brought to you by T CORE

Fluid Phase Equilibria, 88 (1993) 159–170 Elsevier Science Publishers B.V., Amsterdam

VAPOR - LIQUID EQUILIBRIUM OF SYSTEMS CONTAINING PERFLUOROMETHYL-CYCLOHEXANE AND HYDROCARBONS

M. G. Bernardo-Gil^a, M. A. Ribeiro^a and L. J. S. Soares^b

^{*}Dep. Eng. Quimica - IST - 1096 Lisboa Codex (Portugal)

[°]Universidade do Minho - L. Paço - 4719 Braga Codex (Portugal)

Keywords: Fluorocarbons, hydrocarbons, perfluoromethylcyclohexane, experimental, phase equilibrium, local composition equations.

ABSTRACT

Vapor - liquid equilibrium data for the binary systems: Perfluoromethylcyclohexane + n-Hexane and Perfluoromethylcyclohexane + 1-Hexene were determined at 93.3 KPa and 328.15 K.

The vapor pressure for the pure components were also measured to calculate the Antoine constants.

The data were correlated by using the Van-Laar, Margules, Wilson, NRTL and UNIQUAC equations.

UNIFAC group-contribution parameters between CH_2 and CF_2 , and $CH_2=CH$ and CF_2 were also calculated.

INTRODUCTION

experimental determination binary Following our of solubilities (Bernardo-Gil and Soares, 1987, 1988) and liquid equilibria for some multicomponent perfluorocarbon + liquid hydrocarbon systems (Bernardo-Gil and Soares, 1986b, 1989, 1990), this paper reports the results of measurements on vapor - liquid equilibrium for binary systems containing perfluoromethylcyclo-hexane + n-hexane or + 1-hexene at 93.3 KPa and 328.15 K. The 328.15 K was selected for the isothermal temperature of determination because it is close to the azeotropic boiling points at 93.3 KPa.

The thermodynamic consistency of the data was tested by using the method described by Fredenslund et al. (1977). All the data are consistent.

A Nelder - Mead technique was used to reduce the data, minimizing an objective function based on the total pressure, providing the relevant Van-Laar, Margules, Wilson, NRTL and UNIQUAC parameters (Bernardo-Gil and Soares, 1986a).

The same technique was used to calculate the UNIFAC parameters for the contributions CH_2/CF_2 , CF_2/CH_2 , $CH_2=CH/CF_2$ and $CF_2/CH_2=CH$.

EXPERIMENTAL

Perfluoromethylcyclohexane (Aldrich-Europe, 99 %, GC, IR), n-hexane (Merck, p.a., 99 %, GC) and 1-hexene (Fluka, 99 %) were used as supplied. The experimental determinations were made in a miniature still (Figure 1), requiring a liquid charge of aproximately 25 ml.

The compositions of both phases were analysed by using a gas chromatograph equipped with a flame ionization detector and an integrator. Calibration analysis were carried out to convert the peak-area ratios to actual mole fractions of both components in the mixtures.

The main feature of the still is the direct sampling of the vapor phase, prior to condensation, into the gas chromatograph, thus overcoming the difficulty of sampling a partially miscible condensate. A glass capillary line (S_v) was let in the vapor line

from the top of the still to the cold finger condenser (C). The condensate returns to the bottom of the still by a capillary line (D). A magnetic stirrer (S) in the liquid phase enables perfect mixing of the returned condensate, insuring the uniformity of composition of the liquid phase. The level of liquid was maintained slightly above the end of the thermometer well $(T_{\rm T})$. The heating

chamber (B) was maintained at a temperature of 0.5 °C above the boiling point of the solution, thus eliminating all partial condensation without vapor phase superheating. Samples from liquid phase were withdrawn from the liquid sampling port (S_L) with a

pre-heated chromatographic syringe and injected into the chromatograph.

Although the period required for attainement of the steady state was about 10-15 minutes, the still was allowed to run for 30 minutes after which samples of liquid and vapor were taken alternately and analysed. Standard deviations of 0.1 % to 0.5 % on mole compositions were obtained.

