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a b s t r a c t

Curcumin and caffeine (used as lipophilic and hydrophilic model compounds, respectively) were suc-
cessfully encapsulated in lactoferrin-glycomacropeptide (Lf-GMP) nanohydrogels by thermal gelation
showing high encapsulation efficiencies (>90%). FTIR spectroscopy confirmed the encapsulation of
bioactive compounds in Lf-GMP nanohydrogels and revealed that according to the encapsulated com-
pound different interactions occur with the nanohydrogel matrix. The successful encapsulation of
bioactive compounds in Lf-GMP nanohydrogels was also confirmed by fluorescence measurements and
confocal laser scanning microscopy. TEM images showed that loaded nanohydrogels maintain their
spherical shape with sizes of 112 and 126 nm for curcumin and caffeine encapsulated in Lf-GMP
nanohydrogels, respectively; in both cases a polydispersity of 0.2 was obtained.

The release mechanisms of bioactive compounds through Lf-GMP nanohydrogels were evaluated at pH
2 and pH 7, by fitting the Linear Superimposition Model to the experimental data. The bioactive com-
pounds release was found to be pH-dependent: at pH 2, relaxation is the governing phenomenon for
curcumin and caffeine compounds and at pH 7 Fick's diffusion is the main mechanism of caffeine release
while curcumin was not released through Lf-GMP nanohydrogels.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The demand for encapsulation systems continues to grow as the
food industry needs to preserve the benefits of active compounds
and deliver them at specific conditions. Encapsulation of bioactive
compounds in food industry can be used to: i) preserve functional
properties, ii) improve the stability of compounds with low
solubility in relevant (mostly aqueous) media, iii) mask undesirable
flavours, iv) enhance health benefits of food products (i.e.
development of functional foods), v) control the release of bioactive
compounds at desired time and specific target, and vi) increase
the bioavailability of bioactive compounds (Davidov-Pardo et al.,
2015; Gunasekaran et al., 2007; Huang et al., 2010; Kayitmazer
et al., 2013; Livney, 2010). Despite the interesting and unique
properties that encapsulation can bring to food industry, its use is
still a challenge mainly due to the need of using GRAS (generally
recognized as safe) materials for the development of
urbon).
encapsulation systems.
Milk proteins are considered a vital macronutrient in food,

offering the possibility of developing delivery systems for both
hydrophilic and lipophilic bioactive compounds (Augustin and
Oliver, 2014; Chen et al., 2006). Their biocompatibility, biode-
gradability, non-toxicity and ability to form hydrogels make them
a relevant class of biopolymers to be used as vehicle of bioactive
compounds (Fox, 2001), being one of the most promising sys-
tems used in food industry. Protein hydrogels are hydrophilic
networks of swollen cross-linked polymers (Vermonden et al.,
2012). The development of protein hydrogels at nano-scale is
increasingly being studied for their attractive properties (e.g.
ability to encapsulate different bioactive compounds, large sur-
face area, response to environmental changes) in delivery sys-
tems (Oh et al., 2009; Yallapu et al., 2011). Lactoferrin (Lf) is an
iron-binding glycoprotein with a isoelectric point around 8,
found in various biological fluids of mammals. Lf is considered a
multifunctional protein, playing several biological roles: anti-
bacterial, antiviral, antifungal, anti-inflammatory, antioxidant
and immunomodulatory (Bokkhim et al., 2013; Embleton et al.,
2013; Gonz�alez-Ch�avez et al., 2009; Madureira et al., 2007).
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This protein is also marketed as a nutritional supplement with
high potential for biopharmaceutical applications (Balc~ao et al.,
2013). Glycomacropeptide (GMP) is an acid glycosylated pep-
tide that occurs naturally in bovine milk within the whey frac-
tion. This peptide is considered an abundant protein, comprising
around 20% of the total protein in sweet cheese whey (Neelima
et al., 2013; Gustavo Hermes et al., 2013; Thom€a-Worringer
et al., 2006; van Calcar and Ney, 2012). GMP is sold as a food
ingredient and has an excellent safety record based on wide-
spread supplementation of foods infant formulas, both using
whey proteins (Brück et al., 2006). Furthermore, GMP has func-
tional properties such as: emulsification and foaming ability and
can act in the inhibition of cholera toxin binding, anti-cariogenic
and preventing intestinal infections (Neelima et al., 2013;
Gustavo Hermes et al., 2013). Protein nanohydrogels, produced
by interaction between Lf and GMP, were developed and char-
acterized in a previous work (Bourbon et al., 2015). Due to their
small size (170 nm) and high stability at various values of tem-
perature and pH, these systems promised to be an excellent
vehicle for encapsulation of bioactive compounds.

Curcumin (diferuloyl methane), a yellow lipid-soluble poly-
phenol is present in the rhizome of turmeric (Curcuma longa L.) and
is widely used as a colouring agent in food. A wide range of bio-
logical attributes of curcumin such as antioxidative, anti-
inflammatory, antiangiogenic, antiamyloid anticancer, antimicro-
bial, wound-healing and hepatoprotective properties have been
well reported (Bhawana et al., 2011). However curcumin's poor
solubility, stability, and bioavailability in aqueous media limits its
efficient use as a bioactive compound. Efforts are being done to
increase the bioavailability of this bioactive compound in aqueous
solution, e.g. through its encapsulation in various delivery systems
such as nanoemulsions (Sari et al., 2015), nanocapsules
(Kittitheeranun et al.) and nanoparticles (Li et al., 2013).

Caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione), a
white and water-soluble compound found in many plant species
such as coffee and green tea, has received increasing attention in
food and pharmaceutical industries due to its pharmacological
properties, which comprise stimulation of the central nervous
system, peripheral vasoconstriction, relaxation of the smooth
muscle and myocardial stimulation (McLellan, 2006). Caffeine has
frequently been used as a model compound, thus many formula-
tions containing caffeine have been studied (Li�edana et al., 2012;
McLellan, 2006).

The present work aims at evaluating the ability of a protein-
based nanohydrogel to encapsulate bioactive compounds with
different water solubilities (curcumin as lipophilic compound and
caffeine as hydrophilic compound) and evaluate their release
mechanism through this matrix at different pH conditions, in an
effort to reproduce at least partially the environment to be found
during digestion, in view of future food applications.
2. Materials and methods

2.1. Materials

Lactoferrin-Lf was purchased fromDMV International (USA) and
Glycomacropeptide-GMP was kindly offered by Davisco Food In-
ternational, INC. (Le Sueur, USA). To prepare the samples, it was
used deionized water purified to a resistance of 15 MU, Millipore
Corp. (France).

Hydrochloric acid was purchased from Panreac, Spain and
sodium hydroxide was obtained from Riedel-de Haen (Germany).
Hydrophilic model compound, caffeine was purchased from VWR
(USA) and Amicon® Ultra-0.5 centrifugal filter of 3 kDa and 8 kDa
devices from, Millipore Corp. (Ireland) were used.

Lipophilic model compound, curcumin was purchased from
SigmaeAldrich, St. Louis and pure ethanol was purchased from
Panreac (Barcelona, Spain). Fluorescein isothiocyanate (FITC) was
purchased from Fluka (Germany). Standard marker proteins from
PageRuler™ Broad Range Unstained Protein Ladder, Lot ##002252
was purchased from Thermo Scientific (Lithuania).

2.2. Encapsulation of bioactive compounds in nanohydrogels

Nanohydrogels were prepared as described by Bourbon et al.
(2015). Briefly, 2.5 mM of Lf and 8.33 mM of GMP were dissolved
separately, in deionized water at 25 �C. The pH values of
biopolymer solutions were separately adjusted to 5.0, with
0.1 mol L�1 of hydrochloric acid. Lf aqueous solution was added
dropwise into GMP aqueous solution with gentle stirring until a
final molar ratio (WR) of 1:7 (Lf:GMP) was reached.

2.2.1. Curcumin e lipophilic compound
Curcumin was used as lipophilic compound and a range of

concentrations between of 0.005e0.18 mg mL�1 previously dis-
solved in absolute ethanol was added to the Lf-GMP mixture.
After gentle stirring for 30 min, the mixture of Lf-GMP with cur-
cumin was subsequently heated at 80 �C for 20 min in a water
bath (closed system) to obtain a homogeneously dispersed
nanohydrogel.

The unbound curcumin was removed by centrifuging the sam-
ple at 12 000 g for 20 min, which pulls down only the undissolved
curcumin. The pellet of curcuminwas carefully dissolved in ethanol
and curcumin was quantified, spectrophotometrically, at 425 nm
(Li et al., 2013). The amount of curcumin loaded in nanohydrogels
was calculated by deducting the amount recovered in the ethanol
fraction from the total amount of curcumin used. These results
were used to calculate the EE (Equation (1)).

2.2.2. Caffeine e hydrophilic model compound
As in the case of curcumin, an amount of caffeine (hydrophilic

model compound) ranging from 0.02 to 3 mg mL�1 previously
dissolved in deionized water was gentle added to the Lf-GMP
mixture. After gentle stirring for 30 min, the mixture of Lf-GMP
with caffeine was subsequently heated at 80 �C for 20 min in a
water bath (closed system) to obtain a homogeneously dispersed
nanohydrogel.

The unbound caffeine was determined after separating the
nanohydrogels with encapsulated caffeine from the solution with
free caffeine. The separation was performed using an Amicon®

Ultra-0.5 centrifugal filter 3 kDa device (Millipore Corp., Ireland).
Briefly, 0.5 mL of sample was added to the Amicon® and centri-
fuged at 14 000 g during 10 min. After centrifugation a filtrate
with free caffeine and a concentrate with nanohydrogels with
encapsulated caffeine were obtained. The free caffeine was eval-
uated spectrophotometrically at 272 nm, which corresponds to
the maximum absorbance peak of caffeine (Bagheri et al., 2014b),
and the amount of free caffeine was calculated using an appro-
priate calibration curve: y ¼ 6.37x þ 0.09 (R2 ¼ 0.98) being y the
Absorbance and x the concentration of free caffeine (mg.mL�1).
The obtained values were used to calculate the encapsulation ef-
ficiency (EE) (Equation (1)).



Encapsulation Efficiency % ¼ total amount of compound� free compound
total amount of compound

(1)
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where the total amount of compound is the initial concentration of
bioactive compound added to the mixture Lf-GMP and the free
compound is the concentration of compound that was not loaded
to nanohydrogels. All the measurements were performed in
triplicate.

2.3. Characterization of nanohydrogels after encapsulation with
bioactive compounds

2.3.1. Fourier transform infrared (FTIR) spectroscopy
In order to confirm the incorporation of the bioactive com-

pounds into Lf-GMP nanohydrogels, fourier transform infrared
(FTIR) spectroscopy analyses were carried out with a Perkin Elmer
16 PC spectrometer (Perkin Elmer, Boston, MA, USA) equipped with
an ATR probe in the wavenumber region of 600e4000 cm�1 using
16 scans for each sample. The samples were dried and then
embedded in KBr pellets.

