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Abstract

We study a class of p(x, t)-curl systems arising in electromagnetism,
with a nonlinear source term. Denoting by h the magnetic field,

the source term considered is of the form λh
(∫

Ω
|h|2

)σ−2
2 where

λ ∈ {−1, 0, 1}: when λ ∈ {−1, 0} we consider 0 < σ ≤ 2 and for
λ = 1 we have σ ≥ 1.
We introduce a suitable functional framework and a convenient basis
that allow us to apply the Galerkin’s method and prove existence of
local or global solutions, depending on the values of λ and σ.
We study the finite time extinction or the stabilization towards zero of
the solutions when λ ∈ {−1, 0} and the blow-up of local solutions when
λ = 1.

1 Introduction

The study of partial differential equations or systems with variable exponents is a recent research topic which
had a very quick development that started when it was understood that variable exponents give better de-
scriptions of the behavior of certain materials or phenomena. To the authors knowledge, this is one of the first
works involving the p(x, t)-curl operator. In this work we intend to generalize the results in [1] to a similar
problem but now with variable exponents.

Let Ω be a bounded simply connected domain of R3 with a C 1,1 boundary denoted by Γ, T ∈ R+,
QT = Ω× (0, T ) and ΣT = Γ× (0, T ).

In what follows, vector functions and spaces of vector functions will be denoted by boldface symbols. We
will use ∂x to denote the partial derivative of a function with respect to the variable x.

The divergence of a vector function h = (h1, h2, h3) is denoted by

∇·h = ∂x1
h1 + ∂x2

h2 + ∂x3
h3

and the curl of h by

∇×h = (∂x2h3 − ∂x3h2, ∂x3h1 − ∂x1h3, ∂x1h2 − ∂x2h1).
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2 Blow-up and finite time extinction for p(x, t)-curl systems arising in electromagnetism

We recall the identity

−∆h = ∇×(∇×h)−∇(∇·h), (1)

where ∆h = (∆h1,∆h2,∆h3) and ∆hi = ∇·(∇hi), i = 1, 2, 3.
We wish to prove existence of solution for the system

∂th+∇×
(
|∇×h|p(x,t)−2∇×h

)
= f(h), ∇·h = 0 in QT , (2a)

|∇×h|p(x,t)−2∇×h× n = 0, h · n = 0 on ΣT , (2b)

h( · , 0) = h0 in Ω, (2c)

where f(h) = λh
(∫

Ω
|h|2

)σ−2
2 with λ ∈ {−1, 0, 1} and σ a positive constant. Using the Galerkin’s method,

we prove existence of solution h ∈X(QT ) ∩H1(0, T ;L2(Ω)) to the above problem. The space

X(QT ) =
{
v ∈ L2(QT ) : ∇×v ∈ Lp(·,·)(QT ), ∇·v = 0, v · n|Γ = 0

}
is the suitable functional framework to solve weakly the system (2). A first difficulty is the characterization of
the space

W p(·)(Ω) =
{
v ∈ Lp(·)(Ω) : ∇×v ∈ Lp(·)(Ω), ∇·v = 0, v · n|Γ = 0

}
,

as a subspace of the Orlicz-Sobolev space W 1,p(·)(Ω) where the seminorm ‖∇×· ‖Lp(·)(Ω) is a norm equivalent

to the one induced by the W 1,p(·)-norm (see Theorem 2.1). Others difficulties are the definitions of suitable

countable topological bases ofW p(·)(Ω) and ofX(QT ) (see Proposition 2.3 and Proposition 3.2, respectively).
We prove existence of solutions to this system imposing that, besides natural assumptions, the function

p(·, ·) is decreasing in time. We study the finite time extinction or blow-up of the solutions, depending on the
values of the parameters λ and σ.

2 Functional framework – spatial variables

The main purposes of this section are the characterization of the space of divergence free vector functions
belonging to Lp(·)(Ω) with curl in Lp(·)(Ω) and normal null trace as well as the construction of a suitable
topological basis for this space.

2.1 The Orlicz–Sobolev spaces Lp(·)(Ω) and W 1,p(·)(Ω)

We start by collecting a few well known facts from the theory of Sobolev spaces with variable exponent. For
details about this theory and an exhaustive review of the existing bibliography, see the monograph [5].

Let p : Ω̄ −→ [1,∞) be a continuous function. We will use the notation p ∈ Clog(Ω̄) if p satisfies

∀ ζ1, ζ2 ∈ Ω̄, |ζ1 − ζ2| < 1, |p(ζ1)− p(ζ2)| ≤ ω(|ζ1 − ζ2|), lim sup
τ→0+

ω(τ) log
1

τ
= C. (3)

Defining

Ap(·)(f) =

∫
Ω

|f |p(·),

we denote

Lp(·)(Ω) =
{
f : Ω→ R : f is measurable and Ap(·)(f) <∞

}
.

The space Lp(·)(Ω), equipped with the (Luxemburg) norm

‖f‖Lp(·)(Ω) = inf
{
λ > 0 : Ap(·)

(
f
λ

)
≤ 1
}
,

is a Banach space.
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From now on we assume that

p− = min
x∈Ω̄

p(x) and p+ = max
x∈Ω̄

p(x), 1 < p−, p+ <∞. (4)

We define
W 1, p(·)(Ω) =

{
u ∈ Lp(·)(Ω) : |∇u|p(·) ∈ L1(Ω)

}
,

and we endow it with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω). (5)

We consider also
W

1, p(·)
0 (Ω) =

{
u ∈W 1, p(·)(Ω) : u|Γ = 0

}
,

with the norm
‖u‖

W
1,p(·)
0 (Ω)

= ‖∇u‖Lp(·)(Ω).

Details about the trace of a function u ∈W 1,p(·)(Ω) can be found in [5].

Let us indicate the basic properties of the spaces Lp(·)(Ω), W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) that we will need

in the rest of this paper:

1. From the definition of the norm in Lp(·)(Ω), we conclude that

min
(
‖f‖p

−

Lp(·)(Ω)
, ‖f‖p

+

Lp(·)(Ω)

)
≤ Ap(·)(f) ≤ max

(
‖f‖p

−

Lp(·)(Ω)
, ‖f‖p

+

Lp(·)(Ω)

)
; (6)

2. Hölder’s inequality is verified, i.e., for all f ∈ Lp(·)(Ω), g ∈ Lp′(·)(Ω) with

p(x) ∈ (1,∞), p′(x) =
p(x)

p(x)− 1
,

the following inequality holds:∫
Ω

|f g| ≤
( 1

p−
+

1

p′−

)
‖f‖Lp(·)(Ω) ‖g‖Lp′(·)(Ω) ≤ 2 ‖f‖Lp(·)(Ω) ‖g‖Lp′(·)(Ω) ;

3. We also have that

for q(·) ≤ p(·) Lp(·)(Ω) ⊆ Lq(·)(Ω) and ‖f‖Lq(·)(Ω) ≤ C ‖f‖Lp(·)(Ω) ;

