
Computer Science and Information Systems 12(2):607–634 DOI: 10.2298/CSIS140912019R

Towards an engine for coordination-based architectural
reconfigurations

Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

HASLab - INESC TEC & Universidade do Minho
Braga, Portugal

pg22826@alunos.uminho.pt
nuno.s.oliveira@inesctec.pt
luis.s.barbosa@inesctec.pt

Abstract. Software reconfigurability became increasingly relevant to the architec-
tural process due to the crescent dependency of modern societies on reliable and
adaptable systems. Such systems are supposed to adapt themselves to surrounding
environmental changes with minimal service disruption, if any.
This paper introduces an engine that statically applies reconfigurations to (formal)
models of software architectures. Reconfigurations are specified using a domain
specific language— ReCooPLa—which targets the manipulation of software coor-
dination structures, typically used in service-oriented architectures (soa). The engine
is responsible for the compilation of ReCooPLa instances and their application to
the relevant coordination structures. The resulting configurations are amenable to
formal analysis of qualitative and quantitative (probabilistic) properties.

Keywords: domain-specific languages, architectural reconfiguration, coordination.

1. Introduction

This paper addresses reconfiguration of the coordination layer in service-oriented architec-
tures (SOA). As the typical architectural style underlying modern adaptable and intensive
software systems [15], SOA depends crucially on the set of protocols that interconnect
services across different platforms and providers. If services are understood as distributed,
loosely-coupled entities offering a specific computational functionality via published inter-
faces, the glue code that keeps them together, adapting and articulating their interfaces to
achieve the desirable emergent behaviour, constitutes the coordination layer. Interaction,
as a main concern in software design, may be achieved and encapsulated in a multitude of
ways [6]. The so-called coordination approach [7] favours a complete decoupling of the
individual sources of computation (services, components) from the protocols that govern
their interaction. The latter are encoded into software connectors, following approaches of
traditional frameworks like Reo [7] in which complex connectors are built compositionally.

This separation of concerns makes SOA flexible and naturally dynamic: although
policies are usually pre-established at design time, services may be discovered and bound
to the architecture only at run time [17]. Such a dynamic behaviour plays an important
role in the context of adaptable systems. For instance, whenever a service stops providing
results, because of a failure in the remote server where it runs, a similar one (usually
with equal interface and functionality) may be found and chosen as a replacement. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55640509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

608 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

whole system is, therefore, able to continue performing within specific levels of quality,
previously agreed between consumer and provider, without significant or no disruption at
all.

Usually, reconfigurations in SOA target services themselves, for example, through
the dynamic update of a service functionality, addition of new services, substitution of
services with compatible interfaces (but not necessarily the same behaviour) or removal
of unnecessary services [22,32,43,46,49]. However, in some situations, this is not enough.
For instance, when a substituting service has an incompatible interface, it may be necessary
to deal carefully with the way it interacts with other services. Another typical example is
the case when an emerging requirement establishes that a synchronous communication
shall thereafter become asynchronous. To tackle these situations, reconfigurations must
address the coordination layer and be able to modify its topology, for example, by adding or
removing specific connectors, moving communication interfaces between components and
rearranging complex interaction structures [27,28]. In the sequel this sort of architectural
reconfiguration will be qualified as coordination-based.

Oliveira and Barbosa [37,38] recently proposed a formal framework for modelling
and analysing (at design time) coordination-based reconfigurations in the context of SOA.
In this framework, a coordination structure (referred to as a coordination pattern) is
regarded as a graph whose nodes represent interaction points with either services or other
coordination patterns. Edges, on the other hand, are communication channels uniquely
identified, and exhibiting a specific behaviour. Finally, reconfigurations are obtained by
sequential combination of primitive operations that manipulate the graph-like structure of
coordination patterns.

This paper aims at providing a proof of concept for this framework. Therefore, it
introduces a domain specific language—referred to as ReCooPLa—and a reconfiguration
engine to express coordination-based reconfigurations and apply them to coordination
patterns expressed in CooPLa, a tiny domain specific language also presented in the
sequel.

Domain specific languages [14,34,40] focus on particular application domains and build
on specific domain knowledge. Their level of abstraction is tailored to the intended domain,
allowing for embedding its vocabulary and concepts into the language constructors, and
hiding low-level details under their processors. In addition, they allow for validation and
optimisation at domain level, offering considerable gains in expressiveness and ease of use,
compared with general-purpose programming languages [26]. In this spirit, ReCooPLa
provides a precise, high-level interface for the software architect to plan and experiment
with reconfiguration strategies.

Contributions. As a revised and extended version of reference [47], the paper's contri-
butions are as follows:

– full description of the CooPLa language for the design of coordination patterns,
which, although briefly mentioned in [37], was never documented, and extension of
its twin language, ReCooPLa, with new constructors to deal with the application of
reconfigurations upon running instances of coordination patterns;

– development of a reconfiguration engine based on ReCooPLa;
– discussion of a case study in the area of adaptive systems as a possible illustration

scenario.

Towards an engine for coordination-based architectural reconfigurations 609

Outline. Background notions are introduced in Section 2. This includes an informal ex-
position of both the reconfiguration framework and the CooPLa domain-specific language
for the specification of coordination structures. In Section 3 the ReCooPLa language is
introduced in detail and illustrated by small examples. Then, Section 4 introduces the Re-
CooPLa engine focusing on the reconfiguration engine model and the suitable translation
of ReCooPLa constructors into that model. Section 5 presents a case study in the area
of (self-)adaptive systems. Related work is presented in Section 6 and finally, Section 7
concludes the paper and proposes some topics for future work.

2. Coordination patterns

The model. The reconfiguration model introduced in [37,38] is strongly based in exoge-
nous coordination models, e.g. Reo [7] or BIP [8].

Thus, a coordination structure, referred to as coordination pattern in [37], is a reusable,
compositional architectural element formalised as a graph of channels. Nodes in the graph
are interaction points through which other coordination patterns or services can be plugged
together. Edges, on the other hand, are uniquely identified point-to-point communication
devices with a specific behaviour, generically mentioned as channels.

A channel has two ends. They can be classified as source ends, when they admit data
into the channel, or sink ends, when they dispense data out of the channel. Formally, a
channel c is a structure

c ∈ 2E × I × T × 2E ,

where E is a set of channel ends, I is a set of identifiers and T is a set of channel types.
Channel types can be defined by the software architect to meet particular needs — the
model and the language is independent of them. We assume, however, a small set of basic
channels, borrowed from the Reo framework: T = {sync, lossy, fifo, drain}. In brief, the
sync channel transmits data synchronously from one end to another whenever an input
and an output request are simultaneously present at both channel ends, otherwise one
request has to wait for the other. The lossy channel behaves likewise, but data may be lost
whenever an output request (at the source end) is not matched by an input one (at the sink
end). Differently, a fifo channel has buffering capacity of (usually) one memory position,
therefore allowing for asynchronous occurrence of input/output requests. Finally, the drain
channel accepts data synchronously at both ends and loses it (note that, in this case, both
ends are actually sink ends).

Nodes in a coordination pattern represent interaction points. The latter are locations
where channels synchronise their interfaces (ends) for interaction with other patterns or
external components.

Thus, we define a coordination pattern ρ as a pair

ρ = 〈C,N〉,

where C is a set of channels, and N a partition of the union of all ends of all channels in C.
Fig. 1 presents two coordination patterns. Pattern cp1 comprises three channels: s1

and s2 of type sync, and f1 of type fifo. Channel s1 has an input end a and an output end
h. In its turn, channel s2 has an input end i, and an output end b. Finally, channel f1 has

610 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

an input end j and an output end k. The nodes are formed by sets of ends1 that convey the
connection between the channels.

1 cp1 : <{
2 <{a } , s1 , sync , {h}> ,
3 <{ i } , s2 , sync , {b}> ,
4 <{ j } , f1 , f i f o , {k}>} ,
5 {a , b , k , h.i.j}
6 >
7

8 cp2 : <{
9 <{ l } , s3 , sync , {c}>} ,

10 {l, c}
11 >

(a)

a
h.i.j

b

k

s1

:: sync s2
:: s

yn
c

f
1

:: fifo

cp1

l c
s3

:: sync

cp2

(b)

Fig. 1. Textual (a) and graphical (b) description of two simple coordination patterns.

New patterns from old. Let us turn attention to the way a coordination pattern can be
modified into another. This is achieved through a number of operations described below.
Anticipating Section 3, we should emphasise that those are exactly the operations which are
used, not only to build new patterns from old, but also to reconfigure them. This explains
way they are also referred to as reconfiguration primitives. They are introduced throughout
the following paragraphs.

Let ρ be a coordination pattern. The simplest reconfiguration primitives are the identity
(id) and the constant (const(ρ)) operations. Expectedly, when applied to a coordination
pattern, the former keeps it unchanged, while the latter replaces it with ρ.

