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Abstract: This paper discusses how object-oriented iuheritance can be re-iuterpreted
if statecharts are used for modelling the dynamic behaviour of an object. The
support of inheritance of statecharts allows the improvement of systems' development
by easing the reutilization of parts of already developed euccessful systems, aad
by promoting the iterative and continuous models' refinement advocated by the
operatioaal approach. Statechart is the formalism used within UML to specify reactive
state.based behaviours. This paper covers the use of statecharts within the modelling
of embedded systems for industrial control applxications, where performance and
memory usage are main concerns. Copyright @CONTROLO 2000
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1. INTRODUCTION

UML (Uaified Modeling Language) is a geueral
purpose modelling language for specifying, visual-
izing, constructing and documenting the artifacts
of sofiware systems, as well as for business mod-
elling aad other uon-software systems (Booch, et
ol., 1999). UML is the OMG standard notation
for defining and designing software systems, and
is being progressively accepted in industry. UML
is meant to be used universally for the modelling
of systems, including automatic control applica-
tions with both hardware and sofbwaxe compo-
nents (Douglass, 1997).

Within UML, statecharts are state-oriented mod-
els used to specify the dynamic behaviour of some
classes, mainly those that show an interesting
or complex behaviour. Statecharts are a visual

1 Partidly supported by the Portuguese Science & Tech-
nolory Foundation project PRAXIS/P/EEI/10155/1998,
Reconfigurvble Embeilded Systema: Deuelopment Method-
ologies lor Real-Time Applimtions.

formalism to describe states and transitions, en-
abling clustering, orthogonality, concurrency, and
refinement and encouraging zoom capabilities for
navigating between levels of abstraction (Harel,
1987). Statecharts add some useful extensions to
flat Mealy-Moore state diagrams, such as nest-
ing of states, conditional event responses, orthog-
onal regions and history connectors. Although
these extensions are mathematically equivalent to
Mealy-Moore state machines, statecharts can be
made simpler and easi$ to read, especially for
complex systems.

In object-oriented approaches, objects are in-
stances of classes, which specify the attributes
and the operations of its objects. The classes
are related by hierarchical associations and, usu-
ally, inheritance means that a subclass ca.rr use
the attributes a,nd the operations of its super-
classes. However, the use of statecharts (or other
state-based formalism) to model the behaviour of
classes introduces new problems, which are ad-
dressed by this paper that shows how inheritance
among classes can be re.interpreted. The use of
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statechaxts is analyzed within the modelling of
embedded systems for control applications, where
performance and memory usage are main issues
for the fiual system.

2. CODEGENERATION

The mapping of a class' statechart into code
is divided in two phases. Firstly, the statechart
behaviour is mapped to cla.sses properties (at-
tributes and operations) and then the class is
transformed into code. This section presents some
guidelines that support the first mapping phase.

The mapping of statecharts into code is not triv-
ial, due to the numerous modelling mecha,nisms
that exist iu the statechart formalism. The most
cofirmon software implementation of a statechart
is with an enumerated variable that is used as a
selector of a switch command (Booch, et a1.,7999i
Douglass, 1998). Each case clause implements a
given state of the diagra*.

This approach is conceptually simple, but be-'
comes problematic when applied to relatively
complex state machines, especially models that
are hierarchically described. In this case, the "flat"
state machine must be considered, which usually
means an exponential growth on the number of
states and transitions (Selic, et ol., 1994). Thus,
this implementation technique is not efficient,
since complex systems must be considered.

Several authors presented proposals that zug-
gest the way code must be,generated from
state machines that model the internal behaviour
of objects. Among those proposals, the 'State'
(Gamma, et oJ.,1995) and the'State Table' (Dou-
glass, 1998) design patterns and the solution pre-
sented by Shlaer and Mellor (1992) have to be
taken into account.

Those solutions were mainly idealized for software
systems where principles such as reurle, extensi-
bility, and simplicity are usually more important
than performance and memory usage, Hou/ever,
for real-time embedded systems, these last two
issues are quite important, since temporal dead-
lines and space restrictions (in terms of memory,
for example) must be considered. With this per-
spective, the selected solution must difier from the
previous ones and follows the main ideas presented
by Metz, et al. (1999), with minor changes.

Using fig. 1(a), admit that the sound attribute and
the adjustSound operation are already defined
and that it is wanted to reflect the statechart
behaviour at the corresponding class. Siuce ad-
justSound is independent of any object's state, it
can be invoked at any time during the object's life
cycle, so it is not represented in the statechart.

During the first mapping phase, the varstate
attribute is added and for each state one method is

also added to the class. For each event, a method
is again introduced into the class, which will be
ca^lled whenever that event is detected. Finally, for
each actiou and activity on the statechart, a class
method is included. Fig. 1(b) depicts the class
a,fter introducing the attributes and operations
that originate from the statechart.

