
A study of risk-aware program transformation

Daniel Murtaa,1, José Nuno Oliveiraa,∗

aHASLAB - High Assurance Software Laboratory
INESC TEC / Univ. Minho, Braga, Portugal

Abstract

In the trend towards tolerating hardware unreliability, accuracy is exchanged for cost
savings. Running on less reliable machines, functionally correct code becomes risky
and one needs to know how risk propagates so as to mitigate it. Risk estimation, how-
ever, seems to live outside the average programmer’s technical competence and core
practice.

In this paper we propose that program design by source-to-source transformation be
risk-aware in the sense of making probabilistic faults visible and supporting equational
reasoning on the probabilistic behaviour of programs caused by faults. This reasoning
is carried out in a linear algebra extension to the standard, à la Bird-Moor algebra of
programming.

This paper studies, in particular, the propagation of faults across standard program
transformation techniques known as tupling and fusion, enabling the fault of the whole
to be expressed in terms of the faults of its parts.

1. Introduction

With software as invasive in everyday life as it is today, one need not be on the staff
of a space agency to ask the question: what risks do we run day-to-day by relying on
so much software? Jackson (2009) writes:

(...) a dependable system is one (..) in which you can place your reliance
or trust. A rational person or organization only does this with evidence
that the system’s benefits outweigh its risks.

Over the years, NASA has defined a probabilistic risk assessment (PRA) methodology
to enhance the safety decision process. Quoting (Stamatelatos and Dezfuli, 2011):

PRA characterizes risk in terms of three basic questions: (1) What can go
wrong? (2) How likely is it? and (3) What are the consequences? The
PRA process answers these questions by systematically (...) identifying,

∗Corresponding author.
1Partially supported by Fundação para a Ciência e a Tecnologia, Portugal, under grant number

BI1-2012 PTDC/EIA-CCO/122240/2010 UMINHO.

Preprint submitted to Elsevier May 9, 2015

modeling, and quantifying scenarios that can lead to undesired conse-
quences.

This may leave one with the feeling that PRA takes place a posteriori, that is, once the
system is built. Even if this is not so in general, limitations of current programming
practice are apparent concerning timely assessment of the risks involved in the future
use of computer programs. Things that can go wrong can be guessed; but, how is the
likelihood of such bad behaviour expressed? and how does one quantify its conse-
quences (fault propagation)?

This paper addresses these questions and issues in the context of functional pro-
gramming (FP) over unreliable hardware. Note that such unreliability can be inten-
tional, as is the case in inexact circuit design (Lingamneni et al., 2013), where accuracy
of the circuit is exchanged for cost savings (e.g. energy, delay, silicon).

We will show that FP is well prepared for smoothly incorporating risk analysis in
the design of programs. This is because the standard qualitative semantics of FPs can
evolve towards a quantitative one simply by upgrading its underlying relational algebra
of programs à la Bird-Moor (1997) into a linear algebra of programming (Oliveira,
2012).

The need for quantitative rather than qualitative semantics is nicely explained in
the following excerpt of the preface of (Andova et al., 2009):

Quantitative Formal Methods deal with systems whose behaviour of inter-
est is more than the traditional Boolean “correct” or “incorrect” judg-
ment. (...) Today there are many quantitative aspects of system design:
they include timing (whether discrete, continuous or hybrid); probabilis-
tic aspects of success or failure including cost and reward; and quantified
information flow.

The basic idea of the current paper is simple: suppose one writes function good
for the intended behaviour of a program and there is evidence that, with probability p,
such behaviour can turn into a bad function. Using the probabilistic choice combinator
(· ·� ·) of (McIver and Morgan, 2005; Oliveira, 2012), one may write term

bad p� good (1)

to express the complete (ie. with risk incorporated) behaviour of what one is program-
ming.

What is needed, then, is a method for evaluating the propagation of risk, for instance
across recursion schemes. This is what the linear algebra of programming (LAoP) is
intended for. This paper investigates, in particular, the quantitative extension of the
so-called mutual recursion and banana-split laws (Bird and de Moor, 1997) which
underpin the refinement of primitive recursive functions into linear implementations
and checks under what conditions such implementations are as good as their original
definitions with respect to fault propagation.

The approach will be illustrated in two ways: either by running programs as prob-
abilistic (monadic) functions written in Haskell (Jones, 2003) using the PFP library

2

of Erwig and Kollmannsberger (2006), or by running finite approximations of them
directly as matrices in MATLAB 2.

Contribution. In the trend towards tolerating hardware unreliability, software is doomed
to misbehave in some degree. Are the laws of program transformation still valid in this
setting?

• This paper shows how the standard algebra of programming (AoP) dear to the
so-called program transformation school of software design extends and incor-
porates risk simply by switching from standard (“sharp”) functions to proba-
bilistic functions handled as matrices in linear algebra.3

• The laws of such a linear algebra of programming (LAoP) are shown to cap-
ture the notion of probabilistic indistinguishability, essential to decide whether
program transformation rules can be safely applied or not.

• The approach is shown to be readily applicable to recursive programs which
handle possibly interfering threads of computation.

• In particular, mutually recursive computations are addressed showing under what
conditions mutual recursion slicing holds in the probabilistic setting.

• Finally, the paper shows that a well-known tupling technique known as the “ba-
nana-split” program transformation is still valid in presence of faults.

Paper outline. The following section presents two motivating programs which will be
subject to fault-injection as an illustration of risk simulation and calculation. Section
3 addresses the derivation of such programs via mutual-recursion transformation, an
exercise which is extended in section 4 to the probabilistic setting.4 A basis for the
probabilistic setting is given in section 5, where the LAoP is put in context, leading to
the study of probabilistic mutual recursion given in section 6. This in turn leads to an
asymmetry (section 7) which explains the different fault propagation patterns found in
the two motivating examples (section 8). The topic of fault propagation in functional
programming is further analysed in section 9 by moving to more elaborate data types
and showing how the risk of the whole can be calculated combining the risk of the parts.
The two last sections conclude, review related work and give prospects for future work.
Proofs of auxiliary results are deferred to Appendix A.

2. Motivation

Let us start from two programs written in C. One supposedly computes the square
of a non-negative integer n by adding up the n-first odd numbers:

2MATLAB TM is a trademark of The MathWorks R©.
3This extends to deterministic imperative programs via probabilistic functional semantics denotation.
4Readers more interested in the calculational (probabilistic) theory presented in this paper and not so

much in the Haskell/C examples given as illustration may wish to skip these sections and go straight to
section 5.

3

int sq(int n) {
int s=0; int o=1;
int i;
for (i=1;i<n+1;i++) {s+=o; o+=2;}
return s;

};

The other supposedly computes the n-th entry in the Fibonacci series, for n positive:

int fib(int n) {
int x=0; int y=1; int i;
for (i=1;i<=n;i++) {int a=y; y=y+x; x=a;}
return x;

};

Both programs are for-loops whose bodies rely on the same operation: addition of
natural numbers. Suppose one knows that, in the machine where such programs will
run, there is the risk of addition misbehaving in some known way: with probability p,
x + y may evaluate to y , in which case (x+) = id , the identity function. Or one might
know that, in some unfriendly environment, the processor’s arithmetic-logic unit may
reset addition output to 0, with probability q .

The question is: what is the impact of such faults in the overall behaviour of each
for-loop? Can we measure such an impact? Can we predict it? Are there versions of
the same programs which mitigate such faults better than the ones given?

The standard approach to these questions relies on simulation: one performs a large
number of experiments in which the programs run with the given faults injected ac-
cording to the given probabilities and then performs statistic analysis of the outcome
of such simulations. Software fault injection (Voas and McGraw, 1997) is a more and
more widespread technique for quality assurance which measures the propagation of
faults through paths that might otherwise rarely be followed in testing. The G-SWFIT
technique, for instance, emulates the software fault classes most frequently observed in
the field through a library of fault emulation operators, and injects such faults directly
in the target executable code (Durães and Madeira, 2006).

In this paper we adopt a different strategy: instead of simulating risky behaviour a
posteriori, this is taken into account a priori by moving from imperative to functional
code whereby faulty behaviour is encoded in terms of probabilistic functions (Erwig
and Kollmannsberger, 2006). Take the two versions of faulty addition given above as
examples: the first can be expressed by turning (+) into the probabilistic function

faddp x = id p� (x+) (2)

(fadd for “faulty addition”) which misbehaves as the identity function id with proba-
bility p and exhibits the correct behaviour with probability 1− p; similarly, the second
version is expressed by probabilistic choice

faddq x = 0 q� (x+)

where 0 = 0 is the everywhere-0 constant function. Of course, we might think of
more elaborate fault patterns, for instance

4

faddp,q x = (0 q� id) p� (x+)

in which the probability of fadd resetting to 0 is qp and (1−q) p is that of degenerating
into the identity; or even thinking of normal distributions centered upon the expected
output x + y , and so on.

Probabilistic functions are distribution-valued functions which can be written in
the monadic style over the distribution monad. This is termed Dist in the PFP library
written by Erwig and Kollmannsberger (2006), which we shall be using in the sequel.5

Moreover, probabilistic functions can be reasoned about using the laws of monads, ex-
plicitly as advocated by Gibbons and Hinze (2011) or implicitly as in the probabilistic
notation proposed by Morgan (2012) as extension to the standard Eindhoven quantifier
calculus (Backhouse and Michaelis, 2006).

There is yet another alternative: every probabilistic function f : A → Dist B is
in one-to-one correspondence with a matrix whose columns are indexed by A, whose
rows are indexed by B and whose multiplication corresponds to composition in the
Kleisli category induced by Dist (Oliveira, 2012, 2013). This offers the possibility
of using the rich field of linear algebra to calculate with probabilistic functions, in
the same way relation algebra is advocated by Bird and de Moor (1997) for reasoning
about standard (sharp) functions.

