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‘ A the paradigm for studying diseases and the discovery of new drugs to treat them. In this article we focus
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our attention to vascular diseases in particular Hutchinson-Gilford Progeria Syndrome (HGPS), a

devastating premature aging disease caused by a mutation in the lamin A gene. In general, patients die

because of myocardial infarction or stroke. Because the patients are fragile the isolation of a particular
. type of cells is very difficult. Therefore in the last 5 years, researchers have used cells derived from iPSCs

Induced pluripotent stem cells . . . .

Progeria disease to model aspects of the HGPS and to screen libraries of chemicals to retard or treat the disease.

Drug modeling © 2015 Elsevier Inc. All rights reserved.
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1. iPSCs in disease modeling and drug discovery
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patient biopsies or immortalized human-derived cell lines can be
used as screening models, their low availability, finite in vitro
expansion, genetic and metabolic differences from the original
cells, are important limitations. In addition, animal models in
particular mouse models have been used to better understand
functional changes that can occur in patients with diseases caused
from genetic mutations. However mouse models do not always
demonstrate the same phenotype as those observed in humans.

iPSCs can overcome some of the limitations observed with an-
imal and adult human cellular models in the field of disease
modeling and drug discovery programs. iPSCs are an unlimited
source of cells derived from the patient own cells, having the same
genetic material, that can be differentiated into the different types
of cells affected by a certain pathology. They are of great interest in
the study of genetic diseases, in diseases for which access to human
tissue is difficult, or diseases that have an important developmental
component. In 2008, the first disease-specific iPSCs were derived
from somatic cells from a patient with a familiar form of amyo-
trophic lateral sclerosis (ALS). The patient specific iPSCs were suc-
cessfully differentiated into motor neurons [1]. At the same time,
iPSCs from several patients with a variety of genetic diseases have
been generated [2].

The high potential of iPSCs to generate disease models, lead to
the creation of several biobanks in USA (Coriell Institute for Medical
Research, NIH Center for Regenerative Medicine, ATCC and Uni-
versity owned biobanks), Europe (Cellartis) and Japan (RIKEN Bio-
resource Center) for storage and distribution of iPSC lines
originated from patients and from healthy controls [3]. In the last
few years the number of iPSC lines has exploited, and it is expected
to increase very rapidly. Indeed, Coriell Institute announced in
September 2015, the availability of 300 iPSC lines and the increase
of this number to 750 until the beginning of 2016. At the moment
there are available approximately 650 iPSC lines from specific-
disease patients and healthy controls. Moreover, several large-
scale iPSC banks are being developed to store and characterize
around 10,000—20,000 high quality iPSC lines in the next years [3].
Currently, there are at least 50 diseases that can be model through
iPSCs and they can be assembled, among others, in neurological,
cardiovascular, hepatic, hematopoietic and respiratory disorders
[4,5]. In the case of cardiovascular diseases it is already possible to

m

modulate a minimum of 11 diseases from several iPSC lines [6—8].
The goal of this review is to highlight recent advances in the
derivation of vascular cell models for drug discovery and disease
modeling, in particular the ones derived from HGPS. A review in
this topic of research is justified by recent advances (last 5 years) in
the derivation of vascular cells with a more precise phenotype
[9—13], the identification of the signaling pathways involved in the
specification of iPSCs into vascular cells [9,14,15], the development
of bioengineering tools to mature iPSC-derived vascular cells
[16—21] and the use of iPSCs to model HGPS disease [21—23].

2. Derivation of vascular cells from iPSCs
2.1. Derivation of endothelial and smooth muscle cells from iPSCs

To develop pluripotent stem cell (PSC)-derived models of hu-
man vascular diseases it is crucial to establish efficient differenti-
ation, expansion and purification protocols to obtain functional
cells. Differentiation of iPSCs into vascular lineages is a multistep
process that involves mesoderm formation, differentiation and
specification of vascular progenitors and their functional matura-
tion (Fig. 1). Early differentiation of human PSCs is modulated by
major signaling pathways: bone morphogenetic protein (BMP),
transforming growth factor (TGF)-f/Activin/Nodal, WNT/B-catenin
and fibroblast growth factor (FGF) [24] giving rise to cardiovascular
lineage progenitors which can be differentiated into car-
diomyocytes, endothelial cells (ECs) and smooth muscle cells
(SMCs).