To better orga,nize the attributes and operations,
UML stereotypes can be used to classifu each
group (Booch, et a1.,1999). Thus, the usage of the
following stereotypes can be helpful to indicate
the origin of the operations: (state), (event),
(action), (activity), and <<global)) (foi op-
erations independent of the statechart).

Statecharts may refer variables, which can be
used, for example, to reduce the number of states.
Those variables must be added to the class as

attributes. For ocample, ir, fig. 6 the readyCD
attribute used in the statechart must be added
to the corresponding class.

Whenever an object receives a message or an
event, the corresponding method must be called.
The method verifies if that message can be ac-
cepted in the actual state (value of varState). If
the message is accepted, the transition condition
is tested and the actions are executed. Then, the
target state method must be invoked, where the
value ofthe varState attribute is updated to refer
to the new state.

3. INIIERJTANCE OF STAIECHARTS

In object-oriented modelling, the characteristics
of a class are influenced by all its superclasses.
Thus, when an object behaviour is defined by a
statechart, inheritauce issues a,rrong the cla^sses

must be considered. A solution to this problem is
to completely ignore the superclasses' statecharts
and draw a completely new statechart (possibly
with a totally difierent structure) for the class.
This solution is not considered, since it is contrary
to the object-oriented modelling principles.

The statechart of a class must be inherited by its
subclasses. Fbr this purpose, some rules, similar to
those that a,re used for code inheritance, must be
fulfilled. In this section, some of those rules and
the respective problems are presented.

Due to the nature of the graphical modifications
that can be done to a class'statechart, it is not
possible to indicate those modifications in a sim-
ple and incremental way. Embley, et ol. (Lgg2)
present a notation that allows a state model to
be incrementally specified taking into account the
superclass' statechart. This notation reduces the
likelihood of making errors a.nd inconsistencies,
since models are built in a differential way which
highlights the differences between the generic and
the specialized behaviours. Nevertheless, the ap-
proach cau not be applied generically. It is only
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Fig. 1. The way (a) a class and its statechart (b) are merged.

usable when the modifications are limited and
Iocalized, since the topological location of the
modelling elements must be preserved.

Our proposal is to consider the statechart of a
class to be graphically a complete diagram. There
are some proposals to highlight the modifications
made to a class statechart in relation to the
superclass' statechart. Weber and Metz (1998)
suggest dashed symbols for inherited elements
and normal symbols for the new elements, while
Selic, et al., (1994) use gray symbols for inherited
elements and black symbols for the new elements.
Whatever notation selected, the user must always
&aw a completely new statechart, which means
that if some modificatiotrs are made to a class'
statechart diagram, they must also be made (by
hand and not automatically) to all its subclasses.

Another alternative is to transform the statechart
into code (through pre and post-conditions and
operations), which allows the statecharts to be
inherited through the usual mechanism available
in all object-oriented languages (Oblog, 1997).
The main drawback of this solution is that the
graphical view of statecharts is lost, but, this way
the designer can incrementally specify statecharts.

Inheritance of statecharts at the graphical Ievel
are addressed in this paper. Table 1 presents 8
rules that can be applied to a class' statechart to
use it to specify the behaviour of a subclass. The
proposals of difierent researchers are analyzed,
which allowa the selection of the most relevant
ones for control applications. Inheritance can be
used for distinct purposes (subtyping, strict inher-
itance, refinement) and this work considers strict
inheritarree, which implies that properties can be
replaced or added, but not deleted.

Before presenting the rules, let us a,nswer the
following question: what does it mean an object
of class A being also an object of (a more generic)
class B? In the majority of the approaches to
inheritance, the "is-a" relation between classes A
and B implies as a minimun requirement that A
and B have the same interface. This mear$ that a
B's instance can be placed where an A's instance
ca^n also be placed, as long as the B's interface is
consistent with the A's interface.

This requirement does not necessaxily imply that
there is behavioural consistency between both
classes. It only guarantees that A's instances can
be replaced by B's instances without incompat-
ibilities, but it can trot assure that objects B
will behave the same way as objects A do. It is
possible that objects B will react differently in
relation to the behaviour of objects A, In prac-
tical terms, it is technically difficult to guarantee
the behavioural compatibility between two ciasses
(Ha.rel and Gery, 1997).

However, usually there is no need to impose that
the relation between a class and one of its sub-
classes means also that they do the same and in
the same way, Normally, we want B to answer the
same stimulus that A reply, but not necessarily
in the same way, This signifies that inheritance is
introduced mainly for allowing reuse.