The par(ρ) primitive sets the original coordination pattern in parallel with ρ, without
creating any connection between them. It is assumed, without loss of generality, that nodes
and channel identifiers in both patterns are disjoint. Fig. 2 depicts the resulting coordination
pattern, after applying par(cp2) to cp1.

The join(N) primitive, where N is a set of nodes, creates a new node by merging
all nodes in N , into a single one. For instance, applying join(k,l) to cp1 (c.f., Fig. 2)
creates a connection on node k.l, as depicted in Fig. 3. The new pattern is usually referred
to as the Sequencer, because ports b and c are activated in sequence after detecting an
external stimulus in port a.

The split(n) primitive, where n is a node, is dual to join: it breaks connec-
tions within a coordination pattern by separating all channel ends coincident in n. Fig. 4
illustrates the application of split(h.i.j) to cp1 in Fig. 3.

Finally, the remove(c) primitive, where c is a channel identifier, removes channel c,
if it exists, from the coordination pattern. In addition, if cwas connected to other channel(s),

1 Notation h.i.j is used to express the node {h,i,j}, where h, i and j are channel ends. For
presentation sake, traditional set notation is replaced by a line under the elements of the set.

Towards an engine for coordination-based architectural reconfigurations 611

1 cp1 : <{
2 <{a } , s1 , sync , {h}> ,
3 <{ i } , s2 , sync , {b}> ,
4 <{ j } , f1 , f i f o , {k}> ,
5 <{ l } , s3 , sync , {c}>} ,
6 {a , h.i.j , b , k , l , c}
7 >

a
h.i.j

b

k

s1

:: sync s2
:: s

yn
c

f
1

:: fifo

l c
s3

:: sync

cp1

Fig. 2. The result of applying the par primitive.

1 cp1 : <{
2 <{a } , s1 , sync , {h}> ,
3 <{ i } , s2 , sync , {b}> ,
4 <{ j } , f1 , f i f o , {k}> ,
5 <{ l } , s3 , sync , {c}>} ,
6 {a , h.i.j , b , c , k.l}
7 }

a
h.i.j k.l

b c

s1

:: sync
s
2

::
s
y
n
c

f1

:: fifo

s
3

::
s
y
n
c

cp1

Fig. 3. The result of applying the join primitive.

1 cp1 : <{
2 <{a } , s1 , sync , {h}> ,
3 <{ i } , s2 , sync , {b}> ,
4 <{ j } , f1 , f i f o , {k}> ,
5 <{ l } , s3 , sync , {c}>} ,
6 {a , h , i , j ,b , c , k.l}
7 >

a h
i

j
k.l

b c

s1

:: sync

s
2

::
s
y
n
c

f1

:: fifo

s
3

::
s
y
n
c

cp1

Fig. 4. The result of applying the split primitive.

612 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

these connections are also broken as it happens with split. Fig. 5 depicts the result of
applying remove(s3) to cp1 in Fig. 4. Note how node k.l was split and its end l
removed along with channel s3.

1 cp1 : <{
2 <{a } , s1 , sync , {h}> ,
3 <{ i } , s2 , sync , {b}> ,
4 <{ j } , f1 , f i f o , {k}>} ,
5 {a , h , i , j ,b , k}
6 >

a h
i

j k

b

s1

:: sync

s
2

::
s
y
n
c

f1

:: fifo

cp1

Fig. 5. The result of applying the remove primitive.

These operations are assumed to be applied in sequence. Their parallel application
is also possible, but only when they can be shown to be mutually independent: i.e.,
affecting separated substructures of the target coordination pattern. The possibility of
composing primitive operations in sequence or parallel, allows for the definition of complex
reconfigurations, referred to as reconfiguration patterns. Those affect significant parts
of a coordination pattern at the same time, and are expected to be generic, parametric
and reusable. This notion is relevant in ReCooPLa, the reconfiguration language to be
introduced in section 3. Before that, however, the basic DSL for expressing coordination
patterns has to be presented.

2.1. CooPLa - A language for coordination patterns

The purpose of CooPLa (Coordination Patterns Language) is to materialise into a DSL
the structure of a coordination pattern, as presented above. Thus, the language offers to
software architects a tool to design the coordination layer of a system by building and
composing coordination patterns.

Channels. In CooPLa, a channel is specified as a structure with well defined input and
output ports and a behaviour. The behaviour is given as a list of cases which defines how
data flows within the channel depending on its internal state and on the stimulus received
on its ports.

Channels differ from each other mainly by their behaviour and possible internal
specificities. Indeed, CooPLa allows for the definition of channels with (i) a structure
(e.g., a buffer), to store data in asynchronous communications; this is expressed with
constructor ∼K, where K is either a value or a list of values; (ii) a clock, to impose delays
in a normal data flow; constructor @T is used for this, where T is the delay; and finally
(iii) a pattern-based condition, to match data and decide the course of future flow based on
the result of the matching; cond=<...> is the corresponding construct.

Behaviour, on the other hand, is defined by rules R->f, where R is a subset of ports
of the channel or internal state observers (possibly negated with !) and f is a flow as
explained below. It means that whenever there are read/write requests at the ports in R or
its state observers hold, flow f occurs.

Towards an engine for coordination-based architectural reconfigurations 613

A flow is defined by the constructor flow p1 to p2, where p1 and p2 refer to
ports of the channel, the internal state of the channel or NULL (a special port where data
is lost or automatically produced). Its meaning is that data flows from p1 to p2. Flows
may occur synchronised or restricted by a condition. For the former case, the constructor
f1|f2 is used to express synchronisation between flows f1 and f2. For the latter, e.g.,
when a channel has a datatype condition cond that needs to be met, the constructor
cond ? f1 : f2 is used to trigger f1 if the condition holds, or f2, otherwise. Flows
may be further annotated with a stochastic label of the form #L, where each L is a unique
identifier within the channel. These labels are used to assign to a flow a processing delay
rate upon which stochastic analysis of coordination patterns can be achieved as discussed
in [41].

Finally, a new channel may extend a basic one b through the addition of new flows,
with the constructor extends b appended to its signature.

Fig. 6 shows how four well-known Reo channels are defined in CooPLa.

1 c h a n n e l sync (a : b) {
2 a , b −> f low a t o b # ab ;
3 }

1 c h a n n e l l o s s y (a : b) e x t e n d s sync {
2 a , ! b −> f low a t o NULL #aL ;
3 }

1 c h a n n e l f i f o∼N(a : b){
2 s t a t e : b u f f e r ; o b s e r v e r s : E , F ;
3 a , ! F −> f low a t o b u f f e r #aB ;
4 ! E , b −> f low b u f f e r t o b #Bb ;
5 }

1 c h a n n e l d r a i n (a , b :) {
2 a , b −> f low a t o NULL
3 |
4 f low b t o NULL # ab ;
5 }

Fig. 6. CooPLa description of four basic Reo channels.

The sync channel may be read as a structure with input port a and output port b.
Whenever there are input/output requests pending at both ports simultaneously, then data
flows from a to b.

The lossy channel extends sync with an extra flow: whenever there is a write
(output) request at port a and no read (input) request at port b (notice the use of `!' to
convey negation), then data is lost (i.e., it flows from a to NULL).

The fifo channel is a structure with input port a, output port b, and a state named
buffer with dimension N. The observers E and F are operations over the state that check
whether the buffer is (E)empty and (F)ull, respectively. The behaviour of this channel
is defined taking into account the pending requests at the ports as well as the value of its
internal state. As an example, data flows from port a to the buffer only when there is a
writing request at a and the buffer is not full.

Finally, the drain channel expects simultaneous requests at its two input ports;
whenever this clause is fulfilled, data flows synchronously (notice the use of constructor
`|') from each of these ports to NULL, being therefore lost.

Patterns. In CooPLa, a coordination pattern is specified by its set of ports and a body
which defines their interconnection.

614 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

This is achieved in two stages. First, under the reserved word use, all the elements
to be connected in the pattern are declared (i.e. instantiated); this declaration resorts
to the signature of channels and coordination patterns using logical names to refer to
the corresponding ports. Then, under the reserved word in, the ports of the pattern are
concretely defined and, only then, the assembly of interconnections is performed.

As an illustration, Fig. 7 (left) shows how the Sequencer coordination pattern
obtained in Fig. 3 is specified in CooPLa.

