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Abstract. Patient blood pressure is an important vital signal to the physicians 

take a decision and to better understand the patient condition. In Intensive Care 

Units is possible monitoring the blood pressure due the fact of the patient being 

in continuous monitoring through bedside monitors and the use of sensors. The 

intensivist only have access to vital signs values when they look to the monitor 

or consult the values hourly collected.  Most important is the sequence of the 

values collected, i.e., a set of highest or lowest values can signify a critical event 

and bring future complications to a patient as is Hypotension or Hypertension. 

This complications can leverage a set of dangerous diseases and side-effects. The 

main goal of this work is to predict the probability of a patient has a blood 

pressure critical event in the next hours by combining a set of patient data 

collected in real-time and using Data Mining classification techniques. As output 

the models indicate the probability (%) of a patient has a Blood Pressure Critical 

Event in the next hour. The achieved results showed to be very promising, 

presenting sensitivity around of 95%. 

Keywords: Data Mining, INTCare, Intensive Medicine, Blood Pressure, Critical Events, 

Decision Support, Real-Time 

1 Introduction 

In critical environments the decision needs to be perform quickly and with a high level 

of accuracy. To help the decision-makers to take the best decision it is fundamental to 

develop a solution able to predict events before their occurrence. Intensive Medicine 

(IM) is a critical area of Medicine. Patients in weak conditions and with multiple 

diseases as is organ failure are cared every day. One of the most common complications 

is related to Blood Pressure with a constant values changing due to medical diseases, 

therapeutics or other procedures. Higher Blood pressure is associated to cardiovascular 

organ failure / diseases [1]. Nowadays the Intensive Care Units (ICU) are filled out with 

many technical devices allowing a continuous patient monitoring. However these data 

are only used in the acquisition moment and they are not used to support the decision 

process. Having in consideration this aspect arises INTCare. INTCare [2] is a Pervasive 
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Intelligent Decision Support System (PIDSS) able to collect and process data in real-

time in order to provide new knowledge [3-7] anywhere and anytime. This knowledge 

is achieved by means of Data Mining (DM) techniques. This work is framed in INTCare 

project and it wants to develop DM models able to help the Intensivist to act in order 

to prevent Blood Pressure Critical Events (BPCE). Critical Events are defined as a 

continuous data acquisition of values out of the normal range for a determined period 

of time. BPCE can provoke hypotension and hypertension and leverage a set of other 

diseases as is heart attack, cardiovascular system failure, kidney failure and others. This 

work is a classification DM problem with the goal to induce DM models in real-time 

able to predict the probability of a patient has a BPCE in the next hours. The achieved 

results are promising. The models are very good to predict BPCE (sensitivity around 

95%) however they are not accurate in predicting both classes (accuracy around 75%). 

These results are a natural consequence of preventing actions in IM. The predictions 

are made in an hourly base approach and due to a quick decision by the intensivist, the 

BP value can change to a normal range in a few minutes resulting in a set of false 

positives values. In a clinical point of view, these models are very useful because can 

help to predict a possible CE in the next hours giving the possibility to the intensivist 

take a decision based on evidences i.e., according to the new knowledge achieved. 

Supporting Decision-Making process by providing the probability of a patient has a 

critical event in the next hours in order to prevent and avoid their occurrence is the main 

goal of this work. The models developed will be included in INTCare system. 

This paper is divided in six sections. After a first introduction of the paper, all the 

concepts and related work are presented in section 2. Section 3 presents the 

methodologies, materials and methods used in this work. Section four presents all the 

work made following CRISP-DM phases. Then the results are discussed and a set of 

last considerations are made including future work. 