4. The space W 1,p(·)(Ω) is separable and reflexive, provided that p ∈ C (Ω̄) and satisfies (4);

5. Assuming (3), we have D(Ω) is dense in W
1,p(·)
0 (Ω) and this last space can be defined as the completion

of D(Ω) with respect to the norm (5). The density of smooth functions in the space W
1,p(·)
0 (Ω) is crucial

for the understanding of these spaces. The condition of log-continuity of p(·) is the best known and the

most frequently used sufficient condition for the density of D(Ω) in W
1,p(·)
0 (Ω) (see [4, 5]). Although

this condition is not necessary and can be substituted by other conditions (see [5, Chapter 9] for a
discussion of this question) we keep it throughout the paper for the sake of simplicity of presentation;

6. Observing that W
1,p(·)
0 (Ω) ⊆W 1,p−

0 (Ω), the Sobolev inequality

‖f‖Lq(Ω) ≤ C‖f‖W 1,p(·)(Ω)

holds, with 1 ≤ q < 3p−

3−p− if p− < 3, any q if p− = 3 and q = ∞ if p− > 3. Here C = C(p−,Ω) is a
positive constant.
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2.2 The space W p(·)(Ω)

We define

W p(·)(Ω) =
{
v ∈ Lp(·)(Ω) : ∇×v ∈ Lp(·)(Ω), ∇·v = 0, v · n|Γ = 0

}
,

endowed with the norm

‖v‖W p(·)(Ω) = ‖v‖Lp(·)(Ω) + ‖∇×v‖Lp(·)(Ω).

Theorem 2.1. Assume that 1 < p− ≤ p(·) ≤ p+ < ∞ and p satisfies (3). Then W p(·)(Ω) is a closed

subspace of W 1,p(·)
n0

(Ω), where

W 1,p(·)
n0

(Ω) =
{
v ∈W 1,p(·)(Ω) : v · n|Γ = 0

}
Besides, if p− > 6

5 , then ‖∇×·‖Lp(·)(Ω) is a norm inW p(·)(Ω) equivalent to the norm induced fromW 1,p(·)(Ω).
In particular,

‖v‖W 1,p(·)(Ω) ≤ C‖∇×v‖Lp(·)(Ω),

where C = C(p−, p+,Ω).

Proof. The inclusion {v ∈ W 1,p(·)
n0

(Ω) : ∇·v = 0} ⊆ W p(·)(Ω) is immediate. We need to prove that

W p(·)(Ω) ⊆W 1,p(·)
n0

(Ω)

Let u ∈ Lp(·)(Ω) be such that ∇×u ∈ Lp(·)(Ω), ∇·u = 0 and u · n|Γ = 0. Since Γ is compact, we can
find z1, . . . , zk ∈ Γ and r1, . . . , rk ∈ R+ such that, denoting Bi = B(zi, ri) the ball centered in zi with radius

ri and setting B̂i = B(zi,
ri
2 ), we have:

1.
k⋃
i=1

B̂i ⊇ Γ;

2. For i = 1 . . . k, there exists a set V +
i ⊆ R2 × R+ and a smooth function Φi which is a bijection from

Bi ∩ Ω to V +
i and such that Φ(Γ ∩Bi) = V +

i ∩ (R2 × {0});

3. Denote, for i fixed, y = Φi(x) and y0i = Φi(zi). Let L = ajk∂yjyk + bj∂yj be the expression of
the Laplacian in the new variables (for details see [6, p. 97]). We choose the radius ri of the ball Bi
sufficiently small such that:

(a)

max
y∈Φi(Bi)

|ajk(y)− ajk(y0i)| <
1

36C
, (7)

where C = C
(
p−, p+,Ω

)
is the constant for the W

1,p(·)
0 (Ω) estimate satisfied by the solutions of

the equations {
−ajk(y0i)∂

2
yjyk

v = g in Ω,

v = 0 on Γ,

where g is any element of W p(·)(Ω)
′
;

(b)

diam(V +
i ) ‖bj‖W 1,∞(Ω) ≤

1

24C
, (8)

where diam(V +
i ) represents the diameter of V +

i defined in item 2, bj are the coefficients of the
first order terms of the operator defined above in this item and C is the constant mentioned in (a);

4. Since Ω̄ is compact, we can find zk+1, . . . , zm ∈ Ω and rk+1, . . . , rm ∈ R+ such that
m⋃
i=1

B̂i ⊇ Ω̄.
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For i ∈ {k + 1, . . . ,m}, let ηi ∈ D(Bi) be such that 0 ≤ ηi ≤ 1 and ηi|B̂i
≡ 1. The function vi = ηiu

satisfies the following problem{
−∆vi = −ηi∆u− 2∇ηi · ∇u− u∆ηi in Bi

vi = 0 on ∂Bi
. (9)

Observe that F i(u) = −ηi∆u− 2∇ηi · ∇u− u∆ηi ∈W 1,p(·)
0 (Bi)

′
and so vi ∈W 1,p(·)

0 (Bi) (see p. 439 of

the proof of [5, Theorem 14.1.2]). Then vi ∈W 1,p(·)(Bi) and

‖u‖W 1,p(·)(B̂i)
≤ ‖vi‖W 1,p(·)(Bi)

≤ C‖F i(u)‖W 1,p′(·)(Bi)
′ ,

where C = C
(
p−, p+,Ω

)
> 0.

In what follows C represents different positive constants. Using the identity (1) and recalling that ∇·u = 0,
we have

‖ηi∆u‖W 1,p′(·)(Bi)
′ ≤ ‖ηi‖L∞(Bi) sup

ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

〈∆u,ϕ〉W 1,p′(·)(Bi)
′×W 1,p′(·)(Bi)

≤ ‖ηi‖L∞(Bi) sup
ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

∫
Bi

|∇×u · ∇×ϕ|

≤ 2‖ηi‖L∞(Bi) sup
ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

‖∇×u‖Lp(·)(Bi)‖∇×ϕ‖Lp′(·)(Bi)

≤ C‖∇×u‖Lp(·)(Bi),

‖∇ηi · ∇u‖W 1,p′(·)(Bi)
′ ≤ ‖ηi‖L∞(Bi) sup

ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

〈∇u,ϕ〉W 1,p′(·)(Bi)
′×W 1,p′(·)(Bi)

≤ ‖ηi‖L∞(Bi) sup
ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

∫
Bi

|u · ∇ϕ|

≤ 2‖ηi‖L∞(Bi) sup
ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

‖u‖Lp(·)(Bi)
‖ϕ‖W 1,p′(·)(Bi)

≤ C‖u‖Lp(·)(Bi)

and

‖u∆ηi‖W 1,p(·)(Bi)
′ ≤ ‖∆ηi‖L∞(Bi) sup

ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

∫
Bi

|u ·ϕ|

≤ 2‖∆ηi‖L∞(Bi) sup
ϕ ∈W 1,p′(·)(Bi)
‖ϕ‖

W 1,p′(·)(Bi)≤1

‖u‖Lp(·)(Bi)
‖ϕ‖Lp′(·)(Bi)

≤ C‖u‖Lp(·)(Bi)
.

So,

‖F i(u)‖W 1,p′(·)(Bi)
′ ≤ C

(
‖u‖Lp(·)(Bi)

+ ‖∇×u‖Lp(·)(Bi)

)
.
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Let now i ∈ {1, . . . , k} and V +
i be the sets as defined in item 2. Define

V −i = {(y1, y2,−y3) : (y1, y2, y3) ∈ V +
i } and Vi = V +

i ∪ V
−
i .

