
Pa
ul

o
Jo

sé
 d

e
Al

bu
qu

er
qu

e
C.

 T
rig

ue
iro

s

Outubro de 2013UM
in

ho
 |

 2
01

3
H

an
d

Ge
st

ur
e

Re
co

gn
iti

on
 S

ys
te

m
 b

as
ed

 in
 C

om
pu

te
r

Vi
si

on
an

d
M

ac
hi

ne
 L

ea
rn

in
g

: A
pp

lic
at

io
ns

 o
n

H
um

an
-M

ac
hi

ne
 In

te
ra

ct
io

n

Universidade do Minho
Escola de Engenharia

Paulo José de Albuquerque C. Trigueiros

Hand Gesture Recognition System based in
Computer Vision and Machine Learning :
Applications on Human-Machine Interaction

Outubro de 2013

Tese de Doutoramento
Electronic and Computer Engineering

Trabalho efectuado sob a orientação do
Professor Doutor Fernando Ribeiro

e co-orientação do
Professor Doutor Luís Paulo Reis

Paulo José de Albuquerque C. Trigueiros

Hand Gesture Recognition System based in
Computer Vision and Machine Learning :
Applications on Human-Machine Interaction

Universidade do Minho
Escola de Engenharia

iii

Acknowledgement

First of all I have to thank my advisors, Professor Fernando Ribeiro and Professor

Luís Paulo Reis, for their friendship, their omnipresent criticism to my work, their

constant availability to clarify my doubts and my inexperience, and their guidance

during this difficult process of writing a dissertation. I will never have words to

thank your persistence with me. A special thanks to Professor Fernando Ribeiro for

the wise words that allowed me to continue forward in difficult times during this

work.

I would also like to thank Professor Gil Lopes for all the ideas discussed during

coffee breaks or during lunch, for his true friendship, for his ability to focus on issues

that were very important for the proper development of the work and for his constant

sympathy in difficult times.

I would like to thank to all the friends that support and encourage me during this

difficult journey. I would also like to thank all the people who volunteered to test all

the developed prototypes during this work and that also participated in the data

collection phase, which was of utmost importance for the experiments carried out

allowing to successfully complete this thesis.

I would like to thanks my parents for life and for all the opportunities they were able

to provide me during my life time.

And, finally, there are no words to express the gratitude to my family, for their

patience and dedication, for their love, especially my wife, for the constant words of

encouragement and for being always by my side. This thesis is also yours. My wife

and my sons are my reason for living. I love you all.

Paulo Trigueiros

v

Resumo

Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos

implica uma forte componente de investigação em áreas como a visão por

computador e a aprendizagem computacional. O reconhecimento gestual é uma área

com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e

mais simples de comunicar com sistemas baseados em computador, sem a

necessidade de utilização de dispositivos extras. Assim, o objectivo principal da

investigação na área de reconhecimento de gestos aplicada à interacção homem-

máquina é o da criação de sistemas, que possam identificar gestos específicos e usá-

los para transmitir informações ou para controlar dispositivos. Para isso as interfaces

baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de

forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em

tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão

são capazes de trabalhar com soluções específicas, construídos para resolver um

determinado problema e configurados para trabalhar de uma forma particular. Este

projeto de investigação estudou e implementou soluções, suficientemente genéricas,

com o recurso a algoritmos de aprendizagem computacional, permitindo a sua

aplicação num conjunto alargado de sistemas de interface homem-máquina, para

reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning

Module Architecture (GeLMA), permite de forma simples definir um conjunto de

comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser

facilmente integrado e configurado para ser utilizado numa série de aplicações. É um

sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído

unicamente com bibliotecas de código. As experiências realizadas permitiram

mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento

de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de

gestos dinâmicos. Para validar a solução proposta, foram implementados dois

sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um

árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um

sistema de reconhecimento de gestos baseada em visão com a definição de uma

vi Resumo

linguagem formal, o CommLang Referee, à qual demos a designação de Referee

Command Language Interface System (ReCLIS). O sistema identifica os comandos

baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro,

sendo este posteriormente enviado para um interface de computador que transmite a

respectiva informação para os robôs. O segundo é um sistema em tempo real capaz

de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências

demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de

forma fiável. Embora a solução implementada apenas tenha sido treinada para

reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto

do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de

interação baseados em visão pode ser a mesma para todas as aplicações e, deste

modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser

suficientemente genérica e uma base sólida para o desenvolvimento de sistemas

baseados em reconhecimento gestual que podem ser facilmente integrados com

qualquer aplicação de interface homem-máquina. A linguagem formal de definição

da interface pode ser redefinida e o sistema pode ser facilmente configurado e

treinado com um conjunto de gestos diferentes de forma a serem integrados na

solução final.

vii

Abstract

Hand gesture recognition is a natural way of human computer interaction and an area

of very active research in computer vision and machine learning. This is an area with

many different possible applications, giving users a simpler and more natural way to

communicate with robots/systems interfaces, without the need for extra devices. So,

the primary goal of gesture recognition research applied to Human-Computer

Interaction (HCI) is to create systems, which can identify specific human gestures

and use them to convey information or controlling devices. For that, vision-based

hand gesture interfaces require fast and extremely robust hand detection, and gesture

recognition in real time.

Nowadays, vision-based gesture recognition systems are able to work with specific

solutions, built to solve one particular problem and configured to work in a particular

manner. This research project studied and implemented solutions, generic enough,

with the help of machine learning algorithms, allowing its application in a wide

range of human-computer interfaces, for real-time gesture recognition.

The proposed solution, Gesture Learning Module Architecture (GeLMA), allows the

definition in a simple way of a set of commands that can be based on static and

dynamic gestures and that can be easily integrated and configured to be used in a

number of applications. It is easy to train and use, and since it is mainly built with

open source libraries it is also an inexpensive solution. Experiments carried out

showed that the system achieved an accuracy of 99.2% in terms of hand posture

recognition and an average accuracy of 93,72% in terms of dynamic gesture

recognition. To validate the proposed framework, two systems were implemented.

The first one is an online system able to help a robotic soccer game referee judge a

game in real time. The proposed solution combines a vision-based hand gesture

recognition system with a formal language definition, the Referee CommLang, into

what is called the Referee Command Language Interface System (ReCLIS). The

system builds a command based on system-interpreted static and dynamic referee

gestures, and is able to send it to a computer interface which can then transmit the

proper commands to the robots. The second one is an online system able to interpret

the Portuguese Sign Language. The experiments showed that the system was able to

viii Abstract

reliably recognize the vowels in real-time. Although the implemented solution was

only trained to recognize the five vowels, it is easily extended to recognize the rest of

the alphabet. These experiments also showed that the core of vision-based interaction

systems can be the same for all applications and thus facilitate its implementation.

The proposed framework has the advantage of being generic enough and a solid

foundation for the development of hand gesture recognition systems that can be

integrated in any human-computer interface application. The interface language can

be redefined and the system can be easily configured to train different sets of

gestures that can be easily integrated into the final solution.

ix

Contents
Acknowledgement .. iii!
Resumo .. v!
Abstract ... vii!
1! Introduction .. 1!
1.1! Motivation ... 1!
1.2! Objectives ... 3!
1.3! Approach ... 4!
1.4! Contributions ... 5!
1.5! Document Structure .. 6!
2! Methodologies and State of the Art .. 9!
2.1! Introduction ... 9!
2.2! Background ... 10!

2.2.1! Feature Selection and Extraction .. 10!
2.2.2! Centroid Distance Signature ... 11!
2.2.3! Histogram of Oriented Gradients (HoG) ... 12!
2.2.4! Local Binary Patterns .. 14!
2.2.5! Fourier Descriptors .. 17!
2.2.6! The Shi-Tomasi Corner Detector .. 19!
2.2.7! Related Work .. 19!

2.3! Machine Learning and Classification ... 27!
2.3.1! k-Nearest Neighbour (k-NN) .. 28!
2.3.2! Artificial Neural Networks (ANN) ... 29!
2.3.3! Support Vector Machines (SVM) ... 31!
2.3.4! Hidden Markov Models (HMM) ... 32!
2.3.5! Related Work .. 33!

2.4! Summary ... 46!
3! Gesture Learning Module Architecture (GeLMA) ... 47!
3.1! Introduction ... 47!
3.2! Pre-Processing and Hand Segmentation (PHS) module ... 51!

3.2.1! Hand Detection and Tracking ... 51!
3.2.2! Hand Segmentation ... 54!

x Contents

3.3! Static Gesture Interface (SGI) module .. 57!
3.3.1! Feature Extraction ... 57!
3.3.2! Train and Classification ... 60!

3.4! Dynamic Gesture Interface (DGI) Module ... 64!
3.4.1! Feature Extraction ... 64!
3.4.2! Train and Classification ... 66!

3.5! Vision-based Hand Gesture Recognition System Architecture 69!
3.6! Summary ... 70!
4! System Implementation .. 73!
4.1! Introduction ... 73!
4.2! Pre-processing and hand segmentation ... 73!
4.3! Static Gesture Interface Module .. 75!

4.3.1! Feature extraction .. 77!
4.3.2! Support Vector Machine (SVM) Model Train .. 78!
4.3.3! Hand Posture Classification .. 79!

4.4! Dynamic Gesture Interface Module .. 79!
4.4.1! Feature Extraction ... 81!
4.4.2! Learn HMM Parameters. ... 84!
4.4.3! Gesture Classification .. 84!

4.5! Vision-based Hand Gesture Recognition System ... 84!
4.6! Summary ... 87!
5! Case Studies .. 89!
5.1! Introduction ... 89!
5.2! Vision-based Remote Hand Robot Control ... 90!

5.2.1! Introduction ... 90!
5.2.2! Hand Segmentation ... 91!
5.2.3! Orientation ... 94!
5.2.4! Prototype implementation ... 96!

5.3! Vision-based Hand Robotic Wheelchair Control .. 98!
5.3.1! Introduction ... 98!
5.3.2! The Wheelchair Command Language Definition ... 100!
5.3.3! Hand Segmentation ... 101!
5.3.4! The k-curvature algorithm ... 102!

Contents xi

5.3.5! Direction of turning ... 105!
5.3.6! Prototype implementation ... 107!

5.4! Referee CommLang Prototype ... 111!
5.4.1! Introduction ... 111!
5.4.2! The Referee Command Language Definition ... 111!
5.4.3! Prototype Implementation ... 113!

5.5! Sign Language Recognition Prototype ... 117!
5.5.1! Introduction ... 117!
5.5.2! Prototype Implementation ... 118!

5.6! Summary ... 120!
6! Experiments and Results ... 125!
6.1! Introduction ... 125!
6.2! Comparative study of machine learning algorithms for hand posture classification 126!

6.2.1! Experimental Setup ... 126!
6.2.2! Results ... 135!
6.2.3! Discussion ... 138!

6.3! Comparative study of seven different feature extraction algorithms 139!
6.3.1! Experimental Setup ... 139!
6.3.2! Results ... 154!
6.3.3! Discussion ... 156!

6.4! Integration of Static and Dynamic Gestures ... 158!
6.4.1! Experimental Setup ... 158!
6.4.2! Results ... 161!
6.4.3! Discussion ... 165!

6.5! A Comparative Study of Hand Features for Sign Language Recognition 167!
6.5.1! Experimental Setup ... 167!
6.5.2! Results ... 169!
6.5.3! Discussion ... 170!

6.6! Summary ... 171!
7! Conclusions and Future Work .. 173!
7.1! Synthesis of Developed Work .. 173!
7.2! Main Results and Conclusions .. 174!

xii Contents

7.3! Limitations .. 176!
7.4! Major Contributions .. 176!
7.5! Development Perspectives and Future Work .. 177!
References .. 181!

xiii

List of Figures
Figure 1. Example of a LBP8,1 computation. .. 15!
Figure 2. Artificial Neural Network [78] ... 30!
Figure 3. Neural network with inputs, activation function and output represented.

[79] .. 31!
Figure 4. SVM: support vectors representation with maximum-margin hyperplane

[84] .. 32!
Figure 5. HMM example with initial probabilities (Π), transition probabilities (aij),
observation probabilities (bjm) and observation sequence (O) represented. 33!
Figure 6. The static and dynamic gesture training and learning architecture. 50!
Figure 7. Pre-processing and feature extraction diagram. .. 51!
Figure 8. Hand tracking in real-time (hand path represented in white). 52!
Figure 9. Inside Kinect controller [134] ... 52!
Figure 10. Kinect Interface [135] ... 53!
Figure 11. Kinect RGB image + Depth image. .. 53!
Figure 12. Bounding box size relative to the hand distance to the camera. 54!
Figure 13. Hand bounding box with the near and far-threshold planes represented

(left); 3D bounding box obtained for hand segmentation (right). .. 55!
Figure 14. Hand blob extracted from the depth image and used for feature extraction. 55!
Figure 15. Hand contour extracted from hand blob. ... 59!
Figure 16. Centroid distance feature calculation diagram. ... 59!
Figure 17. Centroid distance signature. .. 60!
Figure 18. SVM train diagram. ... 61!
Figure 19. Hand posture classification diagram, using trained SVM model. 62!
Figure 20. “Close” command detected and correctly classified. .. 62!
Figure 21. “Five” command detected and correctly classified. .. 62!
Figure 22. User interface for the static gesture training and testing. 63!
Figure 23. Dynamic gesture feature extraction diagram. ... 65!
Figure 24. Gesture path with respective feature vector after labelling. 65!
Figure 25. Learn HMM model parameters from a training set of observations. 66!
Figure 26. Output the model with the highest score based on the recognized gesture. 67!
Figure 27. "GOAL" command correctly identified. .. 67!
Figure 28. "DROP-BALL" command correctly identified. ... 67!
Figure 29. A 4-state left-right HMM model. .. 68!

xiv List of Figures

Figure 30. Dynamic gestures learning interface. .. 68!
Figure 31. Vision-based hand gesture recognition system architecture. 70!
Figure 32. The Referee CommLang finite state machine diagram. .. 85!
Figure 33. Vision-based Remote Robot Control diagram. ... 91!
Figure 34. Robot direction of movement relative to hand position. 93!
Figure 35. Vectors used for robot heading calculation. .. 94!
Figure 36. Robot heading dependent on hand rotation. .. 94!
Figure 37. Computer connected to a Kinect camera for remote hand gesture robot

control. .. 96!
Figure 38. Human computer interface for the Vision-based Remote Hand Robot

Control. ... 98!
Figure 39. Vision-based Hand Robotic Wheel Chair Control diagram. 99!
Figure 40. Finger commands used to drive the wheelchair. ... 100!
Figure 41. Hand peak and valley point detection ... 102!
Figure 42. Dot product between vectors A and B ... 102!
Figure 43. Cross product between two vectors ... 103!
Figure 44. Vectors used in the calculation of finger orientation ... 106!
Figure 45. HCI for the Vision-Based Hand Robotic Wheelchair Control prototype 110!
Figure 46. Referee CommLang Interface diagram with all the modules 114!
Figure 47. The set of dynamic gestures defined and used in the Referee CommLang. 114!
Figure 48. The set of hand postures trained and used in the Referee CommLang. 114!
Figure 49. The "GOAL" gesture recognized. ... 115!
Figure 50. The "GOAL, TEAM1" sequence recognized. ... 115!
Figure 51. The "GOAL, TEAM1, PLAYER2" sequence recognized. 115!
Figure 52. The "SUBSTITUTION" gesture recognized. .. 116!
Figure 53. The "SUBSTITUTION TEAM-1" sequence recognized. 116!
Figure 54. The "SUBSTITUTION TEAM-1 PLAYER-IN-1" sequence recognized 116!
Figure 55. The "SUBSTITUTION TEAM-1 PLAYER-IN-1 PLAYER-OUT-3"

sequence recognized ... 117!
Figure 56. Sign Language Recognition Prototype diagram .. 118!
Figure 57. Portuguese Language manual alphabet ... 118!
Figure 58. The vowel A correctly classified ... 119!
Figure 59. The vowel E correctly classified ... 119!
Figure 60. The vowel I correctly classified .. 119!

