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ABSTRACT

In this thesis, some algebraic operators are studied and some examples of their application

in semigroup theory are presented. This study contains properties of the following algebraic

operators: direct product, semidirect product, wreath product and λ-semidirect product. Char-

acterisations of certain semigroups are provided using the operators studied.
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RESUMO

Nesta tese estudamos alguns operadores algébricos e apresentamos exemplos de suas apli-

cações. No estudo efetuado estabelecemos propriedades dos seguintes operadores algébricos:

produto direto, produto semidireto, produto de wreath e produto λ-semidireto. São também

estabelecidas caracterizações de certos semigrupos usando os operadores estudados.
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Introduction

The main objectives of this dissertation are the study of some algebraic operators and of their

importance for the development of semigroup theory, and the presentation of some examples of

their application in this theory. Some of this operators are universal in the sense they are used in

classes of any kind of algebras. An example of this is the direct product. Other operators were

introduced only for classes of semigroups. That is the case, for example, of the λ-semidirect

product. The studies about this last kind of operators can be found in several articles and

in certain cases with very different terminology and notation. Thus, in the present study, we

present a brief review of this knowledge.

In the preliminary phase, we study basic concepts and results concerning arbitrary semi-

groups as well as regular semigroups, orthodox and inverse semigroups, which are necessary to

understand the subsequent chapters. For all the notations, terminologies and notions not de-

fined in this thesis, and for the proofs of the results presented in Chapter 1, the reader is referred

to [5], [6], [7] and [8]. The following chapters contain a study of the direct product, semidirect

product, wreath product and λ-semidirect product: some properties and some applications.
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1 | Preliminaries

1.1 Basic definitions

A semigroup is a pair (S, ·) composed of a non-empty set S and an associative binary operation

·, that is, a binary operation · that satisfies

x · (y · z) = (x · y) · z,

for all x, y, z ∈ S. This algebraic structure can be found, in a natural way, in mathematics and

some examples are (N,+) and (N,×), since the sum and the multiplication of natural numbers

satisfy the associative law. Usually, the product of two elements x and y is simply denoted by

xy and we write S to denote a semigroup (S, ·) when it is not necessary to clarify the nature

of the operation.

If a semigroup S satisfies the commutative law, we say that S is a commutative semi-

group. For example, the multiplication of integer numbers is commutative and so (Z, ·) is a

commutative semigroup.

An element e ∈ S is said to be an identity of S if, for all x ∈ S,

xe = ex = x.

Note that a semigroup S can have at most one identity. When it exists, this element is denoted

by 1
S
and S is said to be a monoid. An element f ∈ S is said to be a zero of S if, for every

x ∈ S,

xf = fx = f.
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Moreover, a semigroup S has at most one zero. When it exists, this element is denoted by 0
S
.

If a semigroup S has no identity then it is possible to extend the multiplication on S to S∪{1}

by setting

∀x ∈ S, x1 = 1x = x and 11 = 1.

Then (S ∪ {1}, ·) is a semigroup with identity 1. This monoid is denoted by S1. Analogous to

the above construction, if a semigroup S has no zero, we can extend the multiplication on S

to S ∪ {0} by

∀x ∈ S, x0 = 0x = 0 and 00 = 0.

Then (S ∪ {0}, ·) is a semigroup with zero 0. It is denoted by S0.

Examples of classes of semigroups are the class of left zero semigroups and the class of right

zero semigroups. An element x of a semigroup S is called a left zero (respectively, right zero) if

xy = x, for all y ∈ S (respectively, yx = x, for all y ∈ S). A semigroup consisting of only left

zero elements (respectively, right zero elements) is called a left zero semigroup (respectively,

right zero semigroup).

An element e ∈ S is called an idempotent of S if e2 = e. A semigroup may contain no

idempotents. When a semigroup S contains idempotents, the set of idempotents is denoted

by E(S). An important class of semigroups is the class of bands. A semigroup S is said to be

a band if all its elements are idempotents. A band is called a semilattice if it is commutative.

A semigroup S is said to be a rectangular band if it is a band and satisfies aba = a, for every

a, b ∈ S. It is easy to check that an alternative definition of rectangular band is the following:

S is a rectangular band if it is a band and satisfies abc = ac, for all a, b, c ∈ S. In fact, the

conditions aba = a and abc = ac are equivalent on a band S. Clearly, the second condition

implies the first one. Also, if the first condition is satisfied then, for any a, b, c ∈ S,

abc = ab(cac) = (a(bc)a)c = ac.

It is known that every band is determined by a semilattice Y , a family of rectangular bands

indexed by Y and a family of homomorphisms satisfying certain conditions. A band S is called

a left normal band if axy = ayx, for every a, x, y ∈ S.

4



1.1.1 Subsemigroups

Let S be a semigroup. A non-empty subset T of S is said to be a subsemigroup of S if, for

every x, y ∈ S,

x, y ∈ T ⇒ xy ∈ T.

A subsemigroup of S is a subgroup of S if it is a group under the semigroup operation.

Proposition 1.1. A non-empty subset T of a semigroup S is a subgroup if and only if

Tx = xT = T , for all x ∈ T , where Tx = {yx : y ∈ T} and xT = {xy : y ∈ T}.

We now consider an important class of subsemigroups of S. A non-empty subset I of S is

said to be:

• a left ideal of S if, for all i ∈ I and all s ∈ S, si ∈ I, that is, if SI ⊆ I;

• a right ideal if IS ⊆ I;

• an ideal if it is both a left and a right ideal.

For each a ∈ S, it is easy to prove that the smallest left ideal of S containing a is Sa∪{a}.

This left ideal is called the principal left ideal generated by a. We denote it by S1a.

Similarly, the principal right ideal generated by a, aS1, and the principal ideal generated by

a, S1aS1, are defined.

1.1.2 Homomorphisms

Let S and T be semigroups. A map ϕ : S → T is called a homomorphism (or a morphism) if,

for every x, y ∈ S,

(xy)ϕ = (xϕ)(yϕ). (1.1)

If S and T are monoids with identities 1
S
and 1

T
, respectively, ϕ is said to be a monoid-

morphism if (1.1) is satisfied and 1
S
ϕ = 1

T
.
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If ϕ is injective, ϕ is said to be a monomorphism (or an embedding). If there exists an

embedding from S into T , we say that S is embeddable into T . If ϕ is surjective, ϕ is said to

be an epimorphism. A morphism ϕ is said to be an isomorphism if it is bijective. If there exists

an isomorphism from S into T , we say that S and T are isomorphic and we write S ' T .

A morphism ϕ from S into itself is called an endomorphism and an endomorphism ϕ is

called an automorphism if it is bijective. We denote by End(S) the set of all endomorphisms

on S and by Aut(S) the set of all automorphisms on S.

1.1.3 Compatible equivalence relations

A binary relation ρ on a semigroup S is a subset of the cartesian product S × S. If x, y ∈ S

are ρ-related, we simply write (x, y) ∈ ρ or x ρ y.

A binary relation ρ on a semigroup S is said to be an equivalence relation if it is reflexive, sym-

metric and transitive. For an equivalence relation ρ on S, the sets

[x]ρ = {a ∈ S : (x, a) ∈ ρ} are called equivalence ρ-classes or, simply, ρ-classes.

A family π = {Ai : i ∈ I} of subsets of S is called a partition of S if

(1) For each i ∈ I, Ai 6= ∅;

(2) For all i, j ∈ I, if i 6= j then Ai ∩ Aj = ∅;

(3)
⋃
i∈I

Ai = S.

Observe that the set {[x]ρ : x ∈ S} is a partition of the semigroup S. This set is called the

quotient set and is denoted by S/ρ.

We define some well-known equivalence relations on a semigroup. Principal ideals of a

semigroup S allow us to define on S five equivalence relations which are called Green’s relations.

We present the definition of four of them, L, R, H and D, as well as various results that proved

to be relevant for our study. The relations L and R are defined by

• For all a, b ∈ S, aL b⇔ S1a = S1b;
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• For all a, b ∈ S, aR b⇔ aS1 = bS1.

The following results highlight some fundamental properties of Green’s relations L and R.

Proposition 1.2. [7, Cf. Proposition 2.1.1] Let a, b be elements of a semigroup S. Then

(1) aL b if and only if there exist x, y ∈ S1 such that xa = b and yb = a;

(2) aR b if and only if there exist u, v ∈ S1 such that au = b and bv = a.

A binary relation ρ on a semigroup S is said to be left compatible (with the multiplication)

if, for all a, b, c ∈ S,

(a, b) ∈ ρ ⇒ (ca, cb) ∈ ρ,

and right compatible (with the multiplication) if, for all a, b, c ∈ S,

(a, b) ∈ ρ ⇒ (ac, bc) ∈ ρ.

If ρ is left and right compatible, ρ is called compatible (with the multiplication). A compatible

equivalence is called a congruence.

Proposition 1.3. A relation ρ on a semigroup S is a congruence if and only if

(∀a, b, c, d ∈ S) [(a, b) ∈ ρ ∧ (c, d) ∈ ρ⇒ (ac, bd) ∈ ρ]. (1.2)

Proof: Suppose that ρ is a congruence on S. Let (a, b), (c, d) ∈ ρ. By right compatibility,

(ac, bc) ∈ ρ and, by left compatibility, (bc, bd) ∈ ρ. By transitivity, (ac, bd) ∈ ρ. Thus (1.2) is

satisfied.

Conversely, suppose that (1.2) holds. If (a, b) ∈ ρ and c ∈ S then, by reflexivity, (c, c) ∈ ρ

and so (ac, bc) ∈ ρ and (ca, cb) ∈ ρ. Hence ρ is left and right compatible and therefore ρ is a

congruence. 2

If ρ is a congruence on a semigroup S, we can algebrize the quotient set S/ρ in order to

obtain a semigroup. On S/ρ, define

[a]ρ[b]ρ = [ab]ρ. (1.3)

7



First, note that this definition does not depend on the choice of the representatives of the

ρ-classes [a]ρ and [b]ρ. In fact, if a′ ∈ [a]ρ and b′ ∈ [b]ρ then (a′, a) ∈ ρ and (b′, b) ∈ ρ. Since

ρ is a congruence, (a′b′, ab) ∈ ρ. Hence, [ab]ρ = [a′b′]ρ and so the equality (1.3) defines an

operation on S/ρ. Moreover, this operation is associative and therefore (S/ρ, ·) is a semigroup.

The relations L and R are not congruences. However, they have the following property.

Proposition 1.4. [7, Cf. Proposition 2.1.2] L is right compatible with the multiplication and

R is left compatible with the multiplication.

We know that the intersection of two equivalence relations is an equivalence. The same

does not apply to the union of equivalence relations ρ and σ, say. However the intersection of all

equivalence relations on an arbitrary semigroup S that contain ρ and σ is the least equivalence

relation on S that contains ρ and σ. So, the set E(S) of all equivalence relations on S, together

with inclusion ⊆, is a lattice where ρ∧σ = ρ∩σ and ρ ∨ σ =
⋂

τ∈E(S)
τ⊇ρ,σ

τ . The following proposition

is a well-known result:

Proposition 1.5. [6, Cf. Corollary I.5.15] If ρ and σ are equivalences on a semigroup S such

that ρ ◦ σ = σ ◦ ρ then ρ ∨ σ = ρ ◦ σ.

We are now ready to introduce the definition of two more Green’s relations on a semigroup

S: H = L ∩ R and D = L ∨ R. Since L ◦ R = R ◦ L [7, Proposition 2.1.3] it follows from

Proposition 1.5 that D = L ◦ R, that is

(∀a, b ∈ S) [aD b⇔ ∃z ∈ S : aL z ∧ zR b]

[5, Proposition II.1.2].

The following theorem highlights the multiplicative properties of H-classes.

Theorem 1.6. [7, Theorem 2.2.5] (Green’s Theorem) If H is an H-class in a semigroup S

then either H2 ∩H = ∅ or H2 = H and H is a subgroup of S.

8



We denote by La (respectively, Ra, Ha, Da) the L-class (respectively, R-class, H-class,

D-class) that contains the element a.

Corollary 1.7. [7, Corollary 2.2.6] If e is an idempotent of a semigroup S then He is a subgroup

of S. No H-class in S can contain more than one idempotent.

1.2 Regular semigroups

An element a ∈ S is said to be regular if there exists x ∈ S such that axa = a. An element x

satisfying axa = a is called an associate of a. The set of all associate elements of a is denoted

by A(a). If x ∈ A(a) then the element x′ := xax is such that x′ = x′ax′ and a = ax′a. Such

an element is called an inverse of a. The set of all inverses of a is denoted by V (a).

As a consequence of the definitions of idempotent element, regular element and inverse of

an element, we have

Proposition 1.8. Let S be a semigroup and a ∈ S.

(1) If x ∈ A(a) then ax ∈ E(S) and xa ∈ E(S).

(2) If e ∈ E(S) then e ∈ V (e).

A semigroup S is said to be a regular semigroup if all its elements are regular, that is, if

A(x) 6= ∅, for every x ∈ S. From this definition and (1) of Proposition 1.8, it follows that

Proposition 1.9. If S is a regular semigroup then E(S) 6= ∅.

A consequence of the definition of regular element is presented by the following result and

is a useful tool for further results.

Proposition 1.10. Let S be a regular semigroup. Then, for all s ∈ S, there exist

e, f ∈ E(S) and x ∈ S such that xs = e and sx = f .

An important result on the study of regular semigroups is the Lallement’s Lemma:

9



Lemma 1.11. [7, Cf. Theorem 2.4.3](Lallement’s Lemma) Let ρ be a congruence on a

regular semigroup S, and let [a]ρ be an idempotent in S/ρ. Then there exists an idempotent e

in S such that [e]ρ = [a]ρ.

In a regular semigroup S, for any a ∈ S, a = (aa′)a ∈ Sa (a′ ∈ A(a)) and, similarly,

a ∈ aS. Thus, whenever considering Green’s relations L and R on a regular semigroup S we

can define, more simply,

• For all a, b ∈ S, aL b⇔ Sa = Sb;

• For all a, b ∈ S, aR b⇔ aS = bS.

Also, we can establish Proposition 1.2 for regular semigroups.

Proposition 1.12. Let a, b be elements of a regular semigroup S. Then

(1) aL b if and only if there exist x, y ∈ S such that xa = b and yb = a;

(2) aR b if and only if there exist u, v ∈ S such that au = b and bv = a.

Using this proposition, the next two corollaries can be easily proved. Corollary 1.14 charac-

terises L and R on the set of idempotents of S.

Corollary 1.13. Let S be a regular semigroup, a ∈ S and x ∈ A(a). Then xaL a and aR ax.

Corollary 1.14. Let S be a regular semigroup and e, f ∈ E(S). Then

(1) eL f if and only if ef = e and fe = f ;

(2) eR f if and only if ef = f and fe = e.

For each congruence ρ on a regular semigroup S, there are two sets that play an important

role in the definition of congruence: the kernel and the trace of ρ. For a congruence ρ on S,

• the kernel of ρ is denoted by ker ρ and is given by

ker ρ :=
⋃

e∈E(S)

[e]ρ;

10



• the trace of ρ is denoted by tr ρ and is the restriction of ρ to E(S): tr ρ = ρ|
E(S)

.

Each congruence ρ on a regular semigroup can therefore be associated to the ordered pair

(ker ρ, tr ρ). In [11] the authors provide a characterisation of such pair and proved that the pair

(ker ρ, tr ρ) uniquely determines ρ:

Proposition 1.15. [11, Corollary 2.11] A congruence on a regular semigroup S is uniquely

determined by its kernel and its trace.

We observe that in view of Lallement’s Lemma we have

kerρ = {s ∈ S : (s, s2) ∈ ρ}.

A congruence ρ on a semigroup S is said to be a group congruence if S/ρ is a group. If ρ

is a group congruence on a regular semigroup S, the trace of ρ is the universal congruence in

E(S) and ker ρ = 1
S/ρ

.