One of the advantages of such a linear algebra of programming (LAoP) is the way
recursive probabilistic functions are handled: simply by using the same combinators
(e.g. maps, folds) of the standard algebra of programming (Bird and de Moor, 1997).
The shift from a qualitative to a quantitative semantics is therefore rather smooth — the
game is the same, the move ensured just by change of underlying category. Following
this approach, Oliveira (2012) already gives an example of what might be referred to
as fault-fusion: the risk of the whole misbehaving can be expressed in terms of the risk
of the parts misbehaving wherever a particular fusion law is applicable.

Note, however, that not every law of the algebra of programming extends quanti-
tatively. In this paper we address the linear algebra extension of one such law which
is particularly relevant to program calculation: the mutual recursion law enabling sys-
tems of mutually recursive functions to be merged into a single, more efficient function
(Bird and de Moor, 1997). Both C programs given above can be derived from their
specifications using such a law. Below we show how they can be turned into prob-
abilistic functions expressing safe and risky behaviour in a natural and calculational
way.

3. Mutual recursion

Let us write the standard definition of the Fibonacci function in Haskell syntax:

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

5All distributions in our approach are generated by finite application of the choice operator (1) and
therefore have finite support.

5

The linear version encoded in the C program given above is obtained by pairing fib
with its derivative, f n = fib (n + 1): 6

fib 0 = 0
fib (n + 1) = f n
f 0 = 1
f (n + 1) = fib n + f n

The pairing of the two functions,

(fib M f) n = (fib n, f n)

can be expressed primitive-recursively by

(fib M f) 0 = (fib 0, f 0) = (0, 1)
(fib M f) (n + 1) = (f n,fib n + f n)

or by the equivalent

(fib M f) 0 = (0, 1)
(fib M f) (n + 1) = (y , x + y) where (x , y) = (fib M f) n

itself the same as

(fib M f) = for loop (0, 1)
where loop (x , y) = (y , x + y)

by introduction of the for loop combinator,

for b i 0 = i
for b i (n + 1) = b (for b i n)

where b is the loop body and i provides for initialization. This is the natural-number
equivalent to combinator foldr over finite lists in Haskell, ie. the catamorphism (Bird
and de Moor, 1997) of the natural numbers. Therefore, we can define

fibl n =
let (x , y) = for loop (0, 1) n

loop (x , y) = (y , x + y)
in x

as the linear version of fib obtained by pairing fib with its derivative — compare with
the C program given above.

The other program computing squares can be derived in the same way from the
specification sq n = n2: the two mutually recursive functions

6Since f 0 = fib 1 = 1 and f (n + 1) = fib (n + 2) = fib n + fib (n + 1) = fib n + f n .

6

sq 0 = 0
sq (n + 1) = sq n + odd n
odd 0 = 1
odd (n + 1) = 2 + odd n

arise from the binomial (n + 1)2 = n2 + 2n + 1 and introduction of function odd n =
2 n + 1, thus named because 2 n + 1 is the n-th odd number. (That is, the square of
a natural number always is a sum of consecutive odd numbers.) Pairing them up into
(sq M odd) x = (sq x , odd x) and proceeding in the same way as above we obtain
(sq M odd) = for loop (0, 1) where loop (s, o) = (s + o, o + 2) and thereupon the
following functional version of the given C program: 7

sql n =
let (s, o) = for loop (0, 1) n

loop (s, o) = (s + o, o + 2)
in s

Clearly, each recursive function above and its linear version are, extensionally, the same
function. Let us now see what happens once we start injecting risky (faulty) behaviour
in each of them.

4. Going probabilistic

Probabilistic extensions of any of the functions above can be obtained by writing
them monadically and then instantiating them with the distribution monad (Erwig and
Kollmannsberger, 2006). (Readers less conversant with monadic programming may
find the short note on program “monadification” given in appendix Appendix B useful
at this point.) Take the recursive version of fib given in the beginning of section 3 and
“monadify it” into:

mfib 0 = return 0
mfib 1 = return 1
mfib (n + 2) =

do {x ← mfib n; y ← mfib (n + 1); return (x + y)}

By running mfib n inside the Dist monad one gets fib n with 100% probability, since
return yields the one-point, Dirac distribution of its argument.

Now let us inject one of the faults mentioned in section 2, say faddp x = id p�(x+)
with p = 0.1, for instance. For this we just replace return (x + y) (perfect addition)
by fadd0.1 x y and run test cases, e.g. 8

7Notice how the syntax s+=o; o+=2; in C nicely tallies with (s + o, o + 2) in Haskell.
8The probabilities in this example and others to follow are chosen with no criterion at all apart from

leading to distributions visible to the naked eye. By all means, 0.1 would be extremely high risk in realistic
PRA (Stamatelatos and Dezfuli, 2011), where only figures as small as 1.0E-7 are “acceptable” risks.

7

Main> mfib 4
3 81.0%
2 18.0%
1 1.0%

We see that the correct behaviour (100% chance of getting fib 4 = 3) is no longer
ensured — with chance 18% one may get 2 as result and even 1 is a possible output,
with probability 1%.

Similar experiments can be carried out with the linear version by defining its monadic
evolution

mfibl n =
do {(x , y)← mfor loop (0, 1) n; return x }
where loop (x , y) = return (y , x + y)

relying on the monadic extension of the for combinator:

mfor b i 0 = return i
mfor b i (n + 1) = do {x ← mfor b i n; b x }

To inject into mfibl the same fault injected before into mfib amounts to replacing, in
the loop body, good addition (x + y) by the bad one (fadd0.1 x y):

loop (x , y) = do {z ← fadd0.1 x y ; return (y , z)}

Running the same experiment as above we still get mfibl 4 = mfib 4. However,
behavioural equality between the two (one recursive, the other linear) fault-injected
versions of fib is no longer true for arguments n > 4, see for instance:

n mfib n mfibl n

5

5 65.6%
4 21.9%
3 10.5%
2 1.9%
1 0.1%

5 72.9%
3 16.2%
4 8.1%
2 2.7%
1 0.1%

6

8 47.8%
7 26.6%
6 11.8%
5 9.8%
4 2.7%
3 1.1%
2 0.2%
1 0.0%

8 65.6%
6 14.6%
5 14.6%
3 2.4%
4 2.4%
2 0.4%
1 0.0%

Note how the linear version performs better than the recursive one in the sense of hitting
the correct answer with higher probability.9

9Intuitively, this is to be expected, since the linear version performs the faulty operation less often.

8

Finally, let us now carry out similar experiments concerning the injection of the
same fault (in the addition function) in suitably extended (monadic) versions of the
square function, the recursive one

msq 0 = return 0
msq (n + 1) = do {m ← msq n; fadd0.1 m (odd n)}

and the linear one:

msql n = do {(s, o)← mfor loop (0, 1) n; return s } where
loop (s, o) = do {z ← fadd0.1 s o; return (z , o + 2)}

In this case — as much as we can test — both versions exhibit the same behaviour, that
is, they are probabilistically indistinguishable, see for instance:

n msq n msql n

0 0 100.0% 0 100.0%
1 1 100.0% 1 100.0%

2
4 90.0%
3 10.0%

4 90.0%
3 10.0%

3
9 81.0%
5 10.0%
8 9.0%

9 81.0%
5 10.0%
8 9.0%

...
...

...

6

36 59.0%
11 10.0%
20 9.0%
27 8.1%
32 7.3%
35 6.6%

36 59.0%
11 10.0%
20 9.0%
27 8.1%
32 7.3%
35 6.6%

...
...

...

Summing up, we are in presence of two examples in which the risk of bad behaviour
propagates differently across the mutual recursion (tupling) program transformation.

In the remainder of this paper we will resort to linear algebra to explain this dis-
crepancy. We will show that, even if the transformation does not hold in general for
probabilistic functions, there are side conditions sufficient for it to hold. It turns out
that the square example will meet one such side-condition while Fibonacci will not.
This will explain the different behaviour witnessed in the examples above.

5. Probabilistic for-loops in the LAoP

Consider the probabilistic Boolean function f = False 0.05� (¬) which is such
that f True = False (100%) and f False is either True (95%) or False (5%) — an
instance of faulty negation. It is easy to represent f in the form of a matrix M ,

M =

False True
False

True

0.05 1.00

0.95 0.00

 (3)

9

where the inputs spread across columns and the outputs across rows. Because columns
represent distributions, all figures in the same column should sum up to 1.

Matrices with this property will be referred to as column-stochastic (CS). The mul-
tiplication of two CS-matrices is a CS-matrix, as is the identity matrix id (square,
diagonal matrix with 1s in the diagonal) which is the unit of such multiplication:
M .id = M = id ·M , where matrix multiplication is denoted by an infix dot (·).

Note that CS-matrices are total in the sense that no column adds to less than 1.
Relaxing such a constraint would lead to so called sub-stochastic matrices. In the
current paper, all matrices are CS, that is, they are total in the above sense.

We will write M : n → m , or draw the arrow n
M // m , to indicate the type

of a CS-matrix M , meaning that it has n columns and m rows. This view enables
us to regard all CS-matrices as morphisms of a category whose objects are matrix
dimensions, each dimension having its identity morphism id . If one extends such
objects to arbitrary types (with Cartesian product and disjoint union for addition and
multiplication of matrix dimensions), this category of matrices turns out to represent
the Kleisli category induced by the (finite) distribution monad. In the example above,
f : Bool → Dist Bool is represented by a matrix M of type Bool → Bool (3) on the
Kleisli-category side.

Let notation [[f]] mean the matrix which represents probabilistic function f in such
a CS-matrix category. For f of type A→ Dist B , [[f]] will be a matrix of type A→ B ,
that is, cell b [[f]] a in the matrix 10 records the probability of b in distribution δ = f a .
Then probabilistic function (monadic) composition,

(f • g) a = do {b ← g a; f b}

becomes matrix multiplication,

[[f • g]] = [[f]] · [[g]] (4)

and probabilistic function choice is given by

[[f p� g]] = p[[f]] + (1− p)[[g]] (5)

where + denotes addition of two matrices of the same type and p M denotes the mul-
tiplication of every cell in M by probability p.

