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Abstract 

The influence of the feed composition upon the actual degrees of separation 
attained at the top and bottom sections of a thermogravitational column is discussed 
using the classical phenomenological theory of Furry, Jones, and Onsager. It is shown 
that, except for a feed composition of CO = 0.5 (mass fraction), the separation profile 
is nonsymmetric, i.e., the separations in the top and bottom sections of the column are 
nonsymmetric with respect to the feed composition, the asymmetry increasing as the 
feed composition moves away from CO = 0.5. An equation for the determination of 
the optimum feed location as a function of the feed composition is derived. 

INTRODUCTION 

The degree of separation attained by a thermal diffusion column is usually 
expressed as 

A =  I C T -  CBI (1)  

where A is the degree of separation and C, and CB represent the mass 
fraction concentration of the reference component at the top and bottom ends 
of the column, respectively. 

In some instances it is convenient to consider separately the upper and 

897 

Copyright 0 198 1 by Marcel Dekker, Inc. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55641604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


898 MORGADO ET AL. 

lower sections of the column (also referred to as enriching and stripping 
sections) ( I )  in which case use is made of the so-called upper or top degree 
of separation, AT, and lower or bottom degree of separation, A,, defined as 

and, obviously, 

A = AT + A, (4 1 
It is generally accepted that, for an ideal column, the values of AT and AB 

should be identical or, in other words, that the separation should be 
symmetrical with regard to the initial concentration, C,, (2-4). As a 
consequence, the column design with a feed-line halfway along its length 
becomes well established and the reported asymmetrical separations experi- 
mentally observed are most often considered as deviations from the ideal 
behavior due, mainly, to some unequal heating along the column or annular 
eccentricities (5, 6). 

It is therefore of importance to determine to what extent is the asymmetry 
in separation a deviation from ideality or a consequence of the thermo- 
gravitational process. For this purpose, use is made of the phenomenological 
theory of Furry, Jones, and Onsager (7) as presented by Romero (8). 

BASIC EQUATIONS 

According to the theory (7, 8), the transport of the reference component 
along the column (Fig. 1) is governed by the equation 

where 

p2pg2B(AT)2(2a)7 
9!Dp2  

Kc = 

Kd = (2a)pDB 
and all other symbols are defined in the “Symbol” section. 
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FIG. 1. Thermogravitational column. 

By definition, W = 0 at the steady state and Eq. ( 5 )  becomes 

where the subscript 03 identifies “steady-state values.” 
Integration of Eq. (9) subjected to the condition 

yields 

where 

and 

ex’* cBm 
exz*CBm - cBm + 1 

c, = 

z* = ZIL 

HL 
A =  

Kc + Kd 

or, since in most situations K, >> Kd, A, the separation potential, is given by 
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It is possible to relate C, to the initial concentration Co through a mass 
balance for the reference component 

J:’., dZ* = c 0 

Introducing the value of C, from Eq. (1 1) into Eq. (1 4) and integrating, 
one obtains after rearranging 

The concentration at the top and bottom extremities of the column are 
simply obtained from Eq. (15), making Z* = 1 and Z* = 0, yielding 
respectively: 

Combining Eqs. (15) and (16), one may obtain the expression for the 
steady-state degree of separation, Am: 

Equation (17) is exactly the same as obtained previously by several 
authors (7, 1 O),  confirming, therefore, the validity of the expressions 
obtained for the dependence of C, on Z*. 

SEPARATION ASYMMETRY 

The symmetry condition 
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may be written, in accordance with Eq. (16), as 

,A( 1 -CO) + e-A( 1 -CO) - - e-x - e - A C ~  - eAC0 + 2 C o(eA + e-')= 4( Co - 2) 
(18) 

Analysis of Eq. (1 8) shows that the condition will hold only in two singular 
circumstances: 

(1) X = 0, in which case CT, = C,, = Co, i.e., there is no separation 
(2) Co = % (for any A) 

One may therefore conclude that the transport equation derived by Furry, 
Jones, and Onsager (7) does, indeed, predict that all separations are 
asymmetrical, except for the case of Co = 0.5. 

A measure of the actual asymmetry may be given by an asymmetry-factor, 
A,, defined as 

AT CT - co 
AB co - CB 

A,= In- = In 

It may be seen that, theoretically, A, = 0 for Co = 0.5. For Co f 0.5, the 
value of A, depends both on Co and A, since C,, and C,, are also functions of 
Co and A. 

The dependence of C,, , CT, , and A, on X is illustrated in Fig. 2 for Co = 
0.7 and Co = 0.9. As one would expect, A, increases as X increases and as Co 
moves away from the mid-value of 0.5. 

It is of importance to determine the exact section along the column length 
in which the actual average concentration is equal to the initial concentration. 
This section defines the optimum feed point which minimizes the time 
required to attain the steady-state (or that maximizes separation in con- 
tinuous operation) since in this case no disturbance is introduced in the 
concentration profile along the column length. 

From Eq. (15) one may get 

Thus the value of Z* at which C, = Co is 
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FIG. 2. Equilibrium concentrations at the top and bottom extremities of the column versus 

separation potential for different feed compositions. 
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<' 

On the other hand, at half-length of the column, the actual average 
concentration at the steady-state is simply obtained from Eq. ( 1  5 )  by making z* = y*. 

Equation (22) provides a mean of testing the actual deviation from ideality 
in most columns, since it is free from any end effects that may eventually 
affect C, or C,. 

Examples of the effect of X on the actual values of 2" 1 c = ~ ~  and C ,  1 p = 1 / 2  

are shown in Figs. 3 and 4 for an initial concentration of Co = 0.9 (or Co = 
O.l ) ,  Co = 0.7 (or C, = 0.3), and Co = 0.5. 

Sepn. potential, h 

FIG. 3. Location of the column section for which the equilibrium composition coincides with the 
feed composition as a function of the separation potential for different feed compositions. 
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FIG. 4. Equilibrium composition at the midsection of the column versus separation potential for 
different feed compositions. 

CON C LU S I0 N S 
The asymmetry of separation, i.e., CT - Co f C, - C,, does not 

necessarily imply a deviation from ideality. On the contrary, from the 
phenomenological theory of Furry, Jones, and Onsager, it is shown that 
asymmetric separations will occur if and when Co # 0.5. 

The column section at which the average concentration is equal to the 
initial concentration does not coincide with the half-length of the column, 
except for Co = 0.5. That section which corresponds to the optimum feed 
location is a function of both the initial concentration and the separation 
potential as shown by Eq. (21). 

SYMBOLS 

a 
Af 

one-half of the annulus width 
asymmetry factor defined by Eq. (19) 
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column width in the Y-direction 
mass fraction concentration of the reference component 
initial composition 
ordinary diffusion coefficient 
gravitational acceleration 
transport coefficient defined by Eq. (6) 
transport Coefficient defined by Eq. (7) 
transport coefficient defined by Eq. (8) 
column length 
average absolute temperature 
temperature difference between the hot and cold walls of the 
column 
mass flow rate of the reference component in the 2-direction 
dimensionless length, Z* = Z / L  
coordinate directions defined in Fig. 1. 

Greek Symbols 

a thermal diffusion factor 
p 
p density of the mixture 
A 
X 
,u viscosity of the mixture 

temperature coefficient of density (dp ldT)  

degree of concentration, A = 1 C, - C, 1 
separation potential defined by Eq. (1 3)  

Subscripts 

T top 
B bottom 
00 steady-state 
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