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ABSTRACT  
 

Earthworks are often regarded as one of the most costly and time-consuming components of 
linear infrastructure constructions (e.g., road, railway and airports). Since actual construction 
requirements originate higher demands for productivity and safety in earthwork constructions, 
the optimal usage of every resource in these tasks is paramount. The management of resources 
in an earthwork construction site is, in great part, a function of the allocation of the available 
equipment, for which there are a vast number of possible equipment allocation combinations. 
Simultaneously, while there is often high competitiveness, where the pressure is to provide the 
least possible costs and durations, contractors and project designers often settle for an allocation 
solution that is mostly based on their own intuition and accumulated experience. This 
guarantees neither optimal resource usage, nor a solution associated with minimal cost and 
duration.  

The optimal allocation of equipment in earthwork tasks is a complex problem that requires the 
study of several different aspects, as well as the knowledge of a large number of factors. In fact, 
earthworks are comprised by a combination of repetitive, sequential, and interdependent 
activities based on heavy mechanical equipment (i.e., resources), such as excavators, dumper 
trucks, bulldozers and compactors. In order to optimally allocate the available resources, 
knowledge regarding their specifications (e.g., capacity, weight, horsepower) and the work 
conditions to which they will be subjected (e.g., material types, required and available volumes 
in embankment and excavation fronts, respectively) is essential. This knowledge can be 
translated into the productivity (i.e., work rate) of each piece of equipment when working under 
a specific set of conditions. Moreover, since earthwork tasks are inherently sequential and 
interdependent, the interaction between the allocated equipment must be taken into account. A 
typical example of this is the need for matching the work rate of an excavator plant with the 
capacity of a truck plant to haul the excavated material to the embankment fronts.  

Given the non-trivial characteristics of the earthwork allocation problem, conventional 
Operation Research (e.g., linear programming) and blind search methods are infeasible. As 
such, a potential solution is to adopt metaheuristics – modern optimization methods capable of 
searching large space regions under a reasonable use of computational resources. While this 
may address the issue of optimizing such a complex problem, the lack of knowledge regarding 
optimization parameters under different work conditions, such as equipment productivity, calls 
for a different approach. Bearing in mind the availability of large databases, including in the 
earthworks area, that have been gathered in recent years by construction companies, 
technologies like data mining (DM) come forward as ideal tools for solving this problem. 
Indeed, the learning capabilities of DM algorithms can be applied to databases embodying the 
productivity of several equipment types when subjected to different work conditions. The 
extracted knowledge can then be used to estimate the productivity of the available equipment 
under similar work conditions. Furthermore, as previously referred, since earthwork tasks 
include the material hauling from excavation to embankment fronts, it also becomes imperative 
to analyse and optimize the possible transportation networks. In this context, the use of 
geographic information systems provides an easy method to study the possible trajectories for 
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transportation equipment in a construction site, ultimately allowing for a choice of the best paths 
to improve the workflow.  

This work explores the integration of different technologies in order to allow for an 
optimization of the earthworks process. This is translated in the form of an evolutionary multi-
criteria optimization system, capable of searching for the best allocation of the available 
equipment that minimizes a set of goals (e.g., cost, duration, environmental impact). The results 
stemming from the application of the system to a case study in a Portuguese earthwork 
construction site are presented. These comprise the assessment of the system performance, 
including a comparison between different optimization methods. Furthermore, an analysis 
regarding the improvement of workflow in the construction site after the implementation of the 
system is discussed, in the context of several comparisons between original (i.e., obtained by 
manual design) and optimized allocation solutions. Ultimately, these results illustrate the 
potential and importance of using this kind of technologies in the management and optimization 
of earthworks. 
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RESUMO 
 

Em projetos de construção de infraestruturas de transporte lineares (e.g., estradas, vias férreas e 
aeroportos), as terraplenagens são geralmente consideradas um dos componentes com custos e 
tempos de execução mais elevados. Tendo em conta que cada vez mais é exigido um aumento 
na produtividade e segurança no contexto das construções de terraplenagens, torna-se fulcral a 
otimização de todas as tarefas relacionadas com este processo. A gestão de recursos num 
estaleiro de terraplenagens é, em grande parte, função da alocação do equipamento mecânico 
disponível, para a qual existe um número quase infinito de soluções possíveis em cada caso. 
Simultaneamente, embora se verifique um alto nível de competitividade nesta área, onde o 
objetivo é obter custos e durações de execução o mais baixos possíveis, o planeamento das 
tarefas de terraplenagens é em grande parte baseado na experiência acumulada dos engenheiros 
e especialistas. Porém, tais métodos não garantem nem uma utilização ótima dos recursos 
disponíveis, nem uma solução associada ao custo e duração de execução mínimos. 

A alocação ótima de equipamento mecânico em tarefas de terraplenagens é um problema 
complexo que requer o estudo de vários aspectos distintos, assim como o conhecimento de um 
elevado número de fatores. De facto, estas tarefas são demarcadas por combinações de 
atividades repetitivas, fortemente baseadas no uso de equipamento mecânico (i.e., recursos), tal 
como escavadoras, dumpers, espalhadores e compactadores. Para que seja possível a sua 
alocação ótima, é essencial o conhecimento das suas especificações (e.g., capacidade, peso, 
potência) e das condições a que estão sujeitos durante a sua atividade (e.g., tipos de material, 
volumes disponíveis em frentes de escavação e necessários em frentes de aterro). Este 
conhecimento pode ser traduzido na produtividade de cada equipamento quando sujeito a 
determinadas condições de trabalho. Para além disso, uma vez que as terraplenagens consistem 
em tarefas inerentemente sequenciais e interdependentes, a interação entre os equipamentos tem 
de ser tomada em consideração. Um exemplo típico deste aspecto pode ser ilustrado pela 
necessidade de sincronizar a produtividade de uma equipa de escavadoras com a de uma equipa 
de dumpers, para que seja possível um fluxo constande de escavação e transporte de 
geomateriais das frentes de escavação para as frentes de aterro. 

Tendo em conta as características não triviais do problema de alocação em terraplenagens, os 
métodos convencionais de procura de soluções, tais como Investigação Operacional (e.g. 
programação linear) e busca exaustiva são impraticáveis. Assim, uma potencial solução é a 
adoção de metaheurísticas – métodos de otimização moderna capazes de efetuar a busca de 
soluções em espaços de procura extensos com níveis de exigência computacional razoáveis. 
Embora estes métodos sejam práticos para a otimização de problemas de elevado nível de 
complexidade, como é o caso das terraplenagens, existe ainda a necessidade de abordar o 
problema relacionado com a escassez de conhecimento de vários parâmetros necessários à 
otimização, tais como a produtividade dos equipamentos sujeitos a diferentes condições de 
trabalho. Considerando os recentes avanços da tecnologia e o aumento da prática de recolha de 
dados, verifica-se a disponibilidade de extensas bases de dados de construção, incluindo na área 
de terraplenagens. Neste sentido, tecnologias tais como o data mining (DM) surgem como 
ferramentas ideais para abordar esse problema. De fato, as capacidades de aprendizagem dos 
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algoritmos de DM podem ser aplicadas às bases de dados existentes com informação relativa à 
produtividade de vários tipos de equipamento sujeitos a diferentes condições de trabalho. 
Mediante este processo, o conhecimento extraído pode então ser usado em novos casos para 
estimar a produtividade de equipamentos em condições semelhantes. Adicionalmente, uma vez 
que as tarefas de terraplenagens incluem o transporte de materiais de frentes de escavação para 
frentes de aterro, como previamente referido, torna-se ainda imperativa a análise e otimização 
das potenciais trajetórias de transporte ao longo do estaleiro. Neste contexto, a utilização de 
sistemas de informação geográficos providencia um método eficaz de estudo e escolha das 
melhores trajetórias para o equipamento de transporte, melhorando o fluxo de trabalho no 
estaleiro. 

Este trabalho explora a integração de diferentes tecnologias tendo em vista a otimização das 
tarefas de terraplenagens. Isto concretiza-se sob a forma de um sistema de otimização evolutiva 
multi-objetivo, capaz de eleger a melhor distribuição dos equipamentos de terraplenagens 
disponíveis que minimiza um determinado conjunto de objetivos (e.g., custo, duração, impacto 
ambiental). São apresentados os resultados decorrentes da aplicação do sistema desenvolvido 
num caso de estudo, associado a um estaleiro de terraplenagens em Portugal. Estes abrangem a 
avaliação do desempenho do sistema de otimização, incluindo a comparação de vários métodos 
de otimização. Para além disso, é realizada uma análise relativa ao melhoramento do fluxo de 
trabalho no estaleiro após a implementação do sistema, sendo enquadrada numa série de 
comparações entre as soluções originais (i.e., obtidas pelos métodos convencionais de 
dimensionamento) e as soluções otimizadas correspondentes. Em última análise, estes 
resultados ilustram o potencial e a importância da utilização deste tipo de tecnologias na gestão 
e otimização das terraplenagens. 
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me Eccentric moment 

Q Nominal productivity 

Q/L Nominal compaction rate per drum meter width 

Q/S Compaction parameter for roller productivity estimation 

Qp Actual/real/on-the-job productivity 

R2 Correlation coefficient 

Tpl Duration of work for a production line 

Ts Execution duration 

V Maximum roller speed for vibratory rollers or average speed for other roller types 

Vc Total volume of material associated with embankment front 

Vm Volume of material in current work front 
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“There is nowhere I cannot go,  

yet I choose to be here.” 

     - A Journey to the West 
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1.1. MOTIVATION  

In Civil Engineering, a great majority of construction projects require earthworks activities 
prior to the construction of any structural element. Earthworks are engineering processes by 
which the ground surface in a target area is levelled or shaped through the moving or 
processing of the geomaterials that comprise it (Figure 1.1). It usually involves the 
excavation of these geomaterials, which can then be loaded and hauled to new areas to be 
spread and compacted into embankments, and may also include intermediate steps, such as 
material treatment or layer wetting. Nowadays, technical and environmental concerns 
require that, whenever possible, embankment fronts be built using mostly the material 
excavated from the construction site itself, in order to take maximum advantage of available 
materials and avoid the use of other materials brought in from outside borrowing areas. This 
means that, during design phase of an earthworks project, balance must be found regarding 
excavation and embankment volumes.  

Earthmoving is achieved by relying on heavy mechanical equipment, namely excavators 
(material excavation and loading to transportation equipment), dumper trucks (transportation 
between excavation and embankment fronts), bulldozers (material spreading so as to allow 
for compaction) and compactors (Gomes Correia and Magnan 2012; Gomes Correia et al 
2014). The high number and type of heavy machinery required to complete earthwork tasks, 
allied to the nature of the tasks themselves, are two of the main reasons that make 
earthworks often incur the highest percentage costs and durations in road and railway 
construction projects. Effectively, these facts imply an increased importance regarding their 
optimization (Miao et al., 2011).  

In this context, competitiveness in earthwork construction is mostly based on the 
achievement of lower execution costs and durations, currently more than ever considering 
the decreasing profit margins that companies and contractors are forced to undertake. Yet, 
these are inherently conflicting objectives, whose optimization implies the establishment of 
a trade-off by planners. In most cases, planners either find a possible solution based on their 
own experience, or settle for a random trade-off. 

 

 
Figure 1.1  Schema of an earthworks project, including excavation (cuttings) and embankment 

areas 
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However, since recent advances in practices and technology enhance data collection in Civil 
Engineering construction, originating large databases of construction records, these can be 
used to fulfil the referred optimization objectives. This data can be associated with the 
construction layout, mass-haul diagrams, cut-fill routes and subsequent volumes of material 
involved in excavation and embankment construction, and even information regarding 
material compaction level or bearing capacity (White et al 2007; Rinehart and Mooney 
2008). Soft computing (SC) techniques, namely data mining (i.e., neural networks) and 
metaheuristics (i.e., evolutionary computation), come forward as a way to use this data to 
optimize available resources in earthworks, being versatile enough to adjust to different 
environments and dynamic site conditions. Aiming at a maximization productivity (thus 
minimizing execution times) and minimization of costs, while ensuring the completion of 
the work within time and cost estimates, effective planning in these constructions is 
essential. In this point of view, both the allocation of available resources and the selection of 
the best equipment fleet for the work at hand are major factors to achieve these objectives. 

There has been reasonable development regarding the optimization of earthwork 
constructions, mainly in the form of equipment and operation modelling systems, in order to 
simulate site conditions and work sequence. Among these, most focus on planning and 
optimization during a project design phase (AbouRizk and Hajjar 1998; Marzouk and 
Moselhi 2002a; Marzouk and Moselhi 2002b; Cheng et al 2005; Zhang 2008; Cheng et al 
2010), whereas few look to optimize the earthwork tasks themselves throughout construction 
phase (Moselhi and Alshibani 2007; Moselhi and Alshibani 2009). These types of systems 
are generally based on metaheuristics, using SC techniques such as evolutionary 
computation (i.e., genetic algorithms – GA) (Michalewicz and Fogel 2000), thus being 
considered intelligent earthwork optimization systems. Nevertheless, during design phase of 
earthwork construction, the information regarding key factors with a direct influence on cost 
and duration (i.e., equipment productivity) of the planned tasks is frequently very scarce or 
even inexistent. Although a limited number of these systems have the ability to calculate 
features, such as the real equipment productivity during the construction work itself, the lack 
of accuracy of this information during design phase can gravely hinder its ability to carry out 
accurate time/cost predictions, potentially leading to considerably losses. As such, bearing in 
mind the availability of past construction data, it becomes possible to resort to other type of 
SC techniques, such as those based on data mining (i.e., neural networks), to predict those 
factors during planning in design phase. These algorithms can, for instance, be used to adjust 
models which “learn” from past data and can then be used to predict how a particular set of 
features will behave in a similar or future situation. In this sense, research has originated 
some applications (Michalewicz et al 2007; Hola and Schabowicz 2010) which can be 
considered relevant for earthwork optimization, although these do not have the capability of 
optimizing an earthwork system by themselves. Nonetheless, the possibility of integrating 
both SC techniques (metaheuristics and data mining) has obvious advantages, especially 
considering how data mining can compensate for the design phase limitations of 
optimization systems by enhancing the predictive potential of the system. Finally, as the 
construction phase begins, it becomes possible to complement this information with the 
updated values of the estimated features, either by human observation of the construction 
conditions, or by using spatial technologies, such as geographic information systems (GIS) 
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or global positioning system (GPS). This enhances the system with the flexibility to re-
optimize itself in order to tackle the dynamic nature inherent to earthwork constructions. 

1.2. AIMS AND METHODOLOGY 

According to Hevner et al (2004), in the context of Information Systems, design science 
research should produce a “viable artifact in the form of a construct, a model, a method, or 
an instantiation”, to solve relevant problems in a given area, while consisting of a 
contribution to the academic world. Furthermore, this output should be attained by means of 
rigorous scientific methods during its construction, using the available means to reach the 
desired goals, and it should be subject to effective evaluation methods to validate its 
capacities. As such, in order to achieve the proposed objectives, it is essential to obtain a 
deep understanding of the necessary processes related with planning, monitoring and 
performing construction operations, namely concerning the general work flow and 
equipment capabilities for constructions involving earthwork operations. Moreover, the 
necessary methods, tools and technologies normally associated with not only the planning 
phase of this kind of construction, but also with the monitoring of construction sites need to 
be given full consideration and careful study. 

This project is intended to create a knowledge base regarding the earthwork tasks, as well as 
an intelligent system, with capabilities to support the user’s decision-making. This system is 
based in modern optimization techniques (e.g. Evolutionary Computation), in order to obtain 
an adequate modelling of real world problems, i.e. including the definition of features such 
as: multiple objectives, restrictions and dynamic environments, among others. The 
developed system is expected to be capable of performing both planning and monitoring 
constructions involving earthwork processes, while attempting to automatically retrieve 
equipment data, rates and productivities (namely for the compaction process). Therefore, 
developments associated with the envisioned system are related to: 

§ Given a certain number of available equipments, it should be able to select the best 
equipment fleet that can optimize the earthwork tasks, simultaneously minimizing 
costs and construction time; 

§ Given a predetermined deadline, it should feature the capability to select the 
necessary equipment fleet that allows for the completion of a project, or a set of 
tasks, in the available time; 

§ The capability to determine the optimum number of each type of equipment (optimal 
equipment allocation) in each work front; and 

§ Finally, since nowadays there is an environmental concern of using mainly landfill 
material derived exclusively from the construction site, it is essential to take into 
consideration the optimization of trajectories and transport distances between the 
material source sites and the work fronts, achieving a green construction, as well as 
proper management of the materials themselves. 
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Thus, the research strategy begins by means of an extensive and thorough literature study on 
earthwork construction. The developmental process entails adding new knowledge to 
previous experience on the field, allowing to better examine and understand the potentially 
relevant tools and technologies currently available. Moreover, the preliminary study allows 
for the assimilation of the conceptual features needed to build the earthwork optimization 
system. In summary, the steps for the completion of this project should include: 

§ In-depth research on earthwork optimization, identifying the technologies that can 
be used to achieve the above-mentioned objectives; 

§ Analysis of relevant systems comprising past attempts at solving the earthwork 
optimization problem, with focus on the used technologies, as well as on their 
subsequent strengths and limitations; 

§ Development of a novel earthwork optimization system, aiming to innovate the 
current state of knowledge, while surpassing the limitations of the previously 
analysed systems; and 

§ Application of the developed system for a real case study. 

 

Considering the multi-disciplinary nature of the project, the end result is dependent on the 
successful combination of the technologies under study. However, the implementation of 
these technologies implies the integration of several tools as a basis for the system: 

§ By means of tools such as R (R Development Core Team 2011) and Rminer (Cortez 
2010a), technologies related to data mining can used to create prediction models 
based on earthworks databases, such as the GTR compaction tables (SETRA and 
LCPC 2000), enhancing the system’s planning phase capabilities; 

§ Using GIS software, such as ArcGIS (ESRI 2011), makes it possible to endow the 
system with the graphical and network analysis capabilities to support the user 
during the planning phase of a project; and 

§ Finally, through the use of optimization tools such as R or Matlab (The MathWorks 
Inc. 2014), and by integrating them with the previously discussed technologies, the 
system becomes able not only to identify and select the best found solutions for the 
near-optimal equipment fleet to be used in the planning phase, but also to re-
optimize the complete system during construction phase in order to deal with 
unknown or unforeseen circumstances regarding the equipment fleet and work flow 
in the construction site. Thus, technologies such as Modern Optimization can be 
used as the centre of both the planning and monitoring features of the system. 

 

By successfully implementing all these different technologies, the expected result will 
originate an innovative system aimed at supporting the decision-making process associated 
with earthwork processes in Civil Engineering environments. 
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1.3. OUTLINE OF THE THESIS 

The thesis is divided into the following six Chapters, excluding Introduction (Chapter 1), 
which are consistent with the steps outlined in the previous subsection: 

§ Chapter 2 provides a background on earthworks construction. The allocation of the 
mechanical equipment associated with earthworks is defined as comprising an 
optimization problem, to which conventional design does not have a definitive 
solution. This Chapter also includes the methodologies and concerns related to 
conventional earthworks design, as these represent a fundamental base of knowledge 
for the understanding of the remaining thesis.  

§ Chapter 3 presents the study of the relevant technologies, which have the potential to 
deal with complex and dynamic environments, as is the case of earthworks 
construction. Subsequently, an analysis on the available tools that can potentially 
allow for the integration of the studied technologies is also carried out. 

§ Chapter 4 includes a study regarding previous attempts on using the mentioned 
techniques. The focus is on the concretization of the previously developed systems, 
emphasizing the used technologies. In order to achieve this purpose, an analysis is 
carried out with the intention of sorting the systems into their typologies, once their 
characteristics and aims will allow a deeper understanding of the subsequent 
strengths and limitations of the resulting systems. 

§ Chapter 5 consists of the development of the novel intelligent earthwork 
optimization system. This includes its architecture, elaborated on the development of 
the individual modules that comprise the system. The Chapter presents the new 
system as a means of filling the gap left by previous systems’ limitations, 
particularly respecting the attempts at handling the earthwork optimization problem. 

§ Chapter 6 is related with a twofold application of the system for a case study. The 
two aspects that are addressed originate from the multi-disciplinary nature of this 
project. As such, application must be carried out bearing in mind the performance of 
the system, framed into the Information Systems area, as well as the quality of its 
output, which is more directly related to the Civil Engineering area. Moreover, since 
the required data is available, a comparison of the results obtained by the system and 
those obtained by conventional design is also carried out. 

§ Finally, Chapter 7 refers to the conclusions that were drawn during and after the 
development of the system. A description of the system’s capability to improve the 
design and construction is provided. The discussion of results includes the potential 
of the system, acknowledging the tool’s capability to support and improve 
earthworks design in the point of view of a company, and illustrating how its usage 
can have a significant impact on an economic perspective. This Chapter also draws 
some directions for future research and development on the subject under study. 
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2.1. INTRODUCTION 

This Chapter intends to highlight the definition of earthworks in a Civil Engineering point of 
view, as well as to describe in detail the workflow and tasks that comprise it. In an 
optimization context, the duration and cost of earthwork tasks is optimal if the usage of 
resources (i.e. mechanical equipment) is ideal and site conditions allow it. In this point of 
view, knowledge of factors such as productivity of equipment versus the cost of their usage 
is paramount to allow for proper optimization. In turn, productivity is strongly influenced by 
the type of material that is used during construction, as well as by aspects related to site 
conditions, equipment specifications or operator skill. As such, Section 2.2.1 attempts to 
examine and detail the main elements that have an impact on the productivity of equipment 
for the given conditions, along with the methodologies used in conventional design to 
determine this productivity. Furthermore, since the optimization of earthworks is not limited 
to economic and technical aspects such as project duration and costs, insights into some 
current environmental concerns, such as carbon emissions in earthworks, are also provided, 
as they will be of interest to the remaining Chapters. 

2.2. EARTHWORKS WORKFLOW 

Due to constructional and environmental concerns in linear constructions (e.g. road, railway 
or airway constructions), designers generally attempt to limit the material usage to that 
which is available within the construction site. In other words, earthworks design is carried 
out in such a way that the totality of the material required for building each embankment in 
the construction site is originated in its excavation fronts, avoiding as much as possible the 
transportation of geomaterials from external sites (i.e. borrowing fronts) to be used in 
embankments. In practice, this means that a balance between excavation and embankment 
material volumes is sought during design phase. This results in an early definition of which 
areas will be excavated, so as to lower the actual topography to the target height, and where 
embankments are going to be built, in order to increase the height of the actual topography 
towards the design height. 

As such, bearing in mind that the excavation and embankment areas are predefined, the 
earthworks process is generally regarded as a sum of sequential tasks which flow from 
excavation towards embankment tasks. Since the goal is to alter the surface/topography of a 
target area, the tasks generally associated with earthworks mostly follow the following 
sequence, excluding supplementary tasks, such as treatment of geomaterials (e.g. using 
cement and lime): 

§ Excavation of geomaterials. Resulting geomaterials are loaded onto trucks for 
transportation to embankment fronts. 

§ Transportation of excavated geomaterials from excavation fronts to embankment 
fronts. Materials are unloaded at a specific location inside an embankment front so 
as to allow for spreading. 
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§ Spreading of previously unloaded geomaterials into layers to allow for compaction. 
Some geomaterials (e.g., soil-rockfill mixtures) require specific techniques to 
produce a properly spread layer. 

§ Compaction of layers of previously spread geomaterial. This task is generally the 
most complex of the process, requiring quality control procedures to be carried out 
during and after its execution. 

 

These sequential tasks are achieved by relying on heavy mechanical equipment. The 
equipment varies depending on the task, and combinations of different equipment types are 
often used for each task. Table 2.1 summarizes and exemplifies the equipment types used in 
general, associating them with the respective task and other tasks they may have direct 
influence on. Intermediate tasks, such as material treatment or layer wettening during 
spreading and compaction, are not explicitly included in this simplified representation of 
earthworks, as they are performed according to material requirements and often depend on 
external factors (e.g. atmospheric conditions). In the particular case of layer wettening, this 
task is considered to be included in the spreading task throughout this work, specifically for 
productivity calculation purposes in Chapters 5 and 6. 

Table 2.1  Earthwork tasks and equipment  

Task Equipment 
Interactions with other 
equipment 

Type of interaction 

Excavation 
Excavators, loaders, 
backhoe loaders 

Transportation 
equipment 

Loading 

Transportation 
Dumper trucks, 
articulated trucks 

Excavation and 
spreading equipment 

Loading (excavation fronts) 
and unloading (embankment 
fronts) 

Spreading 
Bulldozers, motor 
graders 

Transportation and 
compaction equipment 

Spreading unloaded 
geomaterial into layers 

Compaction 
Rollers (e.g., vibratory 
and tire rollers) 

Spreading equipment 
Compacting geomaterial 
layers 

 

 Since the mechanical equipment is generally limited in this type of construction, 
conventional design is usually focused on grouping a number of each type of equipment into 
predefined plants, depending on the available equipment and site conditions (e.g., material 
types, space restrictions, atmospheric conditions). For instance, a standard plant may consist 
of one excavator in an excavation front, supported by four dumper trucks, which transport 
the material to an embankment front with one bulldozer and one roller (Figure 2.1). 
Depending on the equipment plant (i.e., available equipment in a construction site) and site 
conditions, multiple plants of this kind can be working simultaneously in different 
excavations and embankment fronts. Furthermore, the amount of equipment allocated for 
each task may be adjusted so as to better adapt to the specific case of each front. Under 
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conventional theories, adding or removing equipment to a specific task will linearly increase 
or decrease its productivity, respectively. For example, this may consist of adding additional 
trucks to compensate for a long hauling distance between an excavation and an embankment 
front; or allocating extra excavators to a front in order to increase its output, allowing the 
support of more than one embankment front. As work progresses, the available geomaterial 
in excavation fronts or the required geomaterial volumes in embankment fronts will 
gradually become exhausted or completed, respectively. When this happens, the equipment 
associated with the completed fronts is subsequently reallocated into another front and 
adjusted to its requirements and restrictions (e.g., increasing or decreasing amount of 
allocated equipment). This is carried out successively until all fronts are at the target height 
and the earthworks project is completed.  

In this context, the time that each plant requires to complete their tasks is mostly dependant 
on their actual (i.e., also referred to as real or on-the-job) productivity, which, albeit being 
determined individually for each piece of equipment and its working conditions (as 
discussed further ahead on this Chapter), is strongly influenced by the productivity of the 
rest of the allocated plant. Bearing in mind the previous example, a truck plant is unable to 
transport more geomaterial volume than that which is excavated by their associated 
excavation plant, even if its nominal productivity rate is higher than the productivity of the 
excavators. Conversely, spreading equipment cannot work at its maximum potential in terms 
of productivity if the flow of geomaterial transported to the embankment front is insufficient 
and so on. Taking this into account, the productivity of the equipment allocated to a task is 
always conditioned by the productivity of the equipment allocated to the previous tasks. 
While adding more equipment to a specific task may increase its productivity, its maximum 
work rate cannot exceed that of the task that precedes it.  

The actual productivity, Qp (m3/h), of all equipment in an earthwork construction is usually 
considered in terms of its nominal productivity, Q, (i.e., potential work rate, determined in 
function of equipment specifications) corrected by an efficiency factor, k (Equation 2.1).  

 

𝑄! = 𝑄×𝑘 (2.1) 

 

The purpose of the latter is mainly to take into account aspects that may hinder the 
performance of a piece of equipment, such as operator efficiency, material characteristics, 
haul road conditions, among others. However, the efficiency factor of a piece of equipment 
or a plant will also diminish as a result of delays or insufficiencies related with low 
productivity in previous tasks. Since working at 100% efficiency cannot be achieved 
continuously even in ideal conditions, for which the nominal productivity is determined, 
efficiency factors usually vary between 0,3 – 0,8 for earthwork equipment. This is also 
referred to as a number of minutes that a piece of equipment will work per hour, e.g., an 
efficiency factor of 0,75 will often be referred to as a 45 minute work hour in earthwork 
guides (SETRA and LCPC 2000; Caterpillar Inc. 2011).  
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Figure 2.1  Earthworks equipment workflow 

2.2.1. Equipment productivity 

Excavation 

In general, the factors that affect the productivity of most equipment in earthworks are 
related to equipment specifications, site and material conditions and operator skill. 
Depending on the equipment type, additional factors might be relevant in assessing the 
productivity rates. Naturally, the relevant specifications are different for each equipment 
type, as are the site and material conditions with impact on the productivity of a plant. As far 
as the excavation task is concerned, Figure 2.2 represents a diagram that depicts the most 
relevant factors influencing the real work rate of excavators in earthworks. Whereas 
equipment specifications, such as operating weight and bucket capacity, as well as some 
geomaterial characteristics, such as type and moisture state (i.e., water content), are the main 
aspects that determine the nominal equipment work rate, aspects like the operator skill, 
space restrictions and atmospheric conditions directly affect the efficiency at which an 
equipment can carry out its work.  
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Figure 2.2  Relevant factors affecting excavator productivity in earthworks 

More specifically, the nominal productivity of an excavator depends on its maximum bucket 
load and cycle time. In turn, the former is directly related to the equipment lift capacity and 
its operating weight, while the latter is linked to the potential positioning of excavators in the 
excavation front (e.g., excavator height in comparison with the height of the material being 
excavated, as well as with the angle/distance to the loading area/truck), operator skill and 
atmospheric conditions.  

The choice of maximum bucket size for an excavator is limited by its lift capacity. An 
excavator’s lift capacity depends on its weight, centre of gravity, lift point position and 
hydraulic capability. Furthermore, for any given lift position, the excavator lift capacity is 
limited by its hydraulic capacity, which changes depending on the equipped boom, stick and 
bucket, or tipping stability. According to design specifications (Caterpillar Inc. 2011), an 
excavator is considered to be at the tipping point when the bucket weight acting at the centre 
of gravity causes the rear rollers to lift clear of the track rails. Thus, the tipping load is 
defined as the load producing a tipping condition at a specified radius. The load radius is 
measured as the horizontal distance from the axis of upper structure rotation (before loading) 
to the centre of vertical load line with load applied (Figure 2.3, dimension A). The rating 
height is based on the vertical distance of the bucket lift point to the ground (Figure 2.3, 
dimension B).  

 

Figure 2.3  A. Load radius; B. Rating height 
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The rated load is established using the load radius and the rating height. Ratings for the 
ability of a specific machine attachment to lift a load slung from the designated bucket are 
defined as follows: 

§ The rated load must not exceed 75% of the tipping load;  

§ The rated load must not exceed 87% of the excavator hydraulic capacity. This means 
the machine should be able to lift 115% of the rated load; and  

§ The rated load must not exceed the machine’s structural capability.  

The rated load is directly related to the volume of material in the bucket in each loading 
cycle (i.e., bucket payload). Buckets are usually rated in terms of struck and heaped 
capacities. The struck capacity corresponds to the volume that is enclosed within the bucket 
geometric boundaries, disregarding any material above the strike off plane. The heaped load 
corresponds to the volume of the struck load plus the volume of heaped material above the 
strike off plane (Figure 2.4), considering an angle of repose of 1:1. 

 

 

Figure 2.4  Bucket struck and heaped capacities 

However, an excavator bucket payload is not only dependent on bucket geometric 
characteristics, but also on curl force and soil characteristics. The latter are usually taken into 
consideration by correcting the heaped bucket capacity with a fill factor (Equation 2.2). Fill 
factors for several types of materials are listed in Table 2.2. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐵𝑢𝑐𝑘𝑒𝑡  𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 𝐻𝑒𝑎𝑝𝑒𝑑  𝐵𝑢𝑐𝑘𝑒𝑡  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  ×𝐵𝑢𝑐𝑘𝑒𝑡  𝐹𝑖𝑙𝑙  𝐹𝑎𝑐𝑡𝑜𝑟 (2.2) 

Table 2.2  Fill factors in function of material type 

Material Fill factor range 

Moist loam or sandy clay 

Sand and gravel 

Hard, tough clay 

Rock – Well blasted 

Rock – Poorly blasted 

100-110% 

95-110% 

80-90% 

60-75% 

40-50% 
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As mentioned, the equipment cycle time for given site conditions is also a critical aspect of 
excavation productivity. The digging cycle of an excavator is composed of four segments: 

§ Load bucket; 

§ Swing loaded bucket; 

§ Empty bucket; and 

§ Swing empty bucket. 