We end this section addressing a special class of semigroups. Let S be a semigroup and

let G(S) be the group generated by the elements of S, as generators, and all identities ab = c

which hold in S, as relations. The mapping α : S → G(S) defined by sα = s, for all s ∈ S,

is a homomorphism and is such that, for any group H and any semigroup homomorphism

h : S → H, there exists a unique group homomorphism g : G(S)→ H satisfying h = αg. The

group G(S), together with the homomorphism α, is called the universal group of S.

We have the following result for regular semigroups:

Proposition 1.16. [5, Cf. Proposition IX.4.1] For a regular semigroup S, the following state-

ments are equivalent:

(1) e ∈ E(S) and ea ∈ E(S) ⇒ a ∈ E(S);

(2) e ∈ E(S) and ae ∈ E(S) ⇒ a ∈ E(S);

(3) E(S) = (1
G(S)

)α−1, where (G(S), α) is the universal group of S.

11



A regular semigroup that satisfies the equivalent conditions of Proposition 1.16 is called an

E-unitary semigroup.

1.2.1 Inverse semigroups

A semigroup (S, ·) is said to be a U-semigroup if a unary operation x 7→ x′ is defined on S

such that, for all x ∈ S,

(x′)′ = x.

Clearly, every semigroup is a U-semigroup for the unary operation a 7→ a′ = a. We now see

a special case where the unary and the binary operations interact with each other. If S is a

U-semigroup and the unary operation x 7→ x′ satisfies, for all x ∈ S, the axiom xx′x = x, we

say that S is an I-semigroup. In an I-semigroup S, given x ∈ S, since x′ ∈ S, we have

x′xx′ = x′(x′)′x′ = x′.

Thus x′ ∈ V (x). Because of this, x′ is usually denoted by x−1. An important class of I-

semigroups is the class of inverse semigroups. A semigroup S is said to be an inverse semigroup

if it is an I-semigroup and its idempotents commute. So the set of idempotents of an inverse

semigroup S is a commutative inverse subsemigroup of S. Since the inverse of an element

x ∈ S is, in particular, an associate of x, we have:

Proposition 1.17. Every inverse semigroup is regular.

The converse of Proposition 1.17 does not hold. For example, a left zero semigroup with

two elements a and b, say, is a regular semigroup but it is not an inverse semigroup since its

idempotents do not commute (ab = a and ba = b) . However, if all idempotents of a regular

semigroup S commute then S is an inverse semigroup. Some characterisations of an inverse

semigroup are listed in the next result:

Theorem 1.18. [7, Cf. Theorem 5.1.1] Let S be a semigroup. The following statements are

equivalent:

(1) S is an inverse semigroup;

12



(2) Every L-class and every R-class contains exactly one idempotent;

(3) Every element of S has a unique inverse.

We now present some properties of inverse semigroups.

Proposition 1.19. [7, Cf. Proposition 5.1.2] Let S be an inverse semigroup. Then

(1) For all a, b ∈ S, (ab)−1 = b−1a−1;

(2) For every a ∈ S and every e ∈ E(S), aea−1 ∈ E(S) and a−1ea ∈ E(S);

(3) For all a, b ∈ S, (a, b) ∈ L ⇔ a−1a = b−1b and (a, b) ∈ R ⇔ aa−1 = bb−1;

(4) If e, f ∈ E(S), then (e, f) ∈ D if and only if there is a ∈ S such that aa−1 = e and

a−1a = f.

A group is an inverse semigroup. Proposition 1.1 characterises a group and the next result

gives a characterisation of a group in terms of an inverse semigroup.

Proposition 1.20. A semigroup S is a group if and only if S is an inverse semigroup with a

unique idempotent.

The next result provides a representation for left cosets of a group. It will be useful for

proving some auxiliar results on Chapter 3.

Lemma 1.21. Every non-empty subset X of a group G is a left coset of G if and only if

X = XX−1X, where X−1 = {x−1 : x ∈ X}.

Proof: Let X be a non-empty subset of a group G. Suppose that X is a left coset of G.

Then there is a subgroup H of G such that X = aH, for some a ∈ G. Then

x ∈ XX−1X ⇒ x = ah1(ah2)
−1ah3, with h1, h2, h3 ∈ H

⇒ x = ah1h
−1
2 a−1ah3 = a(h1h

−1
2 h3), with h1h

−1
2 h3 ∈ H

⇒ x ∈ aH = X.

Also, for any x ∈ X, x = xx−1x and so x ∈ XX−1X. Hence, X = XX−1X.

Conversely, suppose that X = XX−1X. Let H = {y−1z : y, z ∈ X}. We show that H is

a subgroup of G:

13



• The set H is non-empty since X 6= ∅;

• For a, b ∈ H, there exist y1, y2, z1, z2 ∈ X such that a = y−11 z1 and b = y−12 z2. Then

ab = y−11 (z1y
−1
2 z2), with y1 ∈ X and z1y−12 z2 ∈ XX−1X = X. Hence ab ∈ H.

• For a ∈ H, there exist y, z ∈ X such that a = y−1z. Then a−1 = (y−1z)−1 = z−1y and

therefore a−1 ∈ H.

Moreover, for every x ∈ X, X = xH, since

• for a ∈ X, we have a = 1
G
a = xx−1a and x−1a ∈ H;

and

• for every y, z ∈ X, x(y−1z) = xy−1z ∈ XX−1X = X.

Hence X is a left coset of the subgroup H of G. 2

The natural partial order

A binary relation ρ on a set S is said to be a partial order if it is reflexive, antisymmetric and

transitive. A partial order on S is denoted by ≤
S
or, simply, by ≤.

Let S be an inverse semigroup. Note that E(S) is a non-empty set. The binary relation ≤

defined on E(S) by

(∀e, f ∈ E(S)) [e ≤ f ⇔ ef = fe = e] (1.4)

is a partial order. This partial order can be extended to the whole semigroup in the following

way:

(∀a, b ∈ S) [a ≤ b⇔ ∃e ∈ E(S) : a = eb]. (1.5)

In fact, if a, b ∈ E(S) and a ≤ b then there exits g ∈ E(S) such that a = gb. Since a, b and

g are idempotents and the idempotents commute, we have

a = gb = (gb)b = ab = ba.
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So the partial order defined by (1.5), when restricted to the set of idempotents of S, coincides

with the one defined by (1.4). We call natural partial order to the binary relation ≤ defined on

S by (1.5). This relation is compatible with the multiplication. In fact, for a, b, c, d ∈ S such

that a ≤ b and c ≤ d, we have

a ≤ b⇔ ∃e ∈ E(S) : a = eb

and

c ≤ d⇔ ∃f ∈ E(S) : c = fd.

Then
ac = ebfd

= eb(b−1b)fd

= (ebfb−1)bd.

Since e, bfb−1 ∈ E(S), ebfb−1 ∈ E(S) and so ac ≤ bd. Also, the relation ≤ is compatible

with the inversion, that is, if a ≤ b then a−1 ≤ b−1. Let a, b ∈ S be such that a ≤ b. Then

a = eb, for some e ∈ E(S), and so

a−1 = (eb)−1 = b−1e−1 = b−1(bb−1)e = (b−1eb)b−1.

Since b−1eb ∈ E(S), we obtain a−1 ≤ b−1.

In the following result, some alternative characterisations of the natural partial order on

inverse semigroups are presented.

Proposition 1.22. [7, Cf. Proposition 5.2.1] On an inverse semigroup S, the following state-

ments are equivalent, for all a, b ∈ S,

(1) a ≤ b;

(2) ∃e ∈ E(S) : a = be;

(3) aa−1 = ba−1;

(4) aa−1 = ab−1;

(5) a−1a = b−1a;

(6) a−1a = a−1b;

(7) a = ab−1a;

(8) a = aa−1b.
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Congruences

A congruence ρ on an inverse semigroup S has the following useful properties.

Proposition 1.23. [8, Proposition 2.3.4] Let ρ be a congruence on an inverse semigroup S.

(1) If (s, t) ∈ ρ then (s−1, t−1) ∈ ρ, (s−1s, t−1t) ∈ ρ and (ss−1, tt−1) ∈ ρ.

(2) If e ∈ E(S) and (s, e) ∈ ρ then (s, s−1) ∈ ρ, (s, s−1s) ∈ ρ and (s, ss−1) ∈ ρ.

Proposition 1.24. Let ρ be a congruence on an inverse semigroup S. Then

(1) S/ρ is an inverse semigroup;

(2) ker ρ is an inverse subsemigroup of S.

Proof:

(1) S/ρ is clearly a semigroup, since S is a semigroup. Let [x]ρ ∈ S/ρ. Then x ∈ S. Since S

is an inverse semigroup, there exists a unique inverse of x, x−1 ∈ S. So [x−1]ρ ∈ S/ρ and

[x−1]ρ ∈ V ([x]ρ). Let [a]ρ, [b]ρ ∈ E(S/ρ). By Lemma 1.11, [a]ρ = [e]ρ and [b]ρ = [f ]ρ,

for some e, f ∈ E(S). Since S is inverse, ef = fe Thus, [e]ρ[f ]ρ = [f ]ρ[e]ρ, that is,

[a]ρ[b]ρ = [b]ρ[a]ρ. Hence S/ρ is an inverse semigroup.

(2) Since the idempotents of S commute and ef ∈ E(S), for all e, f ∈ E(S), ker ρ is

a subsemigroup of S. Let x ∈ ker ρ. Then x ∈ [e]ρ, for some e ∈ E(S). Since S

is an inverse semigroup, there exists x−1 ∈ S the unique inverse of x. We show that

x−1 ∈ ker ρ. We have

(x, e) ∈ ρ ⇒ (x−1, e−1) ∈ ρ (Proposition 1.23)

⇒ (x−1, e) ∈ ρ

and so x−1 ∈ [e]ρ, e ∈ E(S). Then x−1 ∈ ker ρ. Since ker ρ ⊆ S, it is clear that the

idempotents of ker ρ commute. Thus ker ρ is an inverse subsemigroup of S. 2
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Let S be a semigroup. A congruence ρ on S is said to be an inverse semigroup congruence

if S/ρ is an inverse semigroup. Other kind of congruences is the idempotent-separating congru-

ences. We say that an equivalence relation ρ on S is idempotent-separating or that separates

idempotents if tr ρ = id
E(S)

, that is, no ρ-class has more than one idempotent. We now present

some results about idempotent-separating congruences on inverse semigroups. By Corollary

1.7, in any semigroup S, He is a subgroup of S, for all e ∈ E(S). Then the equivalence

H separates idempotents and therefore every congruence contained in H separates idempo-

tents. The condition of a congruence ρ being contained in H is also necessary for ρ to be

idempotent-separating.

Proposition 1.25. [8, Cf. Proposition 3.2.12] If S is an inverse semigroup then a congruence

ρ on S is idempotent-separating if and only if ρ ⊆ H.

The maximum idempotent-separating congruence on an inverse semigroup S is given by

µ
S

= {(a, b) ∈ S × S : (∀e ∈ E(S)) a−1ea = b−1eb}

[6, Theorem V.3.2].

Before showing that the maximum idempotent-separating congruence, µ
S/µ

, on S/µ
S
, with

S an inverse semigroup, is the identity congruence, we have to recall the definition of a congru-

ence on the quotient semigroup. On an inverse semigroup S, if ρ and τ are both congruences

on S and ρ ⊇ τ then the relation

ρ/τ := {([a]τ , [b]τ ) ∈ S/τ × S/τ : (a, b) ∈ ρ}

is a congruence on S/τ [6, Theorem V.5.6].

To prove that µ
S/µ

S
is the identity congruence we must show that, for all

([a]µ
S
, [b]µ

S
) ∈ µ

S/µ
S
, [a]µ

S
= [b]µ

S
. Suppose that ([a]µ

S
, [b]µ

S
) ∈ µ

S/µ
S
. Then every idempo-

tent in S/µ
S
has the form [e]µ

S
, with e ∈ E(S), we obtain

[a]−1µ
S
[e]µ

S
[a]µ

S
= [b]−1µ

S
[e]µ

S
[b]µ

S

and so

[a−1ea]µ
S

= [b−1eb]µ
S
.

17



Since a−1ea, b−1eb ∈ E(S) and µ
S
is idempotent-separating, it follows that a−1ea = b−1eb.

Hence (a, b) ∈ µ
S
, that is, [a]µ

S
= [b]µ

S
.

An inverse semigroup S is said to be fundamental if µ
S
is the identity congruence.

The considerations made above prove the next theorem.

Theorem 1.26. [6, Cf. Theorem V.3.4] Let S be an inverse semigroup and µ
S
be the maximum

idempotent-separating congruence on S. Then S/µ
S
is fundamental.

Observe that not all elements of an inverse semigroup S commute with all idempotents of

S and so we define the centraliser of E(S) in S:

Z(E(S)) = {x ∈ S : xe = ex, for all e ∈ E(S)}.

Let S be an inverse semigroup. An inverse subsemigroup of S is said to be full if it contains

all the idempotents of S.

Proposition 1.27. Let S be an inverse semigroup. Then Z(E(S)) is a full inverse subsemigroup

of S.

Proof: Let x, y ∈ Z(E(S)). Then, for any e ∈ E(S),

(xy)e = x(ey) (y ∈ Z(E(S)))

= e(xy) (x ∈ Z(E(S))),

and so xy ∈ Z(E(S)). Therefore Z(E(S)) is a subsemigroup of S.

Let x ∈ Z(E(S)) and x−1 ∈ S be the inverse of x. Then

x−1e = x−1xx−1e

= x−1exx−1 (idpts commute)

= x−1xex−1 (x ∈ Z(E(S)))

= ex−1. (idpts commute)

Hence x−1 ∈ Z(E(S)). Thus Z(E(S)) is inverse.
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Let f ∈ E(S). Since S is inverse, all its idempotents commute and so, for any e ∈ E(S),

ef = fe. Then f ∈ Z(E(S)). Hence Z(E(S)) is full. 2

A semigroup S is said to be a Clifford semigroup if it is regular and Z(E(S)) = S. A Clifford

semigroup is an inverse semigroup. Using this definition, it is easy to prove the following result:

Proposition 1.28. Let S be an inverse semigroup. Then Z(E(S)) is a Clifford semigroup.

Proof: By Proposition 1.27, Z(E(S)) is a regular semigroup. Since Z(E(S)) ⊆ S and

E(Z(E(S))) ⊆ E(S), it is obvious, from the definition of Z(E(S)), that

∀e ∈ E(Z(E(S))) ∀a ∈ Z(E(S)) ea = ae.

Hence Z(E(S)) is Clifford semigroup. 2

Proposition 1.29. Let S be an inverse semigroup and µ
S
be the maximum idempotent-

separating congruence on S. Then µ
S
is the unique idempotent-separating congruence such

that kerµ
S

= Z(E(S)).

Proof: We show that kerµ
S

= Z(E(S)). Let a ∈ kerµ
S
and f ∈ E(S). Then (a, e) ∈ µ

S
,

for some e ∈ E(S), and so,

a−1fa = e−1fe,

that is,

a−1fa = efe = e2f = ef.

We have
(a−1fa)−1f(a−1fa) = (ef)−1f(ef)

= effef

= ef

and
(fe)−1f(fe) = feffe

= fe.
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Since the idempotents of S commute, ef = fe and so

(a−1fa)−1f(a−1fa) = (fe)−1f(fe),

which gives (a−1fa, fe) ∈ µ
S
. From µ

S
being an idempotent-separating congruence and

a−1fa, fe ∈ E(S), we obtain a−1fa = fe. By Proposition 1.25, µ
S
⊆ H and so, from

(a, e) ∈ µ
S
, we obtain ae = a. Thus

fa = faa−1a

= aa−1fa

= aef

= af.

