
A UML-based Approach for Modeling Industrial Control Applications
�

João M. Fernandes, Ricardo J. Machado and Henrique D. Santos

Dep. Informática, Universidade do Minho, 4700-320 Braga, Portugal

Telephone: +351-53-604454, Fax: +351-53-604471, Email: miguel@di.uminho.pt

Abstract:
The main purpose of the poster is to present how the
Uni�ed Modeling Language (UML) can be used for
diagnosing and optimizing real industrial production
systems. By using a car radios production line as a
case study, the poster shows the modeling process that
can be followed during the analysis phase of complex
control applications. In order to guarantee the con-
tinuity mapping of the models, the authors propose
some guidelines to transform the use cases diagrams
into a single object diagram, which is the main dia-
gram for the next phases of the development.

Introduction:
For the development of embedded systems, the authors
propose a new process model, which is based on the fol-
lowing characteristics: (1) Operational approach; (2)
Re�nement and transformation of the speci�cations;
(3) Spiral model; (4) Reverse engineering; (5) Auto-
matic code generation for prototyping.

The main views for specifying the system are captured
by the following UML diagrams: Use case diagrams are
used to capture the functional aspects of the system as
viewed by its users; Object diagrams show the static
con�guration of the system, and the relations among
the objects that constitute the system; Sequence dia-
grams present scenarios of typical interactions among
the objects that constitute the system or that interact
with it; Class diagrams store the information of ready-
made components that can be used to build systems
and specify the inheritance and hierarchical relation-
ships among them; and State-chart diagrams are used
to specify the dynamic behavior of some classes.

The information that is represented in state-charts, ob-
jects diagram, and classes diagram is transformed into
Oblog, which is a UML-based object-oriented model-
ing language that allows the system to be simulated
and has automatic code generation capabilities. The
Oblog environment generates sequence diagrams, as a
simulation output, that can be compared with those
previously created to specify the system behavior in
order to validate the system's requirements.

The process:
The �rst diagram to be built is the context diagram of
the system, that shows which actors interact with the
system. It de�nes the boundaries of the system. The
actors are anything that interacts with the system, but
do not belong themselves to it.

The next task was to de�ne the use cases of the sys-
tem. The authors propose an extension to UML by
adding a new tagged value to use cases, that was des-
ignated reference. Each use case can have a reference
that follows a numbering scheme similar to the tra-

�This work has been partially funded by the Por-

tuguese Science & Technology Foundation project

PRAXIS/P/EEI/10155/1998, Recon�gurable Embedded Sys-

tems: Development Methodologies for Real-Time Applications.

ditional DFD numbering. A top-level use case is as-
signed a reference (example: ref=9), and if this use
case is eventually re�ned by other sub-use cases, they
will have a reference that uses the super-use case as a
pre�x (example: ref=9.2). This numbering scheme can
be repeated to any depth and it helps those involved
in the project to relate all use case diagrams and will
be also used during the transition from use cases to
objects to ease the mapping between both models.

The most important and complex use cases can be re-
�ned. This allows more detail to be added to the initial
use case diagram and also the project to follow a risk-
driven process, where the most important or complex
functionalities of the system are �rst tackled. After
identifying all the use cases of the system, the next
step is to describe their behavior.

Feasibility Study phase

Object Diagram

Use Cases Diagram

Class Diagram

Sequence Diagrams

Sequence DiagramsOblog Repository

Context Diagram

Textual Description

Plant/Data Path

Specification

Textual Behavior

no
t v

al
id

va
li

d

Use Cases

Plant/Data Path

State-Charts

2. functional modeling

4. transformation

3. description

1. environment capture

5. plant modeling 8. classification

7. selection

6. behavioral
modeling

11. system specification

12. simulation

10 protocol modeling

13. matching

9. formalisation

Design & Implementation phases

Analysis phase

Figure 1: The process model for the project.

Object diagrams are important to show the compo-
nents that constitute the system. Transforming the
use cases that divide the system in a functional way
into objects is a critical task, that demands some cre-
ativity from developer, since usually there is no direct
mapping from use cases to objects. Several use cases
can give origin to one single object, a single use case
can give rise to a couple of objects, and eventually
there are intersections among uses cases and objects.

The authors present a systematic strategy, based on
the object types (interface, entity and control) pre-

1



sented by Jacobson et al., for �nding the objects of a
given system based on its use cases that consists of a
4-step rule set:

step 1: Transform each use case in three objects (one
interface object, one data object, and one control
object). Each object receives the same reference
as that of its corresponding use case appended
with a su�x that indicates the object's category
(i for interface, d for data, c for control).

step 2: Based on the textual description, for each use
case it must be decided which of the three ob-
ject categories must be maintained to fully repre-
sent, in computational terms, the use case, taking
into account the whole system and not consid-
ering each use case per si, as in a reducionistic
approach.

step 3: The survival objects must be aggregated
whenever there is mutual accordance for a uni�ed
representation of those objects.

step 4: The obtained aggregates must be linked to
specify the associations amongst the existing ob-
jects.