2.3.2. Fluorescence measurements
To evaluate protein hydrophobicity, 1-anilinonaphthalene-8-

sulfonic acid (ANS) a fluorescent probe was used. Stock solution
of 3.6 � 10�3 M ANS was previously dissolved in 0.1 M phosphate
buffer solution.

ANS solution was added to nanohydrogel solution until reach a
saturation, which indicated that all hydrophobic parts of nano-
hydrogel were ligand to ANS probe. This saturation point was
reached with a ANS final concentration of 0.08 � 10�3 M. ANS was
added to nanohydrogels solutions after encapsulation with bioac-
tive compounds and absorbance was measured.

Fluorescence measurements were performed at 25 �C using a
spectrofluorimeter (Horiba Scientific) equipped with a standard
thermostated cell holder. The excitation wavelength was 350 nm.
Emission spectra were recorded between 300 and 360 nmwith 1%
attenuation, and fluorescence intensities were recorded every
0.5 nm. Excitation and emission slits were 15 nm. Data analysis of
fluorescence peak was performed with Peak Fit 4.12 (SYSTAT Soft-
ware Inc., Richmond, CA, USA) program.

2.3.3. Size distribution and polydispersity index
Nanohydrogels with encapsulated bioactive compounds were

characterized in terms of size distribution (by number) and poly-
dispersity index (PdI) using a Dynamic Light Scattering (DLS)
apparatus (Zetasizer Nano ZS, Malvern Instruments, UK) equipped
with a HeeNe laser at a wavelength of 633 nm. All measurements
were performed at 25 �C. Each measurement of size and PdI was
performed with a detection angle of 173� (Malvern, 2005). The
results are given as the average ± standard deviation of nine
measurements.

2.3.4. z-potential
z-potential measurement was carried out at room temperature

(25 �C) using a Zetasizer Nano ZS (Malvern Instruments, UK) in a
folded capillary cell using a HeeNe laser-wavelength of 633 nm and
a detector angle of 173� (Malvern, 2005). The measurements were
made in triplicate, with three readings for each sample. The results
are given as the average ± standard deviation of nine
measurements.
2.3.5. Transmission electron microscopy (TEM)
TEM micrographs were conducted on a Zeiss EM 902A (Thorn-

wood, N.Y., U.S.A.) microscope at accelerating voltages of 50 kV and
80 kV. The samples were prepared by dropping the solutions onto
copper grids coated with carbon film and followed by natural
drying (Bourbon et al., 2015).
2.3.6. Confocal laser scanning microscope (CLSM)
The distribution of curcumin and caffeine within the Lf-GMP

nanohydrogels was examined by using a confocal laser scanning
microscope (LSM 410, Carl Zeiss, USA). This technique allows
visualization and characterization of structures not only on the
surface, but also inside the particles, provided the material is suf-
ficiently transparent and can be fluorescently labelled (Beir~ao da
Costa et al., 2012).

Since curcumin is naturally fluorescent in the visible green
spectrum, no further labelling of curcumin was needed (Gandapu
et al., 2011). Nanohydrogels with encapsulated curcumin were
mounted on a slide and visualized in the fluorescein isothiocyanate
(FITC) wavelength at 488 nm.

To visualize caffeine distribution in protein nanohydrogels,
caffeine was stained with FITC by the methodology described by
Shu et al. (2010). Briefly, 0.0015 g of FITC solution (3 mg of colorant
in 1mL of 100mM sodium carbonate solution, pH 9.3) was added to
the caffeine solution and incubated at 20 �C for 1 h. Unattached
colorant was removed by dialysis with a cut-off 100 Da. In order to
identify the bioactive compounds, the laser was adjusted to green
(FITC-labelled lactoferrin) mode which yielded an excitation
wavelength of 488nm (green laser) and without fluorescence
(brightefield). The superposition of the images obtained in these
two channels allowed visualizing the protein nanohydrogels and
the distribution of bioactive compounds, in the same image. All
confocal fluorescence pictures were taken using a 40X objective.
2.4. Antimicrobial activity determination

The antibacterial activity of nanohydrogels, bioactive com-
pounds (curcumin and caffeine) and nanohydrogels with bioactive
compounds (curcumin and caffeine, respectively) was tested
against two bacterial strains: Staphylococcus aureus (Gram-posi-
tive) and Escherichia coli (Gram-negative) by the disc agar diffusion
test according to Wilkins et al. (1972). Briefly, the nanohydrogel
(empty) and the nanohydrogel containing encapsulated bioactive
compounds were absorbed in sterilized filter paper discs (of 0.6 cm
in diameter) and placed on the lawn cultures of S. aureus and E. coli.
The agar plates were incubated for 24 h at 37 �C and diameters of
the inhibitory zone of clearance (cm) surrounding the discs were
measured to estimate the antimicrobial activity. Sterile distilled
water was used as control. In order to evaluate the antimicrobial
activity of encapsulated caffeine and curcumin in Lf-GMP nano-
hydrogels, control solutions of free curcumin, free caffeine and Lf-
GMP nanohydrogels without encapsulated compounds submitted
at the same conditions (temperature and pH) used during the
encapsulation procedure were tested.
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2.5. Release kinetics of bioactive compounds from Lf-GMP
nanohydrogels