The main strategies for deriving SMCs and ECs from human PSCs
are: through embryoid bodies (EBs) formation in medium enriched
serum [25,26], through monolayer formation (both of these
methods can be combined with the sequential addition of factors
important for SMCs or ECs derivation) and through co-culture with
stromal feeder cells (OP9, S17 or M210B4) [ 14]. Additionally, studies
reporting serum-free and chemically defined methods for gener-
ating SMCs [9] and ECs [10,27] have been published recently. In
addition, the derivation of both ECs and perycites from iPSCs has
been also documented [10].

PDGF-BB/PDGFR-f axis, TGF-f signaling pathway, retinoic acid
(RA) and Wnt/B-catenin signaling have been shown to be
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Fig. 1. Pathways and factors involved in the differentiation of human pluripotent stem cells into vascular cells. Differentiation of hPSCs into cells of the vascular lineage
(endothelial and vascular smooth muscle cells) is a multistep process that involves mesoderm induction, derivation of vascular progenitors cells and maturation into endothelial or

smooth muscle cells.
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important for the differentiation of human PSCs into SMCs [14].
FGF2 and BMP4 are two key signaling pathways important not only
for mesoderm formation [14,28] but also for it specification to the
ECs lineage [14,29]. Another key regulator of vasculogenesis and
endothelial differentiation is vascular endothelial growth factor
(VEGF), the presence of this factor increases the percentage of
human PSC-derived ECs, probably through the regulation of sur-
vival and propagation of ECs [14]. The small molecule SB431542, a
TGF-B inhibitor has been shown to increase the yield of ECs from
human embryonic stem cells (hESCs) [15]. SMCs have a spindle-like
morphology, express SMC-specific contractile proteins such as a-
smooth muscle actin (2-SMA), smooth muscle myosin heavy chain
(SMMHC), calponin, smooth muscle protein 220 (SMa-22),
calmodulin and h-caldesmonin. An important hallmark of SMCs
functionality is contractility response after stimulation [25]. ECs
have a cobblestone-like morphology and express CD31/PECAMI,
CD34, VEFGR1/Flt1l, VEGFR2[FIt2, CD144/VE-Cadherin, CD106/
Vascular Cell Adhesion Protein (VCAM1), eNOS, von Willebrand
Factor (VWF), among other markers. Functionally these cells are
able to uptake acetylated low-density lipoprotein and generate
tube-like structures within Matrigel [25].

Studies have shown that SMCs present in different heart vessels
have a distinct embryologic origin, which can result in lineage
specific differences in growth, gene expression and function. This
diversity may help to explain different patterns of vascular disease,
namely differences in susceptibility to atherosclerosis and vascular
calcification [9]. A protocol to derive SMCs from neuroectoderm,
paraxial mesoderm and, lateral plate mesoderm has been reported
[9] (Fig.1). In this regard the use of appropriate origin-specific SMCs
is vital for accurate disease modeling and therapeutic discovery.
Similarly to SMCs, ECs also develop distinct gene and protein
expression depending on the embryological origin and environ-
mental cues (arterial, venous and lymphatic vessels) [30]. Progen-
itor ECs are specialized to acquire arterial, venous and blood-
forming hemogenic phenotypes, these processes require several
key regulatory signals (reviewed in Ref. [31]). Several factors have
been shown to be important for the arterial-venous specification:
hemodynamic forces [32], Ephrin family of receptor tyrosine ki-
nases, Notch signaling, and chicken ovalbumin upstream promoter-
transcription factor II (COUPTFII), among others [31]. In recent
studies human PSCs-derived ECs have been also characterized for
specific markers of arterial and or venous sub-phenotype
[10,12,33]. However, further progresses are needed for a full con-
trol of endothelial cell sub-phenotypes.