Hence a ∈ Z(E(S)). Conversely, let a ∈ Z(E(S)). We have

a = a(a−1a) = (a−1a)a

and so

aa−1 = (a−1a)(aa−1)

giving

aa−1 ≤ a−1a.

Since Z(E(S)) is an inverse subsemigroup of S, a−1 ∈ Z(E(S)) and so

a−1 = a−1(aa−1) = (aa−1)a−1

whence

a−1a = (aa−1)(a−1a)

and therefore

a−1a ≤ aa−1.
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Thus aa−1 = a−1a. For any e ∈ E(S),

a−1ea = a−1ae (a ∈ Z(E(S)))

= aa−1e (a−1a = aa−1)

= eaa−1 (idpts commute)

= e(aa−1)(aa−1)

= (aa−1)−1e(aa−1) (idpts commute)

and therefore (a, aa−1) ∈ µ
S
. Since aa−1 ∈ E(S), it follows that a ∈ kerµ

S
.

The uniqueness of µ
S
follows directly from Proposition 1.15. 2

As a consequence of Proposition 1.28 and Proposition 1.29, we have the following result:

Corollary 1.30. Let S be an inverse semigroup. Then the inverse semigroup kerµ
S
is a Clifford

semigroup.

1.2.2 Orthodox semigroups

By Proposition 1.9, in regular semigroups there always exist elements which are idempotents and

so we can consider the non-empty set of idempotents E(S). Although E(S) is not necessarily a

subsemigroup of S, there are regular semigroups in which the idempotents form a subsemigroup

– it is the case, for example, of bands. Thus it makes sense to define the following concept. A

semigroup S is called orthodox if it is regular and if its idempotents constitute a subsemigroup

of S. Next, we present some characterisations of this class of semigroups.

Theorem 1.31. [7, Cf. Theorem 6.2.1] Let S be a regular semigroup. The following statements

are equivalent:

(1) S is orthodox;

(2) For every a, b ∈ S, V (b)V (a) ⊆ V (ab);

(3) For all e ∈ E(S), V (e) ⊆ E(S).
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A further characterisation of orthodox semigroups is the following:

Theorem 1.32. [7, Theorem 6.2.4] A regular semigroup S is orthodox if and only if

(∀a, b ∈ S) [V (a) ∩ V (b) 6= ∅ ⇒ V (a) = V (b)].

Orthodox semigroups are not necessarily inverse. They can, however, be factorised into

inverse semigroups as the next proposition shows.

Proposition 1.33. [7, Theorem 6.2.5] Let S be an orthodox semigroup. The relation

γ = {(x, y) ∈ S × S : V (x) = V (y)}

is the smallest inverse semigroup congruence on S.

In an orthodox semigroup S, the congruence γ satisfies an important property:

Proposition 1.34. Let S be an orthodox semigroup. Then, for all x ∈ S,

(x, e) ∈ γ ∧ e ∈ E(S) ⇒ x ∈ E(S).

Proof: Let x ∈ S and e ∈ E(S) be such that (x, e) ∈ γ. Then, by Lemma 1.33, V (x) = V (e)

and so, since e ∈ V (e), e ∈ V (x), that is, x ∈ V (e). It now follows from (3) of Theorem 1.31

that x ∈ E(S). 2

A congruence on a semigroup S with idempotents is called idempotent-pure if [e]ρ ⊆ E(S),

for all e ∈ E(S).

Corollary 1.35. The smallest inverse congruence on an orthodox semigroup is idempotent-pure.

It follows immediately from (3) in Proposition 1.16 that E-unitary regular semigroups are

orthodox. E-unitary semigroups are exactly the semigroups for which the band of idempotents

is a σ-class, where σ is the least group congruence on the semigroup:

Proposition 1.36. Let S be an E-unitary semigroup and σ
S
be the least group congruence on

S. Then E(S) is a σ
S
-class and hence E(S) is the kernel of σ

S
.
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Proof: We show that E(S) is the identity class of the group S/σ
S
. We have

a ∈ 1
S/σ

S
⇒ [a]σ

S
= 1

S/σ
S
∈ E(S/σ

S
)

⇒ [a]σ
S

= [e]σ
S
, for some e ∈ E(S) (Lemma 1.11)

⇒ (a, e) ∈ σ
S

⇒ afe′ ∈ E(S), for some f ∈ E(S) [15, Lemma 1.3]

⇒ a(fe) ∈ E(S).

Since fe is an idempotent and S is E-unitary, we obtain that a is also an idempotent of S.

Then 1
S/σ

S
⊆ E(S). The converse is clear since, for any e ∈ E(S), [e]σ

S
is an idempotent of

the group S/σ
S
, and so [e]σ

S
= 1

S/σ
S
, giving e ∈ 1

S/σ
S
. Then E(S) ⊆ 1

S/σ
S
. Hence E(S) is

the identity of the group S/σ
S
. 2

The next result is very useful to prove a result on Chapter 4.

Proposition 1.37. Let S be an E-unitary regular semigroup such that E(S) is a left normal

band. Let σ
S
be the least group congruence on S. Then (s, t) ∈ σ

S
if and only if st′ ∈ E(S),

for t′ ∈ V (t).

Proof: Let S be an E-unitary regular semigroup, such that E(S) is a left normal band, and

σ
S
be the least group congruence on S. From [15, Lemma 1.3], it follows that the following

statements are equivalent:

(i) (s, t) ∈ σ
S
;

(ii) set′ ∈ E(S), for some e ∈ E(S) and some t′ ∈ V (t).

By [14, Lemma 2.6], (ii) is equivalent to

(iii) st′ ∈ E(S), for t′ ∈ V (t)

and so (i) and (iii) are equivalent. 2
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2 | Direct Product

In semigroup theory, given a non-empty family of semigroups it is possible to construct a new

semigroup. One of the methods for such a construction and the simplest one is the direct

product of semigroups. It is given by the cartesian product of the underlying sets and an

operation defined componentwise.

Let S = {Si : i ∈ I} be a non-empty family of semigroups. On the cartesian product∏
i∈I

Si, the operation defined by

(xi)i∈I (yi)i∈I = (xiyi)i∈I ,

for all (xi)i∈I , (yi)i∈I ∈
∏
i∈I

Si, is easily seen to be associative. The resulting semigroup(∏
i∈I

Si, ·

)
is called the direct product of S.

Example 2.1. Consider the semigroups S1 = (N,+) and S2 = (Z,×). The operation of the

direct product S1 × S2 is given by

(n, x)(m, y) = (n+m,x× y).

In the next result, we show how the notion of direct product can be used to provide a

characterisation of rectangular bands.

Theorem 2.2. The direct product of a left zero semigroup by a right zero semigroup is a

rectangular band. Conversely, every rectangular band is isomorphic to the direct product of a

left zero semigroup by a right zero semigroup.
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Proof: Let I be a left zero semigroup and Λ be a right zero semigroup. Consider the direct

product I × Λ. For (i, λ), (j, µ) ∈ I × Λ, we have

(i, λ)(i, λ) = (i, λ)

and

(i, λ)(j, µ)(i, λ) = (iji, λµλ) = (i, λ).

Then the direct product I × Λ is a rectangular band.

Now, let B be a rectangular band. Since every element of B is idempotent and x = xyx,

for every x, y ∈ B,

x = x2 = xyx and y = y2 = yxy.

It follows that xRxy and xyL y. Hence xD y, for all x, y ∈ B. By the definition of D-class,

we can conclude that the intersection of any R-class and any L-class is non-empty. Since B

is a band, it follows by Corollary 1.7 that any H-class has a unique idempotent and hence a

single element.

Let θ : B → B/R×B/L be defined by aθ = (Ra, La). We show that θ is a bijection. Let

a, b ∈ B be such that aθ = bθ. Then

(Ra, La) = (Rb, Lb) ⇒ aR b ∧ aL b

⇒ aH b (definition of H-class)

⇒ a = b. (each H-class has a unique idempotent)

So θ is injective.

Let (Rb, La) ∈ B/R×B/L. By the above, bR ba and baL a and so

(Rb, La) = (Rba, Lba) = (ba)θ.

Thus θ is surjective.

Since, for all a, a′, b, b′ ∈ B,

aR a′ ⇔ Ra = Ra′

and

bL b′ ⇔ Lb = Lb′ ,
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the equalities

RaRb = Ra and LaLb = Lb

define operations on B/R and on B/L, respectively. These operations make B/R a left zero

semigroup and B/L a right zero semigroup, respectively.

We now consider the direct product B/R×B/L and show that θ is a homomorphism. In

fact, for all a, b ∈ B,

(ab)θ = (Rab, Lab) = (Ra, Lb)

and

(aθ)(bθ) = (Ra, La)(Rb, Lb) = (RaRb, LaLb) = (Ra, Lb).

Thus θ is an isomorphism. 2
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3 | Semidirect Product

The construction of the direct product of semigroups is generalized by the so called semidirect

product of semigroups. This notion of semidirect product was used for semigroups by Neumann

in [9] as a tool to define another operator – the wreath product of semigroups – which we will

study in the next chapter.

3.1 Definitions and basic results

Let S and T be semigroups. The semigroup S is said to act on T by endomorphisms on the

left if, for every s ∈ S, there is a mapping a 7→ sa from T to itself such that, for all s, r ∈ S

and for all a, b ∈ T ,

(SP1) s(ab) = sa sb;

(SP2) sra = s(ra).

If S is a monoid, we say that the monoid S acts on T by endomorphisms on the left if the

semigroup S acts on T by endomorphisms on the left and, for all a ∈ T ,

(SP3) 1
Sa = a.

If S acts on T by endomorphisms on the left and the mapping a 7→ sa is a bijection, we say

that S acts on T by automorphisms on the left.

Let S and T be semigroups such that S acts on T by endomorphisms on the left. On the

cartesian product T × S, consider the operation defined by

(a, s)(b, r) = (a sb, sr), (3.1)
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for all a, b ∈ T and for all s, r ∈ S. We show that this operation is associative. Let

(a, s), (b, r), (c, u) ∈ T × S. Then

(a, s) ((b, r)(c, u)) = (a, s)(b rc, ru)

= (a s(b rc), s(ru))

= (a sb s( rc), sru) (SP1)

= (a sb src, (sr)u) (SP2)

= (a sb, sr)(c, u)

= ((a, s)(b, r)) (c, u).

Hence T × S equipped with the multiplication given by (3.1) is a semigroup. This semigroup

is called the semidirect product of T by S and is denoted by T ∗ S.

Proposition 3.1. Let S be a monoid acting on a monoid T by endomorphisms on the left.

Then the semidirect product of T by S is a monoid with identity (1
T
, 1

S
).

Proof: Suppose that S and T are monoids. For any (a, b) ∈ T ∗ S,

(a, b)(1
T
, 1

S
) = (a b1

T
, b1

S
) = (a1

T
, b) = (a, b)

and

(1
T
, 1

S
)(a, b) = (1

T

1
Sa, 1

S
b) = (1

T
a, b) = (a, b).

So (1
T
, 1

S
) is the identity of T ∗ S. 2

We observe that for arbitrary semigroups S and T , S acts on T by endomorphisms on the

left. In fact, for every s ∈ S, the mapping a 7→ sa = a from T to itself satisfies conditions

(SP1) and (SP2). Hence we can consider the semidirect product T ∗ S. Moreover, since, for

all a, b ∈ T and s, r ∈ S,

(a, s)(b, r) = (a sb, sr) = (ab, sr),

we have that the direct product of any two semigroups T and S is a semidirect product of T

by S.
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We define now an operator called reverse semidirect product and we will prove that under

certain conditions the semidirect product and the reverse semidirect product coincide up to

isomorphisms.

Let S and T be semigroups. The semigroup S is said to act reversely on T by endomorphisms

on the left if, for each s ∈ S, there is a mapping a 7→ sa of T , such that, for all a, b ∈ T and

s, r ∈ T

(RP1) s(ab) = sa sb;

(RP2) s( ra) = rsa.

If S is a monoid, we say that the monoid S acts reversely on T by endomorphisms on the left

if the semigroup S acts reversely on T by endomorphisms on the left and, for all a ∈ T ,

(RP3) 1
S
a = a.

If S acts reversely on T by endomorphism on the left and, for every s ∈ S, the mapping a 7→ sa,

for all a ∈ T , is a bijection, we say that S acts reversely on T by automorphisms on the left.

Let S be a semigroup acting reversely on a semigroup T by endomorphisms on the left. On

the cartesian product T × S, consider the operation defined by

(a, s)(b, r) = ( rab, sr) (3.2)

for all a, b ∈ T and all s, r ∈ S. We show that this operation is associative. Let

(a, s), (b, r), (c, u) ∈ T × S. Then

(a, s)((b, r)(c, u)) = (a, s)( ubc, ru)

= ( rua ubc, s(ru))

= ( u( ra) ubc, (sr)u) (RP2)

= ( u( rab)c, (sr)u) (RP1)

= ( rab, sr)(c, u)

= ((a, s)(b, r))(c, u).
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Hence T ×S together with the multiplication given by (3.2) is a semigroup. This semigroup is

called the reverse semidirect product of T by S and is denoted by T ∗r S.

The next example shows that, in general, these two operators do not coincide.

Example 3.2. Let T = {a, b} be a left zero semigroup and S = {x, y} be a right zero

semigroup. On the one hand, the semigroup S acts reversely on T by endomorphisms on the

left since

xa = xb = a, ya = yb = b

define mappings of T that satisfy (RP1) and (RP2). Therefore we can construct the reverse

semidirect product T ∗r S. For (c, z), (d, w) ∈ T ∗r S, we have

(c, z)(d, w) = ( wcd, zw) = ( wc, w).

Hence E(T ∗r S) = {(a, x), (b, y)}.

On the other hand, if, for every s ∈ S, the mapping a 7→ sa satisfies (SP1) and (SP2),

then, for all (c, z), (d, w) ∈ T ∗ S,

(c, z)(d, w) = (c zd, zw) = (c, w)

and so T ∗ S is a band. Hence no semidirect product of T by S is isomorphic to the reverse

semidirect product constructed above.

If S is a semigroup that acts reverserly on a semigroup T by automorphisms on the left,

then the mapping a 7→ sa := b, where b is the unique element in T such that sb = a, is a

bijection that satisfies (SP1) and (SP2), for all a ∈ T and s, t ∈ S. To prove this, observe first

that, for all s ∈ S and a ∈ T ,

s( sa) = a and s(
sa) = a. (3.3)

We have:
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(SP1) For all a, b ∈ T and all s ∈ S,

sa sb = s( s(
sa sb)) (3.3)

= s( s(
sa) s(

sb)) (RP1)

= s(ab). (3.3)

(SP2) For all a, b ∈ T and s, r ∈ S,

sra = b ⇔ srb = a

⇔ r( sb) = a (RP2)

⇔ sb = ra

⇔ b = s( ra),

and so
sra = s( ra).

Hence we can consider the semidirect product T ∗ S with relation to a 7→ sa := b where

b ∈ T is such that sb = a. The next result shows that the semigroups T ∗r S and T ∗ S are

isomorphic.

Theorem 3.3. Let S and T be semigroups such that S acts reversely on T by automorphisms

on the left and T ∗S be the semidirect product associated to the action defined by a 7→ sa = b,

where s ∈ S and, for all a ∈ T , b is the unique element such that sb = a. Then the mapping

ϕ : T ∗r S → T ∗ S defined by (a, s)ϕ = ( sa, s) is an isomorphism.