List of Figures xv

Figure 61. The vowel O correctly classified ... 120!
Figure 62. The vowel U correctly classified ... 120!
Figure 63. Hand convexity defects [28]. ... 127!
Figure 64. Application user interface used for hand feature extraction. 128!
Figure 65. First RapidMiner setup screen for the k-NN dataset 1 analysis. 130!
Figure 66. Second RapidMiner setup screen for the k-NN dataset 1 analysis (training

and testing). .. 131!
Figure 67. First RapidMiner setup screen for the ANN dataset 1 analysis. 132!
Figure 68. RapidMiner ANN DataSet1 analysis (second screen). 133!
Figure 69. RapidMiner parameter optimization setup for the SVM dataset 1 analysis. 134!
Figure 70. Second RapidMiner screen setup for the SVM dataset 1 analysis. 134!
Figure 71. HoG (Histogram of Gradients) operator feature extraction. 141!
Figure 72. Local Binary Pattern operator feature extraction. ... 141!
Figure 73. The Shi-Tomasi corner detector operator feature extraction 142!
Figure 74. Radial Signature operator feature extraction. .. 142!
Figure 75. Radial Signature Fourier Descriptors (RSFD) operator feature extraction. 143!
Figure 76. Centroid Distance operator feature extraction. ... 143!
Figure 77. Centroid Distance Fourier Descriptors operator feature extraction. 144!
Figure 78. The defined gesture vocabulary (1. palm, 2. fist, 3. one-finger, 4. two-

fingers, 5. three-fingers, 6. four-fingers, 7. five-fingers, 8. ok, 9. move-left and 10.

circle) .. 145!
Figure 79. Main user interface for the Kinect video recording application. 145!
Figure 80. Posture recording. "Fist" and "One Finger" postures. 146!
Figure 81. Posture recording pause period. .. 146!
Figure 82. Main user interface for the videos processing application. 147!
Figure 83. User data folder selection for feature extraction. .. 148!
Figure 84. Operator type selection (in the image the Radial Histogram was selected). 148!
Figure 85. RapidMiner configuration for ANN Radial Signature feature analysis with

parameter optimization. .. 149!
Figure 86. RapidMiner configuration for the k-NN Radial Signature Fourier

Descriptors feature analysis with parameter optimization (first screen). 150!
Figure 87. Validation configuration with an option for Log display. 151!
Figure 88. Example of Log table obtained during parameter optimization. 151!

xvi List of Figures

Figure 89. The training and testing configuration window for the k-NN learner. 152!
Figure 90. RapidMiner configuration for SVM histogram of gradients feature

analysis with parameter optimization (first screen). ... 152!
Figure 91. RapidMiner SVM cross validation and log parameter configuration

window. ... 153!
Figure 92. SVM model training and Testing configuration. ... 153!
Figure 93. Static gesture feature extraction and model learning user interface 159!
Figure 94. Dynamic gestures feature extraction and model training user interface. 160!
Figure 95. First Rapid miner setup screen for the Find Best Learner Process (Read

dataset and Parameter Optimization) .. 162!
Figure 96. Second Rapid miner setup screen for the Find Best Learner Process

(Validation) ... 162!
Figure 97. Third Rapid miner setup screen for the Find Best Learner Process (Select

Sub-Process). .. 163!
Figure 98. Fourth Rapid miner setup screen for the Find Best Learner Process

(Learn algorithms definitions). ... 163!
Figure 99. Centroid distance dataset SVM parameter optimization. 164!
Figure 100. Hand depth image. ... 168!
Figure 101. RapidMiner sign language dataset, kernel type and C value, parameter

optimization .. 169!

xvii

List of Tables
Table 1: Equivalence between motions in the image and transform domains 18!
Table 2. Hand centroid distance feature vectors prior to normalization. 60!
Table 3. The Referee CommLang state transition table. .. 85!
Table 4. Command set definition with associated odes and text description 123!
Table 5. Sample values for the 1st dataset after vector normalization. 127!
Table 6. Sample values for the 2nd dataset after normalization. .. 128!
Table 7. Artificial Neural Network (ANN) parameter setup used. 131!
Table 8. Parameters obtained after the optimization process for the SVM 133!
Table 9. Accuracy obtained on both datasets with each algorithm, and time spent in

the tests. .. 135!
Table 10. k-NN confusion matrix for dataset 1 .. 136!
Table 11. k-NN confusion matrix for dataset 2 .. 136!
Table 12. Naïve Bayes confusion matrix for dataset 1 ... 136!
Table 13. Naïve Bayes confusion matrix for dataset 2 ... 136!
Table 14. ANN confusion matrix for dataset 1 .. 137!
Table 15. ANN confusion matrix for dataset 2 .. 137!
Table 16. SVM confusion matrix for dataset 1 .. 137!
Table 17. SVM confusion matrix for dataset 2 .. 137!
Table 18. Best learning algorithm, in terms of accuracy, for each of the datasets and

parameters obtained during optimization. .. 154!
Table 19. Radial signature dataset confusion matrix. ... 155!
Table 20. Centroid distance dataset confusion matrix. ... 155!
Table 21. Radial signature Fourier confusion matrix. .. 155!
Table 22. Centroid distance Fourier confusion matrix. .. 155!
Table 23. Local binary patterns dataset confusion matrix. ... 156!
Table 24. Histogram of gradients dataset confusion matrix. .. 156!
Table 25. Shi-Tomasi corner detector confusion matrix. ... 156!
Table 26. Centroid distance confusion matrix .. 165!
Table 27. Hidden Markov Models accuracy for each gesture defined (Figure 47) 165!
Table 28. Obtained kernel type and C value for the two datasets through parameter

optimization .. 169!
Table 29. Obtained accuracy for each dataset. ... 170!
Table 30. Centroid distance features confusion matrix .. 170!

xviii List of Tables

Table 31. Distance features confusion matrix ... 170!

xix

List of Algorithms
Algorithm 1. Histogram of gradients computation (HoG) .. 13!
Algorithm 2. Local Binary Pattern Image Computation ... 16!
Algorithm 3. Compute Centroid Distance Signature Fourier Descriptors 18!
Algorithm 4. k-NN classification algorithm .. 29!
Algorithm 5. Hand Segmentation .. 73!
Algorithm 6. Hand Inside Computation .. 74!
Algorithm 7. Get Hand Image ... 75!
Algorithm 8. Hand posture learn and classification algorithm .. 76!
Algorithm 9. Centroid Distance Computation ... 77!
Algorithm 10. Train Static Gesture Classifier ... 78!
Algorithm 11. Predict Hand Posture Class .. 79!
Algorithm 12. Dynamic gesture learn and classification algorithm 80!
Algorithm 13. Add gesture points to Trainset ... 81!
Algorithm 14. Label sample points according to defined alphabet 81!
Algorithm 15. Rescale points to follow inside predefined hand viewport 82!
Algorithm 16. Label point according to defined alphabet ... 83!
Algorithm 17. Gesture classification for a given hand path .. 84!
Algorithm 18. Vision-based hand gesture recognition system .. 86!
Algorithm 19. Nearest point computation ... 92!
Algorithm 20. Angle and hand orientation computation ... 95!
Algorithm 21. Vision-based Remote Robot Control .. 97!
Algorithm 22. Finger tip detection and extraction .. 103!
Algorithm 23. Finger point computation ... 105!
Algorithm 24. Orientation computation based on finger tips .. 106!
Algorithm 25. Vision-based Hand Robotic Wheel Chair Control 108!

Chapter 1

1 Introduction

1.1 Motivation

Hand gesture recognition for human computer interaction is an area of active

research in computer vision and machine learning. One of the primary goal of

gesture recognition research, is to create systems, which can identify specific

gestures and use them to convey information or to control a device. Though, gestures

need to be modelled in the spatial and temporal domains, where a hand posture is the

static structure of the hand and a gesture is the dynamic movement of the hand.

Being hand-pose one of the most important communication tools in human’s daily

life, and with the continuous advances of image and video processing techniques,

research on human-machine interaction through gesture recognition led to the use of

such technology in a very broad range of applications, like touch screens, video

game consoles, virtual reality, medical applications, among others.

There are areas where this trend is an asset, as for example in the application of these

technologies on interfaces that can help people with physical disabilities, or areas

where it is a complement to the normal way of communicating.

There are basically two types of approaches for hand gesture recognition: vision-

based approaches and data glove methods.

This work focus on creating a vision-based approach, to implement a system capable

of performing gesture recognition for real-time applications. Vision-based hand

gesture recognition systems were the main focus of the work since they provide a

simpler and more intuitive way of communication between a human and a computer.

Using visual input in this context makes it possible to communicate remotely with

computerized equipment, without the need for physical contact.

In the context of these research areas, it is important to mention the RoboCup

competition, a challenging international research and educational initiative, being

held every year since 1997, that provides a test-bed where a significant number of

technologies can be experienced and integrated [1, 2]. Every year, new technical

challenges are presented, and the progress in fields like intelligent robotics, artificial

2 Introduction

intelligence (AI) and applied technology are extremely relevant, especially in the

Middle Size League (MSL) [1], and RoboCup@Home league. The RoboCup@Home

league aims to develop service and assistive robot technology with high relevance for

future personal domestic applications [3]. On the other hand, the RoboCup MSL

games, use real wheeled robot teams, to play with an ordinary soccer ball,

autonomously. One referee and at least one assistant are assigned for judgment of a

match. They use assisting technology, the RefereeBox, to support them, in particular

for conveying referee decisions for players, with the help of a wireless

communication system.

Also, the possibility to have systems able to interpret sign language in real-time is an

important aspect to take into account. Those systems could be used to facilitate the

communication between humans and machines and help disabled people or people

with physical limitations taking care of generic domestic tasks.

As previously said, the main objective of this work consists of studying and

implementing solutions, generic enough, with the help of machine learning

algorithms, allowing their application in a wide range of human-computer interfaces,

for online gesture recognition. In pursuit of this, it is intended to use a depth camera

to detect and track the user hands, and extract information (hand features), for

gesture classification. With the implemented solutions it is intended to develop an

integrated vision-based hand gesture recognition system, for offline training of static

and dynamic hand gestures, in order to create models, that can be used for online

classification of user commands, that could be defined with the help of a new formal

language.

The motivation to apply the developed technologies in the present study, in a vision-

based system for hand gesture recognition relates to a number of factors here

highlighted, such as the interest in creating:

• Flexible systems in terms of configuration and capacity of being integrated

with any human-computer interface.

• Robust user-independent gesture recognition systems.

• Systems that can easily learn new gestures that could be used in any human-

computer interface.

Objectives 3

• Systems that can easily integrate static and dynamic gesture recognition.

• Systems that can be used in any type of environment.

• Systems that could easily improve the identification of commands and

communication between referees in noisy sports and gaming environments.

• Systems with improved response time, since the command identified by the

vision system is automatically transmitted to the human-computer interface

(avoiding delays due to misinterpretations).

• Real-time sign language recognition systems.

• Real-time robotic soccer refereeing systems.

• Generic human-machine interaction systems that may control any type of

electronic device with configurable static and dynamic gestures.

Those solutions could be used to build a wide range of human-computer interfaces,

as for example, a system able to remotely drive a robot, or in a vision-based

wheelchair control, a sign language recognition system or on any other kind of

robot/system command interface that can take advantage of them.

1.2 Objectives

The main objective of this work is to build an integrated vision-based system able to

interpret a set of defined commands composed of static and dynamic gestures. That

system should provide the ability to quickly learn new gestures and be configured to

recognize new commands. The solutions should be generic and easily applied to a

wide range of applications where the core of vision-based interaction is the same

thereby facilitating its implementation.

For that, four specific objectives must be achieved by the research, answering the

following questions:

• Is it possible to build a set of solutions that can be easily configured to learn

different static or dynamic gestures for online classification, and be at the

same time easy to extend and easy to be used by future users?

• Is it possible to define a new formal command language, capable of

representing all the system commands or combinations of all the static and

4 Introduction

dynamic gestures defined, being at the same time simple in its syntax and

easy to use in any system configuration?

• Are the implemented solutions generic enough so that it is possible to use

them to build any vision-based application for a robot/system command

interface?

• Is it possible to build a set of solutions, generic enough, able to interpret user

gestures and apply them to the problem of robotic soccer referee’s commands

classification, in order to help him judge a game in real time?

1.3 Approach

In order to try to answer the questions outlined in the objectives the following

approaches will be pursued:

• Identification of hand features that best fit the problem at hand, being at the

same time simple in terms of computational complexity, for use in real-time

applications.

• Test the selected features with machine learning algorithms in order to

identify the best learning algorithm in terms of classification.

• Build solutions, that can be easily configured to recognize a specific set of

static hand postures, thus allowing to learn a model that could be used in any

online classification system.

• Build solutions, that can be easily configured to recognize a specific set of

dynamic gestures, thus allowing to learn models that could be used in any

online classification system.