A - Boiling chamber

- B Heating chamber
- C Finger condenser
- D Capillary return line for vapor condensate
- S Magnetic stirrer
- S_L Liquid sampling port
- S Capillary vapor sampling line
- T Thermometer well for heating liquid temperature
- T Thermometer well for boiling point temperature
- T Thermometer well for vapor space temperature

Fig. 1. Miniature equilibrium still

The condenser was connected to the vacuum pump via a cold trap. A pressure controller capable of controlling the pressure to within \pm 0.1 mm Hg and a surge tank were used to maintaining a constant pressure. The pressure in the still was measured by means a vertical mercury U-tube manometer and a cathetometer to within \pm 0.1 mm Hg.

Equilibrium temperatures were measured by using calibrated PT100 resistances connected to a digital thermometer, and could be measured to ± 0.05 °C or better.

RESULTS AND DATA ANALYSIS

The experimental vapor - liquid equilibrium data for perfluoromethylcyclohexane / n-hexane and perfluoromethylcyclohexane / 1-hexene at 328.15 K and 93.3 KPa are presented in tables 1 and 2.

The data were reduced by means of a Nelder - Mead technique to minimize the following objective function (Bernardo-Gil and Soares, 1982):

$$F = \sum_{i=1}^{N} (P_i^{cal} - P_i^{exp})^2$$

where N is the number of data points.

The Van-Laar, Margules (Margules, 1895), Wilson (Wilson, 1964), NRTL (Renon and Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz, 1975) equations were used to describe the liquid phase activity coefficients. The numerical values of binary parameters for the systems studied are presented in Table 3.

UNIQUAC + NRTL (0.4) * UNIQUAC × UNIFAC

Fig. 2. Deviations between calculated and experimental vapor liquid mole fractions of component 1 for perfluoromethylcyclohexane (1) / n-hexane (2) at 328.15 K.

(1)

TABLE 1

Experimental vapor - liquid equilibrium data for perfluoromethylcyclohexane (1) + n-hexane (2)

P = 93.3 KPa		
Г (K)	×1	Y ₁
338.67	0.0024	0.0165
337.78	0.0068	0.0443
336.03	0.0172	0.0993
335.32	0.0222	0.1213
333.70	0.0365	0.1726
331.01	0.0797	0.2639
330.17	0.1080	0.2961
329.73	0.1312	0.3141
329.54	0.1472	0.3236
329.50	0.1515	0.3259
329.21	0.1945	0.3428
329.20	0.2015	0.3449
329 11	0 2240	0 3507
329.11	0.2240	0.3507
329.07	0.2405	0.3543
329.01	0.2820	0.3617
328.9/	0.3078	0.3655
328.90	0.3390	0.3699
328.87	0.3576	0.3724
328.84	0.3930	0.3773
328.87	0.4379	0.3841
328.93	0.4625	0.3882
328.98	0.4955	0.3943
329.03	0.5126	0.3829
329.11	0.5320	0.3875
329.21	0.5535	0.3930
329.44	0.5908	0.4042
329.96	0.6415	0.4228
330.07	0.6576	0.4297
330.56	0.6965	0.4490
330.63	0.7000	0.4508
331.00	0.7240	0.4650
331.35	0.7425	0.4772
331.59	0.7535	0 4851
332.15	0 7775	0 5014
332 67	0 7960	0.5014
332 00	0.7900	0.5202
222.20	0.0045	0.5209
333.02	0.8316	0.5586
334.90	0.8580	0.5932
335.38	0.8680	0.6082
336.70	0.8920	0.6486
337.37	0.9035	0.6715
338.60	0.9210	0.7102
339.73	0.9255	0.7473
340.82	0.9480	0.7837
341.71	0.9572	0.8135
342.90	0.9685	0.8544
343.27	0.9718	0.8671
343.51	0.9740	0.8759
345.60	0.9905	0.9502
346.07	0.9937	0.9663

In figures 2-5 are shown the deviations between the calculated values of y obtained using the Wilson, the NRTL, the UNIQUAC and the UNIFAC equations and the experimental ones, for the systems studied.