 

The total excavator cycle time depends on equipment dimensions, since smaller excavators 
can cycle faster than larger ones, and site conditions. The more severe site conditions are, 
the longer the cycle times become. For instance, as materials become harder to dig, the 
difficulty of filling the bucket increases, and as the excavation point becomes deeper the 
bucket has to travel farther, increasing cycle time. The positioning of the unloading point 
(e.g., truck or spoil pile) in comparison with the excavation point in terms of turning angle 
also has a strong influence on the cycle time. If a truck is directly beside the excavation 
point and in a lower ground, very fast cycles are attainable, where otherwise if a truck is 
located 180º and above the excavator, the opposite will occur. Figure 2.5 summarizes how 
cycle times can vary depending on site conditions, giving practical examples. 

 
 

 

A. Easy digging (unpacked earth, sand gravel, ditch 
cleaning, etc.). Digging to less than 40% of machine’s 
maximum depth capability. Swing angle less than 30°. Dump 
onto spoil pile or truck in excavation. No obstructions. Good 
operator.  

B. Medium digging (packed earth, tough dry clay, soil with 
less than 25% rock content). Depth to 50% of machine’s 
maximum capability. Swing angle to 60°. Large dump target. 
Few obstructions.  

C. Medium to hard digging (hard packed soil with up to 50% 
rock content). Depth to 70% of machine’s maximum 
capability. Swing angle to 90°. Loading trucks with truck 
spotted close to excavator.  

D. Hard digging (shot rock or tough soil with up to 75% rock 
content). Depth to 90% of machine’s maximum capability. 
Swing angle to 120°. Shored trench. Small dump target. 
Working over pipe crew.  

E. Toughest digging (sandstone, caliche, shale, certain 
limestone, hard frost). Over 90% of machine’s maximum 
depth capability. Swing over 120°. Loading bucket in man 
box. Dump into small target requiring maximum excavator 
reach. People and obstructions in the work area.  

 
Figure 2.5  Cycle time vs. site conditions chart (adapted from Caterpillar Inc. 2011) 
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Finally, having determined the average bucket payload and the cycle time for each 
excavator, it becomes possible to determine its nominal productivity, which can then be 
corrected into its on-the-job work rate by correcting it with the efficiency factor. The 
nominal productivity, usually measured in m3/h, is regarded as the average bucket payload 
(determined by Equation 2.2) multiplied by the number of cycles per hour, as shown in 
Equation 2.3, while the on-the-job work rate, can be determined by applying the associated 
efficiency factor, as mentioned in Equation 2.1. 

 

𝑄 = 𝐶𝑦𝑐𝑙𝑒𝑠  𝑝𝑒𝑟  ℎ𝑜𝑢𝑟  ×𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐵𝑢𝑐𝑘𝑒𝑡  𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (2.3) 

Hauling 

Resembling the excavator case, truck productivity also depends on the general mentioned 
aspects: equipment specifications, site conditions and operator skill. In particular, the 
hauling distance is traditionally regarded as one of the main factors that affects the duration 
of hauling cycles. Even though the productivity of a truck plant is not limited to that factor 
alone, its optimization must include the decision of the trajectory taken in the hauling cycles, 
reducing cycle time, fuel usage and carbon emissions. In this context, tools such as 
geographic information systems can be used in the determination of shortest routes between 
loading and unloading areas, as further explored in Chapter 5. Moreover, since a truck is 
loaded by excavators, there is another decisive aspect that determines the productivity of a 
truck plant that was not included in the previous task: the productivity of excavators (Figure 
2.6).  

 

 
Figure 2.6  Relevant factors affecting hauling productivity in earthworks 
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In fact, if an excavation plant does not have a high enough work rate that it is able to load 
enough material onto trucks after each hauling cycle, the productivity of the hauling plant 
will be limited by the productivity of the excavator plant. This means that the work rates of 
both plants must be matched to each other, so as to avoid the unnecessary waste of resources 
and manpower (truck and excavator operators). For instance, if there are too many trucks for 
an excavation plant to load at each cycle, the former will have to incur in idle time while 
waiting for other trucks to be filled. Not only the waste of resources, but also of time, fuel, 
and manpower could be avoided by proper design. A mitigation measure to this problem 
could be either to increase the excavation plant’s output during construction phase, if site 
conditions allow it and there is enough available equipment, or otherwise allocate some of 
the trucks to other fronts where they can be used at their full potential. 

In order to match the productivities of both tasks, conventional design usually makes use of 
the concept of matching factor (Morgan and Peterson 1968), MF (Equation 2.4). The MF 
represents the ratio of actual truck arrival rate to loader service time. When the match factor 
equals 1, the operation is referred to as the ideal condition for determining the number of 
machines and the cycle time of equipment. If MF < 1, the operation indicates that less than 
the ideal number of hauling equipment is employed, while if MF > 1, it indicates that there is 
an exccess of haulers in comparison to the number the operation requires. Subsequently, the 
efficiency of a truck plant will stop increasing if MF > 1. However, this theory is limited to 
homogeneous truck fleets, which is not always possible, and the cycle times must not take 
into account any idle or waiting times. 

 

𝑀𝐹 = !"#$%&  !"  !!"#$%&  ×!"#$%&  !"!#$  !"#$
!"#$%&  !"  !"#$%&'×!"#$%&  !"!#$  !"#$

 (2.4) 

 

The maximum nominal productivity of a truck depends on its maximum capacity (how much 
material it can carry per trip) and all the factors that affect the ammount of trips (i.e., cycles) 
it can do in a time window, for which one hour is usually taken as a reference (Equation 
2.5). These include factors such as hauling distance, haul road conditions, excavator 
productivity, operator skill, space restrictions and equipment dimensions (e.g., for 
performing the necessary maneuvers both in loading and unloading areas). This nominal 
productivity is often corrected by the MF itself for cases in which MF < 1, as depicted in 
equation 2.6. 

 

𝑄!"# = 𝑇𝑟𝑖𝑝𝑠  𝑝𝑒𝑟  ℎ𝑜𝑢𝑟×𝐿𝑜𝑎𝑑  𝑣𝑜𝑙𝑢𝑚𝑒  𝑝𝑒𝑟  𝑡𝑟𝑖𝑝 (2.5) 

 

𝑄 = 𝑄!"#×𝑀𝐹  𝑓𝑜𝑟  𝑀𝐹 < 1  

𝑄 = 𝑄!"#   𝑓𝑜𝑟  𝑀𝐹 ≥ 1 (2.6) 

 

Finally, the real productivity of a truck plant can be determined by multiplying the nominal 
productivity by the efficiency factor, as mentioned earlier (Equation 2.1). However, it is 
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important to note that the efficiency ratio for trucks is usually lower that its counterpart for 
other equipment types, often averaging between 0.4-0.6, and it can suffer significant 
variations even throghout a single construction project. This is due to the difficulty of 
controlling site and working conditions for each case. In general, even if a good design in 
terms of allocation throughout the construction phase is assumed, the efficiency ratio for 
trucks will still suffer strong variations with aspects such as: 

§ The ammount of necessary maneuvers in loading and unloading areas increases, 
which can be variable depending on the space restrictions and the ammount of 
equipment already allocated in each front. 

§ Hauling road conditions, including gradient, ground surface homogeneity and 
rolling resistance, which may hinder the maximum circulation speed for certain 
types of trucks. 

§ Operator skill, truck type and truck dimensions. Trucks may be classified according 
to several factors, such as type of engine, number of gears, number of wheels and 
axles, method of dumping (read-dump, side-dump, bottom-dump) and, obviously, 
truck capacity. Two trucks with similar dimensions may have different payloads due 
to different design. For instance, articulated dump trucks may have an easier time 
fitting into more turning points than rigid frame trucks. 

§ The percentage of the capacity of each truck that is actually loaded in each cycle, 
since the average payload of most trucks can vary depending on the loading 
conditions, such as available material, ease of excavation of each material type or 
ammount of trucks waiting in line. Furthermore, the determination of the ammount 
of material that is loaded into a truck must take into account the increase in void 
ratio that is a consequence of excavation, which often has effects on the density of 
the material. As a result, the actual payload of a truck quite often proves to be less 
than what is claimed by manufacturer specifications. Moreover, for some hauling 
routes, spilling during haul trip might be significant. 

Spreading 

Similarly to the truck case, one of the main factors with influence on the work rate of a 
spreading plant is the productivity of previous tasks. Obviously, this includes the 
productivity not only of the truck plant, but also of the excavation plant indirectly, since the 
work rate of the former depends on the work rate of the latter. Like other earthworks 
equipment, the remaining factors that generally affect productivity comprise the 
specifications of a bulldozer or tractor, the site and material conditions and the operator skill, 
as depicted in Figure 2.7.  

Since the outcome of a bulldozer is measured in how much geomaterial it can spread per 
hour, the dimensions of the dozing blade and the traction power capabilities of the tractor are 
essential to determine its nominal productivity. In this point of view, properly matching 
tractor and dozer is a basic requirement for maximizing production. 
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Figure 2.7  Relevant factors affecting bulldozer/tractor productivity in earthworks 

In order to achieve this objective, one must evaluate the limitations of the available tractors 
as well as the materials to be moved. Regarding the former, the weight and horsepower of 
the equipment represent the main factors that determine their ability to push. However, site 
conditions, such as terrain and underfoot conditions, may limit the ability of a tractor to use 
its weight and horsepower. In terms of the material to be moved, dozer performance will 
vary characteristics such as: 

§ Particle Size & Shape – Larger particle sizes increase the difficulty for a cutting 
edge to penetrate the material. In addition, sharper edges also represent a natural 
resistance to the rolling action of a dozer blade, requiring higher horsepower to 
move. 

§ Void ratio – A low void ratio for a soil means the individual particles have more of 
their surface area in contact with other particles. Such a soil is generally heavy and 
will be hard to remove from the bank state. 

§ Water Content – In most materials the lack of moisture increases the bond between 
particles and makes the material difficult to remove from the bank state. High 
moisture content makes dozing difficult because the material is heavy and requires 
more force to move. Optimum moisture reduces dust and offers the best condition 
for dozing ease and operator comfort. 

 

In view of this, the nominal productivity of bulldozers can be calculated based on numerical 
and empirical studies and it is often supplied by the manufacturers in tables or curves such 
as the ones presented in Figure 2.8.  
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Figure 2.8  Example of bulldozer nominal productivity curves and associated models 
(Caterpillar Inc. 2011) 

In the case of the presented productivity curves, the real productivity of bulldozers under 
specific conditions can be determined by correcting the nominal productivity by site 
condition factors, including the efficiency factor (exemplified in Table 2.3), as shown in 
Equation 2.4 (which falls under the same concept as Equation 2.1). These take into account 
the more obvious aspects, such as the material type and operator skill, and also other site 
conditions, such as visibility and terrain grade. 

 

𝑄! = 𝑄  ×𝑆𝑖𝑡𝑒  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟𝑠 (2.4) 

 

Table 2.3  Site condition factors for track-type bulldozers 

OPERATOR 

Excellent 

Average 

Poor 

 

1.00 

0.75 

0.60 

MATERIAL 

Loose stockpile 

Hard to cut; frozen 

Dry non-cohesive material 
or very sticky material 

Rock, ripped or blasted 

 

1.20 

0.80 

 

0.80 

0.60 
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TECHNIQUE 

Slot dozing 

Side by side dozing 

 

1.20 

1.15-1.25 

VISIBILITY 

Dust, rain, snow, fog or 
darkness 

 

 

0.80 

EFFICIENCY FACTOR 

50 min/h 

40min/h 

 

0.83 

0.67 

GRADES 

 

Compaction 

Compaction is typically the most complex task of the earthworks process. In fact, not only 
does the interaction between equipment and geomaterial include a considerably higher 
amount of variables, but also the chosen methodologies and techniques can result in 
completely different work rates for the rollers. Figure 2.9 shows a summary of the most 
relevant factors affecting roller productivity. 

 

 
Figure 2.9  Relevant factors affecting roller productivity in earthworks 
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Thus, in order to accurately determine the productivity of a roller or a roller plant, it is 
essential to characterize both the materials (in terms of material type and conditions in situ) 
and the compaction equipment (taking the roller specifications as a reference) being used. 
Each roller will have different productivity rates associated with each geomaterial, as well as 
with the compaction specifications for the task. Several compaction guides have attempted 
to capture the complex variables associated with the compaction task (British Standards 
Institution 1981; Transportation Research Board and National Research Council 1990; 
SETRA and LCPC 2000). Since compaction productivity is even more influenced by 
materials and equipment specifications than any other task, these guides usually follow 
similar concepts and methodologies, attempting to quantify the difficulty of compacting 
each type of material commonly found in the associated country. This includes a detailed 
evaluation of geomaterial characteristics, both in terms of mechanical properties and 
plasticity, followed by a description of compaction tecniques and methodologies, which are 
different for each type of compaction equipment. 

Among these, the French Guide des Terrassements Routiers, GTR, (SETRA and LCPC 
2000) features a broad classification of geomaterials and rollers based on empirical data and 
has proven its effectiveness by being used in a wide range of countries and conditions. 
According to the above-mentioned guide, in order to properly estimate the productivity of a 
roller given a specific geomaterial, site conditions and compaction specifications, one should 
begin by characterizing the involved materials and available compaction equipment. This 
assessment must be detailed enough to allow for the determination of the necessary 
compaction energy to achieve good compaction results, depending on material type as well 
as condition in situ. Recalling material classification, the guide separates the classification 
parameters for both soils and rocks. The classification tables for soils and rocks are provided 
in Annex A and B, respectively. With respect to soils, three main topics are, in general, 
considered: 

§ Grain size characteristics, derived simply from the grain size analysis, is the initial 
parameter for soil classification; 

§ Clay characteristics, evaluated from the following three tests, which can then be 
used to specify the general group of the geomaterial: 

o Attenberg limits (plastic index); 

o Methyl blue absorption value of soil; and 

o Sand equivalent. 

§ In what concerns rock materials, the GTR classification divides the classes with 
relation to their geological labelling and the practical specifications of their use, 
ranging from R1 – chalks – to R6 – igneous and metamorphic rocks. The following 
two tests are worth emphasizing on account of their importance towards rock 
classification: 

o Fragmentation test; and 

o Degradability test. 



Chapter 2 - Earthworks 

 

25 
 

Summarizing, when considering these general parameters, the GTR material classification 
can be considered by ranging from: 

§ A – Fine soils 

§ B – Sand and fine gravel (grit) 

§ C – Gravel soils with fines 

§ D – Soils and rock materials not influenced by water 

§ R – Rock materials 

§ F – Organic soils 

 

These material classifications can still be separated in several sub-classifications, as shown 
in Figure 2.10, which briefly summarizes the classification methodology for geomaterials: 

 
Figure 2.10 Material Classification according to their nature (adapted from SETRA and LCPC 

2000) 

 

To complement material characterization the GTR also includes the state characteristics, 
especially considering the water content of the material. These also account for the 
environment in which the material will be used. The moisture state ranges from very moist 

17

Use of soils and rocky materials in embankment construction • Classification of rocks and soils

• Soil with:
55% of 0-50mm fraction passing 80 µm and Dmax: 70mm and
Coarse particles (> 50mm) are rounded -> class C1-A
Ip: 32 -> class C1-A3

wn/wOPN: 1 -> class C1-A3m

• Soil with:
10% of 0-50mm fraction passing 80µm and
55% of 0-50mm fraction passing 2mm and
Dmax: 100mm and
Coarse particles (> 50mm) are angular and
48% of the complete soil sample passing 50 mm -> class C2 (D2, B3 or B4)
VBS: 0.13 -> class C2-B3

Material known to be almost completely insensitive to water, so its moisture content does not
need to be characterised.

4.3 Summary of classification

4.3.1 Summary table of the classification of rock and soil types

Soils
Dmax ! 50mm

Soils
Dmax > 50mm

Rocks

A1 A2 A3 A4

B5 B6

D1 B1 B2

D2 B3 B4

Percent passing 
80 µm

100%

35%

12%

0%
0 0,1 0,2 1,5 2,5 6 8

12 25 40 Ip

Percent passing 2 mm

100%

70%

0%

C1 or C2

C1: poorly structured rounded or angular

materials with fraction 

0/50mm > 60-80%

C2: strongly structured angular materials

with fraction 

D3 0/50mm < 60-80%

Percent passing  80 µm

fraction 0/50mm

12 %

0 0,1 VBS

VBS

Carbonate rocks Chalk R1

Limestone R2

Sedimentary rocks Argillaceous rocks Marls, claystone, pelite, etc. R3

Siliceous rocks Sandstone, puddingstone, breccia, etc. R4

Saline rocks Rock salt, gypsum, etc. R5

Igneous and 
Granite, basalt, andesite, gneiss, schist, slate, etc. R6metamorphic rocks



Development of an Intelligent Earthwork Optimization System  

 

26 
 

to very dry. The normal state is the best condition for soil placement and compaction. Wet 
and very wet states are soils for which trafficability and compaction are difficult. Dry and 
very dry states are soils which are hard to compact and form stable embankment structures. 
This step results in the further classification of soil geomaterials according to their moisture 
state, and is made bearing in mind: 

o The relation between its present water contents and the optimum water 
content from the Normal Proctor test; 

o The soil consistency index, which represents the material’s water content 
compared to the Attenberg limits; 

o The measured IPI Index (consisting of the CBR Index measured with the 
soil’s natural water content, and without surcharge); 

 
Roller classification in GTR is restricted to rollers with a drum width of at least 1,30m. The 
classification tables for compaction equipment are compiled in Annex C. In general, rollers 
are divided into 5 categories: 

§ Pneumatic tyred rollers – classified depending on load per wheel. This type of roller 
is often ballasted up to twice their empty weight in order to obtain maximum wheel 
load recommended by the manufacturer; 

§ Smooth vibrating drum rollers and vibrating tamping rollers – Both are classified 
according to a parameter defined as (M1/L) √A0 and a minimum A0 value, where 
M1 is the total mass in Kg acting on the full width of the vibrating drum, L is the 
drum width in m, and A0 is the theoretical empty amplitude, calculated as A0 = 
1000 (me/M0), in which me is the eccentric moment in mkg and M0 is the mass in 
Kg of the vibrating part excited by the the eccentric mass; 

§ Static tamping rollers – Static tamping rollers are classified according to the average 
static load per unit width of drum(s) with tamping feet; 

§ Vibrating plate compactors – Vibrating plate compactors are classified on the basis 
of static pressure under the plate Mg/S in kPa (Mg is the weight of the plate and S is 
the contact area between plate and soil).  

 

Having carried out proper classification of existent geomaterials and available compaction 
equipment in a construction site, as well as moisture content and climatic conditions during 
work, it becomes possible to estimate the productivity of the compaction process. Being 
heavily dependent on the chosen compaction specifications, such as layer thickness, roller 
speed and number of passes, this information is presented in tables to allow for easier access. 
In these compaction tables, the following parameters are defined (SETRA and LCPC 2000): 

§ Q/S, a compaction parameter that is constant for all layer thicknesses, directly 
relating the layer thickness and number of necessary passes, Q/S = e/N; 

§ e, which represents the actual compacted thickness; 
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§ V, standing for the maximum roller speed for vibratory rollers or average speed for 
other roller types; 

§ N, number of load applications (i.e., roller passes); 

§ Q/L, or nominal compaction rate per meter width, where L represents roller drum 
width, Q/L = 1000 x V x (Q/S). Real rate of compaction can be achieved by 
multiplying the nominal compaction rate by an efficiency ratio, k (usually between 
0.5 and 0.75), which is connected to the number of hours per day in which the roller 
is actually performing compaction; and 

§ Applicable compaction code, which comes from soil use tables (based on moisture 
content and weather). 

 

For most roller classes, the GTR shows, for a certain material, one single value for each of 
these parameters. However, in the specific case of vibratory rollers, the compaction tables 
present two columns, one regarding maximum compaction rate for a maximum velocity 
limited to 5 km/h, with a lower layer thickness; while the other concerns maximum layer 
thickness, with lower maximum roller speed (Figure 2.11). 

 

 
Figure 2.11 Example of the compaction table for B1 type soil and V3 class roller (adapted from 

SETRA and LCPC 2000) 

According to this classification, should a nominal thickness for a specific job (ejob) with 
vibratory rollers fall between the two values in the compaction tables, it is possible to 
determine the optimum compaction conditions for that thickness. This should be done by 
calculating a new maximum speed for the roller, V = (V x e) / ejob, where the values V and e 
correspond to Vmin and emax (from the right hand column of the compaction table). The 
new speed will make it possible to determine a new rate per meter width Q/L = 1000 x V x 
(Q/S). The number of passes, N, is equal to ejob / (Q/S), thus making it possible to calculate 
an intermediate column for thickness values which fall between the ones presented in the 
tables. Having determined the nominal work rate of a roller for a given situation, making use 
of these compaction tables, it is then possible to correct it using the efficiency factor index 
(Equation 1), which takes into account aspects such as operator skill, space restrictions and 
productivity of previous tasks, resulting in the real work rate for each case. According to the 
aforesaid guide, in the case of compaction, the time that a roller takes to stop and accelerate 
back to compaction speed at the end of each pass should also be taken into consideration 

41

Use of soils and rocky materials in embankment construction • Compaction of fill

6.3 Compaction specifications

6.3.1 Use of tables - Examples of application 

* Classes Pi, V1, V2, VPi, SPi and PQi (single column)

Example: B1 soil in embankment (quality q4)

Same value (in m) for all thicknesses

Actual compacted thickness e < e (in m)
V is max speed for vibratory plant, average speed for
other plant (in kph)

Number of load applications: rounded up from actual
thickness/(Q/S) given for e of the table
If e = 0.30, then N = 5

Rate per metre width
Q/L = 1000 x V x (Q/S)
Practical rate of compacting operations with an efficiency
ratio k (between 0.5 et 0.75)
Qpract = k x (Q/L x L x (N/n)
If k = 0.6 L = 2m N/n = 1, then
Qpract = 360 m3/hr

* Classes V3 to V5 (double columns: possible envelope)

Example: B1 soil in embankment

Same value for all combinations of thickness and speed

Right column: choice of low V 2.0 kph to maximise 
e (0.80m)
Left column: max rate with high V limited to 5 kph max
and e set at 0.30m

Same design rules as before in each column

It can be seen that a higher forward speed is necessarily associated with a lesser layer thickness
because of the steeper density gradient in the layer. Providing these conditions are complied with,
the compaction rate is still higher.
It is of course unacceptable to mix values from both columns (greatest thickness and highest speed).

Method Class
P1

Code 2 Q/S 0.060

Applicable code e 0.35
comes from soil V 5.0
use tables (based
on moisture 

N 6
content and 
weather)

Q/L 300

Method Class
V3

Code 2 Q/S 0.135

e 0.30 0.80

V 5 2 

N 3 6

Q/L 675 270
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when selecting a value to the efficiency factor. Recommended design values for compaction 
equipment range from 0.50 to 0.75. 

2.3. ENVIRONMENTAL CONCERNS IN EARTHWORK 
CONSTRUCTIONS 

Traditionally, the main environmental concern of earthwork designers was directed at 
reutilization of materials for embankment construction. This includes not only the already 
referred usage of materials from the excavation fronts as much as possible, but also the 
treatment of these materials when their conditions are less than reasonable for use in 
embankments. As such, several soil treatment techniques have been developed in order to 
compensate for the drawbacks and limitations that might be implied in the employment of 
soils with specific characteristics. These techniques range from treatment with cement or 
lime, or both, in order to improve mechanical or plastic properties of the material (Silva et al 
2013; Tinoco and Gomes Correia 2013). 

In recent years, new environmental concerns regarding earthwork constructions have 
emerged. Such concerns are considerably wide, ranging from water economy to carbon 
dioxide emissions and waste control in construction phases, which go beyond the usual 
implemented environmental rules, such as the ecology and nature conservation or the regard 
for the landscape and townscape (London Health Comission and London Development 
Agency 2004). Most of these construction concerns have been taken into consideration in 
many recent major constructions, for instance during the construction and preparation for the 
UK Olympic Games, including (Olympic Delivery Authority 2007): 

§ Carbon: To minimise the carbon emissions associated with the construction of the 
Olympic Park and venues. 

§ Water: To optimise the opportunities for efficient water use, reuse and recycling. 

§ Waste: To optimise the reduction of waste through design, and to maximise the 
reuse and recycling of material arising during demolition, remediation and 
construction. 

§ Materials: To identify, source, and use environmentally and socially responsible 
materials.  

§ Biodiversity and ecology: To protect and enhance the biodiversity and ecology of 
the Lower Lea Valley, and other venue locations. 

§ Land, water, noise, air: To optimise positive and minimise adverse impacts on land, 
water, noise, and air quality. 

 

It is easily inferred that carbon emissions and air quality are of critical relevance in 
earthworks tasks. Actually, as noted within the Environmental Statement, the key emission 
to air is the generation of dust from demolition, earthworks and construction activities. 
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Emissions from vehicles associated with construction sites can significantly add to levels of 
local air pollution, so it is important that best practices are adopted to reduce vehicle 
emissions. As such, several mitigation measures can be taken in order to minimize air 
quality impact (Greater London Authority and London Councils 2006): 

§ Developers can specify tax-exempt ‘red’ diesel with a sulphur content equivalent to 
ultra low sulphur diesel. This measure will automatically reduce particulate 
emissions by 30 per cent. Furthermore, fitting suitable after-treatment devices can 
reduce the remaining particles by at least 85 per cent. Also, considering that fine 
particles are of great concern to health, this is, therefore, a very effective way of 
reducing any health impacts to workers and sensitive receptors. 

§ In addition to local air pollutants, carbon dioxide is also emitted from vehicle 
exhausts. As it is a key gas linked to climate change, controls should be put in place 
to limit emissions; these controls will also help developers reduce fuel costs. 

§ No vehicles or plant should be left idle unnecessarily. Should any emissions of dark 
smoke occur (except during start up) then the relevant machinery should be stopped 
immediately and any problem rectified before being used. 

§ Reduce the number of vehicle movements through better planning. 

§ Set an appropriate speed limit on haul routes. 

§ Avoid use of diesel or petrol powered generators by using mains electricity or 
battery powered equipment where possible and if safety concerns can be overcome. 

§ Encourage developers to use consolidation centres to manage site deliveries. This 
will help reduce time wasted on searching for materials and the number of vehicles 
entering the site, and will have both congestion and emission benefits. 

§ Where construction sites are located near to waterways or railways it may be 
feasible for construction materials to be delivered or removed from the site using 
water transportation means, rather than by road. The obvious benefit is that it will 
reduce the number of trips made by vehicles on local roads, therefore reducing local 
emissions and disturbance to sensitive receptors. 

2.4. FINAL REMARKS 

Earthworks are comprised of several tasks that are carried out in sequence so as to shape the 
surface of an area to fulfil a specific purpose, such as foundation for structures of 
infrastructures. The progress of an earthworks project is influenced by a high amount of 
variables, which differ according to each task. Furthermore, the tasks feature a high level of 
interdependence as a result of their sequential nature: one task is unable to achieve its goals 
within reasonable time and budget if the previous tasks are not appropriately assembled to 
sustain it. 
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In this context, the optimization of earthworks must deal with the elevated complexity and 
high amount of variables inherent to the associated tasks. However, being one of the 
processes with higher costs and durations in many constructions (e.g., road and railway 
construction), the optimization of every task is paramount. By optimizing the whole 
earhtworks process, one is minimizing not only costs and durations, but also its 
environmental impact, by reducing fuel usage and carbon emissions.  

Considering that there is availability of technology with the potential to be used for 
optimization of such complex processes (Chapter 3), this work explores the possibility to 
develop a robust system that combines several of these technologies in order to perform the 
global optimization of the whole earthworks process (Chapter 5), bearing in mind the 
concerns that have been discussed in this Chapter.  
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3.1. INTRODUCTION 

Following the background on the topic of earthworks in the previous Chapter, including the 
delineation of the problem being addressed in this study, the present Chapter compiles the 
available technologies used to achieve the proposed goals. As previously mentioned, bearing in 
mind the high complexity of the outlined optimization problem, conventional linear 
optimization or extensive search methodologies are infeasible. As such, metaheuristics, such as 
genetic algorithms or swarm intelligence, come forward as an alternative for dealing with large 
search spaces in complex environments, within reasonable computational requirements.  

However, a good optimization output is not only dependent on the used method, but also on the 
proper knowledge of construction-specific restrictions and productivity factors. Considering this 
information is often unknown during project design phases, reliable estimation methods are 
required. Leveraging on the increasing availability of construction databases that stem from the 
development of information technologies, data mining (DM) emerges as a potential tool for 
dealing with this issue. Both the metaheuristics and the DM techniques mentioned in this 
Chapter are cathegorized as soft computing (SC) techniques, as they resort to solutions that 
attempt to deal with imprecision, uncertainty, partial truth, and approximation to achieve 
practicability, robustness and low solution cost in terms of computational requirements. For this 
reason, the term SC is often used in this work. 

Finally, the advantages of geographic information systems (GIS) in this area of study should not 
be overlooked. In fact, given their capabilities to represent or map large areas (e.g., a road or 
railway construction site) using cartographic and geographic data, GIS are ideal tools to 
optimize traffic flow for different conditions (e.g., transportation equipment hauling and return 
routes) in a georeferenced environment, which would otherwise be impractical using other 
optimization methods. Furthermore, GIS feature capabilities related to geoinformation analysis 
and manipulation, as well as visual support for output visualisation, enhances their potential 
when used on their own or in conjunction with the mentioned technologies. 

Subsequently, this Chapter focuses on the description of the features within these technologies 
that can be geared towards a global optimization of the earthworks process. Table 3.1 
summarizes and structures the references associated with each type of technology, which are 
then described throughout the ensuing sections. 

3.2. KNOWLEDGE DISCOVERY IN DATABASES 

Knowledge discovery in databases (KDD) is an artificial intelligence branch focused on 
developing machines that display intelligent behavior, similarly to humans. One of the features 
that separates a human from a machine up to this point is the ability to learn from experience. 
KDD attempts to fill this gap, being defined as a nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data (Fayyad et al 1996a). The term 
nontrivial means that KDD process is not a straightforward procedure, instead consisting of an 
interactive and iterative process, involving numerous steps, in which the user must make fulcral 
decisions. 



Development of an Intelligent Earthwork Optimization System  

 

34 

Table 3.1  Technology literature map 

Technologies 
  

 Data 
Mining 

  
Metaheuristics 

  Geographic Information 
Systems  

 
Brown and Kros 2003 

Chang et al 2000 

Chapman et al 2000 
Fayyad et al 1996a 

Fayyad et al 1996b 
Groth 2000 

Hastie et al 2009 

Hebb 1949 
Kim and Street 2004 

Li et al 2004 
Liao et al 2012 

Matsatsinis and Siskos 2002 

McCulloch and Pitts 1943 
Musaev 2004 

Pearson 1908  

Rosenblatt and Cornell 
Aeronautical Laboratory 1958 
Santos and Azevedo 2006 

Turban et al 2004 
Vapnik et al 1997 

Vapnik 1998 
Walker 2007 

 

Dorigo and 
Gambardella 1997 
Glover 1986 

Glover and Laguna 
1997 

Haeser and Gomes-
Ruggiero 2008 
Holland 1975 

Kennedy and 
Eberhart 1995 

Kirkpatrick et al 
1983 
Michalewicz 1999 

Nahar et al 1986 
Petri 1966 

Sujitjorn et al 2006 

Zadeh 1965 
 

 

Denègre and Salgé 
1996 

Gutiérrez Puebla and 
Gould 1994 

Heywood et al 2011 
Martin 1991 

Peuquet and Marble 
1990 

Rowley and Gilbert 
1989 
Zeiler 1999 

 

In this context, DM is formally considered part of the larger process, KDD, which represents the 
overall process of discovering useful knowledge from data (Fayyad et al 1996b). However, 
through the years the term data mining became more popular, being often used as a synonym of 
KDD. The latter is a multi-step process, including selection, pre-processing and processing of 
data, application of DM algorithms, interpretation and processing of knowledge. The rapid 
development of these methodologies can be traced to the increasing emergence of electronic 
data management methods, having successfully been applied to several different areas, such as 
marketing (Matsatsinis and Siskos 2002; Kim and Street 2004), manufacturing  and production 
(Chang et al 2000; Musaev 2004) or health care (Li et al 2004; Walker 2007), as well as 
numerous applications in other areas (Turban et al 2004; Liao et al 2012). 
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Figure 3.1  KDD process overview (adapted from Fayyad et al 1996b) 

The first step of the process should consist of an understanding of the field associated with the 
problem and the definition of goals for the study, as well as the compilation of the available data 
on the subject. The ensuing database should then undergo a cleaning and preparation process, in 
which a subset of the original data is selected including exclusively relevant attributes. This step 
often requires a multidisciplinary team of experts, who can provide the necessary know-how to 
support the selection of relevant attributes. The cleaning process comprises the removal of noise 
and outliers, aiming to improve data quality (Brown and Kros 2003). 
The integration, or transformation step covers the adaptation/modification of the data structure 
and type so as to allow for the application of the different DM algorithms, according to the 
requirements of the latter. As an example, a normalization of inputs and outputs to a zero mean 
with a standard deviation of one can be advantageous for the application of some DM 
algorithms. 