1 p a t t e r n Sequence r (a : b , c) {
2

3 use :
4 sync (i : o) a s s1 , s2 , s3 ;
5 (E) f i f o∼1(i : o) a s f1 ;
6 i n :
7 a = s1 . i
8 b = s2 . o ;
9 c = s3 . o ;

10 j o i n [s1 . o , s2 . i , f 1 . i] a s h i j ;
11 j o i n [f1 . o , s3 . i] a s k l ;
12 }

1 s t o c h a s t i c Sequence r @ {
2 a = 1 0 0 . 0 ;
3 b = 1 0 . 0 ;
4 c = 9 0 . 0 ;
5 s1 # ab = 1 0 0 0 . 0 ;
6 s2 # ab = 5 0 0 . 5 0 ;
7 s3 # ab = 1 0 0 0 . 0 ;
8 f1 #aB = 9 8 0 . 4 5 ;
9 f1 #Bb = 1 5 0 0 . 0 ;

10 h i j = 1 0 0 0 0 0 . 0 ;
11 k l = 1 0 0 0 0 0 . 0 ;
12 } s s e q

Fig. 7. CooPLa specification of the Sequencer (left) and a stochastic instance of it (right).

The construction of patterns is intended to be intuitive. In the declaration of channels
used in this pattern, the names i and o are used as logical references to the input and output
ports of each channel. The declaration of the fifo channel has to define the concrete value
for the buffer dimension, and optionally its initial configuration (empty in the case). The
actual composition of channels is carried out by binding ports. The connections between
the composed elements are defined using the join operation.

Since all the channels used in the Sequencer coordination patterns provide stochastic
labels, then a stochastic instance of the Sequencer could be derived as shown in Fig. 7
(left). The stochastic extension of CooPLa is still under development and will be omitted
in the sequel; but basically it consists of adding a list of identifiers (nodes, stochastic labels
or ports) to which processing delay and request arrival rates are assigned.

CooPLa specifications form models of coordination patterns, implemented in the
Java programming language, as shown in Fig. 8. Such models are high-level representa-
tions of the system's coordination layer. From this model different kinds of analysis and
transformations can be developed. Pattern reconfiguration is, certainly, a main one.

3. ReCooPLa: A reconfiguration language

ReCooPLa (Reconfiguration for Coordination Patterns Language) is a domain-specific
language for designing coordination-based reconfigurations.

According to the Domain-specific Language (DSL) classification system introduced by
Mernik, Heering and Sloane [34], ReCooPLa can be classified inside the decision phase 1,

1 The framework introduces four development phases: decision, analysis, design, and implementa-
tion.

Towards an engine for coordination-based architectural reconfigurations 615

as a mixture of the notation and the task automation patterns. Indeed, the language encodes
domain-level concepts in the notation hiding an API for programming reconfigurations;
also it serves as a front-end that automates low level, often error prone programming
details. Its analysis was based on a formal analysis pattern, resorting to ontology-based
domain engineering [16]. Its design is strongly based on attribute grammars; this makes
ReCooPLa to fit in the formal design pattern. Finally, the implementation of ReCooPLa
followed a compiler/application generator pattern: its constructors are translated into
suitable Java code as discussed later in the paper.

3.1. Overview

In ReCooPLa, a reconfiguration is a first-class citizen, as much as functions or proce-
dures are in common, general-purpose programming languages. Similarly to the latter, a
reconfiguration has a signature which specifies its identifier and arguments, and a body
which prescribes a specific behaviour. However, a reconfiguration is always applied to, and
always returns, a coordination pattern. Additionally, reconfigurations accept arguments of
the following data types: Name, Node, XOR Set, Pair, Triple, Pattern and Channel.

The reconfiguration body is a list of instructions, most of them concerned with the
application of (primitive, or previously defined) reconfigurations. As auxiliary operations,
other ReCooPLa constructors act on the parameters of a reconfiguration. In particular,
they provide ways to declare, assign and manipulate local variables, for example, field
selectors, and to use typical connectives (as set union, intersection, subtraction and an
iterative control structure over the elements of a set).

3.2. The Language

In the sequel, ReCooPLa is introduced through (the most relevant) fragments of the
underlying grammar. A number of constructors are defined for further reference in the
paper.

Reconfiguation. A reconfiguration (see Listing 1.1) consists of a header, under the
reserved word reconfiguration followed by a unique identifier (the reconfiguration
name) and a list of arguments, which may be empty, followed by the body. The latter is a
list of instructions as explained below.

Listing 1.1. EBNF notation for the reconfiguration production.

1 r e c o n f i g u r a t i o n
2 : ' r e c o n f i g u r a t i o n ' ID ' (' a r g s ∗ ') ' '{ ' i n s t r u c t i o n + '} '
3 a r g s : a r g (' ; ' a r g) ∗
4 a r g : d a t a t y p e ID (' , ' ID) ∗

A reconfiguration constructor is represented as rcfg(n, t1, a1, . . . , tk, an, b), where n
is the reconfiguration identifier; each ai is an argument of type ti; and b its body.

616 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

Data types. ReCooPLa builds on a small set of data types: primitive (Name, Node and
XOR), generic (Set, Pair and Triple) and structured (Pattern and Channel). Name is a
string and represents a channel identifier or a channel end. Node, although considered
as a primitive data type, is internally regarded as a set of names, for compatibility with
its definition in Section 2. XOR is a particular case of Node, which has at least one input
end and two (mutual exclusive) output ends. The generic data types (based on the Java
generics) specify a type for their contents, as shown in Listing 1.2.

Listing 1.2. EBNF notation for the datatype production.

1 d a t a t y p e : . . .
2 | (' Set ' | ' P a i r ' | ' T r i p l e ') '<' d a t a t y p e '>'

Structured data types have an internal state, according to their definition in Section 2. Each
instance of these types is endowed with attributes and operations, which can be accessed
using selectors (see below).

The constructor of a data type is either given as T () or TG(t), where T is a ReCooPLa
data type and t is a subtype of a generic data type TG.

Reconfiguration body. The reconfiguration body is a list of instructions, where each
instruction can be a declaration, an assignment, an iterative control structure, or an ap-
plication of a reconfiguration. A declaration is expressed as usual: a data type followed
by an identifier or an assignment. In its turn, an assignment associates an expression, or
an application of a reconfiguration, to an identifier. The respective constructors are, then,
decl(t, v) and either assign(t, v, e) or assign(v, e), where t is a data type, v a variable
name and e an expression.

The control structure forall is used to iterate over a set of elements. Again, a list of
instructions defines the behaviour of this structure. The corresponding production rule is
shown in Listing 1.3.

Listing 1.3. EBNF notation for the forall production.

1 f o r a l l : ' f o r a l l ' ' (' d a t a t y p e ID ' : ' ID ') ' '{ ' i n s t r u c t i o n + '} '

The constructor for the iterative control structure is forall(t, v1, v2, b), where t is a
data type, v1, v2 are variables and b is a set of instructions.

The application of a reconfiguration (see the reconfiguration apply produc-
tion in Listing 1.4), is expressed by an identifier followed by the `@' operator and a
reconfiguration name. The latter may be a primitive reconfiguration or any other reconfigu-
ration previously declared. The `@' operator stands for application. A reconfiguration is
applied to a variable of type Pattern. In particular, this variable may be omitted (optional
identifier in the production rule reconfiguration apply); when this is the case, the
reconfiguration is applied to the original pattern. This typical use is shown in Listing 1.8.

Listing 1.4. EBNF notation for the reconfiguration apply production.

1 r e c o n f i g u r a t i o n a p p l y
2 : ID ? '@' r e c o n f i g u r a t i o n c a l l
3 r e c o n f i g u r a t i o n c a l l
4 : (' j o i n ' | ' s p l i t ' | ' par ' | ' remove ' | ' c o n s t ' | ' id ' | ID) o p a r g s

Towards an engine for coordination-based architectural reconfigurations 617

Application is specified either as @(c) or @(p, c), where p is a Pattern and c a recon-
figuration call. A reconfiguration is called as r(a1, . . . , an), for r a reconfiguration name,
and each ai one of its arguments.

Operations. An expression is composed of one or more operations. They can be specific
constructors for generic data types, including nodes, or operations over generic or structured
data types, as shown in Listing 1.5.

Each constructor is defined by a reserved word (S stands for Set, P for Pair and T
for Triple), and a list of values which is expected to comply to the data type involved, as
illustrated in Listing 1.6.

Listing 1.5. EBNF notation for the constructor production.

1 c o n s t r u c t o r
2 : 'P ' ' (' e x p r e s s i o n ' , ' e x p r e s s i o n ') '
3 | 'T ' ' (' e x p r e s s i o n ' , ' e x p r e s s i o n ' , ' e x p r e s s i o n ') '
4 | 'S ' ' (' (e x p r e s s i o n (' , ' e x p r e s s i o n) ∗) ? ') '

Listing 1.6. Constructors input example.

1 P a i r<Node> a = P (n1 , n2) ;
2 T r i p l e <P a i r<Node>> b = T (a , P (n1 , n2) , P (n3 , n4)) ;
3 Set<Node> c = S (n1 , n2 , n3 , n4 , n5 , n6) ;

The relevant constructors are P (e1, e2), T (e1, e2, e3) and S(e1, . . . , en) for the Pair,
Triple and Set constructors, respectively; with each ei representing an expression.