Clearly, [[return]] = id . Any conventional function f : A → B can be turned
into a “sharp” probabilistic one through the composition return · f which, represented
as a CS-matrix, is the matrix M = [[return · f]] such that b M a = 1 if b = f a
and is 0 otherwise. A probabilistic function f : A → Dist B is said to be sharp if,
for all a ∈ A, f a is a Dirac distribution. (Recall that a Dirac distribution is one
whose support is a singleton set, the unique element of which is offered with 100%
probability.) We will write [[f]] as shorthand for [[return · f]] and therefore rely on the
fact that (f a) [[f]] a = 1, all other cells being 0.

10Following the infix notation usually adopted for relations (which are Boolean matrices), for instance
y 6 x , we write y M x to denote the contents of the cell in matrix M addressed by row y and column
x . This and other notational conventions of the linear algebra of programming are explained in detail in
(Oliveira, 2013).

10

The fact that sharp functions are representable by matrices and that function com-
position corresponds to chaining the corresponding matrix arrows makes it easy to pic-
ture probabilistic functional programs in the form of diagrams in the matrix (Kleisli)
category. Take, for instance, the for-loop combinator given above,

for b i 0 = i
for b i (n + 1) = b (for b i n)

and re-write it as follows,

(for b i) · 0 = i
((for b i) · succ) n = (b · (for b i)) n

where succ n = n + 1 and (recall) the under-bar notation denotes constant functions.
This is the same as writing two matrix equalities:

[[for b i]] · [[0]] = [[i]]
[[for b i]] · [[succ]] = [[b]] · [[for b i]]

These can be reduced to a single equality

[[for b i]] · [[[0]] | [[succ]]] = [[[i]] | [[b]] · [[for b i]]] (6)

by resorting to the [M |N] combinator which glues two matrices M : A → C and
N :B → C side-by-side, yielding [M |N] :A+B → C . As explained by Macedo and
Oliveira (2013), this combinator — which corresponds to the relational “junc” operator
of Bird and de Moor (1997) — is a universal construction in any category of matrices,
therefore satisfying (among others) the fusion law

P · [M |N] = [P ·M |P ·N] (7)

and (for suitably typed matrices) the equality law,

[M |N] = [P |Q] ≡ M = P ∧N = Q (8)

both silently used in the derivation of (6) above.
Our matrix semantics for the for-loop combinator can still be simplified in two

ways: first, the [[·]] parentheses in (6) can be dropped, since we may assume they are
implicitly surrounding functions everywhere:

(for b i) · [0 | succ] = [i | b · (for b i)]

Second, [i | b · (for b i)] can be factored into the composition [i | b] · (id ⊕ (for b i)),
since absorption law

[M |N] · (P ⊕Q) = [M · P |N ·Q] (9)

holds, where · ⊕ · is the matrix direct sum (block) operation: M ⊕ N =
[

M 0
0 N

]
.

Altogether, we get an equality of two matrix compositions,

11

(for b i) · [0 | succ] = [i | b] · (id ⊕ (for b i))

which corresponds to the typed matrix diagram which follows:

N0

out=in◦

))

for b i

��

∼= 1 + N0

in=[0 | succ]

hh

id⊕(for b i)

��
B 1 + B

[i | b]

hh

(10)

Symbol∼= indicates that function in = [0 | succ] is a bijection, and therefore its converse
(or inverse) in◦ is also a function.11 As is costumary, we denote by out the converse of
in, as in (10). Note that bijections are the olny CS matrices which are invertible.

Why does diagram (10) matter? First, it can be recognized as an instance of a
catamorphism diagram (Bird and de Moor, 1997), here interpreted in the category of
CS-matrices rather than in that of total functions or binary relations — the qualitative
to quantitative shift promised in the introduction of this paper.

In fact, because composition is closed for CS-matrices and these include sharp
functions, b and i can vary inside the CS-matrix space and the diagram will still make
sense. For instance, the base case, which is represented by constant function i :1→ N0

— a column vector — corresponds to the Dirac distribution on i , which can be changed
to any other distribution. Moreover, the diagram tells that for b i is a solution to the
equation k · in = [i | b] · (id ⊕ k). Because in is a bijection, this yields the unique
solution12 characterized by universal property:

k = for b i ≡ k · in = [i | b] · (id ⊕ k) (11)

This unique solution can be computed as the fixpoint in k of equation

k = [i | b · k] · out (12)

which is obtained from (11) by absorption (9) and shunting in = [0 | succ] to the right-
hand side, since it is a bijection.

Equation (12) also serves to emulate the construction of the least fixpoint using
matrix algebra packages such as, for instance, MATLAB. In this case, we build finite
approximations of the fixpoint by restricting to (say) n inputs (from 0 to n − 1) and m

11In general, by the converse M ◦ of a matrix M we mean its transpose, that is, x M ◦ y = y M x holds:
the effect is that of swapping rows with columns.

12The argument is the same as in (Bird and de Moor, 1997) just by replacing the powerset monad by
the distribution monad. More generally, it is standard that an initial algebra of base functor F lifts to the
corresponding initial algebra in the Kleisli category of a monad which distributes over F. The so-called
polynomial (or shapely) functors distribute over the probabilistic monad (Hasuo et al., 2007).

12

outputs (from 0 to m − 1):13

n
out //

k

��

1 + n

id⊕k

��
m 1 + m

[i | b]
oo

Let us see an example: suppose we want to emulate a fault in the odd function,
odd = (1+) · (2∗), in which (2∗) = for (2+) 0 is disturbed by the propagation of the
same fault of addition operator we have seen before:

ftwicep = mfor faddp 2 0 = mfor (id p� (x+)) 0

For instance, ftwice0.1 4 is the distribution

8 65.6%
6 29.2%
4 4.9%
2 0.4%
0 0.0%

In MATLAB, we will first draw the corresponding diagram,

n
out=[0 | succ]◦ //

ftwicep

��

1 + n

id⊕ftwicep

��
m 1 + m

[0 | idp�(2+)]
oo

parametric on probability p and the n and m dimensions, which nevertheless have to
be passed explicitly when encoding each arrow of the diagram as a MATLAB matrix.
The probabilistic choice occurring in the corresponding instance of (12),

k = [0 | (id p� (2+)) · k] · [0 | succ]◦ (13)

is encoded in MATLAB as function:

function C = choice(p,M,N)
if size(M) ˜= size(N)

error(’Dimensions must agree’);
else

C = p*M+(1-p)*N
end

end

13Compared to (10), this diagram corresponds to restricting N0 to the first n natural numbers (finite
approximation), similarly for m . As MATLAB is not typed, tracing matrix dimensions without the help of
diagrams of this kind would be a nightmare.

13

— recall (5) and note the need for explicit type error checking. This is used in the
MATLAB encoding of faddp (2)

function R = fadd(p,x,m)
% fadd : P -> x -> m -> m

R = choice(p,eye(m),addk(k,m,m));
end

where dimension m is again passed as parameter, eye is the MATLAB constructor of
identity matrices and addk is a suitable function encoding (k+) using matrices. Using
standard linear algebra, the right-hand side of equation (13) unfolds into the following
MATLAB code, parametric on p:

function R = twiceF(p,K)
[m n] = size(K);
R = zero(m)*zero(n)’ + fadd(p,2,m)*K*succ(n,n)’;

end

For n,m = 5, 8 and p = 0.1, the least fixpoint of equation (13) — i.e. K = twiceF (p,K)
in MATLAB— is the matrix

1 0.1 0.01 0.001 0.0001
0 0 0 0 0
0 0.9 0.18 0.027 0.0036
0 0 0 0 0
0 0 0.81 0.243 0.0486
0 0 0 0 0
0 0 0 0.729 0.2916
0 0 0 0 0
0 0 0 0 0.6561

whose leftmost column (resp. top row) corresponds to input (resp. output) 0. The five
columns of the matrix correspond to the distributions output by the monadic ftwice0.1 n ,
for n = 0 . . 4.

So much for an illustration of the correspondence between monadic probabilistic
programming (in Haskell) and column stochastic matrix construction (in MATLAB). In
the following section we will return to analytical methods relying solely on universal
property (11) and its corollaries.

6. Probabilistic mutual recursion in the LAoP

As we have seen above, mutual recursion arises from the pairing — tupling, in
general (Hu et al., 1997) — of two (sharp) functions f and g , defined by

(f M g) x = (f x , g x)

where f M g :A→ B×C for f :A→ B and g :A→ C . This tupling operator is known
as split in the functional setting (Bird and de Moor, 1997) or as fork in the relational
one (Frias et al., 1997; Schmidt, 2010). Macedo (2012) shows that these operators

14

generalize to the so-called Khatri-Rao product M M N of two arbitrary matrices M and
N , defined index-wise by

(b, c) (M M N) a = (b M a)× (c N a) (14)

Thus the Khatri-Rao product is a “column-wise” version of the well-known Kronecker
product M ⊗N defined by:

(y , x) (M ⊗N) (b, a) = (y M b)× (x N a) (15)

Both products are intimately related by the absorption law

(M ⊗N) · (P M Q) = (M · P) M (N ·Q) (16)

valid for any (suitably typed) matrices M , N , P , Q (Macedo, 2012).
Khatri-Rao coincides with Kronecker for column vectors u : 1→ B , v : 1→ C ,

u M v = u ⊗ v (17)

and commutes with matrix junc’ing via the exchange law (Macedo, 2012):

[M |N] M [P |Q] = [M M P |N M Q] (18)

for suitably typed matrices M , N , P and Q .
For sharp functions f and g , pairing is an universal construct ensuring that any

function k producing pairs is uniquely factored to the left and to the right,

k = f M g ≡ fst · k = f ∧ snd · k = g (19)

where fst (b, c) = b and snd (b, c) = c. (Note how liberally we keep omitting the [[·]]
parentheses around the occurrence of functions inside matrix expressions.)