• Build a system that integrates the two types of gestures, and test it in real-

time situations.

• Train and test the system so that it is able to interpret the set of commands,

defined with the new formal language.

Contributions 5

1.4 Contributions

This work proposes a new generic vision-based hand gesture recognition

architecture, able to be integrated with any specific human computer interaction

(HCI) system.

The description of this scientific contribution is split into two groups. The first group

is based on the initial work carried out during the hand detection, tracking and

segmentation problems. The various experiments carried out during this phase

allowed to conclude that it would be more advantageous to use a camera that could

output two images, a colour image and a distance image. Therefore, the best option

was to use the Kinect camera [4] which measures the time-of-flight of a light signal

between the camera and the objects of interest, for each point of the image.

Some prototypes were therefore developed, which allowed to reach the first group of

contributions, here listed:

• Definition of a formal command language, used in a vision-based system

prototype, able to interpret a number of finger commands that are used to

drive a robotic based wheel chair [5]. The language was defined using BNF

(Bakus Naur form).

• Implementation of a system able to remotely drive a robot with a finite set of

hand gestures [6], and that can be easily adapted to any system for remote

robot operation.

The second group consists of solving the four specific objectives defined in the first

section, and they include the following contributions:

• The implementation of two applications able to train and learn statistical

based models, for any static or dynamic gesture definition, that may be

integrated in any system for real time hand gesture classification.

• The implementation of a generic system able to use static, dynamic or a

combination of both to classify any gesture in real-time, using the models

learned in the train phase [7].

• The integration of machine learning algorithms to increase the performance

and effectiveness of real time static and dynamic gesture classification [8].

6 Introduction

• A new language definition, the Referee CommLang, which is a formal

definition of all the commands that the implemented gesture recognition

system accepts. The language was defined with BNF (Bakus Naur form) [9].

1.5 Document Structure

The reminder of this document is divided into seven chapters and is organized as

follows:

• Chapter 1 introduces the motivation and objectives of this work. The four

specific objectives to be achieved by this work are also discussed together

with the intended approach.

• Chapter 2 presents and discusses the foundations necessary to understand the

scientific and technical concepts involved in the study. The state of the art in

the areas of hand feature extraction and detection, data-mining techniques,

static and dynamic gesture recognition, and the use machine-learning

techniques for pattern classification is also presented.

• Chapter 3 describes in detail the three implemented modules: the Pre-

Processing and Hand Segmentation module, the Static Gesture Interface and

the Dynamic Gesture Interface. The modules allow the training of all the

gestures that will be part of the system, and learn the models that can be used

in any interactive system for vision-based hand gesture recognition. This

chapter also discusses all the assumptions that the system must obey.

• Chapter 4 presents and describes the algorithms implemented and used to

build all the models from the previous chapter.

• Chapter 5 presents some case studies implemented with solutions developed

during the study, which resulted in prototypes with potential for being

integrated into other systems.

• Chapter 6 presents the experiments performed in terms of hand feature

extraction, selection and model learning, for static and dynamic hand gesture

recognition. It discusses the tools used in order to obtain the optimized

parameters for the learning algorithms and the process of final model

Document Structure 7

selection. At the end of each section, the obtained results are analysed and

discussed.

• The document ends with a chapter that gives an overview of the work

reported in this thesis, underlining the tools and results achieved and provides

some future directions.

Chapter 2

2 Methodologies and State of the Art

2.1 Introduction

Vision-based hand gestures interaction is a challenging interdisciplinary research

area, which involves areas such as computer vision and graphics, image processing,

data mining, machine learning, and informatics. To make use of such techniques in a

successful working system, there are some requirements which the system should

satisfy [10] such as for example robustness to variations in illumination and to

occlusions. The system must be computationally efficient, so it can be used in real-

time situations, and it must be error tolerant, giving users the possibility to repeat

some actions. Also, it should be flexible enough so that it can be adapted to different

scales of applications, i.e., the core of vision-based interaction should be the same for

desktop environments and for robot control, for example.

Vision based gesture recognition has the potential to be a natural and powerful tool

supporting efficient and intuitive interaction between humans and computers. Visual

interpretation of hand gestures can help achieving the ease and naturalness desired

for HCI (Human Computer Interaction). Also, vision has the potential of carrying a

wealth of information in a non-intrusive manner at a low cost. Therefore, it

constitutes a very attractive sensing modality for developing hand gesture

recognition, and can be divided into two categories: 3D model based methods and

appearance based methods [11, 12].

3D model-based methods are used to recover the exact 3D hand pose. Such models

however have a disadvantage which is computationally intensive, making such

methods less suitable for real-time applications. On the other side, although

appearance-based methods are view-dependent, they are more efficient in terms of

computation time. They aim at recognizing a gesture among a vocabulary, with

template gestures learned from training data [10, 13, 14].

Appearance-based models extract features that are used to represent the object under

study and must have, in the majority of cases, invariance properties to translation,

rotation and scale changes.

10 Methodologies and State of the Art

Given this, the approach typically used for vision-based hand gesture recognition

interfaces can be divided into the following three steps: hand detection and

tracking, hand feature extraction and hand gesture classification.

There are many studies on gesture recognition and methodologies well presented in

the literature [10, 13-16].

The following sections present some background and the state of the art related with

the areas of hand feature selection and extraction, static or hand posture classification

and dynamic gesture classification. The importance of proper feature selection and

extraction will be addressed and a comprehensive description of some of the

techniques and algorithms used in the area will be given.

2.2 Background

2.2.1 Feature Selection and Extraction

For vision-based hand gesture recognition and classification, careful feature selection

for hand shape representation plays an important role. Since visual features provide a

description of the image content [17], their proper choice for image classification is

vital for the future performance of the recognition system. Viewpoint invariance and

user independence are two important requirements for a real-time hand gesture

recognition system.

Thus, efficient shape features must present some essential properties such as [17]:

• Translation, rotation, and scale invariance: meaning that the location,

rotation and scaling changing of the shape must not affect the quality and

robustness of extracted features.

• Occlusion invariance: when some parts of a shape are occluded by other

objects, the features of the remaining part must not change compared to the

original shape.

• Noise resistance: features must be as robust as possible to noise, or the shape

must be classified the same way independently of the noise strength present.

• Reliable: as long as one deals with the same pattern, the extracted features

must remain the same.

Background 11

A shape descriptor, normally in the form of a vector, is a set of numbers that are

produced to describe the object that the system needs to identify. Descriptors attempt

to quantify shapes in ways that agree with human intuition, and should meet the

following requirements:

• They should be as complete as possible.

• They should be represented and stored compactly, namely the size of the

vector must not be too long.

• The computation of distance between descriptors should be simple in order to

optimize processing times.

Many shape descriptors and similarity measures have been used to date in the field of

gesture recognition for human-computer interaction. A good survey on shape feature

extraction techniques is presented by Mingqiang [17] and Bourennane [18].

The following sections will describe and give the corresponding algorithm

implementations for a set of image features tested throughout the study, namely the

Centroid Distance Signature [19], the Histogram of Oriented Gradients (HoG) [20-

22], the Local Binary Pattern (LBP) [23], the Fourier Descriptors (FD) [12, 18, 24,

25] and the Shi-Tomasi Corner detector [26-29].

2.2.2 Centroid Distance Signature

The centroid distance signature is a type of shape signature. This signature is

expressed by the distance of the hand contour boundary points, from the centroid

!! ,!! of the shape and given by the following formula:

! ! ! = !! − !! !+ !! − !! !; ! = 0,… ,!!! (1)!

where ! ! !is the calculated distance, and !! ,!! are the coordinates of contour

points.

Due to the subtraction of centroid, which represents the hand position, from

boundary coordinates, the centroid distance representation is invariant to translation.

Rayi Yanu Tara et al. [19] demonstrated this property and also, that a rotation of the

hand by an amount θ results in a circularly shift version of the original image. Thus,

12 Methodologies and State of the Art

this shift version can be interpreted as a different gesture, or rotation invariance can

be achieved by shifting the obtained signature by the rotation amount. The centroid

distance signature algorithm implementation is given and discussed in section 4.3.1,

since this was the type of feature selected for the final system implementation.

2.2.3 Histogram of Oriented Gradients (HoG)

The essential thought behind the Histogram of Oriented Gradient descriptors is that

local object appearance and shape within an image can be described by the

distribution of intensity gradients or edge directions. Since the HoG descriptor

operates on localized cells, the method is invariant to geometric transformations and

illumination changes.

Pixel intensities can be sensitive to lighting variations, which can lead to

classification problems within the same gesture under different light conditions. So,

the use of local orientation measures avoids this kind of problem, and the histogram

gives us translation invariance. Orientation histograms summarize how much of each

shape is oriented in each possible direction, independent of the position of the hand

inside the image [30]. This statistical technique is most appropriate for close-ups of

the hand.

Although the method is insensitive to small changes in the size of the hand, it is

sensitive to changes in hand orientation. Again, as in the previous descriptor, this can

be used to identify a different gesture, or by histogram shifting by the rotation

amount we can get orientation invariance. The local orientation is calculated using

image gradients, represented by horizontal and vertical image pixel differences. If dx

and dy are the outputs of the derivative operators, then the gradient direction is given

by atan2(dy, dx), and the contrast by !!! + !!!.

After histogram calculation, a blur in the angular domain is applied, which allows a

gradual fall-off in the distance between orientation histograms as explained by

William T. Freeman et al. [31]. Similar to the implementation described in the paper,

we used the same kernel as defined in the algorithm on line 40.

The implementation of the histogram of gradients and the respective histogram blur

computation is shown in the following algorithm.

Background 13

Algorithm 1. Histogram of gradients computation (HoG)

1. inputs:"" "

2. !!!!image":""a"matrix"containing"the"grey0level"hand"pixels"

3. "

4. outputs:"" "

5. !!!!histogram":"a"vector"containing"the"histogram"of"gradient"values"

6. "

7. begin"
8. """"histSize"←"36"

9. """"initializeHistogramToZero()"

10. !!!!rows"←"getNumbersOfRows(image)"
11. !!!!cols"←"getNumberOfCols(image)"
12. "

13. """"gradientThreshold"←"1.2f"

14. """"dx"←"d(image)"/"dx"
15. """"dy"←"d(image)"/"dy"
16. """"contrast"←"sqrt(dx2"+"dy2)"
17. "

18. """"sum"←"0"

19. !!!!for""i"="0"to"rows!8!1"do"
20. !!!!!!!!for"j"="0"to"cols!0"1"do"
21. """"""""""""sum"←"sum"+"contrast[i,"j]"
22. """"""""endfor"
23. !!!!endfor"
24. "

25. """"grayAverage"←"sum"/"(rows"*"cols)"
26. """"step"←"360"/"histSize"
27. """""

28. """"//00000"define"a"threshold"to"eliminate"low"contrast"gradients"00000"

29. """"threshold"←"grayAverage"*"gradientThreshold"

30. !!!!for"i"="0"to"rows"0"1"do"
31. !!!!!!!!for"j"="0"to"cols!0"1"do""
32. """"""""""""if"contrast[i,"j]">"threshold"then"
33. """"""""""""""""histogram[contrast[i,"j]"/"step]"←"histogram[contrast[i,"j]"/"step]"+"1""
34. """"""""""""endif"
35. """"""""endfor"
36. !!!!endfor"
37. "

38. """"//0000000000000000000"blur"the"histogram"0000000000000000000"

39. """"temp[histSize]"←"0""

40. !!!!filter"←{1,"4,"6,"4,"1}"

41. """"total"←"Σi"filter[i]"
42. "

43. """"for"i"="0"to"histSize"0"1"do"
44. """"""""sum"←"0"

45. !!!!!!!!for"j"="0"to"size(filter)"0"1"do"
46. !!!!!!!!!!!!if"(i02+j)"≥"0"and"(i02+j)"<"histSize"then"
47. """"""""""""""""sum"←"sum"+"(histogram"[(i02+j)]"*"filter[j])"
48. !!!!!!!!!!!!elseif"(i02+j)"<"0""then"

14 Methodologies and State of the Art

49. """"""""""""""""sum"←"sum"+"(histogram"[histSize"+"(i02+j)]"*"filter[j])"
50. !!!!!!!!!!!!elseif"((i02+j)"≥"histSize)"then"
51. """"""""""""""""sum"←"sum"+"(histogram"["(i02+j)"%"histSize]"*"filter[j])"
52. """"""""""""endif"
53. """"""""endfor"
54. """"""""temp[i]"←"sum"/"total"
55. !!!!endfor"
56. "

57. !!!!for"i"="0"to"histSize"0"1"do"
58. """"""""histogram[i]"←"temp[i]"
59. !!!!endfor"
60. "

61. """"return"histogram"

62. end"

The algorithm first calculates the image gradients on line 14 and 15 using one of

many possible operators. In the proposed solution implement the Sobel operator was

used [32-34]. This operator is used to find the approximate absolute gradient

magnitude at each point in an input grey scale image. The grey average from the

obtained contrast image is used to define a contrast threshold used to eliminate low

gradient values during histogram calculation. Also, the number of histogram bins, or

orientation values, was defined to be 36, so, the contrast image values are mapped to

the proper histogram range by dividing by the step value defined in line 26. After

histogram calculation, the respective histogram blur is performed with the defined

filter initialized in line 40.

2.2.4 Local Binary Patterns

Local binary patterns (LBP) is a grey scale invariant local texture operator with

powerful discrimination and low computational complexity [23, 35-37]. This

operator labels the pixels of the image by thresholding the neighbourhood of each

pixel !!! !!!…!!!! , being P the values of equally spaced pixels on a circle of radius

R (R > 0), by the grey value of its centre !! !and considers the result as a binary code

that describes the local texture [23, 35, 37]. The binary code is calculated according

to the following formula:

! !"#!,! = ! !! − !!!!!,…,!!! 2!!! (2)!

Background 15

where,

! ! ! = 1, ! ≥ 0
0, ! < 0!!

(3)!

Figure 1 illustrates the computation of !"#!,! for a single pixel in a rectangular 3x3

neighbourhood with the threshold version in the middle and the resulting binary code

on the right. The pixel g0 is always assigned to be the grey value of the neighbour to

the right of !!.

Figure 1. Example of a LBP8,1 computation.

In the general definition, LBP is defined in a circular symmetric neighbourhood,

which requires interpolation of the intensity values for exact computation. The

coordinates of gp are given by (-R·sin(2πp/P), R·cos(2πp/P)) [35].