The in vitro release kinetics of model compounds (caffeine and
curcumin) was performed by a dialysis method (Azevedo et al.,
2014; Rivera et al., 2015). Nanohydrogels with encapsulated
bioactive model compounds (5 mL) were placed inside a dialysis
membrane (molecular weight cut-off 8 kDa)) that was subse-
quently placed into 40 mL of buffer solution (phosphate buffer for
pH 7 and KCleHCl buffer for pH 2) under magnetic stirring. At
appropriate time intervals, 0.25 mL of supernatant were taken and
0.25 mL of fresh buffer were added to keep the volume of the
release medium constant. The amount of caffeine and curcumin
released from nanohydrogels was evaluated by measuring the
absorbance at 272 and 425 nm, respectively (absorbance peak)
(Elisa Biotech Synergy HT, Biotek, USA). All release tests were run at
least in triplicate.
Fig. 1. Effect of curcumin concentration (A) and caffeine concentration (B) on encap-
sulation efficiency of Lf-GMP nanohydrogels, data are presented as mean ± 95% con-
fidence interval; values followed by different superscript letters are significantly
different (p < 0.05).
2.5.1. Release kinetics
The release profile of bioactive compounds from Lf-GMP nano-

hydrogel was evaluated using a kinetic model that accounts for
both Fickian and Case II transport (linear superimposition model e
LSM) effects in hydrophilic matrices (Azevedo et al., 2014; Berens
and Hopfenberg, 1978; Rivera et al., 2015)

Mt ¼ Mt;F þMt; R (2)

where Mt is the total mass released from the polymeric structure,
Mt,F and Mt,R are the contributions of the Fickian and relaxation
processes, respectively, at time t.

The Fickian process is described by:

Mt;F ¼ M∞;F

"
1� 6

p2

X∞
n¼1

1
n2

exp
�
� n2kFt

�#
(3)

where M∞,F is the compound release at equilibrium and kF is the
Fickian diffusion rate constant. Equation (3) can be simplified using
the first term of the Taylor series (Jeong et al., 1999).

Polymer relaxation (protein matrix) is initially driven by the
swelling ability of the polymer and then related to the dissipation of
stress induced by the entry of the penetrant and can be described as
a distribution of relaxation times, assuming a first order-type ki-
netic equation (Berens and Hopfenberg, 1978).

Mt;R ¼
X
i

M∞;Ri

�
1� exp

��kRi
t
��

(4)

where, M∞;Ri
are the contributions of the relaxation processes for

compound release and kRi
are the relaxation ith rate constants. For

most cases, there is only one main polymer relaxation that in-
fluences transport and thus the above equation can be simplified
using i ¼ 1.

Therefore, the linear superimposition model for compound
release from Lf-GMP nanohydrogels can be described by:

Mt

M∞
¼ X

�
1� 6

p2 expð�kFtÞ
	
þ ð1� XÞ½1� expð�kRtÞ� (5)

where X is the fraction of compound released by Fickian transport.
The experimental results were analysed by Equation (5) (linear

superimposition model) in order to assess the transport mecha-
nism involved for curcumin and caffeine release from nano-
hydrogels at pH 7.4 and 2.
2.5.2. Native polyacrylamide gel electrophoresis
In order to evaluate the integrity of nanohydrogel during the

release experiments, a native-PAGE or “nondenaturing” gel elec-
trophoresis, was performed. Native-PAGE analyses were carried out
using the Mini-Protean II dual slab cell system equipped with a PAC
300 power supply (Bio-Rad Laboratories, Hercules, CA, USA). The
resolving and stacking gel contained 10 and 4% of polyacrylamide,
respectively. The gels were stained with 0.2% (w/v) silver nitrate
(Chevallet et al., 2006). Standard marker proteins PageRuler™
Broad Range Unstained Protein Ladderwas used to identify samples
by their molecular weight.
2.6. Statistical analyses

The Equation (5) was fitted to data by non-linear regression,
using a package of STATISTICA™ v 7.0 (Statsoft. Inc, USA). The
Levenberg-Marquadt algorithm for the least squares function
minimization was used. The quality of the regressions was evalu-
ated on the basis of the determination coefficient, R2, the squared
root mean square error, RMSE (i.e., the square root of the sum of the
squared residues (SSE) divided by the regression degrees of
freedom) and residuals visual inspection for randomness and
normality. R2 and SSEwere obtained directly from the software. The
precision of the estimated parameters was evaluated by the
Standardised Halved Width (SHW %), which was defined as the
ratio between the 95% Standard Error (obtained from the software)
and the value of the estimate.



Fig. 3. FTIR spectra of a) caffeine encapsulated in Lf-GMP nanohydrogels, b) caffeine
and c) Lf-GMP nanohydrogels without caffeine.
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3. Results and discussion

3.1. Bioactive compounds encapsulation

The physico-chemical properties of bioactive compounds (e.g.
molecular weight, water solubility and chemical structure) are
factors which will influence the selection of an efficient carrier to
protect, transport and release them. In order to evaluate the effect
of the bioactive compounds nature (i.e. hydrophilic and lipophilic)
on the efficiency of encapsulation of Lf-GMP nanohydrogels,
caffeine and curcumin were used as hydrophilic and lipophilic
model compounds, respectively.

Different concentrations of curcumin and caffeine were evalu-
ated and the concentration that allows the highest encapsulation
efficiency of each bioactive compounds into nanohydrogels was
determined (Fig. 1).