The fulfillment of the previous stages allows for the application of DM algorithms to the applied 
data, corresponding to the mining step. This specific task is further discussed in subsection 
3.2.1. Finally, the resulting patterns are then analysed and interpreted, potentially resorting to 
support methods or software (e.g., visualization tools), in order to obtain useful knowledge that 
can be used in the area of study. For instance, this knowledge can be used in a decision support 
process or incorporated in intelligent systems, such as expert of knowledge-based systems. It is 
to be noted that not all unearthed patterns are useful, thus demanding the careful analysis of the 
user or field experts. Moreover, it may be necessary to fall back to any of the previous steps to 
correct options and errors, increasing the quality of the final results. This shows how KDD is an 
interative procedure, where the quality of the results is dependent of the interaction between the 
discussed sequential steps and the user. 

3.2.1. Data mining 

When framed in the context of a methodology the DM process becomes easier to understand, 
implement and analyse (Santos and Azevedo 2006). As one of the most widely used and 
complete methodologies, the CRISP-DM (Cross Industry Standard Process for Data Mining) 
was first conceived in 1999 (Chapman et al 2000) and has already acquired a high level of 
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acceptance in data mining projects second surveys to multiple users. The methodology has the 
advantage of being neutral concerning the industry where it is applied and the tools used, so 
users should use it as a framework to conduct the entire data mining process regardless of the 
business and the tools. The steps of CRISP-DM are translated into a hierarchical process, with a 
life cycle that is developed in six phases: business understanding, data understanding, data 
preparation, modelling, evaluation and implementation (Figure 3.2). 

 

 
Figure 3.2  CRISP-DM methodology (adapted from Chapman et al 2000) 

 

The description of the steps comprising CRISP-DM are as follows: 

§ Business understanding: identification and understanding of the project objectives and 
requirements from a business perspective. This is converted into a DM problem 
definition and a preliminary plan is proposed to achieve the goals;  

§ Data understanding: collection and analysis of the data in order to access its quality, 
discover first insights and detect subsets or trends. With this first data analysis, some 
hypotheses are formulated for hidden information;  

§ Data preparation: compilation of the final dataset that will be used during the learn- 
ing phase (modelling) to build the DM model. Include the selection of the records and 
attributes from the initial raw data as well as its cleaning and transformation;  

§ Modelling: selection of the DM algorithms and optimization of its parameters in order 
to find patterns within the data;  

§ Evaluation: thorough assessment of all fitted models and revision of all previous steps 
in order to verify the achievement of business objectives; and  

§ Implementation: organization of the obtained knowledge and its implementations in 
order that it can be used by the user/customer. 

 

DM tasks 

There is currently a wide variety of DM algorithms and techniques, the choice depending 
mainly on the desired goal of the process. In general, the DM goals are either prediction or 
description (Figure 3.3). 

Business 
Understanding 

Data Understanding Data Preparation 

Modelling Evaluation Implementation 
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Figure 3.3  Data mining goals 

 

Prediction aims to support decision-making by creating a model that can predict or estimate a 
value. The most common problems included in this category of forecasting are classification 
and regression. The first type of problem involves the discrimination of entries in a database 
into predefined categories (Fayyad et al 1996b). It consists of creating a set of models or 
functions that attempt to describe each class based on data analysis, so as to classify new entries 
according to a classification model. This is the most common objective of DM, usually carried 
out by techniques such as decision trees and artificial neural networks. As far as regression is 
concerned, its purpose is to predict unknown or future values of a dependent variable by 
creating a model from the known database (Fayyad et al 1996b; Hastie et al 2009). The most 
applied algorithms for this approach are multiple regressions, artificial neural networks and, 
more recently, support vector machines. In terms of applications, these are the extensive 
coverage, ranging from estimating the probability of a patient survival given the results of a 
series of diagnostic tests, to forecasting the market demand for a new product depending on the 
investment in its advertising. 

Description finds its purpose in increasing the knowledge and understanding of the data, 
focusing on finding descriptive standards recognized or interpretable by humans (Santos and 
Azevedo 2006). The most common problems included in this goal are segmentation (also 
referred to as clustering in the bibliography), which aims to form groups of objects as 
homogeneous as possible with each other, for instance by seeking common features in the data 
that result in a potential clustering throughout various series; visualization, intended to describe 
complex information through diagrams, facilitating the visual representation and interpretation 
of patterns and trends; association, which identifies dependencies between variables, 
highlighting those that are considered more significant, widely used in transactional data 
analysis, such as marketing analysis; and summarization, aiming to find a representative 
compact description for a larger data set in order to allow for exploratory data analysis and 
automatic report generation. 

DM	  Objec)ves	  

Predic)on	  

	  	  	  	  	  -‐	  Classifica)on	  
	  	  	  	  	  -‐	  Regression	  
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	  	  	  	  	  -‐	  Associa)on	  
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Regarding the wide range of DM techniques, one of the conclusions that can be drawn is that 
there is no universal technique, since each one can be best suited to some problems than others, 
as suggested in the literature on the subject. Thus, the DM process is often referred to as an 
iterative process, in which several techniques are applied to the same problem in an attempt to 
identify which leads to better results (Fayyad et al 1996b). In this context, some DM techniques 
with more relevance for this work are discussed in the next subsection. 

DM algorithms 

Multiple Regression 

Conceptually, a multiple regression (MR) (term first used by Pearson 1908) is a straightforward 
extension of the simple linear regression procedures. In a simple linear regression, a straight line 
(Equation 3.1) is adjusted to a set of data, attempting to model the relationship a scalar 
dependent variable, y, and one independent variable, x: 

 

𝑦 = 𝛽𝑥 + 𝛼 (3.1) 

 

For multiple regression, more than one independent variable is included, being that for each 
new independent variable a new term is added to the model (Equation 3.2): 

  

𝑦 = 𝛽! + 𝛽!𝑥! + 𝛽!𝑥! +⋯+ 𝛽!𝑥! (3.2) 

 

where βi are coefficients for the independent variables to be adjusted, and the xi are the values of 
the independent variables for the member of the population. 

 

The process involves using data from a sample to obtain an overall expression of the 
relationship between the dependent variable, y, and the independent variables, xi. This is done in 
such a manner that the impact of the relationship of the independent variables collectively on 
the value of y can be estimated. In other words, the value of a new dependent variable, ŷ, can be 
estimated using the coefficients βi previously adjusted to a data set. Due to its additive nature, 
this model is easy to interpret and it is widely used in regression tasks. 

 

Artificial Neural Networks 

Artificial neural networks (ANN) are designed to mimic the human brain, being defined as 
"parallel distributed processors, consisting of simple processing units, which have a natural 
ability to store experimental knowledge and make it available for use" (Groth 2000). This 
definition implies that these are computational systems with a capacity to learn from their own 
use, allowing for the resolution of complex computational problems with nonlinear 
characteristics.  
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The development of ANN dates back to the early 1940s, designed by McCulloch, Pitts and 
Hebb (McCulloch and Pitts 1943; Hebb 1949). It experienced an upsurge in popularity in the 
late 1980s. This was a result of the discovery of new techniques and developments and general 
advances in computer hardware technology. Some ANN are models of biological neural 
networks and some are not, but historically, much of the inspiration for this field came from the 
desire to produce artificial systems capable of sophisticated, perhaps intelligent, computations 
similar to those that the human brain routinely performs, and thereby possibly to enhance our 
understanding of the human brain. Most ANN have some sort of training rule. In other words, 
they learn from examples (e.g., as children learn to recognize dogs from examples of dogs) and 
exhibit some capability for generalization beyond the training data. Neural computing must not 
be considered as a competitor to conventional computing. Rather, it should be seen as 
complementary, for the most successful neural solutions have been those which operate in 
conjunction with existing, traditional techniques (Table 3.2).  

Table 3.2  Comparison between traditional computer techniques and ANN 

Computers have to be 
explicitly programmed 

ANN learn from examples 

§ Analyze the problem to 
be solved. 

§ Write the code in a 
programming language.  

 

§ No requirement of an explicit description of the problem. 
§ No need for a programmer. 
§ The neural computer adapts itself during a training period, 

based on examples of similar problems, even without a 
desired solution a specific problem. After sufficient 
training, the neural computer is able to relate the problem 
data to the solutions, inputs to outputs, and finally it is 
able to offer a viable solution to a brand new problem. 

§ Able to generalize or to handle incomplete data. 

          

The brain is a collection of about 10 billion interconnected neurons. Each neuron is a cell that 
uses biochemical reactions to receive, process and transmit information. Each terminal button is 
connected to other neurons across a small gap called a synapse. A neuron's dendritic tree is 
connected to a thousand neighbouring neurons. When one of those neurons fire, a positive or 
negative charge is received by one of the dendrites. The strengths of all the received charges are 
added together through the processes of spatial and temporal summation (Figure 3.4a).  

Neural computing requires a number of neurons, to be connected together into a neural network. 
Neurons are arranged in layers. Each neuron within the network is usually a simple processing 
unit which takes one or more inputs and produces an output. At each neuron, every input, pi, has 
an associated weight, wi, which modifies the strength of each input. The neuron simply adds 
together all the inputs and calculates an output, α, to be passed on (Figure 3.4b).  

 

     



Development of an Intelligent Earthwork Optimization System  

 

40 

            

 

 

(a) (b) 

Figure 3.4  Schematics: (a) biological neuron; (b) neural network 

 

The learning process of an ANN is based on specific algorithms with very well defined rules. In 
this context, there are two main methods, normally called paradigms, used for ANN learning 
process: 

§ Supervised learning: in supervised training, both the inputs and the outputs are 
provided. The network then processes the inputs and compares its resulting outputs 
against the desired outputs. Errors are then propagated back through the system, causing 
the system to adjust the weights which control the network. This process occurs over 
and over as the weights are continually tweaked. The set of data which enables the 
training is called the training set. During the training of a network the same set of data is 
processed many times as the connection weights are ever refined. 

§ Unsupervised learning: in unsupervised training, the network is provided with inputs 
but not with desired outputs. The system itself must then decide what features it will use 
to group the input data. This is often referred to as self-organization or adaption.  

 

Although powerful, ANN are not without limitations. Taking into account the nature of this 
technique, the resulting applications experience a lack of ability to work with large numbers of 
irrelevant input variables. Furthermore, there can be some difficulty related to the interpretation 
and understanding of the extracted knowledge, since the internal functioning of the created 
models is considerably complex. Finally, in some cases, the computational time during training 
process can be very high due to a slow convergence of the learning procedure. 

 

Support vector machines 

The Study on Statistical Learning Theory started in the 1960s, having been under development 
by Vapnik (1998). Support vector machines (SVM) are a practical learning method based on 
Statistical Learning Theory. SVM have shown high learning capabilities even when working 
with complex data and can be used for either classification or regression analysis. For a given 
dataset, the SVM algorithm fits an unique and globally optimal solution. The underlying 
principle of SVM is to map the original data into a higher dimensional feature space and to 
optimally fit a linear function in this feature space. 
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SVM are a specific class of algorithms characterized by the use of kernels, absence of local 
minima during learning phase, sparseness of the solution and capacity control obtained by 
acting on the margin or number of support vectors. The nonlinear kernel functions are used to 
implicitly map inputs into high dimensional feature spaces (Figure 3.5).  

 

 
Figure 3.5  Example of SVM transformation (adapted from Cortez 2010b) 

In this feature space, the SVM attempts to determine the best linear separating hyperplane. 
Some previously developed methods, such as the perceptron (Rosenblatt and Cornell 
Aeronautical Laboratory 1958),  already used the concept of finding a separating hyperplane, 
but not the optimal one. SVM finds an optimal solution by maximizing the distance, or margin, 
ρ, between the hyperplane and the “difficult points” close to decision boundary (Figure 3.6). 
This is supported by the premise that if there are no points near the decision surface, then there 
are no uncertain classification decisions. It is noteworthy to add that the optimal dividing 
hyperplane is determined by a few parameters, namely by the support vectors, which correspond 
to the points closest to the hyperplane. Optimal separation of the support vectors is equivalent to 
optimal separation of the entire data. 

 

 
Figure 3.6  Example of hyperplane margin, ρ, and support vectors (circled points) 

 

This method of representing decision functions is especially useful for a high dimensional input 
space: the number of free parameters in this representation is equal to the number of support 
vectors but does not depend on the dimensionality of the space (Vapnik et al 1997). Although 
SVMs are linear learning machines with respect to the feature space, they are in effect nonlinear 
in the original input space. This means that SVM can learn nonlinear behaviors without the 
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drawbacks of nonlinear approaches, i.e., occurrence of local minima convergence problems. The 
popularity of SVMs is mainly due to their capacity to combine the advantages of linear and 
nonlinear models, as well as their predictive results that were achieved in several domains. 

3.2.2. Model assessment 

Metrics 

After the training of a model using the training set of data, it is usually applied to a set of test 
data in order to validate and assess its learning capabilities. Depending on the type of problem 
being solved, classification or regression, different evaluation measures, or metrics, can be 
applied. In regression, metrics are based on the output error, defined as the difference between 
observed and predicted values.  
The assessment of models resulting from the application of DM in this work was primarily 
based on the value of the error defining the degree of learning of a given model, as well as the 
correlation between the observed and the predicted values (Hastie et al 2009). The two mainly 
used metrics were the root mean squared error (RMSE) and the correlation coefficient (R2) 
(Equation 3.3). Low values of RMSE, as well as R2 values close to 1 should be interpreted as 
high model predictive capacity. The main difference between RMSE and mean absolute 
deviation (MAD) is that the former is more sensitive to extreme values since it uses the square 
of the distance between the real and predicted values. When compared with MAD, RMSE 
penalizes more heavily a model that in a few cases produces high errors. Thus, these were 
considered more appropriate for the applications of DM models discussed in Chapter 5. 

 

𝑅𝑀𝑆𝐸 = (!!!)!!
!!!

!
   ;             𝑅! = !!! × !!!!
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!!! × !!!
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!

 (3.3) 

where 

𝑦 - is the computed network output vector, 

𝑦 - is the target output vector, and 

𝑁 - is the number of samples in the database. 

Generalization capacity 

One of the main issues in model evaluation is to find the best way for the system to learn the 
concept represented by the training set, instead of learning the training set itself, that is, to 
achieve good generalization capacity. In other words, the generalization capacity of a DM 
model corresponds to how well it is able to accurately predict unseen values. The most common 
methods to infer on the generalization capacity of a predictive model are holdout, cross-



Chapter 3 – Technologies and Tools 

 

43 

validation and leave-one-out. In order to improve model reliability, each one of these 
approaches can be performed several times (executions, also known as runs). 
The holdout method reserves a certain amount of data (from a dataset) for testing, while using 
the remaining data for training. Since the main purpose of the training set is to induce the 
model, 2/3 of the available data is often allocated to it, leaving the remaining 1/3 for model 
accuracy assessment. Although this method is advantageous in terms of simplicity and speed, 
the samples taken may not be very representative of the whole data, potentially resulting in 
different results for different random data splits. 

Cross-validation, or k-fold validation, is an upgrade of the holdout approach, permitting the use 
all the available data for both training and testing (Figure 3.7). The first step in this method is 
the separation of data into k subsets of equal size. Secondly, each subset is used in turn for 
testing, while the remaining subsets are reserved for training. The error of the model is taken as 
an average from the errors of each iteration. Typical values for k are 5, 10 or 20, depending on 
the dimension of the dataset. Although being more robust than holdout, this method naturally 
demands a higher computational effort. 

The leave-one-out approach (Hastie et al 2009) may be considered a special case of cross-
validation, in which the number of folds corresponds to the number of training instances. In 
other words, in each interation only one example in the dataset is used for test, while the 
remaining data is used for training. This method is especially suited for small datasets (i.e., 
lower than 100 examples), since it can be computationally expensive. However, it involves no 
random subsampling, subsequently making the best possible use of the available data. The final 
generalization estimate is evaluated by computing evaluation metrics for all test samples. 

 

 
Figure 3.7  Cross-validation approach 
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3.3. METAHEURISTICS 

The concept of artificial intelligence is far from limited to Machine Learning algorithms, since it 
includes several other applications, as is the case of metaheuristics, also included in the soft 
computing concept. In general, any task can be perceived as a problem for which there is a 
certain space of potential solutions. Considering that, in most cases, the main goal of solving a 
problem is the determination of the best solution, these problems can be seen as optimization 
problems. Even though, the classical methods of exhaustive search for solutions may be enough 
in a relatively small solution space, in many cases the solution space is considerably larger, 
demanding the need of different search methods based on modern heuristics (Michalewicz 
1999). In the context of earthworks, most successful applications are based on genetic 
algorithms and swarm intelligence techniques, while a few have been developed exploiting 
fuzzy logic and Petri nets. Accordingly, the former techniques, representing the majority of 
successful earthwork optimization applications, will be given a more detailed description on 
account of their increased relevance. 

3.3.1. Genetic algorithms 

A genetic algorithm (GA) (Holland 1975) is a stochastic search technique used in computing to 
find true or approximate solutions to optimization and search problems. GA are categorized as 
global search heuristics. They consist of a particular class of evolutionary algorithms that use 
techniques inspired by evolutionary biology such as inheritance, mutation, selection, and 
crossover (also known as recombination). 

GA are implemented as a computer simulation in which a population of abstract representations 
(called chromosomes or the genotype or the genome) of candidate solutions (called individuals, 
creatures, or phenotypes) to an optimization problem evolves toward better solutions. 
Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are 
also possible. The evolution usually starts from a population of randomly generated individuals 
and occurs over generations. In each generation, the fitness of every individual in the population 
is evaluated, multiple individuals are selected from the current population (based on their 
fitness), and modified (via crossover and possibly mutation) to form a new population. The new 
population is then used in the next iteration of the algorithm. Commonly, the algorithm 
terminates when either a maximum number of generations has been produced, or a satisfactory 
fitness level has been reached for the population. If the algorithm has terminated due to a 
maximum number of generations, a satisfactory solution may or may not have been reached.  

Thus, the vocabulary used when dealing with GAs is similar to that used to refer phenomena of 
genetic evolution: 

§ Individual - Any possible solution;  

§ Population - Group of all individuals;  

§ Search Space - All possible solutions to the problem; 

§ Chromosome - Blueprint for an individual; 
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§ Trait - Possible aspect (features) of an individual; 

§ Allele - Possible settings of trait (black, blond, etc.); 

§ Locus - The position of a gene on the chromosome; 

§ Genome - Collection of all chromosomes for an individual. 

 

A typical genetic algorithm requires two things to be defined: 

§ a genetic representation of the solution domain; and 

§ a fitness function to evaluate the solution domain.  

 

A standard representation of the solution is as an array of bits. Arrays of other types and 
structures can be used essentially in the same way. The main property that makes these genetic 
representations convenient is that their parts are easily aligned due to their fixed size, facilitating 
simple crossover operation. Variable length representations may also be used, but crossover 
implementation is more complex in this case. Examples of chromossomes are shown in Table 
3.3. 

Table 3.3  Chromossome types and examples 

Type Example 

Bit strings 
Real numbers 
Permutations of element 
Lists of rules 
Program elements 

Any data structure 

(0101 ... 1100) 
(43.2 -33.1 ... 0.0 89.2) 
(E11 E3 E7 ... E1 E15) 
(R1 R2 R3 ... R22 R23) 
(genetic programming) 
… 

 

 

The fitness function is defined over the genetic representation and measures the quality of the 
represented solution. The fitness function is always problem dependent. For instance, 
considering the knapsack problem the aim is to maximize the total value of objects that can be 
put in a knapsack of some fixed capacity. A representation of a solution might be an array of 
bits, where each bit represents a different object, and the value of the bit (0 or 1) represents 
whether or not the object is in the knapsack. Not every such representation is valid, as the size 
of objects may exceed the capacity of the knapsack. The fitness of the solution corresponds to 
the sum of values of all objects contained in the knapsack if the representation is valid, or 0 
otherwise. In some problems, it is hard or even impossible to define the fitness expression; in 
these cases, interactive genetic algorithms are used. The most common type of genetic 
algorithm follows the steps described in detail below (Figure 3.8):  

§ A population is created with a group of randomly generated individuals. 
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§ The individuals in the population are then evaluated.  

§ The evaluation function is provided by the programmer and gives the individuals a 
score based on how well they perform at the given task.  

§ Two individuals are then selected based on their fitness, the higher the fitness, the 
higher the chance of being selected.  

§ These individuals then "reproduce" to create one or more offspring, after which the 
offspring are mutated randomly.  

§ This continues until a suitable solution has been found or a certain number of 
generations have passed, depending on the needs of the programmer. 

 

 
Figure 3.8  General algorithmic flow for GA 

 

Initialization 

Initially many individual solutions are randomly generated to form an initial population. The 
population size depends on the nature of the problem, but typically it contains several hundreds 
or thousands of possible solutions. The population is generated randomly, covering the entire 
range of possible solutions (search space).  Occasionally, the solutions may be "seeded" in areas 
where optimal solutions are likely to be found. 

 

Selection 

During each successive generation, a proportion of the existing population is selected to breed a 
new generation. Individual solutions are selected through a fitness-based process, where fitter 
solutions (as measured by a fitness function) are typically more likely to be selected. Certain 
selection methods rate the fitness of each solution and preferentially select the best solutions. 
Other methods rate only a random sample of the population, as this process may be very time-
consuming. Most functions are stochastic and designed so that a small proportion of less fit 
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solutions are selected. This helps keep the diversity of the population large, preventing 
premature convergence on poor solutions. Popular and well-studied selection methods include 
roulette wheel selection and tournament selection. In roulette wheel selection, individuals are 
given a probability of being selected that is directly proportionate to their fitness. Two 
individuals are then chosen randomly based on these probabilities and produce offspring. 

 

Reproduction 

The next step is to generate a second generation population of solutions from those selected 
through genetic operators:   

§ Crossover: the most common type is single point crossover. In single point crossover, a 
locus is chosen at which the remaining alleles are exchanged from one parent to the 
other (Figure 3.9). The point at which the chromosome is broken depends on the 
randomly selected crossover point, considering a single point crossover, or points, in the 
case of multiple point crossover. However, crossover does not always occur. Depending 
on a set probability, crossover may be skipped, resulting in the parents being copied 
directly to the new population. The probability of crossover occurring is usually 
between 60% to 70%. 

 

 

 

 

 

 

 

Figure 3.9  Example of single point crossover on binary chromossomes 

§ Mutation: After selection and crossover, a new population full of individuals is 
available. In order to ensure that the individuals are not all exactly the same, a small 
chance of mutation must be allowed. If that allele in an individual is selected for 
mutation, it can either change it by a small amount or replace it with a new value 
(Figure 3.10). The probability of mutation is usually between 1 and 2 tenths of a 
percent. Mutation is vital to ensuring genetic diversity within the population and 
allowing the appearance of really innovative features. 

 

 

 

 

Parent 1 

1 0 1 1 0 0 1 1 

Parent 2 

1 1 0 1 1 0 1 0 

Child 2 

1 0 1 1 1 0 1 0 

Child 1 

1 0 1 1 1 0 1 0 



Development of an Intelligent Earthwork Optimization System  

 

48 

 

 

 

 

Figure 3.10 Example of mutation on binary chromossomes 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from 
the pool selected previously. By producing a "child" solution using the above methods of 
crossover and mutation, a new solution is created, which typically shares many of the 
characteristics of its "parents". New parents are selected for each child, and the process 
continues until a new population of solutions of appropriate size is generated. These processes 
ultimately result in the next generation population of chromosomes that is different from the 
initial generation. Generally, the average population fitness will have increased by this 
procedure, since only the best organisms from the first generation are selected for breeding, 
along with a small proportion of less fit solutions, for reasons already mentioned above. 

 

Termination 

This generational process is repeated until a termination condition has been reached. Common 
terminating conditions are: 

§ A solution is found that satisfies minimum criteria; 

§ Fixed number of generations reached; 

§ Allocated budget (computation time/money) reached; 

§ The highest ranking solution's fitness is reaching or has reached a plateau such that 
successive iterations no longer produce better results; 

§ Manual inspection; and 

§ Any Combinations of the above. 

3.3.2. Swarm intelligence 

Swarm intelligence (SI) is the property of a system whereby the collective behaviors of 
(unsophisticated) agents interacting locally with their environment cause coherent functional 
global patterns to emerge. SI provides a basis with which it is possible to explore collective (or 
distributed) problem-solving without centralized control or the provision of a global model. A 
swarm resorts to the power of complex adaptive systems to solve difficult non-linear stochastic 
problems, displaying the following characteristics: 

§ Distributed, no central control or data source; 

§ Limited communication; 

§ No (explicit) model of the environment; 

Before 1 0 1 1 1 0 1 0 

After 1 0 1 0 1 0 1 0 
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§ Perception of environment (sensing); and 

§ Ability to react to environment changes. 

 

Social interactions (locally shared knowledge) provides the basis for unguided problem-solving, 
where the efficiency of the effort is related to, but not dependent upon, the degree or 
connectedness of the network and the number of interacting agents. This type of problem-
solving can be found in Nature in situations where survival in hostile environment, by means of 
adaptation and social interaction, is essential (e.g., bacteria, immune system, ants, birds and 
other social animmals). Although there are several models and algorithms that can be connected 
to the SI area, particle swarm optimization (PSO) and ant colony optimization (ACO) stand out 
as the main and most widely used methods. 

Introduced by Kennedy & Eberhart (1995), the underlying concept of PSO takes its inspiration 
from the social behaviour of bird flocking or fish schooling. It is a population-based stochastic 
optimization technique for optimizing nonlinear functions using a particle swarm methodology. 
Swarms typically follow a specific behaviour: 

§ Steer toward the center; 

§ Match velocity of neighbors; and 

§ Avoid collisions. 

 

For instance, consider a situation where a group of birds are randomly searching food in an area. 
There is only one piece of food in the area being searched. None of the birds know where the 
food is, but they know how far the food is in each iteration. In this situation, the most effective 
strategy to find food is to follow the bird which is nearest to it.  

In PSO, each single solution is a "bird" in the search space, named particle. All particles have 
fitness values, which are evaluated by the fitness function to be optimized, as well as velocities, 
which direct the flying of the particles. During flight, each particle adjusts its position according 
to its own experience, and according to the experience of a neighboring particle, making use of 
the best position encountered by itself and its neighbor.  

The algorithm initializes with randomly generated particles, going through several iterations in 
search for optima. Each particle has a velocity and position, which is updated every iteration by 
using two best values: 

§ Pbest: best solution (fitness) it has achieved so far; and 

§ Gbest: best global value obtained so far by any particle in the population. 

 

In comparison with other algorithms, such as GA, one could say that both PSO and GA are 
population based stochastics optimization algorithms, starting with a random population which 
is successively evaluated by a fitness function. Moreover, like GA and other metaheuristcs, PSO 
makes few or no assumptions about the problem being optimized, being able to search very 
large spaces of potential solutions, but not guaranteeing the single best solution.  
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However, PSO does not have genetic operators, such as crossover and mutation, rather relying 
on updating the internal velocity of particles. The information sharing mechanism in PSO is 
significantly different, as it flows from best particles to the others, unlike GA, in which the 
population moves together. Finally, PSO is the only evolutionary algorithm that does not 
remove candidate population members, since all particles survive for the length of the run, 
disregarding selection steps. 

 

 
Figure 3.11 General algorithmic flow for PSO 

 

Instead of relying on the swarm behaviour of bird flocks or fish schools, ACO are based on the 
behaviour of ant colonies and their natural adaptations for survival. Initially proposed by Dorigo 
and Gambardella (1997), these are agent-based systems which, simulating the natural behaviour 
of ants, develop mechanisms of learning and cooperation, being especially efficient for path 
finding (i.e., the traveling salesman problem) and combinatorial optimization problems. An 
ACO uses artificial “ants” to find paths in the search space. “Ants” leave trails of “pheromones” 
as they randomly go through different paths between their colony, or nest, and the food source. 
Those trails become stronger in shorter paths, where ants travel faster and more regularly, thus 
corresponding to better solutions. Paths with stronger pheromone trails have higher probability 
of being preferred by more ants. An evaporation rule is tied to the pheromones, which reduces 
the chance of poor quality solutions being chosen. 

Figure 3.12 illustrates the process of foraging by ants, a clear example of how both nature and 
ACO carry out optimization in terms of finding the best path. When ants leave their colony, or 
nest, to search for a food source, they randomly rotate around any obstacle in their way, as 
exemplified in Figure 3.12a. Initially, the pheromone deposits will be the same for both 
illustrated paths (Figure 3.12b). At the time when the ants find a food source, they carry the 
food all the way back to their nest, following their own pheromone trails and still depositing 
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more pheromone on their corresponding trail (Figure 3.12c). An ant that is looking for food is 
more likely to choose the shortest path when leaving the nest, knowing that this will be the path 
with the most deposited pheromone, since the ants there travel quicker and less evaporation of 
pheromone is verified (Figure 3.12d). For this reason, new ants that later start out from the nest 
to find food will also choose the shortest path, increasing the pheromone level on that path even 
further (Figure 3.12e). Over time, this positive feedback process prompts all ants to choose the 
shortest known path, as depicted in Figure 3.12f. 

In the previous example, only one node was included in the path finding problem. However, the 
algorithm can deal with path finding under situations with several nodes. Upon reaching a node 
for the first time, ants choose a path randomly. However, as time progresses and pheromones 
are deposited, as an ant reaches a node, it will have a higher probability of following through a 
path with more pheromones. This process is repeated for as many cycles as necessary until most 
ants select the same tour on every cycle (convergence criteria). 

 

  

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.12 Ant foraging – co-operative search by pheromone trails 

 

The pseudocode for an ACO algorithm can be defined as follows: 

§ Initialize Trail 

§ Do While (Stopping Criteria Not Satisfied) – Cycle Loop 

o Do Until (Each Ant Completes a Tour) – Tour Loop 
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o Local Trail Update 

o End Do 

o Analyze Tours 

o Global Trail Update 

§ End Do 

 

As with other evolutionary algorithms such as GA, ACO is a good choice for constrained 
discrete problems, as it does not base its search on gradient search methods. Its adaptability to 
changes (e.g., new distances, restrictions or obstacles) makes it ideal to be used in dynamic 
applications. The fact that ACO algorithms retain memory of the entire colony (rather than of 
the previous generation only), and that it is less affected by poor initial solutions (due to 
combination of random path selection and colony memory) gives it an edge in some problems 
when compared to evolutionary algorithms. 

Yet, ACO algorithms also feature a few disavantages in comparison with other metaheuristics, 
mainly in terms of convergence and interpretation. Firstly, due to its nature, while convergence 
in ACO algorithms is guaranteed, the time to convergence is always uncertain due to the 
randomness implied in the algorithm. Furthermore, a large number of different ACO algorithms 
are required to exploit different problem characteristics. This is worsened by the fact that the 
coding of ACO is somewhat complex, due to aspects like pheoromone evaporation and global 
and local updates. Finally, the sequences of random decisions taken by ants, as well as the 
changes in probability distribution in every iteration/cycle, can also hinder the interpretation and 
theoretical analysis of results. 

3.3.3. Fuzzy logic and Petri nets 

Fuzzy logic algorithms (FLA) and Petri nets (P/T nets) have also been successful in terms of 
known earthwork optimization applications. On the one hand, fuzzy logic was conceived by 
Zadeh (1965) and consists of a mathematical technique for dealing with imprecise and vague 
data/knowledge, as well as problems that have many solutions rather than one. Inspired by 
human decision-making, it represents a type of logic that recognizes more than simple true and 
false values, since propositions can be represented with degrees of truthfulness and falsehood. 
For example, the statement “today is sunny” might be 100% true if there are no clouds, 80% 
true if there are a few clouds, 50% true if it is hazy and 0% true if it rains all day. FLA are used 
for solving problems with expert systems and other intelligent systems that must react to an 
imperfect environment of highly variable, volatile or unpredictable conditions. Its advantage is 
its ability to deal with vague systems and its use of linguistic variables. 

