MUTUUAL BINARY SOLUBILITIES: PERFLUOROMETHYLCYCLOHEXANE-HYDROCARBONS

M.G. BERNARDO GIL

Departamento Engenharia Quimica, I.S.T., 1096 Lisboa Codex (Portugal)

L.J.S. SOARES
Universidade do Minho, L. Paço, 4719 Braga Codex (Portugal)
(Received December 31, 1986; accepted in final form November 6, 1987)

ABSTRACT

Bernardo Gil, M.G. and Soares, L.J.S., 1988. Mutual binary solubilities: perfluorometbyl-cyclohexane-hydrocarbons. Flud Phase Equilibria, 41: 205-214.

Mutual binary solubility data for perfluoromethylcyclohexane $+\mathbf{n}$-hexane, n-heptane, $n-$ octane, n-nonane, 1 -hexene and 1 -heptene are reported.

NRTL and UNIQUAC parameters, for cach experimental temperaturc, werc obtaincd using a Newton-Raphson technique and the parameters so obtained were linearly correlated with T and T^{-1}.

UNIFAC group parameters for the interaction $\mathrm{CH}_{2} / \mathrm{CF}_{3}$ and $\mathrm{CH}=\mathrm{CH}_{2} / \mathrm{CF}_{3}$ were obtained from mutual solubility data using the same technique.

UNIFAC parameters were correlated with the number of carbon atoms and temperature.

INTRODUCTION

As part of a program to study multicomponent mixtures containing perfluoromethylcyclohexane (PFMCH) and hydrocarbons, this paper reports the results of measurements on liquid-liquid equilibrium for PFMCH +n -hexane, +n -heptane, +n -octane, +n -nonane, +1 -hexene and +1 heptene.

The correlation of the experimental data in terms of the NRTL, UNIQUAC and UNIFAC models is studied.

EXPERIMENTAL

Materials

PFMCH (Aldrich-Europe, minimum purity 99\%), n-hexane, n-heptane, n-octane and n-nonane (Merck, minimum purity 99.5%) and 1-hexene and 1-heptene (Fluka, minimum purity 99%) were used as supplied.

TABLE 1
Experimental liquid-liquid equilibrium compositions for the binary system PFMCH + nhexane

Temperature	Phase compositions (wt. fraction)	
(K)	X_{11}	X_{12}
276.25	0.4494	0.8840
276.45	0.4515	0.8790
277.25	0.4687	0.8751
278.45	0.5006	0.8671
279.15	0.5277	0.8571
279.55	0.5402	0.8500
280.55	0.5773	0.8344
281.55	0.6279	0.8086
281.75	0.6373	0.7981
281.85	0.6456	0.7976
281.95	0.6695	0.7680

Procedure

The experimental work was carried out using a thermostatted miniature cell similar to that described by Soares et al. (1974). Temperature was controlled within an accuracy of 0.01 K by means of a precision thermome-

TABLE 2
Experimental liquid-liquid equilibrium compositions for the binary system PFMCH + nheptane

Temperature	Phase compositions (wi. fraction)	
(K)	X_{11}	X_{12}
278.15	0.2637	0.9454
279.15	0.2738	0.9416
281.15	0.2930	0.9375
283.25	0.3142	0.9318
285.75	0.3398	0.9244
288.15	0.3646	0.9145
290.45	0.3983	0.9018
293.15	0.4333	0.8868
295.65	0.4794	0.8707
298.15	0.5403	0.8422
299.15	0.5744	0.8248
299.35	0.5858	0.8200
299.65	0.6052	0.8107
300.35	0.6532	0.7718

TABLE 3
Experimental liquid-liquid equilibrium compositions for the binary system PFMCH+noctane

Temperature (K)	Phase compositions (wt. fraction)	
\boldsymbol{X}_{11}	\bar{X}_{12}	
279.15	0.2034	0.9618
287.75	0.2479	0.9484
298.15	0.3189	0.9272
307.35	0.3991	0.8979
313.15	0.4606	0.8668
315.55	0.4954	0.8561
319.65	0.5555	0.8169
321.55	0.6399	0.7764