From (19) a number of useful corollaries arise, namely (keep in mind that f and g
should be sharp functions for the time being) fusion,

(f M g) · h = (f · h) M (g · h) (20)

reconstruction,14

k = (fst · k) M (snd · k) (21)

reflection

fst M snd = id (22)

and pairwise equality:

k M h = f M g ≡ k = f ∧ h = g (23)

14Cf. loss-less decomposition (Oliveira, 2011).

15

This makes it easy to prove the mutual recursion law, below instantiated to for-
loops, where F f abbreviates id ⊕ f : 15

f M g = for (h M k) (i , j)

≡ { universal property (11) }

(f M g) · in = [i , j | h M k] · F (f M g)

≡ { fusion (20) ; constant functions }

(f · in) M (g · in) = [i M j | h M k] · F (f M g)

≡ { exchange law (18) }

(f · in) M (g · in) = ([i | h] M [j | k]) · F (f M g)

≡ { fusion (20) again }

(f · in) M (g · in) = ([i | h] · F (f M g)) M ([j | k] · F (f M g))

≡ { equality (23) }{
f · in = [i | h] · F (f M g)
g · in = [j | k] · F (f M g)

�

Read in reverse direction, this reasoning explains how two recursive, mutually depen-
dent functions f and g (regarded as matrices) combine with each other into one single
function f M g , from which one can extract both f and g by projecting according to the
cancellation rule,

fst · (f M g) = f ∧ snd · (f M g) = g (24)

yet another corollary of (19).
The law just derived can be identified as the underpinning of the (pointwise) deriva-

tions of fibl (resp. sql) from fib (resp. sq) back to section 2. But note that f and g have
been regarded as sharp functions thus far, and therefore what we have written is just a
rephrasing of what can be found already in the literature of tupling, see e.g. references
(Bird and de Moor, 1997; Hu et al., 1997) among others.

We are now interested in checking the probabilistic generalization of (19). Let two
probabilistic functions f and g and their product f M g be depicted as the CS-matrices

15As is well-known, for sharp functions this law extends to other inductive types, e.g. lists, trees etc (Bird
and de Moor, 1997; Hu et al., 1997).

16

of the following diagram:

2 2× 3
fst=

h
1 1 1 0 0 0
0 0 0 1 1 1

i
oo

snd=

»
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

–
// 3

4

f M g =

0.15 0.12 0 0
0.35 0.06 0 0.75
0 0.12 0 0

0.15 0.28 0.1 0
0.35 0.14 0.2 0.25
0 0.28 0.7 0


OO

g=

»
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

–

>>}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

f=
h
0.5 0.3 0 0.75
0.5 0.7 1 0.25

i

``AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Note that, in general, projections fst and snd regarded as matrices are succinctly de-
fined by:

fst = id ⊗ ! , snd = !⊗ id (25)

Here, ! denotes the unit of the Khatri-Rao product

! M M = M = M M ! (26)

which is the unique row vector of its type wholly filled with 1s (Macedo, 2012). We
can handle this product and its projections in Haskell by running the following monadic
functions

(f M g) a = do {b ← f a; c ← g a; return (b, c)}
mfst d = do {(b, c)← d ; return b}
msnd d = do {(b, c)← d ; return c}

inside the distribution monad Dist , thereby implementing the Khatri-Rao product and
its projections. For instance, (f M g) 2 above will yield

(2,1) 28.0%
(2,3) 28.0%
(2,2) 14.0%
(1,1) 12.0%
(1,3) 12.0%
(1,2) 6.0%

as in the second column of the corresponding matrix given above. Moreover, both in
Haskell and MATLAB we can observe the cancellations fst · (f M g) = f and snd · (f M

g) = g .
However, reconstruction (21) does not hold for an arbitrary probabilistic function

k . This is because not every CS-matrix k : A→ B × C outputting pairs is the Khatri-

17

Rao product of two CS-matrices, as the following counter-example shows: matrix

k : 3→ 2× 3

k =


0 0.4 0.2

0.2 0 0.17
0.2 0.1 0.13
0.6 0.4 0.2
0 0 0.17
0 0.1 0.13


cannot be recovered from its projections, cf. the first column in:

(fst · k) M (snd · k) =


0.24 0.4 0.2
0.08 0 0.17
0.08 0.1 0.13
0.36 0.4 0.2
0.12 0 0.17
0.12 0.1 0.13


This happens because probabilistic Khatri-Rao is a weak product in the category of

CS-matrices16 — the expected equivalence (19) is only an implication,

k = f M g ⇒ fst · k = f ∧ snd · k = g (27)

ensuring existence but not uniqueness. The proof of (27), which is equivalent to can-
cellation (24) — substitute k and simplify — can be found in Appendix A. This proof
relies on properties (16) and (26) of the Khatri-Rao product.

Weak product (27) also grants pairwise equality (23) — substitute k by k M h and
simplify — but the converse substitution of f and g , in the ⇐ direction, leading to
reconstruction (21) is invalid. In turn, this invalidates fusion (20) for arbitrary proba-
bilistic functions f , g and h , although the property will still hold in case h is sharp 17,
as the straightforward proof of (A.1) in Appendix A shows.

Altogether, the mutual recursion law will not hold in general for probabilistic func-
tions, as its calculation (above) relies on fusion (20). This is consistent with what we
have observed in section 4 concerning the two versions of Fibonacci, mfib before the
application of mutual recursion and mfibl after, which differ substantially for inputs
larger than 4. However, the corresponding pair of probabilistic functions of the other
example — msq and msql — seemed to be the same (ie. probabilistically indistin-
guishable), as much as could be tested.

In the following section we explain the difference observed in the two experiments
by investigating sufficient conditions for the mutual recursion law to hold for proba-
bilistic functions (CS-matrices).

16 Recall that CS-matrices represent total probabilistic functions.
17The same happens with forks in relation algebra (Bird and de Moor, 1997).

18

7. Asymmetric Khatri-Rao product

In order to convert (27) into equivalence (19) generalized to probabilistic f , g and
k , we have to find conditions for the converse implication

k = f M g ⇐ fst · k = f ∧ snd · k = g

to hold, which is equivalent to (21) under the substitution or introduction of variables
f and g . For this we may seek inspiration in relation algebra, where one knows that if
one of the projections of a binary relation R outputting pairs is functional (ie., deter-
ministic), then (b, c) R a ≡ b (fst · R) a ∧ c (snd · R) a holds. That is, by forking
fst · R and snd · R one rebuilds R.

Back to probabilistic functions (ie. CS-matrices), this suggests the conjecture:

If either fst · k or snd · k are sharp functions then (21) holds. (28)

k =


a1 a2

(b1, c1) 0.3 0
(b1, c2) 0.7 0
(b2, c1) 0 0.4
(b2, c2) 0 0.6


Some remarks first, before checking this conjec-

ture. Let k : A → B × C be a CS-matrix (example
aside, for two element data types A, B and C). The
fact that f = fst · k : A→ B is sharp, e.g.

f =
[a1 a2

b1 1 0
b2 0 1

]

snd · k =
[a1 a2

c1 0.3 0.4
c2 0.7 0.6

]in the example — means that, for b = f a , the cor-
responding C -block in matrix k adds up to 1 and all
the other entries in the a-column of k are 0. Pro-
jection snd · k : A → C yields such blocks (aside);
〈fst · k , snd · k〉 puts these back in place, rebuilding
k .

To prove (28) we will resort to the definition of (typed) matrix composition, for
M : B → C and N : A→ B :

c(M ·N)a = 〈
∑

b :: (c M b)× (b N a)〉 (29)

We also need two rules which interface index-free and index-wise matrix notation,

y(f ·N)x = 〈
∑

z : y = f z : zNx〉 (30)

y(g◦ ·N · f)x = (g y) N (f x) (31)

where N is an arbitrary matrix and f , g are functional (ie. sharp) matrices.18

18These rules are derived by Oliveira (2013) adopting the Eindhoven notation (Backhouse and Michaelis,
2006; Morgan, 2012) for summations, e.g. 〈

P
x : R : S〉 where R is the range (a predicate) which binds

the dummy x and S is the summand. 〈
P

x :: S〉 corresponds to R true for all x, the convention being to
omit R in this case.

19

Let us suppose fst ·k in (21) is sharp, denoting by f :A→ B such a sharp function:
f = fst · k . Regarded as a matrix, f is such that b f a = 1 if b = f a , otherwise
b f a = 0. It is easy to check that facts

〈
∑

c :: (f a, c) k a〉 = 1 (32)

〈
∑

(b, c) : (b 6= f a) : ((b, c) k a)〉 = 0 (33)

hold — see below. Define m = 〈fst · k , snd · k〉, that is,

(b, c) m a = (b (fst · k) a)× (c (snd · k) a)

the same as

(b, c) m a = (b f a)× 〈
∑

b′ :: (b′, c) k a〉 (34)

since f = fst · k an snd is sharp (30). Our aim is to prove that m = k .

Case b 6= f a:. In this case b f a = 0 and (34) yields (b, c) m a = 0, for all a , b and
c. From (33) we also get (b, c) k a = 0 and so m = k for this case.

Case b = f a:. we have

(f a, c) m a

= { (34) ; (b f a) = 1 for b = f a }

〈
∑

b′ :: (b′, c) k a〉

= { b′ = f a ∨ b′ 6= f a }

〈
∑

b′ : b′ = f a ∨ b′ 6= f a : (b′, c) k a〉

= { split summation ; one-point over b′ = f a }

((f a, c) k a) + 〈
∑

b′ : b′ 6= f a : (b′, c) k a〉

= { (33) }

(f a, c) k a

Thus m and k are extensionally the same for all cells addressed by (f a, c), completing
the proof.
�

The proof assuming snd · k sharp instead of fst · k being so is essentially the same.
The remaining assumptions (32) and (33) are easily proved in the appendix.