For the Set data type, ReCooPLa provides the usual binary set operators: `+' for
union, `-' for subtraction and `&' for intersection. For the remaining data types (except
Node, XOR and Name), selectors are used to apply the operation, as shown in Listing 1.7
(production rule operation). Symbol # is used to access a specific channel from the
internal structure of a pattern.

Listing 1.7. EBNF notation for the operation and attribute call productions.

1 o p e r a t i o n
2 : ID (' # ' ID) ? ' . ' a t t r i b u t e c a l l
3 a t t r i b u t e c a l l
4 : ' in ' (' (' INT ') ') ?
5 | ' out ' (' (' INT ') ') ?
6 | ' name ' | ' nodes ' | ' names '
7 | ' f s t ' | ' snd ' | ' t r d '

An attribute call corresponds to an attribute or an operation associated to the
last identifier, which must correspond to a variable of type Channel, Pattern, Pair or Triple.
The list of attributes/operations in the language is presented in Listing 1.7 and described
below:

618 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

– in: returns the input ports from the Pattern and Channel variables. It is possible to
obtain a specific port by providing an optional integer parameter indexing a specific
entry from the set (seen as a 0-indexed array).

– out: returns the output ports from the Pattern and Channel variables. The optional
parameter can be used as above for a similar effect.

– name: returns the name of a Channel variable, i.e., a channel identifier.
– nodes: returns all input and output ports plus all the internal nodes of a Pattern

variable.
– names: returns all channel identifiers associated to a Pattern variable.
– fst, snd, trd: are, respectively, the first, second and third projection of a tuple (Pair

and Triple variables).

All these operations give rise to their own language constructors. Field selection is
specified by •(v, c), where v is a variable and c a call to an operation. The constructor for
the `#' operator is #(p, n), where p is a pattern and n is a channel identifier. Constructors
for the set operators fare similarly defined: +(s1, s2), −(s1, s2) and &(s1, s2), for union,
difference and intersection, respectively, with s1, s2 being variables of the sort Set. The
constructors for the other operators are generalised as either oper(a) or oper(), depending
on whether the operation with name oper has an argument a or not.

Listing 1.8 shows an example of valid ReCooPLa sentences.

Listing 1.8. A first example.
1 r e c o n f i g u r a t i o n removeP (Set<Name> Cs) {
2 f o r a l l (Name n : Cs) {
3 @ remove (n) ;
4 }
5 }
6 r e c o n f i g u r a t i o n o v e r l a p P (P a t t e r n p ; Set<P a i r<Node>> X) {
7 @ p a r (p) ;
8 f o r a l l (P a i r<Node> n : X) {
9 Node n1 , n2 ;

10 n1 = n . f s t ;
11 n2 = n . snd ;
12 Set<Node> E = S (n1 , n2) ;
13 @ j o i n (E) ;
14 }
15 }

Therein, two reconfigurations are declared: removeP and overlapP. The former
removes from a coordination pattern an entire set of channels by applying the remove
primitive repeatedly. The latter sets a coordination pattern in parallel with the original one,
using the par primitive, and performs connections between the two patterns by applying
the join primitive with suitable arguments.

Main. A special reconfiguration block, marked with the reserved word main, is used
to specify the actual application of reconfigurations to coordination patterns. It accepts a
(possibly empty) list of arguments aggregated by data type, as in a normal reconfiguration.
The difference is that in this case, data types are only references to available coordination
patterns expressed in imported CooPLa files. The arguments are, thus, assumed as in-
stances of the given patterns that are to be reconfigured. These instances may be concrete,
when the argument identifier matches the identifier of stochastic instances declared in
CooPLa files; or anonymous, otherwise.

Listing 1.9 presents a partial grammar for the syntax of these main reconfigurations.

Towards an engine for coordination-based architectural reconfigurations 619

Listing 1.9. EBNF notation for the main production.

1 main : ' main ' ' [' m a i n a r g s ∗ '] ' '{ ' m a i n i n s t r u c t i o n + '} '
2 m a i n a r g s : m a i n a r g (' ; ' m a i n a r g) ∗
3 m a i n a r g : CPNAME i d s
4 i d s : ID (' , ' ID) ∗

The corresponding constructor is main(cp1, a1, . . . , cpk, an, b), where each ai is an
instance of a coordination pattern of type cpi; and b its body. The latter amounts to a list of
specific instructions, where an instruction is either a declaration, an explicit or an implicit
assignment.

A declaration is expressed here as usually, with a data type and a list of identifiers. The
data type corresponds to a coordination pattern name, which may or may not exist in the
imported ones. In the latter case it becomes a structureless coordination pattern. The decla-
ration constructor is declm(t, v), where t is a name (for a coordination pattern) and v is the
variable (instance) being declared. In its turn, an assignment in the main reconfiguration
block associates the result of an expression to a declared pattern. The expressions avail-
able in this context are limited to the concrete application of a reconfiguration to pattern
instances, either passed as arguments or freshly declared. This is usually used to assign a
structure to a structureless pattern previously declared. Assignments are explicit when the
result of applying a reconfiguration is stored in a declared variable; they are implicit other-
wise. Since reconfigurations change the structure of the pattern to which they are applied,
the result of an implicit assignment is stored in the reconfigured coordination pattern. The
@ symbol is again used to express the application of reconfigurations. The arguments of a
reconfiguration are obtained from the arguments of the main body and freshly declared
pattern instances, using the operations explained above to access nodes, channels and
alike. The constructors for these specific instructions are assignm(t, v, a, r, e1, . . . , en),
assignm(v, a, r, e1, . . . , en) or assignm(a, r, e1, . . . , en), where t is a data type (coordi-
nation pattern), v a variable name, a another coordination pattern (usually an argument of
the main reconfiguration), r a reconfiguration call with each ei one of its suitable argument.

A simple example of a main reconfiguration is presented in Listing 1.10. Therein, an
instance sseq of the Sequencer coordination pattern (as depicted in Fig. 7) is reshaped
through the application of the removeP reconfiguration (introduced in Listing 1.8). Notice
the files containing the patterns and reconfigurations involved are previously imported.

Listing 1.10. An example of a main block reconfiguration in ReCooPLa.

1 i m p o r t p a t t e r n s . c p l a ;
2 i m p o r t r e c o n f i g s . r c p l a ;
3

4 main [Sequence r s s e q] {
5 s s e q @ removeP (S (s s e q # s1 . name)) ;
6 }

620 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

4. An engine for architectural reconfiguration

This section introduces the engine, which executes reconfigurations specified in Re-
CooPLa. It is composed of two main modules —the reconfiguration and the translation
engine— described in the following sections.

4.1. Reconfiguration Engine

As it often happens with domain specific languages, ReCooPLa is translated into a subset
of Java, which is then recognised and executed by an engine. This engine, referred to as
the Reconfiguration Engine, is developed in Java to execute reconfigurations specified in
ReCooPLa over coordination patterns, which are defined in CooPLa. The model of the
engine is simple, based only in a few entities. Fig. 8 presents the corresponding Unified
Modelling Language (UML) class diagram.

CoordinationPattern

Channel
0..*

Node
2

<<interface>>
IReconfiguration

<<abstract>>
Reconfiguration

Par SplitJoinConst Remove Id

1 1

1

12..*

Name
1

id ends

arg

argarg
channels

argarg

OverlapP

RemoveP

implodeP

MoveP

...

package: cp.model

Reconfiguration
Creator <<create>> <<implement>>

Fig. 8. The reconfiguration engine model.

Package cp.model, represented as a shaded diagram, concerns the model of a coordina-
tion pattern. Actually, this is the implementation of the formal model presented in Section 2
as well as the target model of the CooPLa language processor. Both CoordinationPattern
and Channel classes provide attributes and methods that match the attributes and opera-
tions of the Pattern and Channel types in ReCooPLa. For instance, the attribute nodes of
the Pattern type has its corresponding method getNodes() in the CoordinationPattern
class.

The remaining entities in the diagram deal with reconfigurations themselves, and are
also assumed to belong to a cp.reconfiguration package. Clearly, classes Par, Const,
Remove, Join, Split and Id are the implementation of the corresponding primitive recon-
figurations introduced in Section 2. The relationships with the elements of the cp.model

Towards an engine for coordination-based architectural reconfigurations 621

package define their arguments. These classes implement the abstract class Recon�gura-
tion, which represents a generic reconfiguration. Because it implements the IRecon�gura-
tion interface, all its subclasses have the implicit method: apply(CoordinationPattern p),
which is where the behaviour of the reconfigurations is defined as the combined effect of
their application to the coordination pattern p given as an argument.