Results showed that the highest encapsulation efficiencies (EE)
were obtained for concentrations of 0.082 mg mL�1 and
0.03 mg mL�1 for curcumin (95.1 ± 1.4%) and caffeine (90.0 ± 2.1%),
respectively. The low solubility of curcumin in aqueous environ-
ments and its numerous health benefits make this lipophilic
bioactive compound a target of numerous encapsulation studies.
Different encapsulation methods and matrices have been tested
(Ahmed et al., 2012; Bhawana et al., 2011; Das et al., 2010; Gandapu
et al., 2011; Li et al., 2013; Sari et al., 2015). The ability of curcumin
to establish interactions with proteins was also evaluated. The EE of
this compound in protein matrices is around 90% depending on the
system. As example, for zein nanoparticles prepared by electro-
hydrodynamic atomization it has been showed an EE around 90%
(Gomez-Estaca et al., 2012), while Sneharani et al. (2010) using b-
lactoglobulin particles to encapsulate curcumin obtained an EE
around 96%. EE results obtained in the present work for Lf-GMP
nanohydrogels are thus well within the range of values reported
in the literature for other encapsulation systems.

EE values reported in literature for caffeine encapsulated in
biopolymer matrices are around 83.6% for alginate-psyllium
hydrogels (Bel�s�cak-Cvitanovi�c et al., 2015), and 89.6% for particles
composed by peptides obtained through hydrolysis of whey pro-
teins and then cross-linked by transglutaminase (Bagheri et al.,
2014a). The values obtained in the present work for caffeine in Lf-
GMP nanohydrogels thus compare favourably with those re-
ported in the literature(Ahmed et al., 2012; Bhawana et al., 2011;
Das et al., 2010; Gandapu et al., 2011; Gomez-Estaca et al., 2012;
Li et al., 2013; Sari et al., 2015).
Fig. 2. FTIR spectra of a) curcumin encapsulated in Lf-GMP nanohydrogels, b) curcu-
min and c) Lf-GMP nanohydrogels without curcumin.
3.2. Characterization of nanohydrogels with encapsulated bioactive
compounds

3.2.1. FTIR measurements
In order to evaluate the type of interaction between bioactive

compounds and Lf-GMP nanohydrogels after the encapsulation, the
FTIR spectra of bioactive compounds (curcumin and caffeine), Lf-
GMP nanohydrogels, curcumin encapsulated in Lf-GMP nano-
hydrogels and caffeine encapsulated in Lf-GMP nanohydrogels
were further evaluated and are shown in Figs. 2 and 3, respectively.

As expected, the FTIR spectrum of the mixture between curcu-
min and Lf-GMP nanohydrogels (Fig. 2b) contained peaks corre-
sponding to both the components present. It is possible to observe a
characteristic stretching band of curcumin (OeH) at 3508 cm�1

which differs from the peak observed for Lf-GMP nanohydrogels
after the encapsulation, it was observed a shifted of peak to
3268 cm�1, suggesting an interaction with protein matrix (Patra
and Sleem, 2013; Yallapu et al., 2010). The peak at 1502 cm�1,
which corresponds to the y (C]O), d (CCC) and d (CC]O) of cur-
cumin undergoes a shift to 1512 cm�1 in the case of mixture with
other components and this can be taken as an evidence of inter-
action between curcumin and Lf-GMP nanohydrogels. Also, the
characteristic peak at 713 cm�1 of aromatic in plane bending of
curcumin has shifted to 791 cm�1 after encapsulation. The region
ranging between 3000 and 2800 cm�1 for curcumin encapsulated
in Lf-GMP nanohydrogel spectrum corresponds to the CH2 asym-
metric and symmetric stretching vibrations. New bands are found
in the range between 2500 and 3000 cm�1. These results can
suggest that the interaction of curcumin with Lf-GMP nano-
hydrogels is carried out through hydrophobic interactions of
polyphenolic rings. Similar results have been reported in the re-
actions of resveratrol, genistein and curcumin with bovine serum
albumin (Bourassa et al., 2010).

The presence of caffeine in Lf-GMP nanohydrogels is confirmed
by the existence of characteristic bands of caffeine in Lf-GMP
nanohydrogels (Fig. 3 a). The peaks at 1707 cm�1, 974 cm�1 and
1359 cm�1 that correspond to C]O, CeC and CeH stretchings,
respectively, indicate the presence of caffeine in Lf-GMP nano-
hydrogels (Kumar, 2010). It was also observed a presence of a new
peak around 2990 cm�1 after the encapsulation of caffeine in Lf-
GMP nanohydrogels, that can be due to CeH bonds of methyl
(eCH3) groups that are present in caffeine molecule. At 3500 cm�1

a higher peak is observed in spectra of caffeine encapsulated in Lf-
GMP nanohydrogels, however this peaks are reported as bond vi-
brations of caffeine molecule (Paradkar and Irudayaraj, 2002).
Moreover, it is possible to confirm the encapsulation of caffeine in
Lf-GMP nanohydrogels due to notorious changes in amide I



Fig. 4. Fluorescence emission of Lf-GMP nanohydrogels ( ); caffeine encapsulated
in Lf-GMP nanohydrogels (- -) and curcumin encapsulated in Lf-GMP nanohydrogels
( ), all samples were stained with ANS.

Fig. 5. Transmission electron microscopy images of Lf-GMP nanohydrogels with
encapsulated A) caffeine and B) curcumin (scale bar e 0.2 mm).
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(1700e1600 cm�1), mainly C]O stretch, and amide II bands
(1600e1500 cm�1), CeN stretch coupled with NeH bending mode,
suggesting a hydrophilic interaction between the caffeine and Lf-
GMP nanohydrogel, since the main groups involved in these in-
teractions are C]O, CeN and NeH (Bagheri et al., 2014a; Li et al.,
2013).