2 Background  

2.1 Blood pressure 

According to the National Institute of Health [8], Blood Pressure (BP) is the force of 

blood pushing against the walls of the arteries as the heart pumps blood. If this pressure 

rises and stays high over time, it can damage the body in many ways. BP is measured 

as systolic and diastolic pressures. "Systolic" refers to BP when the heart beats while 

pumping blood. "Diastolic" refers to BP when the heart is at rest between beats. BP has 

a normal pattern of values. Values out of this pattern can provide Hypotension (low 

pressure) and Hypertension (Higher pressure). In clinical studies [9] was found a strong 

relationship between prevalence of hypertension and mortality by stroke. Hypertension 

can provoke several and dangerous diseases to human life [10] as is for example: Heart 

attack or stroke, Aneurysm Heart failure and others. Hypotension is dangerous and can 

be a source of other diseases [11] as is for example Kidney Failure, Congestive Heart 

Failure, Anaemia, and Pulmonary Embolism.  

In the literature review there are several works related to BP [12], however the goals 

are different. This work predicts the probability of occurring a BPCE in the next hours 



 

 

(e.g. Hour1-10%...Hour4-15%…Hour24-30%) by using streaming data and intelligent 

agents to perform automatically tasks (e.g. data transformation and induce the models.)  

2.2 Intensive Care Units 

Intensive Medicine (IM) is a critical area with the highest incidences of medical error 

and patient injuries [13]. Its practices is in Intensive Care Units (ICUs). To the ICUs 

only patients in a critical condition are transferred. ICUs are endowed with several 

medical devices (e.g. vital signs monitor, ventilators and infusion pumps) able to 

monitoring the patient condition in real-time. Additionally a set of clinical data are 

hourly recorded. Although there are a high number of data available, the information 

are not fully used to create new knowledge. This fact happens due to the need of having 

a quick decision in order to avoid worst conditions and save patient life. In this sense 

the intensivists do not have time to consult or analyse all the collected data. Thus, 

becomes fundamental having a decision support system able to help them to take the 

best decision always in the patient best interest by considering all the collected data. 

2.3 INTCare 

INTCare is a PIDSS able to monitoring the patient condition in real-time and to predict 

a set of clinical events/diseases using the collected data and adaptive DM models. 

Online-learning, real-time data processing [14] and system interoperability are others 

features. Until now, INTCare allows predicting organ failure and patient outcome [7], 

SEPSIS [15], barotrauma [16], readmissions [5, 17] and length of stay [6, 18] in real-

time and with high sensitivities rates. In the past a first study was performed in order to 

predict critical events. In this study [4] the probability of a patient having a cardiac 

arrhythmia was predicted (sensitivity = 95%). Now it is time to explore other areas and 

tracking the Blood Pressure in order to early detect possible critical events, i.e., possible 

situations of hypertension or hypotension. 

2.4 Critical Events 

Critical Events (CE) represents an abnormal value (out of normal range) continuously 

monitored in a patient. A CE is defined by Álvaro Silva [19] as “a more serious event 

and it is classified by a longer event or a more extreme out of range measurement”. In 

the ICU the vital signs are collected and processed in real-time [20] in order to 

categorize a value as critic or not. Then an intelligent agent is used to analyse if the 

values collected can represent or not a critical event. To understand if an event is 

critical, two main criteria were used [21]: 

• Occurrence and duration should be registered by physiological changes;   

• Related physiological variables should be registered at regular intervals. 

An event is considered critical, when a longer event occurs or a more extreme 

physiological measurement is found [21]. In this work the protocol associated to Blood 

Pressure (Table 1) was followed. For example, a critical event happens whenever the 

patient’s blood pressure is less than 90 mmHg for more than 1 hour or the value drops 

below 60 mmHg. 



 

 

Table 1. The protocol for the out of range physiologic measurements (adapted from [21] ) 

 Blood Pressure 

Normal range 90—180 mmHg 
Critical event (continuously out of the normal range) >= 1h 

Critical event (anytime) < 60 mmHg 

3 Methodologies, Material and Methods 

In this work the Design Science Research Methodology (DSR) was followed. DSR is 

fundamental in developing effective solutions - products, services, and systems able to 

answer to human needs [22]. According to Lunenfeld [23] research for design is the 

hardest to characterize, its purpose is to create objects and systems that display the 

results of the research and prove its worth. DSR is based in the creation and assessment 

of artefacts.  To complement this methodology, Cross Industry Standard Process for 

Data Mining (CRISP-DM) was used. It is divided in six phases: Business 

Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and 

Deployment. By crossing DSR and CRISP-DM it was possible develop and assess an 

artefact (prediction models) able to support the decision-making in the BP field. 