On the other hand, P/T nets (Petri 1966) are mathematical models based on bipartite graphs (i.e., 
graphs whose vertices can be divided into two disjoint sets, such that every edge connects a 
vertex in the first set to one in the second set), which constist of transitions (representing 
events), places (corresponding to conditions) and directed arcs (which signify the dependencies 
and relationships between places and transitions). On account of their nature, P/T nets are 
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especially well suited for modelling the concurrent behaviour of dynamic systems. Conditions 
and relationships may be associated with operations like sequential execution, synchronization, 
merging, concurrency and conflict. Although P/T nets are not always associated with SC 
techniques, they have been known to be coupled with the latter for modelling or optimization 
purposes, thus justifying their mention in this work. 

3.4. GEOGRAPHIC INFORMATION SYSTEMS 

According to Denègre and Salgé (1996) and Gutiérrez Puebla and Gould (1994), a geographic 
information system (GIS) can be considered a specific type of information system. Indeed, an 
information system can be defined as a communication system, based on programmed routines 
or integrated subroutines, that is capable of manipulating information, such as large databases 
including extensive real-world data (Martin 1991). Under this concept, GIS focus on 
communicating and manipulating geographic information, dealing with real-world data. Its final 
goal is decision support, using tools for handling, representing and communicating geographic 
knowledge. 

Geographic information is regarded as the representation of objects of real phenomena in a 
specific location at a given time. Overall, the concept of geographic information encompasses 
two main points: 

§ Information regarding one object of phenomenon, described in terms of nature, shape 
and attributes (e.g., a road can be described by its type, pavement, number of lanes, 
etc.). This information may include the description of relations with other objects or 
phenomena (e.g., a building belonging to a proprietor). 

§ Information regarding the location of the object, relatively to a specific reference 
system  (e.g., coordinate system or postal address). 

 

The origins of GIS can be traced to the computerization of cartographic information (i.e., 
“computer mapping”) recorded in the 1960s. This data was progressively compiled into several 
databases, within the concept of an information system, aimed at managing, archiving and 
updating this data. Through the 1980s the concept was already established and several 
commercial vendors of GIS software emerged, including capabilities such as: 

§ Managing and manipulation spatial relations between objects, using spatial analysis 
functions for decision support; 

§ Representing space and its components as a layout or map, implying the existence of 
cartographic construction functions. 

 

In order to achieve this, a GIS should include at least the following data modules (Peuquet and 
Marble 1990): 
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§ A subsystem for data entry, capable of data acquisition from existent maps, GPS 
emitters, etc.; 

§ A subsystem for data storage and retrieval, which organizes the spatial data so that it 
can be easily accessed by the user for subsequent analysis, as well as updated and 
altered; 

§ A subsystem for data manipulation and analysis, responsible for carrying out different 
tasks, namely aggregating the data according to user input, or estimate parameters from 
spatial simulation or optimization models; 

§ A subsystem for outputting and presenting information, for displaying the database of 
the processed data, as well as the results from spatial analysis. 

 

Within this framework, a GIS must be able to provide the basic information pertaining what an 
object is, where it is located and when and how it relates with other objects. Furthermore, since 
it allows spatial analysis and manipulation, different what if scenarios and queries must also be 
provided by the system. 

3.4.1. GIS components 

According to Zeiler (1999), a GIS is the combination of experts, spatial and descriptive data, 
analytic methods, software and hardware, aimed at managing and displaying geographic 
information. This description encompasses five essential components that comprise a GIS, 
namely people (liveware), hardware, software, data and methods (Figure 3.13). 

 

 
 Figure 3.13 Components of a GIS (adapted from Zeiler 1999) 
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The hardware is the physical component of a GIS, acting as the interface between the human 
(people) and the software components. On the one hand, it is a platform (e.g., from a personal 
computer to powerful working stations) for the GIS software installation, data storage and 
communication (e.g., network or internet access). On the other hand, it represents a means for 
acquiring data (e.g., by supporting the use of scanners and similar equipment), as well as 
displaying results (e.g., by adding printers, plotters, etc.). 

Being dependent on proper hardware to support its installation, the software is the component 
that allows for data manipulation and analysis. With the development of GIS, a large variety of 
commercial software has emerged, though with similar objectives and functions. The main 
differences among them are often related to how the data is stored, which type of uncommon 
operations they can perform, their implementation methodologies, user-friendliness and user 
support. 

Data are an abstract representation and, in general, simplification of the real world. They are 
often the most critical part of the GIS, since operations and analysis methods are carried out on 
them and the usefulness, as well as reliability, of their output is directly related to the quality of 
the data. According to Rowley and Gilbert (1989), a set  of quality data can amount up to 70% 
of the total cost of a project, which emphasizes the importance of this component. 

The analysis methods and objectives performed on the data depend on the expertise and 
intentions of the user. Meteorology, hydrology, epidemiology are a few examples of scientific 
areas which make extensive use of GIS software. Functionalities can range from procedures that 
guarantee the quality of the data to employing algorithms, to solving spatial problems in linear 
or polygonal networks, or to carrying out tridimensional visualisations of areas using 
cartographic data. 

Finally, the people, or experts, represent the human component and are the ones who, using the 
hardware as a support for software, perform spatial analysis and manipulation on the available 
data. Whatever the purpose of the analysis (e.g., urban planning, infrastructure development), 
the user will be the one making the decisions according to the output of the system. 

3.4.2. Data entry and acquisition 

Considering data is one of the critical components of a GIS, the available methods to add or 
acquire data into are paramount. The usual methods to achieve this are: 

§ Import digital information available in compatible formats; 

§ Use of global positioning system (GPS) apparatus; and 

§ Manual digitizing of analog data. 

 

On the one hand, the development of GIS has been accompanied by an emergence of digital 
information and databases, to whose access is becoming easier and easier as communication 
technologies develop, especially the Internet. On the other hand, compatibility between software 
is increasingly common, which makes it possible to convert data originated in one software to 
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be used in another. Formats like CAD (e.g., dwg, dxf), vectorial and raster data from some 
broadly used commercial GIS (ARC/Info, ARC/View, Intergraphe MGE, etc.), and general 
image data (e.g., tiff, bmp, etc.) are some examples of data than can be added directly into most 
GIS software. 

Another widely known method for data acquisition using GIS is the use of global positioning 
system (GPS). By emitting a signal to several satellites and using triangulation to determine its 
position and altitude with low error margins (e.g, below one meter), GPS can be connected to a 
GIS for various purposes, such as mapping roads or knowing the location of trains, buses or 
construction equipment at any given time. 

In cases where data is not available in any other format but analog, it is necessary to manually 
digitize it. This can be done by one of two ways: automatically, by means of a scanner, or 
manually, using a digitizing table. In the first case, one obtains a raster file that can be converted 
into vectorial data if required. In the second case, the obtained data is in vectorial format ready 
to be manipulated or analysed. After digitizing, it is still necessary to build the topology of the 
data, in which the system automatically adds extra information to the database, such as 
polygonal areas or arc lengths. 

In cases where data entry is carried out by using CAD, image files (e.g., tiff, bmp), or manual 
digitizing, it is also required to add the thematic attributes, which allow for the determination of 
other variables that can then be used in spatial analysis. This ranges from georeferencing an 
image file, for instance by identifying the coordinates of known points in the image, allowing 
the system to infer the coordinates and distances of the remaining area (the more points are 
added, the more exact the inference process is), to identifying a potential point or vector of 
interest, in order to use it for subsequent analysis. This step must be carried out manually or by 
importing the information from other sources.  

3.4.3. Network analysis 

Among the various capabilities of GIS, network analysis is of special interest to this work and 
following Chapters. This type of analysis is limited to vectorial data, since its use implies the 
availability of a network, defined as a series of interconnected linear features, which represent 
the potential routes for circulation of goods, people, resources, services or information, 
depending on established constraints (Heywood et al 2011). One of the key features of any 
network is connectivity. In this point of view, correct geographical representation in a network 
may not be as important as the correct representation of connectivity and its associated 
characteristics. Accordingly, a network is usually comprised of three main elements (Figure 
3.14): 

§ Links are the linear connection between two nodes, usually used to represent the routes; 

§ Nodes correspond to interceptions, as well as origin and destination points, depending 
on their associated type, which are depicted in Figure 3.14: 

o Vertices; 

o Junctions; 
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o End nodes; 

§ Turns represent the transition from one link to another. 

 

 
Figure 3.14 Network elements (Heywood et al 2011) 

Transportation, electricity, water supply and sewer lines are some examples of common 
application of networks in GIS (Figure 3.15). The type of analysis can be widely different, 
placing emphasis on the routing problems, where the shortest route for transportation 
equipment, or other vehicles, can be determined in function of variables such as possible routes, 
maximum speed in each route or one-way restrictions. The routing problem will be further 
discussed in this Section, since it is relevant for the following Chapters. 

 

 
Figure 3.15 Network examples 

 

In the context of earthwork optimization, one of the most useful features provided by GIS 
software is the determination of minimum routes between two points in a network. In general, 
the shortest route between two nodes in a network corresponds to the minimum distance 
between nodes. However, in most cases, the factor that influences the determination of the 
shortest route is impedance rather than distance. Impedance is a measure of the amount of 
resistance, or cost, required to traverse a path in a network, or to move from one node to 
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another. Impedance may be measured in terms of factors like time, distance and fuel usage, 
among others. Furthermore, it may be a function of aspects such as topography, traffic volume 
or weather. To sum up, impedance in a network attempts to reflect the conditions in which 
circulation is accomplished (Gutiérrez Puebla and Gould 1994) and can be assigned to both 
routes (i.e., links) and interceptions (i.e., nodes): 

§ Link impedance: represents the resistance to movement between the extremities of a 
link. The simplest measure of impedance for links is their length, since the longer the 
link, the higher the effort necessary to go through it. Other options include surface 
grade, type of surface/pavement, presence of obstacles, etc. Time is the most used 
measure for vehicle routing problems, since it is directly related to speed and distance, 
providing the flexibility for different types of analysis. It is noteworthy to add that 
impedance can also include a direction feature, allowing for analysis such as one-way 
routes or different speeds in each direction for a single route. Whichever the case, 
deciding on the type of impedance for each case is a prerequisite for spatial analysis. 

§ Node impedance: generally attempts to simulate the circumstances associated with 
changing direction at interceptions. For vehicle routing problems, they can be used, for 
instance, to simulate the difference in required time to turning left or right at 
interceptions, as a result of traffic. In a railway model, node impedance may represent 
the time that a train stops at each station. As such, the total impedance between two 
nodes in a network is equal to the sum of impedance of links and nodes for the shortest 
path between the nodes. 

 

It is clear how the shortest route between two points in one city can be different, depending on 
the considered impedance: the shortest path (distance) may go through the city center, while the 
fastest path (time) will probably imply taking a highway in order to avoid the traffic in the city 
center. This example illustrates the increasingly high importance of this type of analysis in a 
wide range of activities, such as emergency vehicle routing, urban public transportation or 
commodity distribution. In the earthworks point of view, impedance can be used to represent a 
maximum velocity for each route and interception (i.e., links and nodes) in a haul road network, 
which, in turn, can be a function of factors such as road conditions, grade or rolling resistance. 
This would result in different haul cycles durations for different potential routes, one of which 
would correspond to the shortest path (i.e., lowest haul cycle duration). 

In summary, in order to determine the minimum route between two points in a network, one 
must supply the location of points, the variable to consider as link impedance and, if applicable, 
the node impedance. Recalling this information, the GIS can output the minimum route through 
the network, identifying each the links, nodes and directions to take, as well as provide the value 
of the total impedance for the chosen route (Figure 3.16). Finally, it is relevant to refer that it is 
possible to assign more than one destiny, requesting the GIS to determine the shortest route that 
passes through all intermediate points. In this case, it is also possible to include information 
regarding supply and demand of cargo (goods or people) between the origin and destination 
points, making the GIS output the type and quantity of cargo to transport in each visit in order to 
maximize profit, as well as the order of intermediate destinations that minimizes impedance. 
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Figure 3.16 Routing examples 

3.5. SOFTWARE AND TOOLS 

3.5.1. R Tool 

Achieving full integration of the mentioned technologies is to be underlined, considering the 
level of complexity to be dealt with by a system, which would aim at accomplishing goals as set 
in this work. Being able to handle the large amount of variables and situations that are verified 
in an earthwork construction by using a single system is not only practical in the point of view 
of the user, but also essential from a technical perspective. Indeed, the high sequentiality of 
earthwork tasks, allied with a wide range of relationships and constraints between available 
resources in each situation, calls for a high level of communication and interaction between the 
different technologies, justifying their integration in modules of a single system. 

Nowadays, there are several data analysts that can be used to fulfil the data mining role, such as 
RapidMiner, R, MS Excel, Weka, SAS and Matlab, among others. From these, the commercial 
software Matlab and the open-source R (R Development Core Team 2011) feature the option to 
easily extends their capabilities by installing additional packages for different purposes, 
promoting the ideal environment for integration between data mining and optimization 
technologies, including metaheuristics. Furthermore, the software in question also includes the 
possibility of being integrated with geographic information systems, as discussed in the next 
section (Section 3.6.2).  

In the specific context of this project, R shows the most potential for achieving the proposed 
objectives. On the one hand, previous development and experience with this software on the 
geotechnics area (Tinoco et al 2011; Gomes Correia et al 2012), and in particular in earthworks 
(Marques et al 2008), proves the potential and reliability of this programming language in the 
context of this project. On the other hand, the R environment is an open source, multiple 
platform (e.g. Windows, Linux, Mac OS) and high-level matrix programming language for 
statistical and data analysis (R Development Core Team 2011), whose features are consistent 
with the requirements of the project. In fact, R includes a variety of statistical (linear and 
nonlinear modelling, classical statistical tests, classification, clustering, etc.) and graphical tools, 
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besides having a very flexible object-oriented design, becoming easily extensible by the 
installation of additional packages. The R community is highly active and new packages are 
continuously being developed, hence, in this perspective, the R can be seen as an open tool for 
worldwide sharing of algorithms. Furthermore, an extensive help system is included and 
available from the prompt, complemented by a large documentation freely available on the R 
website (http://www.r-project.org/), as well as on books (Muenchen and Hilbe 2010). As a 
drawback, the R tool has a relatively hard learning curve for non-expert users, due to the lack of 
a friendly graphical user interface (GUI), and the absence of technical support. Yet, after some 
experience and training, the user achieves a better control and understanding of what is being 
executed (in contrast with several “black-box” DM GUI products). 

Regarding its DM potential, two of the most remarkable interfaces for R are the Rattle 
(Williams 2011) and rminer (Cortez 2010a) packages. While Rattle has the advantage of 
featuring a GUI, rminer is lighter and easier to install. Moreover, the latter presents more ANN 
and SVM capabilities and has been proven to perform better in many cases than other well-
known DM tools (Cortez 2010b). Consequently, the rminer package is adopted in this work. 
This package is an integrated framework that facilitates the use of DM algorithms in 
classification and regression tasks, being particularly well suited for ANN and SVM algorithms, 
featuring a set of coherent and robust functions (Cortez 2010b; Cortez 2014): 

§ fit – create and adjust a given DM model using a dataset; 

§ predict – returns the predictions for new data; 

§ mining – a powerful function that trains and tests a particular model under several 
runs and a given validation method; and 

§ mgraph, metric and mmetric – return several mining graphs or 
classification/regression metrics. 

 

Besides DM, the R environment also allows for the usage of optimization algorithms, including 
packages based on metaheuristics such as GA (Mersmann et al 2014; Willighagen 2015) and SI 
(Naval 2013). As discussed in more detail further ahead (Chapter 5), multi-criteria optimization 
is indicated for earthworks optimization. In point of fact, besides giving less priority to 
knowledge of optimization parameters, a Pareto approach outputs a set of solutions as a set of 
trade-offs between optimization objectives. This gifts the optimization process and its outcome 
with the versatility to handle the dynamic environment inherent to earthwork construction. As 
such, given the high success of genetic algorithms (as discussed in Chapter 4) and the versatility 
of Pareto approaches (further discussed in Chapter 5) for multi-criteria optimization, the 
package mco (Mersmann et al 2014) was adopted for the optimization process in this work. The 
package implements a non-dominated sorting genetic algorithm-II (NSGA-II) (Deb et al 2002), 
an evolutionary algorithm variant specifically designed for multi-objective optimization, 
founded upon three concepts that set it apart: Pareto optimization, elitism and sparsity. The 
function nsga2	  corresponds to the NSGA-II implementation in the mco package, featuring the 
following main parameters (Cortez 2014; Mersmann et al 2014): 
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§ fn – function to be minimized (should return a vector with the several objective 
values); 

§ idim – input dimension; 

§ odim – output dimension (number of objective functions); 

§ … – extra arguments to be passed fn; 

§ lower.bounds, upper.bounds – lower and upper bounds; 

§ popsize – population size (default is 100); 

§ generations – number of generations (default is 100) or a vector; 

§ cprob – crossover probability (default is 0.7); and 

§ mprob – mutation probability (default is 0.2) 

 

This function returns a list with the final population (assuming generations is a number, 
otherwise a vector list is returned where the i-th element contains the population after 
generations[i] iterations) with the components: 

§ $par – population values;	  

§ $value – matrix with the best objective values for the last population individals; and	  

§ $pareto.optimal – boolean vector that indicates which individuals from the last 
generation belog to the Pareto front.	  

	  

3.5.2. Geographic Information Systems 

ArcGIS (ESRI 2011) is a set of commercial software products, produced by ESRI, embodying a 
geographic information system (GIS). Alternatively, Quantum GIS (QGIS) (Quantum GIS 
Development Team 2015) is a broadly used open-source geographic information system and a 
reference in the free and open-source (FOSS) community for users, developers and supporters. 
Both software feature the ability to work with cartographic and geographic information, being 
mainly used for the creation and use of maps, geographic data compilation, analysis of mapped 
information, as well as sharing and discovering spatial knowledge using the cartographic and 
geographic information. The systems are built around geodatabases, which implies an object-
oriented approach to storing and manipulating spatial data. Thus, a geodatabase is a vessel for 
concretizing data sets by joining the spatial characteristics of objects (e.g., mechanical 
resources) with their associated attributes. In addition, they may also contain topology 
information, being able to model the behavior of the spatial characteristics of objects, 
integrating rules on how they relate to each other. 

These tools include several toolboxes with particular importance to this work, namely the 
ArcGIS Network Analyst and the QGIS Road Graph plugin. The toolboxes include the capacity 
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to build, analyse and manipulate network-based spatial data, allowing for a realistic modeling of 
dynamic conditions in a network, including one-way streets, turn and height restrictions, speed 
limits, and speed variation based on traffic. Among the various capabilities of the Network 
Analyst, those with the greatest potential for achieving the objectives proposed in this paper are 
emphasized: 

§ Generate a network from existing spatial data; 

§ Determine the most efficient path for a vehicle or a fleet of vehicles that must pass 
through multiple locations (i.e., routing and traveling salesman problems); 

§ Set time windows to limit when vehicles can reach specific locations; 

§ Determine ideal locations for facilities, performing location-allocation analysis; 

§ Generate origin-destination (OD) cost matrixes, from each starting point (e.g., 
excavation front) in the network to all associated destinations (e.g., embankment 
fronts). 

 

Although featuring most of the same capabilities of ArcGIS Network Analyst, the QGIS Road 
Graph plug-in does not have a direct interface function for the generation of origin-destination 
cost matrixes. However, this limitation can be surpassed by programming a series of loops 
which, using the feature to solve simple routing problems from one point to another, carry out 
the necessary runs to determine the cost (e.g., in terms of distance or travel duration) associated 
with travelling from each source to each destination. By saving the results in the form of a 
matrix, this process results in an OD cost matrix. This is increasingly important considering that 
QGIS developers claim the possibility of integration with the R environment, meaning that it is 
possible to call commands from the R console directly to QGIS, as well as import the results of 
spatial analysis automatically for further usage in R. However, experimentation with this 
possibility revealed that integration is hindered by incompatibilities between the versions of 
QGIS that can be integrated with versions of R, as well as between the versions of R that allow 
integration and the data mining and optimization packages (i.e., rminer, mco) used to develop 
the algorithms. Nonetheless, there are some indications that the developers of both software are 
working to facilitate this integration in future versions. An alternative to this setup could be 
explored by integrating ArcGIS with the commercial object-oriented programming software, 
Matlab, with the obvious advantage that, a higher level of customer support could be expected, 
since both correspond to commercial software. Yet, bearing in mind that the R environment was 
the chosen foundation for the development of the optimization system for the reasons mentioned 
in the previous section, this work was initially directed towards using QGIS and R, despite the 
risk that limitations concerning the integration of both software could be extended indefinitely. 

Google Earth (Google Inc. 2009) is a free software tool, developed and distributed by the 
company Google, whose function is to present a three-dimensional model of the globe, 
constructed from satellite pictures/aerial images (photographed from aircraft) obtained from 
various sources, as well as 3D GIS data. Thus, the program can be used simply to generate two-
dimensional maps and aerial/satellite images or as a simulator of the wide range of landscapes 
existent on Earth. This makes it possible to identify areas, buildings, cities and landscapes, 
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among other elements. Formerly known as Earth Viewer, Google Earth was developed by 
Keyhole, Inc, a company that Google acquired in 2004. The product name was changed in 2005 
and is currently available for use on personal computers in various operating systems. Google 
made customer improvements to the Keyhole client and added a satellite database of images for 
its mapping software based on the World Wide Web. Most large cities on the planet are now 
available for images with enough resolution to view buildings, houses or even closer details as 
cars. The entire globe is already covered with an accuracy of at least 15 kilometers. In the 
earthwork construction context, Google Earth can be used as a source for aerial images of an 
area corresponding to a present or future site construction, as well as the corresponding 
coordinates for proper georeferencing. This information can be imported into any of the 
previously mentioned GIS software, allowing for different types of spatial analysis, such as 
determining optimal routes for transportation equipment throughout the construction site (e.g., 
via generation of OD cost matrixes). 

 

3.6. FINAL REMARKS 

In order to achieve the goals proposed in Chapters 1 and 2, several technologies are required to 
deal with the complex and dynamic environment that characterizes earthwork constructions. 
Given the sequential nature and high amount of relationships between variables of the 
earthowks optimization problem, the integration of these technologies into a single system has 
numerous advantages. In this context, the open source, high level programming langague R and 
associated software shows the most potential for the implementation of such system. 

The resulting integrated system is presented in Chapter 5, following the discussion and analysis 
of the literature research on similar systems, with focus on the technologies they are based on, 
as well as their strengrths and limitations. This latter aspect is of critical importance in the 
study, as the key to innovation, lies in surpassing its predecessors’ weaknesses, while 
encompassing their strong points. 
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4.1. INTRODUCTION 

Decision-making in complex and dynamic environments such as Civil Engineering, often 
strains one’s cognitive capabilities, especially when potentially large impacts are associated 
with the quality of these decisions. Aiming to support human judgment and decision-making, 
disciplines such as statistic, economics and production have researched various choice-
supporting methodologies. When combined with techniques derived from information systems 
and artificial intelligence (AI), these methodologies can be integrated into computer programs 
or routines, thus originating what is commonly referred to as Decision Support Systems (DSSs) 
(Drudzel and Flynn 2002). The term Intelligent Decision Support System (IDSS), introduced by 
Holsapple (1977), is associated with DSSs that specifically make use of AI techniques. 
Conceptually, IDSSs are meant to be used as though they represent a human consultant, since 
the AI techniques, which are part of their core, intend to emulate human capabilities as closely 
as possible. These support the decision makers by gathering and analysing data and identifying 
problems, while proposing and evaluating potential solutions for the possible scenarios. Many 
IDSS implementation are based on Expert Systems (Sol 1985; Farinha et al 1995; Portela and 
Bento 2001), which encode the cognitive behaviour of human experts using logic rules, and 
have been known to be successfully applied to several different areas, including engineering 
(Marques et al 2008). The relation between DSSs and the concept of Business Intelligence (BI) 
is also worth highlighting, as some authors state it as the successor of DSSs (Power 2002; 
Turban et al 2007). Their purpose is to aid decision-making by extracting data (i.e., by means of 
data mining techniques) from different sources in order to support the potential choices. By 
presenting the ability to retrieve knowledge from large organized databases, symbolically 
representing heuristic knowledge and manipulating these in order to emulate human reasoning, 
AI approaches come forward with new and innovative problem-solving potential. Yet, the most 
obvious drawback in earthwork optimization context is the need for relatively large training 
dataset of past and relevant data or examples, so as to allow the models to extract knowledge 
and go through a “learning” process on the subject. Only then can this type of systems achieve 
the ability to manipulate this knowledge in the direction of decision support, ultimately finding 
a solution, or set of solutions, for a problem. 

Unlike these, typical optimization models do not depend on learning from past data, but on 
logically built models that aim to find a solution for a problem with regard to a specific 
objective. In general, their structure consists of the definition of an objective function, for which 
a set of inter-related decision variables are manipulated in function of a set of constraints. 
Solutions can be found by means of different searching methods in the feasible space imposed 
by the set of constraints. Such methods often attempt to take advantage of the shape of the 
search space under the assumption that, when optimizing a problem, the optimal solution 
generally coincides with a maximum or a minimum point in the space created by those 
constraints. In the context of engineering applications, the advantages of optimization models 
include their efficiency, a simple understanding of the functioning of the solution searching 
methods and the easiness with which it is possible to evaluate the obtained outcome. However, 
pure optimization models are not without their downsides. Often they imply some level of 
unrealistic modelling assumptions and are only applicable to quantifiable problems, requiring 
specialized skills for both model formulation or alterations and solution interpretation. 
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Moreover, the choice of solution methods has to take into consideration not only the problem 
type, but also the risks of the solution getting stuck at local optima, which may represent 
limitations to model development (Dutta 1996). 

Considering both AI and optimization technologies, one can easily infer that most limitations of 
one are balanced by the strengths of the other in the context of decision support and problem-
solving. Optimization models are indicated for dealing with the structured and quantifiable 
aspects of the decision-making process, while AI techniques are directed for the more 
qualitative features of the process, which are usually performed by human experts. Thus, 
integrating the complementary strengths of AI and optimization seems to be a valid way to 
increase the decision support capabilities of systems, as discussed further on. 

4.2. RESEARCH METHODOLOGY 

In order to grasp the current state of development of intelligent earthwork optimization systems, 
one must examine, in detail, the different methodologies and system architectures that have 
been used to address this issue. Traditionally, the planning, construction and management of 
earthworks tasks are mostly based on the accumulated experience of experts or otherwise 
partially compiled in country-specific guides, as is the case of the Guide des Terrassements 
Routiers (GTR) compaction guide (SETRA and LCPC 2000). This is carried out under the 
premise that earthworks can be perceived as a dynamic production line based on heavy 
machinery. In this context, the work rate of the last process (compaction) determines the 
development rate of the whole construction, while simultaneously being dependant of the work 
rate of every preceding task. Hence, tools capable of guaranteeing a near optimum level of 
global productivity, while at the same time compensating for any lack of experience from the 
experts are needed. Yet, most research involving this subject focuses on supporting specific 
tasks or parts of the earthwork process, and therefore do not fully account for the 
interdependencies between processes in the context of a production line. 

This section outlines the research methodology of this study, as well as the results from the 
literature search. The objectives were to compile information on the existent technologies and 
systems that, incorporating the technologies discussed in Chapter 3, have the potential to be part 
of earthwork optimization systems, analysing their strengths and limitations within this 
framework. Note that while this Section 4.3 fundamentally enumerates the relevant 
developments regarding the application of soft computing (SC) techniques in the earthwork 
optimization context, Section 4.4 contains the analysis of these systems, including their 
architecture and applications. In order to convey a deeper understanding of the functioning of 
the enumerated systems in Section 4.3, two systems (of different types) were selected for a more 
detailed description. The selection criterion was based on their relevance pertaining the 
remaining work. The resulting knowledge stemming from this Chapter was then put to use in 
developing the architecture of an intelligent earthwork optimization system, presented in 
Chapter 5, which can overcome the limitations identified in the analysed systems.  

The research was conducted in three phases. Initially, the research goal and scope were defined. 
The former consists of the compilation the existent information regarding intelligent earthwork 
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optimization systems, or in other words earthwork optimization systems that make use of SC 
techniques, while the latter consists of academic research from 1999 to 2013. As this topic is 
relatively recent, this 15-year period is deemed to be representative of the development and 
application of soft computing in earthwork optimization systems. The second phase consisted 
on the definition of the search criteria and the compilation of information gathered in books, 
journal and magazine articles, proceedings and technical reports. The search was based on the 
descriptors “earthworks” and “optimization”, resulting in an initial database of around 400 
articles. Topic filtering reduced this number to 95 articles related to descriptors such as “soft 
computing” and “artificial intelligence”. Finally, a careful analysis of the remaining articles 
settled the search on 28 relevant systems and applications in this area. Master dissertations, 
doctoral thesis and unpublished working papers were excluded mainly on the grounds of 
availability. Only systems or applications with integration of some kind of soft computing 
feature or otherwise with potential for application in other intelligent earthwork systems were 
considered. The framework encompasses mainly but not exclusively systems with earthwork 
resource allocation, data acquisition or parameter estimation capabilities, which are usually the 
focus of these types of application. The last phase was related to the analysis and sorting of the 
articles into their associated earthwork phases, which allowed for the drawing of some 
conclusions, with emphasis on the advantages and limitation of the existent systems. 

4.3. SOFT COMPUTING APPLICATIONS IN EARTHWORKS 

4.3.1. Data-driven systems 

A typical data-driven system consists of the application of data mining (DM) tecniques to 
databases. In earthworks, the aim of such systems is usually the estimation of parameters, which 
are unknown or uncertain during the early stages of a project. As such, most earthwork 
applications are based on the learning capabilities of DM tecniques on earthwork construction 
databases. In this context, though the type of DM technique/algorithm can be different for each 
case, the information contained in the database dictates the potential of the resulting system. 

Successful DM applications have targeted different areas of earthwork construction, such as the 
one developed by Marques et al. (2008) and Gomes Correia et al (2012), a support system for 
the compaction process in constructions involving earthwork tasks. The particular feature of this 
system is the methodology used for the acquisition of data relatively to the compaction 
equipments, site materials and equipment fleet productivity indexes. In this system, the author 
refers to the previously mentioned GTR compaction guide to determine the productivity of the 
equipments under evaluation. The GTR compaction tables are subject to the DM process so as 
to search for patterns and tendencies in the data, with the purpose of creating a database for the 
determination of compaction parameters such as optimum number of passes and layer thickness. 
Bearing in mind that the technical guide compaction tables are a notable source of not only data 
concerning optimum number of passes and layer thickness depending on the type of equipment 
and materials being used, but also data regarding each equipment’s performance and 
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productivity, it becomes an excellent tool for planning and controlling the quality of compaction 
tasks by means of procedure control. 

The most relevant components of the system can be divided into two parts, both developmed 
under the R environment. The first part comprises a conventional expert system, which aims to 
classify compaction materials and equipment using logic rules (based mainly on “if” functions). 
It follows the GTR classification extensively and as closely as possible, using the same 
procedure a human expert would. In the case of materials, user inputs regarding the parameters 
obtained in the standard field and/or laboratory tests are required, as seen in the following code 
excerpt:  

 
if (Dmax<=50 && P80>35) Classe<-“A” 

else if (Dmax<=50 && P80<=35) Classe<-“B” 

if (Classe==”A” || (Classe==”B” && P80>12)) cat(paste("O solo é da 
classe",Classe,"!\n")) 

 

Where compaction equipment is concerned, the required information is mostly related to 
manufacturer specifications, as exemplified below: 
 

Família<-readline("Qual a família do cilindro (pneus[P] / vibradores 

de rasto liso[V] / vibradores pés-de-carneiro[VP] / estáticos pés-de-
carneiro[SP])?") 

if (Família==”P”) { 

 CR<-as.numeric(readline("Qual a carga por roda (kN)?”)) 

 if (25<=CR && CR<40) Classe<-“P1” 

 else if (40<=CR && CR<=60) Classe<-“P2” 

 else if (CR>60) Classe<-“P3”} 

 

Considering that, especially in the case of geomaterial classification, a large number of field and 
laboratory tests are required, it is inferable that the system is demanding in terms of the number 
of user inputs. In fact, the user must provide information regarding the existent geomaterials, 
which is different for soil and rock materials, as well as concerning the available compaction 
equipment. These inputs are summarized in Table 4.1, conveying a global idea of the necessary 
information for achieving the GTR classification of compaction materials and equipment. In 
cases that include soil-rockfill mixtures, the characteristics of the latter can be similar to either 
soils or rocks, depending on the case. However, it is noteworthy to add that whenever there a 
significant percentage of fines is present in the soil-rockfill mixture, moisture control becomes 
essential for construction purposes. 