Proof: Let (a, s) ∈ T∗rS. Then a ∈ T and s ∈ S and so ( sa, s) ∈ T∗S. Also, if (a, s) = (b, r)

then s = r, a = b and, since a 7→ sa is a mapping, sa = rb. So ( sa, s) = ( rb, r). The equality

(a, s)ϕ = ( sa, s) defines a mapping from T ∗r S into T ∗S. We show that ϕ is an isomorphism

from T ∗r S to T ∗ S. Let (a, s), (b, r) ∈ T ∗r S. We have

(a, s)ϕ = (b, r)ϕ ⇒ ( sa, s) = ( rb, r)

⇒ sa = rb and s = r

⇒ s(
sa) = r(

rb) and s = r

⇒ a = b and s = r

⇒ (a, s) = (b, r).
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Thus ϕ is injective. Let (b, r) ∈ T ∗ S. Since b = r( rb), it follows that

(b, r) = ( r( rb), r) = ( rb, r)ϕ,

with ( rb, r) ∈ T ∗r S and so ϕ is surjective. Let (a, s), (b, r) ∈ T ∗r S. We have

((a, s)(b, r))ϕ = ( rab, sr)ϕ

= ( sr( rab), sr)

= ( sr( ra) srb, sr) (SP1)

= ( s( r( ra)) s( rb), sr) (SP2)

= ( sa s( rb), sr)

= ( sa, s)( rb, r)

= (a, s)ϕ(b, r)ϕ.

So ϕ is a morphism. Hence ϕ is an isomorphism. 2

3.2 Regularity on semidirect product

As the example below shows, the semidirect product of two regular semigroups is not necessarily

a regular semigroup.

Example 3.4. Let S = {x, y} be a two-element left zero semigroup and T = {a, b} be a two-

element right zero semigroup. Being bands, these semigroups are clearly regular semigroups.

Moreover, S acts on T by endomorphisms on the left since

xa = xb = a, ya = yb = b

define mappings from T to itself that satisfy (SP1) and (SP2). We prove that the semidirect

34



product T ∗ S is not regular. For every (α, β) ∈ T ∗ S, we have

(a, y)(α, β)(a, y) = (a yα, yβ)(a, y)

= (ab, y)(a, y)

= (b, y)(a, y)

= (b ya, yy)

= (bb, y)

= (b, y)

6= (a, y).

Hence the element (a, y) has no associate in T ∗ S and therefore the semidirect product is not

regular.

In this section, we study the question of the regularity of the semidirect product of monoids.

In the case where the second component of the semidirect product is a group, the structure

of the semidirect product is, in some cases, determined by the structure of the first component,

as it is established in the next theorem.

Theorem 3.5. Let S be a group acting on a semigroup T by endomorphisms on the left. Then

(1) if T is a regular semigroup then T ∗ S is a regular semigroup;

(2) if T is an inverse semigroup then T ∗ S is an inverse semigroup;

(3) if T is a group then T ∗ S is a group.

Proof:

(1) Let (t, s) ∈ T ∗ S. Then, for t′ ∈ A(t), we have

(t, s)( s
−1

t′, s−1)(t, s) = (t ss
−1

t′, ss−1)(t, s) = (tt′, 1
S
)(t, s) = (tt′t, s) = (t, s).

Hence ( s
−1
t′, s−1) ∈ A((t, s)).
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(2) For (t, s) ∈ T ∗ S, by the proof of (1), we have that ( s
−1

(t−1), s−1) ∈ A((t, s)). Then

( s
−1

(t−1), s−1)(t, s)( s
−1

(t−1), s−1) ∈ V ((t, s)),

that is,

( s
−1

(t−1), s−1) ∈ V ((t, s)).

Suppose now that (t′, s′) ∈ V ((t, s)). Then

(t, s) = (t st′ ss
′
t, ss′s) and (t′, s′) = (t′ s

′
t s
′st′, s′ss′)

and so

s′ = s−1, t = t s(t′)t, t′ = t′ s
−1

tt′.

Hence
s(t′)t s(t′) ∈ V (t) = {t−1}

and

t′ = s−1s(t′) = s−1

( s(t′ s
−1

tt′)) = s−1

( s(t′)t s(t′)) = s−1

(t−1).

We have shown that (t′, s′) = ( s
−1

(t−1), s−1) and so (t, s)−1 = ( s
−1

(t−1), s−1).

(3) Let (t, s) ∈ T ∗ S. By the proof of (2), we have that ( s
−1

(t−1), s−1) = (t, s)−1. Then

(t, s)(t, s)−1 = (t, s)( s
−1

(t−1), s−1)

= (t ss
−1

(t−1), ss−1)

= (tt−1, 1
S
)

= (1
T
, 1

S
)

and
(t, s)−1(t, s) = ( s

−1
(t−1), s−1)(t, s)

= ( s
−1

(t−1) s
−1
t, s−1s)

= ( s
−1

(t−1t), 1
S
)

= ( s
−1

1
T
, 1

S
)

= (1
T
, 1

S
).

2
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Lemma 3.6. Let S and T be monoids such that S acts on T by endomorphisms on the left.

The following statements are equivalent:

(1) ∀a ∈ T ∀s ∈ S ∃e ∈ E(S) : sS = eS and a ∈ T ea;

(2) ∀a ∈ T ∀s ∈ S ∃s′ ∈ V (s) : a ∈ T ss′a.

Proof:

[1 ⇒ 2] Let a ∈ T and s ∈ S. Let e ∈ E(S) be such that sS = eS and a ∈ T ea. Then

there exist s′, e′ ∈ S such that

e = ss′ and s = ee′,

whence

e = ee = ss′e and s = ee′ = eee′ = es.

Consider s′′ = s′e. We have

• ss′′ = ss′e = e;

• s′′ss′′ = s′ee = s′e = s′′;

• ss′′s = es = s.

Thus s′′ ∈ V (s). Since ss′′ = e, by (1), we obtain a ∈ T ss′′a.

[2 ⇒ 1] This is clear since, for each a ∈ T , s ∈ S and s′ ∈ V (s), ss′ ∈ E(S) and

sS = (ss′)S. 2

Using this result, we can obtain a characterisation of regular semidirect products of monoids.

Theorem 3.7. Let S and T be monoids such that S acts on T by endomorphisms on the left.

The semidirect product T ∗ S is regular if and only if

(1) the monoids T and S are regular; and
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(2) ∀a ∈ T ∀s ∈ S ∃e ∈ E(S) : sS = eS and a ∈ T ea.

Proof: Suppose that T ∗ S is regular. Let a ∈ T and s ∈ S. Then there exist a′ ∈ T and

s′ ∈ S such that (a′, s′) ∈ V ((a, s)). It follows that

(a, s) = (a, s)(a′, s′)(a, s) ⇔ (a, s) = (a sa′, ss′)(a, s)

⇔ (a, s) = (a sa′ ss
′
a, ss′s)

and so

a = a sa′ ss
′
a and s = ss′s. (3.4)

It also follows that

(a′, s′) = (a′, s′)(a, s)(a′, s′) ⇔ (a′, s′) = (a′ s
′
a, s′s)(a′, s′)

⇔ (a′, s′) = (a′ s
′
a ss′a′, s′ss′)

and so

a′ = a′ s
′
a ss′a′ and s′ = s′ss′. (3.5)

From a = a sa′ ss
′
a, we obtain that a ∈ T ss′a and so, by Lemma 3.6, we conclude that (2)

holds.

The identities s = ss′s and s′ = s′ss′ guarantee that S is regular. Now, take s = 1
S
. Then

s′ = 1
S
and the identities (3.4) and (3.5) are, respectively,

a = aa′a and a′ = a′aa′.

So a′ ∈ V (a). Thus the monoid T is regular.

Conversely, suppose that (1) and (2) hold. Let (a, s) ∈ T ∗S. From (2) and Lemma 3.6, we

can choose s′ ∈ V (s) such that a ∈ T ss′a. Then a = u ss′a, for some u ∈ T . Let v ∈ V (a).

Consider a′ = s′v. We have

(a, s)(a′, s′)(a, s) = (a sa′, ss′)(a, s)

= (a sa′ ss
′
a, ss′s)

= (u ss
′
a ss

′
v ss

′
a, s)

= (u ss
′
(ava), s)

= (u ss
′
a, s)

= (a, s)
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and
(a′, s′)(a, s)(a′, s′) = (a′ s

′
a, s′s)(a′, s′)

= (a′ s
′
a s′sa′, s′ss′)

= ( s
′
v s
′
a s
′ss′v, s′)

= ( s
′
(vav), s′)

= ( s
′
v, s′)

= (a′, s′).

Hence (a′, s′) ∈ V ((a, s)) and so T ∗ S is regular. 2

Corollary 3.8. For monoids S and T , a sufficient condition for the semidirect product T ∗S to

be regular is that S and T are regular and that a ∈ T ea, for every a ∈ T and every e ∈ E(S).

Proof: Since S is regular, it is obvious that for each s ∈ S, there exists e ∈ E(S) such that

sS = eS (take e = ss′). Thus (1) and (2) of Theorem 3.7 hold. Hence T ∗ S is regular. 2

The following example shows that the sufficient condition of Corollary 3.8 is not a necessary

condition.

Example 3.9. Let S = {1
S
, a, b} be a monoid with identity 1

S
and such that xa = a and

xb = b, for all x ∈ S:
1
S

a b

1
S

1
S

a b

a a a b

b b a b

.

Let T = {1
T
, e, f, 0

T
} be a semilattice with identity 1

T
and zero 0

T
and such that ef = f :

1
T

e f 0
T

1
T

1
T

e f 0
T

e e e f 0
T

f f f f 0
T

0
T

0
T

0
T

0
T

0
T

.

Since S and T are bands, the semigroups S and T are regular.
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We show that each s ∈ S determines a mapping x 7→ sx from T to itself that satisfies

conditions (SP1), (SP2) and (SP3). Define:

1
S 1

T
= 1

T
, 1

S f = f, 1
S e = e, 1

S 0
T

= 0
T
,

a1
T

= 1
T
, af = 0

T
, ae = e, a0

T
= 0

T
,

b1
T

= 1
T
, bf = e, be = e, b0

T
= 0

T
.

We have

• s(1
T
1
T
) = 1

T
= s1

T
s1

T
, for all s ∈ S;

• s(e1
T
) = s(1

T
e) = s(ee) = e = se se = s1

T
se = se s1

T
, for all s ∈ S;

• b(fx) = b(xf) = bf = e = bx bf = bf bx, for all x ∈ T \ {0
T
};

• a(fx) = a(xf) = af = 0
T

= ax af = af ax, for all x ∈ T \ {0
T
};

• s(0
T
x) = s(x0

T
) = s0

T
= 0

T
= sx s0

T
= s0

T
sx, for every s ∈ S and every x ∈ T ;

• 1
S (xy) = xy = 1

Sx 1
S y, for every x, y ∈ T ;

• sr1
T

= 1
T

= s(r1
T
), for all s, r ∈ S;

• sre = e = s(re), for all s, r ∈ S;

• sr0
T

= 0
T

= s(r0
T
), for all s, r ∈ S;

• a1
S f = 1

S
af = baf = af = 0

T
= b(af) = 1

S (af) = a(1S f);

• b1
S f = 1

S
bf = abf = bf = e = a(bf) = 1

S (bf) = b(1S f);

• 1
S
1
Sx = x = 1

S (1Sx), for all x ∈ T .

Then S acts on T by endomorphisms on the left. Since aS = {a, b} = bS, it follows that

aR b. Observe that

• if y = 1
T
then 1

T
∈ T b1

T
= T ;

• if y ∈ {e, f} then y ∈ T by = Te = {e, f, 0
T
};
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• if y = 0
T
then 0

T
∈ T b0

T
= {0

T
}.

So y ∈ T by, for all y ∈ T . Consequently, (1) and (2) of Theorem 3.7 are satisfied. Therefore

the semidirect product T ∗S is regular. However, a ∈ E(S) and T af = {0
T
} and so f /∈ T af .

Then the hypotesis of Corollary 3.8 is not satisfied and so it is not a necessary condition.

Corollary 3.10. Under the conditions of Theorem 3.7, if S is an inverse monoid then T ∗ S is

regular if and only if

(1) T is regular; and

(2) a ∈ T ea, for every a ∈ T and every e ∈ E(S).

Proof: Suppose that T ∗ S is regular and let a ∈ T and e ∈ E(S). Then (2) of Theorem

3.7 holds and so, by Lemma 3.6, taking s = e, we obtain that a ∈ T ee′a, for some e′ ∈ V (e).

Since S is inverse this means that a ∈ T ee−1
a, that is, a ∈ T ea. The regularity of T follows

from (1) of Theorem 3.7.

Conversely, suppose that (1) and (2) hold. Since every right ideal sS of an inverse semigroup

S has a unique idempotent generator ss−1 (that is, for all s ∈ S, sS = ss−1S), (1) and (2) of

Theorem 3.7 are satisfied and so T ∗ S is regular. 2

Note that the semidirect product of inverse semigroups is not, in general, an inverse semi-

group. This is clear from the following example.

Example 3.11. Let S = {1
S
, a} be a commutative monoid with one non-identity idempotent

a:
1
S

a

1
S

1
S

a

a a a

.

Let T = {1
T
, e, 0

T
} be a commutative monoid with zero and a non-identity idempotent e:

1
T

e 0
T

1
T

1
T

e 0
T

e e e 0
T

0
T

0
T

0
T

0
T

.
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Since S and T are commutative bands, both S and T are inverse monoids.

We show that each s ∈ S determines a mapping x 7→ sx from T to itself that satisfies

(SP1), (SP2) and (SP3). Define:

1
S 1

T
= 1

T
, 1

S e = e, 1
S 0

T
= 0

T
,

a1
T

= 1
T
, ae = e, a0

T
= e.

We have

• a(1
T
e) = a(e1

T
) = a(ee) = ae = e = ae ae = ae a1

T
= a1

T
ae;

• a(0
T
e) = a(e0

T
) = a(0

T
0
T
) = a0

T
= e = a0

T
a0

T
= ae a0

T
= a0

T
ae;

• a(1
T
0
T
) = a(0

T
1
T
) = e = a0

T
a1

T
= a1

T
a0

T
;

• a(1
T
1
T
) = a1

T
= 1

T
= a1

T
a1

T
;

• 1
S (xy) = xy = 1

Sx 1
S y, for every x, y ∈ T ;

• aa1
T

= 1
S
a1

T
= a1

S 1
T

= a1
T

= 1
T

= a(1S 1
T
) = 1

S (a1
T
) = a(a1

T
);

• aae = 1
S
ae = a1

S e = ae = e = a(1S e) = 1
S (ae) = a(ae);

• aa0
T

= 1
S
a0

T
= a1

S 0
T

= a0
T

= e = a(1S 0
T
) = 1

S (a0
T
) = a(a0

T
);

• 1
Sx = x, for all x ∈ T .

Thus S acts on T by endomorphisms on the left. Observe that

• 1
T
∈ T s1

T
= T1

T
= T, for every s ∈ E(S);

• e ∈ T se = Te = {e, 0
T
}, for every s ∈ E(S);

• 0
T
∈ T 1

S 0
T

= T0
T

= {0
T
} and 0

T
∈ T a0

T
= Te = {e, 0

T
}.

Then t ∈ T st, for every t ∈ T and every s ∈ E(S). By Corollary 3.10, the semidirect product

T ∗ S is regular. Since

(e, a)(e, a) = (e ae, a2) = (ee, a2) = (e, a),
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it follows that (e, a) ∈ V ((e, a)).

We have
(0

T
, a)(e, a)(0

T
, a) = (0

T
ae, a2)(0

T
, a)

= (0
T
, a)(0

T
, a)

= (0
T
a0

T
, a2)

= (0
T
, a)

and
(e, a)(0

T
, a)(e, a) = (e a0

T
, a2)(e, a)

= (ee, a)(e, a)

= (e, a)(e, a)

= (e, a).

Then (0
T
, a) ∈ V ((e, a)). Therefore (e, a) and (0

T
, a) are both inverses of (e, a) ∈ T ∗ S and

so the regular monoid T ∗ S is not inverse.

The next result establishes a characterisation of semidirect products of monoids which are

inverse monoids.

