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Abstract. Hybrid logics, which add to the modal description of transition structures the ability to refer to specific
states, offer a generic framework to approach the specification and design of reconfigurable systems, i.e., systems
with reconfiguration mechanisms governing the dynamic evolution of their execution configurations in response
to both external stimuli or internal performance measures. A formal representation of such systems is through
transition structures whose states correspond to the different configurations they may adopt. Therefore, each
node is endowed with, for example, an algebra, or a first-order structure, to precisely characterise the semantics
of the services provided in the corresponding configuration. This paper characterises equivalence and refinement
for these sorts of models in a way which is independent of (or parametric on) whatever logic (propositional,
equational, fuzzy, etc) is found appropriate to describe the local configurations. A Hennessy–Milner like theorem
is proved for hybridised logics.
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1. Introduction

This paper discusses equivalence and refinement of structured transition systems. Or, to put it in another way, of
models of specifications written in hybridised logics. These two qualifiers entail the need for a word of explanation.
States in a structured transition system are endowed with a specific structure (e.g., algebraic, first order, etc.). In
the development of software systems, one may think of such sort of states as (local) specifications of individual
system configurations. The global transition structure, on the other hand, defines how the software evolves from
a configuration to another. Such systems are called reconfigurable in the sense that they behave differently in
different modes of operation (configurations) and commute between them along their lifetime.

At present, reconfigurable software is the norm than the exception: a typical, everyday example is provided
by cloud based applications that elastically react to client demand levels, for example by allocating new server
units to meet higher rates of service requests. Modern cars offer a second example: in each of them hundreds
of electronic control units must operate in different modes, depending on the current situation—such as driving
on a highway or in town where different speed regulations are applied. Switching between these modes is a
typical example of a dynamic reconfiguration. Actually, reconfigurability [SC11], together with related issues like
self-adaptation or context-awarness, became a main research topic, in the triple perspective of foundations,
methods and technologies.
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Specifications of this sort of systems, as discussed in [MFMB11], should be able to make assertions both
about the transition dynamics and, locally, about each particular configuration. This leads to the adoption of
hybrid logic [AtC06, Bra10], which adds to the modal description of transition structures the ability to refer to
specific states, as the specification lingua franca for reconfigurable systems.

An elementary example to be discussed later in the paper (see Example 5.3) is that of a storing system equipped
with a read operation which retrieves the first or the last element stored depending on the current execution mode.
Reconfiguration between such modes is achieved by a control event, shift. The properties of each mode are specified
equationally, whereas switching between them is encoded as a modality. Nominals provide a unique way to refer
to each execution mode and its properties. Therefore, hybridised (equational) logic provides a suitable framework
to develop the overall specification.

However, because specific problems may require specific logics to describe their configurations (e.g., equa-
tional, first-order, fuzzy, etc.), our approach is rooted on very general grounds. Instead of choosing a particular
version of hybrid logic, we play with hybridised logics. The latter are the result of hybridising [MMDB11] whatever
logic is found suitable for expressing and reasoning about the requirements at the configuration (static) level. This
process, hybridisation, was characterised in [MMDB11, DM14] as well as in [Mad13]. To be completely general,
it is framed in the context of the theory of institutions of J. Goguen and R. Burstall [GB92, Dia08], each logic
(base and hybridised) treated abstractly as an institution. This is later taken as the base logic on top of which
the characteristic features of hybrid logic, both at the level of syntax (i.e. modalities, nominals, etc.) and of the
semantics (i.e. possible worlds), are developed.

In this context, the quest for suitable notions of equivalence and refinement between models of hybridised logic
specifications becomes fundamental to the development of a design methodology for reconfigurable systems. Such
is the purpose of the present paper. Its contributions are characterisations of bisimilarity and of two notions of
refinement for (models of) specifications in hybridised logics. As discussed below, this requires a form of elementary
equivalence [Hod97] between bisimilar states, as a generic formulation of the usual informal requirement that truth
remains invariant. Clearly what elementary equivalent means in each case boils down to the way the satisfaction
relation is defined for the base logic used in local configurations.

The choice of similarity and bisimilarity to base refinement and equivalence of (models of) reconfigurable
systems seems quite standard as a fine grained approach to observational methods for systems comparison. The
notion of bisimulation and the associated conductive proof method, which is now pervasive in Computer Science,
originated in concurrency theory due to the seminal work of David Park [Par81] and Robin Milner in the quest
for an appropriate definition of observational equivalence for communicating processes as understood in CCS
[Mil89]. But the concept also arose independently in modal logic as a refinement of notions of homomorphism
between algebraic models—see [San09] for an extensive historical account.

Contributions and organisation This paper extends preliminary work on refinement in hybridised institutions
[MMB13] along three main directions: (1) the proof of a Hennessy–Milner result for hybridised logics, (2) the char-
acterisation of two dual notions of refinement, forward and backward, and (3) a discussion on refinement of spec-
ifications. From a wider perspective, it is part of a broader research line on logics for software reconfigurabilty doc-
umented in [MMDB11, DM14] (for the hybridisation process), and [MFMB11, MNMB13, MMDB11, MMB13]
(for the associated design methodology).

The paper is organised as follows: Sect. 2 recalls institutions as abstract characterisations of logics and
provides a brief, and simplified, overview of the hybridisation method proposed in [MMDB11, DM14]. This
forms the context for the paper’s contribution. Then, Sect. 3 introduces a general notion of bisimulation for
hybridised logics and Sect. 4 proves a Hennessy–Milner like theorem. Section 5 introduces notions of forward
and backward refinement and discusses preservation of logic satisfaction under them. This discussion is extended
to the specification level in Sect. 6. Finally, Sect. 7 concludes and points out directions for further research.
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2. Background

2.1. Institutions

An institution is a category theoretic formalisation of a logical system, encompassing syntax, semantics and
satisfaction. The concept was put forward by Goguen and Burstall, in the end of the seventies, in order to
“formalise the formal notion of logical systems”, in response to the “population explosion among the logical systems
used in Computing Science” [GB92].

The universal character of institutions proved effective and resilient as witnessed by the wide number of logics
formalised in this framework. Examples range from the usual logics in classical mathematical logic (proposi-
tional, equational, first order, etc.), to the ones underlying specification and programming languages or used for
describing particular systems from different domains. Well-known examples include probabilistic logics [BKI05],
quantum logics [CMSS06], hidden and observational logics [BD94, BH06], coalgebraic logics [C0̂6], as well as log-
ics for reasoning about process algebras [MR06], functional [ST12, SM09] and imperative programing languages
[ST12].

The theory of institutions (see [Dia08] for an extensive account) was motivated by the need to abstract
from the particular details of each individual logic and characterise generic issues, such as satisfaction and
combination of logics, in very general terms. In Computer Science, this lead to the development of a solid
institution-independent specification theory, on which structuring and parameterisation mechanisms, required to
scale up software specification methods, are defined ‘once and for all’, irrespective of the concrete logic used in
each application domain [Tar03]. The definition is recalled below (e.g., [GB92, Dia08]) and illustrated with a few
examples to which we return later in the paper.

Definition 2.1 (Institution) An institution

I � (
SignI

, SenI ,ModI
, (|�I

�)�∈|SignI |
)

consists of

• a category SignI whose objects are called signatures and arrows signature morphisms;
• a functor SenI : SignI → Set giving for each signature a set whose elements are called sentences over that

signature;
• a functor ModI : (SignI )op → CAT , giving for each signature � a category whose objects are called
�-models, and whose arrows are called �-(model) homomorphisms; each arrow ϕ : � → �′ ∈ SignI ,
(i.e., ϕ : �′ → � ∈ (SignI )op) is mapped into a functor ModI (ϕ) : ModI (�′) → ModI (�) called a reduct
functor, whose effect is to cast a model of �′ as a model of �; when M � ModI (ϕ)(M ′) we say that M is the
ϕ-reduct of M ′ and that M is an ϕ-expansion of M ;

• a relation |�I
�⊆| ModI (�) | ×SenI (�) for each � ∈| SignI |, called the satisfaction relation,

such that for each morphism ϕ : � → �′ ∈ SignI , the satisfaction condition

M ′ |�I
�′ SenI (ϕ)(ρ) iff ModI (ϕ)(M ′) |�I

� ρ (1)

holds for each M ′ ∈| ModI (�′) | and ρ ∈ SenI (�). Graphically,

�

ϕ

��

ModI (�)
|�I
�

SenI (�)

SenI (ϕ)
��

�′ ModI (�′)

ModI (ϕ)

��

|�I
�′

SenI (�′)

Example 2.1 (The trivial institution TRIV) The simplest institution one can think of is TRIV. Its category of
signatures, SignTRIV, is the final category, i.e., the category whose class of objects is the singleton set {∗} and
morphisms reduce to the identity 1∗(∗) � ∗. Functor SenTRIV sends object ∗ into the empty set ∅ and morphism
1∗ into the empty function. The models functor, ModTRIV, sends the signature ∗ to the final category. Since the
set of sentences is empty, the satisfaction condition holds trivially.
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Example 2.2 (Propositional Logic PL) A signature Prop ∈| SignPL | in the institution PL is a set of symbols,
called propositional variables, and a signature morphism is just a function ϕ : Prop → Prop ′. Therefore, SignPL

coincides with the category Set .
Functor Mod maps each signature Prop to the category ModPL(Prop) and each signature morphism ϕ to

the reduct functor ModPL(ϕ). Objects of ModPL(Prop) are functions M : Prop → {	,⊥} and its morphisms
functions h : Prop → Prop such that M (p) � M ′(h(p)). Given a signature morphism ϕ : Prop → Prop ′,
the reduct of a model M ′ ∈| ModPL(Prop ′) |, say M � ModPL(ϕ)(M ′), is defined, for each p ∈ Prop, as
M (p) � M ′(ϕ(p)).

