
PREMER: parallel reverse engineering of
biological networks with information theory

Alejandro F. Villaverde1,2,4, Kolja Becker3, and Julio R. Banga4

1 Department of Systems & Control Engineering, University of Vigo, Galiza, Spain
2 Centre for Biological Engineering, University of Minho, Braga, Portugal

3 Modelling of Biological Networks, Institute of Molecular Biology gGmbH, Mainz,
Germany

4 Bioprocess Engineering Group, Instituto de Investigacións Mariñas (IIM-CSIC),
Vigo, Galiza, Spain

afvillaverde@iim.csic.es

Abstract. A common approach for reverse engineering biological net-
works from data is to deduce the existence of interactions among nodes
from information theoretic measures. Estimating these quantities in a
multidimensional space is computationally demanding for large datasets.
This hampers the application of elaborate algorithms – which are crucial
for discarding spurious interactions and determining causal relationships
– to large-scale network inference problems. To alleviate this issue we
have developed PREMER, a software tool which can automatically run
in parallel and sequential environments, thanks to its implementation
of OpenMP directives. It recovers network topology and estimates the
strength and causality of interactions using information theoretic criteria,
and allowing the incorporation of prior knowledge. A preprocessing mod-
ule takes care of imputing missing data and correcting outliers if needed.
PREMER (https://sites.google.com/site/premertoolbox/) runs on
Windows, Linux and OSX, it is implemented in Matlab/Octave and For-
tran 90, and it does not require any commercial software.

Keywords: Network inference, Information theory, Parallel computing

1 Introduction

Many biological systems can be meaningfully represented as networks, that is,
as a set of nodes (variables) connected by links (interactions). In the context of
cellular networks the nodes are molecular entities such as genes, transcription
factors, proteins, metabolites, and so on [7]. The network inference problem con-
sists of learning the interconnection structure of the nodes, using as data the
values of the variables (e.g. their expression levels or concentrations) at different
situations and/or time instants. The concept of mutual information [12] can be
used as a statistical measure for estimating the strength of the (possibly non-
linear) relations among nodes from a dataset. Indirect interactions, which take
place when an entity A exerts an influence in C by means of an intermediate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55641105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

entity B (i.e. A → B → C), are difficult to detect, because a spurious interaction
may be deduced (not only A → B and B → C, but also A → C). The difficulty
of discriminating between them increases when dealing with higher-order inter-
actions, involving four or more entities. Although a few methods can cope with
this issue, their application to large-scale problems is computationally costly [6],
especially when dealing with time-series data. One such method, MIDER [13], is
a general purpose network inference tool which takes into account time delays.
It distinguishes between direct and indirect interactions using entropy reduction
[9] and assigns directionality to the predicted links using transfer entropy [11]. It
is implemented in Matlab, a widely used programming environment which nev-
ertheless has some drawbacks, mainly (i) the need of buying commercial licenses,
and (ii) low computational efficiency compared to other languages.

Here we present PREMER (Parallel Reverse Engineering with Mutual infor-
mation & Entropy Reduction), a tool that overcomes these issues. It includes an
advanced Fortran 90 implementation of the MIDER procedures, which allows for
faster computations than Matlab. Additionally, the use of OpenMP directives
enable it to run seamlessly in parallel environments, thus allowing for further
speedups in performance. Results obtained on different datasets show that PRE-
MER can be orders of magnitude faster than MIDER. Additionally, PREMER’s
Matlab code is fully compatible with the free Octave environment. Furthermore,
PREMER offers two important additional capabilities. One is the ability to take
prior knowledge into account, allowing to specify if a particular interaction is
known to be non-existent. This is of particular importance in applications such
as gene regulatory network (GRN) inference, where only a subset of the genes —
the transcription factors, TFs — can regulate other genes. The second one is the
ability to handle datasets with missing values and/or outliers, using statistical
techniques to impute new values which are coherent with the latent structure of
the data. PREMER’s work-flow is depicted in Figure 2. More details about the
methodology are given in the supplementary information (user’s manual).