Theorem 3.12. A semidirect product T ∗ S of two monoids T and S is an inverse monoid if

and only if

(1) the monoids S and T are inverse, and

(2) ∀e ∈ E(S) ∀a ∈ T , ea = a.

Proof:

(i) First of all, we show that condition (2) is equivalent to

(2’) the map a 7→ sa is an automorphism of T .

Suppose that (2) holds. Let s ∈ S. If S is regular then, by Proposition 1.10, there exist

e, f ∈ E(S) and x ∈ S such that xs = e and sx = f . Therefore, for any a ∈ T ,

x(sa) = xsa = ea = a = a id
T
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and
s(xa) = sxa = fa = a = a id

T
.

Thus a 7→ sa is an automorphism. Suppose that (2’) holds and let e ∈ E(S). Then
e(ea) = e2a = ea and since a 7→ ea is injective, we obtain ea = a.

(ii) Suppose that T ∗S is an inverse monoid. By Theorem 3.7, S and T are regular monoids.

Let a ∈ T and s ∈ S. Since T ∗ S is inverse, the elements (a, 1
S
) and (1

T
, s) of T ∗ S

have a unique inverse (a′, 1
S
) and (1

T
, s′), respectively. By (3.4) and (3.5), a′ is the

unique inverse of a and s′ is the unique inverse of s. Hence both S and T are inverse

semigroups and so (1) holds.

Now, let e ∈ E(S) and a ∈ T . We show that ea = a. Since T ∗ S is an inverse

monoid, the element (a, e) of T ∗ S has a unique inverse (b, s). According to the proof

of Theorem 3.7, we know that s ∈ V (e) and since S is inverse, we have s = e. Then

(b, e) ∈ V ((a, e)), that is, (a, e) ∈ V ((b, e)). From (3.4) and (3.5), we can deduce that

a = a eb ea and b ea eb = b.

Hence
ea = e(a eb ea) = ea eb ea.

It follows that

(ea, e) = (ea, e)(b, e)(ea, e)

and

(b, e) = (b, e)(ea, e)(b, e).

Thus (ea, e) ∈ V ((b, e)). Since T ∗ S is inverse, we can conclude that (ea, e) = (a, e),

that is, ea = a. Consequently, (2) holds.

Conversely, suppose that the monoids S and T satisfy (1) and (2). By Corollary 3.10,

T ∗ S is regular since a = ea = 1
T
ea ∈ T ea. To show that T ∗ S is inverse, it suffices
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to prove that the idempotents of T ∗ S commute. Let (e, s) ∈ E(T ∗ S). Then

(e, s)(e, s) = (e, s) ⇒ (e se, s2) = (e, s)

⇒ e se = e and s2 = s

⇒ e2 = e and s2 = s.

Consequently, if (e, s), (f, u) ∈ E(T ∗ S) then

ef = fe ∈ T

and

su = us ∈ S.

We have
(e, s)(f, u) = (e sf, su)

= (ef, su)

= (fe, us)

= (f ue, us)

= (f, u)(e, s).

Thus T ∗ S is an inverse monoid. 2

3.3 An application of semidirect product

As an application of a semidirect product we prove a structure theorem for a class of regular

semigroups: the class of uniquely unit orthodox semigroups.

Let S be a regular semigroup with identity element 1
S
. We denote the group of units of S

by H1
S
. An element u ∈ S is said to be a unit associate of x if u ∈ A(x) ∩ H1

S
. For each

x ∈ S, the set of all unit associates of x is denoted by U(x). The monoid S is said to be a

unit regular monoid if U(x) 6= ∅, for all x ∈ S, and S is called unit orthodox if it is unit regular

and orthodox. Moreover, S is said to be uniquely unit orthodox whenever S is orthodox and

U(x) is singleton, for all x ∈ S.

We need to state some auxiliar results:
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Lemma 3.13. Let S be a unit orthodox semigroup and x ∈ S. If u, v, w ∈ U(x) then

uv−1w ∈ U(x).

Proof: Let x ∈ S and u, v, w ∈ U(x). Observe that vxw,wxu ∈ V (x), since

(vxw)x(vxw) = v(xwx)vxw

= v(xvx)w

= vxw,

x(vxw)x = (xvx)wx

= xwx

= x,

(wxu)x(wxu) = w(xux)wxu

= w(xwx)u

= wxu

and
x(wxu)x = (xwx)ux

= xux

= x.

Then vxw,wxu ∈ V (x). Since S is orthodox and x ∈ V (vxw) ∩ V (wxu), by Theorem

1.32, V (vxw) = V (wxu) and so, by Lemma 1.33, (vxw,wxu) ∈ γ, γ being the smallest

inverse semigroup congruence on S. Therefore (xw, v−1wxu) ∈ γ. By Corollary 1.35, γ is

idempotent-pure and since xw ∈ E(S), it follows that v−1wxu ∈ E(S). Then

(v−1wxu)(v−1wxu) = v−1wxu ⇒ wxuv−1wxu = wxu

⇒ xuv−1wxu = xu

⇒ x(uv−1w)x = x.

Thus uv−1w ∈ A(x). Since uv−1w ∈ H1
S
, it follows that uv−1w ∈ U(x). 2

As a consequence of this result, we have:
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Corollary 3.14. Let S be a unit orthodox semigroup and x ∈ S. Then U(x) is a coset of some

subgroup of H1S .

Proof: Since S is unit orthodox, U(x) is a non-empty subset of H1S . By Lemma 3.13,

U(x)U(x)−1U(x) ⊆ U(x) and, since a = aa−1a, for all a ∈ U(x), U(x) ⊆ U(x)U(x)−1U(x).

Then, U(x) = U(x)U(x)−1U(x) and hence, by Lemma 1.21, U(x) is a (left) coset of some

subgroup of H1S . 2

Corollary 3.15. Let S be a unit orthodox semigroup and e ∈ E(S). Then U(e) is a subgroup

of H1S .

Proof: Since e1
S
e = e and 1

S
∈ H1S , 1

S
∈ U(e). Let u,w ∈ U(e). By Lemma 3.13,

uw = u1−1
S
w ∈ U(e) and so U(e) is a subsemigroup of H1S . Since, by Corollary 3.14, U(e) is

a coset, we can conclude that U(e) is a subgroup of H1S . 2

The following lemma shows that the set U(x) is a coset of U(xu).

Lemma 3.16. Let S be a unit orthodox semigroup. Let x ∈ S. Then, for all u ∈ U(x),

U(x) = uU(xu).

Proof: Let x ∈ S and u, v ∈ U(x). We have

xu(u−1v)xu = (xvx)u = xu

then u−1v ∈ U(xu). It follows that v ∈ uU(xu). Thus U(x) ⊆ uU(xu).

Now, let w ∈ U(xu). Then (xu)w(xu) = xu and so x(uw)x = x. Hence uw ∈ U(x) and

consequently uU(xu) ⊆ U(x). 2

Finally, we can establish a characterisation for uniquely unit orthodox semigroups.

Theorem 3.17. Let S be a unit orthodox monoid. The monoid S is uniquely unit orthodox if

and if only, for every e ∈ E(S), the subgroup U(e) is trivial.
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Proof: Let S be a uniquely unit orthodox. Then U(x) is singleton, for every x ∈ S. By

Corollary 3.15, we have U(e) = {1
S
}, for all e ∈ E(S).

Conversely, suppose that U(e) = {1
S
}, for every e ∈ E(S). Let x ∈ S and u, v ∈ U(x).

By Lemma 3.16, we deduce that

{u} = uU(xu) = U(x) = vU(xv) = {v}.

Since xu, xv ∈ E(S), we have u = v and so U(x) is singleton. 2

In the next result, we construct a uniquely unit orthodox semigroup using the notion of

semidirect product.

Theorem 3.18. Let B be a band with an identity and G be a group. Let G act on B by

automorphisms on the left. Then the semidirect product B ∗ G is a uniquely unit orthodox

semigroup such that

(i) E(B ∗G) ' B;

(ii) H1
B∗G
' G.

Proof: First, we determine the set of idempotents and the set of units of B ∗G.

If (e, x) is an idempotent of B ∗G then x = 1
G
. Conversely,

(e, 1
G

)(e, 1
G

) = (e 1
Ge, 1

G
1
G

) = (e2, 1
G

) = (e, 1
G

).

Hence E(B ∗G) = {(e, 1
G

) : e ∈ B}.

Let x ∈ G and e ∈ B. Note that 1
Ge = e. We have

e x1
B

= 1
Ge x1

B

= (xx
−1
e)(x1

B
)

= x( x−1
e1

B
)

= x( x−1
e)

= xx−1
e

= 1
Ge

= e
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and similarly x1
B
e = e. Thus x1

B
= 1

B
. It follows that the identity of B ∗ G is (1

B
, 1

G
),

since

(e, x)(1
B
, 1

G
) = (e x1

B
, x1

G
) = (e, x)

and

(1
B
, 1

G
)(e, x) = (1

B

1
Ge, 1

G
x) = (e, x).

So, if (e, x) is a unit of B ∗G then e is a unit of B and therefore, for f ∈ U(e),

ef = 1
B
⇒ e2f = e

⇒ 1
B

= ef = e

giving (e, x) = (1
B
, x).

Conversely, since (1
B
, x)−1 = (1

B
, x−1), every element of the form (1

B
, x), x ∈ G, is a unit

of B ∗G. Consequently, the set of units of B ∗G, H1
B∗G

, is

H1
B∗G

= {(1
B
, x) : x ∈ G}.

Now, we show that the semigroup B ∗G is uniquely unit orthodox. The semigroup B ∗G

is clearly orthodox:

(e, 1
G

)(f, 1
G

) = (e 1
Gf, 1

G
1
G

) = (ef, 1
G

) ∈ E(B ∗G),

for all e, f ∈ B. Also, given (e, x) ∈ B ∗G, we have

(e, x)(1
B
, x−1)(e, x) = (e x1

B
, xx−1)(e, x)

= (e1
B
, 1

G
)(e, x)

= (e, 1
G

)(e, x)

= (e 1
Ge, 1

G
x)

= (e2, x)

= (e, x).

So (1
B
, x−1) ∈ U((e, x)) = A((e, x)) ∩ H1

B∗G
, giving U((e, x)) 6= ∅. Hence B ∗ G is

a unit orthodox semigroup. Moreover, given (e, 1
G

) ∈ E(B ∗ G), if

(1
B
, y) ∈ U((e, 1

G
)) = A((e, 1

G
)) ∩H1

B∗G
then

(e, 1
G

)(1
B
, y)(e, 1

G
) = (e, 1

G
)
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and so y = 1
G
. Thus U((e, 1

G
)) ⊆ {(1

B
, 1

G
)}. Since the other inclusion is trivial, we obtain,

by Theorem 3.17, that B ∗G is uniquely unit orthodox.

(i) The mapping α : B → E(B ∗G) defined by eα = (e, 1
G

) is a bijection. Since

eα fα = (e, 1
G

)(f, 1
G

) = (ef, 1
G

) = (ef)α,

for all e, f ∈ B, it follows that α is an isomorphism. So B ' E(B ∗G).

(ii) Consider θ : H1
B∗G
→ G defined by (1

B
, x)θ = x. Clearly, θ is bijective. Let x, y ∈ G.

We have
((1

B
, x)(1

B
, y))θ = (1

B
x1

B
, xy)θ

= (1
B

1
B
, xy)θ

= (1
B
, xy)θ

= xy

= (1
B
, x)θ (1

B
, y)θ.

Thus θ is a homomorphism and so H1
B∗G
' G. 2

Now, we show that every uniquely unit orthodox semigroup can be so constructed.

Theorem 3.19. Let S be a uniquely unit orthodox with band of idempotents E. Let

U(a) = {ua}, for every a ∈ S. Let ue = ueu−1, for every u ∈ H1S and every e ∈ E.

Then

(i) H1
S
acts on E by automorphisms on the left; and

(ii) S ' E ∗H1
S
, under the mapping a 7→ (aua, u

−1
a ).

Proof:

(i) Let u ∈ H1
S
. We have, for every e, f ∈ E,

• u(ef) = u(ef)u−1 = (ueu−1)(ufu−1) = ue uf ;

• uve = uve(uv)−1 = uvev−1u−1 = u( ve)u−1 = u(ve);
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• ue = uf ⇔ ueu−1 = ufu−1 ⇒ u−1ueu−1u = u−1ufu−1u⇒ e = f ;

• u−1fu ∈ E and u(u−1fu) = uu−1fuu−1 = f .

Thus H1
S
acts on E by automorphisms on the left.

(ii) By (i), we can define the semidirect product E ∗H1
S
. Consider θ : S → E ∗H1

S
defined

by aθ = (aua, u
−1
a ). Since aua ∈ E, θ is well-defined. Let a, b ∈ S. Then

aθ = bθ ⇒ (aua, u
−1
a ) = (bub, u

−1
b )

⇒ auau
−1
a = bubu

−1
b

⇒ a = b

and so θ is injective. Let (e, x) ∈ E ∗ H1S . Since (ex)x−1(ex) = e2x = ex, it follows

that uex = x−1. Then

(ex)θ = (exuex, u
−1
ex ) = (exx−1, x) = (e, x).

Hence θ is surjective. We proceed to show that θ is a homomorphism. In order to do that

we show first that, for every a, b ∈ S, ubua = uab. Since ubbub ∈ V (b), uaaua ∈ V (a)

and S is orthodox, it follows from Theorem 1.31 that

ubbubuaaua ∈ V (ab).

Thus
ab = (ab)(ubbubuaaua)(ab)

= a(bubb)ubua(auaa)b

= (ab)ubua(ab)

and so ubua ∈ U(ab) = {uab}. Consequently, ubua = uab. Now, let a, b ∈ S. We have

(aθ)(bθ) = (aua, u
−1
a )(bub, u

−1
b )

= (aua
u−1
a (bub), u

−1
a u−1b )

= (auau
−1
a bubua, u

−1
a u−1b )

= (abubua, (ubua)
−1)

= (abuab, u
−1
ab )

= (ab)θ.
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Thus θ is an isomorphism from S to E ∗H1S . 2
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4 | Wreath Product

In this chapter, we present a construction that was defined for semigroups by Neumann in [9].

According to Charles Wells in [16], this construction has been used in group theory for many

years and its use in semigroup theory only begun fifty years ago.

4.1 A special semidirect product

Let S and T be semigroups and T S be the set of all mappings from S into T . Together with

the multiplication defined by

∀f, g ∈ T S ∀s ∈ S, s(fg) = (sf)(sg),

T S is a semigroup – this is a consequence of T being a semigroup. Observe that T S is a monoid

if T is a monoid; the identity of T S being the constant map s 7→ 1
T
, for all s ∈ S.

For all s ∈ S and all f ∈ T S, consider sf : S → T defined by

x sf = (xs)f,

for all x ∈ S. We show that S acts on T S by endomorphisms on the left via the mapping

s 7→ sf , for all s ∈ S and all f ∈ T S. Let f, g ∈ T S and s ∈ S. Then, for any x ∈ S,

x s(fg) = (xs)(fg) = (xs)f (xs)g = (x sf)(x sg)

giving s(fg) = sf sg. Also, if s, r ∈ S and f ∈ T S then, for any x ∈ S,

x srf = (x(sr))f = ((xs)r)f = (xs) rf = x s( rf),
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that is, srf = s( rf). If S is a monoid then, for any f ∈ T S, 1
S f = f . We can, therefore,

consider the semidirect product T S ∗ S with respect to s 7→ sf . This semidirect product is

called the wreath product of T by S and is denoted by T WrS.

Proposition 4.1. Let S be a monoid acting on a monoid T by endomorphisms on the left.

Then T WrS is a monoid with identity (f, 1
S
), where f : S → T is the constant mapping

xf = 1
T
, for every x ∈ S.