Functor SenPL maps each signatureProp to the set of propositional sentences SenPL(Prop) and each morphism
ϕ : Prop → Prop ′ to the sentences’ translation SenPL(ϕ) : SenPL(Prop) → SenPL(Prop ′). The set SenPL(Prop)
is the usual set of propositional formulas defined by the grammar

ρ ::� p | ρ ∨ ρ | ρ ∧ ρ | ρ ⇒ ρ | ¬ρ
for p ∈ Prop. The translation of a sentence SenPL(ϕ)(ρ) is obtained by replacing each proposition of ρ by the
respective ϕ-image.

Finally, for each Prop ∈ SenPL, the satisfaction relation |�PL
Prop is defined as usual:

– M |�PL
Prop p iff M (p) � 	, for any p ∈ Prop,

– M |�PL
Prop ρ ∨ ρ ′ iff M |�PL

Prop ρ or M |�PL
Prop ρ

′.

and similarly for the other connectives.

Example 2.3 (Equational logic EQ) Signatures in the institution EQ of equational logic are pairs (S ,F ) where
S is a set of sort symbols and F � {Far→s | ar ∈ S ∗, s ∈ S } is a family of sets of operation symbols indexed
by arities ar (for the arguments) and sorts s (for the results). Signature morphisms map both components in a
compatible way: they consist of pairs ϕ � (ϕst, ϕop) : (S ,F ) → (S ′,F ′), where ϕst : S → S ′ is a function, and
ϕop � {ϕop

ar→s : Far→s → F ′
ϕst(ar)→ϕst(s) | ar ∈ S ∗, s ∈ S } is a family of functions mapping operation symbols

according to their arities.
A model M for a signature (S ,F ) is an algebra interpreting each sort symbol s as a carrier set Ms and each

operation symbol σ ∈ Far → s as a function Mσ : Mar → Ms , where Mar is the product of the arguments’
carriers. This interpretation is extended to (S ,F )-terms t � σ (t1, . . . , tn ), by Mσ (t1,...,tn ) � Mσ (Mt1, . . . ,Mtn ).
Model morphisms are homomorphisms of algebras, i.e., S -indexed families of functions {hs : Ms → M ′

s | s ∈ S }
such that for any m ∈ Mar, and for each σ ∈ Far→s , hs (Mσ (m)) � M ′

σ (har(m)). For each signature morphism ϕ,
the reduct of a model M ′, say M � ModEQ(ϕ)(M ′) is defined by (M )x � M ′

ϕ(x ) for each sort and function symbol
x from the domain signature of ϕ. The models functor maps signatures to categories of algebras and signature
morphisms to the respective reduct functors.

Sentences are universally quantified equations (∀X )t � t ′. Sentence translations along a signature morphism
ϕ : (S ,F ) → (S ′,F ′), i.e., SenEQ(ϕ) : SenEQ(S ,F ) → SenEQ(S ′,F ′), replace symbols of (S ,F ) by the respective
ϕ-images in (S ′,F ′). Functor SenEQ maps each signature to the set of universally quantified equations and each
signature morphism to the respective sentences translation.

The satisfaction relation is the usual Tarskian satisfaction defined recursively on the structure of the sentences
as follows:

• M |�(S ,F ) t � t ′ when Mt � Mt ′ ,

• M |�(S ,F ) (∀X )ρ when M ′ |�(S ,F�X ) ρ for any inc-expansion M ′ of M where inc : (S ,F ) ↪→ (S ,F � X ) is
the inclusion morphism that enrich (S ,F ) with the set of variables X .

Example 2.4 (Propositional Fuzzy Logic MVLL) Multi-valued logics [Got01] generalise classic logics by replac-
ing, as their truth domain, the 2-element Boolean algebra by larger sets structured as complete residuate lattices.
They were originally formalised as institutions in [ACEGG90] (see also [Dia11] for a recent reference).
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A residuate lattice is a tuple L � (L,≤,∧,∨,	,⊥,⊗,⇒), where

• (L,∧,∨,	,⊥) is a lattice ordered by ≤, with carrier L, with (binary) infimum (∧) and supremum ( ∨), and
bigest and smallest elements 	 and ⊥;

• ⊗ is an associative binary operation such that, for any elements x , y, z ∈ L,

– x ⊗ 	 � 	 ⊗ x � x ,
– y ≤ z implies that (x ⊗ y) ≤ (x ⊗ z ),
– the following Galois connection holds:

y ≤ (x ⇒ z ) iff x ⊗ y ≤ z .

A residuate lattice L is complete if any subset S ⊆ L has infimum and supremum, denoted by
∧

S and
∨

S ,
respectively.

Given a complete residuate lattice L, the institution MVLL is defined as follows:

• MVLL-signatures are PL-signatures, i.e., signatures are sets Prop and morphisms are functions
ϕ : Prop → Prop ′.

• Sentences of MVLL consist of pairs (ρ, p) where p is an element of L and ρ is defined as a PL-sentence over
the set of connectives {⇒,∨,	,⊥,⊗}.

• A MVLL-model M is a function M : Prop → L,
• For any M ∈ ModMVLL (Prop) and for any (ρ, p) ∈ SenMVLL(Prop), the satisfaction relation is

M |�MVLL

Prop (ρ, p) iff p ≤ (M |� ρ),

where M |� ρ is inductively defined as follows:

– for any proposition p ∈ Prop, (M |� p) � M (p)),
– (M |� 	) � 	,
– (M |� ⊥) � ⊥,
– (M |� ρ1 � ρ2) � (M |� ρ1) � (M |� ρ2), for � ∈ {∨,⇒,⊗}.

This institution captures many multi-valued logics in the literature. For instance, taking L as the Łukasiewicz
arithmetic lattice over the closed interval [0, 1], where x ⊗ y � 1 − max{0, x + y − 1} (and x ⇒ y �
min{1, 1 − x + y}), yields the standard propositional fuzzy logic.

2.2. Hybridisation

The hybridisation method proposed in [MMDB11, DM14, Mad13], enriches an arbitrary institution
I � (SignI

, SenI ,ModI
, (|�I

�)�∈|SignI |) with the (modal) hybrid logic features and the corresponding Kripke
semantics. The result is still an institution, HI , called the hybridisation of I . The construction is revisited in the
sequel. This overview is focussed on a simplified version, consisting of the quantifier-free and non-constrained
version of the general method. The results in this paper are developed in the context of this simplified version,
referred to as the hybridisation process.

The category of HI -signatures. First of all the base signature is enriched with nominals and polyadic modalities.
Therefore, the category of I -hybrid signatures, denoted by SignHI , is defined as the direct (cartesian) product of
categories:

SignHI � SignI × SignREL
.

where REL is the sub-institution of (the institution of) single sorted first order logic, without non-constant
operation symbols. Thus, signatures are triples (�,Nom,�), where � ∈ |SignI | and, in the REL-signature
(Nom,�), Nom is a set of constants called nominals and � is a set of relational symbols called modalities;
�n stands for the set of modalities of arity n. Morphisms ϕ ∈ SignHI ((�,Nom,�), (�′,Nom′,�′)) are triples
ϕ � (ϕSign, ϕNom, ϕMS) where ϕSign ∈ SignI (�,�′), ϕNom : Nom → Nom′ is a function and ϕMS � (ϕn : �n →
�′

n )n∈N a N-family of functions mapping nominals and n − ary-modality symbols, respectively.
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Functor of the HI-sentences. The second step is to enrich the base sentences accordingly. The sentences of the
base institution and the nominals are taken as atoms and composed with the boolean connectives, modalities,
and satisfaction operators as follows: SenHI (�,Nom,�) is the least set such that

• SenI (�) ⊆ SenHI (	),
• Nom ⊆ SenHI (	),
• ρ � ρ ′ ∈ SenHI (	) for any ρ, ρ ′ ∈ SenHI (	) and any � ∈ {∨,∧,⇒},
• ¬ρ ∈ SenHI (	), for any ρ ∈ SenHI (	),
• @iρ ∈ SenHI (	) for any ρ ∈ SenHI (	) and i ∈ Nom,
• [λ](ρ1, . . . , ρn ), for any λ ∈ �n+1, ρi ∈ SenHI (	), i ∈ {1, . . . ,n},
• 〈λ〉(ρ1, . . . , ρn ), for any λ ∈ �n+1, ρi ∈ SenHI (	), i ∈ {1, . . . ,n}.

Given a HI-signature morphism ϕ � (ϕSign, ϕNom, ϕMS) : (�,Nom,�) → (�′,Nom′,�′), the translation of
sentences SenHI (ϕ) is defined as follows:

• SenHI (ϕ)(ρ) � SenI (ϕSign)(ρ) for any ρ ∈ SenI (�),

• SenHI (ϕ)(i ) � ϕNom(i ),
• SenHI (ϕ)(ρ � ρ ′) � SenHI (ϕ)(ρ) � SenHI (ϕ)(ρ ′), � ∈ {∨,∧,⇒},
• SenHI (ϕ)(¬ρ) � ¬SenHI (ϕ)(ρ),
• SenHI (ϕ)(@iρ) � @ϕNom(i)SenHI (ρ),

• SenHI (ϕ)([λ](ρ1, . . . , ρn )) � [ϕMS(λ)](SenHI (ρ1), . . . ,SenHI (ρn )),
• SenHI (ϕ)(〈λ〉(ρ1, . . . , ρn )) � 〈ϕMS(λ)〉(SenHI (ρ1), . . . , SenHI (ρn )).