3.2.2. Fluoresecence measurements
Measuring the hydrophobicity of proteins is a useful technique

to evaluate the protein binding sites. 8-anilino-1-
napphalenesulfonic acid (ANS) is a fluorescent probe that binds
to hydrophobic sites of proteins (Alizadeh-Pasdar and Li-Chan,
2000). In order to evaluate the type of interaction between bioac-
tive compounds and Lf-GMP nanohydrogels, surface hydropho-
bicity of nanohydrogels was measured after and before the
interaction of nanohydrogel with bioactive compounds (Fig. 4).

ANS was applied to evaluate the hydrophobic surface of Lf-GMP
nanohydrogels and monitor possible changes during the in-
teractions with active compounds. Individual scans Lf-GMP nano-
hydrogels were performed to obtain the maximum peak of
emission. It was observed that the wavelength of the maximum
intrinsic fluorescence spectrum (lmax) was at 336 nm, corre-
sponding to ANS fluorescence (i.e. hydrophobic parts of nano-
hydrogels). As can be seen in Fig. 4, the interaction of caffeine and
curcumin with Lf-GMP nanohydrogels decrease the peak area,
indicating that the accessibility of hydrophobic residues in Lf-GMP
nanohydrogels decrease. The peak area obtained for curcumin is
much lower than caffeine, indicating that a higher number of hy-
drophobic interactions are established between curcumin and Lf-
GMP nanohydrogels that in case of caffeine with Lf-GMP
nanohydrogels.

3.2.3. Size and z-potential measurements
The values of size, PdI and charge of Lf-GMP nanohydrogels after

encapsulation of bioactive compounds are presented in Table 1.
It is possible to observe that the encapsulation of bioactive

compounds resulted in a decrease (p < 0.05) of the size of nano-
hydrogels. This can be explained by the structural rearrangement of
Table 1
Effect of bioactive compounds encapsulation on nanohydrogel's properties (statistically
superscript letters).

System Size (nm)

Lf-GMP nanohydrogels 170.02 ± 3.21a

Lf-GMP nanohydrogels þ curcumin 112.03 ± 1.21b

Lf-GMP nanohydrogels þ caffeine 126.03 ± 7.46b
Lf-GMP nanohydrogel after the encapsulation of the bioactive
compounds, as reported by FTIR and fluorescence measurements.
Moreover, it is important to mention that no statistically significant
difference was observed between the size values obtained for Lf-
GMP nanohydrogel with caffeine and Lf-GMP nanohydrogel with
curcumin. This suggests that despite of the different nature and
molecular weight of each bioactive compound, the size of the
nanohydrogel particles was not affected. PdI values are higher for
Lf-GMP nanohydrogels with incorporated bioactive compounds,
suggesting a decrease of homogeneity of the nanohydrogels. No
significant differences were observed for the z-potential values
after the incorporation of bioactive compounds, showing that the
charge of the nanohydrogels is not affected, thus suggesting that
electrostatic interactions are not involved in the encapsulation of
the bioactive compounds and that their presence does not affect
the superficial charge of nanohydrogel particles (i.e., possibly most
of the bioactives are actually inside the gel matrix and not at its
surface).
3.2.4. Morphology evaluation
The morphology of Lf-GMP nanohydrogels was evaluated by

TEM (Fig. 5). TEM images show that Lf-GMP nanohydrogels with
bioactive compounds encapsulated maintain the spherical shape
with a solid dense structure and with a size around 120 nm and
significant differences in the values of the same column are identified by different

PdI z-Potential (mV)

0.08 ± 0.01a �17.11 ± 1.45a

0.21 ± 0.04b �15.00 ± 0.75a

0.16 ± 0.02b �16.07 ± 1.84a



Fig. 6. Confocal laser scanning microscope images of Lf-GMP nanohydrogels with
encapsulated A) curcumin and B) FITC-labelled caffeine; (scale bar e 200 nm).

Fig. 7. Diameter of the inhibition zones (cm) for S. aureus and E. coli using:
0.08 mg mL�1 of curcumin solution ( ); 0.03 mg mL�1 of caffeine solution ( ); Lf-GMP
nanohydrogel solution ( ); 0.08 mg mL�1 curcumin encapsulated in Lf-GMP nano-
hydrogel solution ( ) and 0.03 mg mL�1 caffeine encapsulated in Lf-GMP nanohydrogel
solution ( ). Error bars represent the standard deviation obtained in triplicate exper-
iments (statistically significant differences in the values of the same column are
identified by different superscript letters).
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125 nm for caffeine and curcumin, respectively. These results are in
agreement with the size values obtained by DLS (Table 1).

In the present work, images obtained by CLSM allow identifying
the distribution of each bioactive compound in Lf-GMP nano-
hydrogels. The green fluorescence channel was used to excite the
bioactive compounds (Fig. 6).