The LBPP,R operator produces 2p different output values, corresponding to the

different binary patterns that can be formed by the P pixels in the neighbourhood set.

As a rotation of a textured input image causes the LBP patterns to translate into a

different location and to rotate about their origin, if rotation invariance is needed, it

can be achieved by rotation invariance mapping. In this mapping, each LBP binary

code is circularly rotated into its minimum value using the following formula:

! !"#!,!!" = !"#! !"! !"#!,!! !! (4)!

where ROR(x i) denotes the circular bitwise right shift on the P-bit number x, i steps.

For example, 8-bit LBP codes 00111100b, 11110000b, and 00001111b all map to the

minimum code 00001111b. For P=8 a total of 36 unique different values is achieved.

This operator was designated as LBPROT in [38].

Ojala et.al [35] had shown however, that LBPROT as such does not provide very

good discrimination. They have observed that certain local binary patterns are

fundamental properties of texture, providing the vast majority of all 3x3 patterns

presented in observed textures. They called this fundamental patterns “uniform” as

16 Methodologies and State of the Art

they have one thing in common – uniform circular structure that contains very few

spatial transitions. They introduced a uniformity measure U(pattern), which

corresponds to the number of spatial transitions (bitwise 0/1 changes) in the

“pattern”. Patterns that have a U value of at most 2 are designated uniform and the

following operator for grey-scale and rotation invariant texture description was

proposed:

! !"#!!,!!!"#! =
! !! − !!!!!,…,!!! ,!!!!"!! !"#!,! ≤ 2
! + 1 , !"ℎ!"#$%! !! (5)!

Equation 5 assigns a unique label corresponding to the number of ‘1’ bits in the

uniform pattern, while the non-uniform are grouped under the “miscellaneous” label

(P+1). In practice the mapping from !!"#!,! to !"#!,!!"#! is best implemented with a

lookup table of 2p elements. The final texture feature employed in texture analysis is

the histogram of the operator output.

The local binary pattern implementation is given by the following algorithm.

Algorithm 2. Local Binary Pattern Image Computation

1. inputs:"" "

2. !!!!image":""a"matrix"containing"the"binary0segmented"hand"pixels"

3. !!!!neighbours:"the"number"of"neighbours"(default"="8)"

4. !!!!radius:"the"radius"value"(default"="1)"
5. outputs:" "

6. !!!!lbpImage":""a"matrix"containing"the"final"calculated"LBP’s"

7. "

8. begin"
9. """"neighbours"←"max(min(neighbours,"31),"1)"
10. !!!!rows"←"getNumberOfRows(image)"
11. !!!!cols"←"getNumberOfCols(image)"
12. "

13. """"for""n"="0"to"neighbours"0"1"do"
14. !!!!!!!!x"←"(radius)"(cos(2πn"/"(neighbours)))"
15. !!!!!!!!y"←"(radius)"(0sin(2πn"/"(neighbours)))"
16. !!!!endfor"
17. "

18. !!!!fx"←"floor(x)"
19. !!!!fy"←"floor(y)"
20. !!!!cx"←"ceil(x)"
21. !!!!cy"←"ceil(y)"
22. """"ty"←"y"0"fy"

23. """"tx"←"x"0"fx"

24. "

Background 17

25. !!!!w1"←"(1"0"tx)"*"(1"0"ty)"
26. !!!!w2"←"tx"*"(1"0"ty)"
27. !!!!w3"←"(1"0"tx)"*"ty"
28. """"w4"←"tx"*"ty"

29. "

30. !!!!for"i"="radius"to"(rows"–"radius)"0"1"do"
31. """"""""for"j"="radius"to"(cols"–"radius)"0"1"do"
32. !!!!!!!!!!!!t"←"w1"*"image"[i"+"fy,"j"+"fx]"+"w2"*"image"[i"+"fy,"j"+"cx)]!"
33. """"""""""""""""""+"w3"*"image"[i"+"cy,"j"+"fx]"+"w4"*"image"[i"+"cy,"j"+"cx]"
34. """"""""endfor"
35. !!!!endfor"
36. "

37. """"lbpImage[i"0"radius,"j"0"radius]"←"lbpImage[i"0"radius,"j"0"radius]""
38. " !!!!!!!!!!!!!!!!+"((t">"image[i,"j])"˄"(abs(t"0"image[i,"j]))"
39. end"

2.2.5 Fourier Descriptors

Instead of using the original image representation in the spatial domain, feature

values can also be derived after applying a Fourier transformation. The feature vector

obtained this way is called a Fourier descriptor [39]. This is another feature normally

used to describe a region boundary [25, 33], and considered to be more robust with

respect to noise and minor boundary modifications.

For computational efficiency, the number of points is chosen to be a power of two

[12]. The normalized length is generally chosen to be equal to the calculated

histogram signature length (N). Hence the Fourier Transform we obtain N Fourier

coefficients Ck given by the following formula:

! !! = ! !!!!
!!"#$
!!!!

!!! , ! = 0,… ,! − 1!! (6)!

Table 1 shows the relation between motion in the image and the transform domains,

which can be used in some types of invariance.

The first coefficient C! is discarded since it represents, in our case, the hand position.

Hand rotation affects only the phase information, thus if rotation invariance is

necessary, it can be achieved by taking the magnitude of the coefficients.

18 Methodologies and State of the Art

Table 1: Equivalence between motions in the image and transform domains

In the image In the transform

A change in size Multiplication by a constant

A rotation of Ø about the origin Phase shift

A translation A change in the DC term

Division of the coefficients by the magnitude of the second coefficient, C!, on the

other hand, achieves scale invariance. This way, N-1 Fourier descriptors Ik are

obtained:

! !! = !!
!!
, ! = 2,… ,! − 1!! (7)!

Conceil et.al [12], showed that with 20 coefficients the hand shape is well

reconstructed. Centroid distance Fourier descriptors, obtained by applying the

Fourier transform on a centroid distance signature, were empirically proven to have

higher performance than other Fourier descriptors [19, 25, 40].

The following algorithm implements the centroid distance Fourier descriptors with

the help of the FFTW library [41]. The algorithm receives a vector with the centroid

distance signature and builds a complex vector with the real part equal to the centroid

distance value and the imaginary part initialized to zero. It uses two library functions

for the Fourier calculation: the fftw_plan_dft_1d function to build the pretended

Discrete Fourier Transform plan, and the fftw_execute function to execute the plan

and output the vector with the Fourier Descriptors.

Algorithm 3. Compute Centroid Distance Signature Fourier Descriptors

1. inputs:" "

2. !!!!centroidDist:"vector"containing"the"centroid"distance"signature"
3. outputs:" "

4. !!!!out":"fft_complex""vector"variable"that"will"contain"the"descriptors"

5. "

6. begin""""
7. !!!!N"←"20"

8. !!!!planForward"←"fftw_plan_dft_1d(N,"in,"out,""
9. """""""""""""""""""""""""""FFTW_FORWARD,"FFTW_ESTIMATE)"

10. !!!!for"i"="0"to"N"–"1"do"
11. !!!!!!!!in[i][1]"←"centroidDist[i]"
12. !!!!!!!!in[i][1]"←"0.0"

13. !!!!endfor"

Background 19

14. "

15. """"out"←"fftw_execute(planForward)"
16. end

2.2.6 The Shi-Tomasi Corner Detector

The Shi-Tomasi corner detector algorithm [29] is an improved version of the Harris

corner detector [27]. The proposed improvement is in how a certain region within the

image is scored and thus treated as a corner or not. Where the Harris corner detector

determines the score ! with the eigenvalues !! and !! of two regions in the

following way:

! ! = !"# !!!! − ! !! + !! !!! (8)!

where the second region is a shifted version of the first one, and if the difference

between the two is big enough one can say it is a corner, Shi and Tomasi just use the

minimum of both eigenvalues in the following way:

! ! = !!"# !!, !! !! (9)!

and if R is greater than a certain predefined value, it can be marked as a corner. They

demonstrated experimentally in their paper, that this score criterion is much better.

Corner feature extraction information was implemented with the help of the OpenCV

[28] library algorithms, so no algorithm implementation is presented here.

2.2.7 Related Work

Many authors have used the Histogram of Oriented Gradients (HoG) as a feature

vector for gesture classification. As explained in section 2.2.3 it has some advantages

over other methods and is simple and fast to compute. This technique is sometimes

used in conjunction with others to improve the quality of features or solve some of

the problems that one technique has per se.

Freeman et al. [31] presented a method for real-time hand gesture recognition based

on this technique. They used the HoG as a feature vector for static gesture

classification and interpolation. They implemented a real-time system able to

distinguish a small vocabulary of about ten different gestures. Some problems arises

form this approach namely: different gestures may have similar orientation

20 Methodologies and State of the Art

histograms and the hand must dominate the image, i.e. the method is most

appropriate for hand close-ups as explained in section 2.2.3.

Yafei Zhao et al. [21] have also presented a real-time hand gesture recognition

method, where the histograms of oriented gradients (HoG) are used to describe the

hand image. The HoG features are computed by dividing the image into overlapped

blocks and these blocks are divided into smaller un-overlapped spatial regions, which

are called cells. For each cell a local one-dimensional histogram of gradient

directions is accumulated over the cell pixels. Local contrast normalization is

required due to variations in illumination, so block-level histograms are normalized

using L2-Hys scheme, which is a combination of normalization by the L2-norm and

then limiting the maximum values to a predefined level and re-normalizing. The

HoG feature vector is then the concatenated histogram entries from all the cells. The

extracted HoG features are projected into a low-dimensional subspace using PCA-

LDA (Principal Component Analysis and Linear Discriminant Analysis), since the

dimensionality of the HoG feature is very high. This way, they were able to project a

HoG feature from a 1296-dimensional space into a 9-dimensonal sub-space. After

projecting all the training samples, the mean for each class is calculated and a

classifier using the nearest neighbour method is constructed. Their system was able

to recognize gestures in real-time however, the method still had some problems with

some of the gestures, caused by shadows in the hand, leading to a detection rate

lower than 80%.

Hanning Zhou et al. [42], Xingbao et al. [22] and Liang Sha et al. [43] proposed new

methods for static hand gesture recognition based on an extended Histogram of

Oriented Gradients features. Hanning Zhou et al. method augments the HoG feature

with its relative image coordinates, and clusters the resulting vector in order to find a

compact yet descriptive representation of the hand shape. To extract HoG features

they used overlapping 24x24 sub-windows divided further into 4x4 blocks. Within

each pixel block, they collected histograms using 8 bins ranging form 0 to π,

obtaining a total of 128 feature elements in the local orientation histogram. The

resulting vector is normalized to unit vector. They augmented the histogram with the

image coordinates of the upper left corner of the sub-window, centralized to the

Background 21

median of the coordinates of all pixels belonging to the hand region to ensure

robustness against in-plane translation. To obtain a compact representation they used

the k-means clustering algorithm and recorded the mean vectors. Searching the

nearest neighbour in the database of mean features, using a Euclidean distance

metric, does hand posture recognition. The experiments showed that the purposed

method was able to capture the distinct hand shape without requiring clean

segmentation. Also, they were able to achieve higher recognition rates when

compared to other techniques, and with a better efficiency in terms of

computationally speed. On the other hand, Xingbao model uses a skin colour

histogram of oriented gradients, to construct a human hand detector. Histogram of

oriented Gradient features was first used by Navneet Dalal [44] with excellent results

in human detection. Skin colour is the most commonly used cue for segmenting

hands or faces in gesture analysis. However, approaches based on predefined skin

colour models suffer from sensitivity to illumination variations. To solve this

problem, the authors combined skin colour cues with HoG features to construct a

novel feature: SCHOG. The SCHOG extracted features are used to train a SVM and

construct a classifier able to detect the users hands. They tested the method on a

SCHOG dataset and compared the obtained results on an unchanged HoG features

dataset. The experimental results showed that the SCHOG features exhibited a good

performance on the testing dataset with a detection rate of 97,8% compared to 94,4%

on the normal HoG features. Liang Sha et al. presented a framework for hand posture

recognition in consecutive video frames that used a Mixture of Gaussians to

construct a model able to segment skin/non skin hand regions and used a particle

filter [45] to track the hand. The model is trained and updated online to improve hand

detection and tracking. To extract the Histogram of Oriented Gradients (HoG)

features descriptor, the input region is divided into 4 cells on which the X and Y

gradients are calculated. The gradient orientation and magnitude are calculated and

accumulated in a local 1-D histogram. The calculated histograms for all the cells are

joined and contrast-normalized to form the final HoG. The authors used the HoG

descriptor not only as a recognition cue, but also for calibrating coarse tracking

results. The extracted features are then used to select the class with the help of a

22 Methodologies and State of the Art

posture dataset. They noticed that the gradient information was disturbed with

cluttered backgrounds or with ill white balance. The system had some problems with

over-exposure and drastic hand motion since the colour feature based tracker, under

the above two conditions, could not separate correctly the hand from the background.

Zondag et al. [20] tested the use of HoG features with two variations of the Adaboost

algorithm to construct a real-time hand detector for indoor environments with

cluttered backgrounds and variable illumination. The two variations of Adaboost,

Gentle [46] and Discrete Adaboost [47], were tested with stump, a machine-learning

model consisting of a one level decision tree, and Tree weak classifiers. The HoG

features were compared with Haar-like features and they found that the first ones

presented a better performance. They recorded four different persons performing the

“open hand” pose with different backgrounds and varied illumination conditions.

From the acquired images they constructed three databases with the same samples

but with different sizes. During the experiments, they used 2/3 of the dataset for

training and 1/3 for testing and they performed four experiments: search of optimal

HoG parameters, influence of database size, influence of the database example size

and comparison of HoG and Haar-like features. The experiments showed that a real-

time hand detector using HoG image features could achieve similar performances to

a detector using Haar-like features on the created databases, although Haar-like

features detectors could perform the detection roughly twice as fast. The HoG

features on the other side have the advantage of having smaller feature vector, so it

can be used in conjunction with much larger databases. Also, the HoG features

detector consistently achieved better average false positive rates than Haar-like

features detectors.

Mohamed Bécha Kaâniche et al. [48] introduced a new HoG tracker for gesture

recognition based on local motion learning. They built HoG trajectory descriptors

(representing local motion) by first selecting in the scene a set of corner points to

determine textured regions, where they compute the 2D HoG descriptors. Then, they

track these descriptors, with a new tracking algorithm based on a frame to frame

HoG tracker and using an extended Kalman filter, in order to build temporal HoG

descriptors. A newly computed descriptor initializes a new tracking process through

Background 23

the extended Kalman filter. The temporal 2D descriptor is the vector obtained by the

concatenation of the final descriptor estimate and the positions of the descriptor

during the tracking process. The learning / recognition of gestures is based on the k-

means clustering algorithm and the k-nearest neighbour classifier. The extracted

local motion descriptors are extracted from each video on the dataset annotated with

the corresponding gesture and clustered into k (value defined empirically) clusters.