2.2. Maturation of vascular cells by bioengineering tools

In some cases, the use of synthetic extracellular matrixes (ECM)
in combination with iPS-based cells may be important to induce the
maturation of vascular cells. For example, human PSCs-derived
SMCs were seeded in fibrin gels and the ECM induced the expres-
sion of adhesion molecule genes towards the expression observed
in mature human vascular SMC [26].

Besides ECM, flow may be an important tool to mature vascular
cells derived from iPSCs. In vivo, arteries and veins show different
phenotypic characteristics [34]; this probably results from the sum
of intrinsic genetic differences and exposure to different hemody-
namic forces. It was been shown that flow has an important role in
arterial-venous specification [32]. ECs derived from iPSCs were
specified into the arterial sub-phenotype by culture in a biomimetic
flow reactor under arterial flow shear stress that increased the
expression of arterial-related markers, EphrinB2, CXCR4, Con-
nexin40 and Notch1 [18]. Interestingly, both low (5 dyne/cm?;
typically found in venous vessels) and high (10 dyne/cm?; typically
found in arterial vessels) shear stress up-regulated the expression

of EphB2 an arterial marker [18].

Shear stress also modulates the functional activity of ECs
derived from PSCs [35]. When these cells were cultured under
arterial flow shear stress conditions, they were more resistant to
inflammation after exposure to tumor necrosis factor (TNF)-o than
cells cultured under static conditions [35]. In addition, iPSCs-
derived ECs presented an up-regulation of transcription factors
kruppel-like factors 2 and 4 (KLF2 and KLF4) indicative of a func-
tional vasoprotective phenotype, typical of a large artery endo-
thelium [18]. Moreover, iPSCs-ECs were able to adopt an
atherosclerosis phenotype when cultured for 72 h under an athe-
roprone flow shear stress [36].

3. Vascular disease modeling

According with the World Health Organization, cardiovascular
disease is the leading cause of mortality worldwide, representing
approximately 31% of all global deaths. Therefore, in vitro models
able to reproduce at some extent the disease in a dish may be an
important tool to study the disease and to discover new therapeutic
agents [6]. iPSCs have been used to model Pompe's disease,
supravalvular aortic stenosis (SVAS), Williams-Beuren syndrome
(WBS) and HGPS. In this section we summarize the advances in
modeling Pompe's disease, SVAS and WBS by iPSCs, while in sec-
tion 4 we review the most significant progresses in the use of iPSCs
to model HGPS.

3.1. Pompe's disease

Pompe's disease also known as glycogen storage disease type II,
results from a mutation in the acid o-glucosidase (GAA) gene,
which encodes the lysossomal glycogen-degrading enzyme leading
to the accumulation of glycogen in different tissues, namely skel-
etal, smooth muscle and cardiac tissue [37] and vascular endothe-
lium [38,39]. Therapies based in enzyme replacement have shown
success in extending patient survival; however, the therapeutic
efficacy in skeletal muscles is not yet satisfactory. Pompe's disease-
induced iPSCs have been generated from patients with infantile-
type [40] or late-onset-type Pompe's disease [41]. Undifferenti-
ated cells showed the expression of pluripotent markers but low
GAA activity and high glycogen content. Treatment of these un-
differentiated iPSCs with recombinant GAA reduces significantly
the number of glycogen granules [41]. Since the heart is one of the
most affected organs in Pompe's disease, cardiomyocytes have been
derived from Pompe's disease-induced iPSCs [40]. These cells pre-
sented low oxygen consumption and low extracellular acidification
rates, high levels of glycogen and several ultrastructural alterations,
such as deteriorating mitochondria and autophagosome-like
structures. Interestingly, treatment with L-carnitine was able to
ameliorate the oxygen consumption rates. By comparative analysis,
the authors identified several genes related with glycogen meta-
bolism, lysosome and mitochondria, which can be used as targets
for drug testing [40].