Given a function ϕ : V +
i −→ R, we define ϕ̃ : Vi −→ R by even reflection, i.e.,

ϕ̃(y1, y2, y3) =

{
ϕ(y1, y2, y3) if (y1, y2, y3) ∈ V +

i

ϕ(y1, y2,−y3) if (y1, y2, y3) ∈ V −i
.

For a given function v : Bi −→ R3 we call v̄ = v ◦Φ−1
i , where Φi is the change of variables defined in item 2.

Recalling that y = (y1, y2, y3) = Φi(x), we have v̄(y1, y2, y3) = v(x1, x2, x3). Let ηi ∈ D(Bi), 0 ≤ ηi ≤ 1,
ηi|B̂i

≡ 1. For v̄i = η̄iū we have

∆vi(x) = ajk(y)∂2
yiyk

v̄i(y) + bj(y)∂yj v̄i(y),

where (ajk)j,k is strictly positively defined and ajk, bj ∈ C (V̄i) (for details see [6, p. 97]). Then the problem,
in the variable x, 

−∆vi(x) = F i(u(x)) in Bi ∩ Ω

vi(x) = 0 on ∂Bi ∩ Ω

vi(x) · n = 0 on Γ ∩Bi
is transformed into the problem, in the variable y,{

−ajk(y)∂2
yiyk

v̄i(y) = Gi(u(y)) + bj(y)∂yj v̄i(y) in Vi

v̄i(y) = 0 on ∂Vi
, (10)

where Gi(u) is the function that corresponds to F i(u) defined in (9), but in the new variable y. Recalling
the definition of yi0 = Φi(zi) given in item 3, we can rewrite the problem (10) as follows{

−ajk(y0i)∂
2
yiyk

v̄i(y) = Gi(u(y)) + bj(y)∂yj v̄i(y)−
(
ajk(y0i)− ajk(y)

)
∂2
yiyk

v̄i(y) in Vi

v̄i(y) = 0 on ∂Vi
,

and so

‖v̄i‖W 1,p(·)(Vi)
≤ C

(
‖Gi(u)‖W p(·)(Vi)′

+ ‖bj(y)∂yj v̄i(y)‖W p(·)(Vi)′

+ ‖
(
ajk(y0i)− ajk(y)

)
∂2
yiyk

v̄i||W p(·)(Vi)′

)
. (11)

We are going to estimate first the terms ‖bj(y)∂yj v̄i(y)‖W p(·)(Vi)
′ :

〈bj∂yj v̄i,ϕ〉W 1,p′(·)(Vi)
′×W 1,p′(·)(Vi)

= −〈v̄i, ∂yj bjϕ+ bj∂yjϕ〉W 1,p′(·)(Vi)
′×W 1,p′(·)(Vi)

≤
∫
Vi

|v̄i|
(
|ϕ|+ |∂yjϕ|

)
‖bj‖W 1,∞(Vi)

≤ 2‖bj‖W 1,∞(Vi) ‖v̄i‖Lp(·)(Vi)
‖ϕ‖W 1,p′(·)(Vi)

.

Applying the Poincaré inequality (see [5, Theorem 8.2.4]) we obtain

〈bj∂v̄i,ϕ〉W 1,p′(·)(Vi)
′×W 1,p′(·)(Vi)

≤ 2 diam(Vi)‖bj‖W 1,∞(Vi) ‖v̄i‖W 1,p(·)(Vi)
‖ϕ‖W i,p′(·)(Vi)

and so, recalling that diam(Vi) ≤ 2 diam(V +
i ) and (8),

‖bj∂yj v̄i‖W 1,p′(·)(Vi)
= sup

ϕ ∈W 1,p′(·)(Vi)
‖ϕ‖

W 1,p′(·)(Vi)≤1

〈bj∂v̄i,ϕ〉W 1,p′(·)(Vi)
′×W 1,p′(·)(Vi)

≤ 1

12C
‖v̄i‖W 1,p(·)(Vi)

. (12)
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Returning to (11), using assumption (7) and estimate (12),

‖v̄i‖W 1,p(·)(Vi)
≤ C

(
‖Gi(u)‖W p(·)(Vi)

′ + ‖bj∂yj v̄i‖W 1,p′(·)(Vi)

+ ‖ajk(y0i)− ajk(y)‖L∞(Vi) sup
ϕ ∈W 1,p′(·)(Vi)
‖ϕ‖

W 1,p′(·)(Vi)≤1

∫
Vi

|∂yk v̄i · ∂yiϕ|
)

≤ C‖Gi(u)‖W p(·)(Vi)
′ +

1

2
‖v̄i‖W 1,p(·)(Vi)

and we conclude that

‖v̄i‖|W 1,p(·)(Vi)
≤ 2C‖Gi(u)‖W p(·)(Vi)

′ .

So

‖ui‖W 1,p(·)(B̂i∩Ω) ≤ ‖vi‖W 1,p(·)(Bi∩Ω)

≤ C1‖v̄i‖W 1,p(·)(Vi)

≤ C2‖Gi(u)‖W p(·)(Vi)
′

≤ C3‖F i(u)‖W p(·)(Bi)
′

≤ C4

(
‖u‖Lp(·)(Bi)

+ ‖∇×u‖Lp(·)(Bi)

)
.

To conclude that u ∈ W 1,p(·)(Ω) it is enough to use a partition of unity subordinated to the covering

{B̂i}i=1,...,m.
Applying Peetre’s Lemma, we conclude that there exists a positive C = C(p−, p+,Ω) such that

∀v ∈W p(·)(Ω) ‖v‖
W

1,p(·)
n0

(Ω)
≤ C‖∇×v‖Lp(·)(Ω).

For details of the proof of this inequality, when p is constant, see [7, Theorem 2.1].

Remark 2.2. Let v ∈W p(·)(Ω). From item 6 of Subsection 2.1 and the previous theorem, the inequality

‖v‖Lq(Ω) ≤ C‖∇×v‖Lp(·)(Ω) (13)

holds, with 1 ≤ q < 3p−

3−p− if p− < 3, any q if p− = 3 and q = ∞ if p− > 3. Here C = C
(
p−, p+,Ω

)
is a

positive constant.

2.3 A basis for W p(·)(Ω)

We wish to find out an appropriate countable topological basis of W p(·)(Ω), to be able to define a family of
approximating problems in finite dimensional subspaces.

Proposition 2.3. There exists a countable topological basis {ψn}n of W p(·)(Ω) such that, for all n ∈ N,
ψn ∈ X ,where

X =
{
v ∈ CCC 1(Ω̄) : ∇·v = 0, v · n|Γ = 0

}
.

Proof. A function u ∈ W p(·)(Ω) belongs to W 1,p(·)(Ω). So, there exists an extension, still denoted by u,

belonging to W 1,p(·)(R3) (see [5, Theorem 8.5.2]). Given ε > 0, let ρε ∈ D(R3) be a mollifier, define

uε = u ∗ ρε = (u1 ∗ ρε, u2 ∗ ρε, u3 ∗ ρε) and recall that uε ∈ D(R3) and uε −→
ε→0

u in W 1,p(·)(R3).