2 Implementation and availability

PREMER is provided as a set of Matlab/Octave scripts and an executable file
which carries out the core computations. It has a number of options, which can
be tuned by editing the main file, runPremer. Executable files are provided for
Windows, Linux and OSX, and also as source code in Fortran (F90), which can
be compiled to run on any operating system. The executable can also be invoked
from the command line, thus avoiding the need for Matlab/Octave. A key feature
of PREMER is its ability to run sequentially or in parallel. Parallelization has
been implemented using OpenMP directives [3] and is entirely transparent to the
user, who only needs to specify the number of threads in the main file. Mutual
information and multidimensional entropies are estimated using an adaptive
partitioning algorithm inspired in [2]. The PREMER toolbox is released under
the free and open source GNU GPLv3. It is available at https://sites.google.
com/site/premertoolbox/. Its use does not require any commercial software.

Experiments

UNKNOWN
NETWORK

PREMER INPUT
Time-series / static
dataset (possibly

incomplete)
+

(OPTIONAL)
Prior knowledge

about nonexistent
interactions

X(t1), X(t2), …, X(tn)
Y(t1), ERROR, …, Y(tn)
W(t1), W(t2), …, W(tn

Z(t1), Z(t2),…, Z(tn)

PREMER OUTPUT
Prediction of the

network structure,
with estimates of
• Links
• Direction
• Strength

X
?

?

?

?
?

Time-lagged multi-dimensional entropies & mutual information
H(*), H(*,*), H(*,*,*), H(*,*,*,*), I(*,*)

Distance map
d(*,*)

Conditional entropies
H(*|*), H(*|*,*), H(*|*,*,*)

Transfer entropies
TXY, TYX,…

Connection array (links, strength)
C(*,*)

Y

Z

W

X

Y

Z

W X

Y

Z

W

X

Y

Z

W

X(t1), X(t2), …, X(tn)
Y(t1), Y(t2), …, Y(tn)

W(t1), W(t2), …, W(tn)
Z(t1), Z(t2),…, Z(tn)

Data
curation

Fig. 1. Work-flow of the PREMER algorithm. First, a data curation module imputes
missing data [4] and detects and corrects outliers, thus allowing the use of faulty
datasets. Then PREMER calculates the distance between every possible pair of vari-
ables d(X,Y) for several time delays. To this end it estimates the entropies of all vari-
ables H(∗), as well as the joint entropies H(∗, ∗) and the mutual information I(∗, ∗)
of all pairs of variables. The user can choose to estimate also the multi-dimensional
joint entropies of 3 and 4 variables (H(∗, ∗, ∗), H(∗, ∗, ∗, ∗)), in order to use them in
the subsequent entropy reduction step. The aim of this step is to determine whether
all the variation in a variable Y can be explained by the variation in another variable
X or, more generally, in a set of variables X [9]. By iterating through cycles of adding
a variable X that reduces H(Y |X,X) until no further reductions are obtained, the
entropy reduction step yields the complete set of variables that control the variation
in Y . Finally, directions are assigned to the links using transfer entropy, TX→Y , a non-
symmetric measure of causality [11] calculated from time-lagged conditional entropies.

3 Selected Experimental Results

We tested PREMER on the same set of seven benchmark problems that was
used for assessing the performance of MIDER. It has been shown elsewhere [13]
that MIDER performs well compared with other state-of-the-art methods in
terms of precision and recall of the inferred networks. We found that PREMER
predicts the same networks as MIDER (in examples without missing data or
prior information) achieving large reductions in computation times, as shown in
Fig. 2. Panel A plots the accelerations obtained with PREMER’s sequential im-
plementation (i.e. using only one processor) with respect to MIDER. The most
computationally costly problems give rise to the largest speed-ups: for exam-
ple, for benchmark B7 with 3 entropy reduction rounds the computation time
decreases from 42 hours to roughly 1.5 hours. This improvement is obtained
using a single processor; additional speed-ups can be achieved in a parallel en-
vironment, as shown in panel B. The combined effect of code acceleration and
parallel speed-up results in very significant reductions in computation time. For
example, using a current 12-core desktop PC (hardware detailed in the caption
of Fig. 2), PREMER runs up to 170 times faster than MIDER.