The careful reader may have noticed that some of the concrete classes of Recon�g-
uration are greyed-out, and also that they are not all presented. This is where the most
interesting part of the engine comes into play. In fact, there are no such concrete classes
(apart of the primitives) at compile time. They are created dynamically, at run time, by the
Recon�gurationCreator class, and loaded into the running Java Virtual Machine (JVM),
taking advantage of its reflection features. This implementation follows a similar approach
to the well-known Factory design pattern, but instead of creating instances, it creates
concrete classes of Recon�guration. The idea is that each reconfiguration definition
within a ReCooPLa specification gives rise to a new subclass of Recon�guration with
an apply(CoordinationPattern p) method, whose content is derived from the content of
the ReCooPLa reconfiguration, conveniently translated into a Java file. The engine is still
responsible for automatically compiling such files into Java class files and dynamically
load them into the running JVM to be used in the reconfiguration process as defined
by the main reconfiguration. The main reconfiguration is itself translated and compiled
into a Run.class file, which is then used from within the ReCooPLa engine to enact the
reconfiguration process.

However, for this to be possible, it is first necessary to correctly translate ReCooPLa
constructors into the code accepted by the Reconfiguration Engine. Section 4.2 goes
through the details of such a translation.

4.2. ReCooPLa Translation

In order not to burden the diagram in Fig. 8, a number of classes were omitted. These
classes match the types further accepted in ReCooPLa: Pair, with a getFst() and a
getSnd() methods to access its fst and snd attributes; Triple, extending Pair with an
attribute trd and method getTrd(); and the LinkedHashSet from the java.util package,
which is hereafter abbreviated to LHSet for increasing readability.

To keep exposition simple, some minutiae like imports, semicolons, annotations, auxil-
iary variables, control or try-catch structures and efficiency concerns are ignored in this
schema. Moreover, abstractions are used to wrap complex constructions; for instance,
method mkRecfg(n, t1, a1, . . . , tk, an, b) abstracts details of the creation of a Reconfigu-
ration class with name n; attributes a1, . . . , an of type t1, . . . , tk; and method apply with
body b, which always ends with a return p instruction, where p is the argument of apply.

This being said, the translation of ReCooPLa constructors into the Reconfiguration
Engine is given by the rule-based function T (C), where C is a constructor of ReCooPLa
as presented in Section 3. Table 1 defines T ()2.

2 By convention n is used for identifiers; t, ti for data types; ai for arguments; b for set of
instructions; T for non-generic data type; TG for generic data type, except Set; v, vi for local
variables; e, ei for expressions; p for patterns; si for sets; c for channel names; i for numbers; and
finally oper for the operations enumerated in Section 3.2.

3 T comes from the context where the constructor appears or the type of composing expressions ei.
4 For horizontal space reasons, CoordinationPattern is abbreviated to CoordPatt.

622 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

Table 1. Translation rules for ReCooPLa constructors.

T (rcfg(n, t1, a1, ...tk, an, b)) → mkRcfg(n, T (t1), a1, ... T (tk), an, T (b))
T (T ()) → T
T (TG(t)) → TG <T (t)>
T (Set(t)) → LHSet<T (t)>

T (decl(t, v)) → T (t) v
T (assign(t, v, e)) → T (decl(t, v)) = T (e)
T (assign(v, e)) → v = T (e)

T (forall(t, v1, v2, b)) → for(T (t) v1 : v2){T (b)}
T (@(r(e1, . . . , en))) → r rec = new r(T (e1), . . . , T (en)); rec.apply(p)
T (@(r(p, e1, . . . , en))) → r rec = new r(T (e1), . . . , T (en)); rec.apply(p)

T (P (e1, e2)) → new Pair(T (e1), T (e2))
T (T (e1, e2, e3)) → new Triple(T (e1), T (e2), T (e3))
T (S(e1, . . . , en)) → new LHSet<T>(){{add(T (e1)); . . . ; add(T (en)); }} 3

T (N(n1, . . . , nn)) → new Node(new LHSet<String>(){{add(n1); . . . ; add(nn); }})
T (+(s1, s2)) → (new LHSet(s1)).addAll(s2)
T (−(s1, s2)) → (new LHSet(s1)).removeAll(s2)
T (&(s1, s2)) → (new LHSet(s1)).retainAll(s2)
T (#(p, c)) → p.getChannel(c)
T (•(v, c)) → v.T (c)
T (in(i)) → getIn(i)
T (out(i)) → getOut(i)
T (ends(p)) → getEnds(p)
T (oper()) → getOper()

T (main(cp1, a1, ...cpk, an, b)) → mkMain(Run, T (cp1, a1), ... T (cpk, an), T (b))
T (cp, a) → CoordPatt a = new CoordPatt(paterns.get(cp)) 4

T (declm(cp, v)) → T (cp, v)
T (assignm(t, v, a, r, e1, . . . , en)) → T (declm(t, v)); T (@(r(a, e1, . . . , en)))
T (assignm(v, a, r, e1, . . . , en)) → v = T (@(r(a, e1, . . . , en)))
T (assignm(a, r, e1, . . . , en)) → T (@(r(a, e1, . . . , en)))

Listing 1.11. Example of a translated ReCooPLa reconfiguration.
1 p u b l i c c l a s s Over lapP ex tends R e c o n f i g u r a t i o n {
2 p r i v a t e C o o r d i n a t i o n P a t t e r n p ;
3 p r i v a t e LinkedHahsSet<P a i r<Node , Node>> X;
4 p u b l i c Over lapP (C o o r d i n a t i o n P a t t e r n arg1 , LinkedHahsSet<P a i r<Node , Node>> a rg2) {
5 t h i s . p = a rg1 ;
6 t h i s .X = a rg2 ;
7 }
8 p u b l i c C o o r d i n a t i o n P a t t e r n a p p l y (C o o r d i n a t i o n P a t t e r n $cp) {
9 Par p a r ;

10 J o i n j o i n ;
11 p a r = new Par (t h i s . p) ;
12 p a r . a p p l y ($cp) ;
13 f o r (P a i r<Node> n : t h i s .X) {
14 Node n1 , n2 ;
15 n1 = n . g e t F s t () ;
16 n2 = n . ge tSnd () ;
17 LinkedHahsSet<Node> E = new LinkedHahsSet<Node>() {{
18 add (n1) ; add (n2) ;
19 }} ;
20 j o i n = new J o i n (E) ;
21 j o i n . a p p l y ($cp) ;
22 }
23 re turn $cp ;
24 }
25 }

Towards an engine for coordination-based architectural reconfigurations 623

This translation schema is part of the ReCooPLa processor, implemented in ANTLR
v3 [44]. The full processor counts on a parser for ensuring syntactic correctness, which
outputs an Abstract Syntax Tree (AST) as an intermediate representation for use in sub-
sequent processing stages like the creation of an identifiers table; a module for semantic
analysis, where errors concerning structure, behaviour and data types are reported; and the
translator itself.

The translator module implements the translation function T (), by applying the at-
tribute grammars formalism upon the AST, as a tree grammar walker of ANTLR v3;
moreover, to simplify the whole process, template mechanisms were used, featuring the
StringTemplate engine.

Listing 1.11 shows the result of applying the translation rules to the OverlapP reconfig-
uration encoded in ReCooPLa in Listing 1.8.

4.3. The ReCooPLa engine

The ReCooPLa Engine is implemented as an Eclipse plugin, as an editor extension. The
system high-level architecture is presented in Fig. 9.

Fig. 9. The ReCooPLa engine high-level architecture.

Essentially, it wraps both the reconfiguration engine and the ReCooPLa processor
(where the ReCooPLa translator belongs to) with a special connection to the CooPLa
processor. As an Eclipse plugin, it takes advantage of patterns for features like syntax
highlighting, code completion or error reporting and annotation. Additionally, views are
associated to the ReCooPLa engine, that provide visual representation of the applied
reconfigurations. The obtained coordination patterns can be saved as CooPLa files for
further analysis with powerful external tools [18,21,29] that connect well with possible
outputs of CooPLa [41].

The operation of the ReCooPLa engine, as a cyclic process, is sketched in Fig. 10.
The process starts with the processing of CooPLa files by the CooPLa processor. It
produces an internal representation of all coordination patterns present in the CooPLa files,
which is used by the reconfiguration engine for validation, first, and reconfiguration, then.

624 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

The ReCooPLa processor takes the ReCooPLa files and (after syntactic and semantic
analysis) uses the translator module to generate Java files into a temporary directory. Then,
the ReCooPLa engine calls the external javac compiler in order to compile the java
files into Java byte code. Using the reflection features associated to the JVM and the Java
language, the created Reconfiguration classes are loaded into the running ReCooPLa
engine; and so it is the main class Run.

rcpla

java

javacclass

reconfi-
gurations

Reflection
load

ReCooPLa
processor

cpla
CooPLa

processor

Run
class

analysis

analysable
assets

Fig. 10. ReCooPLa engine main process.