3.2. Supravalvular aortic stenosis (SVAS) and Williams-Beuren
syndrome (WBS)

SVAS results from mutations in elastin gene. The disease is
characterized by abnormal proliferation of SMCs that induces
tightening or obstruction of the ascending aorta and other arterial
vessels [42]. Individuals with WBS also display the same cardio-
vascular manifestations as observed in SVAS. Both diseases are
categorized as elastin arteriopathies. Genetically modified mice
have been used to elucidate the pathophysiology of the disease;
however, the homozygous-null mice die after birth [43]. In
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addition, some inter-species differences in the splicing of elastin
gene may also interfere with the study of the disease. Therefore,
human iPSCs have been derived from a patient with SVAS [42] and
another with WBS [44]. SMCs derived from SVAS-iPSC lines had less
organized networks of muscle a-actin filament bundles which
could be rescued by exogenous expression of elastin recombinant
protein or by boosting small GTPase RhoA signaling. The derived
SMCs also migrate more to platelet-derived growth factor (PDGF)
and show higher proliferation rates, which require elevated activity
of extracellular signal-regulated kinase 1/2 [42]. SMCs derived from
WBS-iPSCs present low levels of elastin mRNA and protein, high
proliferative capacity, low expression of SMCs late markers,
reduced calcium flux, impaired response to vasoactive agents and
vascular tube formation [44]. Importantly, treatment with syn-
thetic elastin-binding protein ligand 2 partially rescues the
phenotype and rapamycin, a mTOR inhibitor, was able to reduce the
proliferation rates and to improve the differentiation and vascular
tube formation of the cells.

4. Modeling Hutchinson-Gilford Progeria Syndrome (HGPS)
disease

4.1. HGPS disease from a clinical perspective

HGPS was first described by Jonathan Hutchinson in 1886 [45]
and then by Hastings Gilford in 1897 [46]. Progeria is a rare and
fatal genetic condition, characterized by premature aging symp-
toms in children [22,23,47—-49] and it affects approximately 1 in
4—8 million newborns almost equally in both sexes (1.2:1 male to
female ratio) and all races [48,49]. Up July 2015, 125 children have
been diagnosed with Progeria in 43 different countries [50]. Yet,
according to Progeria Research Foundation, it is believed that there
is more 350—400 children worldwide living with Progeria which
has not yet been diagnosed or identified [50].

Individuals with HGPS appear to show aging-related pheno-
types at a much faster rate than normal, leaving young children
with the appearance and health conditions of an aged individual
[48,49]. This syndrome causes changes in various organs and

Table 1

systems such as the skin, skeleton, hair, body fat and cardiovascular
system [48]. Unexpectedly, it has been demonstrated that normal
aged individuals also shown accumulation of progerin, suggesting
that a HGPS model could also be useful as a model for normal aging
[48,51]. Indeed, similarities between HGPS and natural aging have
been reported [48,51—53]. Nevertheless, one independent proge-
roid syndrome cannot recapitulate all clinical and physiological
alterations that are observed in physiological aging [51,54,55]. For
instance, cancer, Alzheimer's disease, and various other patholog-
ical conditions of aging are absent in HGPS [55,56]. Some clinical
characteristics accelerated in HGPS are common to both HGPS and
physiological aging, namely progressive vascular disease, bone loss
(osteopenia or osteoporosis), loss of subcutaneous fat, hair loss and
also progerin accumulation [55,57]. Additionally there are certain
cardiovascular alterations in HGPS that are similar to arterioscle-
rosis of aging, such as hypertension, vascular stiffening, vascular
calcification, plaque formation despite normal cholesterol levels,
and also stroke and heart attacks [51,53,55]. Cellular elements and
cardiovascular alterations in HGPS and physiological aging are
summarized in Table 1.

Most of the children with Progeria have a normal appearance in
the first few months after birth; however after 18—24 months of
age, or even early, the child starts to exhibit many characteristics of
accelerated aging [58]. The mean age of diagnosis is 2.9 years,
generally following a fall-off from the growth curves, loss of scalp
hair (40%), scleroderma-like focal changes (28%), lipodystrophy
(20%), and the appearance of characteristic facial dysmorphic traits,
including a characteristic visible vein across the nasal bridge
[49,59]. Other clinical characteristics also include alopecia (loss of
hair), kidney failure, loss of body fat, prominent eyes and scalp
veins, osteoporosis among others [47,48,58].