3.7 Unmotdified stotechart

Whenever attributes and operations that have no
dependency on the object's state are added to
the subclass, the superclass' statechart can be
used without any change to describe the subclass
behaviour. This implies that the added properties

(b)

<<global)
adjustSound( )(activity)
showTitle( )
play( )
blink0
(event)
start( )
stop( )
pause( )(state)
stateReady( )
statePlaying(
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Itule A B C D E !' G
hl. Unmodified statechart yes yes ye8 yea yes y6 ye8

h2. Redefinition of state activities yes yes no yes yeE yea n.d.
h3. Adition of transitions and states ye8 ye8 ye8 ye6 yes yes restdte(
h4. Chanqe transitions' tarEet state yes J.es BO ao yes yes no
h5. Removal of transitions no yes no no partial no tro
h6. Refinement ofthe transitione labels yes yes ye3 yes yes ye8 n,d.
h7. Removal of states no yes no no no no no
h8. Chanee traneitions' orisin state no yes no no no tro no

Table 1. Inheritance t, methods support t Douglass,
1998), B (Selic, et a1.,1994), C (Shlaer and Mellor, 1992), D (Embedded systems),
E (Weber and Metz, 1998), F (Ilarel and Gery, 1997), G (Rumbaugh, et al., l99l).

can be used anytime during the object's life-
cycle. This can also be thought as the addition
of orthogonal behaviours to the statechart.

For example, if in a CDplayer subclass, the at-
tribute price and the operation actilateFilter are
added a,nd if they have no dependency on the ob'
ject's states, the superclass'statechart offig. 1(a)
can be used without modifications to describe the
behaviour of the subclass.

3.2 Eedefinition of state aetivities

In a subclass, it must be possible to redefine (i.e.
specialize or add) the activities and the actions
associated with a state. Douglass (1998) allow
actions and activities from a state to be removed,
without any re*riction. This possibility must only
be considered if the operation associated to the
removed action or activity is still referred in the
statechart. ff this happens, the operation is still
valid in the subclass. If aU the operation references
are removed, it is possible by inheritance to use
an operation at the subclass whose access was not
considered, which may cause inconsistencies.

This rule is illustrated in fi9. 2, where the activity
associated with the state Ready is modified iu the
subcla^es. The showlnfo activity is understood as
a specialization of showTitle, aud must be defined
in the subclass. Within this rule, it would be also
possible to make modifications to (entry and exit)
actions associated with states.

start' Ready \
do/ahowlnfoO, -]./Playingstop \ dolprayo

sto

paus(

_/ r,ause

/Pausine\
\ u"ro,,"*,i,/

Fig. 2. Statedrart with a modifi.ed activity.

3.3 Adition of transitiona anil states

A subclass may add states and transitions to the
superclass' statechart. This possibility is related
to the code inheritance mechanism used to add
attributes and operations to the subclass. Adding
a new state forces new transitions linked to inher-
ited states to be also added and (new or inherited)
events to be associated with those transitions.

Thus, adding new transitions to inherited states
is mlid, since it is a particular case of this rule.
However, to build a deterministic statechart, it
must be assured that the guards associated with
all the transitions that originate from a given
state a,re mutually exclusive. This aim may imply
that the guards a.ssociated with the inherited
transitions must be redefined.

The term "adition" of this rule must be inter-
preted in a broad sense. The proposals by Dou-
glass (1998) and by Harel and Gery (1997) include
the following changes to a state, whose practical
consequence is a statechart with more states: (1)
Decompose a state into concurrent sub-states (or-
thogonal components); (2) Add one sub-state to a
concurrent state; (3) Add orthogonal components
to a sequential state.

The OMT proposal (Rumbaugh, et al., 1991) is
the most restrictive one, since it does not allow the
direct introduction of new states and tra^nsitions,
in the superclass'statechart, siuce the latter must
be a projection of the subclass' statecha^rt, that
is, this must be a refinement of the former. Thus,
any state of the superclass' statechart may by
specialized or divided into concurrent parts.

It is also allowed to introduce new transitions trig-
gered by new events. Fig. 3 illustrates an example
of this situation with the introduction of a transi-
tion labelled with a new event (go). This rule also
allows the introduction ofa new state (Changing)
to change the track actually being reproduced.
This exa^nrple shows that the introduction of a
new state implies the introduction of transitions
(in the example, enabled by new events) that
connect the new state to some of the inherited
states. During the code generation process, it will

ii*l
l,a1
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be necessary to include new methods for the go
event, the Cha^nging state and the change action.

Fig. 3. Statechart with a new state, a new event,
a new activity and new tra^nsitions.

3.4 Change tronsitions' target state

Changing the target state of a transition may be
allowed, as long as it is possible to reach the
previous target state by a different transition.
ff this is considered, it is gua,ranteed that the
activities a,nd actions of the target state are still
needed in the subclass' statechart.