Lf-GMP nanohydrogels without bioactive compounds were
submitted to green laser light and no fluorescence signal was ob-
tained (results not shown). When bioactive compounds were
encapsulated in Lf-GMP nanohydrogels fluorescence was detected
confirming the presence of those compounds inside the nano-
hydrogel structures. Round shaped and apparently compact struc-
tures could be observed, together with the green fluorescence of
the bioactive compounds distributed into Lf-GMP nanohydrogel.
3.3. Antimicrobial activity determination

The disk diffusion assay was used to determine the antimicro-
bial activity of free and encapsulated compounds against S. aureus
and E. coli (Fig. 7).
Results showed that curcumin presents antimicrobial activity, as
reported elsewhere (Bhawana et al., 2011; Zorofchian
Moghadamtousi et al., 2014). Curcumin was found to be effective
in inhibiting the growth of various Gram-positive and Gram-
negative bacteria (Guti�errez-Larraínzar et al., 2012). Results
clearly showed that the antimicrobial activity significantly in-
creases (p < 0.05) when curcumin is encapsulated in Lf-GMP
nanohydrogels.

In fact, Lf-GMP nanohydrogels demonstrated to have antimi-
crobial activity against S. aureus and E. coli. One of the numerous
properties of lactoferrin is its ability to exert a broad-spectrum
primary defence activity against bacteria. This antibacterial activ-
ity is promoted by the destabilisation of the microorganism's cell
membrane, which has different mechanisms for Gram-negative
(E. coli) and Gram-positive (S. aureus) organisms. For Gram-
negatives, lactoferrin binds to porins present on the surface
causing lipopolysaccharide release, and increasing bacterial
fragility. In the case of Gram-positive bacteria, the membranes are
disrupted by cationic residues and by hydrophobic residues in the
N-terminus (Embleton et al., 2013).

The interaction of curcumin with Lf-GMP nanohydrogels
demonstrated to result in a good synergy, fostering the antimi-
crobial properties of this new structure.

Caffeine showed a strong antimicrobial activity against S. aureus.
This behaviour is due to the higher sensibility of Gram-positive
bacteria to caffeic acid when compared to that of Gram-negative
bacteria (Martínez-Tom�e et al., 2011). This property makes of
caffeine a natural food ingredient able to extend the shelf life of
foods (e.g. cake, cookies, yoghurt) (Bagheri et al., 2014a; Li�edana
et al., 2012; Parwar et al., 2011). In line with results obtained for
curcumin, also caffeine encapsulated in Lf-GMP nanohydrogels
demonstrated to have a significantly (p < 0.05) higher antimicrobial
activity when compared to caffeine alone.

The increase of antimicrobial activity of bioactive compounds
after the encapsulation in Lf-GMP nanohydrogels can also be due to
the fact that the small size of nanohydrogels increase their surface
area-to-volume ratio in contact with microorganisms leading to
enhanced particle surface reactivity (Romainor et al., 2014).
Moreover, these results indicate that the synergy between bioactive
compounds and the Lf-GMP nanohydrogels can result in a system
with new functional properties.



Fig. 8. Release kinetics of caffeine from Lf-GMP nanohydrogels at pH 2 (C) and pH 7
( ) at 37 �C.

Fig. 10. Linear superimposition model (LSM) description of caffeine release at: (a) pH 2
and (b) pH 7 from Lf-GMP nanohydrogels, at 37 �C (experimental results ( ); model-
generated values (�)).Mt=M∞ is the fraction of caffeine remaining in nanohydrogel
until time (t).
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3.4. Bioactive compounds release

A good understanding of the mechanisms involved in the
release of bioactive compounds is extremely important when the
design new carriers is desired, since it may allow predicting the
carriers' behaviour during the production and/or consumption of a
food product.

The experiments of bioactive compounds release from Lf-GMP
nanohydrogels were conducted at 37 �C at two different pH
values: 2 and 7. These conditions were used to simulate the release
mechanisms of these bioactive compounds when subjected to
digestion in the human gastrointestinal system.

Fig. 8 shows the release profile of caffeine from Lf-GMP nano-
hydrogels in contact with aqueous media at different values of pH.

Release profile of caffeine from Lf-GMP nanohydrogels revealed
that at pH 2 a higher amount of caffeine was released from Lf-GMP
nanohydrogels (Fig. 8). In a previous work it was observed that
these nanohydrogels are sensitive to pH: the size and PdI of Lf-GMP
nanohydrogels increased for pH values below 6 and above 8 and
decreased when pH values ranged between 6 and 7 (Bourbon et al.,
2015). Based in these observations it is likely that at pH 2 the
nanohydrogels have a more relaxed, looser structure which
possibly accounts for the easier and faster release of encapsulated
compounds observed in Fig. 8 until an equilibrium state is reached.
This behaviour can be due to various possibilities: i) bioactive
molecules are on the surface of the carrier and are released faster
than if they were entrapped, ii) conformational changes of protein
nanohydrogels in contact with medium or iii) a stochastic
Fig. 9. Release kinetics of curcumin from Lf-GMP nanohydrogels at pH 2 (C) and pH 7
( ) at 37 �C.

Fig. 11. Linear superimposition model (LSM) fitting of curcumin release data from Lf-
GMP nanohydrogels at pH 2, 37 �C (experimental results ( ); model-generated values
(�)).Mt=M∞is the fraction of curcumin remaining in nanohydrogel until time (t).
phenomenon (related to Brownian motion), inwhich the penetrant
flow is exclusively driven by a concentration gradient (Vesely,
2008).

Fig. 9 shows the release profile of curcumin from Lf-GMP
nanohydrogels for the same conditions evaluated for caffeine (pH
2 and pH 7 at 37 �C).

Unlike caffeine, curcumin release from Lf-GMP nanohydrogels is
clearly pH-dependent: while at pH 2 there is a clear release profile
of curcumin from Lf-GMP nanohydrogels, at pH 7 curcuminwas not
released at all. The low solubility of curcumin in water at



Table 2
Results of fitting the Linear Superimposition Model (LSM) (i ¼ 1) to experimental data of caffeine and curcumin release. Evaluation of the quality of the regression on the basis
of RMSE and R2. Estimates' precision is evaluated using the Standardised Halved Width (SHW) % in parenthesis.