Proof: Suppose that S and T are monoids. Let f ∈ T S be the constant map xf = 1
T
, for

all x ∈ S. Then, for any (g, s) ∈ T WrS,

(f, 1
S
)(g, s) = (f 1

S g, 1
S
s) = (fg, s) (4.1)

and

(g, s)(f, 1
S
) = (g sf, s1

S
) = (g sf, s). (4.2)

Let x ∈ S. We have

x(fg) = (xf)(xg) = 1
T
(xg) = xg

and

x(g sf) = (xg)((xs)f) = (xg)1
T

= xg,

and so it follows from (4.1) that

(f, 1
S
)(g, s) = (g, s)

and from (4.2) that

(g, s)(f, 1
S
) = (g, s).

Thus (f, 1
S
) is the identity of T WrS. 2

4.2 Regularity on wreath product

In this section, we establish some results about the regularity of the wreath product of monoids.

We start with the following lemma.
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Lemma 4.2. Let T be a semigroup and X be a non-empty set. Then

(1) T is regular if and only if TX is a regular semigroup;

(2) T is an inverse semigroup if and only if TX is an inverse semigroup.

Proof:

(1) Suppose that T is regular. Let f ∈ TX . We define g ∈ TX as follows: let x ∈ X, t = xf

and t′ be an arbitrarily fixed associate of t. Define xg = t′. Then

x(fgf) = (xf)(xg)(xf)

= tt′t

= t

= xf.

Since x is an arbitrary element of X, we obtain fgf = f , that is, g ∈ A(f). Thus the

semigroup TX is regular.

Conversely, suppose that TX is regular and let t ∈ T . Let f be the constant map defined

by xf = t, for all x ∈ X. By hypothesis, there exists f ′ ∈ TX such that f = ff ′f .

Since, for any x ∈ X,

f = ff ′f ⇒ xf = (xf)(xf ′)(xf)

⇔ t = t(xf ′)t,

it follows that xf ′ ∈ A(t), for any x ∈ X. Thus the semigroup T is regular.

(2) Let T be an inverse semigroup. Then T is regular and so, by (1), TX is regular. Let

f, g ∈ TX be idempotents. We show that fg = gf . Let x ∈ X. Since f and g are

idempotent mappings, both xf and xg are idempotents of T and since the semigroup T

is inverse, xf and xg commute. We then have

x(fg) = (xf)(xg)

= (xg)(xf)

= x(gf).
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Thus the idempotents of TX commute. So the semigroup TX is inverse.

Conversely, suppose that TX is an inverse semigroup. By (1), T is regular. Let

t, u ∈ E(T ). Consider the constant maps f, g ∈ TX defined by xf = t and xg = u, for

all x ∈ X. Clearly, f, g ∈ E(TX) and since TX is inverse, fg = gf . We have

tu = (xf)(xg) = x(fg) = x(gf) = (xg)(xf) = ut.

Thus the idempotents of T commute and so T is inverse. 2

Since the wreath product T WrS of two monoids is a semidirect product T S ∗ S of the

monoids T S and S, we can apply Theorem 3.7 and obtain that the wreath product T WrS is

regular if and only if

(1) S and T S are regular monoids; and

(2) ∀f ∈ T S ∀s ∈ S ∃e ∈ E(S) : sS = eS and f ∈ T S ef .

By Lemma 4.2, (1) is equivalent to S and T being regular monoids. Now, let f ∈ T S and

s ∈ S. By (2),

∃e ∈ E(S) : sS = eS and f ∈ T S ef.

We have
f ∈ T S ef ⇔ ∃g ∈ T S : f = g ef

⇔ ∃g ∈ T S ∀x ∈ S, xf = x(g ef)

⇔ ∃g ∈ T S ∀x ∈ S, xf = (xg)(x ef)

⇔ ∃g ∈ T S ∀x ∈ S, xf = xg (xe)f

⇔ ∀x ∈ S xf ∈ T (xe)f.

Hence we have the following theorem.

Theorem 4.3. Let S and T be monoids such that S acts on T by endomorphisms on the left.

Then the wreath product T WrS is regular if and only if

(1) S and T are regular monoids; and
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(2) ∀f ∈ T S ∀s ∈ S ∃e ∈ E(S) : sS = eS and xf ∈ T (xe)f , for all x ∈ S.

Proposition 4.4. Let S and T be regular monoids such that S acts on T by endomorphisms

on the left. If the wreath product T WrS is regular then either

(1) T is a group; or

(2) ∀s, r ∈ S ∃e ∈ E(S), sS = eS and re = r.

Proof: Suppose that T WrS is regular and that T is not a group. Then there exists t ∈ T

such that Tt 6= T . Let r ∈ S and define fr : S → T by

xfr =

 1
T

if x = r

t otherwise
.

Let s ∈ S. Since T WrS is regular, (fr, s) has an inverse, (g, s′), say. We have

(fr, s)(g, s
′)(fr, s) = (fr, s) ⇔ (fr

sg, ss′)(fr, s) = (fr, s)

⇔ (fr
sg ss

′
fr, ss

′s) = (fr, s)

and so, for any u ∈ S,

u(fr
sg ss

′
fr) = ufr and ss′s = s,

that is,

ufr (us)g (uss′)fr = ufr and ss′s = s.

Taking u = r, we obtain

(rs)g (rss′)fr = 1
T
.

Since (rs)g ∈ T , the supposition that (rss′)fr = t leads to Tt = T which contradicts the

hypothesis of having Tt 6= T . Thus (rss′)fr = 1
T
(by the definition of fr) and so we must

have rss′ = r, that is, re = r, where e = ss′ ∈ E(S). Clearly, sS = eS. 2

In the next result, we show that if (2) of the previous proposition is replaced by the condition

of S being a group we have a stronger result.
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Theorem 4.5. Let S be a regular monoid acting on a regular monoid T by endomorphisms on

the left. Then the wreath product T WrS is regular if and only if S or T is a group.

Proof: Suppose that T WrS is regular and T is not a group. Then (2) of Proposition 4.4 is

satisfied. Consider r = 1
S
. Thus, for any s ∈ S, there exists e ∈ E(S) such that eS = sS and

1
S
e = 1

S
. Therefore

S = 1
S
S = 1

S
eS = eS = sS,

for all s ∈ S. Hence 1
S
∈ sS, for every s ∈ S, that is, every element of S has an inverse.

Consequently, S is a group.

Conversely, suppose that S is a group. Let s ∈ S. Since S is a group, we have

sS = S = 1
S
S and 1

S
∈ E(S). Let f ∈ T S. For any x ∈ S,

xf = 1
T
(xf) = 1

T
(x1

S
)f ∈ T (x1

S
)f.

Hence (2) of Theorem 4.3 is satisfied and so, since S and T are regular monoids, T WrS is

regular.

Now, suppose that T is a group. Let s ∈ S. Since S is a regular semigroup, we can consider

s′ ∈ A(s). Then ss′ ∈ E(S) and

sS = ss′sS ⊆ ss′S ⊆ sS,

giving sS = ss′S. Since T is a group, aT = Ta = T , for every a ∈ T . For any x ∈ S and

any f ∈ T S, we have xf, (xss′)f ∈ T and so xf ∈ T (xss′)f . Hence (2) of Theorem 4.3 is

satisfied and so, since S and T are regular monoids, T WrS is a regular monoid. 2

Theorem 4.6. Let S be an inverse monoid and T be a monoid such that S acts on T by

endomorphisms on the left. Then the wreath product T WrS is regular if and only if

(1) T is a group; or

(2) T is regular and se = s, for all s ∈ S and all e ∈ E(S).
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Proof: Suppose that the wreath product T WrS is regular and T is not a group. Then, by

Theorem 4.3, T is regular. Now let s ∈ S and e ∈ E(S). Using (2) of Proposition 4.4, we

have that

∃f ∈ E(S) : eS = fS and sf = s. (4.3)

Since S is inverse, each R-class of S contains a unique idempotent and so e = f . From (4.3),

it follows that se = s.

Conversely, suppose that T is regular and se = s, for every s ∈ S and every e ∈ E(S). By

hypothesis, S and T are regular monoids. Let f ∈ T S and s ∈ S. Since S is inverse, we can

consider s−1 ∈ V (s) and the idempotent ss−1. We have, for all x ∈ S,

1
T
(xss−1)f = 1

T
(xf) = xf,

which gives xf ∈ T (xss−1)f . Thus (2) of Theorem 4.3 is satisfied. Since, by hypothesis, S

and T are regular monoids, we obtain, by Theorem 4.3, that T WrS is regular.

Now, suppose that T is a group. From Theorem 4.5, it follows immediately that the monoid

T WrS is regular. 2

Proposition 4.7. Let S and T be monoids such that S acts on T by endomorphisms on the

left. Then the wreath product T WrS is an inverse monoid if and only if

(1) S and T are inverse monoids; and

(2) either |T | = 1 or se = s, for all s ∈ S and all e ∈ E(S).

Proof: Let S and T be monoids such that S acts on T by endomorphisms on the left. By

Theorem 3.12 and its proof, T WrS is an inverse monoid if and only if the monoids S and

T S are inverse and S acts on T S by automorphisms on the left. By Lemma 4.2, T S being an

inverse monoid is equivalent to T being an inverse monoid. Suppose that T WrS is an inverse

monoid and |T | 6= 1. Then there exists t ∈ T such that t 6= 1
T
. We show that S acts on T S

by automorphisms on the left if and only if se = s, for all s ∈ S and all e ∈ E(S).
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First, suppose that S acts on T S by automorphisms on the left. Let e ∈ E(S). Define

f : S → T by

(∀x ∈ S) xf =

 1
T

if x ∈ Se

t if x /∈ Se
.

Let x ∈ S. From Theorem 3.12, ef = f , for all f ∈ T S and all e ∈ E(S). It follows that

xf = x ef = (xe)f = 1
T
.

Then x ∈ Se, that is, x = se, for some s ∈ S. Therefore xe = (se)e = se = x.

Now, suppose that se = s, for all s ∈ S and all e ∈ E(S). Let f ∈ T S. Since S is regular,

for all u ∈ S, there exist a, b ∈ E(S) and r ∈ S such that ru = a and ur = b. Since se = s,

for all s ∈ S and all e ∈ E(S),

x r( uf) = x ruf = x af = (xa)f = xf = (xf) id
TS

and

x u( rf) = x urf = x bf = (xb)f = xf = (xf) id
TS
,

for any x ∈ S. Thus f 7→ sf is an automorphism and so S acts on T S by automorphisms on

the left. 2

Corollary 4.8. The wreath product of two monoids S and T is an inverse monoid if and only

if either

(1) S is an inverse monoid and |T | = 1; or

(2) S is a group and T is an inverse monoid.

Proof: Let T WrS be an inverse monoid. By Proposition 4.7, S and T are inverse monoids.

If |T | 6= 1 then se = s, for all s ∈ S and all e ∈ E(S). Taking s = 1
S
, we have

1
S

= 1
S
e = e,

for any e ∈ E(S). Since S is a regular monoid and has a unique idempotent, S is a group.
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Conversely, suppose that S is an inverse monoid and |T | = 1. In particular, T is an inverse

monoid. Thus, by Propostion 4.7, the wreath product T WrS is an inverse monoid.

Now, suppose that S is a group and T is an inverse monoid. Then S and T are both

inverse monoids, 1
S
is the unique idempotent of S and s1

S
= s, for every s ∈ S. Hence, by

Proposition 4.7, T WrS is an inverse monoid. 2

4.3 An application of the wreath product

In [2], for a regular monoid S, the author establishes a wreath product embedding which

depends on a certain group congruence on S. As an application of this result, a wreath product

embedding for E-unitary regular semigroups with left normal band of idempotents is constructed.

These results are presented in this section.

Theorem 4.9. Let S be a regular monoid and ρ be a group congruence on S such that, for

each ρ-class [s] ∈ S/ρ, there exist elements r ∈ [s], r′ ∈ V (r) such that tr′r = t, for all t ∈ [s].

Then S is embeddable in [1
S
] WrS/ρ.

Proof: Observe that for each idempotent e of S, [e] ∈ E(S/ρ) and so, since S/ρ is a group

E(S) ⊆ [1
S
]. Let x, y ∈ [1

S
]. Then (x, 1

S
), (y, 1

S
) ∈ ρ and therefore (xy, 1

S
) ∈ ρ. So [1

S
] is

a semigroup and we can therefore define the wreath product [1
S
] WrS/ρ. Moreover, for any

x ∈ [1
S
],

x = xx′x ρ 1
S
x′1

S
= x′,

and so x′ ∈ [1
S
]. Thus the semigroup [1

S
] is regular.

For each [s] ∈ S/ρ, fix s0 ∈ [s], s′0 ∈ V (s0) such that ts′0s0 = t, for all t ∈ [s], and let

(1
S
)0 = 1

S
which gives (1

S
)′0 = 1

S
, since (1

S
)′0 ∈ V ((1

S
)0) = V (1

S
) = {1

S
}. For each s ∈ S,

consider the correspondence [u]  u0s(us)
′
0 with domain S/ρ. Clearly, if [u], [v] ∈ S/ρ are
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such that [u] = [v] then u0s(us)′0 = v0s(vs)
′
0. Also,

s ∈ S ⇒ ∀u ∈ S (u0, u) ∈ ρ and (s, s) ∈ ρ

⇒ ∀u ∈ S (u0s, us) ∈ ρ

⇒ ∀u ∈ S (u0s, (us)0) ∈ ρ

⇒ ∀u ∈ S (u0s(us)
′
0, (us)0(us)

′
0) ∈ ρ

⇒ ∀u ∈ S (u0s(us)
′
0, 1S) ∈ ρ

⇒ ∀u ∈ S u0s(us)
′
0 ∈ [1

S
].

Thus, for each s ∈ S, fs : S/ρ → [1
S
] defined by [u]fs = u0s(us)

′
0, for all [u] ∈ S/ρ, is a

mapping, that is, for all s ∈ S, fs ∈ [1
S
]S/ρ. We now show that the equality sϕ = (fs, [s]), for

all s ∈ S, is a monomorphism from S to [1
S
] WrS/ρ. Clearly, ϕ is well-defined. Let s, t ∈ S.

Then
sϕ = tϕ ⇔ (fs, [s]) = (ft, [t])

⇒ [1
S
]fs = [1

S
]ft and [s] = [t]

⇒ (1
S
)0s(1Ss)

′
0 = (1

S
)0t(1S t)

′
0 and s0 = t0

⇒ 1
S
ss′0 = 1

S
tt′0 and s0 = t0

⇒ ss′0 = tt′0 and s′0 = t′0

⇒ ss′0 = ts′0

⇒ s = ss′0s0 = ts′0s0 = t

and so ϕ is injective. Let s, t ∈ S. We have

(sϕ)(tϕ) = (fs, [s])(ft, [t])

= (fs
[s]ft, [s][t]).

Since, for all [u] ∈ S/ρ,

[u](fs
[s]ft) = [u]fs [u] [s]ft

= [u]fs [us]ft

= u0s(us)
′
0(us)0t((us)t)

′
0

= u0st(u(st))′0

= [u]fst,
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we have

(sϕ)(tϕ) = (fst, [st]) = (st)ϕ.

2

We now look at the case where S is an E-unitary regular semigroup in which the band E(S)

is a left normal band.

Let σ
S
be the least group congruence on S. Consider

C(S) = {H ∈ P(S)\{∅} : HE(S) ⊆ H ⊆ [s]σ
S
, for some s ∈ S}.

Being a set of subsets of S, it is natural to consider in C(S) the multiplication defined by

HK = {hk : h ∈ H, k ∈ K},

for all H,K ∈ C(S).

Proposition 4.10. Let C(S) be defined as above. Then

(1) C(S) is an E-unitary regular semigroup;

(2) The mapping ϕ : S → C(S) defined by sϕ = sE(S) is an embedding.