HI-models functor Models of the hybridised logic HI can be regarded as (�-)relational structures whose
worlds are I -models. Formally (�,Nom,�)-models are pairs (M ,W ) where

• W is a (Nom,�)-model in REL, called a hybrid structure,
• M is a function | W |→| ModI (�) |.

In each model (M ,W ), {Wn | n ∈ Nom} provides interpretations for nominals in Nom, whereas relations {Wλ |
λ ∈ �n ,n ∈ N} interpret modalities�. We denote the I -model M (w ) simply by Mw . The reduct definition is lifted
from the base institution I : the reduct of a	′-model (M ′,W ′) along a signature morphismϕ � (ϕSign, ϕNom, ϕMS) :
	 → 	′, denoted by ModHI (ϕ)(M ′,W ′), is the 	-model (M ,W ) such that

• W is the (ϕNom, ϕMS)-reduct of W ′, i.e.

– |W | � |W ′|,
– for any n ∈ Nom,Wn � W ′

ϕNom(n),

– for any λ ∈ �, Wλ � W ′
ϕMS(λ),

• for any w ∈| W |, Mw � ModI (ϕSign)(M ′
w ).

The Satisfaction Relation. Let (�,Nom,�) ∈| SignHI | and (M ,W ) ∈| ModHI (�,Nom,�) |. For any w ∈ |W |
we define:

• (M ,W ) |�w ρ iff Mw |�I ρ, when ρ ∈ SenI (�),
• (M ,W ) |�w i iff Wi � w ; when i ∈ Nom,
• (M ,W ) |�w ρ ∨ ρ ′ iff (M ,W ) |�w ρ or (M ,W ) |�w ρ ′,
• (M ,W ) |�w ρ ∧ ρ ′ iff (M ,W ) |�w ρ and (M ,W ) |�w ρ ′,
• (M ,W ) |�w ρ ⇒ ρ ′ iff (M ,W ) |�w ρ implies that (M ,W ) |�w ρ ′,
• (M ,W ) |�w ¬ρ iff (M ,W ) � |�wρ,
• (M ,W ) |�w @jρ iff (M ,W ) |�Wj ρ,
• (M ,W ) |�w [λ](ξ1, . . . , ξn ) iff for any (w ,w1, . . . ,wn ) ∈ Wλ we have that (M ,W ) |�wi ξi for some 1 ≤ i ≤ n,
• (M ,W ) |�w 〈λ〉(ξ1, . . . , ξn ) iff there exists (w ,w1, . . . ,wn )∈Wλ such that and (M ,W ) |�wi ξi for any 1≤ i ≤n.
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Fig. 1. HTRIV-model
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λ0
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λ1

Fig. 2. H2TRIV-model

λ0

Fig. 3. HTRIV-model

λ1

λ0

λ0

λ0

λ1

λ1

Fig. 4. H2TRIV-model

We write (M ,W ) |� ρ iff (M ,W ) |�w ρ for any w ∈| W |.
As expected, HI is itself an institution satisfying the satisfaction condition:

Theorem 2.1 [MMDB11] Let	 � (�,Nom,�) and	′ � (�′,Nom′,�′) be two HI-signatures and ϕ : 	 → 	′
a morphism of signatures. For any ρ ∈ SenHI (	), (M ′,W ′) ∈| ModC (	′) |, and w ∈| W |,

ModHI (ϕ)(M ′,W ′) |�w ρ iff (M ′,W ′) |�w SenHI (ϕ)(ρ).

Let us illustrate the method by applying it to the trivial institution (twice) as well as to the three other
institutions described above.

Example 2.5 (HTRIV and H2TRIV) Let us consider the hybridisation of the institution TRIV of Example 2.1.
The signature category corresponds to

SignTRIV × SignREL ∼� SignREL
.

Since SenTRIV(∗) � ∅, SenHTRIV(∗,Nom,�) is the set of sentences built up from nominals in Nom by the
application of modalities in � and boolean connectives. This kind of formulas are called pure hybrid formulas in
[BdRV01, Ind07]. Models of ModHTRIV(∗,Nom,�) are relational structures (W ,M ), where M is the constant
function Mw � ∗, for any w ∈| W | (see Figs. 1, 2).

An interesting institution for the specification of hierarchical state transition systems is obtained through
the hybridisation of HTRIV i.e., the double hybridisation of TRIV, which we denote by H2TRIV. Models
of this institution are hybrid structures of hybrid structures (see Fig. 2). Thus H2TRIV signatures are triples
((∗,Nom0,�0),Nom1,�1) with Nom0, �0 and Nom1, �1 denoting the nominals and the modalities of the first
and second layer of hybridisation, respectively. In order to prevent ambiguities, we tag the symbols of each hybrid
signature, as well as the connectives and satisfaction operator introduced in each hybridisation, with 0 for the
first layer, and with 1 for the second one. For instance, the expression @j 1k 0 ∧1 [λ1](ρ1, . . . , ρn ) is a sentence of
H2TRIV where the symbols k and j represent nominals of the first and second level of hybridisation, respectively.
Our tagging convention is extended also to H2TRIV models: a (P ,Nom0,Nom1)-model is denoted by (M 1,W 1)
where, for any w ∈| W 1 |, the models M 1

w are denoted by (W 0
w ,M

0
w ) (Figs. 3, 4).
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Example 2.6 (HPL) The hybridisation of the propositional logic institution PL is an institution where signatures
are triples (Prop,Nom,�) and sentences are generated by

ρ ::� ρ0 | i | @iρ | ρ � ρ | ¬ρ | 〈λ〉(ρ, . . . , ρ) | [λ](ρ, . . . , ρ) (2)

where ρ0 ∈ SenPL(Prop), i ∈ Nom, λ ∈ �n and � � {∨,∧,⇒}. Note that there is a double level of connectives in
the sentences: one coming from base PL-sentences and another introduced by the hybridisation process. However,
they “semantically collapse” in the sense that the semantic interpretation of boolean connectives in both levels is
the same, and, hence, no distinction between them needs to be done. (see [DM14] for details). A (Prop,Nom,�)-
model is a pair (M ,W ), where W is a transition structure with a set of worlds |W |. Constants Wi , i ∈ Nom,
stand for the named worlds and (n + 1)-ary relations Wλ, λ ∈ �n , are the accessibility relations characterising
the structure. For each world w ∈| W |, M (w ) is a (local) PL-model assigning propositions in Prop to the world
w .

Restricting the signatures to those with just a single unary modality (i.e., where �2 � {λ} and �n � ∅ for
n �� 2), results in the usual institution for classical hybrid propositional logic [Bra10].

Example 2.7 (HMVLL) The institution obtained through the hybridisation of MVLL, for a fixed L, is similar to
HPL defined above, but for two aspects,

• sentences are defined as in (2) but considering MVL Prop-sentences (ρ0, p) as atomic;
• a function, associated to each world w ∈| W |, assigning to each proposition its value in L.

It is interesting to note that expressivity increases even if one restricts to the case of a (one-world) standard
semantics. For instance, differently from the base case where each sentence is tagged by a L-value, one may now
deal with more structured expressions involving several L-values, as in, for example, (ρ, p) ∧ (ρ ′, p ′).

Example 2.8 (HEQ) Signatures of HEQ are triples ((S ,F ),Nom,�) and sentences are defined as in (2) but taking
(S ,F )-equations (∀X )t � t ′ as atomic base sentences. Models are hybrid structures with a (local)-(S ,F )-algebra
per world. This institution is a suitable framework to specify reconfigurable systems in a “configurations-as-
worlds” perspective: distinct configurations are modelled by distinct algebras; and reconfigurations are expressed
by transitions (cf. [MFMB11, Mad13]). Clearly, in this sort of specifications configurations can be specified
equationally, based on EQ-signatures, with an initial algebra interpretation. Nominals identify the “relevant”
configurations and reconfigurations amount to state transitions. Therefore, one resorts to local equations (i.e.
equations tagged by satisfaction operators @i (∀X )t � t ′) to specify local properties of named configurations;
to global equations, (i.e. non tagged equations) to specify global properties, i.e. properties true in any state; and,
finally, to modal features to specify the reconfigurability dynamics.

3. Bisimulation for hybridised logics

Having briefly reviewed what an institution is and how, through a systematic process, one may build upon an
arbitrary logic both modalities and nominals to explicitly refer to states in a specification, we may now focus on
the paper’s specific contribution. Our starting point is a method to specify reconfigurable software as transition
systems whose states represent particular configurations. Each state can endow an algebra, a relation structure
or even another, local transition system. Such two-staged specifications are common in the Software Engineering
practice (see, e.g., Gurevich’s Abstract State Machines [BS03]).

The originality of our method lies in its genericity: whatever logic is found useful to specify each concrete
configuration, a method is offered to compute its hybrid counterpart. In this setting, within the next three
sections, we look for suitable notions of equivalence and refinement for this kind of specifications. Naturally,
such notions should also be parametric on the base logic used, i.e. on the language in which the specification of
each concrete configuration is written. The price to pay is, of course, some extra notation and the use of a generic
framework—that of institutions—in which concepts can be formulated and results proved once and for all.

