-
dimensional infinite domain. The nonlinear function f (u) defines
the firing rate of a neuron with activity u. The function w(x) de-
scribes the coupling strength with neighboring neurons y, which is
assumed to depend on the distance only, that is,w(x|y) = w(x−y).
The term S(x, t) represents a transient external input with a spa-
tial structure, whereas−h < 0 denotes a constant inhibitory input
applied uniformly to the entire field. This global inhibition defines
a homogeneous ‘‘resting’’ state for a neural field with S(x) = 0∀x.

For the special choice of a Heaviside firing function and synaptic
couplings of Mexican-hat type, Amari fully analyzed the existence
and stability properties of a single-bump stationary solution of
Eq. (1) with a unimodal and symmetric input distribution [14,19].
Since a stable bump co-exists with the stable resting state, a
sufficiently strong transient input may switch between the two
states, thus implementing amemory function. However, analytical
and numerical studies have shown that a coupling function of

Mexican-hat shape,which changes sign exactly once in the interval
(0, ∞), does not generally support a stable pattern of two or more
regions of high excitation ([18], but see the discussion in [20,21]
for large distances between bumps). In the present study we
therefore apply a class of oscillatory coupling functions, previously
introduced by Laing and colleagues [17], with an infinite number of
positive zeros in (0, ∞). The authors showed numerical evidence
for the existence of multiple stable bumps in a homogeneous field
without external input.

The paper is organized as follows: in Section 2 we review
relevant results of previous studies on the existence and stability
of one-bump and two-bump solutions and provide a detailed
mathematical description of the model assumptions. In Section 3,
we generalize Amari’s analysis of a single bump in the presence of
a localized input; for the class of oscillatory coupling functions, we
determine conditions for the shape of the input S(x) as well as for
the global inhibition h, which guarantees the evolution of a stable
region of local excitation. In Section 4, we extend the analysis for a
specific value of h to the case of two-bump solutions of Eq. (1) with
a bimodal, symmetric input. Based on the insight obtained from the
analysis of the two-bump activation patterns, Section 5 presents
analytical and numerical work on the existence and stability of
input-induced N-bump solutions for N ≥ 2. A brief summary of
our results, as well as an outlook on future research, is presented
in Section 6. In order to allow readers from applied areas to focus
on the main findings, we present the mathematical proof of all
theorems stated in the main text in Appendix A. The scheme for
the numerical integration of Eq. (1) used in the simulations of the
field model with external input is presented in Appendix B.

2. Model details and problem statement

We study the existence and the stability of steady state
solutions of (1), i.e. solutions defined by

u(x) =


∞

−∞

w(x − y)f (u(y, t)) dy − h + S(x). (2)

In order to simplify themathematical treatment of single-bump
solutions, Amari chose the Heaviside activation function

f (u) = H0(u) =


0, u ≤ 0
1, u > 0, (3)

instead of a continuous function of sigmoidal shape. The main
advantage is that the dynamics of a local excitation pattern can be
understood by analyzing themuch simpler motion equations of its
boundaries. For the lateral connections between neurons, Amari
used a coupling function w(x) in which excitation dominates
over smaller distances and inhibition over larger ones. Such a
connectivity of ‘‘lateral inhibition’’ type satisfies the following
properties:

(H1) w(x) is symmetric, i.e., w(−x) = w(x) for all x ∈ R.
(H2) w is both continuous and integrable on R.
(H3) w(x) > 0 on an interval (0, x) , w(x) < 0 on (x, ∞) and

w(x) = 0.
(H4) w(x) is decreasing on (0, x].

A concrete example of a coupling function satisfying (H1)–(H4)
is a ‘‘Mexican-hat’’ function given by

w(x) = Me−m|x|
− Ne−n|x|, (4)

where M > N > 0 andm > n > 0 (Fig. 1, left).
Motivated by neuron labeling studies showing that the spatial

coupling between groups of neurons in the prefrontal cortex forms
approximate periodic stripes [22], Laing and colleagues [17,18]
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Fig. 1. Coupling functions. Left: w(x) defined by (4) withM = 4,N = 2,m = 0.15 and n = 0.08. Right: w(x) defined by (6) with A = 2, k = 0.1 and α = 0.3.

proposed a class of coupling functions with oscillatory rather than
monotonic decay

w(x) = e−k|x| (k sin |x| + cos(x)) , (5)

where the parameter k > 0 controls the rate at which the
oscillations of w(x) decay in relation to distance.

With the multi-item working memory application in mind, in
this paper we study the stimulus-induced formation of multi-
bumps using amodified version of this class of intra-field couplings

w(x) = Ae−k|x| (k sin |αx| + cos(αx)) , (6)

where the parameters A > 0 and k < α ≤ 1 are added to control
the amplitude and the zero crossings, of w(x), respectively (Fig. 1,
right). The larger the value α, the smaller is the distance between
consecutive zeros. Since α determines the spatial ranges of lateral
excitation and lateral inhibition in the field, changes in this model
parameter can be used to control the number of bumps that may
exist in a given finite interval, that is, the spatial resolution of the
memory representation (see Section 5).

In addition to (H1) and (H2), the class of coupling functions (6)
satisfies the following properties:

(H5) w(x) is an oscillatory function that tends to zero as x → ±∞.
(H6) w(0) > 0, and w has infinite positive zeros at values zn,

n ∈ N.

In order to prove the existence of one-bump solutions, Amari
defined the function

W (x) =

 x

0
w(y)dy (7)

and the related quantities Wm = maxx>0 W (x) and W∞ =

limx→∞ W (x). It follows from conditions (H1) and (H2) that W (x)
is continuously differentiable and odd, and thatW∞ is finite.

A coupling function given by (6) has an infinite number of
positive zeros in (0, ∞) at values

zn = −
arctan

 1
k


α

+
nπ
α

for all n ∈ N, (8)

and the integral of w(x) for x ≥ 0 is given by

W (x) = −p1

e−kx (p3 sin (αx) + p2 cos(αx)) − p2


(9)

where p1 =
A

k2+α2 , p2 = αk+k and p3 = k2−α. Note that the zeros
zn of w(x) define the local maxima (n odd) and the local minima (n
even) ofW (x).

Following Amari’s analysis [19], in Section 3 we consider that
a single stationary input S(x) centered at x = 0 has a unimodal
and symmetric shape. More specifically, the input presents the
following properties

(SH1) S(x) is continuous on R and symmetric in relation to the
center, i.e., S(−x) = S(x) for all x ∈ R.

(SH2) S(x) > 0 on an interval (0, x), S(x) < 0 on (x, ∞), and
S(x) = 0.

(SH3) S(x) decreases on (0, ∞).

A concrete example that was used in our numerical investiga-
tions is

S1b(x) = Sse


−

x2

2σ2


− Si, (10)

where Ss > 0 and σ > 0 describe the amplitude and the
standard deviation of a Gaussian function, respectively, and Si > 0
is a constant. Note that for the analysis of the pattern formation
process, the constant negative part could also be integrated in the
global inhibition parameter h of the field equation. We use it in the
definition of the Gaussian input to define a finite width as of the
positive input range


−

as
2 , as

2


. In the following we will refer to an

external input satisfying (SH1), (SH2) and (SH3) as S1b(x).
If Eq. (2) has a one-bump solution whose region of excitation

u(x) > 0 is the interval R[u] =

−

a
2 ,

a
2


, then the solution

satisfies [19]

u(x) =

 a
2

−
a
2

w(x − y)dy − h + S(x)

= W

x +

a
2


− W


x −

a
2


− h + S1b (x) . (11)

At point x =
a
2 , since W (x) is odd and u


−

a
2


= u

 a
2


= 0,

Eq. (11) is reduced to

W (a) = h − S1b
 a
2


. (12)

In turn, if a > 0 and h > 0 satisfy (12), then

u(x) = W

x +

a
2


− W


x −

a
2


− h + S1b (x) (13)

defines a one-bump solution of Eq. (2) with R[u] =

−

a
2 ,

a
2


.

So to analyze bump stability, Amari considered the boundary
points of the local excitation and derived ordinary differential
equations for their motions assuming small perturbations. The
dynamics for the boundaries can then be reduced to a simple
dynamics of the length a(t) of the excited region. Considering the
variational equation, one can conclude that a one-bump solution
of Eq. (1) with localized input is stable if and only if

dW
da

(a) = w(a) +
1
2
S ′

1b

 a
2


< 0, (14)

where S ′

1b

 a
2


denotes the derivative of the external input at x =

a
2 .

Eq. (12) supports the co-existing of two single bumps that differ in
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their width. Amari showed that the large bump is always stable
and the small bump is always unstable. In Section 3, we generalize
Amari’s analysis for a field of lateral-inhibition type and derive
sufficient conditions on h and S1b for the general class of coupling
functions given by (6), which guarantee the existence of a stable
one-bump solution.

For a field without external input, Laing and Troy [18] extended
the analysis of the Amari model to the case of two-bump solutions.
They defined a two-bump pattern as a solution of Eq. (1) whose
region of suprathreshold excitation is the union of two disjoint,
finite and open intervals, that is, R[u] = (0, a) ∪ (b, c). Thus, a
steady state solution u(x) is called a two-bump solution if there
are values 0 < a < b < c < ∞ such thatu > 0 on (0, a) ∪ (b, c),
u(0) = u(a) = u(b) = u(c) = 0,
u < 0 otherwise.

(15)

Specifically, Laing and Troy were interested in the symmetric case
where the bumps have equal width, that is, c = a + b.

In keepingwith our basic idea of a stable pattern that represents
two instances of a certain stimulus dimension, we assume for the
analysis that the external input S(x) is of bimodal and symmetric
shape, centered at x = 0. It thus satisfies (SH1) and the following
properties:

(SH4) S(x) > 0 on (x1, x2), S(x) < 0 on (0, x1) ∪ (x2, ∞) and
S(x1) = S(x2) = 0.

(SH5) S(x) is increasing on

0, x2−x1

2


, and is decreasing on

x2−x1
2 , ∞


.

In the following, we will refer to a bimodal input satisfying
(SH1), (SH4) and (SH5) as S2b(x).