The majority of children with HGPS die from complications of
atherosclerosis, in which myocardial infarction and stroke repre-
sent the most frequent cause of death at a mean age of 13 years
[55,60]. In fact, both myocardial infarction and stroke are respon-
sible for at least 90% of patient's death [52]. One of the hallmarks of
the disease is the loss of SMCs in large arterial vessels [51,61,62],
making the blood vessels an important target in Progeria. The

Similarities and differences between Progeria Syndrome and physiological aging. Cellular elements and cardiovascular processes are altered by the accumulation of

progerin in HGPS and in physiological aging [51—55,87,88].

Similarities Differences
Cellular M Nuclear structural abnormalities HGPS Physiological Aging
elements (blebbing) High levels of progerin accumulation Low levels of progerin/Pre-lamin A accumulation
M Impaired mitosis M Delayed cytokinesis M Thickening of nuclear lamina
B Clustering of nuclear pores M ROS increase M Oxidative damage
M Loss of peripheral heterochromatin W Disregulated mitochondrial function M Histone modifications
B DNA damage and genome instability B Disregulated protesome activity
M Decrease ability to repair DNA damage
M Cell senescence
M Decrease resistance to oxidative stress
M Decrease resistance to respond to
mechanical strain
B Host of signaling pathways that change

with senescence and aging including
Notch pathway

Cardiovascular M Arteriosclerosis (premature in HGPS H vSMC depletion, particularly in the aortic media
patients) — calcification, inflammation B Adventitial fibrosis
and evidence of plaque erosion or M Impaired coronary function

alterations

M Atherosclerosis (intima-medial thickening,
atherosclerotic plaque, inflammation and
endothelial destruction, proliferating medial

rupture B Normal intima-media thickness of the carotid ar- SMC)

Vascular dysfunction

Hypertension

Vascular stiffening

Vessel wall remodeling with abnormal
ECM

Myocardial infarction

Stroke

tery, as are cholesterol, low-density lipoprotein
(LDL), and high sensitivity C-reactive protein levels
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reason for SMC loss is unknown. Some post-mortem studies in
HGPS patients have revealed a calcified focal plaque throughout
large and small arteries and the vascular media no longer contained
SMCs, particularly in the aortic media, which appeared more sus-
ceptible to hemodynamic and ischemic stress [54,62]. The SMCs
were replaced with ECM or fibrous tissue, and the elastic structure
of the vascular media was destroyed [55,62].

4.2. HGPS from a molecular perspective

The nuclear lamina in mammalian cells is a thin (20—50 nm)
protein meshwork that interacts with various proteins, including
lamins A, C, B1 and B2 [58,63]. The integrity of nuclear lamina is
crucial not only for maintaining the nuclear shape and structure,
but also for transcriptional regulation, nuclear pore positioning and
function, and heterochromatin organization [48,55,64]. Nuclear
lamina is required for most nuclear activities, such as DNA repli-
cation, cell cycle regulation and nuclear positioning within the cell
[63,64]. The lamins are the products of three genes: LMNA,
encoding lamins A, AA10, Cand C2; LMNBI1, encoding lamin B1; and
LMNB2, encoding lamins B2 and B3 [48,63]. However, the major
isoforms expressed in all differentiated cells in vertebrates are
lamin A and lamin C [48]. Mutations in LMNA, LMNB1 and LMNB2
are responsible for a group of genetic disorders named lam-
inopathies [48,58,63]. Over 180 mutations in these genes are
associated with at least 13 known laminopathies [63].