As the external layer of a reconfigurable system specification is that of a transition system, it is natural to
resort to suitable formulations of bisimilarity and similarity to capture equivalence and refinement, respectively.
The precise characterisation of such notions at the high level of abstraction chosen, is, in fact, the paper’s main
contribution.
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Intuitively a bisimulation relates worlds which exhibit the “same” (observable) information and preserve this
property along transitions. Thus, to define a general notion of bisimulation over Kripke structures whose states are
models of whatever base logic was chosen for expressing specifications, we have to make precise what the “same”
information actually means. For example, if the system’s configurations are specified by equations, establish that
two such configurations are bisimilar will certainly require that each specification generates the same variety.
Actually, in this case they are essentially the same data type. In the more general setting of this paper the base
logic I is a parameter and we have to deal with its hybridised version HI .

Our proposal is, thus, to resort to the broader notion of elementary equivalence (see e.g. [Hod97]), and add to the
definition of bisimulation the requirement that local configurations, i.e. local I -models related by a bisimulation
have to be elementarily equivalent. Two models M ,M ′ ∈ Mod(�) are elementarily equivalent if they satisfy the
same sentences, as formalised in Definition 3.1 below.

In certain cases, as detailed below, it is convenient to restrict this equivalence by considering only a specific
subset of sentences. For instance, we may want to identify FOL-models with elementarily equivalent algebraic
reducts. As an illustration consider two models Nodd and Neven over the natural numbers, both with the operation
+, one with a predicate even and the other with a predicate odd . Clearly they are not elementarily equivalent
if we consider the entire set of sentences. However, Nodd ≡S Neven , for a subfunctor S of the sentences functor
defined without making use of predicates. Another example, in hybrid Kripke semantics, is to consider models
elementarily equivalent only at the frames level, which can be achieved by restricting the sentences to the so-called
pure formulas (i.e. sentences without propositional variables). This can be done by parameterising the definition
of elementary equivalence (and, consequently, those of bisimulation and refinement) with a subfunctor S of the
sentences’ functor in order to capture the ‘right’ set of sentences, as proposed in [MMB13]. Doing this, however,
is equivalent to restrict the base institution I to an institution defined as I but replacing SenI by S. In the sequel
we stick to this alternative to simplify notation.

Definition 3.1 Let M ,M ′ ∈ ModI (�) be two models. M and M ′ are elementarily equivalent, in symbols M ≡ M ′,
if for any ρ ∈ SenI (�)

M |�I ρ iff M ′ |�I ρ. (3)

Under the institution theory motto—truth is invariant under change of notation—we write M ≡ϕ M ′ whenever
M ≡ ModI (ϕ)(M ′) for a given ϕ ∈ SignI (�,�′), M ∈ ModI (�) and M ′ ∈ ModI (�′). Then M and M ′ are said
to be ϕ-elementarily equivalent. If only the left to right implication of (3) holds, we write M �ϕ M ′.

Resorting to the satisfaction condition in I , the following characterisation of ϕ-elementary equivalence pops
out:

Corollary 3.1 M ≡ϕ M ′ iff, for any ρ ∈ SenI (�), M |�I
� ρ ⇔ M ′ |�I

�′ SenI (ϕ)(ρ).

Note the role ofϕ above: as a signature morphism it captures the possible change of notation from a specification
to another. For example it may cater for a renaming of propositions, as in Example 3.1, or signature components,
as in Example 3.2. However, its pertinence becomes clearer in refinement situations, as discussed in the next
section. At that level it may accommodate a number of forms of interface enrichment or adaptation (e.g. through
the introduction of auxilliar operations).

Let us now define bisimulation in this general setting.

Definition 3.2 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI (	,	′) a signature morphism.
A ϕ-bisimulation between models (M ,W ) ∈ ModHI (	) and (M ′,W ′) ∈ ModHI (	′) is a non-empty relation
Bϕ ⊆| W | × | W ′ | such that

(i) for any wBϕw ′, Mw ≡ϕSign M ′
w ′ ,

(ii) for any wBϕw ′, and for any i ∈ Nom, Wi � w iff W ′
ϕNom(i) � w ′,

(iii) for any i ∈ Nom, WiBϕW ′
ϕNom(i),

(iv) For any λ ∈ �n , if (w ,w1, . . . ,wn ) ∈ Wλ and wBϕw ′, then for each k ∈ {1, . . . ,n} there is a w ′
k ∈ |W ′| such

that wkBϕw ′
k and (w ′,w ′

1, . . . ,w
′
n ) ∈ W ′

ϕMS(λ) (zig-condition),

(v) For any λ ∈ �n if (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ) and wBϕw ′, then for each k ∈ {1, . . . ,n} there is a wk ∈ |W |,
such that wkBϕw ′

k and (w ,w1, . . . ,wn ) ∈ Wλ (zag-condition).
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Note that clause (i) enforces local models of bisimilar states to be elementary equivalent. Clauses (ii) and
(iii) deal with nominals: named bisimilar states are identified by the same nominal (ii) and all of them are in the
bisimulation (iii). Finally, clauses (iv) and (v) correspond to the usual zig-zag conditions. As usual, a bisimilarity
relation can be defined as the greatest bisimulation whose existence is guaranteed by Lemma 3.1 below. Therefore,
we say that (M ,W ) and (M ′,W ′) are ϕ-bisimilar, and write (M ,W ) �ϕ (M ′,W ′), if there is a ϕ-bisimulation
Bϕ between them. Whenever ϕ is the identity we simply talk of a bisimulation B and the bisimilarity relation �.

Lemma 3.1 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI (	,	′) a signature morphism. The set
of ϕ-bisimulations between models (M ,W ) ∈ ModHI (	) and (M ′,W ′) ∈ ModHI (	′) is closed under union.

Proof. Let B0
ϕ ,B

1
ϕ ⊆| W | × | W ′ | be two ϕ-bisimulations between models (M ,W ) ∈ ModHI (	) and

(M ′,W ′) ∈ ModHI (	′). Their union Bϕ � B0
ϕ ∪ B1

ϕ is also a ϕ-bisimulation because

1. Clearly, all points named by nominals are related by Bϕ as they are either by B0
ϕ or B1

ϕ . Moreover, for any pair
(w ,w ′) such that wBϕw ′ either wB0

ϕw
′ or wB1

ϕw
′. As both B0

ϕ and B1
ϕ are ϕ-bisimulations, clauses (i), (ii) and

(iii) in Definition 3.2 hold for Bϕ .
2. A similar argument applies to both (zig) and (zag) conditions. For clause (iv) let (w ,w1, . . . ,wn ) ∈ Wλ and

wBϕw ′. Then, either wB0
ϕw

′ or wB1
ϕw

′. Then, for each k ∈ {1, . . . ,n} there is a w ′
k ∈| W ′ | such that wkB0

ϕw
′
k

or wkB1
ϕw

′
k , i.e., wkBϕw ′

k , and (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ). The (zag) condition is proved similarly. �

Consider, now, the relational composition of bisimulations.

Lemma 3.2 Let HI be the hybridisation of the institution I , ϕ ∈ SignHI (	,	′′) and ψ ∈ SignHI (	′′,	′) two
signature morphisms. Consider a ϕ-bisimulation Bϕ between models (M ,W ) ∈ ModHI (	) and (M ′′,W ′′) ∈
ModHI (	′′) and a ψ-bisimulation Bψ between models (M ′′,W ′′) ∈ ModHI (	′′) and (M ′,W ′) ∈ ModHI (	′).
Then Bψ.Bϕ is a (ψ.ϕ)-bisimulation between models (M ,W ) and (M ′,W ′).

Proof. Let wBψ.Bϕw ′. Therefore, there is a w ′′ ∈| W ′′ | such that wBϕw ′′ and w ′′Bψw ′. Then, for any i ∈ Nom,
Wi � w iff W ′′

ϕNom(i) � w ′′ iff W ′
ψNom(i) � w ′, which proves clause (ii) in Definition 3.2. Clauses (i) and (iii) follow

from similar arguments, considering, for the former, that elementary equivalence is an equivalence relation. To
establish (iv) suppose that (w ,w1, . . . ,wn ) ∈ Wλ. As Bϕ is a ϕ-bisimulation, for each k ∈ {1, . . . ,n} there is w ′′

k
such that wkBϕw ′′

k and (w ′′,w ′′
1 , . . . ,w

′′
n ) ∈ W ′′

λ . As Bψ is a ψ-bisimulation, there is also a w ′
k such that w ′′

kBψw ′
k

and (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

λ, which establishes the (zig)-condition for relation Bψ.Bϕ . The (zag)-condition, (v), is
shown similarly. �

Clearly,

Corollary 3.2 � is an equivalence relation.

Proof. If no change of signature is involved, this follows from Lemma 3.2 for ϕ,ψ the identity, together with the
observation that the identity relation and the converse of a id -bisimulation are themselves id -bisimulations (for
the latter resort to the (zig) and (zag) conditions interchangeably). �

Theorem 3.1 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI (	,	′) a signature morphism. Let
(M ′,W ′) ∈ ModHI (	′). Then,

ModHI (ϕ)(M ′,W ′) �ϕ (M ′,W ′)

witnessed by the identity relation.