TABLE 4
Experimental liquid-liquid equilibrium compositions for the binary system PFMCH+nnonane

Temperature	Phase compositions (wt, fraction)	
(K)	X_{11}	X_{12}
279.05	0.1347	0.9781
288.15	0.1808	0.9668
293.15	0.1924	0.9614
298.15	0.2209	0.9550
308.15	0.2710	0.9300
318.15	0.3383	0.8977
323.55	0.3893	0.8709
325.65	0.4247	0.8573
330.05	0.4902	0.8008

ter. The mixtures were stirred with a magnetic stirrer for at least 30 min and settled during a 4 h period. Mutual solubility data were obtained by analysing the compositions of the two conjugate phases using a gas chromatograph (Pye Unicam) combined with an electronic integrator (Varian CDS 111).

Special care was taken with measurements above room temperature to avoid phase splitting due to cooling.

Weight fraction measurements were accurate to within ± 0.002.
Experimental results are presented in Tables 1-6.

TABLE 5
Experimental liquid-liquid equilibrium compositions for the system PFMCH + 1-hexene

Temperature	Phase compositions(wt. fraction)	
(K)	X_{11}	X_{12}
276.25	0.3761	0.9158
276.95	0.3841	0.9110
278.45	0.3995	0.8992
279.15	0.4095	0.8929
280.55	0.4284	0.8785
281.65	0.4481	0.8670
282.95	0.4810	0.8419
284.15	0.5119	0.8200
284.85	0.5403	0.8012
285.25	0.5596	0.7806
285.50	0.5691	0.7787
285.65	0.5808	0.7618
285.75	0.5902	0.7598
285.95	0.6668	0.7008
286.00	0.6851	0.6851

TABLE 6
Experimental liquid--liquid equilibrium compositions for the system PFMCH + 1-heptene

Temperature	Phase compositions (wt. fraction)	
(K)	X_{11}	X_{12}
279.15	0.2347	0.9464
283.15	0.2558	0.9404
288.15	0.2873	0.9283
293.15	0.3322	0.9141
298.15	0.3838	0.8882
300.65	0.4098	0.8720
303.15	0.4390	0.8558
305.55	0.4730	0.8318
306.15	0.4808	0.8245
307.75	0.5007	0.8009
308.15	0.5110	0.7960
309.35	0.5391	0.7762
310.65	0.5648	0.7423

CALCULATIONS

The thermodynamic equilibrium condition yields a system of N non-linear equations:
$F_{i}\left(A_{1}, A_{2}, \ldots, x_{1 j}, \ldots, x_{N j}, T\right)=\ln \frac{\gamma_{i 1}}{\gamma_{i 2}}-\ln \frac{x_{i 2}}{x_{i 1}}=0$
$i=1, N$
A_{1}, A_{2}, \ldots being the adjustable parameters of the selected correlating equation, $x_{1 j}, \ldots, x_{N j}$ the composition of components $1-N$ in phase j, and T the temperature.

This system of equations was solved using a Newton-Raphson technique, modified to avoid the trivial solution and ensure rapid convergence, enabling not only the determination of binary parameters from mutual solubility data at each temperature, but also the calculation of the compositions in phases in equilibrium for all the components, once the parameters are known.

NRTL and UNIQUAC equations
The NRTL (Renon and Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz, 1975) parameters ($a_{k d}$) obtained from mutual solubility data were then correlated with the temperature, through:
$a_{k l}=c_{k l}+d_{k l} T$
$a_{k l}=c_{k l}^{\prime}+d_{k l}^{\prime} / T$

UNIFAC equation

One of the basic assumptions of a "contribution of groups" method is that the interaction parameters between groups are independent of the molecules where groups occur. This is obviously the main advantage of such methods, enabling predictions of multicomponent equilibria once the interaction parameters between groups ($a_{i j}$) are known.