This study used the data collected in real-time from 359 patients admitted in the ICU 

of Hospital Santo António, Centro Hospitalar do Porto, comprising a period between 

2012.02.01 to 2014.02.26 (757 days) in a total of 222381 rows. In this project four data 

systems were considered: Vital Signs Monitors, Laboratory, Electronic Health Record 

and Pharmacy. Data mining models were induced exploring four different techniques: 

Decision Trees, Support Vector Machines, Naïve Byes and Generalized Linear Models. 

4 Real-Time Decision Support 

As already mentioned all the work was developed recurring to CRISP-DM 

methodology. The main work developed in each phase is presented in this section. 

4.1 Business Understanding 

The problem and their importance to the environment (service, professionals and 

patients) was already presented in the section 2.1. In this work to avoid the occurrence 

of hypertension and hypotension in patients admitted in ICU is the business goal. 

Developing models with a high level of sensitivity able to support the decision process 

by predicting the probability of a patient has a BPCV in the next hours is the DM goal. 

4.2 Data Understanding 

In this phase the initial dataset was analysed in order to prepare it to be used by the DM 
engine. With the goal to answer to the main question it was used data provided from four 
data sources: Vital Signs Monitors – {Blood Pressure and Heart Rate}; Electronic Health 



 

 

Records – {Admission variables and Age}; Therapeutic Plan – {Vasopressores}; 
Laboratory Results – {Bilirubin, Creatinine, Po2/Fio2 and Platelets}. 

In table 2 is presented a distribution (percentage of cases) of the non-numeric 

variables, age and target (20% of the records has critical events associated). These 

variables were not submitted to a processing phase because the value was only 

associated to a pre-defined class. It represents a simple matching between the DM 

classes and the values collected for each variable. 
Table 2. Variables Distribution 

ID Variable Min Max Class Cases 
Age Age 18 46 1 17.37% 

47 65 2 35.46% 

66 75 3 21.32% 

76 130 4 25.85% 

Admission Type Urgent - - U 80.29% 

Programmed - - P 19.71% 

Admission Provenance Chirurgic - - 1 47.66% 

Observation - - 2 0.05% 

Emergency - - 3 18.44% 

Nursing Room - - 4 15.37% 

Other ICU - - 5 2.44% 

Other Hospital - - 6 1.32% 

Other - - 7 14.73% 

Insufficiencies Cardiac Yes - - 1 91.76% 

Transplant Yes - - 1 10.24% 

Surgical admission Yes - - 1 55.02% 

Cerebrovascular Accident (CVA) Yes - - 1 2.20% 

Critical Event Yes - - 1 20.00% 

4.3 Data Preparation 

In this phase all the variables were validated. First the existence of null values was 
verified and then it was verified the occurrence of values out of the acceptable range 
(noise values). Then all transformations rules were executed. Both tasks were performed 
by intelligent agents. The tasks performed were: 

 To verify and group the admission type and admission from; 

 To classify the Blood Pressure values as critical or not; 

 To create the critical events variable; 

 To determine the patient SOFA value for all the organic systems; 

 To create a new variable which identifies if the patient has risk factors; 

 To determine the last seven Blood Pressure values (BPLV) collected; 

 To calculate the accumulated critical events (ACE) and all associated ratios; 

 To create classes to numerical values (e.g. ratios and BPLV). 

 To create the DM input dataset in a hourly base; 

To induce the DM models, several scenarios were prepared using attributes sets. The 

first set created was Case Mix (CM). All the CM variables were provided by the patient 

Electronic Health Record (EHR). From the EHR, the variables: age, admission type, 

admission from, insufficiencies cardiac and risk patient (combination of a set of patient 

admission variables) were used. These variables were recorded at patient admission 

phase, being then transformed in accordance with the DM attributes. 