The second part of the system is responsible by its cathegorization as data-driven system.  
Indeed, it is comprised of the application of DM tecniques, namely artificial neural networks 
(ANN), to the GTR data related to compaction productivity.  
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Table 4.1  Required inputs for geomaterials (soil and rock) and compaction equipment 

Soil Rock Equipment 

- Maximum soil grain size 

(Dmax, mm); 

- P80 and P2, referring to the 

% of material passing 

through the correspondent 

sieve; 

- Methylene blue absorption 

value measured on 0-50mm 

fraction (VBS, grams methyl 

blue per 100g soil); 

- Plasticity index (Ip, %); 

- Sand equivalent (ES, %); 

- Material texture; 

- Ratio of material fraction 

0/50 mm (%); 

- Natural moisture content 

(Wn, %); 

- Standard Proctor optimum 

moisture content (Wopn, %); 

- Consistency index (Ic); 

Immediate bearing index 

(IPI, %); 

- Los Angeles coefficient 

measured on 10-14mm 

fraction or 6.3-10mm if 

unavailable (LA, %); 

- Micro-deval coefficient in 

water measured on 10-

14mm fraction or 6.3-10mm 

if unavailable (MDE, %); 

- Sand friability coefficient 

(FS, %). 

- Nature of rock; 

- Los Angeles coefficient 

measured on 10-14mm 

fraction or 6.3-10mm if 

unavailable (LA, %); 

- Fragmentation coefficient 

(FR, %); 

- Degradability coefficient 

(DG, %); 

- Immediate bearing index 

(IPI, %); 

- Micro-deval coefficient in 

water measured on 10-

14mm fraction or 6.3-10mm 

if unavailable (MDE, %); 

- Bulk unit weight of dry 

rock sample (ρd); 

- Natural moisture content 

(Wn, %); 

- Soluble mineral content 

(%). 

 

- Compactor family 

(Pneumatic tyred rollers, 

vibratory rollers, etc.); 

- Load per wheel (CR, kN); 

- Mass per unit length of the 

static or vibrating drum 

(M1/L; kg/cm); 

- Theoretical empty 

amplitude, A0 = 1000 

me/M0, in which me is the 

eccentric moment in mkg 

and M0 is the mass in kg of 

the vibrating part excited by 

the eccentric (mm). 

 

 

 

In general terms, a series of neural networks are applied to data stemming from the GTR 
compaction tables, with the purpose of predicting the Q/L parameter, described in Chapter 3 
(see Section 2.2.1, under Compaction), for each available compactor, as a function of the 
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material to be compacted. The information regarding material and equipment classification 
determined in the first part of the system is used as the reference for which the adjusted neural 
networks determine equipment productivity. In other words, the first part of the system 
classifies materials and equipment according to the GTR guide, and the second part of the 
system infers on the productivity of the same equipment when handling the classified materials.  

The determination of productivity is achieved by using two distinct ANNs, the first of which 
being used to estimate the Q/S parameter, while the second the e*V ratio. While the former is a 
function of material type, compactor type, and required compaction energy (just as required by 
the GTR compaction tables), the latter depends on material type, compactor type, compaction 
energy and the estimated Q/S parameter. At this point, by taking a reference value for roller 
speed (V) and/or desirable layer thickness (e), either specified by the user or by using the 
suggested GTR values, it is possible to derive the missing parameter (e or V) from the estimated 
value of the e*V ratio. Finally, having knowledge of the Q/S, e, and V parameters, it is easily 
possible to calculate the Q/L value for the each compactor-material pair. Figure 4.1 depicts the 
performance of the DM models, showing an excellent level of adjustment and predictive 
capability (Cortez et al 2008). 

  

  

a.) b.) 

Figure 4.1  Predicted values vs observed values for: a.) Q/S parameter; b.) e*V ratio (Cortez et al 
2008) 

 

Using similar methodologies, other relevant applications feature the estimation of equipment 
productivity using DM on earthwork construction databases, namely application of ANN for the 
estimation of excavation and transport equipment productivity rates (Shi 1999; Tam et al 2002; 
Schabowicz and Hoła 2008) or execution time and cost in earthwork design (Hola and 
Schabowicz 2010). Likewise, similar DM techniques, such as multiple regressions, have been 
successfully applied to the prediction of excavator cycle time (Edwards and Griffiths 2000), 
attempting to accurately determine the duration of excavation times in earthwork tasks. Table 
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4.2 compiles the DM applications in earthworks, including the associated technique and 
estimation targets. 

Table 4.2  Data mining applications in earthworks  

System Data mining technique Estimation objective 

Edwards and Griffiths 2000 MR Excavator cycle time 

Hola and Schabowicz 2010 ANN Execution duration and cost 

Marques et al. 2008 ANN Compaction productivity 

Schabowicz and Hoła 2008 ANN Excavation and transportation 
productivity rates 

Shi 1999 ANN Excavation and transportation 
productivity rates 

Tam et al. 2002 ANN Excavation and transportation 
productivity rates 

 

4.3.2.  Simulation-Optimization systems 

Generally, simulation-optimization systems rely on an optimizer, associated with an evaluation 
function, often based on linear relations or in the form of a simulation engine. While the 
optimizer searches for potential solutions for a problem, the evaluation function punctuates each 
possible solution in order to establish a measure of preferences over decision objectives 
(AbouRizk and Hajjar 1998). 

Within this framework, Marzouk and Moselhi (2002b) presented an application focused on the 
optimization of earthwork tasks, associating a previously developed simulation system 
(Marzouk and Moselhi 2002a) to an optimization method, namely a genetic algorithm (GA). 
The simulation engine (ESMP) is comprised of a simulation module, an equipment database and 
an equipment cost application. The simulation module models the dynamic environment 
inherent to the equipment and resources used in earthwork operations. The equipment database 
provides the simulation module with the specifications of available equipment, while the 
equipment cost application calculates the operational time and costs of each piece of equipment, 
according to user inputs. Obviously, the user is required to specify the equipment available for 
the several operations undertaken in the project, as well as the type of operation that each type 
of equipment is able to perform. With this data, the system solicitates the user to choose from a 
series of possible optimization scenarios: 

§ Minimize total project cost; 

§ Minimize the project duration; 

§ Minimize the idle time of one or more specific pieces of equipment. 
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Since the system does not present itself capable of multi-objective modelling, should the user 
has the need to simulate more than one optimization scenario, the system presents a solution for 
each one individually. The main purpose of the system is the selection of the best possible fleet 
of equipment to complete a series of earthwork tasks. In order to achieve this, the GA outputs 
several different potential solutions (individuals), while overseeing the simulation engine. Each 
of these individuals is punctuated in terms of its fitness (according to the chosen objective) via 
simulation. This interaction between the GA and the simulation engine comprises a typical 
simulation-optimization system, and is illustrated in Figure 4.2. 

 

 
Figure 4.2  Genetic algorithm (left) and interaction with the fitness function (right) (Marzouk and 

Moselhi 2002b) 

 

More recently, this work potentiated the development of a robust model for planning and 
control of earthwork operations has been developed (Moselhi and Alshibani 2007; Moselhi and 
Alshibani 2009). The system is mainly focused on continuous optimization of the equipment 
fleet in a construction involving earthwork operations, supported by both GAs and spatial 
technologies, such as global positioning system (GPS). Although still based on single-objective 
optimization, it includes the option of optimizing a cost plus duration parameter, attempting to 
minimize both simultaneously. However, unlike other cases, the particular feature of this system 
is the fact that it is mainly focused on continuous optimization of the equipment fleet during 
construction phase. In fact, it is expected to not only optimize the available resources during 
planning phase, but also to continue the optimization process throughout the construction phase 
itself, updating itself in function of the data collected by GPS, while at the same time managing 
every task and equipment in real time.  

The GPS is used as a real time equipment control tool, as well as support for spatial data 
acquisition while simultaneously functioning as a spatial data analysis tool. For instance, 
installing a GPS emitter in transportation equipment will result in the knowledge of the 
positioning of that piece of equipment over time. With this knowledge, it is possible to 
determine the amount of hauling cycles it performs per hour, thus inferring on its on-the-job 
productivity. The productivity that had been estimated in design phase is replaced with the new 
productivity values, inferred from the continuous GPS control, calling for a re-optimization of 
the previously chosen equipment fleet. Since this is done in real time, the resulting system 
presents a superior ability to adapt to unforeseen delays during construction. The updating and 
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re-optimization is carried automatically whenever the performances indexes of the project are 
lower than the ones in planning phase. Figure 4.3 depicts the system main components and their 
interaction. 

 
Figure 4.3  System components and their interaction (Moselhi and Alshibani 2007) 

 

Other systems follow the same simulation-optimization principles using different forms of 
simulation and/or optimization methods, though most focus on specific tasks the earthwork 
process, namely excavation and hauling. Cheng et al. (2005) proposed a similar method, based 
on an enhanced GA optimization, while using CYCLONE (CYCLic Operation NEtwork – a 
broadly used commercial simulation engine) as a simulation evaluation function to assess the 
performance potential combinations of excavation and hauling equipment. Zhang (2008) 
presented a multi-objective simulation-optimization system using particle swarm optimization 
(PSO) for optimization and object-oriented simulation as an evaluation function. Cheng et al. 
(2010; 2011) and Luo et al. (2008) illustrate how Petri net (P/T net) models can be used for the 
management of equipment allocation in a specific earthmoving operation case. The P/T net was 
used to represent the dynamic constraint relationships among the various types of equipment 
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and their functions, in order to describe the process and equipment workflow in earthmoving 
operations. Also focusing on transportation and hauling tasks and machinery allocation, Xu et 
al. (2011) coupled an optimization heuristic algorithm based on evolutionary strategy with a 
mathematical model for simulation. In order to facilitate a better understanding of the most used 
optimization and evaluation methods, Table 4.3 associates these to the referred systems. 

Table 4.3  Applications for earthwork equipment allocation 

System Optimization method Evaluation method 

Cheng et al. 2005 GA Simulation (commercial software – 
CYCLONE) 

Cheng et al. 2010, 2011 P/T net P/T net 

Moselhi et al. 2002, 2007 GA Object-oriented simulation 

Luo et al. 2008 P/T net P/T net 

Xu et al. 2011 Heuristic algorithm Mathematical modelling 

Zhang 2008 PSO Object-oriented simulation 

 

Several other developments focus on partial simulation and/or optimization of individual 
aspects of earthwork tasks, such as excavator cycle time using fuzzy logic algorithms (FLA) 
(Yang et al 2003) or optimization of the least costs cut-fill route and mass haul diagrams using 
AI (Askew et al 2002; Mawdesley et al 2004) and swarm intelligence algorithms (Kataria et al 
2005; Miao et al 2011; Nassar and Hosny 2012). Moreover, a substantial number of authors 
focus on the application of modern heuristics on highway alignment in early design phases 
(Mandow and Pérez-de-la-Cruz 2004; Kim et al 2005; Göktepe et al 2008; Miao et al 2009; Jha 
2012). While not directly related to earthworks optimization, both the used optimization 
methods and the fact that the minimization of earthwork volumes is an essential aspect in this 
kind of systems demonstrate the relevance of metaheuristics on the earthwork construction 
context. 

4.4. SYSTEM ARCHITECTURES AND APPLICATION 

Early attempts of integrating AI and optimization were based on the expert knowledge acquired 
from planning engineers and construction equipment specialists, attempting the development of 
expert systems for the selection of earthmoving equipment (Alkass and Harris 1988; Alkass and 
Harris 1991; Naoum and Haidar 2001), optimize cut-fill routes and mass-haul diagrams 
(Mawdesley et al 1988) or compile information on quality control and management (Kotdwala 
and Basheer 1994). The knowledge in these systems is stored in a relatively simple way that 
allows its use in a wide variety of decision support environments. However, as traditional expert 
systems, they are limited to the structured rules with which they are developed. In this point of 
view, even though these can be used as a decision support tools in simple cases, they do not 
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taking advantage of the full capabilities of the most recent SC techniques, such as DM and 
metaheuristics. 

4.4.1.  Architectures and used techniques 

In order to structure the information in this work, a literature map built according to the research 
methodology described in Section 4.2 and regarding the systems analysed in Section 4.3 is 
presented in Table 4.4. The literature map attempts to contextualize the system and applications 
references in their correspondent area. It also clearly illustrates the considerably higher number 
of applications falling under the metaheuristics system category for excavation and 
transportation tasks. As previously referred, this is very likely related to the high potential of 
integrating simulation and metaheuristics to model real world problems, as well as the ease with 
which the outcome can be interpreted, validated and applied on real construction projects.  

 

Table 4.4  Intelligent earthwork systems literature map 

Technology 
Highway 
alignment 

Material 
management 

Excavation and 
transportation Compaction 

Data Mining   - (Edwards and Griffiths 
2000) 

- (Schabowicz and Hoła 
2008; Hola and 
Schabowicz 2010) 

- (Shi 1999) 
- (Tam et al 2002) 

- (Marques et al 
2008; Gomes 
Correia et al 
2012) 

Metaheuristics - (Jha 2012) 

- (Kim et al 
2005) 

- (Mandow 
and Pérez-de-
la-Cruz 
2004) 

- (Miao et al 
2009) 
 

- (Göktepe et al 
2008)  

- (Kataria et al 
2005) 

- (Mawdesley et al 
2004) 

- (Miao et al 2011) 

- (Nassar and 
Hosny 2012) 

- (Askew et al 2002) 

- (Cheng et al 2010; 
Cheng et al 2011) 

- (Cheng et al 2005) 
- (Luo et al 2008) 

- (Marzouk and Moselhi 
2002a; Marzouk and 
Moselhi 2002b) 

- (Xu et al 2011) 
- (Yang et al 2003) 

- (Zhang 2008) 

 

- (Moselhi and Alshibani 2007; Moselhi and 
Alshibani 2009) 
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In general terms, DM applications in earthwork constructions are based on the learning 
capabilities of AI algorithms. In fact, the feature of learning from past data and predicting its 
behaviour in altered or future situations has great potential for engineering applications, 
especially considering that it essentially simulates the process of gaining experience by an 
engineer, which is then used as a basis in new construction projects. Thus, DM earthwork 
systems rely on the existence of databases to which the learning algorithms are applied, while 
their outcome is limited to the type of present data and the experience gained. Nonetheless, they 
are susceptible of being integrated into more complex systems, as explored, even if only 
theoretically, by Michalewicz et al. (2007). These authors suggested a framework for a DM 
system in which a “prediction module” combined with an optimization method is capable of 
performing data extraction and analysis in order to determine and select the best solutions for a 
certain problem. The proposed system integrates the ability to be fed new data and immediately 
adapt and “learn” from it in real time. This fact inherently gifts the system with the aptitude for 
working in dynamic, every-changing environments. Even though no practical applications have 
been developed in the context of Civil Engineering so far, the idea of coupling DM with 
optimization is discussed further on. As for the examined DM systems, the fact that they focus 
on specific earthwork tasks, such as excavation (Edwards and Griffiths 2000) and hauling (Shi 
1999; Tam et al 2002; Schabowicz and Hoła 2008; Hola and Schabowicz 2010) or the 
compaction process (Marques et al 2008), can be seen as a limitation. Considering the iterative 
nature of DM techniques, ANN seem to be the most effective one in estimating earthwork 
parameters, on account of leading to the best model adjustments regarding this problem. 
However, as previously referred, ANN systems show some difficulties when dealing with large 
amounts of irrelevant data, which can present a limitation when dealing with real construction 
data. Still, in the light of the previous discussion, its potential to be integrated in a more 
complex and comprehensive system is noteworthy. 

Simulation-optimization systems are different from DM systems taking into account that the use 
of AI is not in the form of machine learning algorithms, but rather metaheuristics algorithms. 
Tackling the complex and dynamic environment inherent to earthwork constructions, simulation 
is the most common evaluation method for its capabilities and ease of interpretation on 
expressing real construction processes in ever-changing environments. Earthwork simulation-
optimization applications can be divided into global resource allocation systems and task-
specific optimization systems, depending on their optimization objectives. On the one hand, 
typical resource allocation systems (Marzouk and Moselhi 2002a; Marzouk and Moselhi 2002b; 
Cheng et al 2005; Zhang 2008) focus on the global optimization of available earthwork 
equipment and machinery during design phase, in function of predefined optimization 
objectives (i.e., time/cost minimization). A noteworthy exception for these possibilities is the 
system proposed by Moselhi and Alshibani (2007; 2009) which focuses on the optimization of 
available resources mostly during construction phase, incorporating the use of GPS to help 
estimate the real productivity of each available equipment and automatically re-allocating 
resources if these productivity rates suffer any alteration. On the other hand, task-specific 
optimization systems (Askew et al 2002; Yang et al 2003; Kataria et al 2005; Cheng et al 2010; 
Miao et al 2011; Xu et al 2011; Cheng et al 2011; Nassar and Hosny 2012) generally focus on 
improving the processes that form specific earthwork tasks themselves, overlooking the 
advantages of global optimization. These systems also fall under the same architecture of 



Chapter 4 – Earthwork Optimization Applications 

 

79 

associating optimizers with simulation as an evaluation function. However, the fundamental 
difference between these and the previous systems lies not only on the objective of the 
optimization, but also on the type of simulation used for evaluating solutions. In fact, since 
these systems usually require a much more detailed simulation of internal processes and 
constraints within a specific earthwork task, the most used simulation methods are based on 
queuing theory and dependency relations between processes. It seems evident that GA, for their 
ease of implementation and intuitive interpretation, are the main choice for optimizer in 
earthwork resource allocation (Marzouk and Moselhi 2002a; Marzouk and Moselhi 2002b; 
Cheng et al 2005; Kim et al 2005; Moselhi and Alshibani 2007; Moselhi and Alshibani 2009; 
Xu et al 2011). Given the nature of SI algorithms, especially ACO, these seem to be more suited 
for route and mass-haul optimization, as is corroborated by the studied applications (Kataria et 
al 2005; Miao et al 2009; Miao et al 2011; Nassar and Hosny 2012). Concurrently, P/T nets and 
FLA are mainly limited to simulation and modelling methods (Yang et al 2003; Luo et al 2008), 
although there are some attempts at partial optimization of earthwork tasks, namely excavation 
and transportation, and tasks scheduling optimization (Cheng et al 2010; Cheng et al 2011). 

 

4.4.2.  Application in earthwork phases 

In order to further this analysis, Table 4.5 and Figure 4.4 represent a system categorization map, 
in which the most relevant system architectures are classified into groups (architecture types) in 
function of their conceptual features, namely both the technologies that support them and their 
correspondent application areas.  

This categorization identifies the different phases of an earthwork project, attempting to 
emphasize the absence of integration between all areas regarding the existent systems. One can 
easily infer that the majority of existent applications not only fall under the simulation 
optimization category, but also most of these focus on optimizing resources or other aspects 
during planning and design phase of earthwork projects (Marzouk and Moselhi 2002a; Marzouk 
and Moselhi 2002b; Yang et al 2003; Cheng et al 2005; Kataria et al 2005; Kim et al 2005; 
Göktepe et al 2008; Luo et al 2008; Zhang 2008; Miao et al 2009; Cheng et al 2010; Miao et al 
2011; Xu et al 2011; Cheng et al 2011; Nassar and Hosny 2012). Additionally, a considerable 
percentage of the latter focus on the optimization of single aspects or tasks of earthwork 
projects, as opposed to attempting to integrate the optimization of all phases of the earthworks 
process. 
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Table 4.5  Matrix of application areas of existent intelligent earthwork system types 

Underlying Technology 
Data acquisition and 
parameter estimation 
(Pre-design phase) 

Planning & Design  
phase 

Monitoring & 
Control phase 

Data driven systems 

Type 1 
(Marques et al 2008); 
(Edwards and Griffiths 
2000); (Schabowicz and 
Hoła 2008; Hola and 
Schabowicz 2010); (Shi 
1999); (Tam et al 2002) 

 
 

 

Simulation 
optimization 
systems 

GA 

 Type 2 
(Cheng et al 2005); (Kim et 
al 2005); (Marzouk and 
Moselhi 2002a; Marzouk 
and Moselhi 2002b); (Xu et 
al 2011) 

Type 5 
(Moselhi and Alshibani 
2007; Moselhi and 
Alshibani 2009) 

SI 

 Type 3 
(Kataria et al 2005); (Miao 
et al 2011); (Miao et al 
2009); (Nassar and Hosny 
2012); (Zhang 2008) 

 

FLA 
and 
P/T 
nets 

 Type 4 
(Cheng et al 2010; Cheng et 
al 2011); (Göktepe et al 
2008); (Luo et al 2008); 
(Yang et al 2003) 

 

 

Considering the different capabilities of each technology, an ideal system for earthwork control 
and optimization should be able to integrate all the modules in order to work throughout the 
whole design and construction process. However, as stated above, the systems developed so far 
for earthwork construction applications are generally limited or focused to only one of these 
areas. On the one hand, as described in Table 4.5, most simulation optimization systems focus 
on optimization during design phase, with the exception of the one developed by Moselhi and 
Alshibani (2007; 2009), which centres its capabilities in construction phase. In fact, the inability 
of these systems to adapt to the frequent unforeseen events associated with in-situ construction 
can be seen as a significant limitation, since most of these events are impossible to predict 
during design phase. On the other hand, systems based on DM techniques mostly focus on data 
acquisition and analysis methodologies, which in few cases are applied to design phase as a 
resort for estimating unknown material and equipment characteristics or parameters.  
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Figure 4.4  System concept map 

 

4.5. FINAL REMARKS 

In addition to the existent systems, some efforts have been made in order to predict future 
tendencies and possibilities for this type of systems. Kim and Russel (2003) explore the 
theoretical possibility for a fully automated and autonomous earthwork construction system, in 
which human intervention is minimal or even inexistent. The autonomous capabilities of the 
system include not only the automatic planning of routes for transportation equipment, but also 
the synchronization and interactivity between all equipment elements (from excavation to 
compaction tasks). However, the authors conclude that the available technology for such system 
still lack development and, even though some technologies that could be adapted in order to 
implement it are pointed out, more steps regarding technology advancements are needed in 
order to make this a possibility. The idea of fully automated construction is not completely new, 
as made obvious by the strategic agenda of the European Construction Technology Platform 
(2005) for underground construction. In fact, one of the long-term main objectives, among 
others with a deadline set to year 2030, for improving safety in underground construction is the 
development of totally automated remotely controlled tunnel construction equipment, 
techniques and processes. This has the purpose of effectively achieving the goals related to 
being able to carry out underground constructions both with no workers inside tunnels, 
reflecting the 100% automated construction goal, and with zero accidents during construction. 
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In order to come closer to those objectives, the next step in terms of a viable intelligent 
earthwork optimization system should consist of the integration of the currently available 
technologies (i.e., DM, metaheuristics and GIS), so as to develop a robust and reliable system 
capable of optimization throughout all phases of a construction project. The framework for the 
intelligent earthwork optimization system is presented on Chapter 5, based on the previously 
discussed technologies and with the potential to integrate all the mentioned areas. This includes 
knowledge extraction from databases as a mean to support an optimization system capable of 
not only planning and optimizing earthwork construction tasks, but also be flexible enough to 
allow the updating of site and equipment conditions during construction phase, re-optimizing 
the system should the efficiency of the earthworks process fall short of what was estimated in 
design phase. 
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5.1. INTRODUCTION 

Ideally, earthworks should be optimized automatically. Considering the nontrivial 
characteristics of earthworks optimization (e.g., large search space and conflicting goals), 
conventional Operational Research (e.g., linear programming) and blind search methods are 
infeasible. As an alternative, metaheuristics are an interesting solution within this domain, since 
they are capable of searching interesting search space regions under a reasonable use of 
computational resources. Indeed, several studies have adopted metaheuristics to this domain, 
such as genetic algorithms (Marzouk and Moselhi 2002b; Moselhi and Alshibani 2007; Xu et al 
2011) and swarm intelligence (Kataria et al 2005; Zhang 2008; Miao et al 2011; Nassar and 
Hosny 2012). However, many of these applications focus on single tasks or partial processes 
that comprise earthworks, i.e., excavation and hauling (Kataria et al 2005; Xu et al 2011), in an 
attempt to deal with the high complexity of the problem. For this reason, these systems lack the 
advantages of a global optimization of execution durations and costs throughout all construction 
phases. In terms of optimization objectives, existent systems tend to be limited to single 
objective optimization, such as cost (Marzouk and Moselhi 2002b) or duration (Kataria et al 
2005), or attempt to consider both objectives via a weight-based optimization (Zhang 2008). 
Although these solutions are considered effective in reducing computation effort requirements, 
they overlook the advantages of optimizing both objectives simultaneously. Even if it can be 
looked at as multi-criteria optimization, the weighted-based approach used in (Zhang 2008) only 
outputs a single trade-off for a particular weight combination (e.g., 0.8 for first criteria and 0.2 
for second). However, as one can easily infer in nontrivial multi-criteria optimization problems, 
often there is not a single optimal trade-off solution, but rather a set of trade-offs with 
conflicting objectives. Thus, a much natural multi-criteria optimization approach is to optimize 
a Pareto front of solutions, where each solution is called non-dominated, or Pareto optimal, if 
none of the objectives can be improved in value without worsening the other. In the context of 
earthwork optimization, all Pareto-optimal solutions are considered equally good and the main 
choice criteria for selecting one solution over the other is often decided by the project designer 
based on the construction final deadline and/or budget. And additional criteria could be used to 
support the final decision, such as environmental aspects, which can be assessed by the 
determination of carbon dioxide emissions in each solution.  

5.2. SYSTEM ARCHITECTURE 

The proposed system architecture consists of three integrated main modules with capabilities to 
acquire and manipulate data from each phase of an earthwork project. Figure 5.1 depicts the 
module organization and information flow, while Table 5.1 summarizes the technologies, tools 
and purposes associated with each of the three modules: 

§ Equipment Module  

§ Spatial Module; and  

§ Optimization Module. 
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Table 5.1  Modules, technologies, tools and functions 

Module Technology Tools Function 

Equipment Data 
Mining 

R, Rminer • user inputs; 
• estimation of productivity & costs 

Spatial Geographic 
Information 
Systems 

R, GIS, 
GPS 

• modelling of construction site; 
• path finder 

Optimization Metaheuristics R • (near) optimal selection of equipment fleet 
depending on availability; 

• (near) optimal equipment fleet allocation 
throughout construction phase; 

• return output to user. 

 

In general terms, the Equipment Module is responsible for receiving the user input for available 
equipment/plants, while calculating or retrieving equipment costs. Simultaneously, this module 
should have a close interaction with the data mining (DM) models for determining the 
productivity rates for available rollers. This model is built upon the data comprised in the Guide 
des Terrassements Routiers (GTR) compaction guide, such as material characteristics, roller 
specifications (i.e., weight per drum length and maximum amplitude, in the case of vibratory 
rollers) and construction specifications (i.e., required compaction energy or specific layer 
depth). Given this input, the model is then capable of classifying both the material and roller 
types, as well as retrieve information regarding number of compaction passes and maximum 
productivity. Moreover, given the availability of further construction data, the DM models in 
this module can be expanded to include the whole construction equipment, such as spreading, 
transportation and excavation equipment.  

On the other hand, the Spatial Module allows the user to input a functional model of the work 
site by user input using a geographic information system (GIS), namely including all the 
possible work fronts and potential equipment trajectories/paths. Simultaneously, the path finder 
algorithms integrated in most GIS software can be used to determine the best routes or 
trajectories for transportation equipment, by making of both the created work site model and the 
equipment specifications from the equipment module. This results in the optimization of the 
workflow in the construction site. Furthermore, depending on the availability of global 
positioning system (GPS) equipment, by including GPS receivers in the active earthwork 
equipment during construction phase and associating these with the GIS software, it becomes 
possible to determine the actual equipment work rates. This allows the system to automatically 
update and optimally adjust itself in real-time as the construction process goes on. For instance, 
consider the possibility that the real rate of transport equipment (such as a dumper truck) is 
inferior to what was originally predicted in the modelling phase in terms of travels between 
excavations or borrow sites and work fronts per hour. By monitoring and re-evaluating the real 
rate of this equipment via GPS (i.e., number of trips per hour), the system would then be able to 
perform adjustments, such as relocating another piece of equipment, in order to keep the 
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original work flow. Depending on the availability of number of GPS equipment present on the 
site, this function is ideally susceptible to be extended to all the working equipment in the fleet. 

Finally, the Optimization Module works by means of an optimization algorithm (i.e., a GA), 
which attempts to find a near optimal solution for the problem of determining the best possible 
equipment fleet and its optimal distribution throughout the work area. The optimization is 
carried out bearing in mind both construction time and costs, which are often conflicting 
interests in earthwork tasks, defining the problem as multi-objective optimization with 
conflicting objectives. Additionally, considering that the optimum equipment locations are not 
static over time, since as the tasks in one work front are completed the equipment should be 
optimally reassigned to other work fronts, one could further define the problem as a dynamic 
multi-objective optimization with conflicting objectives. As such, both the Equipment Module 
and the Spatial Module feed the Optimization Module with the necessary data to carry out the 
search for the near optimal solutions for the problem. The latter is able to evaluate the 
performance of each solution by means of a fitness function regarding both costs and time. The 
simulation method may be, for instance, based on object-oriented simulation of the whole 
construction process for each potential solution, allowing for the determination of both costs 
and construction time in each equipment fleet configuration. After the best solutions have been 
considered and evaluated, the Optimization Module presents the user with the best-found 
solutions through the User Interface as the output for the system. 

It is important to refer that, in what concerns the optimization and performance evaluation 
processes, the main parameters can be seen as being directly related to the total roller rate that is 
being considered for each work front (in each iteration). In fact, if the earthwork process as a 
whole is looked at in a production line point of view, in which the work rate of the whole 
production line corresponds to the work rate of the last process (in this case, compaction), 
which, in turn, depends on the rates of all precedent processes, then maximizing production in 
an earthwork production line means maximizing the productivity of compaction throughout the 
whole construction. In this context, the optimization of the earthwork process must take into 
account not only the optimal allocation of compaction equipment, but also the determination of 
a compatible production line preceding the compaction task. As such, the work rates of 
spreading, transportation and excavation equipment (including excavation from borrow sites), 
as well as equipment used in any intermediate tasks (i.e., soil treatment equipment, water 
trucks), should be determined taking into account the roller rate in each work front so as to 
allow for the constant work flow in those areas. In other words, each work front as to be “fed” 
just enough material for the rollers to constantly work at their maximum rate, minimizing their 
idle time, thus demanding the synchronization of the whole equipment fleet, including 
transportation and excavation equipment.  
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Figure 5.1  System architecture 

5.3. SYSTEM MODULES 

5.3.1. Equipment Module 

The equipment module is based on the system previously developed by Marques, Gomes 
Correia and Cortez (2007; 2008), which has been described in detail in Chapter 4 (see Section 
4.3.1). Using the data from the GTR compaction tables, in conjunction with user inputs 
regarding the compaction equipment (e.g., available rollers and specifications or GTR 
classification) and embankment fronts (e.g., material type, preferred layer thickness), this 
module is able to assess the productivity of any roller type in each embankment front. The 
original system includes the classification of materials and rollers depending on their 
specifications in the form of an expert system. However, in order to facilitate the system’s input 
requirements, as well as simplify development of the intelligent optimization system at this 
phase, the inclusion of the automatic material and equipment classification feature of the 
original system was assigned to future work. Since this notion was already taken into 
consideration since early stages of development of the equipment module, the necessary steps 
have already been taken so as to allow for an easy addition of this feature. Be that as it may, 
since this feature forces the user to insert all the required data into matrixes prior to running the 
optimization system, thus increasing input requirements, it should be included as an optional 
input method for the user, rather than mandatory. Nonetheless, this can be facilitated by the 
creation on a graphical user interface (GUI), as discussed in section 5.3.4. 