For $\mathrm{PFMCH} / \mathrm{n}$-alkane mixtures the interaction parameters between groups, $\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CF}_{2}$ (c), $\mathrm{CF}(\mathrm{c})$ and CF_{3} must be taken in account:
$a_{\mathrm{CH}_{3} / \mathrm{CH}_{2}}=a_{\mathrm{CH}_{2} / \mathrm{CH}_{3}}=0$
$a_{\mathrm{CF}_{2}(\mathrm{c}) / \mathrm{CF}(\mathrm{c})}=a_{{\mathrm{CF}(\mathrm{c}) / \mathrm{CF}_{2}(\mathrm{c})}=0}$
$a_{\mathrm{CH}_{2} / \mathrm{CF}_{2}(\mathrm{c})}=a_{\mathrm{CH}_{3} / \mathrm{CF}_{2}(\mathrm{c})}=a_{\mathrm{CH}_{2} / \mathrm{CF}(\mathrm{c})}=a_{\mathrm{CH}_{3} / \mathrm{CF}(\mathrm{c})}$
$a_{\mathrm{CF}_{2}(\mathrm{C}) / \mathrm{CH}_{2}}=a_{\mathrm{CF}_{2}(\mathrm{c}) / \mathrm{CH}_{3}}=a_{\mathrm{CF}(\mathrm{c}) / \mathrm{CH}_{2}}=a_{\mathrm{CF}(\mathrm{c}) / \mathrm{CH}_{3}}$
The interaction parameters $a_{\mathrm{CH}_{2} / \mathrm{CF}_{2}(\mathrm{c})}$ and $a_{\mathrm{CF}_{2}(\mathrm{c}) / \mathrm{CH}_{2}}$ were obtained from mutual solubility data of perfluorodecaline/ n-alkane systems (Bernardo Gil and Soares, 1986).

Considering in addition

$$
\begin{align*}
& a_{\mathrm{CH}_{2} / \mathrm{CF}_{3}}=a_{\mathrm{CH}_{3} / \mathrm{CF}_{3}} \tag{8}\\
& a_{\mathrm{CH}_{3} / \mathrm{CH}_{2}}=a_{\mathrm{CF}_{3} / \mathrm{CH}_{3}} \tag{9}
\end{align*}
$$

the interaction parameters $a_{\mathrm{CH}_{2} / \mathrm{CF}_{3}}$ and $a_{\mathrm{CF}_{3} / \mathrm{CH}_{2}}$ can be obtained from mutual solubility data for any PFMCH/alkane system.

Having calculated the parameters from the experimental data for a given binary mixture we should be able to predict the mutual solubility data for any other PFMCH/n-alkane mixture. However, the analysis of PFMCH/ hydrocarbon binary equilibrium data revealed significant differences between the group interaction parameters obtained from experimental data for each PFMCH/hydrocarbon system. As a result the following alternative approaches were used.
(1) Simultaneous correlation of all mutual solubility data available for $\mathrm{PFMCH} / \mathrm{n}$-alkanes, allowing for the temperature dependence of the interaction parameters, through eqn. (2) or (3).
(2) Analysis of the parameter dependence on the number of carbon atoms of the alkane (N_{c}) and the temperature (T) using
$a_{i j}=A_{i j}+B_{i j} N_{\mathrm{c}}+C_{i j} N_{\mathrm{c}}^{2}$
where $A_{i j}, B_{i j}$ and $C_{i j}$ are temperature dependent.
These parameters together with the parameters determined for the $\mathrm{CH}_{2}=\mathrm{CH} / \mathrm{CF}_{2}(\mathrm{c})$ interactions (Bernardo Gil and Soares, 1986) and the mutual solubility data for PFMCH/1-hexene and PFMCH/1-heptene allow the calculation of the group interaction parameters for $\mathrm{CH}_{2}=\mathbf{C H} / \mathrm{CF}_{3}$.