We recall that a two-bump equal-width stationary solution,
positive only over


−

b+a
2 , − b−a

2


∪
 b−a

2 , b+a
2


, is of the form:

u(x) = W

x +

b + a
2


− W


x +

b − a
2


+ W


x −

b − a
2


−W


x −

b + a
2


− h + S2b (x) . (16)

Consequently, since u

−

b+a
2


= u


−

b−a
2


= u

 b−a
2


=

u
 b+a

2


= 0, and W (x) is odd, the necessary conditions for the

existence of such solutions are

W (a) + W (b) − W (b − a) − h + S2b


b − a
2


= 0, (17)

and

W (a) − W (b) + W (a + b) − h + S2b


b + a
2


= 0. (18)

For the case S(x) = 0∀x, it was shown in [18] that there exists
an interval of values for a and corresponding values for b > a,
so that the necessary condition for the existence of a two-bump
solution of equal width, 2W (b) − W (a + b) − W (b − a) = 0,
is satisfied. However, as stressed in [18,23], it is difficult (i) to
determine the sign of h, and (ii) to verify that the solution presents
the correct positive ranges of excitation for these values of a and b.
Murdock et al. [23] addressed problem (i) by imposing appropriate
conditions on a Mexican-hat coupling function that ensure h ≥ 0.
Assuming that h = |W (p)| with p ∈ {a, b, c}, they demonstrated
the existence of parameter values which satisfy conditions (17)
and (18) for the case S(x) = 0∀x. To emphasize that the positive
ranges of solutions discussed in the literature are only verified
numerically, they introduced the following definition of a quasi-
solution.

Definition 1. Given a triple of positive numbers, τ = (a, b, c),
with a < b < c , and h ≥ 0, the function uτ (x) = W (x) − W (x −

a)+W (x−b)−W (x−c)−h is defined. If p ∈ {a, b, c}, h = |W (p)|,
and uτ satisfies uτ (0) = uτ (a) = uτ (b) = uτ (c) = 0, then uτ is
said to be a p-quasi-solution of (1).

For a Mexican-hat coupling function w(x) with W∞ ≥ 0, the
authors proved the non-existence of a a-quasi-solution and the
existence of both a b-quasi-solution and a c-quasi-solution [23].
A major challenge is to determine specific values for the width
a and the distance b from the generic properties of w(x), which
satisfy the two conditions (17) and (18). In Section 4, this problem
is addressed for the general class of coupling functions (6). We
show that specific values of a and b exist if h = |W (a)|.

In order to analyze the stability of a two-bump equal-width
solution for the case S(x) = 0, Laing and Troy [18] followedAmari’s
approach [14] and derived a system of motion equations for a(t)
and b(t) for which a linear stability analysis can be performed. The
conditions

w(a) < 0, w(b) > 0,
w(b − a) < 0, w(a + b) < 0,

(19)

ensure that the triple (a, b, a + b) defines a stable solution with
regard to perturbations that preserve the equal-width condition.
For a Mexican-hat coupling function (4), an extensive study of the
trace and the determinant of the Jacobian matrix of the linearized
system, as functions of the various coupling parameters, showed
that two-bump solutions do indeed exist but are unstable. This
conclusion was confirmed for general perturbations of the steady-
state solution in [23] by using an approach connected to the idea of
the Evans function [21]. However, relaxing the hypotheses onw(x)
by assuming exactly three positive zeros proved to be sufficient
in order to guarantee the co-existence of both stable and unstable
two-bump solutions [18].

For a field with an external input satisfying (SH1), (SH4) and
(SH5), and in addition to conditions (19), the necessary conditions
for linear stability include also conditions for the input derivative

S ′

2b


b − a
2


> 0 and S ′

2b


a + b
2


< 0. (20)

In Section 4, we generalize the analysis of the one-bump case
and derive sufficient conditions for the shape of S2b(x), which
depend on the zeros of the coupling function (6), that guarantee
the existence and stability of a family of two-bump patterns.

In order to analyze solutions with multiple local excitations,
Laing and colleagues [17] introduced the class of oscillatory
coupling functions (5). A solution u(x) of Eq. (2) is called an N-
bump solution if there are values a0 < a1 < a2 < a3 < · · · <
a2N−1, so thatu > 0 on (a0, a1) ∪ · · · ∪ (a2N−2, a2N−1) ,
u (a0) = u (a1) = · · · = u (a2N−1) = 0,
u < 0 otherwise.

(21)

The authors investigated the existence and stability of such
solutions for a sufficiently differentiable firing rate function f .
They used Fourier techniques to reduce the problem of finding
N-bump solutions of Eq. (1) in the study of N-bump solutions of
an associated fourth-order ODE. For type (4) or type (6) coupling
functions, this transformation is possible since their Fourier
transforms possess a simple, rational polynomial structure [1]. For
the case of the Heaviside function f , the authors conjectured that
both stable and unstable N-bump solutions might exist. Following
this conjecture, and considering the mathematical results for two-
bump solutions, the existence and stability of N-bump solutions in
a field with external inputs is studied analytically and numerically
in Section 5.
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It should be stressed that great care has to be taken when com-
paring numerical solutions on a finite domain with solutions of
the associated continuum neural field equation. It has been widely
acknowledged that both boundary conditions and the spatial dis-
cretization of the numerical scheme may suggest stable solutions
that do not exist in the continuum limit [24]. UsingMatlab [25], we
apply a Euler scheme with a sufficiently fine discretization mesh
(typically dx = 0.005) so as to integrate Eq. (1) to a steady state.
The boundary points evolve freely according to the scheme, and the
domain size is chosen so that the stationary solution is unaffected
by the boundaries (see Appendix B for details).

3. Analysis of one-bump solutions

Following the approach presented in [14,26], we address in
this section the existence and stability of one-bump solutions of
Eq. (1) with external input S1b(x) and a coupling function given by
(6). We start with a theorem that establishes for a general class of
coupling functions satisfying (H1) and (H2) necessary conditions
for the existence.

Theorem 1. Suppose that hypotheses (H1), (H2), (SH1)–(SH3) hold.
The equation u(x) = W


x +

a
2


−W


x −

a
2


− h+ S1b (x) defines a

one-bump solution with R[u] =

−

a
2 ,

a
2


if and only if the following

three conditions are satisfied

(i) W

x +

a
2


− W


x −

a
2


− h + S1b (x) = 0, for x =

a
2 ,

(ii) W

x +

a
2


− W


x −

a
2


− h + S1b (x) > 0, for x ∈


0, a

2


,

(iii) W

x +

a
2


− W


x −

a
2


− h + S1b (x) < 0, for x > a

2 .

The proof of this theorem is given in Appendix A.
For lateral inhibition type connectivity and S(x) = 0∀x, it

follows that u(x) = W

x +

a
2


− W


x −

a
2


− h defines a one-

bump solution if the condition W (a) = h (which is equivalent
to condition (i) of Theorem 1) is satisfied. However, for a coupling
functionw(x) defined by (6) this is not true. Consider the examples
A = 2, α = 0.3, k = 0.08 with h = W (11.5) (Fig. 2, top left) and
A = 2, α = 0.3, k = 0.05 with h = W (9) (Fig. 2, top right).
The solutions of W (a) = h are a = 11.5 and a = 9, respectively,
but u(x) is not negative for all x > a as can be seen in the bottom
panels.

For a given h > 0, if (H1), (H2), (H5) and (H6) hold, equation
(i) of Theorem 1 may have zero, one or multiple solutions. Fig. 2
(top left) illustrates that there is no solution if h > W (z1), there
is one solution if h = W (z1) or h < W (z2), there are exactly two
positive solutions if W (z3) < h < W (z1), and there are at least
three solutions ifW (z2) < h ≤ W (z3).

Let a be a value that satisfies conditionW (a) = h. From the two
examples of Fig. 2 we conjecture that if h < W (z3) or W (z2) <
0, u(x) = W


x +

a
2


− W


x −

a
2


− h might not define a single-

bump solution. In order to derive a sufficient condition for the
existence for the case S(x) = 0∀x, we add the following hypothesis
on the coupling function of type (6):

(H7) W (z2) > 0.

Note thatW (z2) is negative if the value of k is sufficiently small,
i.e., when the oscillations of w(x) are more pronounced.

Theorem 2. Assume that hypotheses (H1), (H2), (H5)–(H7) hold. If
W (z3) < h < W (z1) and a ∈ (z1, z2) is solution of W (a) = h, then

u(x) = W

x +

a
2


− W


x −

a
2


− h (22)

defines a stable one-bump solution with R[u] =

−

a
2 ,

a
2


.

The proof of this theorem is given in Appendix A.
In the following, we derive for the family of coupling functions

with the integral given by (9) conditions on the parameters α and k
so that the conditions of Theorem 2 are satisfied. SupposeW (z2) >
0, to conclude that u(x) = W


x +

a
2


− W


x −

a
2


− h defines a

single-bump solution, by Theorem 2, W (z3) < h < W (z1) must
hold. If we choose h = W


π
α


, one solution of h = W (a) is a =

π
α
.

Since π
α

∈ (z1, z2), the condition h < W (z1) holds. To show that
W


π
α


> W (z3) also holds, consider the following two important

properties of (9).

Lemma 1. Let n be a natural number, x ≥ 0 andW (x) defined by (9).
Then

W

x +

nπ
α


=

−e−
knπ
α W (x) + p1p2


1 + e−

knπ
α


, if n is odd

e−
knπ
α W (x) + p1p2


1 − e−

knπ
α


, if n is even

, (23)

and

W

x −

nπ
α


=

−e
knπ
α W (x) + p1p2


1 + e

knπ
α


, if n is odd

e
knπ
α W (x) + p1p2


1 − e

knπ
α


, if n is even

, (24)

hold, if x −
nπ
α

> 0.

The proof of this lemma is given in Appendix A.

Lemma 2. Assume that W (x) is defined by (9) and that (H7) holds.
Then W


π
α


> W (z3).