Let vε be a solution of the problem{
−∆vε = −∇·uε in Ω
∂vε
∂n = uε · n on Γ

.
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Then vε ∈W 2,q(Ω), for any 1 < q <∞ and, in particular, vε ∈ C 1(Ω̄). Setting zε = uε −∇vε, we observe

that ∇·zε = 0, ∇×zε ∈ CCC (Ω̄) ⊆ Lp(·)(Ω) and zε · n|Γ = 0. So, zε ∈ X ⊆W p(·)(Ω). Besides,

‖zε − u‖W p(·)(Ω) = ‖∇×zε −∇×u‖Lp(·)(Ω)

= ‖∇×uε −∇×u‖Lp(·)(Ω)

≤ ‖∇×uε −∇×u‖Lp(·)(R3) −→
ε→0

0.

Since W p(·)(Ω) is a separable space, it admits a countable topological basis {ϕn}n. Given n,m ∈ N, we
construct a function zn,m as above, with ε = 1

m , such that zn,m ∈ X and

‖zn,m −ϕn‖W p(·)(Ω) ≤
1

m
.

But this implies that {zn,m}n,m∈N is a countable subset of X such that
k∑
i=1

l∑
j=1

µijzi,j : k, l ∈ N, µij ∈ R for i = 1, . . . , k and j = 1, . . . , l


is dense in W p(·)(Ω). So, we can extract from {zn,m}n,m a topological countable vector basis of W p(·)(Ω).

3 Functional framework and weak formulation

In this section we present an adequate functional framework to define a weak formulation of problem (2) to
which we will prove existence of solution.

Let p : Q̄T −→ (1,∞) be a given function. We will use the notation p ∈ Clog(Q̄T ) if p satisfies the
log-continuity condition in the cylinder Q̄T :

∀ ζ1, ζ2 ∈ Q̄T , ζ1 = (x, t), ζ2 = (y, τ), |ζ1 − ζ2|2 = |x− y|2 + (t− τ)2 < 1,

|p(ζ1)− p(ζ2)| ≤ ω(|ζ1 − ζ2|), lim sup
s→0+

ω(s) log
1

s
= C. (14)

Throughout the rest of the text we use the notations

p− = min
ζ∈Q̄T

p(ζ), p+ = max
ζ∈Q̄T

p(ζ).

Let
X(QT ) =

{
v ∈ L2(QT ) : ∇×v ∈ Lp(·,·)(QT ), ∇·v = 0, v · n|Γ = 0

}
endowed with the norm

‖v‖X(QT ) = ‖v‖L2(QT ) + ‖∇×v‖Lp(·,·)(QT ).

Remark 3.1. Recall that, by Theorem 2.1, given v ∈X(QT ), we have, for a.e. t ∈ (0, T ),∫
Ω

|∇v(·, t)|p(·,t) ≤ C1

∫
Ω

|∇×v(·, t)|p(·,t),

where, setting p+(t) = sup
x∈Ω

p(x, t) and p−(t) = inf
x∈Ω

p(x, t), C1 is a positive constant depending only on p+(t),

p−(t) and Ω. Noticing that p− ≤ p−(t) ≤ p(x, t) ≤ p+(t) ≤ p+, the constant C1 can be chosen independent
of t.

Proposition 3.2. Let {ψn}n be a basis of W p(·)(Ω) defined as in Proposition 2.3. Then the set

V =

{
m∑
k=1

ζk(t)ψk(x) : ζk ∈ C 1([0, T ]),m ∈ N

}
is dense in X(QT ).
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Proof. We know that the set

Z =

{
m∑
k=1

µkψk : µk ∈ R, m ∈ N

}
is dense in W p(·)(Ω). On the other hand, the set

Y (QT ) =
{
α(t)ψ(x) : α ∈ C 1([0, T ]), ψ ∈W p(·)(Ω)

}
is dense in Lq

(
0, T ;W p(·)(Ω)

)
, for any 1 < q <∞. But, as

X(QT ) ⊆ Lmin{2,p−}(0, T ;W p(·)(Ω)
)
,

the conclusion follows.

We can now present a weak formulation of problem (2): to find h ∈X(QT )∩H1
(
0, T ;L2(Ω)

)
such that,

for a.e. t ∈ (0, T ),∫
Ω

∂th(t) ·ψ +

∫
Ω

|∇×h(t)|p(·,t)−2∇×h(t) · ∇×ψ =

∫
Ω

f(h(t)) ·ψ, ∀ψ ∈W p(·)(Ω), (15a)

h( · , 0) = h0. (15b)

Observe that, when h ∈X(QT )∩H
(
0, T ;L2(Ω)

)
then h ∈ C

(
[0, T ];L2(Ω)

)
and so h( · , 0) has a meaning.

4 The case λ ∈ {−1, 0} and 0 < σ ≤ 2

In this section we prove existence of global solutions of the problem (15), when f(h) = λh
( ∫

Ω
|h|2

)σ−2
2

for

λ ∈ {−1, 0}. We also study the finite time extinction or asymptotic vanishing in time of the solutions.

4.1 Existence of solution

Let {ψn}n be a basis of W p(·)(Ω) defined as in Proposition 2.3. Assume that

h0 ∈W 1,p(·,0)(Ω), (16)

and let hm0 be an approximation, in W 1,p(·,0)(Ω), of h0 such that hm0 ∈ 〈ψ1, . . . ,ψm〉. Setting

hm(t) =

m∑
i=1

ζmi (t)ψi,

then the system of ODE’s in the unknowns ζm1 , . . . , ζ
m
m ,∫

Ω

∂thm(t) ·ψi +

∫
Ω

|∇×hm(t)|p(·,t)−2∇×hm(t) · ∇×ψi

−λ
∫

Ω

hm(t) ·ψi
(∫

Ω

|hm(t)|2
)σ−2

2

= 0

hm( · , 0) = hm0

has a solution (ζm1 , . . . , ζ
m
m ) ∈ C 1

(
[0, T ]

)m
.

The above system is equivalent to∫
Ω

∂thm(t) ·ψ +

∫
Ω

|∇×hm(t)|p(·,t)−2∇×hm(t) · ∇×ψ

−λ
∫

Ω

hm(t) ·ψ
(∫

Ω

|hm(t)|2
)σ−2

2

= 0, ∀ψ ∈ 〈ψ1, . . .ψm〉 (17a)

hm( · , 0) = hm0. (17b)
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Proposition 4.1. Assume that 1 < p− ≤ p(·, ·) ≤ p+ <∞, p and h0 satisfy, respectively, (14) and (16). Let
hm be a solution of problem (17). Then there exists a positive constant, independent of m, such that

‖hm‖L∞(0,T ;L2(Ω)) ≤ C, ‖∇×hm‖Lp(·,·)(QT ) ≤ C. (18)

Proof. Observe that we can use hm(t) as a test function in (17), obtaining∫
Ω

∂thm(t) · hm(t) +

∫
Ω

|∇×hm(t)|p(·,t) − λ
(∫

Ω

|hm(t)|2
)σ

2

= 0.