The parameters recommended by Jorgensen et al. (1979) and by Magnussen et al. (1981) for $\mathrm{CH}_{2}=\mathrm{CH} / \mathrm{CH}_{2}$ interactions were used.

DISCUSSION OF RESULTS

From the temperature-dependence analysis for the NRTL parameters ($\tau_{i j}$ and $\tau_{j i}$) obtaincd from PFMCH/hydrocarbon mutual solubility data (Table 7), it is possible to infer that linear temperature dependence yields a better correlation of binary parameters. However, better results can be obtained for PFMCH/n-nonane with $\tau_{i j}=\phi(1 / T)$.

For fluorocarbon/hydrocarbon systems a value of $\alpha_{12}=0.4$ has been recommended by Renon et al. (1968). No significant evidence of improvement on the predicted mutual solubility data has been found when α_{12} is changed. As for the perfluorodecaline/hydrocarbon systems (Bernardo Gil and Soares, 1986), $\alpha_{i j}=0.4$ can be used for $\mathbf{P F M C H} / \mathbf{n}$-hexane and PFMCH/1-hexene, but $\alpha_{i j}=0.3$ is recommended for the other PFMCH/ hydrocarbon binaries.

A similar analysis was conducted for the UNIQUAC equation with equivalent results (Table 7). It must be pointed out that in the temperaturedependence analysis of the UNIQUAC parameters, the relationships (2) and
TABLE 7
RMSD ($\times 10^{3}$) values for PFMCH/hydrocarbon mutual solubility data, using temperature-dependent NRTL, UNIQUAC and UNIFAC parameters

System	NRTL equation				UNIQUAC equation				UNIFAC equation		
	$\tau_{i j}=\phi(T)$		$\tau_{i j}=\phi(1 / T)$		$\tau_{i j}$		$\Delta u_{i j}$		$a_{i j}$		
	$\alpha_{i j}=0.3$	$\alpha_{i j}=0.4$	$\alpha_{i j}=0.3$	$\alpha_{i j}=0.4$	$\phi(T)$	$\phi(1 / T)$	$\phi(T)$	$\phi(1 / T)$	a	b	c
PFMCH/n-hexane	3.3	3.7	5.9	5.0	4.0	6.0	4.1	4.8	4.0	$45.9{ }^{5}$	18.2
PFMCH/n-heptane	10.9	11.9	13.9	6.8	12.3	57.4	14.9	58.2	5.8	$39.7{ }^{3}$	16.1
PFMCH/n-octane	8.3	7.4	8.8	9.2	6.9	10.8	8.4	12.2	10.3	$36.4{ }^{2}$	$45.3{ }^{3}$
PFMCH/n-nonane	8.3	6.4	5.2	6.1	5.7	9.8	4.8	7.0	5.0	$78.6{ }^{1}$	36.1 ${ }^{1}$
PFMCH/1-hexene	5.4	7.4	7.9	7.8	10.7	10.0	6.7	6.1	12.8	$36.4{ }^{5}$	$32.0{ }^{5}$
PFMCH/1-heptenc	6.3	6.1	6.2	7.9	6.0	9.6	5.7	7.3	10.7	$33.7{ }^{1}$	$63.4{ }^{5}$