Proof:

(1) (i) Let H,K ∈ C(S). Then H ⊆ [s]σ
S
, for some s ∈ S, and KE(S) ⊆ K ⊆ [t]σ

S
, for

some t ∈ S. So

HKE(S) ⊆ HK ⊆ [s]σ
S
[t]σ

S
= [st]σ

S
,

that is, HK ∈ C(S). Thus C(S) is a semigroup.

(ii) We show that

H ′ = {h′ ∈ S : h′ is an inverse of some h ∈ H}
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is an inverse of H in C(S). First, we show that H ′ ∈ C(S). Let h ∈ H, h′ ∈ V (h)

and e ∈ E(S). Since E(S) is a left normal band and hh′ ∈ E(S),

(h′eh)(h′eh) = h′e(hh′)eh

= h′e2(hh′)h

= h′eh

and so h′eh ∈ E(S). Since H ∈ C(S), HE(S) ⊆ H and hh′eh ∈ H. We have

(h′e)(hh′eh)(h′e) = (h′eh)(h′eh)h′e

= h′ehh′e

= h′(hh′)e(hh′)e

= h′(hh′)2e2

= h′(hh′)e

= h′e

and

(hh′eh)(h′e)(hh′eh) = h(h′eh)(h′eh)(h′eh)

= hh′eh.

Therefore h′e ∈ V (hh′eh). Note that

h′ehh′ = h′hh′ehh′

= h′(hh′)2e

= h′hh′e

= h′e.

Hence h′e = h′ehh′ ∈ V (hh′eh). Since hh′eh ∈ H, h′e ∈ V (hh′eh) and from the

definition of H ′, it follows that h′e ∈ H ′. So, H ′E(S) ⊆ H ′. We now prove that
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H ′ ⊆ [s]σ
S
. Let x ∈ H ′. Then x = k′, for some k ∈ H. We have

k ∈ H ⇒ ∃s ∈ S : k ∈ [s]σ
S

⇒ (k, s) ∈ σ
S

⇒ (k′k, k′s) ∈ σ
S

⇒ (k′k)(k′s)′ ∈ E(S) (Proposition 1.37)

⇒ (k′s)′ ∈ E(S) (S is E-unitary)

⇒ k′s ∈ E(S)

⇒ (k′, s′) ∈ σ
S

(Proposition 1.37)

⇒ k′ ∈ [s′]σ
S

and s′ ∈ S.

Therefore H ′ ⊆ [s′]σ
S

and s′ ∈ S. Thus H ′ ∈ C(S). We show now that

H = HH ′H and H ′ = H ′HH ′. Let h ∈ H. Then h = hh′h with h′ ∈ V (h).

So h ∈ HH ′H. Let x ∈ HH ′H. Then x = h1h
′
2h3 with h1, h2, h3 ∈ H and

h′2 ∈ V (h2). We have

h2, h3 ∈ H ⇒ h′2, h
′
3 ∈ H ′

⇒ h′2, h
′
3 ∈ [s]σ

S
, for some s ∈ S (H ′ ∈ C(S))

⇒ (h′3, h
′
2) ∈ σS (σ

S
is an equivalence)

⇒ h′3(h
′
2)
′ ∈ E(S) (Proposition 1.37)

⇒ h′3h2 ∈ E(S)

⇒ (h′3h2)
′ ∈ E(S)

⇒ h′2h3 ∈ E(S)

⇒ h1h
′
2h3 ∈ HE(S) (h1 ∈ H)

⇒ h1h
′
2h3 ∈ H (H ∈ C(S))

⇒ x ∈ H.

So HH ′H ⊆ H. Thus HH ′H = H. Since HH ′H = H ′, for all H ∈ C(S), and

H = (H ′)′, it follows that H ′HH ′ = H ′(H ′)′H ′ = H ′.

(iii) E(C(S)) = {H ⊆ E(S) : H ∈ C(S)} is a left normal band. It is clear that all

elements of E(C(S)) are idempotents, since they are subsets of the set of idempo-

tents of S. Let H, J,K ∈ E(C(S)). We show that all idempotents of C(S) belong
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to {H ⊆ E(S) : H ∈ C(S)}. Let A ∈ E(C(S)). Then A ∈ C(S) and A2 = A.

From A ∈ C(S), it follows that there exists s ∈ S such that

AE(S) ⊆ A ⊆ [s]σ
S
.

Let a ∈ A. Then a = bc, with b, c ∈ A. By Proposition 1.37 and since c ∈ A,

(c, s) ∈ σ
S
⇒ cs′ ∈ E(S).

Since a ∈ A,

(a, s) ∈ σ
S
⇒ as′ ∈ E(S) (Proposition 1.37)

⇒ (bc)s′ ∈ E(S)

⇒ b(cs′) ∈ E(S)

⇒ b ∈ E(S). (cs′ ∈ E(S) and S is E-unitary)

We have

b, c ∈ A ⇒ (b, c) ∈ σ
S

⇒ bc′ ∈ E(S) (Proposition 1.37)

⇒ (bc′)′ ∈ E(S)

⇒ cb′ ∈ E(S)

⇒ cb ∈ E(S)

⇒ c ∈ E(S). (b ∈ E(S) and S is E-unitary)

Since S is an E-unitary semigroup, its band of idempotents is a subsemigroup of S

and so a = bc ∈ E(S). Thus A ⊆ E(S). We show now that HKJ = HJK. Let

x ∈ HKJ . Then x = hkj with h ∈ H, k ∈ K and j ∈ J . Since H, J,K ⊆ E(S)

and the band E(S) is left normal, h, j, k ∈ E(S) and so x = hjk. Hence x ∈ HJK.

A similar argument proves that HKJ ⊆ HJK. Thus HKJ = HJK. Moreover,

C(S) is E-unitary since S is E-unitary.

By (i), (ii) and (iii), C(S) is an E-unitary regular semigroup such that its idempotents

constitute a left normal band.
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(2) Let s, t ∈ S be such that sϕ = tϕ. We have

sϕ = tϕ ⇔ sE(S) = tE(S)

⇒ s = ss′s = te and t = tt′t = sf, for some e, f ∈ E(S)

⇒ s = te = (sf)e = s(s′s)fe = s(s′s)ef = sef = te2f = tef = sf = t.

Then ϕ is injective. Now, we show that (sϕ)(tϕ) = (st)ϕ, that is,

(st)E(S) = sE(S)tE(S). Let x ∈ (st)E(S). Then x = (st)c, for some c ∈ E(S),

and so

x = s(s′s)tc ∈ sE(S)tE(S).

Thus (st)E(S) ⊆ sE(S)tE(S). Let y ∈ sE(S)tE(S). Then y = sdtg, for some

d, g ∈ E(S). We have

y = s(s′s)d(tt′)tg

= ss′s(tt′)dtg (E(S) is a left normal band)

= (st)(t′dtg).

Also,
(t′dt)(t′dt) = t′d(tt′)dt

= t′d2(tt′)t

= t′dt

and so t′dt ∈ E(S). Since S is inverse, t′dtg ∈ E(S). Then

y = (st)(t′dtg) ∈ (st)E(S) and therefore sE(S)tE(S) ⊆ (st)E(S). Thus

(sϕ)(tϕ) = (st)ϕ. Therefore ϕ is an embedding. 2

Lemma 4.11. Let S be an E-unitary regular semigroup in which the band E(S) is a left normal

band. Then C(S)1 = C(S) if and only if E(S) is the identity element of C(S).

Proof: First, observe that E(S) ∈ C(S). In fact, since E(S) is a band and all idempotents

of S are σ
S
-related,

E(S)E(S) ⊆ E(S) ⊆ [e]σ
S
, for every e ∈ E(S).
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Now, if C(S)1 = C(S) then

E(S) = 1
C(S)

E(S) ⊆ 1
C(S)
⊆ [x]σ

S
, for some x ∈ S. (4.4)

We have
a ∈ 1

C(S)
⇒ ∀e ∈ E(S), (a, e) ∈ σ

S

⇒ ∀e ∈ E(S), ae = ae′ ∈ E(S) (Lemma 1.37)

⇒ a ∈ E(S) (S is E-unitary)

and so 1
C(S)
⊆ E(S). Thus it follows from (4.4) that 1

C(S)
= E(S).

The converse is obvious. 2

Theorem 4.12. Let S be an E-unitary regular semigroup such that E(S) is a left normal band.

Then S is embeddable into E(C(S)) WrS/σ
S
.

Proof: Clearly, C(S)1 is an E-unitary semigroup. Let σ
C(S)1

be the least group congru-

ence on C(S)1. By construction, each σ
C(S)1

-class has a unique σ
S
-class as element. Thus

S/σ
S
' C(S)1/σ

C(S)1
.

For [H]σ
C(S)1

6= E(C(S)1), let H0 be the unique σ
S
-class contained in [H]σ

C(S)1
and

(E(C(S)1))0 = 1
C(S)1

= (E(C(S)1))′0. By Theorem 4.9 and Proposition 4.10, it follows that

the mapping ϕ : S → E(C(S)1) WrS/σ
S
defined by sϕ = (fsE(S), [s]) is an embedding. If

E(C(S)) 6= E(C(S)1) then, by Lemma 4.11, [u]fsE(S) 6= EC(S)1 , for every [u] ∈ S/σ
S
. Since

E(C(S)) ⊆ E(C(S)1), the map s 7→ (fsE(S), [s]) is an embedding from S into

E(C(S)) WrS/σ
S
. 2
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5 | λ-semidirect Product

As shown in Example 3.11 of Chapter 3, the semigroup semidirect product of two inverse

semigroups is not necessarily inverse. In order to overcome this difficulty, in [1] Billhardt

modified the notion of semidirect product in the inverse case and obtained what he called

a λ-semidirect product of inverse semigroups. This notion, which we now present, was later

generalised for locally R-unipotent semigroups [3] (these are semigroups for which the semigroup

eSe is R-unipotent, for all e ∈ E(S)).

5.1 Definitions and basic results

Let S and T be inverse semigroups such that S acts on T by endomorphisms on the left. Due

to the axiom (SP1), we have

(LSP1) s(a−1) = ( sa)−1, for all s ∈ S and all a ∈ T ;

(LSP2) se is an idempotent of T , for all s ∈ S and e ∈ E(T ).

Let

T ∗λ S = {(a, s) ∈ T × S : a = ss−1

a}

and let

(a, s)(b, r) = ( (sr)(sr)−1

a sb, sr), (5.1)

69



for all (a, s), (b, r) ∈ T ∗λ S. For any (a, s), (b, r) ∈ T ∗λ S, ( (sr)(sr)−1
a sb, sr) ∈ T ∗λ S. In

fact,

(sr)(sr)−1
( (sr)(sr)−1

a sb) = (sr)(sr)−1(sr)(sr)−1
a (sr)(sr)−1sb (SP1)

= (sr)(sr)−1
a srr

−1s−1sb

= (sr)(sr)−1
a ss

−1srr−1
b (idpts commute)

= (sr)(sr)−1
a s( rr

−1
b) (SP2)

= (sr)(sr)−1
a sb. ((b, r) ∈ T ∗λ S)

So (5.1) defines a binary operation on T ∗λ S. We have the following result:

Theorem 5.1. Let S and T be inverse semigroups such that S acts on T by endomorphisms on

the left. Then T ∗λ S, as defined above, is an inverse semigroup with respect to the operation

defined in (5.1), with (a, s)−1 = ( s
−1
a−1, s−1), for all (a, s) ∈ T ∗λ S. If, in addition, S and T

are monoids and axiom (SP3) holds then T ∗λ S is an inverse monoid with identity (1
T
, 1

S
).

Proof: Let (a, s), (b, r), (c, u) ∈ T ∗λ S. Then

(a, s)((b, r)(c, u)) = (a, s)( (ru)(ru)−1
b rc, ru)

= ( s(ru)(s(ru))
−1
a s( (ru)(ru)−1

b rc), s(ru))

= ( (sru)(sru)−1
a s(ru)(ru)

−1
b src, sru),

and so

(a, s)((b, r)(c, u)) = ( (sru)(sru)−1

a s(ru)(ru)
−1

b src, sru). (5.2)

Also,
((a, s)(b, r))(c, u) = ( (sr)(sr)−1

a sb, sr)(c, u)

= ( (sr)u((sr)u)−1
( (sr)(sr)−1

a sb) src, (sr)u)

= ( (sru)(sru)−1(sr)(sr)−1
a (sru)(sru)−1sb src, sru),

and so

((a, s)(b, r))(c, u) = ( (sru)(sru)−1(sr)(sr)−1

a (sru)(sru)−1sb src, sru). (5.3)
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Since
(sru)(sru)−1s = sruu−1r−1s−1s

= s(ru)(ru)−1(s−1s)

= s(s−1s)(ru)(ru)−1

= s(ru)(ru)−1

and
(sru)(sru)−1(sr)(sr)−1 = sruu−1r−1s−1(sr)(sr)−1

= (sru)u−1(sr)−1(sr)(sr)−1

= (sru)u−1(sr)−1

= (sru)(sru)−1,

and by (5.2) and (5.3), we obtain that

(a, s)((b, r)(c, u)) = ((a, s)(b, r))(c, u).

Hence the operation defined in (5.1) is associative and so T ∗λ S equipped with this operation

is a semigroup.

Let (a, s) ∈ T ∗λ S. Then ( s
−1
a−1, s−1) ∈ T ∗λ S, since

s−1(s−1)−1

( s
−1

a−1) = s−1ss−1

a−1 = s−1

a−1.

Note that

(a, s)( s
−1
a−1, s−1) = ( ss

−1(ss−1)−1
a s( s

−1
a−1), ss−1)

= ( ss
−1ss−1

a ss
−1
a−1, ss−1)

= ( ss
−1
a( ss

−1
a)−1, ss−1) (LSP1)

= (aa−1, ss−1). ((a, s) ∈ T ∗λ S)

We have

(a, s)( s
−1
a−1, s−1)(a, s) = (aa−1, ss−1)(a, s)

= ( (ss−1)s((ss−1)s)−1
(aa−1) ss

−1
a, ss−1s)

= ( ss
−1

(aa−1) ss
−1
a, s)

= ( ss
−1

(aa−1a), s) (SP1)

= ( ss
−1
a, s)

= (a, s) ((a, s) ∈ T ∗λ S)
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and

( s
−1
a−1, s−1)(a, s)( s

−1
a−1, s−1) = ( s

−1
a−1, s−1)(aa−1, ss−1)

= ( s
−1(ss−1)(s−1(ss−1))−1

( s
−1
a−1) s

−1
(aa−1), s−1ss−1)

= ( s
−1(s−1)−1

( s
−1
a−1) s

−1
(aa−1), s−1)

= ( s
−1ss−1

(a−1) s
−1

(aa−1), s−1) (SP2)

= ( s
−1

(a−1aa−1), s−1) (SP1)

= ( s
−1
a−1, s−1).

Hence ( s
−1
a−1, s−1) ∈ V ((a, s)) and therefore (a, s)−1 = ( s

−1
a−1, s−1).

We now determine the idempotents of T ∗λ S and show that they commute. If (e, x) is an

idempotent of T ∗λ S then

(e, x)(e, x) = (e, x) ⇔ ( xx(xx)
−1
e xe, xx) = (e, x)

⇔ x2(x2)−1
e xe = e and x2 = x

⇔ xx−1
e xe = e and x ∈ E(S)

⇔ xx−1xe = e and x ∈ E(S)

⇔ xe = e and x ∈ E(S).

Then e2 = xe xe = x2e = xe = e and so e ∈ E(T ). Conversely, suppose that (e, x) ∈ T ∗λ S,

e ∈ E(T ) and x ∈ E(S). Then

e = xx−1

e = xxe = xe

and so

(e, x)(e, x) = ( x
2(x2)−1

e xe, x2)

= ( xx
−1
e xe, x)

= (ee, x)

= (e, x).