HGPS is a laminopathy typically caused by a single point mu-
tation of the LMNA gene that encodes the major components of the
nuclear lamina, the lamins A and C [65,66]. Although six different
mutations have been reported to cause HGPS, approximately 90% of
the cases are caused by a de novo C-to-T substitution at position
1824 of LMNA, G608G mutation (a change from glycine GGC to
glycine GGT, referred to as G608G) [48,60,63]. This autosomal-
dominant mutation activates a cryptic splice donor site, creating
an mRNA that is missing 150 nucleotides. This is translated into a
protein termed ‘progerin’, which contains a 50 amino-acid internal
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deletion. It is important to note that the disease phenotype is not
caused by the reduction of lamin A, but due to the production of
progerin, being HGPS a dominant negative disease [55,57,67]. This
was proved using a mouse model entirely lacking lamin A (Lmna~/
7) and showing no signs of disease [55].

Lamin A is normally produced from a precursor molecule
(prelamin A) via a series of four major post-translational processing
steps, which begins at the C-terminal end. This C-terminal tail
contains a CaaX motif, where the Cis a cysteine, the a residues are 2
aliphatic amino acids, and the X can be any aminoacid. First, prel-
amin A is modified by farnesylation (by farnesyl transferase), where
a farnesyl group is linked to cysteines of C-terminal CaaX boxes
binding the normal and mutant lamin A to the nuclear membrane.
Following farnesylation, the last three amino acids (aaX) are
cleaved by a zinc mellatoprotease, ZMPSTE24 (mouse) or FACE-1
(human). Then, methylation of the C-terminus by iso-
prenylcysteine carboxyl-methyl transferase (ICMT), and internal
proteolytic cleavage occurs. Removal of the last 15 coding amino
acids again by ZMPSTE24, along with the CaaX box and farnesyl
group generates mature lamin A with 646 amino acids (Fig. 2)
[22,48,55,68]. After these modifications, normal lamin A is released
from nuclear membrane, but in HGPS, progerin remains anchored
to the inner nuclear membrane [59]. Actually, the first three steps of
the post-translational maturation can be performed in HGPS.
However, the fourth step doesn't occur since HGPS prelamin A lacks
50 amino acids near the C-terminal missing the site for endopro-
teolytic cleavage of the final 16 amino acids (Fig. 2). Thus, progerin
is shortened and farnesylated which results in permanent progerin
intercalation within the nuclear membrane, causing a disruption in
the nuclear lamina integrity and structural stress on the nucleus
[47,48,68—70], which leads to a number of abnormalities in nuclear
structure and function. Progerin alters the nuclear shape and size
and HGPS cells present blebbing of the nucleus, disrupted mitosis,
and altered gene expression. Also, the nucleus presents wrinkles, a
thick nuclear lamina, disorganized heterochromatin and conse-
quently premature senescence.
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Fig. 2. Pos-translational processing of lamin A. In the first step of post-translational processing, farnesyl transferase adds a farnesyl group to the pre-lamin A. This farnesyl group
binds the pre-lamin A to the endoplasmic reticulum membrane at the periphery of the nucleus. Then, ZMPSTE24/FACE-1 cleaves the three terminal amino acids (aaX) and an OCH3
group is added. In the normal condition pre-lamin A undergoes a second cleavage event (in the recognition site - green bar) by ZMPSTE24/FACE-1, within the C-terminal globular
domain, releasing mature lamin A. In HGPS disease this fourth step cannot occur and the farnesylated progerin stays linked to the nuclear membrane. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Cells differentiated from HGPS iPSCs as in vitro aging models. Skin HGPS fibroblasts are generally used to generate HGPS iPSCs. The reprogramming process of these cells
induces a loss of the disease specific markers, such as progerin and nuclear morphology alterations. HGPS iPSCs are then differentiated into cell types that, in most cases, express
progerin and have significant nuclear morphology alterations. These cells may be an important biological resource to study human aging.

4.3. iPSCs to model HGPS in a dish

All the symptoms observed in HGPS patients cannot be entirely
recapitulated in mouse models [22]. Much of the knowledge that
we have today about HGPS pathologies came from studies using
patient skin fibroblasts and cell lines that ectopically express pro-
gerin [71]. Yet, it is important to note that tissue-specific cell lines
from HGPS patients are not easily obtained due to the difficulty of
performing biopsies on fragile patients [72]. Therefore, iPSCs
derived from HGPS skin fibroblasts might help to study the disease
in cell types that are not easily accessible in HGPS patients such as
neural cells, SMCs, among others [22,23,73,74]. In this section we
will focus our attention in the major findings about HGPS pathology
mechanisms that were identified using cells derived from HGPS-
iPSCs.