By going through several entropy reduction rounds it is possible to discover
additional links, but in this process errors may appear: since the accuracy of
every network inference method is limited by the information content of the
data, some of the extra links can in fact be false positives. Therefore in many

10
−2

10
0

10
2

10
4

10
6

0

5

10

15

20

25

30

Wall clock time in seconds (log scale)

S
pe

ed
up

A
PREMER vs. MIDER: acceleration

B7
B6
B5
B4
B3
B2
B1

1 3 5 7 9 11
0

5

10

15

20

S
pe

ed
up

B
Parallel vs. sequential F90: speedups & efficiency

1 3 5 7 9 11
0

0.25

0.5

0.75

1

E
ffi

ci
en

cy

Number of processors

Speedup
Ideal (linear) speedup
Efficiency
Ideal efficiency (=1)

Fig. 2. [A]: Accelerations achieved by PREMER w.r.t. MIDER, for benchmarks B1–
B7 of [13]. For every benchmark three points are plotted, depending on the number
of entropy reduction rounds performed: 1, 2, or 3. [B]: Speed-up and efficiency of
the parallel vs sequential versions of PREMER (benchmark B7, 3 entropy reduction
rounds). Results obtained in a multi-core PC running Windows 7 64-bit with 16 GB
RAM and 12 cores, 2 processors/core, Intel Xeon 2.30 GHz.

cases there is a trade-off between precision and recall: increasing the number of
entropy reduction rounds leads to increased recall and decreased precision, and
vice versa. Table 1 shows this trade-off for the average of the seven benchmark
problems considered in [13].

Table 1. Trade-offs between precision and recall for different numbers of entropy re-
duction rounds. The values shown are the averages of the seven benchmark problems
(B1–B7) considered in [13].

Entropy reduction rounds 1 2 3

Average precision (B1–B7) 0.7676 0.6958 0.6311
Average recall (B1–B7) 0.5267 0.5676 0.5819

Finally, we illustrate the performance improvement that can be obtained by
taking prior knowledge into account. With this aim we create a benchmark net-
work with GeneNetWeaver [10] consisting of 18 genes, out of which only 11 are
considered transcription factors, and we generate time course data of the expres-
sion of each gene at 24 different time points. We evaluate the performance of
PREMER using two different modes of including information (removing inter-
actions a priori or a posteriori) and we compare it to other network inference
methods such as ARACNE, CLR, MRNET, MRNET Backward (MRNETB)
(available in the R package MINET [8]), Inferelator [1], and GENIE3 [5]. We re-
port the corresponding values of AUROC (Area Under Receiver Operating Char-
acteristic) and AUPR (Area Under the Precision-Recall curve) of each method

in Fig. 3.e–f. In panel (e) the set of regulators is assumed to be unknown (no
prior knowledge), and consequently none of the interactions can be excluded.
Among all the methods, PREMER achieves the highest score in both AUROC
and AUPR. Panel (f) shows that the performance of all methods increases when
prior knowledge is taken into account. Since the methods in the MINET package
do not allow for excluding interactions a priori, they are evaluated by removing
these interactions a posteriori. As for PREMER, in order to show the difference
between both options we test both PREMER (post) and PREMER (prior),
in which the interactions known to be non-existent are removed respectively a
posteriori and a priori. It can be seen that excluding interactions a posteriori al-
ready increases the performance of all methods. However, excluding interactions
a priori results in a further improvement of PREMER, as shown by the fact
that PREMER (prior) is outperforming PREMER (post), where interactions
are removed a posteriori, both in terms of AUROC and AUPR (Fig. 3.f).

Therefore, we conclude that (i) removing interactions based on prior knowl-
edge is a way of increasing the performance of network inference methods, and
that (ii) the improvement is bigger if this information is incorporated before
network inference (a priori) instead of as a post-processing step (a posteriori).
This is the solution adopted in PREMER.