8. Probabilistic mutual recursion resumed

Back to the case studies of section 4, we now capitalize on the result of the previous
section granting that, if one of the projections of a probabilistic pair-valued function k
is a sharp function, then property (19) holds and all its corollaries. 19 This means that,

19This includes, of course, the standard case in which both f and g are sharp functions.

20

under the same assumption, the mutual recursion law will hold too.
Put in other words, the probabilistic behaviour of a pair-valued recursive function

k , for instance a for-loop k = for b i , will be the same as the product f M g of its
mutually recursive projections f and g , provided either f is sharp or g is sharp.

This enables us to spot a difference between the two examples of section 4 just by
looking at the corresponding call graphs:

ONMLHIJKsq
��

// WVUTPQRSodd

��

GFED@ABCfib //ONMLHIJKf

��

BCD@GA??

We see that sq depends on itself and on odd but odd only depends on itself. Probabilis-
tic msq was obtained from sq by injecting a fault in the addition operation but this did
not interfere with odd , which remained a sharp function. Thus msql and msq exhibit
the same probabilistic behaviour.

Comparatively, mfib was obtained from fib by injecting a similar fault but this time
the fault propagates to its derivative f and then back to mfib. Thus both mfib and f are
genuinely probabilistic and the derived linear version mfibl is not granted to exhibit the
same behaviour.

This can be confirmed by further querying our experiments in two ways. First, we
check that the odd projection of msql remains sharp in spite of the probabilistic process
it runs inside of: we define msqlo as the same as msql but returning o instead of s ,

msqlo n = do {(s, o)← mfor loop (0, 1) n; return o} where
loop (s, o) = do {z ← fadd0.1 s o; return (z , o + 2)}

and run for instance

Main> msqlo 5
11 100.0%

to observe that it yields the Dirac distribution on 11, the fifth odd number; while its
companion projection yields:

Main> msql 5
25 65.6%
9 10.0%

16 9.0%
21 8.1%
24 7.3%

Second, we disturb this situation by injecting another fault, this time in the odd function
itself:

odd ′ 0 = return 1
odd ′ (n + 1) = do {x ← odd ′ n; fadd0.1 2 x }

21

Then we check that suitably adapted msq , mutually dependent on odd ′,

msq ′ 0 = return 0
msq ′ (n + 1) = do {m ← msq ′ n; x ← odd ′ n; fadd0.1 m x }

and its linear version,

msql ′ n = do {(s, o)← mfor loop (0, 1) n; return s } where
loop (s, o) = do {z ← fadd0.1 s o; x ← fadd0.1 2 o; return (z , x)}

now exhibit different probabilistic behaviours, for instance:

n msq ′ n msql ′ n

3

9 59.0%
7 19.7%
5 10.3%
8 6.6%
6 2.2%
3 1.9%
4 0.2%
1 0.1%
2 0.0%

9 65.6%
5 15.4%
7 7.3%
8 7.3%
3 2.6%
4 0.8%
6 0.8%
1 0.1%
2 0.1%

As in the Fibonacci example, we observe that linear scores better than mutually recur-
sive.

9. Generalizing to other fault propagation patterns

Besides mutual recursion, other fault propagation patterns in functional programs
arise from calculations in the LAoP. These extend to other datatypes, as for-loops gen-
eralize to folds over lists, and more generally to catamorphisms over other inductive
data types (Bird and de Moor, 1997). Below we give examples of this generalization.

Base-case fault distribution. The first example, still dealing with for-loops, shows that
faults in the base case propagate linearly through the choice operator — the law of
base-case fault distribution:

for f (a p� b) = (for f a) p� (for f b) (35)

The need for a generalization can be seen already in writing “a p� b”, an abuse of
notation since the choice operator chooses between functions, not arbitrary values.
Thus construct for f i has to give room to (|[h | f]|), where standard catamorphism
notation (Bird and de Moor, 1997) is adopted to give freedom to the base case to be
any probabilistic function h of its type. Thus (11) becomes, for F f = id ⊕ f ,

k = (|[h | f]|) ≡ k · in = [h | f] · (F k) (36)

Clearly,

for f a = (|[a | f]|) (37)

22

holds. In (35), abbreviation for f (a p� b) replacing (|[a p� b | f]|) is welcome as it
enhances readability.

The proof of (35) is given in Appendix A. It relies on properties of probabilistic
choice already given by Oliveira (2012), namely choice-fusion

(f p� g) · h = (f · h) p� (g · h) (38)
h · (f p� g) = (h · f) p� (h · f) (39)

and the exchange law:

[f | g] p� [h | k] = [f p� h | g p� k] (40)

Pipelining. Other interesting patterns of fault propagation arise in pipelining, that is,
compositions of probabilistic functions k = f ·g whereby one is able to obtain the fault
of the whole (probabilistic k) expressed in terms of the faults of its parts (probabilistic
f and g) by “fault fusion”.

The example of fault fusion given below involves sequences rather than natural
numbers, which means evolving from the for combinator to the corresponding combi-
nator at sequence processing level, here given in Haskell (monadic) notation: 20

fold f d [] = d
fold f d (h : t) = do {x ← fold f d t ; f (h, x)}

The semantics of this combinator are captured in linear algebra by the universal prop-
erty

k = fold f d ≡ k · in = [d | f] · (F k) (41)

where F k = id ⊕ id ⊗ k and in = [nil | cons] is the initial algebra of sequences, for
nil = [] and cons (h, t) = h : t . Recursive pattern F k = id ⊕ id ⊗ k involves,
besides direct sum (id ⊕ ·) splitting base from recursive case (as in for), the Kronecker
product id ⊗ k which delivers to f the head of the input sequence and the outcome of
the recursive call over its tail — the pair (h, x) in the code above. The base case is
captured in (41) by vector d , a distribution. By substituting k by fold f d and in-lining
the definition of F k in (41) we get the cancellation property

fold f d · in = [d | f · (id ⊗ (fold f d))] (42)

from which the Haskell code above is derived by monadic conversion.
As examples, consider count = fold (succ · snd) 0, the function that counts how

many items can be found in the input sequence, and cat = fold cons nil, that which
copies the input sequence to the output (thus cat = id). Suppose there is some risk
that cat might fail passing items from input to output, with probability p, as captured
by

fcatp = fold (lose p� send) nil

20As already mentioned, both are instances of the generic probabilistic catamorphism construct, see (45)
in section 10.

23

where lose = snd and send = cons. For instance, for p = 0.1, distribution
fcat0.1 "abc" will range from perfect copy (72.9%) to complete loss (0.1%):

"abc" 72.9%
"ab" 8.1%
"ac" 8.1%
"bc" 8.1%
"a" 0.9%
"b" 0.9%
"c" 0.9%
"" 0.1%

Now suppose that count too may be faulty in the sense of skipping elements with
probability q :

fcountq = fold ((id q� succ) · snd) 0

For instance, for q = 0.15, distribution fcount0.15 "abc" will be:

3 61.4%
2 32.5%
1 5.7%
0 0.3%

What can we tell about the risk of faults in the pipeline fcountq · fcatp? We could
try specific runs, e.g. (fcount0.15 · fcat0.1) "abc" yielding distribution

3 44.8%
2 41.3%
1 12.7%
0 1.3%

whose figures combine, in some way, those given earlier for the individual runs.
What we would like to know is the general formula which combines such figures

and expresses the overall risk of failure. For this we resort to the fusion law which
emerges from (41) in the standard way (Bird and de Moor, 1997) and also in the prob-
abilistic setting:

k · (fold g e) = fold f d ⇐ k · [e | g] = [d | f] · (F k) (43)

In our case, this enables us to solve the equation fcountq · fcatp = fold x y for
unknowns x and y :

fcountq · fcatp = fold x y

⇐ { fold fusion (43) ; definition of fcatp }

fcountq · [nil | lose p� send] = [x | y] · (F fcountq)

≡ { (7) ; definition of F; (9) ; (8) }{
fcountq · nil = x
fcountq · (lose p� send) = y · (id ⊗ fcountq)

24

≡ { fcountq · nil = 0 ; lose = snd ; send = cons }{
x = 0
fcountq · (snd p� cons) = y · (id ⊗ fcountq)

Second, we solve the second equality just above for y :

fcountq · (snd p� cons) = y · (id ⊗ fcountq)

≡ { choice fusion (39) }

(fcountq · snd) p� (fcountq · cons) = y · (id ⊗ fcountq)

≡ { unfolding fcountq · cons }

(fcountq · snd) p� ((id q� succ) · snd · (id ⊗ fcountq))
= y · (id ⊗ fcountq)

≡ { free theorem of snd }

(fcountq · snd) p� ((id q� succ) · fcountq · snd)
= y · (id ⊗ fcountq)

≡ { choice fusion (38) factoring fcountq · snd }

(id p� (id q� succ)) · fcountq · snd = y · (id ⊗ fcountq)

≡ { free theorem of snd again }

(id p� (id q� succ)) · snd · (id ⊗ fcountq) = y · (id ⊗ fcountq)

⇐ { Leibniz (id ⊗ fcount · cancelled from both sides) }

y = (id p� (id q� succ)) · snd
�

Summing up, we have been able to consolidate the risk of the pipeline fcountq · fcatp ,
obtaining the overall behavior

fcountq · fcatp = fold y 0 where
y = ((p + q − pq) id + (1− p) (1− q) succ) · snd

in which the probabilistic definition of y combines the choices according to (5). It
can be checked that this behaviour (which corresponds to that of an even more risky
counter reading from a perfect channel) matches up with the distributions obtained for
the specific runs given earlier.

Consolidating risk by fusion offers new opportunities for reasoning about faulty
pipelines. For instance, from the expression given by y above we can infer that different
pipelines may have the same behaviour, e.g.

fcount0 · fcatp = fcountp · fcat0

25

since terms

(0 + p − 0 p) id + (1− 0) (1− p) succ
(p + 0− p0) id + (1− p) (1− 0) succ

are the same. In words: for the same probabilities, a perfect counter reading from a
faulty channel is indistinguishable from a faulty counter reading from a perfect channel.