The proof of this lemma is given in Appendix A.
In conclusion, for h = W


π
α


, if we choose α =

π
a and k

such that W (z2) > 0, the conditions (12) and (14) are satisfied.
By Lemma 2, it follows that h > W (z3) holds. Consequently, by
Theorem 2, u(x) = W


x +

a
2


− W


x −

a
2


− h defines a stable

one-bump solution.
For applications of the dynamic field model it is important to

understand how the shape of the stationary bump changes as the
parameters defining the spatial ranges of excitation and inhibition
are changed [7]. For a rest state defined by h = W


π
α


, Fig. 3

shows the bumpwidth a as a function of α (left) and k (right) in the
parameter ranges forwhich condition (H7),W (z2) > 0, is satisfied.
It confirms Amari’s result that a larger, stable bump (solid line)
co-exists with a smaller, unstable bump (dashed line) [14]. Note
that the two solution curves for the stable and unstable bumps
do not meet since h < W (z1) holds (Theorem 2). Numerical
simulations indicate that for α > 0.433 (or k < 0.076) the
single bump is destabilized to a periodic pattern (Fig. 4). This is
consistent with findings in studies with a Mexican-hat coupling
function,whichdescribe the emergence of a global periodic pattern
as the global inhibition parameter h is reduced [14,21]. Note that
h = W


π

0.44


< W


π

0.433


holds for the example shown in Fig. 4.

It is important to notice that the width of the stable bump
increases significantly when α is reducedwhereas it is not affected
by a change of k over the tested range. It can be expected that this
dependency of the excitation length on α also holds for solutions
with multiple bumps. In Section 5.1, we discuss the existence of
stable N-bump solutions (for N > 1) in a given finite domain as a
function of the parameter α.

With the working memory application in mind, we discuss in
the following the formation of a steady state excitation pattern
when the stationary input S1b(x) is applied for a sufficiently long

Please cite this article in press as: F. Ferreira, et al., Multi-bump solutions in a neural field model with external inputs, Physica D (2016),
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Fig. 2. Top: graph of W (x) given by (9) with A = 2, α = 0.3, k = 0.08 (left) and k = 0.05 (right). The horizontal lines define different values of h. Bottom: steady state
solution (11) for S (x) = 0 and W (x) given by (9) with A = 2, α = 0.3 and k = 0.08 (left) and k = 0.05 (right). The values of h areW (11.5) (left) andW (9) (right).

Fig. 3. The bumpwidth a defined by equationW (a) = W


π
α


is plotted as a function of α (left, A = 2, k = 0.1) and as a function of k (right, A = 2, α = 0.3) in a parameter

range for which conditionW (z2) > 0 is satisfied. The solid lines represent stable (a ∈ (z1, z2)) and the dashed lines unstable (a ∈ (0, z1)) bump solutions.

Fig. 4. Numerical simulation with α = 0.44 > 0.433 (A = 2, k = 0.1) showing that a localized excitation pattern given by (13) is destabilized to periodic pattern when
the input S1b(x) (dashed line) is removed. Input parameters are Ss = 8, Si = 0.5 and σ = 3. The middle and right panels depict snapshots of the solution after cessation of
the input, at times t = 75 and t = 200, respectively.

time interval [0, T ]. This pattern should converge to a stable one-
bump solution after cessation of the input, S1b(x) = 0∀x, at time
t = T .

If the initial state of the field is u(x) = −h < 0∀x, two
situations may occur depending on the input strength [27]:

• the field remains in an input-driven state if S1b(0) ≤ h, that is,
u(x) = S1b(x) − h;

• the field develops one or more localized bumps if S1b(0) > h.

The excited region created by a sufficiently strong external
input depends on the input shape as illustrated in Fig. 5. The

Please cite this article in press as: F. Ferreira, et al., Multi-bump solutions in a neural field model with external inputs, Physica D (2016),
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Fig. 5. Numerical simulations of the field model: comparison of steady state solutions u(x) (solid line) in the presence of stationary input S1b (dashed line) and when the
input is removed (top and bottom panels, respectively). w(x) is given by (6) with A = 2, k = 0.1 and α = 0.3 and h = W (10). The inputs are defined by (10) with
Ss = 8, Si = 0.5 and different standard deviations, σ = 0.4 (left), σ = 3 (middle), σ = 8 (right).

Fig. 6. An example of the intersection of h− S1b
 x
2


(dashed line) withW (x) (solid

line) defined by (9) with A = 2, α = 0.3 and k = 0.1, and h = W (10). The input
parameters are Ss = 8, Si = 0.5, and σs ∈ {0.4, 3, 8}.

numerical simulations of the model show that inputs given by
(10) of equal amplitude but three different widths all trigger the
evolution of a localized excitation (top). However, only the pattern
of intermediate width converges to a stable one-bump when the
input is removed at time t = T (Fig. 5, middle). A very narrow
input is not able to destabilize the homogeneous resting state
u(x) = −h∀x (the width of the initial excitation is smaller than
the width of the unstable bump), whereas a pattern triggered by a
broad input converges to a stable two-bump solution.

Fig. 6 compares the graphs of the solutions of Eq. (12) for the
three cases. The intersections of h − S1b

 x
2


with W (x) illustrate

the sufficient conditions on the input shape, which guarantee the
existence of a unique solution of Eq. (12).

Theorem 3. Assume that hypotheses (H1), (H2), (H5)–(H7), and
(SH1)–(SH3) hold. If W (z3) < h < W (z1) , S1b(0) > h, S1b

 z1
2


>

0 and S1b
 z2

2


< 0, then the equation

h − S1b
 x
2


= W (x) (25)

has a unique positive solution a that belongs to the interval (z1, z2).

Fig. 7. Graphs of S1b
 z1

2


and S1b

 z2
2


as a function of σ ∈ [0, 6].

The proof of this theorem is given in Appendix A.
Note that since w(x) < 0 for z1 < x < z2, and S ′

 x
2


< 0 for all

x > 0 hold, the equilibrium local excitation of width a satisfies the
stability condition (14).

The following numerical example illustrates the range of input
widths that lead to a stable one-bump solution. Consider the
coupling function w(x) given by (6) with A = 2, k = 0.1, and
α =

π
10 , h = W (10), and S1b(x) given by (10) with Ss = 8, Si = 0.5

and σ > 0. In this example, S1b(0) = 7.5 > W (10), thus by
Theorem 3, if S

 z1
2


> 0 and S

 z2
2


< 0 there exists a value

a ∈ (z1, z2) such that W (10) − S
 a
2


= W (a). Fig. 7 shows the

values of S1b
 z1

2


and S1b

 z2
2


as a function of σ ∈ [0, 6]. Since

S1b
 z1

2


> 0 at σ > 1.1290 and S1b

 z2
2


< 0 at σ < 3.2523, we

can conclude that for 1.1290 < σ < 3.2523 there exists a value
a ∈ (z1, z2) such thatW (10) − S

 a
2


= W (a).

It is easy to see that the steady state excitation pattern
generated by the input is in the basis of attraction of the
equilibrium width solution a =

π
α

when the input is removed.
Let a(t) be the width of the excited region at time t . For the case
S1b(x) = 0 for all x, the equation describing the change of a(t) as
t → ∞ is given by

da
dt

=
1
c
[W (a) − h] (26)

with c = −
∂u(a)
∂x > 0.

Please cite this article in press as: F. Ferreira, et al., Multi-bump solutions in a neural field model with external inputs, Physica D (2016),
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Fig. 8. Steady state solution u(x) defined by (16) for W (x) given by (9) with

A = 2, α =
π
10 , k = 0.08, and h = W (10), a = 10, b = −

arctan


10π+100
8−125π


α

+ 20.

The width increases if da
dt > 0, decreases if da

dt < 0 and does
not change if da

dt = 0. Let h = W


π
α


and W (z2) > 0, the width

increases if a < π
α
, decreases if a > π

α
and does not change if

a =
π
α
. In all cases, the width will tend to the equilibrium width

a =
π
α
.

4. Analysis of two-bump solutions

In this section, we study the existence and stability of two-
bump solutions in the presence of a transient input inhomogeneity
S2b(x). We start by proving for the case S2b(x) = 0∀x the existence
of a a-quasi-solution. We then use a numerical example to show
that the conditions established in Theorem 3 for a single-bump
solution are not sufficient to guarantee the correct positive ranges
of a stable two-bump solution.

Theorem 4. Assume that the coupling function w(x) is of type (6),
and τ is a triple of the form (a, b, a + b), then there exists a a-quasi-
solution uτ of (1).

The proof of this theorem is given in Appendix A.
Two-bump solutions are stable if conditions (19) are satisfied.

Considering the zeros zn of w(x) defined by (6), if b ∈ (z2n, z2n+1)
for some n ∈ N, then

w(b) > 0, w

b −

π

α


< 0, w


b +

π

α


< 0. (27)

Thus, if a =
π
α
and b ∈ (z2n, z2n+1) for some n ∈ N, the solution

is stable. Consider h = W


π
α


, by Theorem 4 there exists a triple

(a, b, c), with a =
π
α
, b > a (that is,W (b) = p1p2) and c = b +

π
α
,

that satisfies the conditions (17) and (18) with S(x) = 0∀x. If
b ∈ (z2, z3), this solution is stable.

Now consider as a specific example A = 2, α =
π
10 , k = 0.08.

For these values, (H1), (H2), (H6) and (H7) are satisfied. Assuming
h = W (10), by Lemma 2, and as a consequence of Theorem 2, it
follows that u(x) = W (x) + W (x − 10) − h defines a single-bump
solution. On the other hand, by Theorem 4, if a = 10 and b =

−
arctan


10π+100
8−125π


α

+20 ∈ (z2, z3), we have uτ (0) = uτ (a) = uτ (b) =

uτ (a + b) = 0 which is equivalent to u

−

a+b
2


= u


−

b−a
2


=

u
 b−a

2


= u

 a+b
2


= 0. However, Fig. 8 shows that u(x) =

W

x +

b+a
2


−W


x +

b−a
2


+W


x −

b−a
2


−W


x −

b+a
2


−W


π
α


defines a solution with more than two regions of excitation.

In order to ensure the existence and the stability of a two-bump
solution, we replace (H7) by the following hypothesis:

(H8) W (z2) >
p1p2

1+e
2kπ
α

 , with p1 =
A

k2+α2 , p2 = αk + k.

Theorem 5. Assume that for a coupling function w(x) of type (6) the
hypothesis (H8) holds. If a =

π
α
and b ∈ (z2, z3) such that W (b) =

p1p2, then

u(x) = W

x +

b + a
2


− W


x +

b − a
2


+W


x −

b − a
2


− W


x −

b + a
2


− W

π

α


(28)

defines a stable two-bump solution with R[u] =

−

b+a
2 , − b−a

2


∪ b−a

2 , b+a
2


.