4 Conclusions

PREMER is an open-source, multi-platform network inference tool based on in-
formation theory. It predicts the existence of network links, estimates their rela-
tive strength and direction, and provides a visual representation of the inferred
system. It can take prior knowledge about the non-existence of specific interac-
tions into account, which improves the quality of the network reconstructions.
It also features a data preprocessing step which enables the use of datasets with
missing values and/or outliers. PREMER is freely available as a Matlab/Octave
toolbox. Core computations are performed in F90, achieving large speed-ups
which can be increased further if working on a parallel environment. PREMER
is geared towards ease of use, requiring minimum input from the user.

Acknowledgements

AFV acknowledges funding from the Galician government (Xunta de Galiza)
through the I2C fellowship ED481B2014/133-0. KB was supported by the Ger-
man Federal Ministry of Research and Education (BMBF, OncoPath consor-
tium). JRB acknowledges funding from the Spanish government (MINECO) and
the European Regional Development Fund (ERDF) through the project “SYN-
BIOFACTORY” (grant number DPI2014-55276-C5-2-R). This project has re-
ceived funding from the European Unions Horizon 2020 research and innovation
programme under grant agreement No 686282 (CanPathPro). We thank David
R. Penas and David Henriques for assistance with the implementation.

re
g
u
la
to
rs

e
ff
e
c
to
rs

a) b)

c) d)

e) f)

Fig. 3. Incorporating prior knowledge into network inference algorithms: a) Reasoning
behind excluding interactions from gene regulatory networks. Only transcription fac-
tors effectively serve as regulators in the network, hence interactions from the effector
genes to transcription factors or to other effectors can be excluded. b) Regulatory inter-
action matrix returned by PREMER without incorporating prior knowledge. The heat
map scale represents the strength of the predicted interaction (0 = no interaction, 1
= strongly predicted interaction). c) Regulatory interaction matrix returned by PRE-
MER incorporating prior knowledge by removing excluded interactions a posteriori. d)
Regulatory interaction matrix returned by PREMER incorporating prior knowledge by
removing excluded interactions a priori. e) Comparison of several network inference
methods without incorporating prior knowledge. f) Comparison of network inference
methods incorporating prior knowledge either a posteriori (post) or a priori (prior).
In (e) and (f) horizontal dashed lines indicate the theoretical performance of a random
classifier.

References

1. R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and
V. Thorsson. The inferelator: an algorithm for learning parsimonious regulatory
networks from systems-biology data sets de novo. Genome Biol, 7(5):R36, 2006.

2. C. Cellucci, A. Albano, and P. Rapp. Statistical validation of mutual information
calculations: comparison of alternative numerical algorithms. Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 71(6):066208, 2005.

3. L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng., 5(1):46–55, 1998.

4. A. Folch-Fortuny, A. F. Villaverde, A. Ferrer, and J. R. Banga. Enabling network
inference methods to handle missing data and outliers. BMC Bioinform., 16(1):
283, 2015.

5. V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, Y. Saeys, and P. Geurts. Inferring
regulatory networks from expression data using tree-based methods. PLOS ONE,
5(9):e12776, 2010.

6. I. Jang, A. Margolin, and A. Califano. hARACNe: improving the accuracy of
regulatory model reverse engineering via higher-order data processing inequality
tests. Interface Focus, 3(4):20130011, 2013.

7. N. Le Novère. Quantitative and logic modelling of molecular and gene networks.
Nature Reviews Genetics, 2015.

8. P. Meyer, F. Lafitte, and G. Bontempi. MINET: A R/Bioconductor package for in-
ferring large transcriptional networks using mutual information. BMC Bioinform.,
9(1):461, 2008.

9. M. Samoilov, A. Arkin, and J. Ross. On the deduction of chemical reaction path-
ways from measurements of time series of concentrations. Chaos, 11(1):108–114,
2001.

10. T. Schaffter, D. Marbach, and D. Floreano. GeneNetWeaver: in silico benchmark
generation and performance profiling of network inference methods. Bioinformat-
ics, 27(16):2263–2270, 2011.

11. T. Schreiber. Measuring information transfer. Phys. Rev. Lett., 85(2):461, 2000.
12. C. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423, 1948.
13. A. F. Villaverde, J. Ross, F. Morán, and J. R. Banga. MIDER: network inference

with mutual information distance and entropy reduction. PLOS ONE, 9(5):e96732,
2014.