Integrating the above equality between 0 and t and denoting Qt = Ω× (0, t), we get

1

2

∫
Ω

|hm(t)|2 +

∫
Qt

|∇×hm(τ)|p(·,τ)dτ − λ
∫ t

0

(∫
Ω

|hm(τ)|2
)σ

2

dτ =
1

2

∫
Ω

|hm0|2

and so

sup
0≤t≤T

∫
Ω

|hm(t)|2 + 2

∫
QT

|∇×hm|p(·,·) ≤
∫

Ω

|hm0|2,

which immediately yields the conclusion.

We will now prove that, under stronger assumptions on the function p(·, ·), the partial derivative of h with
respect to t belongs to L2(QT ).

Proposition 4.2. Assume that 1 < p− ≤ p(·, ·) ≤ p+ < ∞, p and h0 satisfy, respectively, (14) and (16),
and also that there exists a positive constant c such that −c ≤ ∂tp ≤ 0 a.e. in QT . Then∫

QT

|∂thm(t)|2 + sup
0≤t≤T

(∫
Ω

|∇×hm(t)|p(·,t)

p(·, t)
− λ

σ

(∫
Ω

|hm(t)|2
)σ

2

)
≤
∫

Ω

|∇×hm0|p(·,0)

p(·, 0)
− λ

σ

(∫
Ω

|hm0|2
)σ

2

+
c|Ω|T
(p−)2

. (19)

In particular,
‖∂thm‖L2(QT ) ≤ C. (20)

Proof. We may use ∂thm as test function in (17), obtaining∫
Ω

|∂thm(t)|2 +

∫
Ω

|∇×hm(t)|p(·,t)−2∇×hm(t) · ∇× ∂thm(t)−λ
∫

Ω

hm(t) · ∂thm(t)
(∫

Ω

|hm(t)|2
)σ−2

2

= 0

and so ∫
Ω

|∂thm(t)|2 +
d

dt

∫
Ω

|∇×hm(t)|p(·,t)

p(·, t)
− λ

σ

d

dt

(∫
Ω

|hm(t)|2
)σ

2

= I, (21)

where

I =

∫
Ω

|∇×hm|p(·,t)

p(·, t)2

(
− 1 + p(·, t) log |∇×hm(t)|

)
∂tp(·, t). (22)

We evaluate I by the following way:

I =

∫
Ω

|∇×hm(t)|p(·,t)

p(·, t)2

(
1− p(·, t) log |∇×hm(t)|

)
|∂tp(·, t)|

=

∫
Ω∩
{

1≥p(·,t) log |∇×hm(t)|
} |∇×hm(t)|p(·,t)

p(·, t)2

(
1− p(·, t) log |∇×hm(t)|

)
|∂tp(·, t)|

+

∫
Ω∩
{

1<p(·,t) log |∇×hm(t)|
} |∇×hm(t)|p(·,t)

p(·, t)2

(
1− p(·, t) log |∇×hm(t)|

)
|∂tp(·, t)|

≤
∫

Ω∩
{

1≥p(·,t) log |∇×hm(t)|
} |∇×hm(t)|p(·,t)

p(·, t)2

(
1− p(·, t) log |∇×hm(t)|

)
|∂tp(·, t)|.
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Next we use the following properties of the function F (η) = ηp(·,·)

p(·,·)2

(
1− p(·, ·) log η

)
, defined for 0 ≤ η ≤

e
1

p(·,·) ,

F (0) = F
(
e

1
p(·,·)

)
= 0, F ′(η) = −ηp(·,·)−1 log η, max

0≤η≤e
1

p(·,·)

F (η) = F (1) =
1

p(·, ·)2 ,

to conclude that

I ≤ c|Ω|
(p−)2

. (23)

Integrating equality (21) between 0 and t and using inequality (23), we prove (19). To prove (20) it is
enough to notice that, from inequality (6),∫

Ω

|∇×hm0|p(·,0)

p(·, 0)
≤ 1

p−
max

{
‖∇×hm0‖p

−

p(·,0), ‖∇×hm0‖p
+

p(·,0)

}
.

Theorem 4.3. Assume that 6
5 < p− ≤ p(·, ·) ≤ p+ < ∞, p and h0 satisfy (14) and (16), respectively, and

also that there exists a positive constant c such that −c ≤ ∂tp ≤ 0 a.e. in QT . Then problem (15) has a
solution h ∈X(QT ) ∩H1

(
0, T ;L2(Ω)

)
.

Besides, if σ ≥ 1, the solution is unique.

Proof. By the estimates (18) and (20), there exist G and h such that, at least for a subsequence, we have

∇×hm −−⇀
m→∞

G in Lp(·,·)(QT )-weak,

∂thm −−⇀
m→∞

∂th in L2(QT )-weak.

Let q = min{2, p−}. Recall that, by Remark 3.1, given v ∈X(QT ), we have∫
Ω

|∇v(·, t)|p(·,t) ≤ C1

∫
Ω

|∇×v(·, t)|p(·,t),

where C1 is a constant that can be chosen independently of t. Then, there exists a positive constant C such
that

‖v‖Lq(QT ) + ‖∇v‖Lq(QT ) ≤ C
(
‖v‖L2(QT ) + ‖∇×v‖Lp(·,·)(QT )

)
.

Then {hm}m is bounded in W 1,q(QT ) and this space is compactly included in Lq
∗
(QT ). Here q∗ is the

critical Sobolev exponent and it is greater than 2 because p− > 6
5 . So, at least for a subsequence, we have

hm −→
m→∞

h strongly in Lq
∗
(QT ) and hm(x, t) −→

m→∞
h(x, t) for a.e. (x, t) ∈ QT .

Moreover, observing that

d

dt

∫
Ω

|h(·, t)− hm(·, t)|2 = 2

∫
Ω

(
h(·, t)− hm(·, t)

)
·
(
∂th(·, t)− ∂thm(·, t)

)
,

we conclude that∫
Ω

|h(·, t)− hm(·, t)|2 ≤ 2

(∫
QT

|h− hm|2
) 1

2
(∫

QT

|∂th− ∂thm|2
) 1

2

+

∫
Ω

|h0 −h0m |2 −→
m→∞

0,

which proves the strong convergence of (hm)m to h in L∞
(
0, T ;L2(Ω)

)
.

For N ∈ N, let ϕ(t) =

N∑
k=1

dk(t)ψk. According to (17) we have

∫
Ω

∂thm(t) ·ϕ(t) +

∫
Ω

|∇×hm(·, t)|p(·,t)−2∇×hm(·, t) · ∇×ϕ(t)

− λ
∫

Ω

hm(·, t) ·ϕ(t)
(∫

Ω

|hm(·, t)|2
)σ−2

2

= 0. (24)
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Integrating the last equality with respect to t and passing to the limit as m→∞ for fixed N , we obtain∫
QT

∂th ·ϕ+

∫
QT

G · ∇×ϕ− λ
∫
QT

h ·ϕ
(∫

Ω

|h|2
)σ−2

2

= 0, (25)

first for ϕ =

N∑
k=1

dk(t)ψk and after, by density, for any ϕ ∈X(QT ).

Let A(v) = |∇×v|p(·,·)−2∇×v and recall that∫
QT

(
A(v)−A(w)

)
· ∇×(v −w) ≥ 0. (26)

We will now prove that∫
QT

G · ∇×ϕ = lim
m→∞

∫
QT

A(hm) · ∇×ϕ =

∫
QT

A(h) · ∇×ϕ.