Proof. All the conditions in Definition 3.2 follow from the definition of reduct of HI . �

Example 3.1 (Bisimulation in HPL) Let us instantiate Definition 3.2 for the HPL case (cf. Example 2.2). More
precisely, a sub-institution of HPL with �2 � {λ} and �n � ∅ for n �� 2. A bisimulation B is such that
(M ,W )B(M ′,W ′), for any two models (M ,W ), (M ′,W ′) ∈| ModHPL(P ,Nom, {λ}) |, if
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λ

ϕ(λ)

ϕ(λ)
B

B

Fig. 5. HTRIV-Bisimulation

λ0 ϕ(λ0)

B

B

Fig. 6. HTRIV-Bisimulation

(i) Mw ≡ M ′
w ′ , i.e., bisimilar states satisfy the same sentences,

(ii) for any i ∈ Nom, wBw ′, w � Wi iff w ′ � W ′
i ,

(iii) for any i ∈ Nom, WiBW ′
i ,

(iv) for any (w ,w1) ∈ Wλ with wBw ′, there is a w ′
1 ∈ |W ′| such that w1Bw ′

1 and (w ′,w ′
1) ∈ W ′

λ,

(v) for any (w ′,w ′
1) ∈ W ′

λ with wBw ′, there is a w1 ∈ |W | such that w1Bw ′
1 and (w ,w1) ∈ Wλ.

Note that condition (i) is equivalent to say that bisimilar states are assigned the same set of propositions (for any
p ∈ P , Mw (p) � 	 iff M ′

w ′(p) � 	). As expected, this definition corresponds exactly to standard bisimulation
for propositional hybrid logic (see, e.g. [tC05, Defn. 4.1.1]).

The definition of bisimulation computed in the previous example can also capture the case of propositional
modal logic: just consider pure modal signatures (i.e. with an empty set of nominals), as condition (i) is trivially
satisfied. Moreover, instantiating Theorem 4.1 below, we get the classical result about preservation of modal truth
by bisimulation.

Example 3.2 (Bisimulation for HEQ) Consider now the instantiation of 3.2 for HEQ (cf. Ex 2.8). All one has to
do is to replace condition (ii) in Defn 3.2 by its instantiation for algebras: two algebras are elementarily equivalent
if the respective generated varieties coincide [Grä79].

Example 3.3 (Bisimulation in HTRIV and H2TRIV) Let us play the same game for HTRIV. Since there are
no sentences in SenTRIV(∗), property (i) trivially holds. Hence bisimulations for HTRIV consist of standard
bisimulations in labeled transition systems with the additional assumptions on named states [clauses (ii) and (iii)
in Definition 3.2]. Two examples are depicted in Figs. 5 and 6.

Finally, consider bisimulations in H2TRIV. At the local level, according to the forthcoming Theorem 4.2
it is enough to have a total and surjective bisimulation to guarantee elementary equivalence in condition (i).
Therefore, bisimulation in H2TRIV follows from hierachical bisimulation between structured transition systems.
An example is depicted in Fig. 7 where B0 and B1 are the bisimulations at the local and global levels, respectively.
Another example is illustrated in Fig. 8.

4. A Hennessy–Milner theorem

This section discusses the relationship between bisimulation and logical equivalence in the context of hybridised
logics. The following result establishes that (local)-hybrid satisfaction is invariant under ϕ-bisimulations:

Theorem 4.1 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI (	,	′) a signature morphism. Let
Bϕ ⊆| W | × | W ′ | be a ϕ-bisimulation. Then, for any wBϕw ′ and for any ρ ∈ SenHI (	),

(M ,W ) |�w ρ iff (M ′,W ′) |�w ′
SenHI (ϕ)(ρ). (4)
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λ0

λ1

ϕ1(λ1)
ϕ1(λ1)

B0

B1

B1

B0

B0

B0

ϕ0(λ0)

ϕ0(λ0)

ϕ0(λ0)

ϕ0(λ0)

Fig. 7. H2TRIV-Bisimulation

λ1

ϕ1(λ1)

ϕ1(λ1)

B1

B1

ϕ1(λ1)

λ0

ϕ0(λ0)

ϕ0(λ0)

ϕ0(λ0)

Fig. 8. H2TRIV-Bisimulation

Proof. The proof is by induction on the structure of the sentences.

1. ρ � i for some i ∈ Nom:

(M ,W ) |�w i
⇔ { definition of |�w }

Wi � w
⇔ { clause (ii) of Definition 3.2 }

W ′
ϕ(i) � w ′

⇔ { definition of |�w ′ }
(M ′,W ′) |�w ′

ϕNom(i )
⇔ { definition of SenHI (ϕ)}

(M ′,W ′) |�w ′
SenHI (ϕ)(i )

2. ρ ∈ SenI (�):

(M ,W ) |�w ρ

⇔ { definition of |�w }
Mw |�I ρ

⇔ { by hypothesis Mw ≡ϕSign M ′
w ′ and Corollary 3.1}

M ′
w ′ |� SenI (ϕSign)(ρ)

⇔ { definition of |�w ′ }
(M ′,W ′) |�w ′

SenI (ϕSign)(ρ)

⇔ { definition of SenHI (ϕ)}
(M ′,W ′) |�w ′

SenHI (ϕ)(ρ)

3. ρ � ξ ∨ ξ ′ for some ξ, ξ ′ ∈ SenHI (	):

(M ,W ) |�w ξ ∨ ξ ′

⇔ { definition of |�w }
(M ,W ) |�w ξ or (M ,W ) |�w ξ ′
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⇔ { induction hypothesis }
(M ′,W ′) |�w ′

SenHI (ϕ)(ξ ) or

(M ′,W ′) |�w ′
SenHI (ϕ)(ξ ′)

⇔ { definitionof |�w }
(M ′,W ′) |�w ′

SenHI (ϕ)(ξ ∨ ξ ′)

The proofs for cases ρ � ξ ∧ ξ ′, ρ � ξ ⇒ ξ ′, ρ � ¬ξ , etc. are analogous.

4. ρ � [λ](ξ1, . . . , ξn ) for some ξ1, . . . , ξn ∈ SenHI (	), λ ∈ �n+1:

(M ,W ) |�w [λ](ξ1 , . . . , ξn )
⇔ { definition of |�w }

for any (w ,w1, . . . ,wn ) ∈ Wλ there is some k ∈ {1, . . . ,n}
such that (M ,W ) |�wk ξk

⇔ {* }
for any (w ′,w ′

1, . . . ,w
′
n ) ∈ W ′

ϕMS(λ) there is some

p ∈ {1, . . . ,n} such that (M ′,W ′) |�w ′
p SenHI (ϕ)(ξp)

⇔ { definition of |�w ′ }
(M ′,W ′) |�w ′

[ϕMS(λ)](SenHI (ϕ)(ξ1), . . . , SenHI (ϕ)(ξn ))
⇔ { definition of SenHI (ϕ)}

(M ′,W ′) |�w ′
SenHI (ϕ)([λ](ξ1, . . . , ξn ))

For the step marked with * we proceed as follows. Assuming (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ) with wBϕw ′, we have
by clause (v) of Definition 3.2 that there are wk , with k ∈ {1, . . . ,n}, such that (w ,w1, . . . ,wn ) ∈ Wλ. By
hypothesis, (M ,W ) |�wp ξp for some p ∈ {1, . . . ,n}. Moreover, by the induction hypothesis, (M ′,W ′) |�w ′

p

SenHI (ϕ)(ξp). Clause (iv) of Definition 3.2 entails the converse implication. The proof for sentences with
shape ρ � 〈λ〉(ξ1, . . . , ξn ) is analogous.

5. ρ � @iξ for some ξ ∈ SenHI (	) and i ∈ Nom:

(M ,W ) |�w @iξ

⇔ { definition of |�w }
(M ,W ) |�Wi ξ

⇔ { induction hypothesis and clause (iii) of Definition 3.2}
(M ′,W ′) |�W ′

ϕNom(i) SenHI (ϕ)(ξ )
⇔ { definition of |�w }

(M ′,W ′) |�w @ϕNom(i)SenHI (ϕ)(ξ )

⇔ { definition of SenHI (ϕ)}
(M ′,W ′) |�w SenHI (ϕ)(@iξ ) �

As in the standard modal case the converse of Theorem 4.1 does not hold in general, i.e., logical equivalence
is not a bisimulation. Such is the case, however, for image-finite Kripke models, as well known from the plain
case of modal logic [BVB07]. A model (M ,W ) is image-finite if for each state w ∈ W and each relation Wλ,
λ ∈ �, the set {(w1, . . . ,w ′) : (w ,w1, . . . ,w ′) ∈ Wλ} is finite. No condition is imposed on the number of relations
present or the cardinality of W .
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We are, thus, prepared to state and prove the following Hennessy–Milner like theorem:

Theorem 4.2 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI (	,	′) a signature morphism. Let
(M ,W ) and (M ′,W ′) be two image-finite	 and	′-models, respectively. Then, for every w ∈ W and w ′ ∈ W ′, the
following conditions are equivalent:

(i) (M ,W ) |�w ρ iff (M ′,W ′) |�w ′
SenHI (ϕ)(ρ), for any formula ρ,

(ii) There is a ϕ-bisimulation Bϕ ⊆| W | × | W ′ | such that wBϕw ′.