The proof of this theorem is given in Appendix A.
In order to generalize the results obtained for a single localized

input S1b(x), we consider without restriction a symmetric, bimodal
input centered at x = 0 and defined by

S2b(x) = S1b(x − xc) + S1b(x + xc) + Si (29)

where xc is a positive constant. Since the positive input range of
S1b(x) is (x1, x2), the distance between input bumps is defined by
ds = 2 x1.

When the field is initially at resting state u(x) = −h <

0∀x, a sufficiently strong input, S


x2−x1
2


> h, may trigger the

evolution of different patterns of excitation depending on the value
xc . This is shown in the numerical simulation of Fig. 9 (top) where
three different distances xc were tested for an otherwise identical
bimodal input. For a small distance, the field evolves a single region
of excitation, whereas for larger distances a two-bump solution
emerges. Like in the discussion of the input-induced one-bump,
it is important to understand what happens when at time t = T
the excitation pattern has reached a steady state and the bimodal
input is removed (Fig. 9, bottom). In fact, for the largest distance
tested, the lateral excitation from the existing bumps proves to
be sufficient to create a third bump at an intermediate position,
whereas for the smallest distance, the pattern converges to a
stable one-bump solution (for a discussion of the pattern formation
process see Section 5.1). Implementing a precise working memory
function thus requires to determine constraints on the input shape,
which guarantee the existence and stability of an input-induced
two-bump solution like the example depicted in themiddle panels.

Suppose that h = W


π
α


, and that hypothesis (H8) holds. By

Theorem 5, u(x) = W (x)−W (x−a)+W (x−b)−W (x−a−b)−h,
with a =

π
α

and b ∈ (z2, z3) such that W (b) = p1p2, defines
a stable two-bump solution. We know that if a ∈ (z1, z2), b ∈

(z2, z3) and a + b ∈ (z3, z4) the conditions for stability (19)
are satisfied. Thus, we introduce the subset Ω of R2 (see Fig. 10)
defined as

Ω = {(x, y) ∈ R2
|x > z1 ∧ x

+ z1 < y < x + z2 ∧ −x + z3 < y < −x + z4}. (30)

The following theorem gives sufficient conditions for the
existence of values (a, b) ∈ Ω that satisfy the conditions (17) and
(18) if h = W


π
α


.

Theorem 6. Assume that the coupling function w(x) is given
by (6), and that hypotheses (H8), (SH1), (SH4) and (SH5) hold. If
S2b


x2−x1
2


> W


π
α


, S2b

 z1
2


< 0, S2b

 z2
2


> 0, S2b

 z3
2


> 0

and S2b
 z4

2


< 0, then there exists a point (a, b) belonging to the

region Ω ⊂ R2 (30) such that

W (a) + W (b) − W (b − a) − W
π

α


+ S2b


b − a
2


= 0, (31)
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Fig. 9. Steady states of field activity u(x) (solid line) in the presence (top panels) of the stationary input S2b(x) (dashed line) and when the input is removed (bottom panels).
w(x) given by (6) with A = 2, k = 0.1 and α =

π
10 . The input parameters are Ss = 8, Si = 0.5, σ = 2 and different values of xc : xc = 5 (left), xc = 8 (middle), xc = 20

(right).

Fig. 10. Region Ω ⊂ R2 defined by (30).

and

W (a) − W (b) + W (a + b) − W
π

α


+ S2b


b + a
2


= 0. (32)

The proof of this theorem is given in Appendix A.
We illustrate Theorem 6 with an example. Consider the cou-

pling function w(x) of type (6) with A = 2, k = 0.1, and α =
π
10 , h = W (10), and the input S2b(x) defined by (29) with Ss =

6, Si = 1, σ =
π

2α

ln(S2s )−ln(S2i )

such that the width of each positive

region is equal to π
α
. In this examplewehave S2b(xc) = 5 > W (10).

By Theorem 6, if S2b
 z1

2


< 0, S2b

 z2
2


> 0, S2b

 z3
2


> 0 and

S2b
 z4

2


< 0, then there exists a point (a, b) belonging to Ω given

by (30) such that Eqs. (31) and (32) are satisfied. In this example, xc
should be larger than z1

2 +
π
2α =

z2
2 such that condition S2b

 z1
2


< 0

is fulfilled, and, on the other hand, xc should be smaller than z4
2 −

π
2α =

z3
2 such that condition S2b

 z4
2


< 0 is fulfilled. As thewidth of

each bump of S2b is π
α
, and z2

2 < xc <
z3
2 , we have that S2b

 z2
2


> 0

and that S2b
 z3

2


< 0 because xc −

π
2α <

z2
2 and xc +

π
2α >

z3
2 .

As h = W


π
α


, by Theorem 4, there exists a triple (a1, b1, c1) with

a1 =
π
α
, b1 = −

arctan

p2
p3


α

+
2π
α

and c1 = a1 + b1, which satis-
fies conditions (17) and (18) for the case S(x) = 0 for all x. Fig. 11
shows numerical simulations for two different values of xc , one for
which the distance between the input bumps ds is less than b1−a1,
and another for which this distance is larger than b1 − a1. In both
cases, the initial two-bump solution in the presence of the bimodal
input S2b(x) (top) converges to the solution defined by the triple
(a1, b1, c1) when the input is removed (bottom). The panels on the
right illustrate this result by showing the curves inΩ implicitly de-
fined by Eqs. (31) (dashed–dotted line) and (32) (dotted line), re-
spectively. Their point of intersection represents the solution. For
the two examples, the shape of the input-induced patterns is rela-
tively close to the shape of the equilibrium solution (π

α
, b1) with-

out input. To show that the equilibrium is indeed asymptotically
stable, that is, any trajectory starting inΩ converges to (π

α
, b1) as t

increases, we perform a phase plane analysis of the dynamical sys-
temdescribing themotions of a(t) and b(t) after cessation of S2b(x).

The planar system is given by

da
dt

=
1
c1

[W (a) − W (b) + W (a + b) − h]

+
1
c2

[W (a) + W (b) − W (b − a) − h] , (33)

db
dt

=
1
c1

[W (a) − W (b) + W (a + b) − h]

+
1
c2

[W (b − a) − W (a) − W (b) + h] , (34)

where c1 =
∂u(0,t)

∂x and c2 = −
∂u(a,t)

∂x .
The stationary solutions of (33) and (34) are given by

W (a) + W (a + b) − W (b) − h = 0, (35)
W (a) + W (b) − W (b − a) − h = 0. (36)

For h = W


π
α


, we have proven in Theorem 4 that there exists

a solution with a1 =
π
α

and b1 = −
arctan p2

p3
α

+
2π
α

that satisfies
conditions (35) and (36).

We define G and H to be the right hand sides of (33) and (34),
respectively. To determine the type of the phase plane singularity,
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Fig. 11. Top: two steady state solutions u(x) (solid line) in the presence of inputs S2b(x) (dashed line) are shown. The bimodal inputs have different values of xc : xc = 8
(left) and xc = 12 (right). Bottom: the activity patterns converge to the same two-bump solution when the input is removed. The panels on the right of each figure show
the curves in Ω implicitly defined by the Eqs. (31) (dashed–dotted line) and (32) (dotted line). The parameters of w(x) and S2b(x) are A = 2, k = 0.1, α =

π
10 and

Ss = 6, Si = 1, σ = 5 (ln(36))−
1
2 , respectively.

we linearize (33)–(34) around the equilibrium solution (a, b) =

(a1, b1). The Jacobian matrix J of the system at (a1, b1) is given by

J =


Ga Gb
Ha Hb


, (37)

where Ga,Gb,Ha and Hb are partial derivatives evaluated at
(a1, b1). They are given by

Ga =
1
c1

[w(a1) + w(a1 + b1)] +
1
c2

[w(a1) + w(b1 − a1)] , (38)

Gb =
1
c1

[w(a1 + b1) − w(b1)] +
1
c2

[w(b1) − w(b1 − a1)] , (39)

Ha =
1
c1

[w(a1) + w(a1 + b1)] −
1
c2

[w(a1) + w(b1 − a1)] , (40)

Hb =
1
c1

[w(b1 + a1) − w(b1)] +
1
c2

[w(b1 − a1) − w(b1)] . (41)

The eigenvalues, λ, of J satisfy

λ2
− (Ga + Hb) λ + GaHb − GbHa = 0. (42)
If the trace of J is negative and the determinant of J is positive,

we can conclude that both eigenvalues of the Jacobianmatrix have
negative real parts.
Ga + Hb < 0 (43)
and
GaHb − GbHa > 0. (44)

The behavior of solutions near (a1, b1) is then qualitatively
captured by the phase portrait of a stable node or a stable spiral.
We have,

Ga + Hb =


1
c1

+
1
c2


[w(a1) − w(b1)]

+
2
c1

w(b1 + a1) +
2
c2

w(b1 − a1), (45)

and
GaHb − GbHa

=
2

c1c2
[w(a1) − w(b1)] [w(b1 − a1) + w(a1 + b1)]

+
4

c1c2
[w(a1 + b1)w(b1 − a1) − w(a1)w(b1)] . (46)

For a1 =
π
α
and b1 = −

arctan p2
p3

α
+

2π
α

it follows that

w(a1) < 0, w(b1) > 0,
w(b1 − a1) < 0, w(b1 + a1) < 0.

We can thus conclude that (43) and (44) are satisfied.
For the example shown in Fig. 11, Fig. 12 depicts trajectories

of the system (33)–(34) with initial conditions (a, b) ∈ Ω . The
trajectories were generated using the ‘‘pplane8.m’’ tool [28]. For
the general case, it is difficult to determine the direction of motion
for arbitrary (a, b) ∈ Ω . However, the linearization of system
(33)–(34) suggests that in a local neighborhood all trajectories
converge to the equilibrium solution (a1, b1).

5. Analysis of multi-bump solutions

In this section, we address the formation of multi-bump
solutions as a computational mechanism supporting a multi-item
memory of external inputs. Our strategy is to follow the approach
for the two-bump case and first derive necessary conditions
for the existence and linear stability of multi-bumps in a field
without input. We then report numerical evidence showing that
the sufficient conditions for the input width and distance in terms
of the coupling function, which we have derived in the previous
section for a two-bump solution, can be exploited to implement a
precise multi-item memory.