UNIQUAC + NRTL (0.4) * UNIQUAC × UNIFAC

Fig. 3. Deviations between calculated and experimental vapor liquid mole fractions of component 1 for perfluoromethylcyclohexane (1) / n-hexane (2) at 93.3 KPa.

Fig. 4. Deviations between calculated and experimental vapor liquid mole fractions of component 1 for perfluoromethylcyclohexane (1) / 1-hexene (2) at 328.15 K.

TABLE 2

Experimental vapor - liquid equilibrium data for perfluoromethylcyclohexane (1) + 1-hexene (2)

	P = 93.3 KPa	a		T = 328.15	K
T (K)	×1	У ₁	P (KPa)	×1	Y ₁
334.29	0.0058	0.0337	80.1	0.0082	0.056
333.16	0.0112	0.0595	83.5	0.0170	0.101
332.22	0.0183	0.0920	84.4	0.0196	0.111
331.33	0.0312	0.1390	86.3	0.0258	0.135
329.69	0.0410	0.1660	88.6	0.0348	0.165
328.86	0.0673	0.2204	90.0	0.0410	0.183
327.39	0.0815	0.2395	92.2	0.0528	0.209
327.00	0.1160	0.2684	94.2	0.0670	0.232
326.20	0.1355	0.2790	96.2	0.0858	0.255
325.99	0.1638	0.2904	97.4	0.1029	0.269
325.80	0.2105	0.3040	97.9	0.1124	0.276
325.67	0.2572	0.3126	98.8	0.1332	0.284
325.58	0.2640	0.3143	99.7	0.1680	0.296
325.42	0.2750	0.3168	100.0	0.1925	0.303
325.42	0.2795	0.3184	100.4	0.2124	0.307
325.40	0.2880	0.3200	100.6	0.2205	0.308
325.40	0.2935	0.3210	100.9	0.2545	0.313
325.40	0.2995	0.3220	101.0	0.2748	0.316
325.40	0.3225	0.3245	101 0	0 3040	0.319
325.40	0.3530	0.3278	101.0	0 3045	0.318
325.40	0.3735	0.3300	101.0	0.3045	0.3200
325.42	0.3915	0.3315	100.9	0 3448	0.3203
325.42	0.3940	0 3320	100.9	0.3440	0.3223
325.61	0.4270	0.3360	100.8	0.3542	0.3230
325 66	0 4348	0 3362	100.6	0.3013	0.324-
325 67	0 4433	0 3396	100.0	0.3760	0.325
325 87	0.4433	0.3380	100.0	0.3780	0.3201
325.90	0.5070	0.3490	100.3	0.4080	0.3310
326 21	0.5640	0.3540	100.5	0.4125	0.331
326 40	0.5040	0.3040	100.4	0.4200	0.3320
320.40	0.5092	0.3710	100.1	0.4507	0.335:
327 64	0.6992	0.4000	100.0	0.4055	0.3370
328 70	0.7420	0.4113	99.J 00 4	0.5034	0.3434
320.70	0.7420	0.4527	55.4 09 £	0.5092	0.3440
320 70	0.7545	0.4004	90.0 00 F	0.5495	0.3532
330.92	0.0070	0.4554	90.J 07 4	0.5560	0.3545
332 48	0.0120	0.5051	3/.4 06 E	0.5970	0.3060
332.40	0.0402	0.0400	30.2	0.0225	0.3/44
333 95	0.0020	0.0041	95.4	0.6490	0.3841
333.33	0.0/40	0.00/3	94.L 02.1	0.6///	0.3969
336 34	0.0042	0.0049	72.1	0.7118	0.4137
337 07	0.2000	0.034/	90.0	0.7345	0.4285
330 06	0.7200	0.7030	80.5	0./835	0.4650
339.00	0.9400	0./380	82.J 70 1	0.8240	0.5037
340 51	0.7400	0.7570	/9.1	0.8505	0.5364
340.31	0.9030	0./808	/5.9	0.8730	0.5687
342.61	0.9000	0.8083	69.2	0.9130	0.6462
343 05	0.3700	0.8462	68.0	0.9200	0.6640
344.03 744 67	0.9/30	0.8592	65.1	0.9345	0.7037
J44.0J 246 00	0.9855	0.91/5	57.3	0.9690	0.8345
343.80	0.9930	0.9580	54.2	0.9815	0.9050

Fig. 5. Deviations between calculated and experimental vapor liquid mole fractions of component 1 for perfluoromethylcyclohexane (1) / 1-hexene (2) at 93.3 KPa.