With the obtained database of all the clusters, the k-nearest neighbour classifier is

used to classify the gestures in the test dataset. They tested the tracking algorithm on

two datasets: a synthetic dataset and a real dataset. They have validated the local

motion descriptors with the KTH database [49]. They were able to achieve an

accuracy of 91,33% when using the Shi-Tomasi corner detector [29] (section 2.2.6),

and an accuracy of 94,67% when using the FAST (Features from Accelerated

Segment Test) corner detector [50].

Local Binary Patterns (LBP) has also been used in some of the implementations

described in the literature, often used in combination with other methods. As

explained in section 0, it is a grey scale invariant local texture operator with powerful

discrimination and low computational complexity. Marek Hrúz et al. [51] presented a

description of appearance features using this technique, introduced by Ojala [52], to

describe the manual component of Sign Language. They made experiments with

these descriptors in order to show its discriminative power for hand shape

classification. Then, they compared the performance of these features with geometric

moments describing the trajectory and shape of hands. They tested the recognition

performance of individual features and their combination on a dataset consisting of

11 signers and 23 signs with several repetitions. In their experiments, Local Binary

Patterns outperform the geometric moments. LBP features showed better results than

geometric moments for SSD (signer semi-dependent) and SI (signer independent)

tests. When the features were combined they achieved a recognition rate up to 99,7%

for signer dependent tests and 57,54% for signer independent tests. One drawback of

the appearance-based features is their strong dependency on the position and

orientation of the hand relative to the camera. Jinbing Gao et al. [53] proposed a new

method which they called Adaptive HoG-LBP detector, to track the palm in

24 Methodologies and State of the Art

unfettered colour images, by fusing HoG features and LBP features. They defend

that the object description ability of the HoG and the LBP are different, so first, they

determine the strength of each descriptor on the hand image or part of the image

based on what they call a Confidence Map Computing. The extracted features are

then fused based on the calculated confidence values and are normalized. The

resulting features were then used to train an SVM classifier. They built their own

dataset with 5378 palm images from 28 different users, and were able to achieve an

accuracy of 95,2% in real-time situations. The classification is done without any pre-

processing such as noise filtering, brightness balance or sharpening. The system

showed however some problems with hand motion detection, which was defined as

future work.

Instead of using the original image representation in the spatial domain, many

authors propose hand feature representation based on Fourier Descriptors (FD) that,

as explained in section 2.2.5, being another feature describing the boundary of a

region are considered to be more robust with respect to noise and minor boundary

modifications.

Conseil et al. [12], Barczak et al. [54] and Rayi et al. [19] proposed vision based

systems for hand posture recognition based on this technique. Conceil et al.

discussed the invariance properties of FD, and they provided a comparison of

performances with Hu moments [55]. They made experiments with the Triesch hand

posture database [56], and with their own database, constructed from images

acquired from 18 non-expert users, performing the hand postures defined in their

own gesture vocabulary. The database was build from a very large set of images,

with various postures of the hand in order to test extensively the performances of FD

in regard to invariances. Their work showed that Fourier descriptors were able to

give good recognition rates in comparison with Hu moments, confirming the

efficiency of FD and their robustness in real-time conditions. Rayi et al. on the other

hand, used the Centroid Distance Fourier Descriptors as a hand shape descriptor.

They implemented a system able to classify static hand gestures. For image

acquisition they used a depth sensor, and hand segmentation was performed on the

depth image with a threshold operation. A Canny edge detector was used to extract

Background 25

the hand contour. For hand gesture classification they used a similarity degree

matching, where the smallest distance is considered as a match. For that, they

evaluated the performance of different distance metrics as classifiers: Euclidean

distance, Manhattan distance and Canberra distance. The experimental results

showed that the Centroid Distance Fourier Descriptors with the Manhattan distance-

based classifier achieved the best recognition rates, with an accuracy of 95% and

with a small computational latency. Barczak et al. made experiments with Moment

Invariants and Fourier Descriptors features for American Sign Language (ASL),

where two important properties were covered: invariance to certain transformations

and discrimination power. Three types of images were used with Moment Invariants:

grey scale, binary and contours, and two different Fourier descriptors were

compared, namely complex coordinates and centroid distance. Some problems arise

from hand images that yield similar contours, because the correspondent ASL

gesture only differs by the position of the thumb. In those cases, the Fourier

Descriptors and the Moment Invariants computed would not be able to differentiate

the classes.

Bourennane et al. [18] presented a shape descriptor comparison for hand posture

recognition from video images, with the objective of finding a good compromise

between accuracy of recognition and computational load for a real-time application.

They run experiments on two families of contour-based Fourier descriptors and two

sets of region based moments, all of them invariant to translation, rotation and scale-

changes of hands. They performed systematic tests on the Triesch benchmark

database [56] and on their own with more realistic conditions, as they claim. The

overall result of the research showed that the common set Fourier descriptors when

combined with the k-nearest neighbour classifier had the highest recognition rate,

reaching 100% in the learning set and 88% in the test set.

Other types of features, like SIFT (Scale Invariant Feature Transform) [57] and

SURF (Speeded Up Robust Features) [58] for example had also been used and tested

with the same goal in mind: to find good features with invariant properties able to

work in real-time conditions.

26 Methodologies and State of the Art

Wang et al. [59] proposed a system based on the discrete Ada-boost learning

algorithm integrated with SIFT features, for accomplishing in-plane rotation

invariant, scale invariant and multi-view hand posture detection. They used a sharing

feature concept to increase the accuracy of multi-class hand posture recognition. The

performances of hand detection using the Viola-Jones detector and the proposed

approach were compared. The results of hand detection using Ada-boost with SIFT

features were more satisfactory than with the Viola-Jones detector. With the

implemented solution, they were able to successfully recognize three hand posture

classes and deal with the problem of background noise. Huynh et al. [60] presented

an evaluation of the SIFT (scale invariant feature transform), Colour SIFT (CSIFT),

and SURF (Speeded Up Robust Features) descriptors on very low resolution images.

The performance of the three descriptors was compared against each other on the

precision (also called positive predictive value) and recall (also known as sensitivity)

measures [61] using ground truth correct matching data. Their experimental results

showed that the precision and the recall performances of SIFT and CSIFT were

similar. Also, the experimental results showed that both SIFT and Colour SIFT were

more robust under changes of viewing angle and viewing distance, but SURF was

superior under changes of illumination and image blurring. In terms of computation

time, the authors concluded that the SURF descriptors are a good alternative to SIFT

and CSIFT.

Kolsch et al. [62] studied view-specific hand posture recognition system, where they

used the Viola-Jones object recognition method [63] to detect the hand. The used

method as the disadvantage of being computationally very expensive, prohibiting the

evaluation of many hand postures. They introduced a frequency analysis-based

method for instantaneous estimation of class separability, without the need for any

training. They were also able to optimize the parameters of the detection method,

achieving significant speed and accuracy improvements. Their study showed that, the

Viola-Jones detector could achieve excellent detection rates for hand postures.

Machine Learning and Classification 27

2.3 Machine Learning and Classification

Classification is generally achieved with a distance metric and nearest neighbour

rules, but also with other classifiers or machine learning algorithms. Classification

involves a learning procedure, for which the number of training images and the

number of gestures are important facts [18]. Ian Millington et al. stated that making

sure the learning has sensible attributes is part of the art of applying machine

learning and getting it wrong is one of the main reasons of failure [64].

The study and computer modelling of learning processes in their multiple

manifestations constitutes the topic of machine learning [65]. So, machine learning is

the task of programming computers to optimize a performance criterion using

example data or past experience [66]. Thereunto, machine learning uses statistic

theory in building mathematical models, since its core task is to make inference from

sample data.

In machine learning two entities, the teacher and the learner, play a crucial role. The

teacher is the entity that has the required knowledge to perform a given task. The

learner is the entity that has to learn the knowledge to perform the task. One can

distinguish learning strategies by the amount of inference the learner performs on the

information provided by the teacher. This way, the learning problem can be stated as

follows: given an example set of limited size, find a concise data description [65].

Given this, learning techniques can be grouped in three big families: supervised

learning, reinforcement learning and unsupervised learning.

In the current study, all the experiments and system implementations used supervised

machine learning algorithms, and for that reason this state of the art focus on this

type of algorithms only. In supervised learning, given a sample of input-output pairs,

called the training sample, the task is to find a deterministic function that maps any

input to an output that can predict future observations, minimizing the error as much

as possible. According to the type of outputs, supervised learning can be

distinguished in classification and regression learning [66]. In classification

problems the task is to assign new inputs to one of a number of discrete classes or

categories. If the output space is formed by the values of a continuous variable, then

the learning task is known as the problem of regression or function learning [67].

28 Methodologies and State of the Art

Machine learning algorithms have been applied successfully to many fields of

research like, face recognition [68], automatic recognition of a musical gesture by a

computer [69], classification of robotic soccer formations [70], classifying human

physical activity from on-body accelerometers [71], automatic road-sign detection

[72, 73], static hand gesture classification [74], dynamic hand gesture classification,

and speech recognition [75], among others.

As explained by Jain et al. [76], it is clear that no single approach for classification is

“optimal”, depending for example on the nature and type of extracted features or the

type of application. Consequently, it is a common practice sometimes to combine

several modalities and classifiers for the purpose of pattern classification. In practice,

the choice of a classifier is a difficult problem and it is often based on which

classifier(s) happens to be available or known to the user.

Thus, among the various machine-learning algorithms used for gesture classification

the following sections will describe the most representative for the current research

work, in the field of static and dynamic gesture recognition, namely: k-Nearest

Neighbour (k-NN), Artificial Neural Networks (ANN), Support Vector Machines

(SVM) and Hidden Markov Models (HMM).

2.3.1 k-Nearest Neighbour (k-NN)

The k-Nearest Neighbour algorithm is one of the most simple and popular of all

machine-learning algorithms. The algorithm simply compares a feature vector to be

classified with all the features vectors in the training set with known class labels, and

assigns the vector the most frequent class. To find the nearest neighbour a measure

of distance is used. Euclidean distance is usually the preferred metric, but other

metrics can be used as well, like the Mahalanobis distance, the Manhattan distance or

the Canberra distance [77].

This type of classification although often with good results, has a number of

drawbacks such as the need to define the number k (neighbours), which has direct

impact on final performance of the algorithm. Also, the entire training set needs to be

stored and used during classification, which affects performance with increasing size.

On the other side, there are no restrictions on the distance metric to use.

Machine Learning and Classification 29

By this rule, for k = 3 for example, the nearest three neighbours are selected (those

three with the least distance) and their mode, the maximally represented class, is

assigned to the test sample. If k = 1, then the object is simply assigned to the class of

its nearest neighbour.

The k-Nearest Neighbour algorithm for classification can be described as follows:

Algorithm 4. k-NN classification algorithm

1. inputs:"
2. """"D"="{(x1,"c1),"…,"(xN,"cN)}:"vectors"with"known"classes"
3. !!!!x"="(x1,"…,"xN):"new"instance"(vector)"to"be"classified"
4. "

5. begin""""
6. !!!!for"each"labelled"instance"(xi,"ci)"do"
7. !!!!!!!!calculate"d(xi,"x),"the"distance"from"the"new"instance"to"(xi,"ci)"

8. !!!!endfor"
9. "

10. !!!!for"i=1"to"N"do"
11. !!!!!!!!order"d(xi,"x)"from"lowest"to"highest"

12. !!!!endfor"
13. "

14. !!!!select"the"k"nearest"instances"to"x:9 !!! "

15. !!!!assign"to"x"the"most"frequent"class"in"!!!"
16. end"

2.3.2 Artificial Neural Networks (ANN)

An Artificial Neural Networks is a system that attempts to model the way the human

brain works. It comprises a network of artificial neurons, which are mathematical

models of biological neurons. Like the biological neuron, an artificial neuron (called

a perceptron), receives numerical values and outputs a numerical value. There are

three types of neurons in an ANN – input, hidden and output neurons, as can be seen

in Figure 2, which are connected in a special pattern known as the neural network’s

architecture or topology. In this type of architecture (multi-layer perceptron), each

node takes input from all the nodes in the preceding layer and sends a single output

to all the nodes in the next layer. For that reason it is called a feedforward network.

30 Methodologies and State of the Art

Figure 2. Artificial Neural Network [78]

During classification, the input or leftmost layer into the perceptron is provided with

a numerical value (activation value provided by the system) that is multiplied by a

weight (connection strengths). The perceptron only fires an output, the rightmost

layer, when the total strength of the input signals exceeds a certain threshold.

The weighted input to a perceptron is acted upon by a function, the transfer function,

which will determine the activation output (Figure 3). Common transfer functions

used in artificial Neural Networks include the unit step (equation 10), sigmoid

(equation 11) and Gaussian (equation 12). The activation flows through the network

through the hidden layers, until it reaches the output nodes.

! ! ! = 0, ! < 0
1, ! ≥ 0!!

(10)!

! !(!) = 1/((1 + !!")!)!! (11)!

! ! ! = 1 2!"!! !!! ! !!! !! (12)!

Machine Learning and Classification 31

Figure 3. Neural network with inputs, activation function and output represented. [79]

For learning, the neural network has to be put in a specific learning mode. Here

another algorithm applies, the learning rule, which although using the original

perceptron algorithm, it is more complex and the most common algorithm used is the

backpropagation [64]. This algorithm works in the opposite direction of the

feedforward algorithm, working backwards from the output. Additional information

can be found in the books by Haykin [80] and by Gorunescu [81].

2.3.3 Support Vector Machines (SVM)

Support vector machines are a group of supervised learning methods that can be

applied to classification or regression. SVM’s select a small number of boundary

feature vectors, support vectors, from each class and builds a linear discriminant

function that separates them as widely as possible (Figure 4) - maximum-margin

hyperplane [77]. Maximum-margin hyperplanes have the advantage of being

relatively stable, i.e., they only move if training instances that are support vectors are

added or deleted. SVM’s are non-probabilistic classifiers that predict for each given

input the corresponding class.

In the two-class example, a set of training samples (feature vectors), each marked as

belonging to one of the classes is used to learn a model that will be used in the

classification phase.