 

 

The second group of variables used was the Sequential Organ Failure Assessment 

(SOFA). SOFA is used in ICU to score the degree of dysfunction/failure of the six 

organic systems (cardiovascular, respiratory, renal, liver, haematological and 

neurological) [24]. SOFA score varies from 0 (normal function) and 4 (total 

dysfunction). In this case the transformation made was simple: in case of normal 

function it was attributed the value 0 otherwise the value was 1. Thus, the attribute 

SOFA used in DM only considers two values 0 (SOFA = 0) or 1 (SOFA > 0). 

The third group was based in the CE concept by creating the Accumulated Critical 

Events (ACE) variable. ACE includes three physiological variables: Blood Pressure 

(BP), Saturation of Oxygen (SPO2) and Heart Rate (HR). ACE values are calculated in 

real-time by counting the number of critical events verified by hour since patient 

admission. An attribute (TOTAL) that reflects the sum of ACE by each variable was 

also added. Then and using ACE a set of ratios were introduced. 

These ratios allow to determine a relation between the number of ACE verified in a 

patient and the maximum number of ACE occurred by hour (R1) and a correspondence 

between the number of ACE verified in a patient and the maximum number of events 

verified in the past (from all the patients), until the hour in analysis (R2). Both the 

values were grouped by category and by patient.  

Finally another group composed by the last seven BP values (BPLV) collected in a 

specific hour was created. This attribute is generated all hours by an agent. It analyse 

the last values collected in the last hour and put them in the same row (hour).  
After performing all the transforming tasks, a set of new variables were introduced. 

These variables and their distribution are presented in the table 3. For example, the 
SOFA_HEPATIC attribute is 1 when the bilirubin value collected is higher than the 
minimum considered (1.2). In the case of Risk Patient, the attribute is 1 when at least 
one of the symptoms or conditions presented in the table 3 is verified. These conditions 
were verified in 21.32% of the cases. 

Table 3. Transformed variables distribution 

Attribute Variable Min Max Value % Cases 
SOFA_CARDIO BP (mean) 0 70 1 72.63% 

Dopamine or Dobutamine 0.0 - 1 

Epi / Norepi 0.0 - 1 

SOFA_RENAL Creatinine 1.2 - 1 21.41% 

SOFA_RESPIRAT Po2/Fio2 0 400 1 67.76% 

SOFA_HEPATIC Bilirubin 1.2 - 1 21.37% 

SOFA_HEMAT Platelets 0 150 1 47.76% 

RISK PATIENT CVA - - 1 21.32% 

Alcoholism or Addicted - - 1 

Pacemaker - - 1 

Corticoids - - 1 

Transplanted - - 1 

Vasoactive Drug - - 1 

 
In the last step a discretization technique has been considered. Having in 

consideration all numeric values used by the models, the attributes were transformed and 
categorized according to an interval (Min and Max).  Using this technique the groups 
were defined according to the respective average (R1) or higher value (R2) of the data 
collected. These ranges are flexible and they are updated automatically according to the 



 

 

values collected. The groups were defined using a 7-point-scale adapted by Clinical 
Global Impression - Severity scale (CGI-S) [25]. The goal of CGI-S is to allow the 
clinician to rate the severity of illness [26]. The ranges defined [7] has clinical 
significance and represents the patient condition. A higher value represents a worst 
patient condition. The standard used to define the percentages concentrate the most part 
of patient values within a scale between 0 and 5. More severe cases are assigned to the 
levels 6 and 7. Table 4 presents the rules defined to discretize each continuous value 
(values ϵ {|R0+}). The groups are identified at the top of the table and the left column 
identifies the variable. In the centre of the table are the ranges for each group. These 
values were obtained after apply the ranges (%) defined.  

The attributes of R1 are determined by the rows (R1 BP Min to R1 TOT Max). R2 

is categorized according to the percentage of the values collected, i.e., level 1 

corresponds to 10% of the cases (values collected between 0% and 10% of the 

Maximum). All attributes of R2 have the same limits. ACE attributes were grouped in 

agreement to their importance and the number of occurrences. These values were 

defined by ICU experts but can be modified in the future.   