Studies have shown that the efficiency of iPSCs derivation from
HGPS cells is lower than in normal cells [22,75]. HGPS iPSCs pre-
sented low expression of lamin A/C (and thus progerin) in the
pluripotent state, which explains the absence of a Progeria
phenotype during the early developmental period of HGPS patients
(Fig. 3) [21,76,77]. Interestingly, the silencing of LMNA gene tran-
scription in iPSCs lead to an up-regulation of lamin B1, which seems
to indicate that a certain expression of lamin proteins is needed for
survival/activity of the cells [78]. HGPS iPSCs have nuclear
morphology, pluripotency, epigenetic and transcriptional profiles
similar to healthy iPSCs [75,76].

The differentiation of HGPS iPSCs into different cells such as
adipocytes [78], fibroblasts [22], mesenchymal stem cells (MSCs)
[22],ECs [22,79], SMCs [22,73] but not in neural progenitors [22,23]
leads to the expression of progerin (Fig. 3). The differentiated cells
showed nuclear dysmorphology, cell growth retardation, suscep-
tibility to apoptosis, DNA-repair defects, mislocalization of the
protein LAP2 (lamin-associated polypeptide 2) and reduced telo-
mere length. Each differentiated cell recapitulates many hallmarks

of the disease. For example, adipocytes derived from HGPS-iPSCs
showed a harsh lipid storage defect [78].

Some aspects of the disease were only possible to evaluate using
HGPS iPSCs. For example, studies have shown that MSCs derived
from HGPS-iPSCs are much more sensitive to hypoxia than normal
MSCs [22]. Also adipocytes differentiated from MSCs had lipid
storage defects at late differentiation stage due to the inhibition of
transcription activation of PPARy2 and C/EBPa [78]. Moreover,
HGPS iPSCs have been very useful tool to study in vitro the pa-
thology related to vascular cells. Human HGPS iPSC-derived ECs
have been used to study the potential mechanism of cell loss under
flow conditions, more specifically the involvement of transient
receptor potential (TRP) channels [79]. Up-regulation in the
expression of vanilloid TRP-2 induces hypotonicity in HGPS iPSC-
ECs under mechanical stress, due to an increase in cytosolic Ca®*
This might explain the mechanical stress-induced vascular cell
death in HGPS patients [79]. In a separate study, it was found that
DNA-dependent protein kinase catalytic subunit (DNAPKcs) was a
downstream target of progerin in SMCs differentiated from HGPS
iPSCs [73]. It was also shown that the expression of SMMHC, a
marker for fully differentiated SMCs, was not up-regulated in HGPS
SMCs, which suggested a delay in the terminal differentiation
program of these cells [21]. Interestingly, the accumulation of
progerin stimulated a down-regulation of poly (ADP-ribose) poly-
merase 1 (PARP1), resulting in prolonged mitosis of HGPS SMCs
[21]. This down-regulation of PARP1 was also detected in primary
skin fibroblasts from HGPS patients and in late passages of cells
from a G608G transgenic animal model [21], clearly demonstrating
that PARP1 is a regulator of SMCs and other cell types survival in
HGPS [21].

Although the expression of progerin could be reactivated after
the iPSCs differentiation in almost all types of cells, this did not
happen in neural progenitor cells (Fig. 3) [23]. Indeed, this pro-
tection of neural cells in HGPS recapitulates what happens in vivo,
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since HGPS patients do not present cognitive issues [23,68].
Therefore, differentiation studies of HGPS-iPSCs into neural pro-
genitor cells contributed for our knowledge about the molecular
mechanisms underlying this process. It was found that miR-9
negatively controlled lamin A and progerin expression in neural
cells, being the main cause for neural cells preservation in HGPS
[23]. These results have been also validated in Lmna™" mice [80].
Lamin C was abundant in mouse brain but not lamin A or its pre-
cursor prelamin A.