In addition to performing linear classification, SVM’s can efficiently perform non-

linear classification using what is called the kernel trick [82], implicitly mapping

their inputs into higher-dimensional feature spaces. Mathematically, any function

K(x, y) is a kernel if it can be written as K(x, y) = Θ(x) ⋅ Θ(y), where Θ is the function

32 Methodologies and State of the Art

that maps an instance into the higher-dimensional feature space. So, the kernel

function represents a dot product in the feature space created by Θ. Additional

information can be found in the books by Theodoridis [83] and by Alpaydin [66].

Figure 4. SVM: support vectors representation with maximum-margin hyperplane [84]

2.3.4 Hidden Markov Models (HMM)

The typical model for a stochastic (i.e. random) sequence with a finite number of

states is called a Markov Model [85]. When the true states of the model ! =
!!, !!, !!,… , !! are hidden in the sense that they cannot be directly observed, the

Markov model is called a Hidden Markov Model (HMM). At each state an output

symbol ! = !!, !!, !!,… , !! is emitted with some probability, and the state

transitions to another with some probability, as shown in Figure 5. With discrete

number of states and output symbols, this model is sometimes called a “discrete

HMM” and the set of output symbols the alphabet.

In summary, an HMM has the following elements:

• N: the number of states in the model ! = !!, !!,… , !! ;

• M: the number of distinct symbols in the alphabet ! = !!, !!,… , !! ;

• State transition probabilities:

 ! = !!" !!ℎ!"!!!!" ≡ ! !!!! = !! !! = !! !!"#!!!!!"!!ℎ!!!"#"$!!"!!"#$!!;

Machine Learning and Classification 33

• Observation probabilities:

! = !! ! !!ℎ!"!!!! ! ≡
! !! = !!|!! = !! !!"#!!!!"!!ℎ!!!"#$%&'()!*!!"#$"%&";

• Initial state probabilities: ! = ! !! !!ℎ!"!!!! ≡ ! !! = !! ;

and is defined as ! = !,!,Π , where N and M are implicitly defined in the other

parameters. The transition probabilities and the observation probabilities are learned

during the training phase, with known gesture data, which makes this is a supervised

learning problem [8].

Figure 5. HMM example with initial probabilities (!), transition probabilities (!!"),

observation probabilities (!! !) and observation sequence (!) represented.

2.3.5 Related Work

As explained in section 2.3 no single approach for classification is “optimal”,

depending for example, on the nature and type of extracted features or the type of

application. Consequently, as seen before, it is sometimes a common practice to

combine several modalities and classifiers for the purpose of pattern classification. In

practice, the choice of a classifier is a difficult one and it is often based on which

classifier(s) happen to be available or known to the user.

2.3.5.1 k-Nearest Neighbor
Being the k-NN algorithm one of the simplest and popular of all machine-learning

algorithms, normally used in conjunction with a distance metric many authors have

used it in their implementations. Yang Jufeng et al. [86] implemented a command

34 Methodologies and State of the Art

system based on static hand gesture recognition for controlling a PowerPoint

presentation that used a k-NN classifier. The hand was detected based on the HSV

(Hue-Saturation-Value) model and made use of Fourier descriptors as hand features.

In the experiments the authors used a 4-gesture database with 400 records, divided

into a train and a test dataset. On the train dataset they achieved an accuracy of 95%

for the first gesture, 90% for the second, 88,3% for the third and 86,7% for the last

one. For the test dataset, they obtained a high error rate on the first and third

gestures, resulting from light conditions on the image and on the quality of hand

posture image obtained. Also, their system had some limitations on cluttered

backgrounds and with varying hand angles.

Bourennane et al. [18] performed experiments on two sets of contour-based Fourier

descriptors and two sets of region based moments with a k-NN classifier. The overall

result of the research showed that the common set Fourier descriptors when

combined with the k-nearest neighbour classifier had the highest recognition rate,

reaching 100% in the learning set and 88% in the test set. Hanning Zhou et al. [42]

applied a k-NN classifier with a Euclidean distance metric, for hand posture

recognition on a dataset composed of mean vectors obtained by clustering a set of

augmented normalized HoG features. The experiments showed that the purposed

method was able to capture the distinct hand shape without requiring clean

segmentation. Also, they were able to achieve higher recognition rates when

compared to other techniques, and with a better efficiency in terms of

computationally speed. Mohamed Bécha Kaâniche et al. [48] introduced a new HoG

tracker for gesture recognition based on local motion learning which used a k-NN

classifier in the learning/recognition phase. They have validated the local motion

descriptors with the KTH database [49], with which were able to achieve an accuracy

of 91,33% when using the Shi-Tomasi corner detector [29] (section 2.2.6), and an

accuracy of 94,67% when using the FAST (Features from Accelerated Segment Test)

corner detector [50].

Herve Lahamy et al. [87] performed a comparative analysis of hand features and

classifiers for automatic recognition of eight different gestures, using datasets

collected with a range camera. The features included Hu-moments, orientation

Machine Learning and Classification 35

histograms and hand shape associated with its distance transformation image. As

classifiers, the k-nearest neighbour algorithm (k-NN) and the chamfer distance had

been chosen. For an extensive comparison, four different databases have been

collected with variation in translation, orientation and scale. The evaluation was

performed by measuring the separability of classes, and by analysing the overall

recognition rates as well as the processing times. The best result were obtained from

the combination of the chamfer distance classifier and hand shape and distance

transformation image, but the time analysis revealed that the corresponding

processing time was not adequate for a real-time recognition.

2.3.5.2 Artificial Neural Networks (ANN)
Artificial Neural Networks (ANNs) have also been widely used in the area of vision-

based gesture recognition with very good results. Maung [88], Tasnuva Ahmed [89]

and Mekala et al. [90] applied Artificial Neural Networks (ANNs) to the problem of

static hand gesture recognition in a real-time system. Maung applied it to a system

able to recognize a subset of MAL (Myanmar Alphabet Language) static hand

gesture in real time. His method extracted HoG features that were used to train an

ANN classifier. The paper includes experiments with 33 hand postures, and the

author claims that the method is simple and computationally efficient. The results

showed that the system was able to achieve an accuracy of 98% on a single hand

database. One drawback of the method is, that it is efficient as long as the data sets

are kept small. Tasnuva Ahmed trained the ANN with a database of records

composed of 33 different features extracted from grey scale and binary hand images,

that the author claims are rotation, scaling, translation and orientation independent.

The ANN architecture used had an input layer with 33 inputs, an hidden layer with

85 nodes or neurons, and an output layer composed of 4 nodes, and used the back-

propagation learning algorithm. The proposed approach was able to achieve an

accuracy of 88,7% with a database composed of four static gesture types. The system

presented however some difficulties in varying light conditions and hand tracking.

Mekala et al. on the other side, used an ANN in a vision-based system for static hand

Sign Language recognition, based on a HW/SW co-simulation platform. This

approach intends to increase the speed of execution, while maintaining the

36 Methodologies and State of the Art

flexibility. As feature vectors they used the extracted hand shape and the orientation

magnitude. The training phase is done on the software platform and the testing phase

is done on the hardware platform. This is based on a new technique presented in the

paper called co-simulation neural network. In their method, a part of the neural

network is designed on the hardware with dedicated ports. The network is built of 16

input neurons in the input layer, 50 neurons in the first hidden layer, 50 neurons in

second hidden layer, and 35 neurons in the output layer. The number of neurons

selected resulted from the analysis of the selected features for image representation.

The authors claim that the co-simulation platform was able to reduce the recognition

times, with a 100% success rate for all the sign language alphabets (A to Z). Haitham

Hasan et al. [91] presented a novel technique for static hand gesture recognition for

human-computer interaction based on the hand shape analysis and an ANN for hand

gesture classification. Their main goal was to explore the utility of a NN approach

for the recognition of hand gestures. The system was divided into three parts: (1) pre-

processing, (2) feature extraction and (3) classification. The main efforts were made

in the feature extraction and classification. As hand features they used complex

moments (CMs) introduced by Abu-Mostafa [92] as a simple and straightforward

way to derive moment invariants. The CMs are very simple to compute and quite

powerful in providing an analytic characteristic for moments invariant. They are a set

of values extracted from the image that have the property of invariance to image

rotation. Moment invariant can be used as a feature for object classification and

recognition. They tested a Neural Network (NN) with the extracted hand contour and

a Neural Network with the complex moments. The system was able to achieve a

recognition rate of 70,83% using the contour but suffered from invariance to

translation, while the second method achieved an accuracy of 86,38%. Nevertheless,

the system presented some problems to recognize the same gesture under different

light conditions, which is a serious limitation

2.3.5.3 Support Vector Machines (SVM)
Being Support Vector Machines (SVMs) a group of supervised learning methods that

can be applied to classification or regression, and in addition to performing linear

classification, can efficiently perform non-linear classification using what is called

Machine Learning and Classification 37

the kernel trick (section 2.3.3), they have been widely applied to the problem of hand

gesture recognition. Ching-Tang Hsieh et al. [93] presented a fast hand detection and

an effective feature extraction process for a real-time hand gesture recognition

system based on a SVM classifier. The system was comprised of four steps: (1) the

use of the Camshift Algorithm (Continuously Adaptive Mean Shift) for skin colour

tracking, primarily intended to perform efficient head and face tracking in a

perceptual user interface [94], (2) the use of the Boundary Extraction Algorithm

(BEA), proposed by Liu [95], to extract the hand contour, (3) extraction of Fourier

Descriptors (FDs) for shape description and (4) shape classification using a SVM. As

shown in section 2.2.5, Fourier descriptors have some advantages, namely invariance

to starting boundary point, deformation and rotation. For the problem of hand gesture

recognition with different view angles, the authors acquired multiple images. Each

gesture contained 1000 images with a total of 5000 images for all the gestures. The

experimental results showed they were able to achieve an average accuracy of

93,4%, demonstrating their system was feasible. Yen-Ting Chen et al. [96] presented

a system that allows effective recognition of multiple-angle hand gestures in finger

guessing games. They used three webcams set at front, left and right directions of the

hand for image acquisition. By using images from three different cameras, three

SVMs classifiers were trained. After the training process, the constructed classifiers

were fused, according to three different plans. In the first, with simple voting, each

classifier contributes equally to the final result, while in the second and third plans,

the recognition rates were regarded as fusion factors, i.e. the recognition rate

obtained with one of the cameras for one gesture was given as a fusion factor. As the

experimental results had shown, the fusion strategy made the recognition system

more robust and reliable, being able to achieve an accuracy of 93,33% in terms of

multi-view hand gesture recognition. Jinbing Gao et al. [53] trained a SVM with

features obtained by fusing HoG features and LBP features to track the palm in

unfettered colour images. They called the proposed method Adaptive HoG-LBP

detector. They defend that the object description ability of the HoG and the LBP are

different, so first, they determine the strength of each descriptor on the hand image or

part of the image based on what they call a Confidence Map Computing. The

38 Methodologies and State of the Art

extracted features are then fused based on the calculated confidence values and are

normalized. They built their own dataset with 5378 palm images from 28 different

users, and the experiments showed that they were able to achieve an accuracy of

95,2% in real-time situations. The classification is done without any pre-processing

such as noise filtering, brightness balance or sharpening. The system showed

however some problems with hand motion detection, which was defined as future

work. Liu Yun t al. [97] presented an automatic hand gesture recognition system that

consisted of two modules: a hand detection module and a gesture recognition

module. For hand detection, they used the Viola-Jones method [63]. For hand

recognition and SVM train, they used Hu invariant moments [55] of the hand image

as feature vectors. Hu invariant moments have the advantage of being invariant to

translation, scale and rotation. To overcome the linearity of the basic SVM classifier

the authors used the on-vs-all approach, which separates a single class from all the

remaining classes. The experiments showed that the system were able to achieve a

total recognition accuracy of 96,2% for the three hand postures defined in the

dataset. However, the system showed some problems with test images acquired

under strong light conditions, which led to some incorrect results. The authors had

concluded, that in those cases, the failure mainly stems from erroneous segmentation

of background areas as belonging to hand regions. Jung-Ho Ahn et al. [98] presented

a real-time colour based tracking method, which they called the hand motion vectors.

The system was able to track both hands and was based on the mean-shift (MS)

tracking algorithm. They assumed that a gesture was performed in front of a camera,

and the starting and end postures are the same. For the occlusion recovery problem,

they presented a tracking method that used a predicted window, i.e. the candidate

hand window position was predicted by using past motion information. As hand

features the authors used a simple and efficient feature extraction method. They

stated that all hand trajectories are not equally important to identify a gesture, so, by

singular state analysis they filtered out the trivial trajectories. For that, they defined

three states of hand trajectories with their respective mathematical descriptions: hold

state, dynamic state and occlusion state. With those definitions a motion vector

would be classified as singular or normal. After feature extraction, motion vectors

Machine Learning and Classification 39

were normalized and a quantization process transformed a sequence of motion

vectors into a set of symbols (codewords). A vector quantizer consists of a codebook

and a quantization function, that in the proposed system simple mapped the motion

vectors to the nearest codeword. For gesture classification they used a SVM, but to

perform SVM classification first they had to make sure that all the features were in

the same space, so they had to make vectors of features with constant length.

Unfortunately, as the experimental results showed, they had very high error rates,

mainly in two gestures that were very similar, and the SVM recognition rate was not

so high. The problem stemmed from very noise data, where several states appear in

several features. Nasser H. Dardas et al. [99] presented a system for real-time

interaction with an application or videogame via hand gestures. The system was able

to detect and track a bare hand in cluttered backgrounds using skin detection. To

remove other skin-like areas, they first detect the face with the Viola-Jones method,

which was replaced by a black circle. After face subtraction, other skin areas are

detected using the HSV colour model. The contours of skin areas are extracted and

compared with all hand gestures contours loaded from a dataset, to get rid of non-

hand skin-like objects still present in the image. As hand features, they used key

points extracted with the SIFT (scale invariant feature transform) algorithm. Since

the obtained features were too high dimensionality to be used efficiently, the authors

solved the problem with the bag-of-features approach [100, 101] to reduce the

dimensionality of the feature space. This way, each training image can be described

as a “bag-of-words” vector by mapping key points to a vector of visual words. With

the obtained feature representation a multi-class SVM was trained. The testing stage

proved that effectiveness of the proposed scheme in terms of accuracy and speed.