As such, in the present system, the classification of materials and rollers is left for the user, who 
should input the final class of each material and roller (according to the GTR guide) to the 
system. The system should then be able to automatically retrieve the productivity for each 
combination of roller-material in each embankment front, depending on other specifications 
such as layer thickness. However, this module does not have to be limited to the estimation of 
compaction parameters, as it can be extended to estimate productivity of more equipment types, 
in cases where user input is missing. This requires a robust database, either built from real 
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construction data or originated in construction guides or manufacturer specifications. In this 
sense, some developments were carried out during this project, which show the viability of this 
concept, assuming a complete and reliable construction/manufacturer database is available. The 
following sections present a study based on the application of artificial neural networks (ANN) 
in an earthwork construction database. The DM algorithms have been tested in order to achieve 
the best possible adjustment to the data. Results show not only the potential of such 
applications, but also weight of each earthwork construction process and its influence on the 
production line, as well as on the final construction rate. Consequently, these also emphasize the 
importance of optimization in terms of resource distribution in the production line of each work 
front.  

Database 

This DM application on earthwork data is founded on the learning and predictive capabilities of 
AI algorithms. However, it is noteworthy to point out that this type of application relies on the 
existence of databases to which the learning algorithms are applied, meaning that their outcome 
is also limited to the type and quality of present data, as well as the gained 
knowledge/experience. Thus, the availability of proper data becomes essential for successfully 
building, training and testing of DM algorithms in earthwork construction.  

In this work, a subset from a database devised from the earthworks of a Portuguese road 
construction site was used for that purpose. The original database includes the description of 
several years of earthworks construction, broke down into the daily activities of the available 
mechanical equipment. In this application, the data subset regards the activities of earthwork 
equipment throughout 6 months of construction phase, featuring around 1250 entries (after data 
preparation) with information on date, work hours, atmospheric conditions, number and 
distance of load trips and resource types, as depicted in Table 5.2. 

Table 5.2  Values extracted from the available earthwork construction database 

Date Work 
Hrs. 

Atm. 
Cond. 

Nr. of 
Loads 

Excav. 
# 

Load 
Zone 

Unload 
Zone 

Resource 
Type 

Transp. 
Volume 

9/2/11 7 Rain   7+850 8+625 Excavator50T  

9/2/11 3 Rain   7+850 8+625 Roller15T   

9/5/11 9 Sun 37 20/871 13+750 12+250 Dumper40T 481 

9/5/11 9 Sun 39 20/871 13+750 12+250 Dumper50T 634 

9/5/11 9 Sun   13+750 12+250 Tractor40T  

Application results 

As previously stated, a DM model is dependent on the available data. As such, in order to 
achieve an ideal model with predictive capabilities for a specific target variable, it should be 
built using all the variables with some degree of influence on the value of the target variable. 
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However, data regarding those variables is not complete or even available in many cases, 
especially when dealing with real world data originated in earthwork constructions. Moreover, 
an exceedingly high number of variables will generate too much complexity regarding the 
search of relations and patterns amongst variables, often lowering the predictive capability of 
the model. In order to surpass these issues, some non-conventional methodologies were used in 
this application, as discussed further ahead. 

In this work, one of the main purposes for the application of DM algorithms to earthwork data 
was the creation of a model with predictive capabilities regarding the final construction rate of 
the whole process. Considering the traditional earthwork construction sequence, the final 
construction rate corresponds to the rate of the production line itself, which coincides with the 
work rate of its last task. As such, the emphasis is given to the final rate of compaction 
equipment, corresponding to the last task of the earthworks process, which is determined while 
taking the excavation, transport and spreading equipment rates into consideration.  Yet, as a 
consequence of the high number of variables with influence on each process comprising the 
earthwork production line, building a single DM model targeting the rate of compaction 
equipment would neither be efficient nor effective, since it would not display a suitable 
predictive ability. Instead, two sequential models were developed, the first one targeting the 
prediction of the daily number of load operations using excavation and transportation plants, 
which was then used as an input for the second model regarding the rate of spreading and 
compaction plants. Note that, since the prediction of the number of loads is based on real 
construction data, it already takes into account the durations associated with loading, hauling 
and return trip. The same occurs with the prediction of final compaction rate, since every 
associated task, such as spreading or controlling the layer water content, is inherently being 
taken into account. Figure 5.2 shows the obtained model results for the target variables, as well 
as the training variables used to predict them and their relative importance. 

Model assessment was mainly based on the value of the error defining the degree of learning of 
a given model, as well as the correlation between the observed and the predicted values (Hastie 
et al 2009). The used metrics were root mean squared error (RMSE) and correlation coefficient 
(R2) (See Chapter 3). Results were obtained using the rminer package (see Chapter 3) for the R 
tool (Cortez 2010b). The developed models feature RMSE and R2 values equal to 8.325 and 
0.855 for the first model (number of loads by transportation equipment), and 26.377 and 0.980 
for the second model (compaction rate), respectively. Moreover, none of the models showed a 
mean absolute deviation above 12%. These values were deemed adequate seeing as the data 
originates from a real construction environment. 

The results obtained from these models demonstrate the importance of equipment allocation in 
earthworks. In fact, the analysis of Figure 5.2b shows that the number of loads from 
transportation equipment as predicted by the corresponding model is the main factor influencing 
the prediction of final compaction rate. In other words, the daily work rate of the production line 
preceding the compaction process is the main factor affecting its progress, affecting the 
development of the whole construction.  
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Figure 5.2  Results yielded by prediction models and the observed values (left), including relative 
importance (%) of variables for each model (right) for: a.) Number of transport loads, 
b.) Compaction rate (Parente et al 2014). 

 

This is often verified in real constructions cases if the productivity of excavation and 
transportation plants does not match that of the compaction plants. On the one hand, should the 
productivity of excavation and transportations plants be inferior to that of compaction plants, 
the latter will sustain high idle equipment times, reducing the global work rate. On the other 
hand, a higher productivity regarding excavation and transportation will result in an overflow of 
material on the compaction front, which cannot be timely compacted, ultimately becoming an 
obstacle for the construction of the embankment. 

In order to verify this occurrence, while also supporting the significance of optimal allocation of 
earthwork equipment, the developed sequential models were used to predict the work rate of 
earthwork equipment using a different construction setup. In the new setup, excavation and 
transportation plants were virtually and randomly reorganized throughout the same construction 
site, without altering the positions of excavation or compaction fronts. Compaction conditions 
were fixed, including compaction and spreading plants, as well as their distribution throughout 
the compaction fronts, so as to facilitate comparison with the original setup. Initially, the first 
model (transportation ANN) carried out the prediction of daily number of loads each 
excavation-transportation plant would carry out, which is a function of the variables shows in 
Figure 1a (in which the distance from excavation to compaction fronts, as well as the associated 
number of dumpers, represent the factors with most weight). The results from this model were 
then grouped regarding the target compaction front associated with each excavation-
transportation plant, and inserted into the second model (compaction ANN), which estimated 
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the average compaction rate in each compaction front. The compaction values found in the GTR 
compaction guide were used as a reference to control the maximum predicted compaction rates. 

Results showed a decrease of approximately 15% in the final compaction rate corresponding to 
the new equipment distribution. The compaction values found in the GTR compaction guide 
were used as a reference to control the maximum predicted compaction rates. This decrease in 
the final compaction rate of the new production line, when compared to the original setup, is a 
result of mismatching work rates between excavation and compaction fronts. It is important to 
bear in mind that there is a limit to the maximum rate of a specific compaction plant, which is 
likely being exceeded in some work fronts for the current equipment distribution, while other 
work fronts are not receiving enough compaction material to achieve a satisfactory compaction 
rate. Thus, the compactors at the end of the production line are being forced to suffer idle 
periods, ultimately lowering the global compaction rate. Even though this exercise resulted in a 
decrease in the final compaction rate for the new equipment distribution when compared to the 
original setup, its purpose was considered fulfilled. However, only one distribution will be 
equivalent to the best possible work rate with the current available equipment fleet, which can 
be found by automatic optimization in terms of resource allocation, as discussed in Section 
5.3.3. In this perspective, these results show the importance of equipment fleet optimization 
throughout construction phase, as well as the effectiveness of DM tools in earthwork 
construction projects. 

5.3.2. Spatial Module 

The spatial module is founded upon GIS technology. Its primary purpose is to gather the 
necessary information, generated from spatial data, to assist the proper optimization of 
transportation equipment distribution and workflow. This data is associated with the optimal 
routes, distances and cycle times between excavation and embankment fronts, as well as with 
spatial models of earthwork construction sites, which include information regarding the relative 
positioning between fronts and the possible routes that connect it. On the other hand, the spatial 
module is expected to provide a basis for spatial input and output visualization, enhancing the 
system with the possibility of receiving GPS data (if available) during construction phase of 
earthwork projects, as a means of updating the productivity estimated during project phase if 
necessary. Considering the dynamic and hard-to-predict nature of earthwork projects during 
construction, these features add the necessary versatility to the system to deal with unforeseen 
events or problems. 

The initial objective of this project included the integration of both the spatial and the 
optimization modules of the system. This would not only integrate the GUI of QGIS into R, but 
also facilitate data sharing between the software, since some of the equipment specifications 
inputted in the equipment module could be imported into the spatial module, while the outputs 
from the latter could also be directly imported to the optimization module. However, after 
experimentation with the software, it was concluded that full integration between QGIS and the 
R environment is not feasible, due to incompatibilities between software versions. This is due to 
the fact that, in order to achieve a proper integration between R and QGIS, the installation of an 
interface package (i.e., rpy2 interface) is needed, which would compatibilize the object-oriented 
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programming languages of R with the Python language upon which QGIS is based. Yet, the 
available versions of this interface would force the installation of an earlier version of both R 
and QGIS, so as to allow for compatibility between the software. As such, following through 
with this option could hinder the proper functioning of the R packages used for the DM and 
optimization modules, as these were developed on a later version of the former. 

Nonetheless, the optimization system built in R and the corresponding optimization module (see 
Section 5.3.3) feature the necessary flexibility to allow a manual insertion of the spatial data for 
the optimization process, including shortest routes, haul distances and cycle times, in a practical 
way. Effectively, the main subsequent limitation of the system, stemming from the unsuccessful 
integration of GIS software, is associated with the output representation (visual support) of final 
equipment positions over time, and overall user-friendliness associated with the GIS GUI 
support. In this context, an origin-destination (OD) cost matrix can be used to abridge the main 
input required from the GIS software in order to allow for the correct functioning of the system. 
This type of spatial data can be achieved by one of two ways: 

§ Manually determine or estimate haul route distances or travel times; 

§ Automatic estimation and generation of an OD cost matrix via GIS software. 

The first method can be carried out when a good understanding of the construction area already 
exists, either as a result of the availability of quality data during design phase, or during any part 
of the construction phase of the project, in which there is a more detailed grasp of the duration 
of haul trips, as well as potential restrictions/obstructions regarding the available routes. In 
practice, it consists of manually creating an OD cost matrix based on observation or estimation 
of the average time that trucks require to go from each point of origin (excavation areas) to each 
destination point (compaction areas). Ultimately, an OD cost matrix compiles the information of 
how long an average truck requires to transport material from each excavation to each 
embankment front. However, this process is obviously much more demanding and subjective 
when compared to the second referred alternative. Furthermore, being carried out by human 
observation and common sense, optimal routing is not guaranteed. 

Whereas the second method features some advantages, its main disadvantage regards the 
requirement of some basic knowledge of GIS software. In this method, one basically builds a 
model of the construction area using whatever information is available, either during project and 
construction phase. The model includes the origin areas, as well as destinations, and the 
indentification of all possible routes for the transportation equipment inside or outside the 
construction site. It then becomes possible to use the automatic path finder tools in GIS 
software to automatically generate the OD cost matrix and import it into R. This methodology is 
to be explored in detail further ahead in the present section. 

Obviously, even if a model is built during design phase, where not enough information is still 
available, this type of input is susceptible of being updated during construction phase. The user 
can easily modify the matrix values at this stage by: 

§ adding a new point of origin (i.e., excavation or borrowing site) or destination (i.e., as a 
result of updating site conditions or dealing with unpredictable situations); 
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§ updating/modifying the value of distance or travel duration from each point of origin to 
each destination point;  

§ updating information regarding maximum speed in each possible path in the GIS; 

§ adding new potential routes for the equipment or remove any of the already established 
ones (e.g., after concluding that one of the paths is no longer suitable). 

 

In the light of the previous arguments, the process of using GIS software to obtain an OD cost 
matrix is described in the steps summarized below. In the example that follows, ArcGIS was 
used, since it simplifies the process of obtaining the matrix directly, without the need for any 
programming any additional loops or commands. Additionally, Google Earth is used in the 
process as a support for obtaining a partial aerial image of the construction site area. This image 
can then be used as a reference, over which all potential transportation equipment routes can be 
identified and characterized. The subsequent spatial analysis done by the GIS software will then 
assess the optimal routes for the transportation equipment for each origin and destination points, 
according to the available alternatives. It is to note that, this can be achieved by other methods 
(as previously referred), such as building graphs that represent the construction site and its 
conditions or manually adding the reference points and distances. Although these methods call 
for much more effort and often require a high simplification, as they are not perfectly suited to 
fully represent real world situations.  

In this context, the first step to generate the necessary data for proper equipment allocation is 
obtaining or generating a reference surface of the area under analysis. This should include the 
locations of work fronts, borrowing sites and equipment storage area for a given phase of the 
work, as well as all potential paths and infrastructures that enable communication between these 
areas. In this case, it consisted of an aerial image of a construction site in Alijó, Portugal, as 
exemplified in (Figure 5.3), obtained from Google Earth. To exemplify the process, this aerial 
image corresponds to a partial area of the construction site. This method requires the collection 
of further information on the coordinates of at least two points so as to allow for the usage of the 
ArcGIS georeferencing tool. So that this can be achieved, one must import the image into the 
GIS by using the Add Data function, followed by setting the coordinate system used as a 
reference for the coordinate points. Given that Google Earth’s internal coordinate system 
(latitude/longitude) corresponds to the World Geodetic System 1984 (WGS84), this information 
is inserted in the Data Frame Properties of the project. The georeferencing of the image is 
accomplished by adding the known dimension control points in their corresponding location. 
Coordinate values (in degrees, minutes and seconds) in the Northern and Eastern quadrants are 
considered positive, while Western and Southern coordinates are inserted as negative values. By 
georeferencing an image, the real size of the area it represents is being defined, meaning that the 
distance from one point to another corresponds to its real value. This is essential for the creation 
of a network, since the latter is built upon the same georeference, thus containing the 
information on real distances and path lengths/widths for the mapped area. 
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Figure 5.3  Aerial image of construction site (Google Earth) 

The creation of a network in most GIS requires the generation of a File Geodatabase, which in 
this case was accomplished via the ArcCatalog tool. In turn, the File Geodatabase integrates a 
Feature Dataset, referenced in the same coordinate system mentioned in the previous step, 
which includes feature classes, such as lines (used to represent paths or trajectories) and points 
(used for defining excavation, embankment and borrowing fronts). These elements comprise the 
network itself and are added on a different layer over the original image, using the same 
georeference as the latter. As such, the image is used as a reference for the position and 
dimensions of roads, paths and construction zones where the mechanical equipment can work or 
travel. Roads and paths, associated with line feature classes are overlayed on the previously 
georeferenced image, corresponding to the red lines depicted in Figure 5.4. The georeferenced 
image also serves as a reference for indentifying work fronts in the construction site (defined by 
point feature class). Some of the necessary attributes to analyze subsequent networks can 
already be defined in this phase. Attributes correspond to columns comprised in the attribute 
tables of the corresponding line/point features. These can be discretized/divided into three 
elements: 

§ Distance, in km, which, since it is preset to decimal degrees (coordinate system), must 
be converted into metric system values, so as to simplify subsequent calculations. For 
conversion purposes 1 decimal degree is considered equivalent to 111 Km; 

§ Average speed, in km/h, which is intended to correspond to the average speed that the 
transport equipment can travel at, depending on type of terrain and haul path conditions 
of the construction site. In this example, three types of terrain were considered: 
paths/trajectories inside the construction site that were of limited size were attributed a 
maximum speed of 20 km/h; wider paths/trajectories inside the construction site were 
attributed a maximum speed of 30 km/h; the paths/trajectories outside the construction 
site (i.e: roads) were attributed a maximum speed of 50 km/h; 
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§ Travel time, in minutes, with a corresponding value of 60× !"#$%&'(
!"#$%&#  !"##$

. The value 60 

is used to convert hours to minutes. 

 

 
Figure 5.4  Definition of all possible trajectories for transportation equipment (ArcGIS) 

Although this may be considered an intermediate step, the application of the Integrate function 
(included in the Data Management Tools Toolbox – Feature Class) to the line features 
(trajectories) in this phase guarantees connectivity between all elements that comprise it. The 
importance of this step is related to the difficulties that arise in following phases, where it is 
often verified that the elements (polylines) comprising trajectories/paths are not connected 
between themselves and, consequently, are not included in the analyses for the determination of 
the best route for the transport equipment. As such, this will prevent having to execute this 
action in subsequent phases, potentially forcing the repetition of other steps, namely the creation 
of a new Feature Dataset. 

Having included all the necessary elements for the network analysis process, the next stage is 
generating the network itself. Since all the line features are already overlayed and connected 
(due to the Integrate function), they are converted into an independent network. It should be 
noted that, during the generation of the network, the definition of the attribute to be used as 
impedance (cost) for the subsequent analysis is required. As previously mentioned, this can be 
either defined as travel time or distance, according to user preference, since the optimization 
module was developed with this option in mind. In this example, travel time was the used 
impedance variable. This phase also includes the appointment of restrictions, such as one-way 
routes, for any defined trajectories/paths in the network. 

Completed the generation of the network, it is then possible to carry out the desired analysis. In 
order to determine which paths/trajectories are the shortest of the transport equipment between 
the borrowing areas and the work fronts (given the defined conditioning factors), a Route Layer 
is added using the Network Analyst Toolbox. This command requires the path finder algorithms, 
used in the GIS software, to qualitatively evaluate each of the potential trajectories as a function 
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of the selected impedance (travel time), returning the best path between two points in the current 
model as output. As illustrated in Figure 5.5, by taking the points associated with an excavation 
and an embankment front as origin and destination, respectively, the GIS returns the best path 
that minimizes travel time. It is also possible at this point to add temporary or permanent 
barriers that may pose a hinderance or obstruction to the circulation of vehicles in the form of 
dots, lines, or polygons. For instance, these can be used to simulate changes in the conditions of 
some of the paths/trajectories along the site. 

 

 
Figure 5.5  Route layer, including identification of shortest path from an excavation to an 

embankment front (ArcGIS) 

However, in most cases, it is necessary to assess the travel time from one or more excavation or 
borrowing areas to several other work fronts. In this case, it is possible to create a cost matrix 
between the origin and destination points, using the selected measure as impedance (Figure 5.6). 
This step is accomplished by generating an OD Cost Matrix, using the Network Analyst 
Toolbox, by defining the origin points as the intended excavation or borrowing areas and the 
destination points as the embankment fronts or dump areas. Although it does not visually 
represent each path, ArcGIS uses the shortest routes as a reference, outputting the travel times 
(or other impedance value) for all origin and destination points in the form of a matrix. The 
latter can then be imported into R. Although ideally this action should be automatic if 
integration is achieved, it can also be done manually by exporting the resulting OD cost matrix 
to any of the formats recognized by R (e.g., spreadsheet format). 
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Figure 5.6  Origin-destination cost matrix with identification of one excavation front (origin) and 

two embankment fronts (destinations) (ArcGIS) 

In practical terms, it is easy to infer how the information compiled in the OD cost matrix can be 
used in the determination of transportation equipment productivity. In fact, access to the 
equipment specification provides an understanding of its on-the-job capacity, which, together 
with the gathered GIS data regarding travel times between work fronts, makes it possible to 
estimate the productivity of one truck under given conditions. Moreover, as discussed further 
ahead in Section 5.3.3, bearing in mind that, in simple terms, the maximum productivity of each 
task (in an earthworks production line) should not exceed the productivity of the preceding or 
succeeding tasks, the optimal number of trucks in each transportation plant can be determined. 
Leveraging this knowledge, it then becomes possible to allocate the available transportation 
equipment as necessary, depending on the productivity requirements for each case and the 
availability of the other types of equipment, which support the transportation task, namely 
excavators. 

5.3.3. Optimization Module 

Taking into account an optimization point of view, earthwork construction can be described as a 
number of production lines based on resources and dependency relations between sequential 
tasks. The resources correspond to the mechanical equipment that is essential for the 
development of the project, namely excavators, dumper trucks, bulldozers and compactors, 
while the sequential tasks are related to the associated processes, specifically excavation, 
transportation, spreading and compaction, respectively. The speed at which the latter can be 
completed depends on the amount of the former being allocated into each task. In other words, 
the work rate in each sequential task (in this case often measured in volume of handled material 
per hour, m3/h) can be manipulated by increasing or decreasing the amount of associated 
resources allocated to it. This means that earthworks are strongly susceptible to optimization, 
which is aimed at minimizing both execution cost and duration. The multi-criteria include 
conflicting properties: one can decrease execution duration by increasing the amount of 
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allocated resources to a task, but such results in an increase of the associated execution costs 
and vice-versa. It should be noted that the costs related to fuel and machinery maintenance 
(indirect costs) are substantial, thus solutions with longer durations are not necessarily less 
costly. 

The tasks that comprise earthwork projects have a set of specific characteristics in this context, 
of which the focal point is interdependency. Indeed, earthwork tasks are not only sequential, but 
also the work rate of each of them is always limited to the work rate of its preceding task. For 
instance, the dumper trucks cannot undergo the transportation of soil if the latter has yet to be 
excavated and loaded into them; and bulldozers cannot spread soil into layers so as to allow 
compaction if the material has not been brought to them by the dumper trucks, and so on. 
Furthermore, when dealing with sequential and interdependent tasks such as these, the speed at 
which a single production line can carry out its work is equivalent to the work rate associated 
with its last task. In this context, maximizing the work rate in the final task (in this case, 
compaction) would correspond to a solution with minimum execution time for a production 
line. However, it is noteworthy to emphasize such allocation is limited by the available 
equipment and also by the site conditions, such as space restrictions in excavation or 
compaction areas (usually designated as fronts). To fully take advantage of the available 
resources, one must guarantee that the allocated compaction equipment is fed enough material 
so as to allow for constant production. In other words, the work rate in all tasks prior to 
compaction (excavation, transportation and spreading) must be equal or similar to the work rate 
obtained in the associated compaction front. Should the work rate of a task fall short of the work 
rate of succeeding tasks, then the productivity of the whole production line will be limited to the 
one obtained in that task. This keeps the equipment from reaching its maximum potential in 
terms of work rate, i.e. by forcing it to idle while waiting for material. Therefore, it is essential 
to control the work rate in each task within a production line. 

Naturally, an earthwork construction is not depicted in a single production line, but rather in 
several independent production lines working simultaneously. Each of these production lines is 
associated with a compaction front, since that is the final stage for handling the geomaterials. 
Moreover, there is one more characteristic specific to these production lines that significantly 
increases its complexity. As construction ensues in several simultaneous production lines, 
compaction work will come to completion in one production line at a time. At the point when 
one production line has completed its assignment, the associated equipment is no longer 
contributing towards the completion of the earthwork project, thus calling for its reallocation 
into either an existent or a new production line. However, considering that site conditions have 
changed since the previous allocation, this reallocation should include all available equipment 
once again if it is to keep its optimal status. Thus, the whole resource allocation must be 
reorganized in order to optimally resume the execution of the project. This enhances the 
problem with a dynamic nonlinear feature, which must always be taken into account in 
earthworks design. 
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Problem Definition 

In production lines with sequential interdependent jobs, the last job determines the speed at 
which the whole process progresses. Considering that compaction corresponds to the last job in 
the earthworks production line, it determines the development rate of the whole construction, 
thus having a direct influence on project durations. Maximizing the work rate in compaction 
fronts would correspond to the minimal execution duration solution, provided that there is 
enough equipment in the remaining tasks to support such allocation. In this point of view, an 
earthworks construction project is divided into a number of production lines, which correspond 
to the total number of compaction fronts. To each compaction front corresponds a potential 
production line and its associated equipment, ranging from excavation to compaction tasks. 
These production lines can work simultaneously and are independent from each other while 
progressing towards completion. However, whenever a compaction front is completed, the 
equipment associated with that production line becomes available once again. At this point, a 
construction phase is considered completed and a new one ensues, demanding a reallocation of 
the newly available equipment. Subsequently, any optimization attempt on this type of problem 
must take these factors into consideration, including task interdependence and variable site 
conditions over time.  

Since resource allocation in earthworks is a time-evolving process (dynamic task), the solution 
should be time-adaptive as well. More specifically, the allocation of earthwork equipment has to 
constantly be updated whenever any work front has finished its projected work, hence ending 
the current construction phase. Consequently, the variables associated with this type of 
optimization are the amount and type of resources (equipment) to be optimally allocated for 
each task and also in each construction phase. The algorithmic flow of the general methodology 
used to solve the allocation and dynamic features of the problem is illustrated in Figure 5.7.  
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Figure 5.7  Algorithmic flow of dynamic earthwork resource allocation 

 

Objective Function and Constraints 

The optimal allocation of earthwork equipment is carried with the main objective of minimizing 
both total construction times and costs. The ideal solution would allow for the fastest possible 
excavation, transportation, spreading and compaction of projected volume of geomaterials with 
minimum expenses. For a single work front, the execution duration, Ts, can be defined by the 
volume of material being handled (in m3), Vm, divided by the work rate of the corresponding 
allocated equipment, Qp, (in m3/h), as depicted in Equation 5.1. 

 

𝑇! =
!!
!!

 (5.1) 
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However, from the production line point of view, the work rate of each job is not completely 
independent of that of the adjacent jobs, but rather part of a global work rate of the entire 
production line. In essence, considering the interdependence of tasks in the production line, the 
work rate of a production line corresponds to the minimum work rate from between the tasks 
that comprise it. This occurs because the equipment of one job cannot work at a faster rate than 
that of the preceding job and, simultaneously, it should not have a higher productivity than the 
succeeding job. A clear example might be that a group of dumper trucks cannot possibly 
transport more material than the amount which has been made available by excavators. At the 
same time, the same dumper trucks should never bring more material to an embankment front 
than the amount spreaders can handle, since the accumulation of an excessive amount of 
material at that point can obstruct the remaining equipment. Hence, the duration of the 
production line work, Tpl, corresponds to the volume of material associated with the last job 
(compaction), Vc, divided by the minimum work rate within the production line, Qi, as 
illustrated in Equation 5.2. 

 

𝑇!" =
!!
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 (5.2) 

 

Concurrently, the associated cost can be divided into direct and indirect costs. While the former, 
dcosti, corresponds to constant expenses, such as equipment rental (when applicable) and 
manpower costs, the latter, icosti, is related to time dependent costs, such as equipment fuel or 
maintenance. In this case, the associated cost can be obtained as shown in Equations 5.3 (cost of 
a single piece of equipment, Cs) and 5.4 (costs per production line, Cpl).  

 

𝐶! = 𝑖𝑐𝑜𝑠𝑡!×𝑇!" + 𝑑𝑐𝑜𝑠𝑡! (5.3) 

 

𝐶!" = 𝐶! (5.4) 

 

Finally, the total duration of the whole earthwork project can be obtained by adding the 
durations of all non-simultaneous production lines, while total costs are related to the period 
each equipment is used during the project (this issue is also discussed further ahead). It should 
be noted that the optimization is constrained by the construction deadline, regarding total 
project duration, and budget, limiting the total costs obtained in the optimal solutions. One 
additional constraint regarding space restrictions on the construction site can be considered, 
limiting the maximum amount of equipment simultaneously at work on the same front, when 
applicable. 
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Solution Quality Assessment 

As referred in the previous subsection, total construction time corresponds to the accumulated 
time for each construction phase. Fundamentally, construction time in each front is a function of 
equipment productivity and material volume to be handled in that front. In turn, a high amount 
of factors have influence on the productivity of earthworks equipment for each case. For 
instance, the productivity of a compactor allocated to a specific front is a function of its type, 
the type material that is being compacted, and the conditions under which compaction takes 
place (e.g., layer thickness, atmospheric conditions). Similarly to total time, total cost equals to 
the accumulated costs for each construction phase. The latter is a function of the direct and 
indirect costs linked to each piece of equipment, as well as the amount of hours these are active. 
Since indirect costs are time dependant (e.g., the fuel usage depends on the amount of time the 
equipment is active), execution costs can only be calculated subsequently to the determination 
of construction time in each phase. The steps followed to determine the objective functions 
(total construction time and cost) are summarized in Table 5.3. 

As the allocation of equipment dictates the resulting construction time and cost, the usage of 
equipment to its full potential is paramount. In other words, the allocation of equipment takes 
into account the minimization of construction time and cost, but also the maximization of 
equipment efficiency. In turn, by using the equipment to its maximum efficiency, the 
subsequent allocation solutions will inherently reduce the environmental impact of the 
construction, for instance reducing carbon emissions. In this context, and bearing in mind that 
earthwork construction can be interpreted as a series of production lines, global productivity 
will be at its highest rate when the productivity of the last task in these production lines (i.e., 
compaction task) is maximized. Given this premise, the allocation of equipment is firstly carried 
out for the compaction task, and then for each preceding task, as described in steps 1-6 of Table 
5.3. Additionally, in order to guarantee maximum equipment efficiency, the allocation of the 
other tasks is performed in function of the productivity verified in embankment fronts.  

For example, consider an initial construction phase where three compactors were distributed 
between two fronts. Lets assume the compactors, ci, are all of the same type, and the materials, 
as well as compaction conditions, in front 1 and 2 are the same, resulting in a compaction 
productivity of 400 m3/h per compactor. This means that total productivity in front 1 would be 
400 m3/h, while front 2 would proceed at a rate of 800 m3/h. As such, the enough spreaders 
(e.g., bulldozers) must be allocated for each front so that the total productivity is as close as 
possible (equal or higher) to 400 m3/h in front 1 and 800 m3/h. That could mean that a higher 
amount of spreading equipment can be necessary for front 2 then for front 1, depending on the 
available spreader characteristics, their productivity when handling the material type, and the 
work conditions they are subjected to (e.g., atmospheric conditions). As previously stated, 
should the available spreaders not be enough to maintain the necessary work rate in one of the 
fronts, then the work rate of the compactors will be limited by the maximum productivity that 
those spreaders can achieve.  The same allocation methodology is used for transportation and 
excavation equipment until each active embankment plant is associated with a production line 
that can support its productivity. The methodology used for this allocation is described in the 
next subsection. 
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Table 5.3  Steps for determination of total cost and duration of equipment allocation solutions 

Step Description Main associated variables/factors 

1 Allocation of compactors to embankment fronts Available compactors (type and quantity); 
available embankment fronts 

2 Determine individual productivity of the allocated 
compactors for each case 

Compactor type; material type; compaction 
conditions (e.g., layer thickness, meteorological 
conditions) 

3 Calculate total productivity in each active 
compaction front 

Number of compactors of each front and 
individual productivity of each compactor 

4 Allocate spreading equipment Total productivity in compaction task for 
associated embankment front; available 
spreaders/bulldozers (type and quantity); material 
type; work conditions 

5 Allocate transportation equipment Minimum productivity in spreading and 
compaction tasks for associated embankment 
front; available trucks/dumpers (type and 
quantity); transportation distance; work conditions 

6 Allocate excavation equipment Minimum productivity in transportation, spreading 
and compaction tasks for associated embankment 
front; available excavators (type and quantity), 
material type; work conditions 

7 Calculate compaction duration in each 
embankment front 

Productivity of production line (minimum 
productivity amongst all tasks in a production 
line); required material volumes for completing 
each embankment front 

8 Verify fastest production line to complete its work 
(corresponds to the duration of the current 
construction phase)  

Compaction duration of each production line; total 
volume of material required to complete each 
active embankment front 

9 Calculate volumes of materials which have been 
excavated and compacted in each front during 
current phase 

Duration of current construction phase; 
productivity of each production line; volume of 
material available/required in each active front 

10 Calculate cost according to the used equipment and 
the duration of current construction phase 

Direct and indirect costs of active equipment; 
duration of current construction phase 

11 Verify if all embankment fronts have been 
completed. If not, initiate new construction phase 
(step 1), taking into account updated material 
volumes (calculated in step 9). Otherwise, output 
accumulated cost and duration. 