4.4. HGPS-derived iPSCs for drug screening

Before iPSC technology, the study of new treatments was limited
to patients' primary fibroblast cultures and genetically modified
healthy cells over-expressing progerin [57,81]. Nevertheless, cells
derived from HGPS iPSCs offer a platform for pharmacological
studies and effective chemical compound search through drug
screening [82]. The correction of LMNA mutation in HGPS cells
reverts the phenotype of the cells [83] and this type of approach
can be used to generate genotype matched cell lines for disease
modeling and drug discovery and potentially in therapeutics.

Some studies have used HGPS-derived iPSCs for drug screening.
For example, drugs currently used in clinical trials for HGPS pa-
tients have been tested in HGPS iPSC-derived cells [82]. MSCs
derived from HGPS iPSCs were used to verify some molecular pa-
rameters and to quantify functional defects of the cells in the
presence of drugs [82]. Farnesyltranferase inhibitor (FTI), rapamy-
cin and the combination of zoladronate acid and pravastatin
(ZoPra) decreased the nuclear shape abnormalities and the pre-
mature osteogenesis in the derived MSC [82]. This study also
evaluated the effect of the different drug combinations, showing no
additional benefits compared with single-drug treatments [82].
Although limited number of combinations has been tested, the
study opened the possibility of using HGPS iPSCs for high-
throughput drug screening.

5. Future prospects

iPSCs offer the possibility to study HGPS disease at levels not
possible before. The possibility of generating cells of different tis-
sues that are very difficult to obtain from HGPS patients is very
important to study the disease at different tissues. This is the case of
vascular cells, neural cells, among others as well as stem/progenitor
cells. Only now, the mechanisms underlying the vulnerability of
SMCs in HGPS patients have been identified [21]. However, further
research is needed to investigate the reasons behind SMC loss
under arterial flow.

So far, there is no cure for HGPS. The HGPS iPSCs technology in
combination with high-throughput screenings may be also used to
identify drugs that interfere with the expression, splicing, farne-
sylation, and function of progerin [75]. Some treatments have been
already tested in HGPS patients to retard the progression of the
disease [48,54,59]. From 2007 to 2009, the farnesyl transferase
inhibitor Lonafarnib was administrated to 25 HGPS children in the
first therapeutic trial in Boston (ClinicalTrials.gov Identifier:
NCT00425607) [84]. One of the outcomes of the treatment was the
body weight gain. Six children increased by 50% the body weight
comparing to the expected weight gain when untreated. In the
other patients the body weight was stable or decreased [84]. Some
interesting results on the cardiovascular system protection were
also reported [85]. Nevertheless, HGPS patients presented many
side effects related to the molecule. Another therapeutic strategy
tested in clinical trials was a combination of two drugs: pravastatin
(Pra) an inhibitor of HMG-CoA reductase and an aminobi-
sphosphonate (Zo) an inhibitor of farnesyl-pyrophophate synthase

[47,54,59]. The advantage of ZoPra is the reduction of both farne-
sylation and geranyl-geranylation of progerin avoiding the alter-
native prenylation induced by farnesyl transferase inhibitors
[54,59]. This clinical trial was performed in 12 HGPS patients
from 2008 to 2013 in Europe (ClinicalTrials.gov identifier:
NCT00731016); however the results of this clinical trial were not
published yet. Another therapeutic trial is currently in progress in
Boston combining ZoPra and Lonafarnib (ClinicalTrials.gov identi-
fier: NCT00916747). The estimated number of patients is 45 chil-
dren and it is expected to end in June 2017. Nevertheless, no in vivo
studies were performed to evaluate the efficacy and the side effects
of this triple drug combination [59]. Despite these advances, further
therapeutic platforms are needed o treat this disease.

HGPS iPSCs are very important to recapitulate many aspects of
HGPS disease in a dish but also for the understanding of the aging
process in humans. This technology allows the generation of cell
models that mimic the aging process in humans within a very short
period of time [86]. Therefore, novel mechanistic clues and thera-
pies for physiological human aging are now possible.
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