Experiments showed that the system could achieve satisfactory real-time

performance regardless of the frame resolution and with an accuracy of 96,23%

under variable scale, orientation and illumination conditions and also with cluttered

backgrounds. The authors identified three important factors that could affect the

accuracy of the system, namely the quality of the webcam used in the training and

testing stages, the number of training images and choosing the number of clusters

used as codebook size. Chen-Chiung Hsieh et al. [102] proposed a real-time hand

40 Methodologies and State of the Art

gesture recognition system that consisted of three major parts: digital zoom, adaptive

skin detection and hand gesture recognition. The first module detected the user's

face, and applied trivial trimming and bilinear interpolation for zooming in, so that

the face and upper body occupied the central part of the image. The second module

was based on an adaptive skin colour model for hand region extraction. By adaptive

skin colour model, the effects from lighting, environment, and camera could be

greatly reduced, and the robustness of static hand gesture recognition could be

improved. A ROI was defined under user’s face, and a three level grey-level Haar-

like feature was used to extract the hand region. For dynamic gestures, they observed

the motion history image (MHI) for each dynamic directional hand gesture and

designed four groups of Haar-like directional patterns able to recognize up, down,

left and right movements. The benefit of the motion history image was that it could

preserve object trajectories in a frame. Those patterns count the number of black-

white patterns as statistical features for classification. They investigated the use of a

Neural Network for dynamic gesture recognition, but found that the accuracy rate

stopped at about 85% because some variations of different dynamic hand gestures

were similar. To overcome this problem, they investigated a new approach based on

a SVM for dynamic hand gesture classification. The overall system was able to

obtain a recognition rate of 93,13% for dynamic gestures and 95,07% for static hand

gestures in average.

2.3.5.4 Hidden Markov Models (HMM)
Since dynamic gestures are time-varying processes, which show statistical variations,

HMMs are a plausible choice for modelling them. In this way, a human gesture can

be understood as a HMM where the true states of the model are hidden in the sense

that they cannot be directly observed. Many authors have used HMMs for gesture

recognition.

Chen et al. [103] introduced a hand gesture recognition system to recognize

continuous gestures with a stationary background. The system is composed of four

modules: a real-time hand tracking and extraction module, a feature extraction

module, and an HMM training module and gesture recognition module. First, they

applied a real-time hand tracking and extraction algorithm to trace the moving hand

Machine Learning and Classification 41

and extract the hand region, and then they used Fourier Descriptors to characterize

spatial features and motion analysis to characterize temporal features. They

combined the spatial and temporal features of the input image sequence as the

feature vector. During the recognition phase, the extracted feature vector was

separately scored against different HMMs. The model with the highest score

indicated the corresponding gesture. They have tested the system with a dataset built

with 20 different gestures obtained with different users, and they were able to

achieve an accuracy of 85%. They had some problems with wrong gesture

identification that they claim have originated in the limited number of records used

to estimate the parameters of the HMMs. Yoon et al. [104] proposed a system

consisting of three different modules: (1) hand localization, (2) hand tracking and (3)

gesture spotting. The hand location module detects hand candidate regions, on the

basis of skin colour and motion. The hand-tracking algorithm calculates the moving

hand regions centroids, connects them, and outputs a hand path. The gesture-spotting

algorithm divides the trajectory into real and meaningless segments. To construct a

feature database they used a combined and weighted location, angle and velocity

feature codes, and employed a k-means clustering algorithm for the HMM codebook.

In their experiments, 2400 trained gestures and 2400 untrained gestures were used

for training and testing, respectively. They were able to obtain an accuracy of 93% in

a batch test and an accuracy of 85% on the on-line test that used direct camera input

and real time HMM recognition.

Nguyen Dang Binh et al. [105] introduced a real-time gesture recognition system, for

single hand gestures, that could be used in unconstrained environments. The system

was composed of three modules: hand tracking, gesture training and gesture

recognition using pseudo two dimension Hidden Markov Models (P2-DHMMs),

introduced and applied by Agazzi and Kuo to the problem of optical character

recognition [106]. The P2-DMHH uses observation vectors that are composed of

two-dimensional Discrete Cosine Transform (2-D DCT) coefficients. Their main

contribution was the combination in the P2-DHMM framework of the hand region

information and the motion information. They tested the system using the American

42 Methodologies and State of the Art

Sign Language gestures. The training data was composed of 30 images for each one

of the 36 gestures. They were able to obtain an overall accuracy of 98%.

Mahmoud Elmezain et al. [107] proposed an automatic system based on Hidden

Markov Models and that is able to recognize both isolated and continuous gestures

for Arabic number (0-9) recognition in real time. To handle isolated gestures, three

different HMM topologies (Ergodic, Left-Right and Left-Right Banded) with

different number of states were tested. Hand skin segmentation is done with a

Gaussian Mixture Model applied to stereo colour images with complex backgrounds.

From the obtained hand they extracted three basic features: location, orientation and

velocity. The orientation is quantized by dividing the value by 20º to generate code

words that are between 1 and 18. The discrete vector thus obtained is used as input to

the HMM. For continuous gesture recognition, the system is designed to segment and

recognize an isolated gesture by what the authors called the zero-code word

detection. Although some gestures contain the zero-code word in some segment

parts, they used a static velocity threshold to overcome the problem of incorrect

classifications or gesture separation. Also, in order to take into account the transition

between gestures, the system ignores some links between the two gestures by

neglecting some frames adaptively after detecting the gesture end point. In their

experiments they used 30 video sequences for isolated gestures and 70 video

sequences for continuous gestures. They were able to achieve an average accuracy of

98,94% for the isolated gestures and average accuracy of 95,7% for the continuous

gestures.

Omer Rashid et al. [108] proposed an interaction system through gesture and posture

recognition for alphabets and numbers. The gesture system was able to recognize the

hand motion trajectory using HMM whereas the posture system classifies the static

hand at the same instance of time. In the proposed system, 3D information is

exploited for segmentation and detection of face and hands using normal Gaussian

distributions and depth information. For the gestures, they compute the orientation of

two consecutive hand centroids, for all the points in the hand path, which is then

quantized in the range 1 to 18, in order to generate the code words. The obtained

quantized values gives a discrete vector that is used to train the HMM. For the

Machine Learning and Classification 43

problem of posture recognition, feature vectors are computed from statistical and

geometrical properties of the hand. As statistical features they used Hu-Moments

(area, mean, variance, covariance and skewness), and as geometrical features the

authors used the circularity and rectangularity in order to exploit the hand shape.

These features are then combined together to form a feature set which is used to train

a SVM for classification and recognition. The experimental results of the proposed

framework could successfully integrate both gesture and posture recognition. For the

gesture system a recognition rate of 98% was achieved (alphabets and numbers) and

for the posture system a recognition rate of 98,65% and 98,6% for ASL alphabets

and numbers was achieved respectively.

Sara Bilal et al. [109] provide a good survey on approaches which are based on

Hidden Markov Models (HMM) for hand posture and gesture recognition for HCI

applications. Their main goal was to provide a survey of HCI applications using hand

gestures which have been developed based on vision systems using HMM’s. In their

paper they gave a brief introduction to the computational tools used to manipulate

HMM’s, they presented HCI applications that have been developed using HMM for

hand posture and/or gesture recognition and they made a comparison of HMM with

other existing methods for hand posture and/or gesture recognition techniques. The

authors had concluded in the paper that most of the developed systems have been

designed for a certain HCI application and might not achieve the same declared

accuracy for another application, being this dependent on many factors such as:

using data gloves or bare hands, the number of database samples, isolated words or

sentence level recognition in case of SL (Sign Language) and using single hand or

two hands.

2.3.5.5 Others
Many authors have presented studies were they tested different classifiers, for the

problem of classification performance, or even used different classifiers on different

parts of their systems with different goals in mind. Anand H. Kulkarni et al. [110]

presented a robust hand gesture recognition system for static gesture classification

based on 11 Zernike moments (ZMs) [111] and tested the extracted features with

three different classifiers: the k-NN (k-Nearest Neighbour), the ANN (Artificial

44 Methodologies and State of the Art

Neural Network) and the SVM (Support Vector Machine). Zernike moments have

the advantage of being rotation and scaling invariant. A comparative study was

carried out to test which classifier performed better in recognizing the pre-defined set

of gestures. The SVM was the classifier that obtained the best results with an

accuracy of 91% compared to 77,5% for the k-NN and 82,5% for the ANN. Avilés et

al. [112] made an empirical comparison of three classification techniques, namely,

Neural Networks, Decision Trees and Hidden Markov Models, focused not only on

the problem of classification performance in gesture recognition, but also trying to

find the best in respect to knowledge description, feature selection, error distribution

and computational time for training. The results showed that none of the techniques

is a definitive alternative for all the questions addressed in the study. They used a

gesture database with more than 7000 samples performed by 15 users. While Neural

Networks and Hidden Markov Models obtained higher recognition rates in

comparison to Decision Trees, they claim that the knowledge description of decision

trees allows them to analyse interesting information suck as the similarity of

gestures. Also, due to the required computational time for training, decision trees

could be adequate for fast prototyping gesture recognition interfaces for HCI

(Human Computer Interaction). Average recognition rates for their experiments,

with a database built from 15 people making 9 different dynamic gestures were,

95,07% for the ANN, 94,84% for the HMM and 87,3% for the DT’s. Omer Rashid et

al. [108] presented a system for ASL (American Sign Language) gesture (dynamic)

and posture (static) recognition of alphabets and numbers able to provide interaction

through. In their system, they have exploited 3D information for segmentation and

detection of face and hands using normal Gaussian distribution and depth

information. For gesture, orientation of two consecutive hand centroid points is

computed which is then quantized to generate code words. HMMs were trained with

the Baum Welch algorithm and classification was done with the Viterbi path

algorithm. Feature vectors were computed from statistical and geometrical properties

of the hand, namely, Hu-Moments, circularity, rectangularity and fingertips. After

normalization, the extracted features were then used to train a SVM, used later for

classification and recognition. Experimental results showed that the proposed

Machine Learning and Classification 45

framework was able to successfully integrate both the gesture and posture

recognition systems, where the gesture recognition system achieved a recognition

rate of 98% (for alphabets and numbers) and the posture recognition system achieved

a recognition rate of 98,65% and 98,6% for alphabets and numbers respectively.

Oshita et al. [113] on the other hand proposed a general gesture recognition system

method, based on two different machine-learning algorithm: the Self-Organizing

Map (SOM), developed in 1982 by Tuevo Kohonen [114], and the Support Vector

Machine (SVM) [115]. Their system could handle any kind of input data from any

input device. In the experiments they used two Nintendo Wii Remote controllers,

with acceleration sensors. The SOM is used to divide the sample data into phases and

construct a state machine. Then, they apply the SVM to learn the transition

conditions between nodes. An independent SVM is applied at each node. They tested

the method with two kinds of gestures: a simple one, performed with just one

controller, and a more complex one done with the two controllers. Their method

showed some problems in the presence of noise, since the classification using SOM

does not work well in those situations. Because of this, automatic gesture recognition

was not able to achieve a good recognition rate.

Other methods were also tried out with good results, like the one by Bailador et al.

[116], were an approach to the problem of real-time gesture recognition using

inexpensive accelerometers was presented. It is based on the idea of creating

specialized signal predictors for each gesture class. The errors between the measured

acceleration of a given gesture and the predictors are used for classification. The

predictors were implemented using Continuous Time Recurrent Neural Networks

(CTRNN), which are networks of continuous model neurons without constraints

placed on their connectivity [117], and that exhibit rich dynamics [118]. The

dynamic and non-linear nature of the CTRNN makes them suited for temporal

information processing. They used a set of eight different gestures to test the

performance and accuracy of the recognition method. Two different datasets were

recorded, with gestures made by only one person in different condition and with

twenty instances for each gesture, resulting in a total of 160 gesture instances per

46 Methodologies and State of the Art

dataset. With this, they were able to obtain a recognition rate of 98% for the training

set and 94% for the testing set.

2.4 Summary

In this chapter the methodologies normally used for vision-based hand gesture

recognition addressed. Some of the methods studied and implemented for the

problem of hand feature extraction, posture classification and dynamic gesture

classification were described.

In terms of hand features for gesture classification, it was seen that many possibilities

exist with different results, and careful feature selection is vital for the future success

of the recognition system. Also, efficient features must present some essential

properties like: translation, rotation and scale invariance, occlusion invariance, noise

resistance and be reliable.

A review of the state of the art in the area was conducted, which showed clearly the

variety of experiments done so far in the field, with or without combinations of

features, and where we could note that there is no single solution for the problem at

the moment.

In terms of gesture classification, some of the most used machine learning algorithms

were described. We saw that in practice, the choice of a classifier is a difficult

problem, and that no single approach is ‘optimal’ depending on the nature and type

of extracted features or the type of application. A review of the state of the art in this

area was also undertaken, where we could note that it is sometimes common practice

to combine several classifiers with the goal of obtaining a better pattern

classification.

Despite all the work done in the area so far, we can conclude that there is still a long

way to go in order to achieve a natural gesture-based interface for human/computer

communication and interaction. Each possible contribution is a step forward in the

attempt to reach such a solution.

Chapter 3

3 Gesture Learning Module Architecture (GeLMA)

3.1 Introduction

As analysed in the previous chapter, vision-based hand gesture recognition is an area

of active current research in computer vision and machine learning [88]. Being a

natural way of human interaction, it is an area where many researchers are working

on, with the goal of making human computer interaction (HCI) easier and natural,

without the need for any extra devices [74, 119].

As Hasanuzzaman et al. [120] argue, it is necessary to develop efficient and real time

gesture recognition systems, in order to perform more human-like interfaces between

humans and robots.

Although it is difficult to implement a vision-based interface for generic usage, it is

nevertheless possible to design this type of interface for a controlled environment

[10, 121]. Furthermore, computer vision based techniques have the advantage of

being non-invasive and based on the way human beings perceive information from

their surroundings [8].

Vision-based hand gesture recognition systems have a wide range of possible

applications [13, 18], of which some are here highlighted:

• Virtual reality: enable realistic manipulation of virtual objects using ones hands

[122, 123], for 3D display interactions or 2D displays that simulate 3D

interactions.

• Robotics and Tele-presence: gestures used to interact with robots and to control

robots [6] are similar to fully-immersed virtual reality interactions, however the

worlds are often real, presenting the operator with video feed from cameras

located on the robot. Here, for example, gestures can control a robot’s hand and

arm movements to reach for and manipulate actual objects, as well as its

movement through the world.