Bioactive compound pH RMSE R2 X KF (min�1) KR (min�1)

Caffeine 2 0.160 0.903 0.410 (48.20%) 0.001 (54.76%) 0.090 (26.56%)
7 0.113 0.915 0.662 (45.23%) 0.087 (98.76%) 0.031 (87.33%)

Curcumin 2 0.105 0.965 0.341 (34.92%) 0.003 (67.34%) 0.182 (12.45%)

RMSE e Root mean square error.
X e The fraction of compound released by Fickian transport.
KF e Fickian diffusion rate constant.
KR-Relaxation rate constant.

Fig. 12. Native-PAGE analysis of Lf (1), GMP (2), Lf-GMP nanohydrogels with caffeine
encapsulated after the release experiments at pH 2 (3), Lf-GMP nanohydrogels with
caffeine encapsulated after the release experiments at pH 7 (4), Lf-GMP nanohydrogels
with curcumin encapsulated after the release experiments at pH 2 (5) and Lf-GMP
nanohydrogels with caffeine encapsulated after the release experiments at pH 7 (6).
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physiological pH (0.0004 mgmL�1 at pH 7.3) could be the reason of
this behaviour. Patra and Sleem (2013) concluded that the release of
curcumin was more triggered in acidic environment than under
basic conditions. Also these authors observed that in acidic condi-
tions curcumin is not stable and this may cause a weakening of
interactions between curcumin and a protein matrix (in their case
poly-L-lysine) thus facilitating curcumin release at acidic pH.

In this work, the description of experimental data obtained was
made using the Linear Superimposition model (Equation (5)). This
model has been chosen because it has been successfully used to
describe the release mechanisms of different bioactive compounds
from biopolymeric matrices (Azevedo et al., 2014; Pinheiro et al.,
2013; Rivera et al., 2015). Fig. 10 and Fig. 11 shows the fitting of
the linear superimposition model to experimental data of caffeine
and curcumin released from Lf-GMP nanohydrogels, respectively.

Table 2 presents the regression analysis results of the LSM fitting
for both compounds' release, showing that this model adequately
describes the experimental data with a relatively good regression
quality (R2>0.90) and that almost all parameters were estimated
with good precision.

This indicates that the release mechanism of the bioactive
compounds through Lf-GMP nanohydrogels cannot only be
described by Fick's diffusion but by both Fickian and Case II
transport, with only one main relaxation of the Lf-GMP
nanohydrogels.

X is defined as the Fick's diffusion contribution to the total
release from the Lf-GMP nanohydrogels ( M∞;F=Mt) and it can be
observed from Table 2 that for both bioactive compounds, at pH 2 X
is lower than 0.5, indicating that relaxation is the governing phe-
nomena. One of the characteristics of protein matrices is the
swellability (volume change) in response to external conditions
such as pH or ionic strength (Chen, 2009). The behaviour of Lf-GMP
nanohydrogels was investigated at different pH conditions and it
was observed that pH of the medium has a significant effect on the
size of these nanohydrogels (Bourbon et al., 2015). Size of Lf-GMP
nanohydrogels increase at pH 2 due to swelling behaviour of
nanohydrogel at this condition. At pH 7, X is higher than 0.5 sug-
gesting a higher contribution of Fick's diffusion for the release of
the compound. In fact at this pH it was observed small sizes of Lf-
GMP nanohydrogels, suggesting a decrease of matrix swelling
(Bourbon et al., 2015). Relaxation rate constant (kR) is higher for pH
2, supporting this hypothesis. As for the Fickian rate constant (kF),
as expected this parameter is higher for pH 7, reflecting the pre-
dominance of Fick's behaviour at that pH. At pH 2 the X value is
lower for curcumin than it is for caffeine, suggesting that the
relaxation mechanism is more predominant for the release of the
lipophilic compound. This behaviour can be due to hydrophobic
interactions established with curcumin (observed by FTIR and
fluorescence measurements).

3.4.1. Electrophoresis
To ensure that Lf-GMP nanohydrogels are intact after the release

measurements, a native electrophoresis was performed (Fig. 12).
Native electrophoresis clearly shows that Lf-GMP nano-

hydrogels are intact after the release experiments. This is shown by
the presence of a high molecular weight band in all samples taken
after release experiments (lanes 3 to 6). Moreover, it is also clear
that no free proteins are present in these samples (Lf or GMP),
suggesting that nanohydrogels are intact.

4. Conclusions

Lf-GMP nanohydrogels are able to incorporate bioactive com-
pounds with different solubilities and with great potential to act as
a controlled delivery system. Encapsulation of lipophilic and hy-
drophilic compounds showed high values of encapsulation effi-
ciency, independent of the nature of the bioactive compound used.
The encapsulation of bioactive compounds promoted an increase of
antimicrobial activity when compared with active compounds in
free solution.

The results of fitting the linear superimposition model to the
experimental data of bioactive compounds release suggested an
anomalous behaviour, with one main polymer relaxation and the
bioactive compounds release was found to be pH-dependent.

Due to the bioactive, non-toxic nature and ability to encapsulate
different bioactive compounds, Lf-GMP nanohydrogels are envis-
aged as a promising nanocarrier system to control the release of
bioactive compounds for food and pharmaceutical applications.
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