At this point, the main method within
the Run class is called (via reflection, be-
cause it does not exist at the engine com-
pilation time) so that reconfigurations are
enacted and deployed. This step generates
visualisations of the reconfigured coordi-
nation patterns and allows for saving the
respective CooPLa files, closing the recon-
figuration design loop.

Although out of the scope of this ar-
ticle, it makes sense to refer that the
CooPLa processor is also responsible for
producing assets for further analysis. This
completes the design of reconfigurations,
since analysis is required to check for prob-
lematic configurations which may trigger
new iterations of the ReCooPLa process.

Fig. 11 is a print out of the engine interface dealing with the reconfigurations in
Listings 1.8 and 1.10, along with the visualisation of the generated configuration.

5. Case Study

This section shows, through (a fragment of) a case study how the ReCooPLa engine can
be used to assist the design of self-adaptive software systems, integrated in an approach
that deals with both the design and runtime monitoring of this sort of systems, introduced
by N. Oliveira and L. S. Barbosa in [39]. This approach builds on the reconfiguration
framework presented in Section 2 and its supporting tools. It follows the feedback control
loop MAPE(-K) model [23], integrating an active transition system of reconfigurations,
referred to as the Reconfiguration Transition System (RTS).

An RTS is a transition system model where states define architectural configurations
and transitions define the reconfiguration operations that transform a configuration into
another. This model lays down reconfiguration strategies planed and prepared at design
time by taking into account partial knowledge about relevant environment attributes.

At runtime, the RTS is integrated in the control loop. This loop is responsible for
monitoring the system and the environment, acquiring data that is delivered to an analyser
module. Such a module uses the data and a pool of possible system configurations from
the current one (picked from the RTS). Resorting to suitable quantitative analysis tools,
it analyses each possible configuration. A decision module verifies the results and by
matching them with system properties and adaptation logic triggers, decides whether it is
necessary to reconfigure the system and which reconfiguration shall be applied. In case of

Towards an engine for coordination-based architectural reconfigurations 625Towards an engine for coordination-based architectural reconfigurations 625

Fi
g.

11
.A

pr
in

to
ut

of
th

e
en

gi
ne

in
te

rf
ac

e
on

ap
pl

yi
ng

a
re

co
nfi

gu
ra

tio
n.

626 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

need for adaptation, an executer module receives the decision previously made and enacts
the reconfiguration at runtime.

More details on this approach can be found in [39], where a case study is reported to
simulate the runtime adaptation of the Access Society's Knowledge (ASK) system. The
case study presented in this section, on the other hand, is the twin, design-time component.

5.1. The ASK system

The ASK system is a communication software from Almende, a Dutch software house,
whose objective is to mediate consumers and service providers. For instance, it may connect
and mediate between a company looking for a temporary worker and a person matching
such requirement. The system relies on powerful matching mechanisms that analyse the
characteristics of both consumers' requirements and providers' profiles. Offering such a
match effectively and within the minimum amount of time is the global goal.

The architecture of the ASK system is based on three main components: a web-based
front-end for user interaction, a database for storing business data, and a contact engine for
matching and contacting interveners. The contact engine collects the user requests, which
are converted into tasks and shipped to an executor component responsible for the matching
operation. In the latter tasks are enqueued into an execution-queue (EQ) until a handler
web service (HRE) is prepared to perform the match between consumers and providers.
The HRE service runs on a server separated from the EQ, but which is not dedicated;
having the limit of spawning 20 HRE service instances in parallel. This constitutes the
main part of the system, and the relevant one for the remaining of this section.

5.2. Adaptable-ASK design

The ASK system was previously studied with respect to performance and resource alloca-
tion from a static point of view in references [36,35,42]. These studies revealed bottlenecks
and performance decay when the environment changed over time. By analysis of logs and
monitored data, the ASK team identified a number of critical points (e.g. user requests
reach peaks, downtime intervals and recurring environment fluctuations).

:: fifo
f1

fe hre

:: sync
s1

a

hre1

hre2

:: s
ync

s2

:: sync
s3

1)

2)

Fig. 12. Patterns for Adaptable-ASK.

This lead to the proposal, design and
implementation of a system with an archi-
tecture able to adapt to contextual changes,
referred to in the sequel as the Adaptable-
ASK system.

In order to design the control loop, fol-
lowing the RTS-based approach briefly re-
called above, the ReCooPLa engine was
used. Our focus here is restricted to the
executor component and its architectural
adaptation, bypassing the conversion of
user requests into tasks, which, in fact,
does not insert any performance distur-
bance on the system.

Towards an engine for coordination-based architectural reconfigurations 627

The initial work was to design (in CooPLa) the basic coordination layer for this
component. This is shown in Fig. 12.1. Note that communication between users and
the HRE service is asynchronous with all requests enqueued into a FIFO-like structure.
This coordination pattern, called Original, became then a building block for broader
reconfiguration patterns.

By creating a stochastic instance of this pattern and using the CooPLa processor,
analysable assets were generated for quantitative analysis. Such an exercise was done,
taking user request rates as the relevant contextual change. When the number of requests
increased, the basic architecture, with only one server available to host a limited number
of instances of the HRE service, was shown unsuitable. This entailed the need for adding a
second server to increase production. The coordination pattern in Fig. 12.2 (ExRouter) is
another building block that can be used for adding a new server to the architecture5, while
rearranging the coordination between the relevant architectural elements. An instance of
this coordination pattern can then be used to design the envisaged reconfiguration with two
HRE servers. Fig. 13 shows how this is done with ReCooPLa (within the ReCooPLa
engine).

Fig. 13. ReCooPLa implementation of a reconfiguration to scale up the Adaptable-ASK
system from the original configuration.

The resulting coordination pattern was saved in a file named scaledout.cpla. It
was then processed with CooPLa tools for analysis with respect to user request fluctuations
retrieved from the logs of the ASK system. This was shown to suit most of them, but for
the case in which requests decrease and the company has still to pay the rent of the second
server. Thus, in such a context it is necessary to go back to the original configuration.
Fig. 14 shows a reconfiguration solution for both cases. This resulted in three exported
coordination patterns. The second one was saved in a scaledinout.cpla file (the
others already exist in CooPLa files).

By designing reconfigurations we end up in the construction of the RTS as requested
(depicted in Fig. 15).

5 Symbol represents a node that routes data for one of its outgoing channels in a mutual-exclusive
way.

628 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

Fig. 14. ReCooPLa implementation of three reconfigurations: the first is an auxiliary one
to preserve the scaled out configurations; the other two act in opposite directions.

original
.cpla

scaledout
.cpla

scaledinout
.cpla

sout
.rcpla

sinout_orig
.rcpla

sinout_orig
.rcpla

...

...

.
.

.

...

...
...

Fig. 15. Partial RTS for the design of the Adaptable-ASK system.

Towards an engine for coordination-based architectural reconfigurations 629

Certainly, the complete RTS for the Adaptable-ASK has a lot more states and transi-
tions. For instance, a state representing a configuration where a log service is added, or
another where a certain amount of requests is acceptable to be lost, do appear to cope with
some deployment contexts. The elegance of this approach is that, most appropriately, the
RTS may be changed at runtime with new or revised reconfigurations.

In summa, the role of the ReCooPLa engine in this case study was to lead the design of
the necessary reconfigurations. But, as shown in Figure 10, the design of reconfigurations
is just the start of a process. The engine allows for achieving new coordination structures by
applying the designed reconfigurations upon coordination patterns. Each obtained pattern
may be analysed/simulated to check whether it fulfils the requirements of the system for a
given environment state.

6. Related work

As stated above, this paper aimed at introducing a DSL and an engine for the specification,
compilation and application of architectural reconfigurations. Since the topic of architec-
tural reconfiguration is a pressing issue in the SOA community, there is substantial related
work to discuss. The following paragraphs provide a brief overview.

In general, Architecture Description Languages (ADLs) are widely accepted as the
rigorous foundation for describing software architectures. While there are numerous
representatives [2,3,12,19,30,31,48,50], they all take components, connectors, and their
configurations as the main building blocks of an architecture. Their use has been mostly
limited to static analysis and code generation, being generically unable to support architec-
tural changes. Only a few ADLs (and their extensions) allow for conveying architectural
modifications. For instance, Wright [3,5] with its dynamic extension [4] introduces re-
configuration actions that manipulate the topology of the architecture and are triggered
by design-time known control events. ACME [19,20], through the Plastik extension [9],
enables the specification of reconfigurations with specific constructors for attaching and
detaching architectural elements as well as to establish dependencies between them. The
run time triggering of Plastik's reconfigurations is based on conditional structures and event
listening. Pilar [12] natively supports reconfigurations strongly relying on reflective com-
putation concepts; reconfiguration triggers are specified as constraints and reconfigurations
themselves are typical operations to manipulate the architecture topology.