Subtracting (25) with ϕ = h from (24), integrated in the interval [0, T ], with ϕ = hm, we derive

Jm +

∫
QT

(
|∇×hm|p(·,·) −G · ∇×h

)
= 0, (27)

where

Jm =

∫
QT

(
∂thm · hm − ∂th · h

)
− λ

((∫
QT

|hm|2
)σ

2 −
(∫

QT

|h|2
)σ

2

)
−→
m→∞

0.

Subtracting (27) from (26) with w = hm and passing to the limit as m→∞, we arrive at inequality

0 ≤
∫
QT

(
G−A(v)

)
· ∇×

(
h− v

)
. (28)

Choosing v = h− νw, where ν is a real positive number and w is any function in X(QT ), and substituting
it into (28), we have

0 ≤
∫
QT

(
G−A(h− νw)

)
· ∇×w.

Letting ν → 0 we obtain the inequality

0 ≤
∫
QT

(
G−A(h)

)
· ∇×w

and so G = A(h). Recalling that h ∈ H1(0, T ;L2(Ω)) then h ∈ C ([0, T ];L2(Ω)).
Setting q = min{p−, 2}, the set {hm}m is bounded in

Z =
{
v ∈ Lq

(
0, T ;W p−(Ω)

)
, ∂tv ∈ L2(QT )

}
and we will prove below that Z is compactly included in C

(
[0, T ];L2(Ω)

)
. Observe that∫

Ω

|hm(t+ δ)− hm(t)|q =

∫
Ω

∣∣∣∣∣
∫ t+δ

t

∂thm(τ) dτ

∣∣∣∣∣
q

≤
∫

Ω

δq−1

∫ t+δ

t

|∂thm(τ)|q dτ

≤ δq−1‖∂thm‖qLq(QT ) ≤ δ
qC.

We have W p−(Ω) ⊆ L2(Ω) ⊆ Lq(Ω), being the first inclusion compact because p− > 6
5 . On the other

hand {hm}m is a bounded subset of Lq
(
0, T ;W p−(Ω)

)
and, denoting τδ(f(t)) = f(t+ δ), we have

‖τδ(hm)− hm‖L∞(0,T−δ;Lq(Ω)) = sup
t∈[0,T−δ]

∫
Ω

|hm(t+ δ)− hm(t)|q −→
δ→0

0.
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Then, by [8, Theorem 5], {hm}m is compactly included in C
(
[0, T ];L2(Ω)

)
. So, at least for a subsequence,

we have hm →
m→∞

h in C ([0, T ];L2(Ω)) and, in particular, h(0) = lim
m
hm(0) = lim

m
hm0 = h0.

This concludes the proof that h solves the problem (15).
To prove the uniqueness of solution in the case σ ≥ 1, we follow the steps in [1]. The proof in the case

λ = 0 is immediate. Let λ = −1 and h1 and h2 be two solutions of (15). Use h1 − h2 as test function in
the problem solved by h1 and by h2. Then we get, after subtraction,

1

2

∫
Ω

|h1(t)− h2(t)|2 +

∫
Qt

(
|∇×h1|p(·,·)−2∇×h1 − |∇×h2|p(·,·)−2∇×h2

)
· ∇×(h1 − h2)

+

∫ t

0

(∫
Ω

|h1|2
)σ−2

2
(∫

Ω

h1 · (h1 − h2)
)
−
∫ t

0

(∫
Ω

|h2|2
)σ−2

2
(∫

Ω

h2 · (h1 − h2)
)

= 0.

Recalling (26), we get

1

2

∫
Ω

|h1(t)−h2(t)|2 +

∫ t

0

(∫
Ω

|h1|2
)σ−2

2
(∫

Ω

h1 · (h1−h2)
)
−
∫ t

0

(∫
Ω

|h2|2
)σ−2

2
(∫

Ω

h2 · (h1−h2)
)
≤ 0.

Calling y1(t) =

∫
Ω

|h1(t)|2 and y2(t) =

∫
Ω

|h2(t)|2, we have, for σ ≥ 1,

0 ≥
∫ t

0

(∫
Ω

|h1|2
)σ−2

2
(∫

Ω

h1 · (h1 − h2)
)
−
∫ t

0

(∫
Ω

|h2|2
)σ−2

2
(∫

Ω

h2 · (h1 − h2)
)

≥
∫ t

0

(
y
σ
2
1 + y

σ
2
2 − y

σ−1
2

1 y
1
2
2 − y

σ−1
2

2 y
1
2
1

)
=

∫ t

0

(
y
σ−1

2
1 − y

σ−1
2

2

)(
y

1
2
1 − y

1
2
2

)
≥ 0,

and the above inequality implies that y1(t) = y2(t) = 0 for a.e. t ∈ (0, T ) and∫ t

0

(∫
Ω

|h1|2
)σ−2

2
(∫

Ω

h1 · (h1 − h2)
)
−
∫ t

0

(∫
Ω

|h2|2
)σ−2

2
(∫

Ω

h2 · (h1 − h2)
)

= 0.

Consequently,
1

2

∫
Ω

|h1(t)− h2(t)|2 ≤ 0,

which implies that h1 = h2 a.e. in QT .

4.2 Finite time extinction and asymptotic behavior

We are going to study now the finite time extinction or stabilization in time, towards zero, of the solutions of
problem (15), depending on the choice of the parameters λ and σ.

Theorem 4.4. Let h be a solution of problem (15) with 1 < p(·, ·) <∞, λ = −1, 0 < σ < 2 and h0 ∈ L2(Ω).

Then there exists a positive t∗ = 1
2−σ ‖h0‖2−σL2(Ω) such that, for t ≥ t∗, we have ‖h(t)‖L2(Ω) = 0.

Proof. Observing that a solution h of problem (15) satisfies

1

2

d

dt

∫
Ω

|h(t)|2 +

∫
Ω

|∇×h(t)|p(·,t) +
(∫

Ω

|h(t)|2
)σ

2

= 0, (29)

denoting

Y (t) =

∫
Ω

|h(t)|2 = ‖h(t)‖2L2(Ω)

we obtain that Y satisfies the differential inequality

Y ′(t) + 2Y (t)
σ
2 ≤ 0

and so

‖h(t)‖L2(Ω) = 0 ∀t ≥ 1

2− σ

(∫
Ω

|h0|2
) 2−σ

2

.
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Remark 4.5. Notice that, according to (29), we derive, for the limit case σ = 2 and also for σ > 2, the
asymptotic extinction of the solution when t→∞. In fact, using the above notation,

• if σ = 2,
Y (t) ≤ Y (0)e−2t;

• if σ > 2, we have

Y (t) ≤ Y (0)(
1 + t(σ − 2)Y (0)

σ−2
2

) 2
σ−2

.

Now we are going to investigate the asymptotic behavior of h(t) with respect to t, where h solves problem
(15) when the term f(h) is absent, i.e., λ = 0.

Theorem 4.6. Let h be a solution of problem (15) with 1 < p(·, ·) ≤ p+ < 2, λ = 0 and h0 ∈ L2(Ω). Then
there exists a positive t∗ <∞ such that ‖h(t)‖L2(Ω) = 0 for t ≥ t∗.