Recall that an N-bump solution is one whose region of
excitation is the union of N disjoint, finite and open intervals, that
is, R(u) = (a0, a1) ∪ (a2, a3) ∪ · · · ∪ (a2N−2, a2N−1). With the use
of the Heaviside function (3), it follows from (2) and (21) that the
steady state solution uN(x) can be written as

u(x) =

N−1
i=0

 a2i+1

a2i
w(x − y)dy


− h. (47)

Using (7), a potential N-bump solution of Eq. (1) is then given by

u(x) =

N−1
i=0

(W (x − a2i) − W (x − a2i+1)) − h. (48)

In generalization of the two-bump case, we consider only
symmetric N-bump solutions u(x) that are supported by the
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Table 1
Solutions of (50) for N ∈ {2, 3, 4, 5, 6} when the coupling function w(x) is defined
by A = 2, α =

π
10 and k = 0.1.

N Solutions

2 a1 = 10; a2 = 21.2982
3 a1 = 10; a2 = 21.1910; a3 = 31.1361
4 a1 = 10; a2 = 21.1786; a3 = 31.1190; a4 = 42.2083
5 a1 = 10; a2 = 21.1770; a3 = 31.1168; a4 = 42.1943; a5 = 52.1296
6 a1 = 10; a2 = 21.1768; a3 = 31.1165; a4 = 42.1926;

a5 = 52.1272; a6 = 63.1930

coupling function of type (6). Note that the symmetry of an N-
bump pattern does not necessarily imply equal width of all bumps
and equal distance between individual bumps (see the definition
of an N-bump equal width and distance solution in [23]). The
following proposition states that for the symmetric case, the 2N
equations u(ai) = 0, which an N-bump solution must satisfy, can
be reduced to a system of N equations.

Proposition 1. Suppose that hypotheses (H1), (H2), (H5) and (H6)

hold. If u(x) is symmetric with respect to the point a0+a2N−1
2 , the

system of equations
u(a0) = 0
u(a1) = 0
· · ·

u(a2N−1) = 0

(49)

can be reduced tou (a0) = 0
· · ·

u (aN) = 0.
(50)

The proof of this proposition is presented in Appendix A.
In the following examples,we assumewithout loss of generality

that a0 = 0. We apply Newton’s method to approximate a
solution of the nonlinear system (50). To discuss the stability of
a stationary N-bump solution, we follow the approach for the
two-bump solution in the previous section and consider small
perturbations of the steady state uN(x). The system of equations
of motion for ai(t), i = 1, . . . ,N can be linearized about the
stationary solution. The Jacobian matrix J of the resultant system
is given by

J =

J11 · · · J1N
...

. . .
...

JN1 · · · JNN

 , (51)

where Jij =
∂

∂aj


dai
dt −

da0
dt


, with dai

dt = −
1
ci

∂u(ai,t)
∂t , ci =

(−1)i ∂u(ai,t)
∂x and ∂u(ai)

∂t =
N−1

k=0 W (ai−a2k)−W (ai−a2k+1), for all
i, j ∈ {1, . . . ,N}. If all eigenvalues have negative real part, then the
solution is stable. Otherwise, if at least one eigenvalue has positive
real part, then the solution is unstable.

For concreteness, consider the coupling function (6) with A =

2, α =
π
10 and k = 0.1 used in the previous section. Table 1 shows

the approximated solutions of system (50) for N ∈ {2, 3, 4, 5, 6},
when the initial values are ai = 10i for i = {1, 2, 3, 4, 5, 6}.
Table 2 displays the eigenvalues of (51) for the solutions described
in Table 1. All eigenvalues have negative real part, and therefore
all solutions are stable. Fig. 13 shows plots of different solutions
defined by (48) where a0 = 0, the values of aj for j ∈ {1, . . . ,N}

correspond to the values shown in Table 1, and aj = aN + aN−1 −

a2N−1−j for j ∈ {N +1, . . . , 2N −1}. The solutions represent stable
N-bumps for N = 2, . . . , 6.

For the case of a two-bump solution, we can directly compare
the analytical results for the width a and distance b − a of bumps

Fig. 12. Phase portrait of the planar system (33)–(34) for the example shown in
Fig. 11.

Table 2
Eigenvalues of (51) for the solutions described in Table 1.

N Eigenvalues

2 λ1,2 = −0.4928 ± 0.0888i
3 λ1 = −0.5169; λ2,3 = −0.2031 ± 0.1972i
4 λ1,2 = −0.1964 ± 0.0787i; λ3,4 = −0.6383 ± 0.0347i
5 λ1 = −0.0737; λ2 = −0.3808; λ3 = −0.6025; λ4 = −0.6922;

λ5 = −0.8029
6 λ1 = −0.0526; λ2 = −0.3057; λ3 = −0.5338; λ4 = −0.6344;

λ5 = −0.7123; λ6 = −0.8055

obtained in the previous sectionwith the approximation.We know
from Theorems 4 and 5 that for h = W


π
α


there exists a two-

bump solution of Eq. (1)with a1 =
π
α
and b1 =

− arctan

p2
p3


α

+
2π
α
. For

a coupling function with parameters A = 2, α =
π
10 and k = 0.1,

the values are a1 = 10 and b1 = a2 ≈ 21.2982. They are in perfect
agreement with the values for the case N = 2 in Table 1. For all
tested N , the distance between bumps is approximately constant.
This confirms the observation of the numerical study in [17]. In
practice, since the Newton method requires a good initial guess
to converge, the values specified in Theorem 5 for the width and
distance in terms of the coupling function may guide the choice
of initial values for the approximation of an N-bump solution (see
Fig. 13).

5.1. Input-induced multi-bump solutions

In order to represent a precise multi-item memory of a series
of external stimulus events, the multi-bumps in Fig. 13 should
be produced by transient inputs S1b(x) of a certain width as and
separated by a certain distance ds. We know from Theorem 3 that
the shape of S1b(x) must satisfy S1b

 z1
2


> 0 and S1b

 z2
2


< 0. This

means that the positive zero of S1b(x) at position as
2 must belong

to
 z1

2 ,
z2
2


, that is, as ∈ (z1, z2). In the case of a bimodal input

S2b(x), from Theorem 6 we know that the conditions S2b
 z1

2


<

0, S2b
 z2

2


> 0, S2b

 z3
2


> 0 and S2b

 z4
2


< 0 must be satisfied.

This means that the two positive zeros of S2b, ds
2 and ds

2 + as,
must belong to

 z1
2 ,

z2
2


and

 z3
2 ,

z4
2


, respectively. It follows that

ds ∈ (z1, z2) and ds + 2as ∈ (z3, z4) must hold. In particular, for an
equal width and distance input patternwith as = ds the conditions
are

as ∈ (z1, z2) and 3as ∈ (z3, z4) . (52)

As illustrated in Fig. 14 (middle), for an input S2b(x) centered at
x =

3as
2 , the conditions (52) are satisfied if the zeros of S2b(x) are

located between two successive zeros of w(x). In generalization
of this result, we discuss in this section computational studies of
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Fig. 13. N-bump solutions for N = 2, . . . , 6 obtained by solving the system (50) with h = W (10). The parameters of the couplings are A = 2, k = 0.1 and α =
π
10 .

Fig. 14. Coupling function w(x) (solid line) given by (6) with A = 2, k = 0.1, α =
π
10 and external input Snb(x) (dashed line) given by (53) with Ss = 6, Si = 1, σ =

5 (ln(36))−
1
2 , xcj = 20(j − 1) + 5 for j = 1 (left), j ∈ 1, 2 (middle) and j ∈ {1, 2, 3, 4, 5, 6} (right).

the formation of N-bump solutions in the presence of an equal
width and distance multi-modal input which is centered at x =
(2N−1)as

2 and satisfies nas ∈ (zn, zn+1) , n ∈ 1, . . . ,N (Fig. 14, right).
Specifically, the input pattern is given as the sum of equally spaced
Gaussian functions

Snb(x) =

n
j=1

Sse


−

(x−xcj )
2

2σ2


− Si, (53)

centered at positions xcj > 0.
Fig. 15 shows the formation of stationary 6-bump solutions in

the presence of different input distributions (top) which converge
to the same 6-bumppatternwhen the input is removed at time t =

T (bottom). The 6-bump solution is triggered in the first and second
examples by six inputs with the same width (approximately 11
and 6, respectively) and the same distance between individual
inputs (approximately 8 and 14, respectively), and in the third
example by six inputs with constant width but varying relative
distances. Note that the solution in the bottom panel corresponds
to the stable 6-bump solution of system (50) shown in Fig. 13
when this pattern is centered in the interval [30, 150]. Important
for practical applications of a memory function, the numerical
evidence suggests that a transient input pattern that violates
the equal width and distance condition to some extent becomes
represented by the stable 6-bump solution as long as the spatial
relation between the successive zeros of w(x) and Snb(x) is
preserved. A rigorous mathematical proof, like in the two-bump
case (Fig. 11), of the convergence of the boundary points of each
input-induced bump to the corresponding bump of the memory
representation remains a challenge for the future.

Interestingly, the prediction that a neural population repre-
sentation of external cues based on strong recurrent interactions
within the neural population is not necessarily in perfect agree-
ment with the perceived stimulus events is supported by neural
and behavioral data [29,30]. A recent study reports direct experi-
mental evidence that in multi-item working memory the individ-
ual memory traces may interfere [15]. The authors showed that
depending on the their relative distance, two simultaneously
memorized spatial locations are recalled with a strong bias, as if
the two memory traces attract or repel each other. Such metric ef-
fects can be explained by dynamic field theory [6]. Moreover, the
dynamic field model with oscillatory coupling function predicts
that the mutual interactions between adjacent regions of excita-
tion may even lead to solutions for which the number of bumps
does not match the number of inputs. This is illustrated in the nu-
merical simulations shown in Fig. 16. Here, the distance between
adjacent inputs violates condition (52).

Depending on their distance, two input induced excitationsmay
merge into a single bump at an intermediate position (column 1),
may repulse each other (column 2), or may create an additional
bump at a position without external input (column 3). While
the third case illustrates the creation of a ‘‘false memory’’, the
opposite is also true. The summed inhibition from two flanking
bumps may suppress the excitation at an intermediate position
if three localized inputs are close together (column 4). The
mutual interactions between local excitations can be qualitatively
understood by considering the excitatory or inhibitory stimulus
(measured relative to the resting state) that an existing bump
receives from a local excitation induced by a second input (and
vice versa). If the stimulus intensity at the two boundary points
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Fig. 15. Top: numerically simulated 6-bump solutions u(x) (solid line) in the presence of different input distributions S6b(x) (dashed line) given by (53). Bottom: steady
state solution after cessation of the inputs at time t = T . Input parameters are Ss = 9, Si = 1, σ = 3 (ln(81))−

1
2 (left), σ = 5.5 (ln(81))−

1
2 (middle) and σ = 5 (ln(81))−

1
2

(right), xcj = 20(j − 1) + 40 for j ∈ {1, 2, 3, 4, 5, 6} (left), xcj = 19(j − 1) + 42 for j ∈ {1, 2, 3, 4, 5, 6} (middle) and xc1 = 40, xc2 = 56, xc3 = 83, xc4 = 100, xc5 = 117 and
xc6 = 140 (right).