Proof. We have just to prove that (i) implies (ii). Let us prove that

Z :� {
(w ,w ′) ∈ W × W ′ : for any ρ, (M ,W ) |�w ρ iff (M ′,W ′) |�w ′

SenHI (ϕ)(ρ)
}

is a bisimulation.
The atomic conditions trivially hold. For the (zig) condition, let λ ∈ � be, without loss of generality, a

binary modality symbol. Assume that wZw ′ and let u ∈ W such that wWλu. To obtain a contradiction, suppose
that there is no u ′ ∈ W ′ with w ′W ′

λu
′ and uZu ′. As in the standard case the image-finite condition makes

S ′ � {u ′ : w ′W ′
λu

′} finite. Moreover, S ′ cannot be empty since in such a case (M ,W ) |�w [λ]¬(@i i ) [equivalently,
(M ,W ) |�w ¬〈λ〉(@i i )], which is incompatible with the fact that (M ,W ) |�w 〈λ〉(@i i ), which holds because
wWλu.

By assumption, for every v ∈ S ′ there is a formulaψv such that (M ,W ) |�u ψv and it is false that (M ′,W ′) |�v

SenHI (ϕ)(ψv ). Consider now the conjunction

ψ �
∧

v∈S ′
ψv

of all of these formulas. Then, on the one hand, (M ,W ) |�w 〈λ〉ψ . On the other, however, for all v ∈ S ′, it is
false that (M ′,W ′) |�w ′

SenHI (ϕ)(〈λ〉ψ). This contradicts the fact that wZw ′.
The (zag) condition is shown in a similar way. �

5. Forward and backward refinement

Consider again a reconfigurable system described by a set of configurations and a transition structure entailing
changes from one to another. If equivalence of such systems corresponds to a notion of bisimilarity in which
bisimilar configurations are enforced to be elementary equivalent, a refinement relation corresponds to similarity.
This can be defined in two different ways. One of them entails preservation of transitions from the abstract to the
concrete model; the other proceeds dually.

5.1. Forward refinement

Forward refinement means that behaviours (on the system’s global dynamics) valid in the abstract model are also
allowed in the concrete one, which, however, may exhibit further behaviour. On the other hand, at each local
configuration, the original properties are preserved along local refinement. We call this forward refinement.

Definition 5.1 Let HI be the hybridisation of an institution I and ϕ ∈ SignHI (	,	′) a signature morphism. A
forward ϕ-refinement relation between models (M ,W ) ∈ ModHI (	) and (M ′,W ′) ∈ ModHI (	′) is a non-empty
relation Rϕ ⊆| W | × | W ′ | such that, for any wRϕw ′,

(i) Mw �ϕ M ′
w ′ ,

(ii) for any i ∈ Nom, if Wi � w then W ′
ϕNom(i) � w ′,

(iii) for any i ∈ Nom, Wi Rϕ W ′
ϕNom(i),

(iv) for any λ ∈ �n , if (w ,w1, . . . ,wn ) ∈ Wλ then for each k ∈ {1, . . . ,n} there is a w ′
k ∈| W ′ | such that wkRϕw ′

k
and (w ′,w ′

1, . . . ,w
′
n ) ∈ W ′

ϕMS(λ).
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We say that (M ′,W ′) is a forward ϕ-refinement of (M ,W ), in symbols (M ,W ) ⇁ϕ (M ′,W ′), if there is a forward
ϕ-refinement between them. When ϕ is the identity we denote it simply by ⇁.

The relevant question is whether (forward) refinement preserves (hybrid) satisfaction. Actually, this is not
the case. Note that in the proof of Theorem 4.1 preservation of hybrid satisfaction of sentences of the form
[λ](ξ1, . . . , ξn ) is entailed by conditions (iv) and (v) of Definition 3.2, but the latter is not considered in a (forward)
refinement situation. Boxed formulas are, as a matter of fact, not preserved. As a simple counter-example, define
a Rϕ-refinement from a 	-hybrid model (M ,W ) with | W |� {w} and Wλ � ∅, for λ ∈ �n , to any other 	′-
hybrid model (M ′,W ′) such that ModHI (ϕSign)(M ′)w ′ � Mw for some w ′ ∈| W ′ |. Any sentence [λ](ξ1, . . . , ξn ),
which trivially holds in the world w of (M ,W ), may fail to be satisfied in the Rϕ-related world w ′ of (M ′,W ′).
Negative sentences ¬ξ , are also in general not preserved through refinement because, only the (zig) condition
being enforced, non satisfaction in one direction does not imply non satisfaction in the other.

Definition 5.2 (Positive existential sentences) The positive existential sentences of a signature 	 ∈| SignHI | are
given by the subfunctor SenHI

� ⊆ SenHI defined inductively for each signature	 as SenHI (	), but excluding both
negation and boxed formulas. For each signature morphism ϕ : 	 → 	′, SenHI

� (ϕ) is the restriction of SenHI (ϕ)
to SenHI

� (	).

Theorem 5.1 Let HI be the hybridisation of an institution I , ϕ ∈ SignHI (	,	′) a signature morphism, Rϕ a ϕ-
refinement relation and (M ,W ) ∈ ModHI (	) and (M ′,W ′) ∈ ModHI (	′) two models such that (M ′,W ′) is a
forward refinement of (M ,W ) witnessed by relation Rϕ . Then, for any wRϕw ′ and ρ ∈ SenHI

� (	),

(M ,W ) |�w ρ implies that (M ′,W ′) |�w ′
SenHI (ϕ)(ρ).

Proof. The proof is by induction on the structure of the existential positive sentences and comes directly from
the proof of Theorem 4.1, taking the left to right implication. What remains to be proved is the case ρ �
〈λ〉(ξ1, . . . , ξn ). Thus,

(M ,W ) |�w 〈λ〉(ξ1 , . . . , ξn )
⇔ { definition of |�w }

there exists (w ,w1, . . . ,wn ) ∈ Wλ

such that (M ,W ) |�wk ξk for any k ∈ {1, . . . ,n}
⇒ {By (iii) and (iv) (the (zig) condition) and the induction hypothesis. }

there exists (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ)

such that (M ′,W ′) |�w ′
k ξk for any k ∈ {1, . . . ,n}

⇔ { definition of |�w ′ }
(M ′,W ′) |�w ′ 〈ϕMS(λ)〉(SenHI (ϕ)(ξ1), . . . ,SenHI (ϕ)(ξn ))

⇔ {definition of SenHI (ϕ)}
(M ′,W ′) |�w ′

SenHI (ϕ)(〈λ〉(ξ1, . . . , ξn )) �

The following examples illustrate refinement situations in this setting.

Example 5.1 (Refinement in HPL) Forward refinement notion in HPL consists of the standard notion of simu-
lation in Kripke structures. Theorem 5.1 generalises the well known preservation result of positive sentences by
simulation (see [BdRV01] for the modal standard case). In this case SenHPL

� (	) consists exactly in the restriction
of SenHPL(	) to all the sentences without occurrences of negations and boxes.

Example 5.2 (Refinement in HMVLL) Figure 9 presents an example of a refinement in multi-valued logic based
on the lattice L4 (on the left of Fig. 9). Let MVL∗

L4
be the institution obtained from MVLL4 by restricting the

functor of the sentences to the subfunctor S defined by S(LProp) � {(p, l ), p ∈ LProp and l ∈ L4}. Consider
now the hybridisation HMVL∗

L4
of MVL∗

L4
.
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p = ⊥; q = b

p = ⊥; q = b

p = ⊥; q = �

p = ⊥; q = �

closeclose
p = ⊥; q = �

�

⊥

a bL4
p = ⊥; q = a

p = ⊥; q = a

p = ⊥; q = �

Fig. 9. Forward refinement in HMVLL

Conditions (ii) and (iii) are obviously satisfied. In what concerns the verification of condition (i) for which

(p, l ) ∈ S(LProp), Mw |�MVL∗
L4

LProp (p, l ) ⇒ M ′
w ′ |�MVL∗

L4
LProp (p, l ), it is sufficient to see that, (Mw |� p) ≤ (M ′

w ′ |� p),
p ∈ LProp.

Example 5.3 (Refinement in HEQ) Consider a store system abstractly modelled as the initial algebra A with
signature ((S ,F ), �) where S � {mem, elem}, F→mem � {new}, F→elem � {0} Fmem×elem→mem � {write},
Fmem→mem � {del} and Far→s � ∅ otherwise, and where � is the following set of equations:

del (new ) � new ,
del (write(m, e)) � m.

Suppose one intends to refine this structure by adding a read function configurable in two different modes:
in one of them it reads the first element in the store, in the other the last. Reconfiguration between the two
execution modes is enforced by an external control event shift . Note that this abstract model can be seen as the(
(S ,F ),∅, {shift})-hybrid model M � (M ,W ), taking | W |� {�}, Wshift � id and M� � A (see Fig. 10). Then,

we take the inclusion morphism ϕSign : (S ,F ) ↪→ (S ,F ′) where F ′ extends F with F ′
mem→elem � {read}. For the

envisaged refinement let us consider model M′ � (M ′,W ′) where W ′ � {s1, s2} and W ′
shift � {(s1, s2), (s2, s1)}

and where M ′
s1

and M ′
s2

are respectively, two algebras satisfying the equations

read (new ) � 0,
del (new ) � new ,
del (write(m, e)) � m,
read (write(m, e)) � e,

and

read (new ) � 0,
del (new ) � new ,
del (write(m, e)) � m,
read (write(write(m, e), e ′)) � read (write(m, e)),
read (write(new , e)) � e

respectively.
It is not difficult to see that R � {(�, s1), (�, s2)} is a ϕ-refinement relation: conditions (ii) and (iii) are trivially

fulfilled; the initiality of (the algebra) M∗ entails the condition (i): as is well known (e.g. [EM85]) properties valid
in the initial model of a set of equation are the ones valid in all the models of the respective variety. This includes
the models Mod(ϕ)(Ms1 ) and Mod(ϕ)(Ms2 )).
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shiftshiftM

M′
shift

Fig. 10. Forward refinement in HEQ.