This approach aims to obtain an holistic set of objects
(resources of the system), so that the inter-relations
amongst the objecti�ed use cases can be successfully
simpli�ed in order to obtain a reduced number of rel-
evant and pertinent system-level objects.

As a user-readability pursuit, it is always a good prac-
tice to encapsulate as much as possible the system's
representations using packaging. Each package de�nes
a decomposition region that contains several tightly
semantically-connected objects. The packages should
be further speci�ed, in the next project development
phases, in what concerns its architectural structure.

The majority of the OO methodologies do not pay too
much attention to the object diagram. Usually, the
class diagram is built �rstly, but in this project the
order was reversed. To develop embedded control sys-
tems, the authors believe that it is more important to
have a good object model than a good class diagram,
because the elements that do constitute the system are
the objects and not their classes. This was the main
reason to �rst identify the objects and to later classify
them (to select the classes to which they belong). We
are not advocating to not work out the class diagram
or even to ignore it (the best situation is having good
object diagrams and good class diagrams). Instead,
we promote that the focus should be directed towards
the construction of the object diagram.

During the classi�cation of objects the class structure
is built, modi�ed, or ideally just used. Reuse can be
achieved in three di�erent ways, during the classes dis-
covery. First, if there are more than one object of
the same class, their de�nition is speci�ed in just one
place. Second, if classes with similar properties are
found, hierarchical relations among those classes can
be de�ned. Finally, when the class of an object is de-
scribed, it is possible that the developer recognizes the
existence of that class in a library, which allows it to
be immediately reused.

The class diagram is usually viwed as a template for
a set of applications that can be obtained from it. In
other words, the class diagram is a high-level general-
ization of the system. Whenever the developers de�ne
the way classes are interrelated, they are indicating all
the systems that can be obtained from those classes.

With this perspective, it is common, in several
methodologies, to not build the object diagram, since
it automatically results from the class diagram. When-
ever an object diagram is constructed, it is necessary to
guarantee that the relations expressed in the class dia-
gram between two classes also exist between instances
of those classes. This is the main reason that method-
ologies usually impose (or suggest) class diagrams to
be elaborated �rst than object diagrams. There is
an additional task in which it must be assured that
there is consistency between the information that is
described by both diagrams. This fact can be inter-
preted as a symptom that some information is being
unnecessarily replicated. We see the class diagram as a
repository of previously de�ned objects' speci�cations
(�a raw material store�), that can be used to develop
any application.

For those objects that have a complex or interesting
dynamic behavior, a state diagram should be spec-
i�ed. Object 9.3.c is responsible for controlling the
movements of the radios along a Hidro line. Due to
its great complexity, this object was decomposed into
smaller objects, each one responsible for coordinating
one node (a set of plant resources). Since the di�erent
nodes of a single Hidro line have not the same con�g-
uration, each kind of node requires a di�erent state-
chart, although there are similarities among them. For
instance the state-chart of an upper node with 3 lines
is similar to an upper node with 3 lines and one eleva-
tor that transports palets to the lower level. A class
hierarchy can best indicate the relations amongst those
di�erent categories of node controllers.

Conclusions:
The poster presents how UML can be used in real in-
dustrial projects to model embedded control systems.
The authors consider UML as an adequate language
for industrial projects, since it is intuitive for non-
technical people, it covers the main views of a system,
it is independent of the platform and it is a standard.

The approach presented in the poster puts more em-
phasis on objects rather than on classes, which is one
of its main divergences in relation to the traditional
object-oriented approaches. Thus, the transformation
from use cases into objects is one of the most impor-
tant tasks within the development process. An holis-
tic approach is followed during this transformation, so
that it may be possible to obtain the object diagram
that best maps the user's requirements into the sys-
tem's requirements.

To ease the mapping of the models, tagged values (des-
ignated reference) are associated to the modeling ele-
ments (namely, use cases and objects). This mecha-
nism is considered to be very useful, since it allows
to circum-navigate throughout the whole complemen-
tary views of the system model, enabling the imple-
mentation of an operational approach within the spiral
model-based analysis phase of system development.

Since some objects of the system present dynamic be-
havior, state-charts were used because they are ade-
quate for modeling that view of the systems.

This UML-based modeling approach was validated
with a real industrial case study. Although this paper
just covers the analysis phase, the authors are using
UML models in the design and implementation phases.
The authors are aware that the approach needs to be
applied to more projects in order to gain more experi-
ence and to improve some of the guidelines, namely in
what concerns real-time constraints and model re�ne-
ments during the design phase.

2