TABLE 3 Model parameters

Equation	A ₁₂	·**21	α ₁₂
Perfluoromethylc	yclohexane / n-hexane	at 328.15 K	
Van-Laar	2.074	1.593	
Margules	2.038	1.574	
Wilson	845.3	877.7	
NRTL	521.86	1046.8	0.40
UNIQUAC	309.1	-29.20	
Perfluoromethylc	yclohexane / n-hexane	at 93.3 KPa	
Van-Laar	2.318	1.467	
Margules	2.199	1.417	
Wilson	1163.0	744.3	
NRTL	428.7	1267.5	0.40
UNIQUAC	563.6	308.7	
Perfluoromethylc	yclohexane / 1-hexene	at 328.15 K	
Van-Laar	2.306	1.396	
Margules	2.184	1.317	
Wilson	1085.5	746.5	
NRTL	316.7	1387.1	0.40
UNIQUAC	188.0	79.54	
Perfluoromethylc	yclohexane / 1-hexene	at 93.3 KPa	
Van-Laar	2.407	1.435	
Margules	2.258	1.377	
Wilson	1197.8	749.8	
NRTL	397.1	1326.7	0.40
UNIQUAC	212.0	66.64	

The group-contribution UNIFAC parameters for the interactions CH_2 / CF_2 , and CH_2 =CH / CF_2 , determined by using the same technique are presented in table 4.

The root mean square deviations (RMSD) between the experimental and calculated values of P, T and y are shown in Table 5.

	CH ₂	CH2=CH	CF ₂
CH.	0	-200.0ª	10.19
CH_=CH	2520 [°]	0	253.7
CF ₂	127.4	83.07	0

TABLE 4	ł				
UNIFAC	group	interaction	parameters,	a _{mn}	(K)

^a Parameters obtained from Fredenslund et al. (1977)

TABLE 5

Root mean square deviations between experimental and calculated data

Model	P	тт	v	
	(kPa)	(K)	2	
Perfluoromethylo	cyclohexane / n-hexan	e at 328.15 K		
Van-Laar	0.06	0.18	0.013	
Margules	0.08	0.23	0.013	
Wilson	0.07	0.19	0.012	
NRTL	0.04	0.12	0.011	
UNIQUAC	0.06	0.17	0.013	
UNIFAC	0.14	0.37	0.018	
Perfluoromethyld	yclohexane / n-hexane	e at 93.3 KPa		
Van-Laar	0.05	0.12	0.008	
Margules	0.11	0.27	0.010	
Wilson	0.10	0.23	0.012	
NRTL	0.02	0.05	0.007	
UNIQUAC	0.09	0.20	0.008	
UNIFAC	0.12	0.30	0.009	
Perfluoromethyld	cyclohexane / 1-hexene	e at 328.15 K		
Van-Laar	0.07	0.19	0.007	
Margules	0.13	0.35	0.012	
Wilson	0.11	0.28	0.009	
NRTL	0.12	0.31	0.009	
UNIQUAC	0.07	0.19	0.007	
UNIFAC	0.12	0.26	0.006	
Perfluoromethylc	yclohexane / 1-hexene	e at 93.3 KPa		
Van-Laar	0.06	0.13	0.012	
Margules	0.13	0.30	0.014	
Wilson	0.13	0.30	0.013	
NRTL	0.04	0.09	0.011	
UNIQUAC	0.09	0.20	0.011	
UNIFAC	0.13	0.32	0.008	

166

The results of correlation show that all the equations studied are similar in the representation of data.