[^0]TABLE 8
Recommended parameters

System	NRTL equation			UNIQUAC equation	
	$\boldsymbol{\alpha}_{12}$	τ_{12}	τ_{21}	τ_{12}	τ_{21}
PFMCH/n-hexane	0.4	7.574-0.221T	12.70-0.0385T	1.1300-2.882 $\times 10^{-3} T$	$1.6990+9.623 \times 10^{-3} T$
PFMCH/n-heptane	0.3	6.682-0.0191T	7.229-0.0186T	$0.0228+2.193 \times 10^{-3} T$	$0.4014+1.895 \times 10^{-3} T$
PFMCH/n-octane	0.3	5.861-0.0150T	5.649-0.0128T	$0.0373+2.200 \times 10^{-3} T$	$0.7399+5.862 \times 10^{-3} \mathrm{~T}$
PFMCH/n-nonane	0.3	8.232-0.0219T	4.969-0.0100' ${ }^{\prime}$	$-0.6742+4.691 \times 10^{-3} T$	$1.375-1.726 \times 10^{-3} T$
PFMCH/1-hexene	0.4	16.14-0.0525T	7.369-0.0187T	$-3.1340+1.339 \times 10^{-3} T$	$3.516-9.108 \times 10^{-3}$ T
PFMCH/1-heptene	0.3	7.503-0.0219T	4.474-0.0083T	$\begin{aligned} & -0.8195+5.097 \times 10^{-3} T \\ & r(\mathrm{PFMCH})=7.07 \end{aligned}$	$\begin{aligned} & 1.492-1.987 \times 10^{-3} T \\ & q(\mathrm{PFMCH})=6.44 \end{aligned}$
UNIFAC					
$a_{i j}=A_{i j}+B_{i j} N_{\mathrm{c}}+C_{i j} N_{\mathrm{c}}^{2}$					
$a_{\mathrm{CH}_{2}=\mathrm{CH} / \mathrm{CH}_{2}}=2520.0 \mathrm{~K}$				$a_{\mathrm{CH}_{2} / \mathrm{CH}_{2}-\mathrm{CH}}=-200.0 \mathrm{~K}$	
$\mathrm{CH}_{2} / \mathrm{CF}_{3}$$\mathrm{~A}_{12}=1.437 \times 10^{4}-2.093 \times 10^{-1} T^{2}$				$\mathrm{CH}_{2}=\mathrm{CH} / \mathrm{CF}_{3}$	
$A_{12}=1.437 \times 10^{4}-2.093 \times 10^{-1} T^{2}$				$A_{12}=-9.913 \times 10^{4}+3.674 \times 10^{2} T$	
$B_{12}=-2.555 \times 10^{3}-5.935 T+5.943 \times 10^{-2} \mathrm{~T}^{2}$				$B_{12}=1.217 \times 10^{4}-4.596 \times 10 \mathrm{~T}$	
$\mathrm{C}_{12}=5.357 \times 10-7.909 \times 10^{-1} \mathrm{~T}-4.256 \times 10^{-3} \mathrm{~T}^{2}$				$C_{12}=0$	
$A_{21}=-2.025 \times 10^{4}+7.761 \times 10 \mathrm{~T}$				$A_{21}=1.261 \times 10^{4}-6.493 \times 10 T$	
$B_{21}=4.826 \times 10^{3}-1.863 \times 10 T$				$B_{21}=-5.350 \times 10^{2}+5.240 \mathrm{~T}$	
$\mathrm{C}_{21}=-2.721 \times 10^{2}+1.067 \mathrm{~T}$				$C_{21}=0$	

(3) were applied both to $\tau_{i j}$ and $\Delta u_{i j}$. The linear temperature dependence of $\tau_{i j}$ yields the best overall results, although better results can be obtained for $\mathrm{PFMCH} / \mathrm{n}$-nonane and PFMCH/1-hexene with $\Delta u_{i j}=\phi(T)$.

For the UNIFAC equation, the RMSD values between experimental and calculated compositions are, in general, much larger than for the other equations.

The correlation of the group interaction parameters with the number of carbon atoms of the hydrocarbons significantly improves the prediction. The simultaneous correlation of the available binary data does not seem suitable for the systems considered, although better results can be obtained for $\mathbf{P F M C H} /$ n-octane and PFMCH/1-heptene with this method.