Available embankment fronts (if initiating new 
construction phase); individual cost and duration 
for each construction phase (if outputting results) 

 

Having assembled the resulting production lines, the compaction time of each embankment 
front can be determined by applying Equation 5.2. Following the previous example, assuming 
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that there is the necessary equipment to guarantee that the compactors in both fronts are 
working at their full potential (400 and 800 m3/h for front 1 and 2, respectively), and if the 
required volume of material to complete both embankments is 8000 m3, then the total duration 
of compaction should be 20 hours for front 1 and 10 hours for front 2. After the first 10 hours, 
the equipment associated with the production line of embankment front 1 will become idle, 
which means a new allocation must be performed. As such, construction phase 1 will be 
considered complete after 10 hours, and the compaction of all other fronts will be interrupted at 
that time, since a new optimal distribution of equipment can result in a reallocation of the 
equipment in that production line. The reason for redistribution all equipment after each 
construction phase is over is discussed in more detail in the next subsection. As such, as 
construction phase 2 begins, the required volumes for completing embankment fronts 1 and 2 
will be 0 m3 (completed) and 4000 m3, respectively. These correspond to steps 7-9 in Table 5.3. 

Finally, having the knowledge of the amount of hours each equipment has been active during 
construction phase 1 (in this case, 10 hours), it is possible to determine the time-dependent cost 
(indirect costs) for each active piece of equipment. By adding the result to the direct costs of 
active equipment (Equation 3), the total cost for each piece of equipment can be calculated. The 
total cost for the current construction phase will correspond to the sum of the costs associated 
with of the active equipment (step 10 in Table 5.3). 

Although a construction phase is considered to end as soon as a compaction front is completed, 
each solution evaluated by the optimization algorithm is only complete when all fronts have 
been compacted. As such, this process is repeated for each construction phase, calculating the 
associated time and cost until all fronts have been compacted (step 11 in Table 5.3). In this case, 
since at least one embankment front is still not completed (embankment front 2), then at least 
one more construction phase will be necessary to complete the process. Subsequently, a new 
construction phase will begin from step 1 of Table 5.3, in which the required volume for 
embankment front 2 is now 4000 m3, whereas front 1 no longer is targeted for compactor 
allocation. Ultimately, the total time and costs are determined in the end of the process by 
adding the associated values for each construction phase. The next subsection further details 
some aspects of this process, framing it in the context of a chromosomal representation adopted 
for an EMO algorithm. 

Evolutionary Multi-Objective Optimization of Earthworks 

The available resources (mechanical equipment) in an earthwork construction process can be 
allocated to each sequential task in the production lines that comprise it, ranging from 
excavation and transportation to spreading and compaction equipment. Depending on the 
amount and type of equipment allocated and other factors, such as material type, the work rate 
for each task in the production line can be easily computed, since it corresponds to the sum of 
the work rate of assigned equipment.  

Ideally, the added work rate of the equipment allocated for each task should be as close as 
possible to that of the equipment allocated for the next task, in order to allow a constant flow of 
material throughout the production line. On the one hand, this prevents idle times from 
incurring on the allocated equipment, in cases where the work rate of the previous task is 
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significantly inferior to that of the succeeding task. On the other hand, in cases where the rate of 
the previous task is significantly superior to the succeeding task, an excessive flow of material 
that can ultimately obstruct movement throughout the construction site is averted. Therefore, 
controlling the work rate in each task within a production line is paramount. Accordingly, the 
main variable associated with the earthworks optimization problem is the amount of equipment 
allocated in each task, for each construction phase. 

The work presented in this paper is based on an evolutionary multi-objective optimization 
(EMO) algorithm, implemented in the form of a non-dominated sorting genetic algorithm II 
(NSGA-II). These types of evolutionary computation methods work by maintaining a 
population of individuals (potential solutions), where a chromosome denotes individual data 
representation of a solution and gene is a value position in such representation. In this context, 
designing the chromosome is a key element when adopting evolutionary approaches, as it 
defines the search space of the problem. 

The majority of previous works that adopt metaheuristics only address one or two sequential 
steps of the earthwork construction (Edwards and Griffiths 2000; Xu et al 2011; Nassar and 
Hosny 2012). Since we approach the whole earthwork process, a novel solution representation 
is proposed in this framework, where the individuals represent potential equipment allocations, 
which includes the front to which each piece of equipment is allocated. The key idea is to 
simplify solution representation by using domain knowledge and focusing solely on the optimal 
distribution of compaction equipment (the last task of the production line). The equipment for 
the other tasks, namely spreading, transportation and excavation, is then distributed according to 
the initial allocation of the compaction equipment, depending on the sum of work rates in each 
compaction front. Thus, for each construction phase, the solution is composed of a sequence of 
C integer genes: g1 g2 g3…gC, where gi denotes the position of the i-th compactor (or roller) in 
terms of its compaction front and C represents the total number of compactors. Genes can take 
any integer value from 0 to the maximum number of target compaction fronts, F (Figure 5.8). 
This representation aims firstly to allocate each roller ci to a compaction front ∈ {0, 1, 2, ..., F} 
(0 means that the roller is not allocated), followed by a validation of each solution acquired this 
way (and that involves a repair strategy). The whole individual (or chromosome) includes all 
construction phase gene sequences, thus the total number of genes corresponds to the number of 
available compactors times the number of necessary construction phases: C×F. In the particular 
case exemplified in Figure 5.8, there are C=3 rollers and F=3 compaction fronts, thus 
individuals are represented using nine genes. 

During fitness evaluation, gene values of 0 correspond to withholding the allocation of the 
specific roller to any front, remaining unused for the current construction front. This option is 
relevant since it allows the EMO to discover lower duration solutions and also to deal with (or 
discard) cases in which the available equipment plant for excavators, transporters and spreaders 
is not enough to support the allocation of all available rollers. Should the latter case be verified, 
and taking into account that the total rate of a production line corresponds to the minimum work 
rate obtained among the tasks comprised in it, the resulting solutions will have either infinite or 
very high durations with simultaneously high costs. This will cause the EMO to discard these 
solutions as non-optimal in early stages.  
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c1 c2 … cC c1 … cC … c1 … cC 

g1 g2 … gC gC+1 … g2C … gC×F-C+1 … gC×F 

Phase 1 Phase 2 … Phase F 

 

 

 

Figure 5.8  Chromosome representation for a generic distribution (top) and distribution example for 
a case with C=3 rollers and F=3 compaction fronts (bottom). 

When validating an individual, a repair strategy is used to assure that the solution is feasible. 
Such repair strategy involves three ordered steps:  

§ Verification of completed compaction fronts in previous construction phases. 
When verified, any rollers allocated to the already completed front are instead allocated 
to the next active front. 

§ Verification of maximum number of rollers in each compaction front. This 
constraint (when applicable) is set to deal with space restrictions on embankment fronts 
that exist in many construction sites. When verified, the rollers that are above the 
recommended limit of the current front are reallocated to the next active front according 
to the rule gi = (gi+1) mod (F+1), if possible, or otherwise assigned a value of 0 (not 
allocated). 

§ Verification that at least one front must be compacted per construction phase. This 
verification is related with specific cases when the EMO generates a solution with a 
value of 0 to all roller allocations. In such cases, one gene is assigned with a value 
associated with one of the active fronts.  

 

The order of repair strategies takes into account the prevention of harmful interactions between 
the three verification steps. As an example, should a roller be reallocated to a front in which the 
roller limit has already been exceeded as a result of the original front being completed (repair 
#1), it will be reallocated once more either to a new front or to none (repair #2). Furthermore, 
the nature of genetic operators, namely crossover and mutation, guarantees the diversity of 
solutions, preventing any convergence to local optima as a result of the used repair strategies 
and assuring that a Pareto-optimal curve is found. It should be noted that these repair strategies 
were designed to be as least “invasive” as possible, in order to avoid influencing or hindering 
the algorithm convergence. 

c1 c2 c3 c1 c2 c3 c1 c2 c3 

2 1 2 1 1 3 3 0 3 

Phase 1 Phase 2 Phase 3 
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After assigning the compactors, the allocation of the remaining equipment plant (excavators, 
transporters and spreaders) is then carried out by means of linear programming (LP) models. As 
suggested in (Liu and Lu 2014), LP models are effective in the optimization of partial or 
secondary aspects of the process, in which less computation power is required. In this work, to 
each task and to each equipment type is associated a separate LP model that targets the work 
rate of the last task in the production line. These were executed as standard LP models, where 
the main objective function is the minimization of equipment costs (Equations 3 and 4). The 
associated constraints guarantee that the work rates of the allocated equipment for each task, 
Qs,i, are at least equivalent to that of the last task in the production line (compaction) when 
possible, or otherwise as close as possible, given the maximum amount of available equipment 
of each kind. The intention behind this type of distribution is to use the least expensive 
combination of available equipment that allows the succeeding task to operate at 100% work 
rate, by matching each task to the work rate of the last task in the production line. Equation 5.5 
shows a generic LP model for any equipment kind, where xi corresponds to the number of 
allocated equipment units of a given type, with mi maximum available units. 

 

Minimize  

 
𝐶!,!×𝑥!

!!

!
 

Subject to  𝑄!,!×𝑥!
!!

!
≥ 𝑄!"!#$,!"#$%!&'"( 

𝑥! ≥ 𝑚!  

 

 

(5.5) 

 

In a given construction phase, each production line is independent, but several production lines 
can be at work at the same time if there is enough equipment to support it. Thus, the number of 
simultaneous production lines is equal to the number of compaction fronts being compacted at 
the same time, which, in turn, is a consequence of the initial roller distribution by the EMO. As 
such, the maximum number of simultaneous production lines at work is equivalent to the 
maximum number of rollers. Given the allocation of all equipment for the active productions 
lines, the compaction duration of all fronts is calculated according to Equation 5.2. From the 
resulting durations, the compaction front with minimum duration (the fastest compaction front) 
marks the end of the current construction phase. Accordingly, costs for the current construction 
phase are determined in function of its duration using Equations 5.3 and 5.4. 

Each construction phase corresponds to the completion of 1 embankment or compaction front. 
Whenever an embankment is completed, a new construction phase begins and thus a new 
equipment reallocation must follow, since the equipment corresponding to the completed 
production line has become idle/available. However, the construction site conditions may 
change after each construction phase and limiting the equipment reallocation to the idle 
equipment would not be a guarantee of optimal distribution. The solution is to treat each 
construction phase as a completely new optimal allocation of equipment, which must take into 
account the work already developed in previous phases, including site features and conditions, 
such as available and required material in excavation or compaction fronts. To achieve this, two 
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memory lists are kept during the determination of construction phase durations and costs, 
concerning completed fronts and remaining fronts. Both lists are updated at the end of each 
construction phase. The former includes the fronts that have been completed in previous phases, 
entailing the duration associated with each, as well as the order of completion. The latter, FR, 
includes the actual quantities of material in each compaction front, in function of the duration of 
the previous construction phase and the work rate of the allocated equipment for each front, as 
illustrated in Equation 5.6. The determination of compaction durations in the construction 
phases (other than the first phase) is always carried out in function of the volumes, FR,i, 
maintained in FR. Subsequently, progress obtained in all the active compaction fronts is saved at 
the end of each construction phase, thus being accounted for when determining the compaction 
durations for the new equipment allocation, in the next phase.  

 

𝐹!,! = 𝐹!,! −min  (𝑇!",!)×Q! (5.6) 

 

Figure 5.9 shows the algorithmic flow of the EMO algorithm used to tackle the earthworks 
optimization problem. The initial population involves the random generation of front indexes to 
each roller, representing their allocation, as shown in Figure 5.8. Prior to the initial population 
generation step, it is possible to automatically run a simple linear programming model that 
carries out the material management, distributing the volumes of available geomaterial in the 
excavation fronts through the required volumes in each embankment front. This is carried out 
by default, although that information can alternatively be inputted into the system. The fitness 
function includes the repair methodology described above, as well as the LP models for the 
allocation of equipment to the remaining tasks. These allow for the determination of 
construction phase durations and costs using the abovementioned formulae (i.e., Equations 5.2 
and 5.4), ultimately leading to the evaluation, in terms of total duration and cost, of each 
solution. The EMO will generate a new population and repeat this process until the target 
number of generations is achieved, at each point the Pareto-optimal set is presented, along with 
the outputs mentioned in Figure 5.9 for each solution. 
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Figure 5.9  Algorithmic flow of the EMO algorithm. 

 

5.3.4. Module Integration 

The developed system is comprised of the equipment module (DM models) and spatial module 
(GIS spatial data), integrated into the multi-objective optimization module for equipment 
distribution in earthworks. The first two modules are directly or indirectly associated with 
estimating equipment productivity, while the third module carries out its optimal allocation. In 
this context, the DM models from the equipment module are used by the EMO in the 
optimization module to determine the productivity of compaction equipment for each 
embankment front. Concurrently, the GIS output from the spatial module is the basis for the 
estimation of transportation equipment productivity. The importance of these technologies to 
support the optimization module is paramount, as the productivity of these types of equipment 
(compaction and transportation) is heavily dependant on site conditions. This means that 
manufacturer specifications are often not enough to properly estimate compaction and 
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transportation productivity in early phases of an engineering project (i.e., early design phase), 
when information is lacking. 

In the original architecture proposed in Section 5.2, the user inputs the available equipment and 
spatial data into the equipment and the spatial modules, respectively, while the output is 
returned to the user from the optimization module (Figure 5.1). The equipment module inputs 
regard the material types and volumes in each work front, as well as the type and number of 
available equipment and associated specifications, while the spatial module inputs are related to 
creating the model of the construction area, as described in Section 5.3.2. These inputs are 
summarized in Table 5.4.  

Table 5.4  Data from each module imported into the optimization module 

Imported data (optimization module) 

 Equipment module   Spatial module  

 

- Material volumes required in embankment 
fronts and available in excavation fronts 

- Material type in each excavation front 

- Type and number of available equipment 
associated with each task (excavation, 
transportation, spreading and compaction) 

- Equipment direct and indirect costs and work 
rate (when not estimated by DM models) 

 

- Optimal travel distance/time from each 
excavation front to each embankment 
front (OD cost matrix) 

 

Initially, the spatial module was expected to automatically access data from the equipment 
module so as to obtain the equipment specifications that affect the workflow conditions, such as 
dimensions or maximum speed. However, since integration of the spatial module with the other 
modules was not accomplished due to the aforementioned mentioned incompatibilities, this 
information is presently inputted into the GIS software manually. In this way, these factors are 
taken in the final output of the spatial module. As such, after (manually) importing the GIS 
output into the optimization module, the latter uses this data in order to proceed with the 
allocation of mechanical resources, namely the transportation equipment, in function of the 
optimal haul distances or times, and depending on what was defined in the GIS software (user 
preference). 

Regarding the equipment and optimization modules, initial integration attempts feature the 
loading of the DM models as an integral part of the optimization module fitness function, as 
shown in Figure 5.10. Nonetheless, this solution turned out to be demanding in terms of 
computation effort during the fitness evaluation of each solution. Since the fitness function is 
carried out several times, depending on the size of the population being maintained by the 
EMO, this methodology can amount to very high computational times. 
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Figure 5.10 Initial integration of equipment and optimization modules (including manual inputs for 
GIS data) 

  

A viable solution for this issue could be accomplished by loading the DM models prior to 
starting the optimization method (Figure 5.11). This is further facilitated through the 
development of a GUI for the optimization system. The development of a GUI can be achieved 
by converting the functions associated with the DM and optimization module into a R package, 
and using a GUI development package, such as gWidgets (Verzani 2014) or RGtk2 (Lawrence 
and Lang 2014). This methodology allows the loading of the DM to coincide with the loading of 
the GUI. To be precise, the DM models are initiated while the package/system is loaded and 
prepared for use. In this way, the optimization system, namely the fitness function, simply has 
to take into account the already loaded DM models in order to determine the productivity of 
every compactor in each embankment front, depending on factors such as roller type, material 
classification and site conditions (e.g., layer thickness), as discussed in Chapter 2. 
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Figure 5.11 Algorithmic flow for the multi-criteria optimization system, including new integration 

methodology 

 

Moreover, in order to further simplify and reduce the computation effort associated with the 
fitness evaluation of each individual by the optimization module, a compactor-material matrix 
can be generated during the insertion of inputs into the GUI. This matrix can be achieved if the 
user includes all the information regarding equipment and material specifications, as well as 
optional site conditions, such as layer thickness in each embankment front. Generating this 
matrix prior to initiating the optimization module (and after loading the package itself, including 
the DM models) facilitates the computation effort associated with the latter, as it will only have 
to access the matrix data in order to determine the productivity of a compaction equipment in its 
working conditions, as opposed to resorting to the DM model itself in every fitness run. 
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Note that the input of site conditions (e.g., embankment layer thickness) is referred to as 
optional during design phase of an engineering project, since this information may not yet be 
available. Whenever it happens, the system can simply assume the optimal values for these 
conditions, including layer thickness, since this information is available in the compaction guide 
used as a reference (GTR), as well as the DM models. As construction ensues and/or more 
information becomes available, the original user input can be updated, resulting in a new 
compactor-material matrix, which can be used in subsequent optimization runs. 

In summary, integration is achieved in the optimization module itself, as the latter uses the 
output from the other two modules as input for the determination of productivity or allocation of 
resources. This is performed during the fitness function associated with each solution, which in 
turn is represented by a distribution of rollers throughout embankment fronts. The resulting 
allocation, which is carried out in the fitness function of every solution, allows for the 
determination of global construction cost and duration of each solution, thus permitting to 
assess the solution quality. Finally, the distribution of equipment in each solution is saved in 
memory, so that the user can consult the individual equipment allocation for the chosen Pareto 
solutions. 

5.4. FINAL REMARKS 

This Chapter proposes a novel EMO approach that addresses the whole earthwork construction 
phase and optimizes both cost and duration objectives. The approach includes a new 
representation of solutions where the EMO first allocates compaction equipment and then linear 
programming is used to distribute the remaining equipment (e.g., excavators and trucks). A 
Pareto approach based on a NSGA-II was selected as a basis for the allocation of the 
compaction equipment. The combination of capabilities of the technologies presented in 
Chapter 3, including artificial intelligence (in the form of evolutionary computation and data 
mining methods) and linear programming optimization, culminates in the proposal of the 
current system. In an attempt to adjust to the complex and dynamic reality associated with 
earthworks, as discussed in Chapter 2, the aim is to optimize the available resource allocation 
(represented by mechanical equipment) throughout the sequential tasks (namely excavation, 
transportation, spreading and compaction of geomaterials, as well as layer wettening, which is 
considered together with spreading) that comprise the earthworks process. In this framework, 
DM and GIS technologies support the optimization techniques by providing realistic estimates 
to the productivity of the available equipment given site conditions.  

As will be seen in Chapter 6, corresponding to the application of the proposed system to a case 
study, the presented system shows the potential to surpass the limitations found in previous 
attempts at solving the earthwork optimization problem (Chapter 4). Besides the already 
mentioned innovative capabilities, one main advantage of this system is its flexibility, both in 
terms of adjusting to the ever-changing earthworks environment, and to the user’s point of view 
regarding the several outputted Pareto optimal solutions that minimize final deadline and/or 
budget. In this sense, it can be regarded as a decision support system, which presents the user 
with several optimal trade-offs between the objectives, allowing the choice of the most 
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appropriate for any given situation. Moreover, the system is expected to be able to include 
additional criteria to support the final decision, namely environmental aspects, which can be 
effortlessly assessed by the determination of carbon dioxide emissions in each solution 
(assuming the availability of this information, which is commonly supplied by equipment 
manufacturers). 
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6.1. INTRODUCTION 

The previous Chapters culminate on the proposal of the novel earthwork optimization system in 
Chapter 5. This innovative system aims to minimize global construction costs and durations by 
keeping a population of solutions comprised of a distribution of compaction equipment 
throughout the earthwork embankment fronts. To each of these solutions (compactor equipment 
distributions) corresponds a linear programming (LP) distribution of the remaining equipment, 
designed to homogeneize the productivity of each task preceding compaction. Besides 
minimizing construction costs and durations, by keeping a homogeneous distribution of 
productivity in each task, each piece of equipment is used to its maximum potential, eliminating 
any equipment idle time, and reducing environmental impact (e.g., reducing fuel usage and 
carbon emissions). 

In this Chapter, the focus is on the application of the presented system. Considering that the 
system is innovative not only regarding the global improvement of the earthworks workflow, 
but also on account of the original solutions that have been adopted during its development, a 
twofold assessment is implemented: 

§ Assessment of the performance of the evolutionary multi-objective optimization (EMO) 
algorithm; and 

§ Analysis and discussion of results in the earthwork construction point of view. 

 

In order to acquire a better insight on the obtained results, several non-dominated sorting 
genetic algorithm II (NSGA-II) runs were carried out on the same example. On the one hand, 
these runs were used to assess the performance of the EMO, in terms of required computational 
time and effort, as well as on the convergence of the algorithm. On the other hand, performing 
several runs allows for a robust analysis of the quality of results, since the adopted evolutionary 
computation techniques neither necessarily attain the same result on each run, nor guarantee the 
optimal solution. 

6.2. DESCRIPTION OF CASE STUDY 

In this application, the same real-world data related with the mechanical equipment of a 
Portuguese road construction site that was previously described in Chapter 5 (see Section 5.3.1) 
was adopted. The used database subset is related with 4 excavation fronts supplying two types 
of soil (a soil and a soil-rockfill mixture) to 5 embankment fronts. The total volume of 
transported material is approximately 89,356 m3. The distances from excavation to embankment 
fronts vary between 100 m to nearly 4,000 m, stressing the need for proper resource 
management. 

The available equipment of the construction company for these operations included 12 
excavators (with sizes ranging from 25 to 75 tons), 22 trucks (either 30 or 40 ton dumper 
trucks), 8 spreaders (between 20 and 50 ton) and 5 vibrating soil compactors. Both the materials 
and the compaction equipment were classified according to the Guide des Terrassements 
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Routiers (GTR) (SETRA and LCPC 2000), a well known and broadly used compaction guide. 
As such, the materials were classified as A1 and C2A1 for the soil and the soil-rockfill mixture, 
respectively. Accordingly, 4 out of 5 of the vibrating soil compactors were classified as V3, 
while the remaining one as a V4. 

The company designed resource distribution, set taking into account the construction deadlines 
and budget of the project, resulted in approximately 130 hours of work, spread through 21 days 
of work (approximately 1 month). All the available equipment was put to use, with an average 
value of daily work hours per day approximately equals to 9.9h. Considering this setup, the final 
cost obtained for these work phases was close to 135,200 €. 

The necessary inputs for the optimization system were retrieved from the available database and 
are summarized in Table 6.1. Once again, it is important to refer that the equipment and tasks 
associated with layer wettening are considered concurrently with the spreading task as far as 
productivity calculations are concerned. Equipment indirect costs and work rates derived from 
Caterpillar Performance Handbook (Caterpillar Inc., 1998) and Transportation Research Board 
NCHRP Report 744 (Skolnik et al 2013), as well as the GTR in the case of compaction work 
rates. Direct costs (including equipment rental and manpower costs) were courtesy of the 
company. 

 

Table 6.1  Optimization system inputs 

Input Description 

fa Embankment front notation and material volume required for completion 

M
aterial data 

fe Excavation front notation and material volume available for excavation and transport 

mt 
Material type in each excavation front (which will be compacted in embankment 

fronts after excavation and transport) 

cd Travel distance matrix from each excavation front to each embankment front 

EE 
Available excavation equipment, including type, number of available equipment of 

each type, work rate and direct and indirect costs 

Equipm
ent data 

TE 
Available transportation equipment, including type, number of available equipment 

of each type, capacity and direct and indirect costs 

SE 
Available spreading equipment, including type, number of available equipment of 

each type, work rate and direct and indirect costs 

CE 
Available compaction equipment, including type, number of available equipment of 

each type, work rate and direct and indirect costs 
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6.3. COMPUTATIONAL EXPERIMENTS 

6.3.1. EMO performance 

In this work, the equipment available was kept fixed to the one used by the construction 
company in their conventional allocation design. With a total of F=5 production lines working 
simultaneously and C=5 available compactors, the encoded individuals have 5x5=25 genes 
each, defining the search space for this problem.  

The default parameterization of the NSGA-II, as implemented in the R package mco, was used, 
namely: population size of 100, stop after 100 generations, crossover probability of 0.7 and 
mutation probability of 0.2. The rationale is to focus more on assessing and validating the 
capabilities of the proposed integrated system when compared with conventional manual 
design, rather than calibrating the optimization algorithm. Note that in preliminary tests, smaller 
population sizes (i.e., 20, 30, 40) were explored, but the obtained results were worse than the 
default population size of 100. Also, the fitness evaluation is computationally costly, as it 
requires several LP optimizations (for each front), thus a population size much larger than 100 
individuals would increase the computational effort. Given that in the mco package of the R tool 
adopts a real value representation for the NSGA-II method, all genes were first rounded to the 
nearest integer as the first step of the fitness function. 

The method was executed with an exclusive access to an Intel Xeon 2.27GHz server under a 
Linux server. To get a more robust assessment of the quality of the results, 30 distinct runs of 
the NSGA-II algorithm were executed. The total computational effort (considering all 30 runs) 
was approximately 256,642.5 seconds (around 70.73 hours).  

To illustrate the multi-objective convergence, Figure 6.1 plots the evolution of solutions 
optimized by the NSGA-II towards the Pareto-optimal front according to cost and duration 
goals, and during a single run. In the plot, each point denotes a possible solution while line 
segments are used to join points that belong to the Pareto front. To facilitate the analysis, a 
colouring scheme is used, ranging from light grey (first generation) to black (last generation). 
Figure 5 shows that NSGA-II performs an initial fast convergence, with substantial movements 
of the Pareto front towards the bottom left region, and then the algorithm converges more 
slowly towards the returned Pareto front, which is a non-convex near the bottom left region. 
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Figure 6.1  Example of the convergence of NSGA-II algorithm (x-axis in hours and y-axis in €) 

 

The obtained results were also compared with two other optimization algorithms. The purpose 
of the first comparison is to validate the quality and accuracy of obtained results by performing 
a comparative study with a different and EMO variant, namely the S metric selection 
evolutionary multi-objective algorithm (SMS-EMOA) (Emmerich et al 2005). The second 
comparison is aimed at demonstrating the advantages of multi-objective optimization when 
compared with a single-objective optimization method. These comparisons are depicted in 
Figure 6.2, showing the average Pareto fronts for both EMO algorithms, as well as the average 
point corresponding to a cost-only optimization solution using single-objective optimization. 
The average Pareto curves were achieved by performing a vertical averaging procedure (i.e., 
according to the Duration objective) of the Pareto curves outputted by each run, using the 
averaging method proposed by Fawcett (2006) for vertical averaging of receiver operating 
characteristic (ROC) curves. The graph also includes “H” shape whiskers, on both the lines and 
the point, that denote the 95% confidence interval bars according to a t-student distribution.  

Regarding the comparison with a different EMO variant, the SMS-EMOA was chosen, for 
being established as a recent and well-known EMO algorithm, which makes use of the 
hypervolume measure as selection criterion. Furthermore, this algorithm is be implemented 
under the R tool via a small portion of code that uses functions from the emoa package 
(Mersmann 2012), facilitating the comparative analysis. Since the aim is to allow a direct 
comparison between results and performances of both EMO algorithms, the parameters used in 
SMS-EMOA are the same that were used for the NSGA-II optimization (population=100, stop 
after 100 generations, crossover probability=0.7, mutation probability=0.2). The analysis of 
Figure 6.2 reveals a good consistency between the results obtained by both EMO algorithms. 
Nevertheless, NSGA-II slightly outperforms the SMS-EMOA in terms of the resulting Pareto 
curve results. Furthermore, the total computational effort for the SMS-EMOA to perform all 30 
runs was approximately 270,605.1 seconds (around 75.17h), which is also above the 70.73 
hours associated with the NSGA-II runs.  

The single objective algorithm is implemented in R by adopting the genalg package 
(Willighagen 2015). The solutions for the single-objective optimization of costs (30 runs with 



Chapter 6 – Road Construction: Case Study 

 

123 

the same optimization parameters as the EMO algorithms) seem to be consistent with the results 
obtained by the EMO algorithms in terms of the cost reduction goal. However, as previously 
referred, since the output is a single allocation solution, it lacks the flexibility of the Pareto 
curve optimization, providing to the decision maker just one cost-duration trade-off solution 
under one optimization execution, overlooking the advantages of multi-objective optimization. 
The computational effort for this algorithm (30 runs) was close to 212,000 seconds (58.90 h). 

 

 

Figure 6.2  Comparison between results obtained by different optimization methods (x-axis is in 
hours and y-axis in €) 

6.3.2.  Earthwork workflow results 

The proposed system results were compared against the original manual allocation performed 
by the construction company, as shown in Figure 6.3. In the figure, the left graph shows the 
average (over all 30 runs) NSGA-II optimized Pareto front, while the right graph compares 
these results (black line) with the original solution obtained by manual allocation (white point). 

When analysing Figure 6.3, it is clear that NSGA-II performs a substantial improvement (both 
in terms of cost and duration) when compared with the manual equipment allocation. The 
system output indicated several potential setups ranging from approximately 38 to 73 hours of 
construction duration, associated with approximate costs of 40,000 € to 43,000 €, respectively. 
This corresponds to a reduction of around 55% in duration and 70% in cost, if compared to the 
duration of 127 h and cost of 135,200 € that was obtained in the original allocation. The original 
conventional manual allocation is far from the optimal solution, which can be explained by the 
lack of an efficient automated optimization and also by unforeseen delays. 
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Figure 6.3  Optimization results (k=0.75) in terms of: left graph - vertically averaged Pareto front; 

and right - comparison between the optimized Pareto front (black curve) and the 
conventional manual allocation solution (circle point) (in both graphs x-axis is in hours 
and y-axis in €) 

 

Regarding the lack of efficient automation, the original setup performs bottlenecks in the 
production lines in one of the tasks preceding compaction, resulting in several occurrences of 
idle equipment. To illustrate this, two distinct production lines are further analysed in Table 6.2. 
It is easy to infer that, for both production lines the work rates in each task of the original 
distribution setup are not homogeneous, as opposed to the work rates of the optimized solution. 
In these cases, the whole production line is limited by the work rate of excavators in the original 
setup, which means that the other tasks have to wait for material to be excavated in order to 
allow for its transport, spreading and finally compaction. This incurs in equipment idle time 
while waiting for material to be ready for handling, which represents wastes in terms of 
resources (since these do not work at full efficiency) and fuel (contributing to unnecessary 
costs), as well as an increase on unnecessary carbon emissions. Consequently, the total work 
rate of these production lines cannot be considered superior to that of the minimum work rate 
obtained in the production line tasks, in this case excavation (394 m3/h in production line 1 and 
540 m3/h in production line 2). In contrast, the work rates obtained in the proposed optimized 
solutions for each task that comprises the production line are as homogeneous as possible, given 
the available equipment. As such, a constant flow of material throughout tasks can be achieved, 
using the allocated resources to their full potential. 

It is noteworthy to emphasize that, besides optimizing the whole allocation in terms of costs and 
durations, the developed system is expected to always keep the allocated equipment working at 
full efficiency. It achieves this by focusing on the minimization of equipment idle time, which 
will also indirectly result in minimization of unnecessary carbon emissions. This last aspect is 
very challenging to accomplish by conventional design methodologies.  
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Table 6.2  Comparison between original and optimized (k=0.75) setups for both cases 

Original setup 1 Original setup 2 

Average distance between excavation and 
compaction fronts: 175 m 

Average distance between excavation and 
compaction fronts: 500 m 

Hauled material volume: 29,753 m3 Hauled material volume: 10,647 m3 

Equipment distribution and work rate Equipment distribution and work rate 

1 Excavator (50T):  

2 Dumper trucks (30T, 40T):  

1 Spreader (20T):  

1 Vibratory roller (15T): 

394 m3/h 

2,960 m3/h 

413 m3/h 

614 m3/h 

1 Excavator (75T):  

3 Dumper trucks (40T):  

1 Spreader (40T):  

1 Vibratory roller (19T): 

540 m3/h 

1,280 m3/h 

675 m3/h 

683 m3/h 

Minimal production line work rate: 

394 m3/h (excavation) 

Minimal production line work rate:  

540 m3/h (excavation) 

Duration: 75.5 h Duration: 19.7 h 

Cost: 24,462 € Cost: 7,996 € 

Optimized setup 1 Optimized setup 2 

Average distance between excavation and 
compaction fronts: 175 m 

Average distance between excavation and 
compaction fronts: 500 m 

Hauled material volume: 29753 m3 Hauled material volume: 10647 m3 

Equipment distribution and work rate Equipment distribution and work rate 

2 Excavator (75T):  

2 Tipper trucks:  

2 Spreaders (20T, 50T):  

1 Vibratory roller (19T):  

1,080 m3/h 

1,600 m3/h 

1,239 m3/h 

1,055 m3/h 

2 Excavators (25T, 75T):  

2 Dumper trucks (30T):  

1 Spreader (50T):  

1 Vibratory roller (19T):  

743 m3/h 

880 m3/h 

820 m3/h 

683 m3/h 

Minimal production line work rate: 

1,080 m3/h (compaction) 

Minimal production line work rate:  

683 m3/h (compaction) 

Duration: 28.2 h Duration: 15.6 h 

Cost: 12,718 € Cost: 5,740 € 

 

Comparing the original setup with its optimized counterpart for production line 1, the 
conventional manual allocation solution features a clear excess of work capacity regarding 
transportation equipment that is not contributing for its progress, as it is limited by the work rate 
of the excavation plant. In order to counter this, the optimization system allocated smaller trucks 
(lower capacity, lower fuel consumption and, thus, lower operation costs) to fulfil this role 
instead, while investing its resources more heavily on the excavation, spreading and compaction 
plants. As a result, the optimized setup for this case is as homogeneous as possible in terms of 
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work rate between tasks (taking into consideration the available equipment), resulting in a 
decrease of 50% in both duration and cost for this production line. Although the proposed 
optimized solution might allocate more equipment with a higher productivity, the reduction in 
duration is significant enough to reduce the operational costs, ultimately resulting in a reduction 
of both factors. 