Fig. 16. Top: steady states u(x) (solid line) of numerical simulations of the field model with input S2b(x) or S3b(x) (dashed line). Bottom: stable excitation patterns after
cessation of the input at time t = T . The inputs are given by (53) with Ss = 9, Si = 1, σ = 3 (ln(81))−

1
2 , and xc1 = 55, xc2 = 65 (first column), xc1 = 54, xc2 = 66 (second

column), xc1 = 40, xc2 = 80 (third column), and xc1 = 50, xc2 = 60, xc3 = 70 (fourth column).

Fig. 17. Distribution of excitatory and inhibitory stimuli given by a stable bump
u(x). Excitation and inhibition is defined relative to the rest state −h.

differs, the bumpwill start to move in the direction of the stimulus
gradient [14]. When a local excitation exists in the region A of
another local excitation (Fig. 17), they mutually attract since the
stimulus is stronger in the near sides of the local excitations than in
the far sides. The equilibrium solution is a bump at an intermediate
position between the input locations. For a local excitation in
region B, the situation is opposite. The stronger stimulus at the
far sides compared to the near sides causes the two excitations
to move in opposite directions, until the equilibrium two-bump
solution is reached. The two-bump is also the equilibrium solution
when the second excitation exists in region C since the two
suprathreshold activity patterns again mutually attract. If two
existing bumps are located at an even larger distance in which
the excitatory lateral interaction in the interval [z2, z3] overlaps,
the summed excitatory stimulus at an intermediate position may
be strong enough to trigger the evolution of a bump. This is the
case for the example in Fig. 16 (column 3) where the distance
between the flanking bumps is 40 and the maximum of the lateral
excitation is located at a distance (z2 + z3)/2 ≈ 20. Reducing
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Fig. 18. Different N-bump solutions u(x) (solid line) triggered by the input distribution S6b(x) in Fig. 15 (left) with small changes in the location of individual inputs:
xc6 = 130 (left), xc4 = 90 (middle) and xc2 = 70, xc4 = 90 (right). The snapshots in the middle and the bottom rows represent the activity patterns at t = 40 and t = 250,
respectively, after cessation of the input. The vertical lines indicate an interval of length L = 120.

the distance between the two flanking bumps to 20 results in the
superposition of strong lateral inhibition at position (z1 + z2)/2 ≈

10. This explains the suppression of the third input in thenumerical
simulation of Fig. 16 (column 4). It is important to notice that
the stable solutions shown in columns 2, 3 and 4 of Fig. 16 are
specific predictions of the field model with an oscillatory coupling
function and cannot be explained by Amari’s original model of
lateral inhibition type [14]. A direct comparison of experimental
findings of metric memory effects with the prediction of field
models with different interaction kernels is left for future studies.

The impact of these interaction phenomena on the formation of
amulti-bumppattern is illustrated in Fig. 18. The input distribution
of Fig. 15 (left) has beenmodified by reducing the relative distance
between pairs of adjacent inputs. As a result, a stable 5-bump
solution evolves in response to the six inputs either because
of fusion (input positions 5 and 6, left) or suppression (input
position 3, right). The example in themiddle column is particularly
interesting since it shows that a stable 6-bumpmay evolve despite
the fact that one or more input pairs in the center of the input
distribution (here positions 3 and 4) violate condition (52). As can
be seen in the snapshots of the temporal evolution of population
activity, the local excitations at positions 3 and 4 first merge.
Subsequently, a bump is created at position 4 due to the summed
lateral excitation from the two flanking activity patterns.

Parameter α controls the spatial ranges of excitation and
inhibition within the field. Consequently, the shape and the spatial
extension of an N-bump solution vary with α. Fig. 19 (left)
compares for N = 1, . . . , 6 the summed width of all bumps as
a function of α. The values obtained by solving system (50) are
in good agreement with the predicted value when taking N times
the width of a single bump (compare Fig. 3). This shows that the
lateral interactions between multiple regions of excitation have a
minor effect on their shapes. However, increasing the number of

inputs in a given finite interval of the field is predicted to increase
the probability of having distance-dependent interaction effects
such as attraction, repulsion or extinction (Fig. 16, see also the
discussion onmemory load in [15]). Important from an application
point of view is that the number of bumps that may exist in an
interval of length L increases with increasing α. Fig. 19 (right)
shows this dependency for the interval length L = 120. Since the
number of bumps defines the maximal number of localized inputs
that can be stored in the interval, larger values of α increase the
spatial resolution of the memory representation. Solving system
(50) with α =

π
10 and α =

π
20 , respectively, predicts the existence

of a stable 6-bump solution and a stable 3-bump solution in an
interval of length L = 120, respectively. A comparison of the
numerical simulations in Fig. 20 with the simulations in Fig. 15
shows that for α =

π
20 the six inputs trigger the evolution of a

stable 2-bump solution (left) or a stable 3-bump solution (right)
instead of a stable 6-bump solution obtained for α =

π
10 in Fig. 15.

The decisive factor whether two or three bumps evolve is the input
width. Only for the larger inputs, the initial local excitations at
input locations 3 and 4 mutually attract and merge into a bump
at an intermediate position. For the smaller inputs, the spread of
excitation is not sufficient, and the inhibition from the flanking
bumps dominates the solution.

6. Conclusion

In this paper, we have studied the formation of multi-bump
solutions of a scalar neural field in the presence of external
inputs. Persistent neural population activity, initiated by transient
external cues, has been proposed as a computational mechanism
in higher brain areas in order to preserve memories over
time [31]. The specific research questions we have addressed are
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Fig. 19. Left: the summed width of all bumps of an N-bump solution is shown as a function of α (A = 2, k = 0.1) for N = 1, . . . , 6. The asterisks indicate the values for the
solutions shown in Fig. 13. Right: the maximum number of bumps in an interval of length L = 120 is plotted as a function of α.

Fig. 20. Snapshots of the evolution of a 2-bump solution (left) and a 3-bump solution (right) in response to six transient inputs (dashed line). The two input distributions
S6b(x) are taken from the examples in the left and in the middle panels of Fig. 15, respectively. The value of α is changed to α =

π
20 .

motivated by the practical need in application domains such as
Neuro-Robotics [32,16] and Cognitive Sciences [10,30] to better
understand the constraints on the input shape that guarantee the
existence and stability of input-induced multi-bump solutions.
Numerical simulations of the field model show that N localized
inputs will not necessarily generate a stable N-bump pattern even
if this solution exists as an attractor state of the field dynamics.

For a class of oscillatory coupling functions w(x), we developed
criteria in the second and the third sections so as to ensure the
existence and linear stability of one-bump and symmetric two-
bump solutions in a field of Amari-type without andwith localized
inputs. Themain results of themathematical proofs include (a) the
assignment of suitable values for the parameter h regarding the
coupling parameters, and (b) conditions on the inputwidth and the
distance between inputs as a function of the zero crossings ofw(x).
As an additional constraint of a memory functionality, the analysis
takes into account that the input-induced unimodal or bimodal
patterns should converge to a stable one-bump or two-bump
solution, respectively, when the input is removed. Using phase-
plane analysis tools, we have shown that for a whole range of

input-depended initial values, the trajectories for the bump width
a and the distance between bumps b converge to the equilibrium
solution, thus defining the stable pattern.

In Section 5, we have extended the analysis to symmetric
multi-bump solutions in a field without input by (a) deriving
a set of equations that an N-bump solution must satisfy, and
(b) generalizing Amari’s formal argument for bump stability.
Moreover, and in numerical simulations of the fieldmodel,wehave
then shown that the rigorous constraints on the input shape for the
two-bump case can be exploited to generate stable, input-induced
multi-bump solutions.

Furthermore, for the cases where (a) the constraints on the
input shape are violated, or (b) the spatial ranges of the lateral
connections (controlled by the parameter α) are changed, we have
shown that the pattern formation process can be understood in
terms of the mutual interactions between neighboring regions of
excitation.

From an application perspective there are several directions
that would be worthwhile exploring in future research. Multiple
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sensory inputs have to be memorized not only when they are
presented simultaneously, as in the present study, but also when
they are presented sequentially [10]. The evolution of a localized
excitation representing a new cue thus starts from an already
spatially structured initial condition (compare Fig. 17), which
may effect the new population representation in many ways. The
pre-structured field predicts for instance a distance-dependent
detection threshold for a weaker, subthreshold cue. A thorough
analysis in which the amplitude of the Gaussian input or the
amplitude of the interaction kernel is treated as a bifurcation
parameter would be worth performing.

A natural extension to two space dimensions with a radially-
symmetric coupling function of type (6) is of interest to implement
a joint memory representation of two cue parameters. While
numerical evidence reported in [17] supports the existence of
some type of multi-bump solutions, a rigorous analysis of their
existence, as well as their stability and spatial properties, remains
an open challenge even for a two-bump solution. Nevertheless, a
systematic numerical investigation of input-induced multi-bump
solutions and their dependence on the spatial input properties
would be of great practical value for applications of dynamic field
theory.

A limitation of the Amari model is that it does not allow one to
store the saliency of an external input in the bump amplitude (or
their relative frequency if inputs are presented several times [6]).
It would be of interest to extend the present study of multiple
input-induced regions of excitation to field models with separate
excitatory and inhibitory populations. These models are known to
support a continuum of bump amplitudes if the strength of the
recurrent interactions is precisely balanced [33].
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Appendix A. Proofs

A.1. Proof of Theorem 1

Proof. If u(x) = W

x +

a
2


− W


x −

a
2


− h + S1b (x) is a one-

bump solution with R[u] =

−

a
2 ,

a
2


, we have u


−

a
2


= u

 a
2


=

0, u(x) > 0 on

−

a
2 ,

a
2


and u(x) < 0 otherwise. Thus, u

 a
2


=

0, u(x) > 0 if x ∈

0, a

2


and u(x) < 0 if x > a

2 . These relations can
be transformed into (i)–(iii).