For some tie-lines close to the critical solute temperature there are problems in convergence with UNIFAC parameters using either the temperature dependence obtained from simultaneous correlation of all available mutual solubility data or the correlation of the UNIFAC parameters with the number of carbon atoms of the hydrocarbons. This is due to the tendency of the equation to predict critical solution temperatures lower than the values obtained experimentally.

The RMSD values obtained when $a_{i j}$ are directly adjusted for each binary system (varying from system to system) are given in Table 7 as references with which to compare the other results. Obviously, the parameters so calculated have no significance in terms of a "group contribution" method.

Owing to cumulative errors, resulting from the step-by-step method used for the calculation of group interaction parameters, the larger deviations found with UNIFAC for PFMCH/alkenes were expected: $\mathrm{CH}_{2}=\mathrm{CH} / \mathrm{CF}_{3}$ interactions were the last to be accounted for using the values previously assumed for all the other groups.

Recommended parameters for NRTL, UNIQUAC and UNIFAC equations are presented in Table 8.

ACKNOWLEDGEMENTS

The authors express their gratitude to the Instituto Nacional de Investigação Científica which, through the C.Q.P.A. (Universidade do Minho) and C.P.Q. (Universidade Técnica de Lisboa), supported this work.

LIST OF SYMBOLS

$a_{i j}$ (UNIFAC) UNIFAC group parameters defined as (Fredenslund et al., 1975)

$$
a_{i j}=\frac{U_{i j}-U_{j j}}{R}
$$

$\begin{array}{ll}g_{i j}, & u_{i j} \\ U_{i j}\end{array}$
$\mathrm{CF}_{2}(\mathrm{c}), \mathrm{CF}(\mathrm{c})$
$\boldsymbol{X}_{i j}$
$\tau_{i j}$ (NRTL)
$\tau_{i j}$ (UNIQUAC) UNIQUAC adjustable parameters defined as (Abrams and Prausnitz, 1975)

$$
\tau_{i j}=\exp \left(-\frac{u_{i j}-u_{j j}}{R T}\right)=\exp \left(-\frac{\Delta u_{i j}}{R T}\right)
$$

REFERENCES

Abrams, D.S. and Prausnitz, J.M., 1975. Statistical thermodynamics of multicomponent liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J., 25 : 116.
Bernardo Gil, M.G. and Soares, L.J.S., 1986. Perfluorodecaline,/hydrocarbon systems: prediction and correlation of liquid-liquid equilibrium data. Fluid Phase Equilibria, 25 : 291.
Fredenslund, A., Jones, R.L. and Prausnitz, J.M., 1975. Group-contribution estimation of activity coefficients in non-ideal liquid mixtures. AIChE J., $21: 1086$.
Jorgensen, S.S., Kolbe, B., Gmehling, J. and Rasmussen, P., 1979. Vapour-liquid equilibria. by UNIFAC group contribution: revision and extension. Ind. Eng. Chem. Proc. Des. Dev., 18:714.
Magnussen, T., Rasmussen, P. and Fredenslund, A., 1981. UNIFAC parameter table for prediction of liquid-liquid equilibria. Ind. Eng. Proc. Des. Dev., 20:331.
Renon, H. and Prausnitz, J.M., 1968. Local composition in thermodynamic cxcess functions for liquid mixtures. AIChE J., 14:135.
Soares, L.J.S., Ashton, N.F. and Ellis, S.R.M., 1974. Prediction of multicomponent liquid equilibria data. Proc. ISEC, Lyon, V2: 1813.

[^0]: a, $a_{i j}=\phi(T)$ directly adjustable for each binary system (varying, obviously, from system to system).
 b, $a_{i j}=\phi(T)$ obtained from simultaneous correlation of all available mutual solubility data.
 $\mathrm{c}, a_{i j}$ as a function of the number of carbon atoms of the hydrocarbons considered and a 2 nd-degree dependence of temperature for all the mutual solubility data available.

 Superscript numbers ($1-5$) denote the number of upper tie-lines (close to C.S.T.) not included in the calculation.