10. Probabilistic “banana-split”

Our final result has to do with a program transformation technique known as banana-
split (Bird and de Moor, 1997). Suppose you want to compute the average of a non-
empty list of integers:

avg l =
sum l
count l

(44)

Clearly, you need to visit the input list l twice, one for computing the sum of all integers
and the other for knowing how many there are. Banana-split is known as a corollary of
the mutual recursion law which enables one to merge both visits into a single one by
keeping both values (current sum and current count) in a pair.

From the results of section 8 one cannot take banana-split for granted in presence
of faults, as mutual-recursion does not hold in general. Let us start with an example:
we inject faults in (44) by defining

favgp,q = fsump
M fcountq

for fcountq as before and

fsump = fold (uncurry faddp) 0

a (faulty) list sum function.21 For instance, the outcome

Main> favg 0.15 0.1 [2,3]
(5,2) 58.5%
(5,1) 13.0%
(2,2) 10.3%
(3,2) 10.3%
(2,1) 2.3%
(3,1) 2.3%
(0,2) 1.8%
(5,0) 0.7%
(0,1) 0.4%
(2,0) 0.1%
(3,0) 0.1%
(0,0) 0.0%

21We focus on computing the pair of values of (44), leaving aside the final division and the problem of the
divisions by zero which arise from faulty counting, to be handled by raising exceptions as in e.g. (Oliveira,
2014).

26

will lead to the correct average 2.5 = 5
2 with 58.5% probability, the wrong average of

5 with 13.0% probability and so on and so forth.
By application of banana split (details below) we transform favgp,q into a single

fold on total/count pairs (t , c),

favgbsp,q = fold body (0, 0) where
body (a, (t , c)) = do {t ′ ← faddp a t ; c′ ← (id q� succ) c; return (t ′, c′)}

which happens to yield the same output for the same arguments.
Perhaps the run above is not a good choice after all for showing some possible

discrepancy between the two versions of the code, before and after banana split —
one would say. It turns out that further experiments won’t succeed in finding a run
discriminating both solutions, as these will remain probabilistically indistinguishable.

We show below that this happens because the banana split program transformation
law does hold probabilistically, independently of mutual recursion. To give a single
proof covering for-loops and folds on lists as special cases, we generalize both (11)
and (41) to

k = (|f |) ≡ k · in = f · (F k) (45)

where f is a suitably typed probabilistic function and the customary banana brackets
(| |) are used to denote such a generic fold, or catamorphism. Functor F is allowed to
range over so called polynomial or shapely functors involving finite products and sums
(Hasuo et al., 2007). Instances F X = id ⊕ X and F X = id ⊕ id ⊗ X give us back
for-loops and list folds, respectively. Cancellation

(|f |) · in = f · F (|f |) (46)

follows trivially from (45).

Theorem 1 (Probabilistic ‘banana-split’). Transformation

(|f |) M (|g |) = (|(f ⊗ g) · unzipF|) (47)

where

unzipF = F fst M F snd (48)

holds for f and g probabilistic and for all functors F over which unzipF is natural:

(F f ⊗ F g) · unzipF = unzipF · F (f ⊗ g) (49)

Proof: Relying on absorption law (16) we proceed by cata-universality, by solving for
f the right hand side equation of (45), once k is instantiated to k = (|f |) M (|g |):

((|f |) M (|g |)) · in

= { as in is a sharp function, pair-fusion holds (A.1) }

((|f |) · in) M ((|g |) · in)

= { two cancellations (46) }

27

(f · F (|f |)) M (g · F (|g |))

= { pairing-absorption (16) }

(f ⊗ g) · (F (|f |) M F (|g |))

= { (50) below }

(f ⊗ g) · unzipF · (F (|f |) M (|g |))
�

Thus (47) holds, by (45). As shown in the appendix, fact

unzipF · F (f M g) = F f M F g (50)

used in the proof is an immediate corollary of the naturality (49) of unzipF. The fol-
lowing diagram of (50) may help in understanding its meaning:

F A (F A)⊗ (F B)
fstoo snd // F B

F (A⊗ B)

unzipF

OO
F fst

ffLLLLLLLLLLL
F snd

88rrrrrrrrrrr

F C

F f Mg

OOF f

]];;;;;;;;;;;;;;;;;;

F g

AA������������������

�

In the appendix we show that shapely functors (including those which support folds
and for-loops) are such that (49) holds, thus granting “banana-split” (47) for a wide
range of programming schemes.

In retrospect, note how law (47) was proved not as a corollary of mutual recursion
but as an independent result. Also note the major role of function unzipF (48) in each
inductive step: it separates that part of the output which is to be fed to f from that to be
fed to g . It is this separation which grants non-interference between both computations,
as happened in the square example but not in Fibonacci example, as we have seen.

For completeness, we state the (conditioned) mutual recursion law in a similar
generic setting:

Theorem 2 (Probabilistic mutual-recursion). Transformation{
f · in = h · F (f M g)
g · in = k · F (f M g) ≡ f M g = (|h M k |) (51)

holds provided one of probabilistic f or g is sharp.
Proof: generalize the rationale of section 6 from for-loops to F-catamorphisms. Typ-
ically, for one such function, say f , to be sharp, it has to be independent of the other
(say g), assumed truly probabilistic. This means that h · F (f M g) = h ′ · (G f), for
some h ′ and G.
�

28

11. Conclusions

The production of safety critical software is bound to a number of certification stan-
dards in which estimating the risk of failure plays a central role. NASA’s procedures
guide for probabilistic risk assessment (PRA) reviews the historical background of risk
analysis, evolving from a qualitative to a quantitative perspective of risk (Stamatelatos
and Dezfuli, 2011). The UK MoD Defence Standard 00-56 (MoD, 2007) enforces that
all (...) calculations underpinning the risk estimation be recorded in so-called safety
cases (documents supporting the claim that some given software is safe) such that the
risk estimates can be reviewed and reconstructed.

Risk estimation seems to live outside programmers’ core practice: either the soft-
ware system once completed is subject (by others) to intensive simulation over faults
injected into safety-critical parts, or the estimation proceeds by analysis of worst case
scenarios on a large-scale view of the system’s operation.

Software development and risk analysis are performed separately because program-
ming language semantics are (in general) qualitative and risk estimation calls for quan-
titative semantic models such as those already prominent in security (McIver and Mor-
gan, 2005). Quantitative methods face another problem, diagnosed by Morgan (2012):
probability theory is too descriptive and not fit enough for calculation as this is under-
stood in today’s research in program correctness.

In this paper we propose that risk calculation be constructively handled in the pro-
gramming process since the early stages, rather than being an a posteriori concern.
This means that risk is taken into account as the “normal” situation, absence of risk be-
ing an ideal case. In particular, operations are modelled as probabilistic choice between
expected behaviour and faulty behaviour.

Functional programming appears to be particularly apt for this purpose because
of its strong mathematical basis. The obstacles mentioned above are circumvented by
adopting a linear algebra approach to probability calculation (Oliveira, 2012), a strategy
which fits into the calculational style of functional program development based on its
algebra of programming (Bird and de Moor, 1997).

This puts functional programming in the forefront of risk estimation simply by
exploring the adjunction between distribution-valued functions and matrices of proba-
bilities. One side of the adjunction is “good for programming”: the monadic one, as
we have shown by our experiments in Haskell; the other side (linear algebra) is “good
for calculation”.

This does not prevent one from actually running case studies in a matrix-speaking
language such as e.g. MATLAB. Interestingly, we have observed that, although using
MATLAB for the purposes of this paper may seem a “tour de force” (since it is poorly
typed and not polymorphic, calling for explicit type error checking in the old style),
MATLAB tends to perform faster than Haskell when the probabilistic monadic calcula-
tions involve distributions of wider support.22

22All experiments reported in the current paper can be reproduced by downloading the Haskell and MAT-
LAB sources available from https://github.com/haslab/QAIS. The PFP library is credited to
Erwig and Kollmannsberger (2006).

29

The core of this paper shows how to calculate the propagation of faults across
standard program transformation techniques known as tupling (Hu et al., 1997) and
fusion (Harper, 2011). This enables one to find conditions for the fault of the whole
to be expressed in terms of the faults of its parts — a compositional approach to risk
calculation.

12. Related and future work

Quantitative program analysis. Program analysis techniques based on languages such
as e.g. Rely (Carbin et al., 2013) evaluate quantitative reliability of computations run-
ning on unreliable hardware, e.g. unreliable arithmetic/logical operations (as in the
current paper) or unreliable physical memories. Rely’s analysis generates reliability
pre-conditions which are handled by reliability transformers, bridging to current work
on probabilistic Hoare logic (Barthe et al., 2012).

The work by Di Pierro et al. (2010) is closer to ours in its adoption of (untyped) lin-
ear algebra in the compositional construction of a so-called linear operator semantics,
leading to probabilistic program analysis inspired by classical abstract interpretation.
As in our setting, the key element in the construction is the use of tensor products to
capture different aspects of a program.

Link to categorial physics. On the foundations side, probabilistic weak tupling has
been addressed in the more wide setting of monoidal categories adopted in e.g. cate-
gorial quantum physics (Coecke, 2011). These include not only FdHilb, the category
of finite dimensional Hilbert spaces, but also Rel , the category of binary relations. We
hope to exploit this connection in the future, in particular concerning partial orders
defined for quantum states which could be used to support a notion of refinement.

Linear algebra of programming. Both (Oliveira, 2012) and the current paper are con-
cerned with probabilistic catamorphisms. In this respect, the main novelty of this paper
compared to (Oliveira, 2012) is the study of probabilistic mutual-recursion.