Hence E(T ∗λ S) = {(e, x) ∈ T ∗λ S : e ∈ E(T ), x ∈ E(S)}.
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Let (e, x), (f, y) ∈ E(T ∗λS). Since S and T are both inverse semigroups, the idempotents

of S commute and the same happens with the idempotents of T and we have

(e, x)(f, y) = ( (xy)(xy)−1
e xf, xy)

= ( x( y(xy)
−1
ef), xy)

= ( x(f y(xy)−1
e), yx)

= ( xf (xy)(xy)−1
e, yx)

= ( xyy
−1
f (xy)(xy)−1

e, yx)

= ( xy
2
f (xy)2e, yx)

= ( xyf xye, yx)

= ( yxf yxe, yx)

and so

(e, x)(f, y) = ( yxf yxe, yx). (5.4)

Also, we have

(f, y)(e, x) = ( (yx)(yx)−1
f ye, yx)

= ( yxx
−1y−1

f yxx−1
e, yx)

= ( y
2x2f yx2e, yx)

= ( yxf yxe, yx)

and so

(f, y)(e, x) = ( yxf yxe, yx). (5.5)

From (5.4) and (5.5), it follows that

(e, x)(f, y) = (f, y)(e, x),

for all (e, x), (f, y) ∈ E(T ∗λ S), that is, all idempotents of T ∗λ S commute. Hence T ∗λ S is

a regular semigroup and its idempotents commute. Therefore it is an inverse semigroup.
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Now, suppose that S and T are monoids and axiom (SP3) holds. Let (a, s) ∈ T ∗λS. Then

(a, s)(1
T
, 1

S
) = ( s1S (s1S )

−1
a s1

T
, s1

S
)

= ( ss
−1
a s1

T
, s)

= (a1
T
, s) ((a, s) ∈ T ∗λ S)

= (a, s)

and
(1

T
, 1

S
)(a, s) = ( 1

S
s(1

S
s)−1

1
T

1
Sa, 1

S
s)

= ( ss
−1

1
T

1
Sa, s)

= (1
T
a, s)

= (a, s).

Therefore (1
T
, 1

S
) is the identity of T ∗λ S. 2

The semigroup T ∗λ S is called a λ-semidirect product of T by S. A possible justification

for this terminolgy is the notation used by Petrich in [13] for the idempotent ss−1: he denoted

this idempotent by λ(s).

Proposition 5.2. Let S and T be inverse semigroups such that S acts on T by endomorphisms

on the left. If S and T are both groups and axiom (SP3) is satisfied then T ∗λ S is a group

and is the classical semidirect product of the group T by the group S.

Proof: Suppose that S and T are groups such that S acts on T by endomorphisms on the

left and (SP3) holds. By Theorem 5.1 and its proof, the set of idempotents of T ∗λ S is

E(T ∗λ S) = {(a, s) ∈ T ∗λ S : a ∈ E(T ), s ∈ E(S)}.

Since S and T are groups, 1
S
and 1

T
are the unique idempotents of S and T , respectively.

Then T ∗λ S has a unique idempotent (1
T
, 1

S
). Consequently, the inverse semigroup T ∗λ S is

a group.

Let (a, s), (b, r) ∈ T ∗λ S. Then

(a, s)(b, r) = ( sr(sr)
−1
a sb, sr)

= ( 1
Sa sb, sr)

= (a sb, sr)
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and so the binary operation defined in (5.1) coincides with the one defined in (3.1). Thus T ∗λS

is the classical semidirect product of the group T by the group S. 2

The next result is a complement to Lemma 4.2 and its proof is similar. This result will be

useful in the next section.

Lemma 5.3. Let S be a semigroup and X be a non-empty set.

(1) S is a Clifford semigroup if and only if SX is a Clifford semigroup;

(2) S is a group if and only if SX is a group.

Proof:

(1) Suppose that S is a Clifford semigroup. Then S is regular and ex = xe, for all x ∈ S and

all e ∈ E(S). By Lemma 4.2, SX is a regular semigroup. Let f ∈ SX and ε ∈ E(SX).

We show that εf = fε. Notice that if ε2 = ε then tε ∈ E(S), for all t ∈ X:

(tε)(tε) = tε2 = tε.

Let x ∈ X. Then

x(εf) = (xε)(xf)

= (xf)(xε) (xε ∈ E(S) and xf ∈ S)

= x(fε).

Thus SX is a Clifford semigroup.

Conversely, suppose that SX is a Clifford semigroup. Then, by Lemma 4.2, S is regular.

Let s ∈ S and e ∈ E(S). Define f ∈ SX by xf = s, for all x ∈ X, and ε ∈ SX by

xε = e, for all x ∈ X. Clearly, ε ∈ E(SX) since

xε2 = xε xε = ee = e = xε.
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Also, for any x ∈ X,

se = (xf)(xε)

= x(fε)

= x(εf) (SX is a Clifford semigroup)

= (xε)(xf)

= es.

Hence S is a Clifford semigroup.

(2) Suppose that S is a group and let 1
S
be the identity of S. So S is an inverse semigroup

with a unique idempotent. By Lemma 4.2, SX is an inverse semigroup. Clearly, the

constant map i ∈ SX defined by xi = 1
S
, for all x ∈ X, is the identity of SX . Let

f ∈ SX . Define f ′ : X → S by xf ′ = (xf)−1, x ∈ X. Then

x(f ′f) = (xf ′)(xf) = (xf)−1(xf) = 1
S

= x(ff ′)

and so

ff ′ = f ′f = 1
SX
.

Thus SX is a group.

Conversely, suppose that SX is a group. Then SX is an inverse semigroup with a single

idempotent. By Lemma 4.2, the semigroup S is inverse and so it contains idempotents.

We show that E(S) has a unique element. Let e, f ∈ E(S). Define ε, α ∈ SX by xε = e

and xα = f , for all x ∈ X. Clearly, ε, α ∈ E(SX) and so α = ε. Thus e = f . Being an

inverse semigroup with a single idempotent, S is a group. 2

Natural examples of λ-semidirect products are the so called λ-wreath products. Let S and

T be inverse monoids. Let T S be the set of all mappings from S to T . With respect to the

multiplication defined by

∀s ∈ S ∀f, g ∈ T S, s(fg) = (sf)(sg),

76



T S is an inverse semigroup (Lemma 4.2), the inverse f−1 of f ∈ T S being defined by

sf−1 = (sf)−1. As shown in Chapter 4, S acts on T by endomorphisms on the left via

x( sf) = (xs)f,

for all s ∈ S, all f ∈ T S and all x ∈ S. The λ-semidirect product T S ∗λS is called the λ-wreath

product of T by S and is denoted by T Wrλ S.

5.2 An application of λ-semidirect product

The main result of this section illustrates the importance of the λ-semidirect product on the

theory of inverse semigroups by showing how to construct inverse semigroups from Clifford

semigroups and fundamental semigroups. This construction is based on a certain class of

congruences on inverse semigroups – the class of Billhard congruences.

A congruence ρ on an inverse semigroup S is called a Billhardt congruence if, for each s ∈ S,

the set {t−1t : t ∈ [s]ρ} contains a maximum element with respect to the natural partial order.

An example of a class of Billhardt congruences is the class of idempotent-separating congruences

on an inverse semigroup:

Proposition 5.4. Every idempotent-separating congruence on an inverse semigroup is a Bill-

hardt congruence.

Proof: Let ρ be an idempotent-separating congruence on an inverse semigroup S. Let s ∈ S.

Consider the set {t−1t : t ∈ [s]ρ} and consider two elements of this set, a−1a and b−1b.

Then a, b ∈ [s]ρ and so (a, b) ∈ ρ. By Proposition 1.23, (a−1a, b−1b) ∈ ρ. Since ρ is an

idempotent-separating congruence on S and a−1a, b−1b ∈ E(S), a−1a = b−1b. Thus the set

{t−1t : t ∈ [s]ρ} contains a unique element and therefore ρ is a Billhardt congruence. 2

A transversal of a congruence ρ defined on S is a subset I of S such that I ∩ [s]ρ has

a unique element, for s ∈ S. We denote by s0 this element. If, in addition, ρ is a Billhardt
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congruence and s−10 s0 is the largest element of {t−1t : t ∈ [s]ρ} then the tranversal I is called

a Billhardt transversal.

Theorem 5.5. Let ρ be a Billhardt congruence on an inverse semigroup S. Then S can be

embedded in ker ρWrλ S/ρ.

Proof: Let ρ be a Billhardt congruence on an inverse semigroup S. Choose the Billhardt

transversal for ρ. Let [a], [b] ∈ S/ρ. Suppose that [a] = [b]. Then (a, b) ∈ ρ. Since

(ss−1, ss−1) ∈ ρ, for all s ∈ S, (ass−1, bss−1) ∈ ρ and so (ass−1)0 = (bss−1)0. By Proposition

1.23, (a−1, b−1) ∈ ρ. Since (s−1, s−1) ∈ ρ, for all s ∈ S, (s−1a−1, s−1b−1) ∈ ρ, that is,

((as)−1, (bs)−1) ∈ ρ and so (as)−10 = (bs)−10 . Consequently,

(ass−1)0s(as)
−1
0 = (bss−1)0s(bs)

−1
0 .

Also, we have

s ∈ S ⇒ ∀a ∈ S, ((ass−1)0, ass
−1) ∈ ρ, ((as)−10 , (as)−1) ∈ ρ and (s, s) ∈ ρ

⇒ ∀a ∈ S, ((ass−1)0s(as)
−1
0 , ass−1s(as)−1) ∈ ρ

⇒ ∀a ∈ S, (ass−1)0s(as)
−1
0 ∈ [(as)(as)−1].

Since (as)(as)−1 is an idempotent, we obtain that (ass−1)0s(as)
−1
0 ∈ ker ρ. Thus we can

define a mapping fs : S/ρ→ ker ρ by [a]fs = (ass−1)0s(as)
−1
0 .

By Proposition 1.24, ker ρ and S/ρ are both inverse semigroups and so we can define

ker ρWrλ S/ρ. Consider ϕ : S → ker ρWrλ S/ρ defined by sϕ = (fs, [s]), with fs defined as

above. Clearly, if s = w, s, w ∈ S, then sϕ = wϕ. Let s ∈ S. Then, for any x ∈ S,

[x] [s][s]
−1
fs = [x] [s][s

−1]fs

= [x] [ss
−1]fs

= [xss−1]fs

= ((xss−1)ss−1)0s((xss
−1)s)−10

= (xss−1)0s(xs)
−1
0

= [x]fs
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and so [s][s]−1
fs = fs. Hence (fs, [s]) ∈ ker ρWrλ S/ρ. Thus ϕ is well-defined. We show that

ϕ is injective. Let s, w ∈ S be such that sϕ = wϕ. We have

sϕ = wϕ ⇔ (fs, [s]) = (fw, [w])

⇔ ∀x ∈ S, [x]fs = [x]fw and [s] = [w].

Since (s, s0) ∈ ρ and s−10 s0 is the largest element of {t−1t : t ∈ [s0]},

s−1s ≤ s−10 s0. (5.6)

From (ss−1, (ss−1)0) ∈ ρ, it follows that

(ss−1)−1(ss−1) ∈ {t−1t : t ∈ [(ss−1)0]},

that is,

ss−1 ∈ {t−1t : t ∈ [(ss−1)0]},

and so, by definition,

ss−1 ≤ (ss−1)−10 (ss−1)0. (5.7)

From (5.6) and (5.7), it follows that

s = s(s−1s) ≤ ss−10 s0

and

s = (ss−1)s ≤ (ss−1)−10 (ss−1)0s,

whence, by (7) of Proposition 1.22,

s = s(s−10 s0s
−1)s = ss−1ss−10 s0 = ss−10 s0

and

s = ss−1(ss−1)−10 (ss−1)0s = (ss−1)−10 (ss−1)0ss
−1s = (ss−1)−10 (ss−1)0s.

Then

s = (ss−1)−10 (ss−1)0s = (ss−1)−10 (ss−1)0ss
−1
0 s0.
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Since

[ss−1]fs = ((ss−1)ss−1)0s((ss
−1)s)−10 = (ss−1)0ss

−1
0 ,

we have

s = (ss−1)−10 [ss−1]fss0.

Similar arguments show that

w = (ww−1)−10 [ww−1]fw w0.

From [s] = [w], it follows that (ss−1)−10 = (ww−1)−10 and s0 = w0 and since sϕ = wϕ and

[ss−1] = [ww−1], [ss−1]fs = [ww−1]fw. Then s = w and so ϕ is injective. We now show that

ϕ is a morphism, that is, (sw)ϕ = sϕwϕ, for all s, w ∈ S. For every s, w ∈ S, we have

(sw)ϕ = (fsw, [sw])

and
sϕwϕ = (fs, [s])(fw, [w])

= ( [s][w]([s][w])−1
fs

[s]fw, [s][w])

= ( [(sw)(sw)−1]fs
[s]fw, [sw]).

Let [x] ∈ S/ρ. Then

[x]( [(sw)(sw)
−1]fs

[s]fw) = [x(sw)(sw)−1]fs [xs]fw

= (x(sw)(sw)−1ss−1)0s(x(sw)(sw)
−1s)−10 (xsww−1)0w(xsw)

−1
0

= (xsww−1s−1ss−1)0s(xsww
−1s−1s)−10 (xsww−1)0w(xsw)

−1
0

= (xsww−1s−1)0s(xss
−1sww−1)−10 (xsww−1)0w(xsw)

−1
0

= (x(sw)(sw)−1)0s(xsww
−1)−10 (xsww−1)0w(xsw)

−1
0 ,

that is,

[x]( [(sw)(sw)−1]fs
[s]fw) = (x(sw)(sw)−1)0s(xsww

−1)−10 (xsww−1)0w(xsw)−10 . (5.8)

Also,

((x(sw)(sw)−1)0s, x(sw)(sw)−1s) ∈ ρ,
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that is,

((x(sw)(sw)−1)0s, xsww
−1s−1s) ∈ ρ,

hence, since the idempotents of S commute,

((x(sw)(sw)−1)0s, xss
−1sww−1) ∈ ρ,

and so

((x(sw)(sw)−1)0s, xsww
−1) ∈ ρ.

Therefore

((x(sw)(sw)−1)0s)
−1((x(sw)(sw)−1)0s) ≤ (xsww−1)−10 (xsww−1)0,

whence, by the definition of natural order for idempotents,

((x(sw)(sw)−1)0s)
−1((x(sw)(sw)−1)0s) =

= ((x(sw)(sw)−1)0s)
−1((x(sw)(sw)−1)0s)(xsww

−1)−10 (xsww−1)0,

hence, multiplying by (x(sw)(sw)−1)0s on the left,

(x(sw)(sw)−1)0s = ((x(sw)(sw)−1)0s)(xsww
−1)−10 (xsww−1)0. (5.9)

Using (5.9), the expression (5.8) is equal to (x(sw)(sw)−1)0(sw)(x(sw))−10 and so

[x]( [sw(sw)−1]fs
[s]fw) = [x]fsw.

Thus (sw)ϕ = sϕwϕ. 2

Let µ be the maximum idempotent-separating congruence on an inverse semigroup S. By

Proposition 5.4, µ is a Billhardt congruence and so it folllows from Theorem 5.5 that S can

be embedded in kerµWrλ S/µ. By Proposition 1.26, the semigroup S/µ is fundamental. By

definition, the semigroup kerµWrλ S/µ is the λ-semidirect product (kerµ)S/µ ∗λ S/µ. By

Corollary 1.30, kerµ is a Clifford semigroup and so, since both semigroups kerµ and S/µ are

inverse, it follows from Lemma 5.3 that (kerµ)S/µ is a Clifford semigroup. Thus we have the

main result of this section.
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Theorem 5.6. Every inverse semigroup can be embedded in a λ-semidirect product of a Clifford

semigroup by a fundamental semigroup.
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