In case of ACE, if a BP value equal to 2 is verified, this variables is categorized in 

the second level (value = 1). The same happens to patients who present values of R2 

between 0.01 and 0.10 or R1 HR between 0.004 and 0.008. The CGI-S was not used to 

calculate BPLV. The clinical guidelines and the values defined as normal were 

considered. Level 2 and 3 corresponds to the acceptable (normal) range. 

Table 4. Discretization sets of Data Mining Input 

After being accomplished the transformation tasks, the DM input table (DMIT) was 
created. Finally, in order to prepare the DM scenarios, the values were organized by hour 
considering the following variables: 

 Hour: The hour associated to the values collected, all models use this variable; 

 Case Mix (CM) – Age, admission type, admission provenance, Risk Patient, 
Insufficiencies Cardiac, CVA, Transplant, Surgical Admission; 

 SOFA – Cardiovascular, Respiratory, Renal, Hepatic, Hematologic; 

SET 0 1 2 3 4 5 6 7 

R1 

BP 

Min -0.1 0.000 0.010 0.021 0.041 0.062 0.082 0.123 

Max 0.000 0.010 0.021 0.041 0.062 0.082 0.123 2.000 

R1 

O2 

Min -0.1 0.000 0.018 0.036 0.072 0.108 0.144 0.216 

Max 0.000 0.018 0.036 0.072 0.108 0.144 0.216 2.000 

R1 
HR 

Min -0.1 0.000 0.004 0.008 0.015 0.023 0.030 0.045 

Max 0.000 0.004 0.008 0.015 0.023 0.030 0.045 2.000 

R1 
TOT 

Min -0.1 0.000 0.020 0.041 0.081 0.122 0.162 0.243 

Max 0.000 0.020 0.041 0.081 0.122 0.162 0.243 2.000 

R2 
Min -0.1 0.000 0.100 0.250 0.500 0.750 0.900 1.000 

Max 0 0.100 0.250 0.500 0.750 0.900 1.000 2.000 

ACE 
Min -0.1 0 3 5 8 10 12 15 

Max 0 3 5 8 10 12 15 50 

BPLV 
Min -1 60 110 150 170 200 - - 

Max 60 110 150 170 200 400 - - 



 

 

 Accumulated Critical Events (ACE) – ACE of Blood Pressure (BP), ACE of 
Oxygen Saturation (SPO2), ACE of Heart Rate (HR) and Total ACE; 

 Ratios 1 (R1) – ACE of BP / max number of ACE of BP, ACE of SPO2 / max 
number of ACE of SPO2, ACE of HR / max number of ACE of HR; 

 Ratios 2 (R2) – ACE of BP / elapsed time of stay, ACE of SPO2 / elapsed time 
of stay, ACE of HR / elapsed time of stay, Total of ACE / elapsed time of stay; 

 Ratios (R) – Union of the two sets of ratios (R1 and R2). 

 Blood Pressure Last Values (BPLV): The last seven values collected in an 
hour, being one value for each column. 

4.4 Modelling 

In this phase, the data mining models were induced using the data processed and 
transformed in the preceding phases. A set of Data Mining models (DMM) were induced 
using four DM techniques (DMT): GLM, SVM, DT and NB and two sampling methods: 
Holdout sampling (70% of the data for training and 30% for testing) and Cross 
Validation. Additionally the numeric attributes were used in two representation methods 
(Natural and Categorized). Scenarios 1 to 9 were manually configured. Scenario 10 
(S10) was automatically configured by using variables selected by the DM engine (based 
in heuristic rules). A total of 160 models were induced. 
 