We would like to find side-conditions for Theorem 2 weaker than that imposing
one function to be sharp. Interestingly, this seems to link to work by Wong and Butz
(2000) on another topic: Bayesian embedded multivalued dependencies as necessary
and sufficient conditions for lossless decomposition of probabilistic relations. For this
we also hope to be able to generalize some previous work in this field (Oliveira, 2011).

Future work should extend the current results to probabilistic algorithmic control,
including non-termination. This corresponds to studying probabilistic hylomorphisms,
the most generic pattern of recursion, requiring sub-distributions as in (Hasuo et al.,
2007).

Refinement. Our experiments in probabilistic mutual recursion show that linear ver-
sions consistently score better than the recursive. This conforms to intuition, as pro-
gram optimization leads to less computations and therefore to lesser propagation of
faults. We would like to quantify such a difference in probabilistic behaviour. In gen-
eral, one may think of ordering fault-injected functions with respect to some expected,
sharp function. Let f : A → B be such a function and g , h : A → B be probabilistic

30

approximations to it, all represented as CS-matrices. Then g and h can be compared
against f as follows,

g 6f h iff g × f 6 h × f

where M ×N denotes the Hadamard (entry-wise) product of matrices M and N . That
is, for each a , we compare the probability which g and h offer for the correct value
f a . Of course, g 6f f always holds, that is, f is the best approximation to itself.
The question is — how effective is it to calculate with this preorder? Is the difference
h × f − g × f a metric suitable for quantifying fault propagation across correctness-
preserving program transformations?

Monadic probabilism. In a real setting, software designers might be more concerned
with correct/incorrect results and not so much with the probabilities of specific, incor-
rect results. This can be approached by functions of type A → Dist (1 + B), where
1 means “incorrect”. Type 1 + B is monadic, in the sense that incorrect results can-
not grant correct results anymore. Functions of the above type are addressed in linear
algebra in (Oliveira, 2014).

Note that our linear algebra semantics for functional programs assume strict evalu-
ation. Whether the results presented are still valid for lazy evaluation needs investiga-
tion. This could be done stacking a suitable monad as in (Oliveira, 2014) and investi-
gating its lifting through Dist , relating to another follow-up of the strategy put forward
in this paper: its application to fault-propagation in component-oriented software sys-
tems. Cortellessa and Grassi (2007) quantify component-to-component error propaga-
tion in terms of a matrix which emulates a probabilistic call-graph. We are currently
working on a formal alternative to this approach in which components represented by
coalgebras (Barbosa, 2003) extended probabilistically, by adding to the coalgebraic
matrices of (Oliveira, 2013) a behaviour monad inside the distribution one.

Applications. On the applications side, we plan to address case studies such as that
of (Marić and Sprenger, 2014) — the verification of a persistent memory manager
(in IBM’s 4765 secure coprocessor) in face of restarts and hardware failures — using
probabilistic linear algebra. The work will consist in modelling the device functionally
and carrying out proofs using matrix algebra where Marić and Sprenger (2014) use
explicit monad transformers in Isabelle. As the authors of this paper write, the inclusion
of hardware failures incurs a significant jump in system complexity.

Altogether, we hope to show that the linear algebra of programming is a wide-range
formalism suitable to generically support quantitative methods in the software sciences.

Acknowledgements

This work was carried out in project QAIS (Quantitative analysis of interacting sys-
tems: foundations and algorithms) funded by the ERDF through the Programme COM-
PETE and by the Portuguese Government through FCT (Fundação para a Ciência e a
Tecnologia / Portuguese Foundation for Science and Technology) contract PTDC/EIA-
CCO/122240/2010.

31

José Oliveira wishes to thank CSW Critical Software SA for their invitation to
the final workshop of FP7 project CriticalStep (http://www.critical-step.eu) — WS on
Dependability and Certification — where the central idea of this paper was briefly
presented.

While doing this work Daniel Murta was supported by a grant23 awarded by FCT.

References

S. Andova, A. McIver, P. R. D’Argenio, P. J. L. Cuijpers, J. Markovski, C. Morgan, and
M. Núñez, editors. Proceedings First Workshop on Quantitative Formal Methods:
Theory and Applications, volume 13 of EPTCS, 2009.

R.C. Backhouse and D. Michaelis. Exercises in quantifier manipulation. In T. Uustalu,
editor, MPC’06, volume 4014 of LNCS, pages 70–81. Springer, 2006.

L.S. Barbosa. Towards a Calculus of State-based Software Components. JUCS, 9(8):
891–909, August 2003.

G. Barthe, B. Grégoire, and S.Z. Béguelin. Probabilistic relational Hoare logics for
computer-aided security proofs. In MPC’12, pages 1–6, 2012.

R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997.

M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative reliability for pro-
grams that execute on unreliable hardware, 2013. 28th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA/SPLASH 2013), Indianapolis, IN, USA, October 2013.

B. Coecke, editor. New Structures for Physics. Number 831 in Lecture Notes in
Physics. Springer, 2011. doi: 10.1007/978-3-642-12821-9.

V. Cortellessa and V. Grassi. A modeling approach to analyze the impact of error prop-
agation on reliability of component-based systems. In Component-Based Software
Engineering, volume 4608 of LNCS, pages 140–156. 2007.

A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic semantics and program anal-
ysis. In Formal Methods for Quantitative Aspects of Programming Languages, vol-
ume 6154 of LNCS, pages 1–42. Springer, 2010. doi: 10.1007/978-3-642-13678-8
1.

J.A. Durães and H.S. Madeira. Emulation of software faults: a field data study and a
practical approach, 2006. IEEE Transactions on Software Engineering.

M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic functional pro-
gramming in Haskell. J. Funct. Program., 16:21–34, January 2006.

23Reference: BI1-2012_PTDC/EIA-CCO/122240/2010_UMINHO

32

M.F. Frias, G. Baum, and A.M. Haeberer. Fork algebras in algebra, logic and computer
science. Fundam. Inform., pages 1–25, 1997.

J. Gibbons and R. Hinze. Just do it: simple monadic equational reasoning. In Proceed-
ings of the 16th ACM SIGPLAN international conference on Functional program-
ming, ICFP’11, pages 2–14, New York, NY, USA, 2011. ACM.

T. Harper. A library writer’s guide to shortcut fusion. In Proceedings of the 4th ACM
Symposium on Haskell, pages 47–58, New York, NY, USA, 2011. ACM.

I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical
Methods in Computer Science, 3(4):1–36, 2007. doi: 10.2168/LMCS-3(4:11)2007.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates mul-
tiple data traversals. In In ACM SIGPLAN International Conference on Functional
Programming, pages 164–175. ACM Press, 1997.

D. Jackson. A direct path to dependable software. Commun. ACM, 52(4):78–88, 2009.

S.P. Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, April 2003. ISBN 9780521826143. doi: DOI:10.2277/
0521826144.

A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Synthesizing parsimonious inexact
circuits through probabilistic design techniques. ACM Trans. Embed. Comput. Syst.,
12(2s):93:1–93:26, May 2013. ISSN 1539-9087. doi: 10.1145/2465787.2465795.

H. Macedo. Matrices as Arrows — Why Categories of Matrices Matter. PhD thesis,
University of Minho, October 2012. MAPi PhD programme.

H.D. Macedo and J.N. Oliveira. Typing linear algebra: A biproduct-oriented approach.
Science of Computer Programming, 78(11):2160–2191, 2013. ISSN 0167-6423.
doi: http://dx.doi.org/10.1016/j.scico.2012.07.012.

O. Marić and C. Sprenger. Verification of a transactional memory manager under hard-
ware failures and restarts. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, editors,
FM 2014: Formal Methods, volume 8442 of LNCS, pages 449–464. Springer, 2014.
ISBN 978-3-319-06409-3.

S. Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly, 2013. ISBN
1449335942.

A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer-Verlag, 2005. ISBN 0387401156.

UK MoD. Safety management requirements for defence systems: Part 1 require-
ments, 2007. UK MoD Defence Standard 00-56. http://www.dstan.mod.
uk/standards/defstans/00/056/01000400.pdf.

C. Morgan. Elementary probability theory in the Eindhoven style. In MPC, LNCS,
pages 48–73, 2012.

33

J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition. Techni-
cal Report TR-HASLab:3:2011, HASLab/INESC TEC & U. Minho, 2011. URL
https://repositorium.sdum.uminho.pt/handle/1822/24648.

J.N. Oliveira. Towards a linear algebra of programming. Formal Aspects of Computing,
24(4-6):433–458, 2012. doi: 10.1007/s00165-012-0240-9.

J.N. Oliveira. Weighted automata as coalgebras in categories of matrices. Int.
Journal of Found. of Comp. Science, 24(06):709–728, 2013. doi: 10.1142/
S0129054113400145.

J.N. Oliveira. Relational algebra for “just good enough” hardware. In RAMiCS, volume
8428 of LNCS, pages 119–138. Springer Berlin, Heidelberg, 2014.

G. Schmidt. Relational Mathematics. Number 132 in Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, November 2010. ISBN
9780521762687.

M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment Procedures Guide for
NASA Managers and Practitioners, 2011. NASA/SP-2011-3421, 2nd edition, De-
cember 2011.

J. Voas and G. McGraw. Software Fault Injection: Innoculating Programs Against
Errors. John Wiley & Sons, 1997. ISBN ISBN 0-471-18381-4. 416 pages.

S.K.M. Wong and C.J. Butz. The implication of probabilistic conditional independence
and embedded multivalued dependency. In IPMU00, pages 876–881, 2000. 8th
Conf. on Inf. Processing and Management of Uncertainty in K.-B. Systems.