All the systems show positive deviations from the Raoult's law. Figure 6 represents a comparison of experimental activity

Fig. 6 Activity coefficients for perfluoromethylcyclohexane / n-hexane at 328.15 K

Fig. 7 Activity coefficients for perfluoromethylcyclohexane / n-hexane at 93.3 KPa.

coefficients with those calculated using the Wilson and UNIFAC equations for the system perfluoromethylcyclohexane / n-hexane at 328.15 K. In Figure 7 comparisons are made between the experimental activity coefficients and those obtained by using the Wilson and perfluoromethyl-UNIFAC equations for the binary the cyclohexane / n-hexane at 93.3 KPa. Figure 8 shows a comparison of experimental activity coefficients with those calculated using the system NRTL and UNIQUAC equations for the perfluoromethylcyclohexane / 1-hexene at 328.15 K. In Figure 9 comparisons are made between the experimental activity coefficients and those obtained by using the Wilson and the UNIFAC equations for the binary perfluoromethylcyclohexane / 1-hexene at 93.3 KPa. There is a good agreement between calculated and experimental values of activity coefficients for all the systems.

Fig. 8. Activity coefficients for perfluoromethylcyclohexane / 1-hexene at 328.15 K

CONCLUSIONS

Consistent experimental vapor-liquid equilibrium data for some binary mixtures consisting of perfluoromethylcyclohexane and n-hexane or 1-hexene have been reported. The data have been correlated in terms of different models used for the description of liquid phase activity coefficients. The results show that the models are appropriate and give almost identical deviations.

168

Fig. 9. Activity coefficients for perfluoromethylcyclohexane / 1-hexene at 93.3 KPa.

ACNOWLEDGMENTS

The authors are grateful to Instituto Nacional de Investigação Científica, Portugal, for financial support.

LIST OF SYMBOLS

A ₁₂ , A ₂	1 binary interaction parameters
P	pressure (kPa)
т	temperature (K)
×i	liquid phase mole fraction of component i
y _i	vapor phase mole fraction of component i
α ₁₂	NRTL nonrandomness parameter
" _i	activity coefficient of component i

REFERENCES

Abrams, D.S. and Prausnitz, J.M., 1975. Statistical thermodynamics of multicomponent liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J., 21: 116.

Bernardo-Gil, M.G. and Soares, L., 1982. Equilíbrio Líquido-Vapor: Correlação de dados binários. Rev. Port. Quim., 24: 118. Bernardo-Gil, M.G. and Soares, L., 1986. Perfluorodecaline/

Hydrocarbon Systems: Prediction and Correlation of Liquid-Liquid Equilibrium Data. Fluid Phase Equilibria, 25: 291.

- Bernardo-Gil, M.G. and Soares, L., 1986. Perfluoromethylcyclohexane / Hydrocarbon Systems: Prediction and Correlation of Liquid-Liquid Equilibrium Data. Proc. of the World Congress III of Chem. Eng., Vol II, 17, Tokyo, Japan.
- Bernardo-Gil, M.G. and Soares, L., 1987. Mutual Binary Solubilities: Perfluorodecalin/Hydrocarbons. J. Chem. Eng. Data, 32: 327.
- Bernardo-Gil, M.G. and Soares, L., 1988. Mutual Binary Solubilities: Perfluoromethylcyclohexane/Hydrocarbons. Fluid Phase Equilibria, 41: 205.
- Bernardo-Gil, M.G. and Soares, L., 1989. Liquid-liquid equilibria for the system Perfluorodecalin/1-heptene/n-heptane/n-hexane. J. Chem Eng. Data, 34: 103.
- Bernardo-Gil, M.G. and Soares, L., 1990. Liquid-liquid equilibria of systems containing Perfluoromethylcyclohexane. Fluid Phase Equilibria, 61: 121.
- Fredenslund, A., Jones, R.L. and Prausnitz, J.M., 1975. Groupcontribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J., 21: 1086.
- Fredenslund, A., Gmehling, J and Rasmussen, P, 1977. Vapor-Liquid Equilibria using UNIFAC. Elsevier, Amsterdam.
- Renon, H. and Prausnitz, J. M., 1968. Local composition in thermodynamic excess functions for liquid mixtures. AIChE J. 14: 135.
- Wilson, G. M., 1964. VLE A new expression for the excess free energy of mixing. J. Am. Chem. Soc., 86: 127