On the contrary, when (i)-(iii) hold, hypotheses (H1) and (H2)
imply that W is continuous and odd. Using the oddness of W and
hypothesis (SH1) we have that u(x) is symmetric with respect to
x = 0, that is, u (−x) = u (x). Then, u


−

a
2


= u

 a
2


= 0, u(x) > 0

if x ∈

−

a
2 , 0


and u(x) < 0 if x < −

a
2 . Therefore, u


−

a
2


=

u
 a
2


= 0, u(x) > 0 on


−

a
2 ,

a
2


and u(x) < 0 otherwise, that is,

u(x) is a one-bump solution with R[u] =

−

a
2 ,

a
2


. �

A.2. Proof of Theorem 2

Proof. Let W (x) be the integral of w(x) satisfying (H1), (H2) and
(H5)–(H7). The value of W (z2) is the first relative minimum of W
for x > 0. From (H7) and the fact thatW is odd, continuous and its
oscillations decay with distance, we can conclude that W (x) > 0
for all x > 0,W (x) < 0 for all x < 0 andW (0) = 0.

Assume that W (z3) < h < W (z1) is satisfied. Let a ∈ (z1, z2)
be a solution of W (a) = h, the value of W (z3) is the first relative
maximum ofW (x) for x > a. Then,

W

x +

a
2


< W (a) = h, for all x >

a
2
. (A.1)

From (A.1) and the fact thatW

x −

a
2


> 0 for all x > a

2 it follows
that

u(x) = W

x +

a
2


− W


x −

a
2


− h < 0,

for all x >
a
2
. (A.2)

Let u′(x) = w

x +

a
2


− w


x −

a
2


. As the function w(x) is

symmetric with respect to x = 0, positive and decreasing on
[0, z1) and negative on (z1, z2), and since a

2 ∈ (0, z1) holds, we
can conclude that u′(x) < w

 a
2


− w

 a
2


= 0 for all x ∈


0, a

2


.

Then, u(x) is decreasing on

0, a

2


, and it follows that

u(x) > u
 a
2


= W (a) − W (0) − h = 0, when 0 < x <

a
2
.(A.3)

As u(x) is symmetric with respect to x = 0, u

−

a
2


= u

 a
2


=

0, u(x) > 0 if − a
2 < x < 0 and u(x) < 0 if x < −

a
2 . Therefore, u(x)

is a one-bump solution with R[u] =

−

a
2 ,

a
2


.

Since a ∈ (z1, z2), we havew(a) < 0, and therefore the solution
is stable. �

A.3. Proof of Lemma 1

Proof. From (9) it follows that W

x +

nπ
α


, for all n ∈ N, can be

written as

W

x +

nπ
α


= −p1


e−k(x+ nπ

α ) (p3 sin (αx + nπ) + p2 cos(αx + nπ)) − p2


.

If n is odd we have

W

x +

nπ
α


= −p1e−kxe−

knπ
α (−p3 sin (αx) − p2 cos(αx)) + p1p2

= −e−
knπ
α

−p1e−kx (p3 sin (αx) + p2 cos(αx)) + p1p2


+ e−

knπ
α p1p2 + p1p2

= −e−
knπ
α W (x) + p1p2


1 + e−

knπ
α


.

On the other hand, if n is even we have

W

x +

nπ
α


= −p1e−kxe−

knπ
α (p3 sin (αx) + p2 cos(αx)) + p1p2

= e−
knπ
α

−p1e−kx (p3 sin (αx) + p2 cos(αx)) + p1p2


− e−

knπ
α p1p2 + p1p2

= e−
knπ
α W (x) + p1p2


1 − e−

knπ
α


.

This proves the first equality, the second equality can be proven
in a similar manner. �

A.4. Proof of Lemma 2

Proof. By Lemma 1 we obtain

W
π

α


= W


0 +

π

α


= −e−

kπ
α W (0) + p1p2


1 + e−

kπ
α


;
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and

W (z3) = W

z2 +

π

α


= −e−

kπ
α W (z2) + p1p2


1 + e−

kπ
α


.

AsW (0) = 0,

W
π

α


= p1p2


1 + e−

kπ
α


.

Suppose thatW (z2) > 0, then −e−
kπ
α W (z2) < 0 and

p1p2

1 + e−

kπ
α


> −e−

kπ
α W (z2) + p1p2


1 + e−

kπ
α


i.e.,

W
π

α


> W (z3) .

A.5. Proof of Theorem 3

Proof. From (H2) and (SH1), the function defined by G(x) =

W (x) + S1b
 x
2


− h is continuous for all x ≥ 0.

Assuming that S1b
 z1

2


> 0 and h < W (z1) hold, we obtain

W (z1) + S1b
 z1
2


− h > 0. (A.4)

On the other hand, assuming that S1b
 z2

2


< 0 and h > W (z3)

hold, we obtain

W (z2) + S1b
 z2
2


− h < 0. (A.5)

Thus, by the intermediate value theorem, there exists a value a ∈

(z1, z2) such that G(a) = 0. As G(x) is monotonically decreasing
in the interval [z1, z2] there exists a unique value a ∈ (z1, z2), that
satisfies the equation G(x) = 0. In addition, if x ∈ [0, z1], we have
h − S1b

 x
2


− W (x) < 0 because h − S1b

 x
2


− W (x) is decreasing

and S1b(0) > h. If x ≥ z2, we have h− S1b
 x
2


−W (x) > 0 because

h > W (x), S1b
 x
2


is decreasing and S1b

 z2
2


< 0. Therefore the

equation

h − S1b
 x
2


= W (x) (A.6)

has a unique positive solution a that belongs to (z1, z2). �

A.6. Proof of Theorem 4

If h = W


π
α


(with W


π
α


= p1p2


1 + e−

kπ
α


> 0), and τ is a

triple of the form (a, b, a + b), then uτ is a a-quasi-solution if and
only if uτ (0) = uτ (a + b) = 0 and uτ (a) = uτ (b) = 0. Next, we
find a non-trivial solution of the following system of equations

W (a + b) − W (b) = 0, (A.7)

and

W (b) − W (b − a) = 0. (A.8)

Let a =
π
α
, it follows that

W
π

α
+ b


− W (b) = 0, (A.9)

and

W (b) − W

b −

π

α


= 0. (A.10)

Using (9), and by Lemma 1, we obtain

− e−
kπ
α W (b) + p1p2


1 + e−

kπ
α


− W (b) = 0, (A.11)

and

W (b) + e
kπ
α W (b) − p1p2


1 + e

kπ
α


= 0. (A.12)

It follows

W (b) = p1p2. (A.13)

Since b > a, and W (b) = p1p2, p3 < 0, we obtain

b = −

arctan


p2
p3


α

+
nπ
α

for some n ∈ N. (A.14)

Thus, for a =
π
α

there exists a value of b such that the
conditions (A.7) and (A.8) are satisfied. This completes the proof
of the theorem. �

A.7. Proof of Theorem 5

Proof. Recall that

u(x) = W

x +

b + a
2


− W


x +

b − a
2


+W


x −

b − a
2


− W


x −

b + a
2


− W

π

α


(A.15)

and

uτ (x) = W (x) − W (x − a) + W (x − b) − W (x − c) − h. (A.16)

If a =
π
α
, b ∈ (z2, z3) such that W (b) = p1p2, c = a + b, with

h = W


π
α


, by Theorem 4, we have that uτ (0) = uτ


π
α


=

uτ (b) = uτ


b +

π
α


= 0, which is equivalent to u


−

b
2 −

π
2α


=

u

−

b
2 +

π
2α


= u

 b
2 −

π
2α


= u

 b
2 +

π
2α


= 0.

As b ∈ (z2, z3), and sinceW (b) = W (b+
(n−3)π

α
) = p1p2 for all

n ∈ N, we have for all x ∈


b +

(n−3)π
α

, b +
(n−2)π

α


W (x) ≥ p1p2, if n is odd, (A.17)

and

W (x) ≤ p1p2, if n is even. (A.18)

(i) If 0 < x < b
2 −

π
2α , we have

x −
b
2

+
π

2α
< 0, (A.19)

x −
b
2

−
π

2α
< −

π

α
, (A.20)

b −
2π
α

<
b
2

−
π

2α
< x +

b
2

−
π

2α
< b −

π

α
, (A.21)

and

b −
π

α
<

b
2

+
π

2α
< x +

b
2

+
π

2α
< b. (A.22)

Then, from (A.19) and (A.20), it follows

W

x −

b
2

+
π

2α


< 0 and

W

x −

b
2

−
π

2α


> −W

π

α


.

(A.23)

On the other hand, from (A.17), (A.18), (A.21) and (A.22) it
follows

W

x +

b
2

−
π

2α


> p1p2 and

W

x +

b
2

+
π

2α


< p1p2.

(A.24)
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Then, from (A.23) and (A.24), we conclude that

u(x) < p1p2 − p1p2 − 0 + W
π

α


− W

π

α


= 0. (A.25)

Therefore, u(x) < 0 when 0 < x < b
2 −

π
2α .

(ii) Let F(x) = W

x −

b
2 +

π
2α


−W


x −

b
2 −

π
2α


. It follows from

our hypotheses that F(x) is a C1 function on [0, +∞) with

F ′(x) = w


x −

b
2

+
π

2α


− w


x −

b
2

−
π

2α


. (A.26)

As the function w(x) is symmetric with respect to x = 0,
positive and decreasing on [0, z1) and negative on (z1, z2),
and since π

2α ∈ (0, z1) holds, we can conclude that F ′(x) ≥

w


π
2α


− w


π
2α


= 0 for all x ∈

 b
2 −

π
2α , b

2


and F ′(x) ≤

w


π
2α


− w


π
2α


= 0 for all x ∈

 b
2 ,

b
2 +

π
2α ,


. Then, F(x)

is increasing on
 b
2 −

π
2α , b

2


and decreasing on

 b
2 ,

b
2 +

π
2α


. It

follows that

F(x) ≥ W (0) − W

−

π

α


if x ∈


b
2

−
π

2α
,
b
2


, (A.27)

and

F(x) ≥ W
π

α


− W (0) if x ∈


b
2
,
b
2

+
π

2α


. (A.28)

Thus,

F(x) ≥ W
π

α


, if

b
2

−
π

2α
< x <

b
2

+
π

2α
. (A.29)

If x ∈
 b
2 −

π
2α , b

2 +
π
2α


, from (A.17) and (A.18) it follows

W

x +

b
2

+
π

2α


− W


x +

b
2

−
π

2α


> p1p2 − p1p2 = 0. (A.30)

Then, from (A.29) and (A.30) we obtain

u(x) > W
π

α


+ 0 − W

π

α


= 0. (A.31)

Therefore, u(x) > 0 if b
2 −

π
2α < x < b

2 +
π
2α .