In other cases, as one can see in the setups for production line 2, which features different fronts 
and material types, the setup achieved by the optimization module consists of slight differences 
when compared with the original allocation. The subtle changes to the class of equipment used 
in some tasks (e.g., spreading), as well as the removal of unnecessary equipment from others 
(e.g., transportation) allows a greater homogeneity of work rates, resulting in nearly 20% 
reduction in duration and 30% in cost. Moreover, the equipment that is dismissed from this 
production line is then available to be used in different work fronts as deemed necessary. 

The obtained results emphasize the importance of using intelligent computational tools for 
optimizing earthworks. In particular, it was shown how conventional manual design allocation 
methodologies can be relatively counter-productive in some situations. During optimization, an 
efficiency factor of k=0.75 was assumed for compactors, as well as other equipment types. The 
efficiency factor is related to the amount of time that mechanical equipment spends in actual 
production. According to the technical guides used during the development of this work, namely 
GTR (SETRA and LCPC 2000) and Caterpillar Performance Handbook (Caterpillar Inc.,1998), 
actual “on-the-job’’ productivity is influenced by factors such as operator skill, personal delays, 
job layout and other delays. Since the goal is to maximize resource usage and minimize idle 
times, it makes sense to use a k value of 0.75, considering that this is the maximum 
recommended value by the GTR for compaction activities.  

Unforeseen delays are due to unpredictable situations that can occur in a real environment, such 
as presence of bad material or equipment malfunction. The huge difference between NSGA-II 
results and the manual design might be a consequence of a lower efficiency occurred in the real 
construction project. To attest the competiveness of the proposed system, additional NSGA-II 
experiments were conducted assuming a much lower efficiency factor of k=0.3 (Figure 6.4). 
When compared with previous experiments of k=0.75, the new k=0.3 NSGA-II Pareto front 
solutions require higher costs and duration. In particular, duration now ranges from 105 h to 155 
h, a range on which the manual allocation solution falls on (as shown in the right of Figure 6.4). 
However, even when assuming a low efficient factor, NSGA-II still outperforms the manual 
solution, returning a Pareto front that is more interesting and that includes a trade-off point that 
is much less costly for the same duration. 

These new experiments show the versatility of the proposed system in respect to unpredictable 
events. If needed, the proposed system can be rerun in order to include updates of the site 
conditions and new restraints, such as altering the available equipment and/or productivity rates. 
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Figure 6.4  Optimization results (k=0.3) in terms of: left graph - vertically averaged Pareto front; 

and right - comparison between the optimized Pareto front (black curve) and the 
conventional manual allocation solution (circle point) (in both graphs x-axis is in hours 
and y-axis in €). 

6.4. FINAL REMARKS  

Bearing in mind how earthworks comprise a high percentage of costs and durations in many 
Civil Engineering projects, namely road, railway and airport construction, their optimization 
should always be a priority. Given this, any reduction on that percentage will have a significant 
effect on the final cost and duration of the whole construction project. In this context, 
conventional manual design, often based on experience and intuition, is limited. Moreover, 
current intelligent automated applications often target single tasks or partial processes that 
comprise earthworks and do not simultaneously optimize both cost and duration goals. 

The novel system proposed in Chapter 5 was applied in a case study using real-world data from 
a Portuguese construction site, showing that the EMO system is quite competitive when 
compared with conventional design, and that it can be easily adapted to dynamic changes that 
are inherent to earthworks constructions. In fact, for this case study, a high impact on would be 
achieved by the implementation of this system, as results indicate a reduction of approximately 
50% in construction cost and duration when compared with the originally adopted solution 
(achieved via conventional manual design). In an attempt to gain some insight on the actual 
efficiency of the equipment plant during the original construction, additional computational 
experiments were carried out under extremely lower efficiency ratios (k=0.3, corresponding to 
18 minutes of actual work per hour). However, even in this case, the optimized solutions still 
slightly outperform the manual allocation solution cost-wise. Naturally, these results do not take 
into account the possible delays and costs associated with unpredictable events and obstacles 
that occur during construction (e.g., equipment malfunction). However, the system features the 
flexibility to deal with these issues, since it allows for the user to easily rerun the optimization 
procedure with an updated set of conditions and constraints (e.g., less available equipment), 
which outputs a new set of optimal allocation solutions.  

The computational experiments presented in this Chapter not only bring forth the potential of 
the system, but also identify some significant of the limitations of conventional manual 
earthworks design, in particular where the production line equipment is either significantly 
above the required work rate requirements (incurring in unnecessary costs) or below it (resulting 
in idle times and low efficiency ratios). Moreover, it was possible to verify the capability of the 
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proposed system to distribute equipment in a relatively homogeneous way (when compared to 
conventional design), while minimizing costs and durations, which was one of the goals of this 
research. 
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7.1. SYNOPSIS 

This thesis describes a complete research and development cycle, starting from the definition of 
a relevant problem (i.e., how to achieve an optimal allocation of equipment throughout an 
earthworks project), to the implementation and application of an innovative solution, capable of 
dealing with the high complexity of the referred problem. As such, this thesis is divided into six 
chapters. The first five include the description of both the earthworks optimization problem and 
the developed system, culminating with the depiction of a tool capable of supporting the design 
and allocation of equipment in earthwork constructions. The final part comprises the results of 
the application of this system in a case study associated with a Portuguese earthwork 
construction site. 

As such, Chapter 2 accounts for the earthwork construction background, focussing on its 
definition as an optimization problem. The significant consequences on the final costs and 
duration of the optimization of projects that include earthworks, such as road, railway or airway 
construction, are emphasized. Moreover, particular stress is laid on how conventional manual 
design is usually carried out for this type of construction, including the present concerns related 
with earthworks design. Understanding the relevance of these aspects is essential to the 
development of a solution capable of dealing with the earthwork optimization problem. 

The first step to achieve this goal must be the study of the relevant technologies that show 
potential to deal with complex and dynamic environments, such as the optimization of 
earthwork tasks. This is the main focus of Chapter 3, in which the artificial intelligence area, 
namely soft computing techniques (i.e., data mining and metaheuristics), as well as geographic 
information systems, are established as the tools with full potential to deal with the problem 
under study. 

This notion is confirmed in Chapter 4, in which a study regarding previous attempts on using 
the techniques brought up in Chapter 3 is carried out in order to address the issues associated 
with the problem at hand (described in Chapter 2). The study is not limited to a literature 
research on the subject, as most of these attempts are concretized in the form of systems that 
aim to either support or optimize the design of earthworks. Subsequently, this allows for a more 
complex analysis of each system, sorting them into general types with similar characteristics 
and analysing their strengths and limitations, as a function of the technology they are based 
upon, and the part of the problem they address. However, one of the conclusions drawn from 
this study is that most of these systems are limited in more than one way. In fact, many do not 
explore the full advantages of performing multi-objective optimization. 

These limitations constitute a gap, for which further development and innovation is required. 
Given this prospect, allied with the fact that the necessary technology for dealing with the 
complexity of this problem is available nowadays, a novel earthwork optimization system is 
proposed and described throughout Chapter 5. The technologies mentioned in Chapter 3 are 
integrated into one system in order to surpass the limtations of the systems studied in Chapter 4, 
while simultaneously gathering all their strengths. The system is divided into three modules, 
each one associated with different technologies, which communicate and interact together to 
generate practical and flexible solutions, with the potential of supporting both design and 
construction phases of an earthwork project. 
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Finally, the potential of this system is demonstrated in Chapter 6, in parallel with its application 
in a case study using real-world data. Since this is a multi-disciplinary work, including areas 
such as civil engineering, information systems, and geographic information systems, this 
application is performed in two different approaches. On the one hand, the application is aimed 
at assessing the performance of the used optimization algorithms, as well as the viability of the 
innovative solutions and methodologies to deal with the complexity of the problem in the 
information systems area. On the other hand, the analysis of results in terms of improvement of 
the earthworks process in the civil engineering point of view is also a fulcral point, showing the 
competitiveness and flexibility of the system when compared with conventional design. 

7.2. DISCUSSION 

Innovation can generally be defined as changing or creating more effective processes, products 
and ideas. It is related to concepts like unexpected connections, new ideas, or even original 
notions stemming from imagination. Businesses that innovate create more efficient work 
processes and have better productivity and performance. Indeed, innovation can be seen as a 
competitive advantage to grow and adapt a business to an area or marketplace.  

Being innovative does not necessarily mean inventing. Innovation can mean changing a 
business model, or adjusting to environmental changes, in order to deliver better products or 
services. Successful innovation, based on the creation of a culture of innovation, should be an 
in-built part of a business strategy, leading the way in creative thinking and problem-solving. In 
this context, technological innovation is often defined as combining technologies from different 
environments in order to create an original method or technology that performs better than 
previous ones in a new environment. 

Under this premise, this work is related to the integration of several different technologies from 
different fields into a novel system capable of solving a dynamic and complex problem in the 
earthworks area. The combination of technologies, such as data mining, modern optimization 
and geographic information systems, has proven to originate a powerful tool to support the 
design and management of any construction involving earthwork tasks, as demonstrated in 
Chapters 5 and 6. Innovation in the developed system derives not only from the use of diverse 
technologies from different areas, but also from some of the solutions and methodologies 
followed to achieve the proposed goals. In actual fact, the proposed evolutionary multi-
objective approach, which addresses the whole earthwork construction phase and optimizes 
both cost and duration objectives, includes a new representation of solutions where the 
compaction equipment is allocated first, and then linear programming is used to distribute the 
remaining equipment (e.g., excavators and trucks). This innovative representation enables the 
system to globally optimize the whole earthworks process, as opposed to optimizing only partial 
tasks or construction aspects, which is verified in most previous attempts at solving this 
optimization problem. 

Indeed, considering the analysis of previous earthwork optimization systems carried out in 
Chapter 4, most approaches simplify the complex reality of earthwork construction by 
separating the process into several independent parts, which are optimized individually. While 
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this is understandable as an attempt to deal with the complex and dynamic nature of the 
problem, it neglects the advantages of global optimization. For example, when addressing each 
earthwork task individually, it may look advantageous to use the minimum amount of 
equipment in each step so as to minimize costs. However, when looking at the whole earthwork 
process as a sequential and interdependent process, it can, in many cases, be advantageous to 
add more pieces of equipment to a critical task, since this will have an important impact on final 
project duration and/or costs. Another common limitation among previously developed systems 
is related to either focusing on single-objective optimization or attempting to carry out multi-
objective optimization by transforming multiple objectives into a single objective, as discussed 
in Chapters 4 and 5. The latter can be performed by preference-based methods, such as weight-
based optimization. Although these can reduce computational effort requirements, they output 
only a single optimal solution, forcing the user to assign an importance (or weight) to each 
objective. These methodologies ultimately overlook the flexibility and potential of multi-
objective optimization methods, such as a Pareto approach. In a Pareto approach, which has 
been adopted in this work, the output is not a single solution, but a set of optimal trade-offs 
between conflicting objectives (project cost and duration). This allows the user to choose the 
solution that best fits present construction conditions and criteria, enhancing the system with the 
flexibility to adapt to the dynamic and uncertain environment inherent to earthworks. Finally, 
during the application of the system in Chapter 6, the system has been shown to surpass some 
limitations of the conventional manual earthworks design, demonstrating its competitiveness 
and adaptation capabilities to dynamic changes in earthwork construction. 

Consequently, the final result is a system that can be used in every part of an earthworks project, 
from planning and design phases to construction phase. During planning and design phases, the 
lack of reliable data on site conditions, essential to support a proper earthworks design, can be 
compensated by the developed data mining models, which are integrated with the optimization 
system. Given their learning potential, these models facilitate the estimation of unknown or hard 
to predict parameters, such as equipment productivity, allowing for several optimization and 
allocation analysis, in order to support decision-making and proper design. Furthermore, the fact 
that a Pareto approach has been adopted to deal with the multi-objective feature of the problem 
results in several solutions being output by the system for equipment allocation. Hence, the 
designer has several options to choose from, enhancing the planning of earthworks with the 
flexibility to adjust to different scenarios. This feature is also noteworthy as far as construction 
phases are concerned, where dynamic and unpredictable situations can occur at any given time. 
Common situations that occur in earthworks, such as alteration of site conditions (e.g., 
concluding that the geomaterial quality is not as high as originally expected, or transportation 
routes becoming unusable during construction) or equipment restrictions (e.g., malfunctioning 
of some equipment, making it unavailable for further use either temporarily or permanently), 
can be easily dealt with by adjusting the previously developed models to include the new 
conditions or restrictions. This will result in rerunning the optimization process, which, in turn, 
will output a new series of Pareto optimal solutions. Given that, at that time, the available 
budget can be substantially limited, or the final deadline considerably closer, the possibility to 
choose from several options may be an important advantage, since the designer can pick the one 
that best fits current restrictions. This process can be easily reiterated at any time during 
construction phase, in order to readjust to new conditions and adapt to unforeseen situations. 
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Finally, it is important to highlight that, although project cost and duration, as well as carbon 
emissions (indirectly), were the main minimization objectives mentioned and approached 
throughout this work, it is viable to include other objectives and points of view in the 
optimization procedure. As a matter of fact, environmental impact in this work is mainly 
addressed in the form of carbon emissions, which are naturally minimized once equipment 
usage is optimized to its full potential. However, any factor that can be mathematically 
quantified and related to the earthworks allocation problem can be used as an optimization 
objective. Environmental impact does not have to be limited to carbon emission. In fact, as 
discussed in Chapter 2 (Section 2.4), environmental concerns in earthwork construction are 
much wider, ranging from waste minimization to water conservation during construction. 
Another interesting point of view that could be considered would be the social and economic 
aspect of an earthwork construction in a given region, which can even be correlated to the 
associated environmental impacts, linked with sustainability principles. Indeed, considering 
how the use of a higher amount of available machinery in a construction project can lead to an 
increase in job opportunities for that region, as opposed to minimizing the number of active 
equipment, so as to diminish the environmental impact of carbon emissions. Naturally, 
increasing the number of job opportunities will also have a significant impact on the final cost 
of the whole project. However, it can also be advantageous for the economic aspects of the 
region in which the construction project is executed. It is obvious that increasing the number of 
conflicting optimization objectives will result in an increase in the optimization complexity, 
meaning that further study is required to understand how high the this increase in complexity 
really is when adding a new optimization objective. As such, this aspect is also mentioned in the 
next section, corresponding to future works (see Section 7.3). 

7.3. FUTURE WORKS 

Having addressed a complex problem, to which an innovative solution was developed, this work 
has naturally opened up various research possibilities where further innovation can ensue: 

§ As referred throughout the description of the development of the system, in Chapter 5, 
the full integration of all technologies and tools would enhance not only the system’s 
capabilities, but also its user-friendliness. Since the integration of geographic 
information system technologies was not fully achieved throughout the development of 
this project, future growth should be based either on subsequent versions of the 
presently used tools, or on migrating/expanding the system towards the use of new tools 
altogether. 

§ Given the timespan of the project, some simplifications of reality were considered 
during the development of the prototype system. As a consequence, its future 
development, allowing for a superior adjustment and modeling of reality, should be 
thought through. A clear example might be related to better grasping some aspects 
regarding site conditions, particularly space restrictions in work fronts, which play an 
important role in limiting the maximum amount of active equipment in a single work 
front. Indeed, an interesting application will be in urban excavation for buildings, 
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parking lots and underground, among others. Another important aspect to consider 
concerns situations in which an embankment front is being fed different types of 
geomaterial from different excavation fronts. In these cases, constructive aspects such 
as using a particular material in the lower layers, and other in the upper layers, could be 
taken into consideration by making a sensible decision on the timing or the order of the 
excavation process in each front. This development would increase the flexibility of the 
system to deal with this practical issue, further supporting the decision of designers and 
engineers.  

§ The development of the system focuses mainly on the issues of allocation of available 
resources (the number of machines applied), the selection of the best equipment fleet 
(the selection of machines to be applied) and proper application of machines in terms of 
haul/return routes. While these are important factors to achieve maximum productivity 
and minimum cost, other aspects like loading and dumping configurations, or space 
optimization in work fronts (e.g., where to place machinery in a work front, so as to 
facilitate and maximize the interaction between equipment) should as well be taken into 
account for a complete and integrated optimization.  

§ Gathering more knowledge on the optimization parameters that can output the best 
genetic algorithm results, as well as on the exploration of other multi-objective 
optimization methods, such as Strength Pareto Evolutionary Algorithm 2 (SPEA-2) or 
S-Metric Selection Evolutionary Multi-objective Optimization Algorithm (SMS-
EMOA), are also important aspects to be addressed in future work. Moreover, as 
referred in the end of the previous section, more knowledge regarding the addition of 
further optimization objectives could help understand how far the optimization of 
earthworks can go. 

§ Bearing in mind the increasing importance of sustainability in construction in recent 
years, it is imperative to explore the potential development of a new module (or the 
enhancement of the already developed modules) towards taking this aspect into account. 
The module should be able to objectively determine the sustainability index associated 
with an earthwork project, accounting, for instance, for carbon emissions and material 
treatment procedures.  

§ Finally, the application/validation of the system for a practical project carried out in real 
time can provide the essential insight regarding the development of new functionalities 
and the improvement of current ones. 
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Figure A.1 Classification of soils according to grain size, where Dmax refers to the maximum 

particle size (adapted from SETRA and LCPC 2000) 

 

 

 

 
Figure A.2 Classification of soils according to both grain size and clay characteristics (adapted 

from SETRA and LCPC 2000) 
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b - Classification

The more compact rocks are classified
according to their strength in the Los
Angeles fragmentation test and micro-
Deval wear test, the softer rocks according
to their fragmentability.

4.2 Soils

In attempting to classify a soil on the basis of criteria capable of determining its suitability as fill
and associated conditions for its placement, three parameters must be determined.

4.2.1 Grain size characteristic
These characteristics are derived simply from the grain size analysis.

Dmax: size of largest grains

Note. A D3 class is proposed in GTR for C
soils which have a methyl blue value
(VBS) of less than 0.1 and less than
12 % passing the 80 µm sieve.

4.2.2 Clay characteristics

These characteristics are evaluated from
three tests:
• Atterberg limits (plastic index Ip)
• Methyl blue absorption value of soil (VBS)
• Sand equivalent (ES)

Earthworks in basalt.

Methyl Blue Test.

100%

35%

12%

0 50mm Dmax*

0/50mm fraction
passing 80 µm

LA ! 45 and MDE ! 45 R61

LA > 45 or MDE > 45
and FR ! 7 R62

FR > 7 R63

FINE SOILS A

FINES-RICH SAND OR
GRAVEL SOILS

B5 or B6

Passing 2mm
> 70% < 70%

SAND SOILS GRAVEL SOILS
D1, B1, B2 D2, B3, B4

FINES-POOR

COARSE AND POORLY
STRUCTURED SOILS C1

(rounded grains or more than 60 to 80% 
fraction 0/50mm in the soil)

COARSE AND
STRUCTURED SOILS C2

(angular grains and less than 60 to 80% 
fraction 0/50mm in the soil)
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The grain size classification (section 4-2-1 above) can be completed as follows:

• Fine soils

2.5 6 8 VBS

12 25 40 Ip

A1 A2 A3 A4

• Fines-rich sand and gravel soils

1.5 VBS

12 Ip

B5 B6

• Fines-poor sand soils

0,1 0,2 VBS

35 ES

D1 B1 B2

• Fines-poor gravel soils

0,1 0,2 VBS

25 ES

D2 B3 B4

Note. Values in italics (e.g. 0,2) are recommended, especially for contract specifications, in
preference to other limit values.

4.2.3 State characteristics

Assessing the wetness of a soil (when it
is “sensitive” to water) is based on its IPI
value or on its natural moisture content wn

at a given time in relation to the optimum
moisture content wOPN determined from
the standard Proctor test on the fraction
smaller than 20mm, or on the value of
the soil consistency index.

Five hydrous states are considered:

ts: (very dry) / s: (dry) / m: (normal) / 

h: (wet) / th: (very wet)

The normal state (m) is the best condition for placement, in particular, it allows appropriate
compaction to be achieved. Wet (h) and very wet (th) states are soils for which trafficability and
compaction are difficult (a very wet soil is not normally trafficable for a standard earthmoving plant).
The dry (s) and very dry (ts) states are soils which are difficult to compact to form stable fill structures
(a very dry soil is considered as being impossible to compact properly by standard methods).

Soils in a very wet state.
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Table A.1 Classification of soils according to their moisture state (adapted from SETRA 
and LCPC 2000) 
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Soils are classified according to their hydrous state as follows.

Note. Values in italics (e.g. 0.9) are recommended, especially for contract specifications, in
preference to other limit values, when there is a choice.

EXAMPLES OF CLASSIFICATION

Rocks not extracted with explosives and materials displaying special behaviour

• R32: argillaceous rock (e.g. classified marl or claystone), may contain carbonate fraction, the 
0-50mm fraction registers less than 7 in the fragmentation test and 5-20 in the degradability test.

• R41: siliceous rock (e.g. classified sandstone) with Los Angeles coefficient less than 45 and micro-
Deval coefficient also less than 45.

• Rock classified limestone 
with MDE greater than 45 
and bulk unit weight ρd 1.84 -> class R22.

Soils

• A2m: fine soil with plastic index between 12 and 25 with normal moisture content (IPI between
5 and 15).

• C1-B5h: soil with a fraction larger than 50mm representing less than 20-40% of whole soil sample
and/or with large rounded particles. The fraction smaller than 50mm is sand or gravel with a
plasticity index below 12 in the normally wet state.

• C2-D2: soil with a fraction larger than 50mm representing not less than 20-40% of whole soil
sample with angular particles. The fraction smaller than 50mm is clean gravel and therefore
insensitive to water, so its moisture content does not need to be characterised.

• Soil with:
17% passing 80µm and
Dmax: 40mm -> class B5 or B6

VBS: 1,7 -> class B6

IPI: 7 -> class B6h

Soil type Reference test
State threshold

ts s m h th

A1 IPI 25 8 3
wn/wOPN 0.7 0.9 1.1 1.25

A2 IPI 15 5 2
wn/wOPN 0.7 0.9 1.1 1.3

Ic 1.4 1.2 1.05 0.9
A3 IPI 10 3 1

wn/wOPN 0.7 0.9 1.2 1.4
Ic 1.3 1.15 1 0.8

A4 Special study required

B1 No sens iv i ty  to  water  content

B2 IPI 8 4
wn/wOPN 0.5 0.9 1.1 1.25

B3 No sens iv i ty  to  water  content
B4 IPI 15 7

wn/wOPN 0.6 0.9 1.1 1.25
B5 IPI 30 12 5

wn/wOPN 0.6 0.9 1.1 1.25
B6 IPI 25 10 4

wn/wOPN 0.7 0.9 1.1 1.3
Ic 1.3 1.2 1 0.8
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R1 – Chalks – formed by the accumulation of falling calcite particles in the order of 1 to 10 µm 
in size. Their porosity contributes to the fragility of the material. Chalks are classified according 
to their dry density and moisture content (Table B.1); 

  

Table B.1 Classification of chalks according to dry density and moisture content (adapted 
from SETRA and LCPC 2000) 

ρd > 1.7 R11 

1.5 <   ρd ≤ 1.7  and  𝑤! ≥ 27 

1.5 <   ρd ≤ 1.7  and  22 ≤ 𝑤! < 27 

1.5 <   ρd ≤ 1.7  and  18 ≤ 𝑤! < 22 

1.5 <   ρd ≤ 1.7  and  𝑤! < 18 

R12 h 

R12 m 

R12 s 

R12 ts 

ρd ≤ 1.5  and  𝑤! ≥ 31 

ρd ≤ 1.5  and  26 ≤ 𝑤! < 31 

ρd ≤ 1.5  and  21 ≤ 𝑤! < 26 

ρd ≤ 1.5  and  16 ≤ 𝑤! < 21 

ρd ≤ 1.5  and  𝑤! < 16 

R13 th 

R13 h 

R13 m 

R13 s 

R13 ts 

 

 

R2 – Calcareous rocks – This class contains the whole range of calcareous rock materials. Their 
predominant features, in respect of their use in fill, are their friability and, for the more 
fragmentable materials, frost susceptibility. The more compact calcareous rocks are classified 
according to their resistance in the micro-Deval test, while softer rocks are classified according 
to their bulk unit weight (Table B.2); 

 

Table B.2 Classification of calcareous rocks according to their resistance in the micro-
Deval test and bulk unit weight (adapted from SETRA and LCPC 2000) 

𝑀𝐷𝐸 ≤ 45 R21 

𝑀𝐷𝐸 > 45  and  ρd > 1.8 R22 

ρd ≤ 1.8 R23 
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R3 – Argillaceous rocks – These are characterised by a more or less resistant structure with a 
highly variable proportion of potentially swelling clay minerals imprisoned. These are classified 
mainly according to fragmentation and degradability tests. For the more fragmentable rocks, the 
natural moisture content is compared to either their normal Proctor optimum or their immediate 
bearing index, in order to determine their moisture state. (Table B.3); 

 

Table B.3 Classification of argillaceous rocks according to their fragmentability and 
degradability (adapted from SETRA and LCPC 2000) 

 

 

 

R4 – Siliceous rocks – This class of materials can be likened to assemblies of sand grains or 
stones cemented together with silica or calcite, where the strength of the binding affects the 
behaviour of the rock. The more compact rocks are classified according to their strength in the 
Los Angeles fragmentation test and micro-Deval wear test, while the softer rocks are classified 
according to their fragmentability (Table B.4); 

 

Table B.4 Classification of siliceous rocks according to the Los Angeles and micro-Deval 
tests, as well as fragmentability (adapted from SETRA and LCPC 2000) 

𝐿𝐴 ≤ 45  and  𝑀𝐷𝐸 ≤ 45 R41 

𝐿𝐴 > 45  or  𝑀𝐷𝐸 > 45 

and  𝐹𝑅 ≤ 7 
R42 

𝐹𝑅 > 7 R43 
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R3 ARGILLACEOUS ROCKS
(Marls, shales, claystone, pelite, etc.)

a - Description

They are characterised by a more or less resistant
(usually  carbonate) structure with a highly variable
proportion (5 % to 95 % from what is generally
reported) of potentially swelling clay minerals
imprisoned. They fragment to varying degrees
when worked, freeing plastic, water-sensitive
fines. Breakdown of the structure may continue
subsequent to being placed, under the mechanical
stresses applied by the overlying fill, and through
weathering of large pieces of intact rock due to
swelling of the clay minerals in contact with water
causing destruction of the rock skeleton. This
process and associated distress to the fill is more
likely when the materials are less fragmented
and display uniform grain size in the completed
fill.
For the more fragmentable rocks (class R34),
their 0-50mm fraction must be characterised.

b - Classification

The evolutive nature of these rocks is determined
by two tests:
• Fragmentation test (to French standard NF P

94-066) to assess, from the FR results, the
sensitivity of the rock to the fragmentation energy
applied on site.

• Degradability test (to French standard NF P 94-
067) to evaluate, from the DG result, the
weathering resistance in contact with water by
measuring the effects of wetting and drying
cycles.

For the more fragmentable rocks (class R34

materials), the natural moisture content wn is
compared to their normal Proctor optimum wOPN

or their immediate bearing index IPI is measured
to determine their hydrous state.
These rocks therefore classify as follows:

* Values in italics are recommended

Fragmentability Degradability Class

FR ! 7 DG > 20 R31
5 < DG ! 20 R32

DG ! 5 R33

FR > 7 [wn " 1.3 wOPN or IPI < 2*] R34th
[1.1 wOPN ! wn < 1.3 wOPN or 2 ! IPI > 5*] R34h

0.9 wOPN ! wn < 1.1 wOPN R34m
0.7 wOPN ! wn < 0.9 wOPN R34s

Rocky marls evolving from a sound, just extracted 
state (1) to a clay (3) by the halfway of (2).

1

2

3
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R5 – Saline rocks – In mechanical terms, this class of materials are like class R2 and R3 but they 
are more soluble in water and they are therefore liable to cause distress in the structure. They are 
classified depending on the proportion of salt and gypsum in the rock structure (Table B.5); 

 

Table B.5 Classification of saline rocks according to their constitution (adapted from 
SETRA and LCPC 2000) 

Soluble salt content (depending on degree of fragmentability): 

≤ 5 − 10%  in  rock  salt 

≤ 30 − 50%  in  gypsum 

Slightly soluble salt rocks 

R51 

Soluble salt content (depending on degree of fragmentability): 

≤ 5 − 10%  in  rock  salt 

≤ 30 − 50%  in  gypsum 

Very soluble salt rocks 

R52 

 

 

R6 – Igneous and metamorphic rocks – This class of materials may have widely differing 
mechanical properties. Their fragmentability and friability may be very variable. The more 
compact rocks are classified according to their strength in the Los Angeles fragmentation test 
and the micro-Deval wear test, the softer rocks are classified according to their fragmentability 
(Table B.6). 

 

Table B.6 Classification of igneous and metamorphic rocks according to the Lost Angeles 
and micro-Deval tests, as well as fragmentability (adapted from SETRA and LCPC 2000) 

𝐿𝐴 ≤ 45  and  𝑀𝐷𝐸 ≤ 45 R61 

𝐿𝐴 > 45  or  𝑀𝐷𝐸 > 45 

and  𝐹𝑅 ≤ 7 
R62 

𝐹𝑅 > 7 R63 
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Table C.1 Classification for pneumatic tyred drum rollers (adapted from SETRA and 
LCPC 2000) 

P1 CR between 25 and 40 kN 

P2 CR between 40 and 60 kN 

P3 CR greater than 60 kN 

 

 

Table C.2 Classification for smooth vibrating drum rollers and vibrating tamping rollers 
(adapted from SETRA and LCPC 2000) 

V1 (𝑀1)× 𝐴0 
between 15 and 25 

greater than 25 

and 

and 

𝐴0 ≥ 0.6 

𝐴0  between  0.6  and  0.8 

V2 (𝑀1)× 𝐴0 
between 25 and 40 

greater than 40 

and 

and 

𝐴0 ≥ 0.8 

𝐴0  between  0.8  and  1.0 

V3 (𝑀1)× 𝐴0 
between 40 and 55 

greater than 55 

and 

and 

𝐴0 ≥ 1.0 

𝐴0  between  1.0  and  1.3 

V4 (𝑀1)× 𝐴0 
between 55 and 70 

greater than 70 

and 

and 

𝐴0 ≥ 1.3 

𝐴0  between  1.3  and  1.6 

V5 (𝑀1)× 𝐴0 greater than 70 and 𝐴0 ≥ 1.6 

 

 

Table C.3 Classification for static tamping rollers (adapted from SETRA and LCPC 2000) 

SP1 M1/L between 30 and 60 kg/cm 

SP2 M1/L greater than 60 kg/cm but less than 90 kg/cm 

 

 

Table C.4 Classification for vibrating plate compactors (adapted from SETRA and LCPC 
2000) 

PQ3 Mg/S between 10 and 15 kPa 

PQ4 Mg/S greater than 15 kPa 

 