Appendix A. Proofs of auxiliary results

Proof of cancellation (24).

fst · (f M g) = f ∧ snd · (f M g) = g

≡ { fst = id ⊗ ! and snd = !⊗ id (25) }

(id ⊗ !) · (f M g) = f ∧ (!⊗ id) · (f M g) = g

≡ { absorption (16) twice }

f M (! · g) = f ∧ (! · f) M g = g

≡ { ! · k = ! for any probabilistic function k (Oliveira, 2012) }

f M ! = f ∧ ! M g = g

≡ { ! is the unit of Khatri-Rao (26) }

f = f ∧ g = g
�

34

Proof of (32). This equality arises from rule (30):

〈
∑

c :: (f a, c) k a〉 = 1

≡ { one-point rule }

〈
∑

b, c : f a = b : (b, c) k a〉 = 1

≡ { b = fst (b, c) ; (30) }

(f a) (fst · k) a = 1

≡ { f = fst · k }

(f a) f a = 1

≡ { f is sharp }

true
�

Proof of (33). This equality arises from k being probabilistic:

〈
∑

b, c : b 6= f a : (b, c) k a〉 = 0

≡ { 1 + 0 = 1 }

1 + 〈
∑

b, c : b 6= f a : (b, c) k a〉 = 1

≡ { (32) }

〈
∑

c :: (f a, c) k a〉+ 〈
∑

b, c : b 6= f a : (b, c) k a〉 = 1

≡ { one-point rule }

〈
∑

b, c : b = f a : (b, c) k a〉+ 〈
∑

b, c : b 6= f a : (b, c) k a〉 = 1

≡ { merge quantifiers }

〈
∑

(b, c) :: (b, c) k a〉 = 1

≡ { k is probabilistic }

true

�

Proof of base-case fault propagation (35). Clearly, by (37) and universal property (36),
our goal (35) re-writes to the equality

((for f a) p� (for f b)) · in =
[a p� b | f] · (F ((for f a) p� (for f b)))

which holds by transforming the left-hand side into the right-hand side:

35

((for f a) p� (for f b)) · in

= { choice-fusion (38) }

(for f a · in) p� (for f b · in)

= { (37) and (36), twice }

([a | f] · F (for f a)) p� ([b | f] · F (for f b)))

= { F f = id ⊕ f ; absorption: [M |N] · (P ⊕ Q) = [M · P |N · Q] }

[a | f · (for f a)] p� [b | f · (for f b)]

= { exchange law (40) }

[a p� b | (f · for f a) p� (f · for f b)]

= { choice-fusion (39) }

[a p� b | f · ((for f a) p� (for f b))]

= { again absorption: [M |N] · (P ⊕ Q) = [M · P |N · Q] }

[a p� b | f] · (id ⊕ ((for f a) p� (for f b)))

= { F f = id ⊕ f }

[a p� b | f] · (F ((for f a) p� (for f b)))
�

Proof of Khatri-Rao (conditional) fusion. We want to prove

(M M N) · h = (M · h) M (N · h) ⇐ h is sharp (A.1)

for arbitrary (suitably typed) matrices M and N :

(b, c) ((M M N) · h) a

= { (31) for h a standard function }

(b, c) (M M N) (h a)

= { pointwise Khatri-Rao (14) }

(b M (h a))× (c N (h a))

= { (31) for h a standard function }

b (M · h) a × c (N · h) a

= { pointwise Khatri Rao (14) — twice }

(b, c) (M · h M N · h) a
�

36

Proofs concerning naturality of unzipF (49). This section shows that unzipF is natu-
ral for so-called polynomial or shapely functors. This is proved by induction on the
structure of such functors.

The property holds trivially for the identity functor F X = X , where unzipF = id ,
and for any constant functor F X = K , in which case unzipF = id M id . Next, we
show that the property is structurally preserved by functor composition, say F = G H,
whereby

unzipGH = unzipG · (G unzipH) (A.2)

holds by pair-fusion (A.1), cf. the sharp right term. In this and the remaining calcula-
tions we generalize probabilistic functions f and g in (49) to arbitrary matrices M , N
over a semiring. We have:

unzipGH · G H (M ⊗N)

= { (A.2) }

unzipG · (G unzipH) · G (H (M ⊗N))

= { functor G (composition) }

unzipG · G (unzipH · H (M ⊗N))

= { induction hypothesis: assume (49) for F = H; G again }

unzipG · G ((H M)⊗ (H N)) · (G unzipH)

= { induction hypothesis: assume (49) for F = G }

((G H M)⊗ (G H N)) · unzipG · G (unzipH)

= { (A.2) }

((G H M)⊗ (G H N)) · unzipGH

�

Next, we do the same for sums, say F = G⊕ H. In this case we have:

unzipF = (G fst ⊕ H fst) M (G snd ⊕ H snd) (A.3)

Facts

unzipF · i1 = (i1 ⊗ i1) · unzipG (A.4)
unzipF · i2 = (i2 ⊗ i2) · unzipH (A.5)

are easy to prove via exchange law (18), where i1 and i2 are the injections of the direct
sum, that is [i1 | i2] = id . The same law also grants equality

[(i1 ⊗ i1) · (M M N) | (i2 ⊗ i2) · (P M Q)]
= (M ⊕ P) M (N ⊕Q) (A.6)

37

which is valid for all suitably typed matrices M , N , P and Q , and will help in the proof
that (49) holds for sums of functors which (inductively) satisfy the same property:

unzipF · F (M ⊗N)

≡ { F = G ⊕ H }

unzipF · ((G (M ⊗N))⊕ (H (M ⊗N)))

= { M ⊕N = [i1 ·M | i2 ·N] ; fusion (7) }

[unzipF · i1 · (G (M ⊗N)) | unzipF · i2 · (H (M ⊗N))]

= { (A.4,A.5) }

[(i1 ⊗ i1) · unzipG · (G (M ⊗N)) | (i2 ⊗ i2) · unzipH · (H (M ⊗N))]

= { induction hypothesis: assume (49) for F = G and F = H }

[(i1 ⊗ i1) · (G M ⊗ G N) · unzipG | (i2 ⊗ i2) · (H M ⊗ H N) · unzipH]

≡ { definitions of unzipG and unzipH ; absorptions }

[(i1 ⊗ i1) · G (M · fst) M G (N · snd) | (i2 ⊗ i2) · H (M · fst)⊗ H (N · snd)]

= { (A.6) }

(G (M · fst))⊕ (H (M · fst)) M (G (N · snd))⊕ (H (N · snd))

≡ { F = G ⊕ H }

F (M · fst) M F (N · snd)

≡ { functor F ; reverse absorption }

(F M ⊗ F N) · (F fst M F snd)

≡ { definition of unzipF }

(F M ⊗ F N) · unzipF

�

Finally, we do the proof for products, say F = G⊗ H where

(G⊗ H) M = G M ⊗ H M (A.7)

In this case we have

unzipG⊗H = tr · (unzipG ⊗ unzipH) (A.8)

where tr is the natural isomorphism

tr : ((B × C)× (D ×A))→ ((B ×D)× (C ×A))
tr = (fst ⊗ fst) M (snd ⊗ snd) (A.9)

that is,

tr · ((N ⊗ P)⊗ (Q ⊗M)) = ((N ⊗Q)⊗ (P ⊗M)) · tr (A.10)

38

holds. The proof of the naturality of unzipG⊗H follows:

unzipG⊗H · (G⊗ H) (M ⊗N)

= { definition of product functor (A.7) }

unzipG⊗H · (G (M ⊗N)⊗ H (M ⊗N))

= { inline definition of unzipG⊗H (A.9) ; Kronecker bifunctor }

tr · (unzipG · G (M ⊗N)⊗ (unzipH · H (M ⊗N)))

= { naturality of unzipG and unzipH assumed (inductive step) }

tr · ((G M ⊗ G N) · unzipG ⊗ (H M ⊗ H N) · unzipH)

= { Kronecker bifunctor }

tr · ((G M ⊗ G N)⊗ (H M ⊗ H N)) · (unzipG ⊗ unzipH)

= { (A.10) }

((G M ⊗ H M)⊗ (G N ⊗ H N)) · tr · (unzipG ⊗ unzipH)

= { fold over definitions of G ⊗ H and unzipG⊗H }

((G⊗ H) M ⊗ (G⊗ H) N) · unzipG⊗H

�

Proof of fact (50) assuming (49).

unzipF · F (f M g)

= { reverse pairing-absorption (16) }

unzipF · F (f ⊗ g) · F (id M id)

= { naturality (49) assumed }

(F f ⊗ F g) · unzipF · F (id M id)

= { functor F; unzipF (48) ; pairing-fusion (A.1), as id M id is sharp }

(F f ⊗ F g) · F (fst · id M id) M F (fst · id M id)

= { standard pairing-cancellation (24) }

(F f ⊗ F g) · (F id M F id)

= { functor F; pairing-absorption (16) }

F f M F g
�

Appendix B. On program “monadification”

Wherever one writes “non-monadic” functional programs, for instance the map
function in Haskell syntax,

39

map :: (a → b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

one is actually writing a monadic program for a very special monad: the identity one. In
this identity monad, return x is x — that is, return = id — and monadic composition
of functions f and g is nothing but normal composition:

do {b ← g a; f b} = let b = g a in f b = f (g a) = (f · g) a

This gives a hint for converting regular programs into monadic ones, the idea being: (a)
to make the identity monad apparent in the first place, and then (b) to generalize from
identity to any monad.

Taking the example of map above, the first step is the “refactoring” that introduces
explicit identity functions id on the “exit” points of map and makes so-called program
evaluation “thunks” (Marlow, 2013) explicit using let notation:

map f [] = id []
map f (x : xs) = let

x ′ = f x
xs ′ = map f xs
in id (x ′ : xs ′)

The “monadification” step consists in generalizing from the identity monad to any
monad — id generalizes to return and let generalizes to do:

mmap :: Monad m ⇒ (a → m b)→ [a]→ m [b]
mmap f [] = return []
mmap f (x : xs) = do {

x ′ ← f x ;
xs ′ ← mmap f xs;
return (x ′ : xs ′)
}

Note the new name mmap standing for “monadic map” and the richer type of mmap,
parametric on monad m: instantiating this to the identity monad we go back to the type
of map wherefrom we have started.

40