5.2. Backward refinement

Forward refinement simulates the abstract model behaviour by the concrete one, i.e. the refined model allows
all behaviours specified at the abstract level. A dual notion goes in the opposite direction, enforcing all concrete
behaviours to be allowed in the abstract model. Actually this notion is more common in the literature: it constrains
the concrete, refined model to exhibit only behaviours allowed in its specification. Formally this leads to a notion
of backward refinement by replacing condition (iv) in Definition 5.1 by the (zag) condition:

(iv) For any λ ∈ �n , if (w ′,w ′
1) ∈ W ′

ϕMS(λ) then for each k ∈ {1, . . . ,n} there is a wk ∈| W | such that wkRϕw ′
k

and (w ,w1, . . . ,wn ) ∈ Wλ.

leading to

Definition 5.3 Let HI be the hybridisation of an institution I and ϕ ∈ SignHI (	,	′) a signature morphism. A
backward ϕ-refinement relation between models (M ,W ) ∈ ModHI (	) and (M ′W ′) ∈ ModHI (	′) is a non-empty
relation Rϕ ⊆| W | × | W ′ | such that, for any wRϕw ′,

(i) Mw �ϕ M ′
w ′ ,

(ii) for any i ∈ Nom, if Wi � w then W ′
ϕNom(i) � w ′,

(iii) for any i ∈ Nom, Wi Rϕ W ′
ϕNom(i),

(iv) For any λ ∈ �n , if (w ′,w ′
1) ∈ W ′

ϕMS(λ) then for each k ∈ {1, . . . ,n} there is a wk ∈| W | such that wkRϕw ′
k

and (w ,w1, . . . ,wn ) ∈ Wλ.

We say that (M ′,W ′) is a backward ϕ-refinement of (M ,W ), in symbols (M ,W ) ↽ϕ (M ′,W ′), if there is a
backward ϕ-refinement between them. Again ↽ϕ is abbreviated to ↽ whenever ϕ is the identity.

Note that existential (‘diamond’) sentences are no longer preserved through backward refinement: effective
transitions at the abstract level can be backward-refined into a non-transition at the concrete level. Univer-
sal (‘boxed’) sentences, however, are preserved, leading to a re-phrasing of Theorem 5.1 for positive, universal
sentences, collected in SenHI

� (	). Formally,

Definition 5.4 (Positive universal sentences) The positive universal sentences of a signature 	 ∈| SignHI | are
given by the subfunctor SenHI

� ⊆ SenHI defined inductively for each signature 	 as SenHI (	), but excluding
both negation and �-formulas. For each signature morphism ϕ : 	 → 	′, SenHI

� (ϕ) is the restriction of SenHI (ϕ)
to SenHI

� (	).

Theorem 5.2 Let HI be the hybridisation of an institution I , ϕ ∈ SignHI (	,	′) a signature morphism, Rϕ a
backward ϕ-refinement relation and (M ,W ) ∈ ModHI (	) and (M ′,W ′) ∈ ModHI (	′) two models such that
(M ′,W ′) is a backward ϕ-refinement of (M ,W ) witnessed by relation Rϕ . Then, for any wRϕw ′ and ρ ∈ SenHI

� (	),

(M ,W ) |�w ρ implies that (M ′,W ′) |�w ′
SenHI (ϕ)(ρ).
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Proof. The crucial step in the proof is the preservation of ‘boxed’ formulas ρ � [λ](ξ1, . . . , ξn ), as follows:

(M ,W ) |�w [λ](ξ1 , . . . , ξn )
⇔ { definition of |�w }

for all (w ,w1, . . . ,wn ) ∈ Wλ, (M ,W ) |�wk ξk , for any k ∈ {1, . . . ,n}
⇒ { (�)}

for all (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ), (M ′,W ′) |�w ′
k ξk , for any k ∈ {1, . . . ,n}

⇔ { definition of |�w ′ }
(M ′,W ′) |�w ′

[ϕMS(λ)](SenHI (ϕ)(ξ1), . . . ,SenHI (ϕ)(ξn ))
⇔ { definition of SenHI (ϕ)}

(M ′,W ′) |�w ′
SenHI (ϕ)([λ](ξ1, . . . , ξn ))

The proof step marked with (�) above is justified as follows: the (zag) condition guarantees that if there is a set of
transitions from w in the abstract model, a subset (possibly empty) of corresponding transitions is also present
in the concrete model from state w ′. Actually, this is an equivalence step, with the implication from right to left
being just a direct consequence of the (zag) condition. �

Of course the restriction to positive sentences is also enforced here. If such was not the case the whole argument
would collapse as existential sentences could be built from universal ones and vice-versa.

Therefore, we end up with two notions of refinement defined in terms of which transitions are globally
preserved and in which direction. If one regards ‘boxed’ properties as a sort of (elementary) safety requirements,
one could state that backward refinement preserves safety. Dually, regarding existential sentences as (elementary)
liveness requirements, forward refinement preserves liveness. It comes to no surprise that the more common notion
of refinement, that of backward refinement, preserves safety.

6. Refinement of specifications

Until now we have been seeking for suitable notions of equivalence and refinement between models of specifica-
tions in hybridised institutions. We shall now turn to the specifications themselves, in the sense the word has in
the tradition of property oriented specification methods (see [ST12] for a recent overview).

A specification is a collection of properties a system is supposed to obey, i.e. a theory in a suitable institution. Its
semantics is the class of models satisfying such a theory. Formally, a (non-structured) specification in a institution
I consists of a pair (	,E ), where 	 ∈ SignI and E ⊆ SenI (	). Its (loose) semantics is given by

– its signature Sig [SP ] � 	, for some 	 ∈| SignI | ,

– its class of models [| SP |] � {M ∈| ModI (	) |: M |�I
	 E }.

Conceptually, [| SP |] can be understood as the class of admissible implementations for the system and, the
implementation of SP , as one of these models chosen to realise the system. The construction of this particular
model proceeds by a stepwise refinement process. Formally, we say that SP ′ refines SP via ϕ, in symbols, SP ′ �ϕ

SP , if

– ϕ ∈ SignI (Sig(SP ),Sig(SP ′)) ,

– [| SP ′ |] |ϕ⊆ [| SP |], where [| SP ′ |] |ϕ� {ModI (ϕ)(M ) | M ∈ [| SP |]}.
Note that this is a straightforward generalisation of the notion of simple refinement in algebraic specification e.g.
[San99], in which case Sig [SP ] � Sig [SP ′] and ϕ is the identity. Similarly, two specifications SP and SP ′ are
equivalent up to a signature morphism ϕ : Sig [SP ] → Sig [SP ′] when [| SP ′ |] |ϕ� [| SP |].

Back to dealing with classes of models, we are also back to the notions of bisimulation and refinement used
before. Although in process algebra, where such notions were born, their formulation is essentially local (e.g.,
two processes are bisimilar if their initial states are related by a bisimulation), when reasoning with specifications
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a notion of initial state is usually absent. This entails the need for a shift of perspective for“globalising” the
preservation results. In particular, the local characterisation established in Theorem 4.1, can be re-framed as
follows:

Theorem 6.1 Let HI be the hybridisation of institution I and ϕ ∈ SignHI (	,	′) a signature morphism. Let
Bϕ ⊆| W | × | W ′ | be a total and surjective ϕ-bisimulation. Then,

(M ,W ) |�HI ρ iff (M ′,W ′) |�HI SenHI (ϕ)(ρ) (5)

Proof. Let us suppose (M ,W ) |�HI ρ, i.e. that for any w ∈| W |, (M ,W ) |�w ρ. Since Bϕ is surjective, for any
w ′ ∈| W ′ | there is aw ∈| W | such thatwBϕw ′. Since (M ′W ) |�w ρ, by Theorem 4.1, (M ′,W ′) |�w ′

SenHI (ϕ)(ρ).
Hence (M ′,W ′) |�HI SenHI (ϕ)(ρ). The converse implication is proved similarly using resorting to the totality
of Bϕ . �

A similar global characterisation of preservation results for both forward and backward refinements arises as
a corollary of Theorem 5.1 and its backward counterpart explained in Sect. 5.2.

Corollary 6.1 Let HI be the hybridisation of an institution I , ϕ ∈ SignHI (	,	′) a signature morphism, (M ,W ) ∈
ModHI (	) and (M ′,W ′) ∈ ModHI (	′) two HI-models and Rϕ :| W | × | W ′ | a relation.

1. if Rϕ is a surjective forward ϕ-refinement relation, we have that for any ρ ∈ SenHI
� (	),

(M ,W ) |�HI ρ implies that (M ′,W ′) |� SenHI (ϕ)(ρ).

2. if Rϕ is a total backward ϕ-refinement relation, we have that for any ρ ∈ SenHI
� (	),

(M ,W ) |�HI ρ implies that (M ′,W ′) |� SenHI (ϕ)(ρ).