The application of this rule is usually necessary
when a new state is introduced between two inher-
ited states. In this case, the new state becomes the
taxget of the transition that previously (i.e., in the
superclass) linked the inherited states and a new
transition is added between the new transition
and the target state of the modified transition.

In fig. 4, the Reading state was introduced, allow-
ing the CD player to read a program that selects
which tracks will be reproduced. This example
shows how a new state (Reading) can be intro-
duced between two inherited states (Ready and
Playing) and the change of the target state of the
transitiou labelled with the start event.

Fig. 4. Statechart with a new state between two
inherited states.

3.5 Removal of transitions

The removal of a transition does not produce any
inconsistency in terms of the operations available

at the subcla.ss, a"s long as at least otre sub-
class' transition has as its event the one that
is associated with the removed transition. If all
the transitions associated with a given event are
eliminated, the subclass can still refer that event
(through inheritance) which can cause an incon-
sistency. In this sense, the removal of automatic
(unconditional) does not pose any problem and
can be performed. Notice that the removal of a
transition may imply the redefinition of the guards
associated with the transitions that originate from
the same state as that of the removed transition.

A transition can be logically removed by redefin-
ing its guard condition to have the false value
(through rule h6). With this facility, the transition
is still represented in the diagram, but is never
fired since the condition is always false.

Fig. 5 exemplifies this rule. In the subclass' state-
chart the transition that linked states Pausing and
Ready was removed. In this case, it is impossible
to stop the CD player, whenever it is paused.
This transition removal is allowed, since there still
exists a reference to the stop event in the sub-
class' statechart. In the subclass, it is necessary to
rewrite the method of the stop event, since it must
now be ignored when the actual state is Pausing.

start
'Ready
.do/BhowTitle(),if SIOP

Playing
do/playo

pal ts(

Uause

tPausing\
. dolbrinrO ,/

Fig. 5. Statechart with a removed transition be.
tween 2 inherited states.

3.6 Refinement of the transitions lobels

Tlansitions are labelled with inseriptions that
follow the format: Eaent[Guanl]/Acfion. Labels
can be specialized, meaning that the subclass may
modify (i.e. add, eliminate or change) the event,
the guard condition or the actions. As stated in
rule h5, if the condition of a transition is changed
to faJse, that transition is beiag logically removed.

The use of this rule is shown in fi9. 6, where the
label of the transition that links states Ready and
Playing is changed. In this example, the condition

[readyCD] is added, which refines the way the
transition is enabled to fire. This implies that
the readyCD attribute must be added to the
subclass. Within this rule, other examples where
new actions are added to a transition could also
be considered.

stop
pause

236



start [readvCDl'Ready'
do/ahowTitleO, stop

'Playing'
. do/playo

sto

pausl

/
rJ, ause

/Parrsinc\

f u'ro,r*,i ,/

Fig. 6. Statechart with a redefined tra^nsition.

3.7 Remoaol of stotes

The removal of a state should be disallowed since
the subclass looses access to a state that exists
in its superclass'statechart. If a state is actually
removed, an inconsistent situation may be created
since the method associated with that state is
defined at the superclass and thus available by
inheritance.

A way of avoiding this problem is to logically
eliminate all the transitions that end at that state,
by redefining their guards to be false (applying
rule h6). Consequently, the state is removed since
it is not connected to other states. Although it is
still graphically represented, in pratical terms it
was removed since it is unreachable.

3.8 Change transitions' origin stote

Usually, it is forbidden to change the origin state
of a transition. Although this rule is not generally
allowed, there seems to be no firm reason for that.
Anyway, it is also not authorized in this work,
since its application introduces a conceptual prob.
Iem contrary to the object-orientation principles.

4. CONCLUSIONS

This paper showed how object-oriented inheri-
tance can be re-interpreted when statecharts are
used to model the dynamic behaviour of a class.
The presentation is oriented to the use of state-
charts within the modelling of embedded systems
for industrial control applications, where issues
such as performa.nce and memory usage are more
important than reuse, extensibility, and simplic-
itv.

The mapping of a class' statechart into code is
divided in two phases. Firstly, the statechart be-
haviour is mapped to classes properties a.nd then
the class is transformed into code. In this paper,
some rules and guidelines that support the ffrst
mapping phase a,re discussed. Eight inheritance

rules for statechaxts were discussed in what con-
cerns its acceptance or rejection for the develop-
ment of embedded control systems.

In this work, strict inheritance among classes
was considered. Since inheritance can be used for
different purposes (subtyping, strict inheritance,
refinement), it is importa^nt to realize that the
rules presented here may not be directly used and
should be adapted if a different purpose is se,
lected. The approach followed is specifically tuned
to help the development of control embedded
systems, so it corresponds only to a particular
domain solution.
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