DMM = {10 Scenarios, 4 Techniques, 2 Sampling Methods, 2 Representation 

Methods, 1 Target} 

 

Where the scenarios are: 

S1: {CM, SOFA,ACE,R,RISK, BPLV} 

S2: {CM, SOFA, RISK, BPLV} 

S3: {CM, ACE, R, RISK, BPLV} 

S4: {CM, RISK, BPLV} 

S5: {CM, R, RISK, BPLV} 

S6: {CM, SOFA, ACE, R, RISK} 

S7: {CM, RISK, BPLV} 

S8: {CM, SOFA, ACE, R, BPLV} 

S9: {CM, ACE, R, RISK, BPLV} 

S10: {Automatic} 

 

Sampling Methods: 

SM1: Holdout Sampling (HS) 

SM2: Cross Validation (CV)  

 

 

Representation Methods:  

RM1: Natural values (NAT) 

RM2: Categorized values (CATEG) 

Techniques: 

T1: Generalized Linear Models (GLM) 

T2: Support Vector Machine (SVM) 

T3: Decision Trees (DT) 

T4: Naïve Byes (NB) 

 

Target: TT1: Blood Pressure Critical Event 

 
All the models were automatically induced in real-time, using streamed data and 

online-learning. A DM Model (DMM) can be represented by the following tuple: 

DMM = <∆, α,  DMT, DMSM, DMRM, DMTG, Hour, Age, AdmissionFrom, 

AdmissionType, Risk, ace_bp, ace_bp_time, ace_bp_max, ace_hr, ace_hr_time, 

ace_hr_max, ace_spo2, ace_spo2_time, ace_spo2_max, total_ace, total_ace_time, 

total_ace_max, SOFA_Respiratory, SOFA_Cardiovascular, SOFA_Hepatic, 



 

 

SOFA_Renal, SOFA_Hematologic, BPLV1, BPLV2, BPLV3, BPLV4,BPLV5, BPLV6, 

BPV7> 

 

Where, 

∆ is the DM rules and α is the DM model configuration, 

DMSM is the sampling method and DMRM is the representation method, 

DMT is the DM technique and DMTG is the target, 

Hour … BPLV7 are the variables used by each model 

 
For example if the Model 6 is composed by S6 using SVM, cross validation and 

categorized values, the tuple can be represented as:  

DMM6 =  <∆, α,  SVM, SM2, RM2, TT1, Hour, Age, AdmissionFrom, 

AdmissionType, Risk, ace_bp, ace_bp_time, ace_bp_max, ace_hr, ace_hr_time, 

ace_hr_max, ace_spo2, ace_spo2_time, ace_spo2_max, total_ace, total_ace_time, 

total_ace_max,, SOFA_Respiratory, SOFA_Cardiovascular, SOFA_Hepatic, 

SOFA_Renal, SOFA_Hematologic> 

 

The configurations presented in table 5 were used to induce Data Mining models. 

Table 5. Algorithms configurations 

Algorithm Name Configuration Value 

Generalized Linear Model Automatic Preparation On 
 Confidence Level 0.95 

 Enable Ridge Regression Enable 

 Missing Values Treatment Mean for Numeric Mode for Categorical 

 Ridge Parameter 10.0000 

 Variance Inflation Factor Disable 

Support Vector Machine Active Learning Enable 

 Automatic Preparation On 

 Complexity Factor 0.165605 

 Kernel Function Linear 

 Tolerance 0.001 

Decision Tree Automatic Preparation On 

 Criteria For Splits 20 

 Criteria For Splits (%) 0.1 

 Maximum tree depth 7 

 Minimum Child Record Count 10 

 Minimum Records Per Node 0.05 

 Tree Impurity Metric Gini 

Naive Bayes Automatic Preparation On 

 Pairwise, Singleton Threshold 0 

4.5 Evaluation 

After inducing all the models, the results achieved by each one of the 160 models were 

assessed. To assess the models the confusion matrix (CMX) was used. CMX allows 

determining the number of True Positives (TP) (predicted 1 and real 1), False Positives 

(FP) (1, 0), True Negatives (TN) (0, 0) and False Negatives (FN) (0, 1). Using the CMX 

is possible calculate some measures: Sensitivity = TP / (TP+FN); Specificity: TN / 

(TN+FP); Accuracy: TP / (TP+FP+TN+FN) and Precision: TP / (TP + FP) 



 

 

Table 6 presents the best results achieved by each technique and measure. For 

example, in the case of GLM the best accuracy (72.23%) and the best sensitivity was 

achieved by the same scenario (S3) but using different representation methods. The best 

sensitivity (95.90%) was achieved by the scenario 7 using SVM. The type of Sampling 

Methods used are not mentioned because the results are similar for both cases. 