These approaches to reconfiguration based on ADLs typically support run time changes.
In the case of ReCooPLa and its engine, the focus is set on the static (design-time) analysis,
which is rarely provided by such approaches. Moreover, ADLs reconfigurations target
only the topology of the architecture and do not address the coordination behaviour as
ReCooPLa intends to do.

While ADLs aim at describing software architectures for the purpose of system gen-
eration, Architectural Modification Languages (AMLs) focus on describing changes to
architecture descriptions and are, thus, useful for introducing unplanned changes to de-
ployed systems. The Extension Wizard's modification scripts [43], C2's AML [33], and
Clipper [1] are examples of such languages. These languages endow Software Architecture
(SA) design approaches with mechanisms to specify reconfigurations. However, they focus
on the high-level entities of the architectures, rather than on the coordination layer. In

630 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

contrast, ReCooPLa targets the whole coordination structure of a system and is mainly
designed towards reconfiguration analysis.

Fractal [10] is a hierarchical and reflective component model intended to implement,
deploy, and manage complex software systems, which embodies mechanisms for dynamic
reconfiguration. Separate domain specific languages, FPath and FScript [13], are used
to apply changes. The former eases the navigation inside a Fractal architecture through
queries. The latter, which embeds FPath, enables the definition of adaptation scripts to
modify the architecture of a Fractal application. It includes transactional support for
architectural reconfigurations in order to ensure the reliability and consistency of the
application. This approach targets industry-level applications by resorting to standards for
architectural definition like Service Component Architecture (SCA), although strongly
biased towards Fractal-based applications.

Plump [45] introduces the GP programming language. It is a language for solving
graph problems, based on a notion of graph transformation and four operators, and shown
to be Turing-complete. GP allows for the creation of programs over graphs at a high-
level of abstraction. It was not designed for specifying architectures nor reconfiguration
strategies. However, its applications are numerous and architectural design could be one
of them. In fact, rule-based definition of graph transformations are also used in some
foundational works on architectural reconfiguration [11,51]. ReCooPLa, which also acts
over graph-based structures, replaces the use of rules by a set of (coordination-oriented)
constructors.

Oreizy et al. [43] proposed ArchStudio, a tool suite that implements several interrelated
mechanisms for supporting the runtime reconfiguration of software architectures. It is
implemented in Java and targets C2-style applications, which limit its applicability to
Service-Oriented Architecture (SOA) design.

Krause [27,28] formalises a framework to specify and apply reconfigurations in the
context of the Reo coordination model [7]. Reconfigurations, therein, are specified through
graph transformation rules upon a graph-like structure with typed-edges, representing
the coordination structure of a system. This was latter adapted to deal with distributed
networks of software connectors [25] and with data flow aware reconfigurations [24].
The materialisation of this work is made on the Extensible Coordination Tools (ECT)
Eclipse plugin. In this tool, Reo circuits are visually specified and reconfigurations
are defined directly upon the circuits as pattern-matching rules for their transformation.
Reconfiguration rules can be applied either to a local connector or to the global coordination
structure. Simulation of the application of such rules is possible, but a centralised engine
(ReoLive) for dynamic reconfigurations is also provided. The work of Krause is, to the best
of our knowledge, the most recent on on coordination-based reconfigurations with suitable
tool support. ReCooPLa provides a more generic way of expressing reconfigurations, but
as it is currently limited to design-time application, comparison is not meaningful.

7. Conclusions and future work

This paper introduces the ReCooPLa engine, an Eclipse plugin for the design of coordi-
nation-based reconfigurations. It incorporates the ReCooPLa processor, its companion
DSL, and an engine that applies reconfigurations expressed in ReCooPLa to coordination
structures expressed in CooPLa. In this graph-based framework, reconfigurations act,

Towards an engine for coordination-based architectural reconfigurations 631

through the application of primitive atomic operations, over a graph structure, which is an
abstract representation of the coordination layer of a SOA system.

The ReCooPLa engine resorts to generative programming for processing and transla-
tion of ReCooPLa specifications. It takes advantage of reflection features, associated to
the Java programming language, to compile and dynamically load the generated Java files.

A distinctive characteristic of ReCooPLa, with respect to other architectural reconfig-
uration tools, is its focus on the coordination layer rather than on the high-level architecture.
In the same way, ReCooPLa, differs from other architectural languages by focussing on
reconfigurations rather than on the definition of architectural elements like components,
connectors and their interconnections. At the moment of writing, however, ReCooPLa
engine is targeted to the early stages of software development; i.e., the design of reconfigu-
rations and their analysis against requirements. Nevertheless, as shown in the case study,
the engine may play an important role in the design of adaptive systems.

Planned for future work is the import of architectural configurations specified in Wright,
ACME, or a similar ADLs, whenever their connectors are suitable instances keeping a full
specification of a system architecture. Therefore, ReCooPLa can be part of a control loop
for adaptive systems.

Acknowledgments. This work is partly funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and by National
Funds through the FCT, the Portuguese Foundation for Science and Technology, within project
FCOMP-01-0124-FEDER-028923. The second author is supported by an Individual Doctoral
Grant from FCT, with reference SFRH/BD/71475/2010.

References

1. Agnew, B., Hofmeister, C., Purtilo, J.: Planning for change: a reconfiguration language for
distributed systems. In: Proceedings of 2nd International Workshop on Configurable Distributed
Systems, 1994. pp. 15–22 (1994)

2. Aldrich, J., Chambers, C., Notkin, D.: Architectural reasoning in ArchJava. In: Magnusson, B.
(ed.) Object-Oriented Programming (ECOOP 2002), Lecture Notes in Computer Science, vol.
2374, pp. 334–367. Springer, Berlin Heidelberg (2002)

3. Allen, R.: A Formal Approach to Software Architecture. Ph.D. thesis, Carnegie Mellon, School
of Computer Science (Jan 1997)

4. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software architectures.
Configurations 1382, 1–15 (1998)

5. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of the 16th Interna-
tional Conference on Software Engineering. pp. 71–80. ICSE 1994, IEEE Computer Society
Press, Los Alamitos, CA, USA (1994)

6. Andrews, G.R.: Paradigms for process interaction in distributed programs. ACM Computing
Surveys 23(1), 49–90 (Mar 1991)

7. Arbab, F.: Reo: a channel-based coordination model for component composition. Mathematical
Structures in Computer Science 14(3), 329–366 (Jun 2004)

8. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis, J.: Rigorous
Component-Based system design using the BIP framework. IEEE Software 28(3), 41–48 (May
2011)

9. Batista, T., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in Component-Based
systems. In: Morrison, R., Oquendo, F. (eds.) Software Architecture, Lecture Notes in Computer
Science, vol. 3527, chap. 1, pp. 1–17. Springer, Berlin, Heidelberg (2005)

632 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The FRACTAL component
model and its support in Java: Experiences with auto-adaptive and reconfigurable systems.
Software: Practice and Experience 36(11-12), 1257–1284 (Sep 2006)

11. Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D., Lafuente, A.L.: Graph-Based design and
analysis of dynamic software architectures concurrency, graphs and models. In: Degano, P.,
Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models, Lecture Notes in Computer
Science, vol. 5065, chap. 4, pp. 37–56. Springer, Berlin, Heidelberg (2008)

12. Cuesta, C.E., de la Fuente, P., Barrio-Solórzano, M., Beato, E.: Coordination in a reflective
architecture description language. In: Arbab, F., Talcott, C. (eds.) Coordination Models and
Languages, Lecture Notes in Computer Science, vol. 2315, pp. 141–148. Springer, Berlin,
Heidelberg (2002)

13. David, P.C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language support for
navigation and reliable reconfiguration of fractal architectures. Annals of Telecommunications
64(1-2), 45–63 (Feb 2009)

14. van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An annotated bibliography.
SIGPLAN Notices 35(6), 26–36 (Jun 2000)

15. Erl, T.: SOA Design Patterns. Prentice Hall PTR, NJ, USA, 1st edn. (2009)
16. Falbo, R., Guizzardi, G., Duarte, K.: An ontological approach to domain engineering. In:

Proceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering. pp. 351–358. SEKE '02, ACM, New York, NY, USA (2002)

17. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented architectures.
Software and Systems Modeling 12(2), 349–367 (Feb 2013)

18. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction
and analysis of distributed processes. International Journal on Software Tools for Technology
Transfer pp. 1–19 (2012)

19. Garlan, D., Monroe, R., Wile, D.: ACME: An architecture description interchange language. In:
Proceedings of the CASCON '97. pp. 7–. IBM Press (1997)

20. Garlan, D., Monroe, R.T., Wile, D.: ACME: Architectural description of component-based
systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems, pp.
47–68. Cambridge University Press (2000)