Proof. Taking into account the first estimate in (18) we can assume, without loss of generality, that ‖h(t)‖L2(Ω) ≤
1. Using the energy relation

1

2

d

dt

∫
Ω

|h(t)|2 +

∫
Ω

|∇×h(t)|p(·,t) = 0,

(6) and (13), we can write, for any fixed t,

‖h(t)‖L2(Ω) ≤ C max

((∫
Ω

|∇×h(t)|p(·,t)
) 1

p−

,

(∫
Ω

|∇×h(t)|p(·,t)
) 1

p+

)
and so

‖h(t)‖p
+

L2(Ω)
= min

(
‖h(t)‖p

−

L2(Ω)
, ‖h(t)‖p

+

L2(Ω)

)
≤ C

∫
Ω

|∇×h(t)|p(·,t).

Setting Y (t) = ‖h(t)‖2
L2(Ω)

, the last inequality and the energy relation lead us to the following ordinary

differential inequality

Y ′(t) + CY (t)
p+

2 ≤ 0, (30)

which gives

Y (t)
2−p+

2 ≤ Y (0)
2−p+

2 − 2− p+

2
Ct.

This completes the proof with t∗ = 2
C(2−p+)‖h0‖2−p

+

L2(Ω)
.

Now we consider a limit situation when

1 < p(·, ·) ≤ sup
x∈Ω

p(x, t) = p+(t) ≤ 2 and p+(t)↗ 2 as t→∞. (31)

Theorem 4.7. Let h be a solution of problem (15) with p(·, ·) satisfying (31), λ = 0 and h0 ∈ L2(Ω).
Assume that the exponent p+(t) is monotone increasing and∫ ∞

0

dt

e
t
2 (2−p+(t))

<∞. (32)

Then there exists a positive t∗ <∞ such that ‖h(t)‖L2(Ω) = 0 for t ≥ t∗.

The proof of this theorem will use the following lemma.

Lemma 4.8 ([4, Lemma 6.7] and [2, Lemma 9.1]). Let a nonnegative function Θ(t) satisfy the conditions{
Θ′(t) + CΘµ(t)(t) ≤ 0 for a.e. t ≥ 0 with µ(t) ∈ (0, 1) and C a positive constant

Θ(t) ≤ Θ(0) <∞, Θ(0) > 0
.

If the exponent µ(t) is monotone increasing, then Θ(t) ≡ 0 for all t ≥ t∗ with t∗ defined from the equality

C

∫ t∗

0

Θµ(s)−1(0) ds =

∫ ∞
0

dz

ez(1−µ(z))
.
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We present now the proof of Theorem 4.7.

Proof of Theorem 4.7. Applying Lemma 4.8 to the inequality (30) we derive

C

∫ t∗

0

‖h0‖p
+(s)−2

L2(Ω)
ds =

∫ ∞
0

dt

e
t
2 (2−p+(t))

<∞.

It follows that there exists a positive t∗ <∞ such that ‖h(t)‖L2(Ω) = 0 for t ≥ t∗.

Remark 4.9. A simple example of an exponent p+(t) = sup
x∈Ω

p(x, t) satisfying the conditions of the Theorem 4.7

is

p+(t) = 2
(

1− α log t

t

)
, 1 < α, e ≤ t.

5 The case λ = 1 and σ ≥ 1

In this section we prove existence of global or local solutions of the problem (15), for f(h) = h
( ∫

Ω
|h|2

)σ−2
2

and σ ≥ 1. We also study the blow-up of local solutions.

5.1 Existence of solution

We consider, as in Subsection 4.1, a basis {ψn}n of W p(·)(Ω), defined as in Proposition 2.3. Assuming that

h0 satisfies (16) let hm0 be an approximation, in W 1,p(·,0)(Ω), of h0 such that hm0 ∈ 〈ψ1, . . . ,ψm〉.
Denoting

hm(t) =

m∑
i=1

ζmi (t)ψi,

then the system of ODE’s in the unknowns ζm1 , . . . , ζ
m
m ,∫

Ω

∂thm(t) ·ψi +

∫
Ω

|∇×hm(t)|p(·,t)−2∇×hm(t) · ∇×ψi =

∫
Ω

hm(t) ·ψi

(∫
Ω

|hm(t)|2
)σ−2

2

hm( · , 0) = hm0

has a solution (ζm1 , . . . , ζ
m
m ) ∈ C 1

(
[0, T ]

)m
.

This problem is equivalent to the following problem∫
Ω

∂thm(t) ·ψ +

∫
Ω

|∇×hm(t)|p(·,t)−2∇×hm(t) · ∇×ψ

=

∫
Ω

hm(t) ·ψi

(∫
Ω

|hm(t)|2
)σ−2

2

, ∀ψ ∈ 〈ψ1, . . .ψm〉 (33a)

hm( · , 0) = hm0. (33b)

Theorem 5.1. Assume that 6
5 < p− ≤ p(·, ·) ≤ p+ < ∞, p and h0 satisfy (14) and (16), respectively.

Assume, in addition, that there exists a positive constant c such that −c ≤ ∂tp ≤ 0 a.e. in QT .

1. If

1 ≤ σ ≤ max{2, p−} (34)

then problem (15) has a solution h ∈X(QT ) ∩H1
(
0, T ;L2(Ω)

)
for any positive T .

2. If

σ > max{2, p+} (35)

then problem (15) has a solution h ∈X(QT ) ∩H1
(
0, T ;L2(Ω)

)
for a small Tmax > 0.
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Proof. First of all we derive a priori estimates, independent of m, for the approximations hm. These estimates
will be global, for any finite T , in (34) and local, for a small Tmax > 0, in (35).

We start by proving that, in item 1, for any finite T there exists a positive constant C such that

‖hm‖L∞(0,T ;L2(Ω)) +

∫
QT

|∇×hm|p(·,·) ≤ C, (36)∫
QT

|∂thm|2 + sup
0≤t≤T

∫
Ω

|∇×hm(t)|p(·,t) ≤ C. (37)

Using hm(t) as test function in (33), we obtain

1

2

d

dt

∫
Ω

|hm(t)|2 +

∫
Ω

|∇×hm(t)|p(·,t) =

(∫
Ω

|hm(t)|2
)σ

2

. (38)

We split now the proof of the estimate (36) in two cases: 1 ≤ σ ≤ 2 and 2 < σ < p−.

• The case 1 ≤ σ ≤ 2

The function Y (t) =

∫
Ω

|hm(t)|2 satisfies the inequality Y ′(t) ≤ 2Y (t)
σ
2 . So

(∫
Ω

|hm(t)|2
) 2−σ

2 ≤ (2− σ)t+
(∫

Ω

|hm0(t)|2
) 2−σ

2

, if σ < 2,

and ∫
Ω

|hm(t)|2 ≤ e2T

∫
Ω

|hm0(t)|2, if σ = 2,

and the estimate (36) is immediately obtained.

• The case 2 < σ < p−

According to the formula (13) of Remark 2.2 and the inequalities (6), for any fixed t ∈ [0, T ], we have
that (∫

Ω

|hm(t)|2
)σ

2

≤ C ‖∇×hm(t)‖σLp(·,t)(Ω)

≤


C

(∫
Ω

|∇×hm(t)|p(·,t)
) σ

p−

, if

∫
Ω

|∇×hm(t)|p(·,t) > 1

C

(∫
Ω

|∇×hm(t)|p(·,t)
) σ

p+

, if

∫
Ω

|∇×hm(t)|p(·,t) ≤ 1

.