(iii) If b
2 +

π
2α < x ≤

b
2 +

3π
2α , we have W


x −

b
2 −

π
2α


> 0,

from (A.17) and (A.18) it follows thatW

x +

b
2 +

π
2α


≤ p1p2

and that W

x +

b
2 −

π
2α


≥ p1p2. From Lemma 2 we have

W

x −

b
2 +

π
2α


< W


π
α


. Thus, we obtain

u(x) < p1p2 − p1p2 + W
π

α


− 0 − W

π

α


= 0. (A.32)

If x > b
2 +

3π
2α , we haveW


x +

b
2 +

π
2α


< W (z5),W


x+

b
2 −

π
2α


> W (z4),W


x −

b
2 +

π
2α


< W (z3), andW


x −

b
2 −

π
2α


> W (z2), consequently we obtain

u(x) < W (z5) − W (z4) + W (z3) − W (z2) − W
π

α


. (A.33)

By Lemma 1, it follows that

u(x) < −


e−

3kπ
α + e−

2kπ
α

 
1 + e

2kπ
α


W (z2)

+ p1p2

e−

3kπ
α + e−

2kπ
α


, (A.34)

from (H8), we obtain

u(x) < −


e−

3kπ
α + e−

2kπ
α


p1p2

+ p1p2

e−

3kπ
α + e−

2kπ
α


= 0. (A.35)

Therefore, from (A.32) and (A.35), u(x) < 0 for all x > b
2 +

π
2α .

As u(x) is symmetric with respect to x = 0, from (i)–(iii) we
can conclude that u(x) < 0 if −

b
2 +

π
2α < x < 0, u(x) > 0 if

−
b
2 −

π
2α < x < −

b
2 +

π
2α , and u(x) < 0 if x < −

b
2 −

π
2α .

Therefore, we can conclude that u(x) represents a two-bump
solution with R[u] =


−

b
2 −

π
2α , − b

2 +
π
2α


∪
 b
2 −

π
2α , b

2 +
π
2α


.

We recall from (19) that the solution corresponding to (a, b) =
π
α
, b

is stable if b ∈ (z2n, z2n+1) for some n ∈ N. Since

b ∈ (z2, z3), we conclude that the solution is stable with respect
to perturbations that preserve the equal-width condition. This
completes the proof of the theorem. �

A.8. Proof of Theorem 6

Proof. We define

F1(x, y) = W (x) + W (y) − W (y − x) − W
π

α


+ S2b


y − x
2


(A.36)

and

F2(x, y) = W (x) − W (y) + W (x + y) − W
π

α


+ S2b


x + y
2


. (A.37)

First consider the line y = x + z1 for π
α

≤ x < z2 and the line
y = x + z2 for z1 < x ≤

π
α

(compare Fig. 10). Substituting y in
(A.36) by x + z1 and x + z2, respectively, we obtain

F1(x, x + z1) = W (x) + W (x + z1) − W (z1)

−W
π

α


+ S2b

 z1
2


, (A.38)

and

F1(x, x + z2) = W (x) + W (x + z2) − W (z2)

−W
π

α


+ S2b

 z2
2


. (A.39)

Since S2b
 z1

2


< 0 by hypothesis, W (x) < W


π
α


and

W (x + z1) < W (z1) for all x ∈


π
α
, z2

, we conclude that

F1(x, x + z1) < 0 for all x ∈

π

α
, z2


. (A.40)

On the other hand, since S2b
 z2

2


> 0 by hypothesis, W (x) >

W


π
α


and W (x + z2) > W (z2) for all x ∈


z1, π

α


, we conclude

that

F1(x, x + z2) > 0 for all x ∈


z1,

π

α


. (A.41)

Thus, on the line connecting the two points P1 = (x1, x1 + z1) and
P2 = (x2, x2 + z2) with x1 ∈


π
α
, z2

and x2 ∈


z1, π

α


, there exists

a point (x∗, y∗) such that F1(x∗, y∗) = 0. In addition, ∂F1
∂y (x, y) > 0

holds in the region

Ω1 =

(x, y) ∈ R2

|x + z1 < y < x + z2 ∧ r1 < y < r2

, (A.42)

where r1, r2 are the lines defined by the points P1 and P2 with
x1 =

π
α
, x2 = z1, and x1 = z2, x2 =

π
α
, respectively. Therefore, by

the implicit function theorem, the equation F1(x, y) = 0 defines y
implicitly as an increasing function of x in the region Ω1.

Now, consider the line y = −x+ z3 for z1 < x ≤
π
α
and the line

y = −x + z4 for π
α

≤ x < z2. Substituting y in (A.37) by −x + z3
and −x + z4, respectively, we obtain

F2(x, −x + z3) = W (x) − W (−x + z3) + W (z3)

−W
π

α


+ S2b

 z3
2


, (A.43)
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and

F2(x, −x + z4) = W (x) − W (−x + z4) + W (z4)

−W
π

α


+ S2b

 z4
2


. (A.44)

Since S2b
 z3

2


> 0 by hypothesis, W (z3) > W (−x + z3) and

W (x) > W


π
α


for all x ∈


z1, π

α


, we conclude that

F2(x, −x + z3) > 0 for all x ∈


z1,

π

α


. (A.45)

On the other hand, S2b
 z4

2


< 0 by hypothesis,W (x) < W


π
α


and

W (z4) < W (−x + z4) for all x ∈


π
α
, z2

, we have

F2(x, −x + z4) < 0 for all x ∈

π

α
, z2


. (A.46)

Thus, on the line connecting the two points P3 = (x3, −x3 + z3)
and P4 = (x4, −x4 + z4) with x3 ∈


z1, π

α


and x4 ∈


π
α
, z2

,

there exists a point (x∗, y∗) such that F2(x∗, y∗) = 0. In addition,
∂F2
∂y (x, y) < 0 holds. Thus, the equation F2(x, y) = 0 defines y
implicitly as an increasing function of x in the region

Ω2 =

(x, y) ∈ R2

| − x + z3 < y < −x + z4

∧r3 < y < r4

, (A.47)

where r3, r4 are the lines defined by points P3 and P4 with x3 =
π
α
, x4 = z1 and x3 = z2, x4 =

π
α
, respectively.

Therefore, we can conclude that there exists a unique point
(a, b) ∈ Ω1 ∩ Ω2 ⊂ Ω that satisfies the system of equations
F1(a, b) = 0 and F2(a, b) = 0 (compare Fig. 11). �

A.9. Proof of Proposition 1

Proof. From (48) we can write

u (aN+m) =

N−1
i=0

(W (aN+m − a2i) − W (aN+m − a2i+1)) − h,

m ∈ {1, . . . ,N − 1}. (A.48)

As u is symmetric with respect to the point a0+a2N−1
2 , we have

aN+m = aN + aN−1 − aN−(1+m),m ∈ {1, . . . ,N − 1}. Then,

u (aN+m) =

N−1
i=0


W

aN + aN−1 − aN−(1+m) − a2i


− W


aN + aN−1 − aN−(1+m) − a2i+1


− h. (A.49)

As aN+m = aN + aN−1 − aN−(1+m), for m = N − 1 − 2i and
m = N − 2 − 2i, we have

aN + aN−1 − a2i = a2(N−i)−1 (A.50)

and

aN + aN−1 − a2i+1 = a2(N−i−1), (A.51)

respectively. Thus, we obtain

u (aN+m) =

N−1
i=0


W

a2(N−i)−1 − aN−(1+m)


− W


a2(N−i−1) − aN−(1+m)


− h. (A.52)

Using the oddness ofW (x), it follows that

u (aN+m) =

N−1
i=0


−W


aN−(1+m) − a2i+1


+ W


aN−(1+m) − a2i


− h, (A.53)

m ∈ {1, . . . ,N − 1}.

Therefore,

u (aN+m) = u

aN−(1+m)


(A.54)

and the system (49) can be reduced to
u(a0) = 0
u(a1) = 0
· · ·

u(aN) = 0.

� (A.55)

Appendix B. Numerical method and parameters

Using Matlab [25], we implement a forward Euler scheme to
integrate the neural field equation

∂u(x, t)
∂t

= −u(x, t) +


∞

−∞

w(x − y)f (u(y, t)) dy + g(x, t), (B.1)

where g(x, t) = S(x, t) − h, to a steady state.
We assume a finite domain Ω with length L. To minimize the

effect of the boundaries on the pattern formation process, the
domain size is chosen much larger than the length of the input
distribution, and the boundary points evolve freely according to
the numerical scheme.Ω is discretized into n equal intervals of size
∆x so that ∆x =

L
n . The spatial discretization defines the position

of neurons labeled as xi = i∆x for i = 0, 1, . . . , n. To find u(x, T )
where T > 0, we discretize time T into m equal steps of size ∆t
and write tj = j∆t for j = 0, 1, . . . ,m. The derivative in (B.1) is
replaced by the forward difference approximation

ut =
vi,j+1 − vi,j

∆t
+ O(∆t), (B.2)

where vi,j denotes the approximation of u(xi, tj) = u(i∆x, j∆t).
Ignoring the integral term, we have the scheme

vi,j+i = (1 − ∆t)vi,j∆tg(xi, tj). (B.3)

To solve Eq. (B.1) numerically, the nonlinear term correspond-
ing to the convolution integral is evaluated at step j using the Mat-
lab function conv with open boundary conditions. Note that the
convolution can be more effectively performed with a fast Fourier
transform. The forward Euler scheme is then given by

vi,j+i = (1 − ∆t)vi,j + ∆t

g(xi, tj) + Wj


, (B.4)

where Wj denotes the evaluation of the nonlinear integral term at
time step j.

For the numerical simulations presented in this paper we
applied ∆x = 0.005 and ∆t = 0.05.
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