21. Guck, D., Han, T., Katoen, J.P., Neuhäußer, M.R.: Quantitative timed analysis of interactive
markov chains. In: Goodloe, A.E., Person, S. (eds.) NASA Formal Methods, Lecture Notes in
Computer Science, vol. 7226, pp. 8–23. Springer, Berlin, Heidelberg (2012)

22. Hn�etynka, P., Plá�sil, F.: Dynamic reconfiguration and access to services in hierarchical com-
ponent models. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A.,
Szyperski, C., Wallnau, K. (eds.) Component-Based Software Engineering, Lecture Notes in
Computer Science, vol. 4063, chap. 27, pp. 352–359. Springer, Berlin, Heidelberg (2006)

23. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (Jan
2003)

24. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring distributed reo connectors. In: Corradini, A.,
Montanari, U. (eds.) Recent Trends in Algebraic Development Techniques, Lecture Notes in
Computer Science, vol. 5486, pp. 221–235. Springer, Berlin, Heidelberg (2009)

25. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors triggered
by dataflow. In: Proceedings of the 7th International Workshop on Graph Transformation and
Visual Modeling Techniques. GT-VMT'08. Electronic Communications of the EASST, vol. 10,
pp. 1–13 (2008)

26. Kosar, T., Oliveira, N., Mernik, M., Pereira, M.J.V., �Crepin�sek, M., da Cruz, D., Henriques, P.R.:
Comparing General-Purpose and Domain-Specific Languages: An empirical study. Computer
Science and Information Systems 7(2), 247–264 (May 2010)

27. Krause, C.: Reconfigurable Component Connectors. Ph.D. thesis, Leiden University, Amsterdam,
The Netherlands (2011)

Towards an engine for coordination-based architectural reconfigurations 633

28. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigurations in Reo
using high-level replacement systems. Science of Computer Programming 76(1), 23–36 (2011)

29. Kwiatkowska, M., Norman, G., Parker, D.: A framework for verification of software with time
and probabilities. In: Chatterjee, K., Henzinger, T.A. (eds.) Proceedings of the 8th International
Conference on Formal Modelling and Analysis of Timed Systems. FORMATS'10. Lecture
Notes in Computer Science, vol. 6246, pp. 25–45. Springer, Berlin, Heidelberg (2010)

30. Luckham, D.C., Vera, J.: An Event-Based Architecture Definition Language. IEEE Trans. Softw.
Eng. 21(9), 717–734 (Sep 1995)

31. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proceedings of the 4th
ACM SIGSOFT symposium on Foundations of software engineering. SIGSOFT 1996, vol. 21,
pp. 3–14. ACM, New York, NY, USA (Nov 1996)

32. Malohlava, M., Bure�s, T.: Language for reconfiguring runtime infrastructure of component-based
systems. In: Proceedings of the Annual Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science. MEMICS 2008, Znojmo, Czech Republic (Nov 2008)

33. Medvidovic, N.: ADLs and dynamic architecture changes. In: Joint proceedings of the second
international software architecture workshop (ISAW-2) and international workshop on multiple
perspectives in software development (Viewpoints '96) on SIGSOFT '96 workshops. pp. 24–27.
ISAW 1996, ACM, New York, NY, USA (1996)

34. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Computing Surveys 37(4), 316–344 (December 2005)

35. Moon, Y.J.: Stochastic Models for Quality of Service of Component Connectors. Ph.D. thesis,
Universiteit Leiden (Oct 2011)

36. Moon, Y.J., Arbab, F., Silva, A., Stam, A., Verhoef, C.: Stochastic Reo: a case study. In:
Proceedings of the TTSS'11 (2011), to appear.

37. Oliveira, N., Barbosa, L.S.: On the reconfiguration of software connectors. In: Proceedings of
the 28th Annual ACM Symposium on Applied Computing. SAC '13, vol. 2, pp. 1885–1892.
ACM, New York, NY, USA (Mar 2013)

38. Oliveira, N., Barbosa, L.S.: Reconfiguration mechanisms for service coordination. In: ter Beek,
M.H., Lohmann, N. (eds.) Web Services and Formal Methods, Lecture Notes in Computer
Science, vol. 7843, pp. 134–149. Springer, Berlin, Heidelberg (2013)

39. Oliveira, N., Barbosa, L.S.: A self-adaptation strategy for service-based architectures. In: Pro-
ceedings of the 8th Brazilian Symposium on Software Components, Architectures and Reuse.
SBCARS'2014, vol. 2, pp. 1–10. SBC – Brazilian Computer Society, Piscataway, NJ, USA (Sep
2014)

40. Oliveira, N., Pereira, M.J.V., Henriques, P.R., da Cruz, D.: Domain-Specific Languages: a
theoretical survey. In: Proceedings of INForum'09. pp. 35–46. Lisbon, Portugal (September
2009)

41. Oliveira, N., Silva, A., Barbosa, L.S.: Quantitative analysis of Reo-based service coordination.
In: Proceedings of SAC '14. vol. 2, pp. 1247–1254. ACM, NY, USA (March 2014)

42. Oliveira, N., Silva, A., Barbosa, L.S.: IMCReo: interactive Markov chains for stochastic Reo.
Journal of Internet Services and Information Security 5(1) (February 2015), imprint

43. Oreizy, P., Taylor, R.N.: On the role of software architectures in runtime system reconfiguration.
In: Proceedings of the 4th International Conference on Configurable Distributed Systems. pp.
61–70. IEEE (May 1998)

44. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages. The Prag-
matic Bookshelf, Raleigh (2007)

45. Plump, D.: The graph programming language GP. In: Bozapalidis, S., Rahonis, G. (eds.)
Algebraic Informatics, Lecture Notes in Computer Science, vol. 5725, chap. 6, pp. 99–122.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

46. Ramirez, A.J., Cheng, B.H.: Design patterns for developing dynamically adaptive systems.
In: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems. pp. 49–58. SEAMS 2010, ACM, New York, NY, USA (2010)

634 Flávio Rodrigues, Nuno Oliveira, and Luı́s S. Barbosa

47. Rodrigues, F., Oliveira, N., Barbosa, L.S.: ReCooPLa: a DSL for coordination-based reconfigu-
ration of software architectures. In: Pereira, M.J.V., Leal, J.P., Simões, A. (eds.) Proceedings
of SLATE'2014. OpenAccess Series in Informatics (OASIcs), vol. 38, pp. 61–76. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2014)

48. Sanchez, A., Barbosa, L.S., Riesco, D.: Bigraphical modelling of architectural patterns. In:
Arbab, F., Ölveczky, P.C. (eds.) Formal Aspects of Component Software. FACS'2011, Lecture
Notes in Computer Science, vol. 7253, pp. 313–330. Springer, Berlin, Heidelberg (2011)

49. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A component-
based middleware platform for reconfigurable service-oriented architectures. Software: Practice
and Experience 42(5), 559–583 (2011)

50. Tracz, W.: Parametrized programming in LILEANNA. In: Proceedings of the 1993 ACM/SI-
GAPP Symposium on Applied Computing: States of the Art and Practice. pp. 77–86. SAC '93,
ACM, New York, NY, USA (1993)

51. Wermelinger, M.A., Fiadeiro, J.L.: Algebraic software architecture reconfiguration. In: Pro-
ceedings of the 7th European software engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of software engineering. pp. 393–409.
ESEC/FSE 1999, Springer-Verlag, London, UK (1999)

Flávio Rodrigues is currently a back-end developer in a Software House. Previously,
he obtained a degree in Informatics from Instituto Politécnico do Cávado e do Ave, and
received a Master's Degree in Informatics Engineering from Universidade do Minho, with
specialisation in Language Engineering and Applications Engineering.

Nuno Oliveira is a lecturer at Instituto Politécnico do Cávado e Ave and a software
engineer at Checkmarx. He holds a PhD in computer science, from Universidade do Minho,
for his work on architectural reconfigurations. Previously, he obtained a degree and a MSc
in Computer Science also from Universidade do Minho.

Lu�́s S. Barbosa is an Associate Professor at the Informatics Department of Universidade
do Minho, Braga, Portugal, and a senior researcher at INESC TEC in high-assurance
software and formal methods. He coordinates the joint Doctoral Programme in Computer
Science of Universidades do Minho, Aveiro and Porto.

Received: September 12, 2014; Accepted: May 21, 2015.

	Introduction
	Coordination patterns
	The model.
	New patterns from old.

	CooPLa - A language for coordination patterns
	Channels.
	Patterns.

	ReCooPLa: A reconfiguration language
	Overview
	The Language
	Reconfiguation.
	Data types.
	Reconfiguration body.

	An engine for architectural reconfiguration
	ReCooPLa Translation
	The ReCooPLa engine

	Case Study
	The ask system
	Adaptable-ask design

	Related work
	Conclusions and future work