Table 6. Best model for each technique and measure 

Technique Sensitivity Specificity Accuracy 
GLM S3RM2 0.9127 S2RM2 0.3866 S3RM1 0.7223 

SVM S7RM2 0.9590 S6RM2 0.2942 S5RM2 0.5586 

DT S6RM2 0.9316 S6RM2 0.3851 S6 S7 RM2 0.7152 

NB S3RM2 0.9100 S2RM2 0.3829 S7RM2 0.7099 

 

To choose the best model, a threshold was introduced. The threshold combine three 

metrics in order to find the most suitable model to predict the probability of having a 

critical event (sensitivity) with an acceptable accuracy and precision in order to avoid 

a high number of false positives. The threshold defined was: Sensitivity >=90% and 

Accuracy and Precision >=70% 

Table 7 presents the best three models which achieved the threshold defined. The 

ranking was defined according to the sensitivity result. 

Table 7. Best models achieving the threshold 

Model Accuracy Sensitivity Specificity Precision 

S3T1RM2  0.7120 0.9127 0.3792 0.7310 

S2T1RM2 0.7038 0.9125 0.3781 0.7346 
S5T1RM2 0.7028 0.9120 0.3793 0.7359 

5 Discussion 

After analysing the models induced it was possible observe that the achieved results 

were not influenced by the sampling method used. Both approaches presented similar 

results. However the same consideration cannot be done concerning to the 

representation method. The achieved results by the models using categorized variables 

were significantly better. The models using natural values did not achieved the 

threshold. The model with a best sensitivity (95.90%) presented an accuracy of 49.26% 

using SVM and categorized variables. This model was rejected because did not 

achieved the threshold defined. In general, the models using categorized values 

increased the sensitivity in 10-15% and the accuracy in 1-3%. 

Due the fact of the Intensivist preferring models sensitive to 1 (by predicting the 

worst scenario it is possible to avoid their occurrence. It is better predicting 1 and verify 

0 than the opposite), the precision is a complementary measure to give an idea the 

number of correct predictions. It is important to note that to the intensivist is presented 

the probability (confidence rate) of a patient has a critical event in the next hours and 

not if he will have or not a critical event. It is not presenting a correct result (Yes or 

No) but the percentage of a critical event appear in the next hours (e.g. the probability 

of a patient has a BPCE in the next 10 hours is 80%). This reality decreases the 



 

 

significance of false positives (FP), because the main goal is to avoid the occurrence of 

BPCE. Consequently the number of FP is higher. 

In Figure 1 is possible observing the receiver operating characteristic (ROC) curve 

for the model which achieved the threshold and presented the best sensitivity 

(S3T1RM2). The curve is created by plotting the true positive rate (sensitivity) against 

the false positive rate (specificity) at various threshold settings.  

 

 

 

 

Figure 1. ROC for the most sensitivity model 

6 Conclusions and Future Work 

At the end of this work it was possible to assess the viability of using these variables to 

predict Blood Pressure Critical Events. The goal is not to predict effectively if the 

patient will have a BPCE or not but the probability of occurring a BPCE in the next 

hours. It was possible observe that the models using categorization methods presented 

best results. Only some of these models achieved the threshold defined. To the 

Intensivist the attained results (sensitivities between 90% and 95%) can help the 

decision and represents an important step in order to help to prevent possible cases of 

Hypertension or Hypotension. For them the number of False Positives (around 25%) 

are quite acceptable, once the goal is to prevent the occurrence of Critical Events. If the 

system is predicting a high probability of occurring a CE and the Intensivist can prevent 

it, the occurrence of a False Positive is an inevitable enjoyable. The models developed 

will be included in the INTCare ensemble engine. Scientifically the models produced 

can be used by other researchers in order to improve their works. The next step is 

focused in evaluating the predictions made by the system. In this process the intensivists 

will assess the clinical results. In addition this concept will be explored to other type of 

critical events.  
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