The following results relate specification refinement (�) with bisimulation and with refinement of specification
models as previously introduced.

Theorem 6.2 Let SP � (	,E ) and SP ′ � (	,E ′) be two specifications. Then, the following statements are
equivalent:

1. SP �ϕ SP ′ ,
2. for any (M ′,W ′) ∈ [| SP ′ |], there is a (M ,W ) ∈ [| SP |] such that (M ,W ) �ϕ (M ′,W ′) witnessed by a total

and surjective bisimulation.

Proof. 1 ⇒ 2 By assumption, that for any (M ′,W ′) ∈ [| SP ′ |], ModHI (ϕ)(M ′,W ′) ∈ [| SP |]. By Theorem 3.1,
there is a model (M ,W ) ∈ [| SP |](� ModHI (ϕ)(M ′,W ′)) such that (M ,W ) �ϕ (M ′,W ′) witnessed by the
identity relation, a total and surjective bisimulation.

2 ⇒ 1 Let us consider a model (M ′,W ′) ∈ [| SP ′ |]. By hypothesis there is a (M ,W ) ∈ [| SP |] such that
(M ,W ) �ϕ (M ′,W ′). Hence by Corollary 6.1, for any ρ ∈ SenHI (	), (M ,W ) |� ρ iff (M ′,W ′) |� SenHI

(ϕ)(ρ). In particular, (M ′,W ′) |� SenHI (ϕ)(E ). By Satisfaction Condition we have ModHI (ϕ)(W ′,M ′) |� E ,
i.e., ModHI (ϕ)(M ′,W ′) ∈ [| SP |]. Therefore SP �ϕ SP ′. �

Theorem 6.3 Let SP � (	,E ) and SP ′ � (	,E ′) be two specifications with E ⊆ SenHI
� (	). Then, the following

statements are equivalent:

1. SP �ϕ SP ′ ,
2. for any (M ′,W ′) ∈ [| SP ′ |], there is a (M ,W ) ∈ [| SP |] such that (M ,W ) ⇁ϕ (M ′,W ′) witnessed by a

surjective refinement relation.

Proof. 1. ⇒ 2. This implication is proved analogously to the implication 1 ⇒ 2 in Theorem 6.2 using the fact
that (M ,W ) �ϕ (M ′,W ′) implies (M ,W ) ⇁ϕ (M ′,W ′) and also (M ,W ) ↽ϕ (M ′,W ′).

2. ⇒ 1. Let us consider a model (M ′,W ′) ∈ [| SP ′ |]. By hypothesis there is a (M ,W ) ∈ [| SP |] such that
(M ,W ) ⇁ϕ (M ′,W ′). Hence by item 1. of Corollary 6.1, for any ρ ∈ SenHI

� (	), (M ,W ) |� ρ implies
that (M ′,W ′) |� SenHI (ϕ)(ρ). In particular, (M ′,W ′) |� SenHI (ϕ)(E ). The Satisfaction Condition entails
ModHI (ϕ)(W ′,M ′) |� E , i.e., ModHI (ϕ)(M ′,W ′) ∈ [| SP |]. Therefore SP �ϕ SP ′. �
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Theorem 6.4 Let SP � (	,E ) and SP ′ � (	,E ′) be two specifications with E ⊆ SenHI
� (	). Then, the following

statements are equivalent:

1. SP �ϕ SP ′ ,
2. for any (M ′,W ′) ∈ [| SP ′ |], there is a (M ,W ) ∈ [| SP |] such that (M ,W ) ↽ϕ (M ′,W ′) witnessed by a

total refinement relation.

Proof. The proof is analogous to the one of Theorem 6.3 but using, in the implication 2 ⇒ 1, item 2. of Corollary
6.1. �

7. Conclusions

This paper introduced notions of equivalence and refinement for models of hybrid specifications, i.e., specifications
formalised in hybridised versions of logics used to describe systems’ possible configurations. The definition is
parametric on precisely the base logic relevant for each application.

From an engineering point of view, the characterisation of suitable, generic notions of equivalence and refine-
ment is fundamental to a software design methodology to deal with systems’ reconfigurability in a rigorous way.
Such a methodology was introduced in [MFMB11], and provided with effective, computer-based proof support
through the recent implementation [NMMB13] of the hybridisation method in the Hets platform [MML07].

Current work on this topic includes the study of typical constructions on Kripke structures (e.g. bounded
morphism images, substructures and disjoint unions) and their characterisation under bisimilarity and refinement.
Whether the complexity of each hybridised logic can be computed from the complexity of the corresponding base
logic remains a somehow lateral, but challenging research topic.

Acknowledgements

This work is funded by ERDF—European Regional Development Fund, through the COMPETE Programme,
and by National Funds through FCT within project FCOMP-01-0124-FEDER-028923 and by project NORTE-
07-0124-FEDER-000060, co-financed by the North Portugal Regional Operational Programme (ON.2), under the
National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).
The work had also partial financial assistance by the project PEst-OE/MAT/UI4106/2014 at CIDMA,FCOMP-
01-0124-FEDER-037281 at INESC TEC and the Marie Curie project FP7-PEOPLE-2012-IRSES (GetFun).

References

[ACEGG90] Agusti-Cullell J, Esteva F, Garcia P, Godo L (1990) Formalizing multiple-valued logics as institutions. In: Bouchon-Meunier
B, Yager RR, Zadeh LA (eds) 3rd International conference on information processing and management of uncertainty in
knowledge-based systems (IPMU 90, Paris, France, July 2–6, 1990). Lecture notes in computer science, vol 521. Springer, pp
269–278

[AtC06] Areces C, ten Cate B (2006) Hybrid logics. In: Blackburn P, Wolter F, van Benthem J (eds) Handbook of modal logics. Elsevier,
Amsterdam, pp 821–868

[BD94] Burstall R, Diaconescu R (1994) Hiding and behaviour: an institutional approach. In: Roscoe W (ed) A classical mind: essays
in honour of C.A.R. Hoare. Prentice-Hall, Hertfordshire, pp 75–92

[BdRV01] Blackburn P, de Rijke M, Venema Y (2001) Modal logic. Number 53 in Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press, Cambridge

[BH06] Bidoit M, Hennicker R (2006) Constructor-based observational logic. J Logic Algebr Progr 67(1–2):3–51
[BKI05] Beierle C, Kern-Isberner G (2005) Looking at probabilistic conditionals from an institutional point of view. In: Kern-Isberner

G, Rödder W, Kulmann F (eds) Conditionals, information, and inference (revised selected papers of WCII 2002, Hagen,
Germany, May 13–15, 2002). Lecture notes in computer science, vol 3301. Springer, pp 162–179

[Bra10] Brauner T (2010) Hybrid logic and its proof-theory. Applied logic series, Springer, Netherlands
[BS03] Börger E, Stärk R (2003) Abstract state machines: a method for high-level system design and analysis. Springe, Berlin
[BVB07] Blackburn P, Van Benthem J (2007) Modal logic: a semantic perspective. In: Blackburn P, Wolter F, van Benthem J (eds)

Handbook of modal logic, studies in logic and practical reasoning, vol 3. Elsevier, Amsterdam, pp 1–82



Refinement in hybridised institutions 395

[C0̂6] Cı̂rstea C (2006) An institution of modal logics for coalgebras. J Logic Algebr Progr 67(1–2):87–113
[CMSS06] Caleiro C, Mateus P, Sernadas A, Sernadas C (2006) Quantum institutions. In: Futatsugi K, Jouannaud J-P, Meseguer J (eds)

Algebra, meaning, and computation, essays dedicated to Joseph A. Goguen on the occasion of his 65th birthday. Lecture
notes in computer science, vol 4060. Springer, pp 50–64

[Dia08] Diaconescu R (2008) Institution-independent model theory. studies in universal logic. Birkhäuser, Basel
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[Grä79] Grätzer G (1979) Universal algebra. Springer, New York, Heidelberg, Berlin
[Hod97] Hodges W (1997) A shorter model theory. Cambridge University Press, Cambridge
[Ind07] Indrzejczak A (2007) Modal hybrid logic. Logic Log Philos 16:147–257
[Mad13] Madeira A (2013) Foundations and techniques for software reconfigurability. Ph.D. thesis, Universidades do Minho, Aveiro

and Porto (Joint MAP-i Doctoral Programme)
[MFMB11] Madeira A, Faria JM, Martins MA, Barbosa LS (2011) Hybrid specification of reactive systems: an institutional approach.

In: Barthe G, Pardo A, Schneider G (eds) Software engineering and formal methods (SEFM 2011, Montevideo, Uruguay,
November 14–18, 2011). Lecture notes in computer science, vol 7041. Springer, pp 269–285

[Mil89] Milner R (1989) Communication and concurrency. series in computer science. Prentice-Hall, Englewood Cliffs
[MMB13] Madeira A, Martins MA, Barbosa LS (2013) Bisimilarity and refinement for hybrid(ised) logics. In: Derrick J, Boiten EA,

Reeves S (eds) Refine-Proceedings 16th international refinement workshop. Electronic proceedings in theoretical computer
science, vol 115, pp 84–98

[MMDB11] Martins MA, Madeira A, Diaconescu R, Barbosa LS (2011) Hybridization of institutions. In: Corradini A, KlIn B, Cı̂rstea
C (eds) Algebra and coalgebra in computer science (CALCO 2011, Winchester, UK, August 30–September 2, 2011). Lecture
notes in computer science, vol 6859. Springer, pp 283–297
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