Taking into account that σ < p− ≤ p+ and applying Young inequality, we obtain(∫
Ω

|hm(t)|2
)σ

2

≤ 1

2

∫
Ω

|∇×hm(t)|p(·,t) + C ′.

Substituting the last estimate in (38) and integrating with respect to t, we conclude the proof of the
estimate (36).

Now we derive the estimate (37). Using ∂thm as test function in (33) we obtain∫
Ω

|∂thm(t)|2 +
d

dt

∫
Ω

|∇×hm(t)|p(·,t)

p(·, t)
= I +

d

dt

1

σ

(∫
Ω

|hm(t)|2
)σ

2

,

where I is defined in (22) and can be estimated, as in (23), by |I| ≤ c
(p−)2 |Ω|. Integrating between 0 and t,

we have∫
Qt

|∂thm|2 +

∫
Ω

|∇×hm(t)|p(·,t)

p(·, t)
≤
∫

Ω

|∇×hm0|p(·,0)

p(·, 0)
+

c

(p−)2
|Ω|T

+
1

σ

(∫
Ω

|hm(t)|2
)σ

2

− 1

σ

(∫
Ω

|hm0|2
)σ

2

. (39)
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Applying the estimate in (36) for ‖hm‖L∞(0,T ;L2(Ω)), we obtain estimate (37).
Now we derive local estimates (36) and (37), for T > 0 small enough, in the case of item 2.
Assuming that

t < Tmax =
1

(σ − 2)‖h0‖σ−2
L2(Ω)

,

it follows from (38) that

∫
Ω

|hm(t)|2 ≤

(
1− t(σ − 2)

(∫
Ω

|hm0|2
)σ−2

2

) 2
2−σ ∫

Ω

|hm0|2

and we obtain the estimate (36).
Substituting the last estimate in (39) we obtain (37) for t < Tmax. To conclude the proof of the existence

of global solution, in the case (34), and local solution, in the case (35), we only need to argue as in the last
part of the proof of Theorem 4.3.

5.2 Blow-up

In this subsection, following some ideas of paper [3], we study the blow-up of local solutions of problem (15).
We consider first the case where p depends only on x and afterwards on (x, t).

Theorem 5.2. Let h be a solution of problem (15) with 1 < p(·) < ∞, λ = 1 and h0 ∈ L2(Ω). Suppose
that

E(0) =

∫
Ω

|∇×h0|p(·)

p(·)
− 1

σ

(∫
Ω

|h0|2
)σ

2

≤ 0

and σ > max{2, p+}.
Then, if µ ∈ ( 1

σ ,
1
p+ ), the solutions of problem (15) blow up on the interval (0, tmax), where

tmax =
µσ

(σ − 2)(µσ − 1)‖h0‖σ−2
L2(Ω)

.

Proof. Let

E(t) =

∫
Ω

|∇×h(t)|p(·)

p(·)
− 1

σ

(∫
Ω

|h(t)|2
)σ

2

.

Using ∂th(t) as test function in (15), we obtain∫
Ω

|∂th(t)|2 + ∂t

∫
Ω

|∇×h(t)|p(·)

p(·)
=

1

σ
∂t

(∫
Ω

|h(t)|2
)σ

2

and so ∫
Qt

|∂th|2 +

∫
Ω

|∇×h(t)|p(·)

p(·)
=

1

σ

(∫
Ω

|h(t)|2
)σ

2 − 1

σ

(∫
Ω

|h0|2
)σ

2

+

∫
Ω

|∇×h0|p(·)

p(·)
i.e.

E(t) +

∫
Qt

|∂th|2 = E(0). (40)

Setting

F (t) =
1

2

∫
Qt

|h|2,

we have

F ′(t) =
1

2

∫
Ω

|h(t)|2 and F ′′(t) =

∫
Ω

∂th(t) · h(t).

Using now h(t) as test function in (15), we get

F ′′(t) +

∫
Ω

|∇×h(t)|p(·) =
(∫

Ω

|h(t)|2
)σ

2

.
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Recalling the definition of E(t) and (40) we have, for any µ,

µF ′′(t) ≥ E(t)+µ

((∫
Ω

|h(t)|2
)σ

2 −
∫

Ω

|∇×h(t)|p(·)
)
≥
( 1

p+
−µ
)∫

Ω

|∇×h(t)|p(·)+
(
µ− 1

σ

)(∫
Ω

|h(t)|2
)σ

2

.

So, for 1
σ < µ < 1

p+ ,

µF ′′(t) ≥
(
µ− 1

σ

)
2
σ
2 F ′(t)

σ
2

and consequently ∫
Ω

|h(t)|2 ≥ 1(
µσ−1
µσ (2− σ)t+ ‖h0‖2−σL2(Ω)

) 2
σ−2

for

t < tmax =
µσ

(σ − 2)(µσ − 1)‖h0‖σ−2
L2(Ω)

, (41)

concluding the proof.

Theorem 5.3. Let h be a solution of problem (15) with 1 < p(·, ·) <∞, −c ≤ ∂tp ≤ 0 a.e. in QT , where c
is a positive constant, λ = 1 and h0 ∈ L2(Ω). Suppose that

E(0) =

∫
Ω

|∇×h0|p(·,0)

p(·, 0)
− 1

σ

(∫
Ω

|h0|2
)σ

2

< 0,

σ > max{2, p+} and c small enough such that tmax <
|E(0)|(p−)2

|Ω|c
, for tmax defined in (41). Then any

solution of problem (15) blows up when t↗ tmax.

Proof. Using ∂th(t) as test function in (15) and recalling that p depends now on (x, t), following the calcu-
lations done in the proof of Proposition 4.2, we obtain∫

Ω

|∂th(t)|2 + ∂t

∫
Ω

|∇×h(t)|p(·,t)

p(·, t)
= I +

1

σ
∂t

(∫
Ω

|h(t)|2
)σ

2

,

where

I =

∫
Ω

|∇×h(t)|p(·,t)

p(·, t)2

(
− 1 + p(·, t) log |∇×h(t)|

)
∂tp(·, t).

Integrating between 0 and t, we have∫
Qt

|∂th|2 +

∫
Ω

|∇×h(t)|p(·,t)

p(·, t)
=

∫ t

0

I +

∫
Ω

|∇×h0|p(·,0)

p(·, 0)
+

1

σ

(∫
Ω

|h(t)|2
)σ

2 − 1

σ

(∫
Ω

|h0|2
)σ

2

.

Setting

E(t) =

∫
Ω

|∇×h(t)|p(·,t)

p(·, t)
− 1

σ

(∫
Ω

|h(t)|2
)σ

2

,

we conclude that

E(t) +

∫
Qt

|∂th|2 = E(0) +

∫ t

0

I(τ)dτ.

But, from (23), we know that I ≤ c |Ω|
(p−)2 . So, choosing t0 small enough, we have

∀ t ≤ t0 E(0) +

∫ t

0

I ≤ 0

and we conclude the proof as in the previous theorem.
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