• Desktop and Tablet PC Applications: In desktop computing applications,

gestures can provide an alternative interaction to mouse and keyboard [124-

48 Gesture Learning Module Architecture (GeLMA)

127]. Many gestures for desktop computing tasks involve manipulating

graphics, or annotating and editing documents using pen-based gestures.

• Games: track a player’s hand or body position to control movement and

orientation of interactive game objects such as cars, or use gestures to control

the movement of avatars in a virtual world. Play Station 2 for example has

introduced the Eye Toy [128], a camera that tracks hand movements for

interactive games, and Microsoft introduced the Kinect [4] that is able to track

users full body to control games.

• Sign Language: this is an important case of communicative gestures. Since sign

languages are highly structural, they are very suitable as test-beds for vision-

based algorithms [11, 19, 129, 130].

However, to be able to implement such systems, there are a number of requirements

that the system must satisfy, in order to be implemented in a successful way [10],

which are:

• Robustness: the system should be user independent and robust enough to factors

like visual noise, incomplete information due for example to occlusions,

variations of illumination, etc.

• Computational efficiency: vision based interaction requires real-time systems,

so the algorithms and learning techniques should be the most effective possible

and computational cost effective.

• Error tolerance: mistakes on vision-based systems should be tolerated and

accepted. If some mistake is made, the user should be able to repeat the

command, instead of letting the system make wrong decisions.

• Scalability: the system must be easily adapted and configured so that it can

serve a number of different applications. The core of vision based applications

for human computer interaction should be the same, regardless of the

application.

In order to be able to implement a vision-based solution that can be generic enough,

with the help of machine learning algorithms, allowing its application in a wide

range of interfaces for online gesture recognition, we need to have systems that allow

Introduction 49

training gestures and learning models capable of being used in real-time interaction

systems. These systems should be easily configurable in terms of the number and

type of gestures that they can train, to ensure the necessary flexibility and scalability.

In order to build a solution that could meet all the previous requirements, three

modules were implemented. These modules allow you to train, in a supervised way,

all the necessary gestures that will be part of future vision-based hand gesture

recognition systems, for human / computer interaction.

The implemented modules are: the Pre-Processing and Hand Segmentation (PHS)

module, the Static Gesture Interface (SGI) module and the Dynamic Gesture

Interface (DGI) module as shown in the diagram of Figure 6. From the diagram, one

can see that user hand must be detected, tracked and segmented on each frame. The

segmented hand is passed as an argument to the SGI module to extract hand features

that are saved into a features dataset. This dataset is later used for model training,

and the resulting model is also for future use. The detected hand is passed as a

parameter to the DGI module, where the hand centroid is calculated and used for

hand path construction. Each hand path is labelled according to a defined alphabet

resulting in a feature vector that is saved into the gesture dataset. This dataset is later

used for model training and the corresponding obtained model is saved. The user has

also the possibility to define the final commands that the system will be able to

interpret in the command language definition module.

For the Command Language Definition (CLD) module, only a simple version was

implemented able to be integrated with the final framework, being the final version

implementation planned for further work.

The system uses only one camera, and is based on a set of assumptions, hereby

defined:

1. The user must be within a defined perimeter area, in front of the camera.

2. The user must be within a defined distance range, due to camera limitations.

The system defined values are 0.7m for the near plane and 3m for the far

plane.

3. Hand pose is defined with a bare hand and not occluded by other objects.

50 Gesture Learning Module Architecture (GeLMA)

4. The system must be used indoor, since the selected camera does not work

well under sun light conditions.

The following sections describe in detail each one of the proposed modules. First, it

is described the PHS (Pre-Processing and Hand Segmentation) module, where the

problem of hand detection and tracking is addressed, as well as the problem of hand

segmentation. Secondly, it is described the SGI (Static Gesture Interface) module,

responsible for training static gestures and learn the model for a set of predefined

hand postures, and finally it is described the DGI (Dynamic Gesture Interface)

module, which is responsible for the dynamic gesture training, creating one model

for each one of the predefined gestures to be used.

Figure 6. The static and dynamic gesture training and learning architecture.

Pre-Processing and Hand Segmentation (PHS) module 51

3.2 Pre-Processing and Hand Segmentation (PHS) module

The Pre-Processing and Hand Segmentation module is responsible for hand

detection, tracking and segmentation, trying to minimize the effects of noise present

in depth image as explained in section 3.2.2.

Pre-processing and feature extraction plays an important role on the rest of system,

namely, gesture recognition or classification. The approach used in the study is based

on appearance-based methods [11, 18, 119]. Although viewpoint dependent, this type

of methods is computationally efficient. They model gestures by relating the

appearance of a given gesture to the appearance of a set of template gestures. The

approach mainly consists of extracting a set of features that represent the content of

the images [18]. Thus, good hand segmentation and proper choice of visual features

are vital for the future performance of the recognition system.

Taking this into consideration, and to get a better understanding of the steps taken in

this phase, this section is divided into two parts: (1) hand detection and tracking, and

(2) hand segmentation.

3.2.1 Hand Detection and Tracking

For hand feature extraction, first the hand must be detected and tracked as shown in

the diagram of Figure 7, under the PHS (Pre-Processing and Hand Segmentation)

module, and the hand segmented for later use.

To solve this problem a Kinect camera with the OpenNI framework interface [131] is

used, that is able to detect and track the hand position in space in real-time, as

intended shown in Figure 8. OpenNI is a non-profitable consortium formed to

promote and standardize the compatibility and interoperability of Natural Interaction

(NI), devices, applications and middleware [131].

Figure 7. Pre-processing and feature extraction diagram.

52 Gesture Learning Module Architecture (GeLMA)

The Kinect has a depth sensor consisting of an infrared laser projector combined

with a monochrome CMOS sensor - an active pixel sensor - (Figure 9 and Figure

10), which is able to capture video data in 3D under any ambient light conditions

[132]. The camera returns a depth image, updated 60 times per second according to

Primesense [133], as shown in Figure 11 where different depth values are

represented with different grey values. This is considered a great advantage over

other type of cameras.

Figure 8. Hand tracking in real-time (hand path represented in white).

Figure 9. Inside Kinect controller [134]

Pre-Processing and Hand Segmentation (PHS) module 53

Figure 10. Kinect Interface [135]

Figure 11. Kinect RGB and depth images.

Then, the hand must be segmented from the depth image, colour image or both as

required, and as discussed in the following section.

54 Gesture Learning Module Architecture (GeLMA)

3.2.2 Hand Segmentation

Hand segmentation is achieved by defining a bounding box (handArea) around the

active hand position (handPos). The bounding box defines the ROI (region of

interest) as shown in Figure 12, according to the following set of equations and used

with the depth or grey image for segmentation:

! !"#$%&'$() = (ℎ!"#$%&(!))/!"#$%&'()!! (13)!

! ℎ!"#$%&!(!, !) = ℎ!"#$%&(!, !) − !"#$"%&!/!"#$%&'$()!! (14)!

! ℎ!"#$%&!.!"#$ℎ = !"#$%!&"$'ℎ/!"#$%&'$()!! (15)!

! ℎ!"#$%&!. ℎ!"#ℎ! = !"#$%!&'"(ℎ!/!"#$%&'$()!! (16)!

The distFactor value is used to keep the bounding box aspect ratio, according to the

hand distance to the camera, as shown in Figure 12. The value in parenthesis

represents the real depth distance.

In the current system implementation the values for divFactor, startPos,

windowWidth and windowHeight were defined as 1000, 60, 120 and 110

respectively. The value for divFactor was obtained by experimentation, with the goal

of achieving the minimum bounding box that would include the entire hand and

which size would be relative to the hand distance to the camera.

Figure 12. Bounding box size relative to the hand distance to the camera.

Pre-Processing and Hand Segmentation (PHS) module 55

As soon as the bounding box is set, two parallel planes are defined, the near and far

threshold planes, in the vicinity of the hand position according to the following

formulas:

! !"#$%&#!" = ℎ!"#$%& ! − !"#"$"%&!! (17)!

! !"#$%"&' = ℎ!"#$%& ! + !"#"$"%&!! (18)!

The vicinity variable was defined as 200 for the current implementation. This way, a

3D bounding box is defined, as shown in Figure 13, and all the hand pixels that fall

inside it are extracted, forming what we call a hand blob (Figure 14). The hand blob

is a binary image, where all the pixels belonging to the hand are represented in white.

The image thus obtained is used as input to the feature extraction phase.

Figure 13. Hand bounding box with the near and far-threshold planes represented (left); 3D

bounding box obtained for hand segmentation (right).

Figure 14. Hand blob extracted from the depth image and used for feature extraction.

As explained by Andersen et al. [136], one of the problems with the Kinect depth

image is the presence of noise, which has implications in the quality of the final

image and which means that the extracted hand position is not stable, even without

apparent movement. This has implications on the quality of the final features

56 Gesture Learning Module Architecture (GeLMA)

extracted from the segmented hand, resulting in possible different values for the

same hand posture, as discussed by Trigueiros et al. [8].

Trying to solve this problem, several approaches have been tried out. Camplani et al.

[137], presented an efficient hole filling strategy that they claim is able to improve

the quality of the depth maps. Their proposed approach is based on a joint-bilateral

filtering framework that includes spatial and temporal information. The missing

depth values are obtained applying iteratively a joint-bilateral filter to their

neighbour pixels. Others authors like Bongalon [138] tried to solve the problem by

averaging data from multiple image frames. We tested this approach, in an attempt to

improve the quality of the final features, averaging over 20 frames in a first

approach, but the result was a tremendous reduction on the obtained frame rate. We

tried to reduce the number of frames used for averaging, but the final results were

also not satisfactory. As we were using the whole depth image, the process became

too heavy. A Kalman filter applied to the tracked hand position was also tested,

however, the results obtained with the implemented approach were superior to the

ones obtained with this method.

The final approach used, tested with good results in another implementation [6],

without degrading the performance in terms of frame rate, was a cumulative average

of hand position, over three frames, according to the following formulas:

! !"#$%&' !, !, ! = !"#$%&' !,!,! ∗ !""#$!! !!!"#$%& !,!,!
!""#$!! (19)!

In the formula, the ACCUM variable represents the number of frames to take into

consideration. Using this method, we were able to improve the precision of the

extracted features with impact in the final model obtained for hand classification.

For dynamic gesture feature extraction, where the need to identify the start and end

of a gesture exists, it was used a value that allows us to identify whether the hand is

moving. That value is also averaged over three frames in the following manner:

! !"#$%&'(= !"#$%&'(∗ !""#$−1 +!!"#$%ℎ !"#$%&'−!"#$%&#
!""#$!! (20)!

The lastPos value is updated each frame with the latest mean hand position

(meanPos) calculate with equation 19. At system initialization the distance value is

Static Gesture Interface (SGI) module 57

set to 0, and the meanPos and lastPos are initialized during the first frame

acquisition with the current handPos.

3.3 Static Gesture Interface (SGI) module

The Static Gesture Interface module is responsible for hand feature extraction and

system training for static gesture classification. Static gestures, also sometimes

designated hand postures, are considered a static form of hand pose [139, 140].

For the problem of static hand gesture recognition, first it is necessary to extract

meaningful features from the hand image, as explained in section 2.2.1, to train the

system to recognize the required hand postures. Training implies the use of the

extracted features to learn models, with the help of machine learning algorithms, that

can be used in real-time human computer interaction interfaces.

This section is divided into two parts: (1) features extraction for static hand

classification and (2) system train and gesture classification.

3.3.1 Feature Extraction

Careful hand features selection and extraction are very important aspects to consider

in computer vision applications for hand gesture recognition and classification for

real-time human-computer interaction. This step is crucial to determine in the future

whether a given hand shape matches a given model, or which of the representative

classes is the most similar. According to Wacs et al. [141] proper feature selection,

and their combination with sophisticated learning and recognition algorithms, can

affect the success or failure of any existing and future work in the field of human

computer interaction using hand gestures.

Feature extraction methods determine the appropriate subspace of dimensionality m

in the original feature space of dimensionality d (m ≤ d) [76].

58 Gesture Learning Module Architecture (GeLMA)

Thus, the problem of feature selection can be defined as follows:

Given:

1. {F(xi), i=1,...,d}, a feature set of dimension d and,

2. E(F), the classification error

Select :

3. {S(xj), j=1,...,m}, a subset of dimension m (m ≤ d)

such that E(S) is minimum

After a comparison study of different hand image features for hand pose

classification [8], trying to understand the one that achieved the best results, being at

the same time simple in terms of computational complexity, it was decided to use a

one-dimensional function, called the centroid distance (section 2.2.2). This function,

which is derived from the object boundary coordinates, is also called a shape

signature as shown in [25, 142]. According to Zhang et al. [24] and Trigueiros et al.

[8], it gives very good results in shape retrieval and classification. This type of

signature can describe the shape by itself, and can be a pre-processing step for other

feature extraction algorithms, like for example Fourier descriptors, as shown in [8].

Being one of a set of possible shape descriptors, the centroid distance is expressed by

the distance of the contour boundary points, (xi, yi); i=0,…, N-1, from the object

centroid (xc, yc), as follows:

! ! ! = ! ! − !! ! + ! ! − !!! !!,!!!! = 0,… ,! − 1!! (21)!

So, first it is necessary to extract the hand contour, as shown in the diagram from

Figure 16 resulting in an image like the one shown in Figure 15. From the hand

binary blob received as parameter, the contour is extracted and sampled to a fixed

number of points (N), which in the proposed solution implementation was set to 32.

This value was obtained after several tests with a number of different powers of 2,

giving good final results in terms of classification accuracy. The space between two

consecutive candidate points is given by the following formulae:

! !"#$ = ! !"#$(!"#$"%&) ! + 1!! (22)!

Static Gesture Interface (SGI) module 59

where the function size(contour) returns the number of elements in the vector that

contains the hand contour points.

From the obtained discrete values, the centroid distance is calculated resulting a

centroid distance feature vector. The obtained vector is saved into an instance

database. Each centroid distance feature vector is calculated every 50 milliseconds,

according to equation 1, and saved in an instance database similar to the one shown

in Table 2.

Figure 15. Hand contour extracted from hand blob.

Figure 16. Centroid distance feature calculation diagram.

In terms of visual representation, each centroid distance vector can be represented

graphically in the form of an histogram, called the centroid distance signature, as

shown in Figure 17.

60 Gesture Learning Module Architecture (GeLMA)

Table 2. Hand centroid distance feature vectors prior to normalization.

Class Value1 Value2 Value3 Value4 Value5 … Value31 Value32

0 39.949 34.985 37.611 34.741 34.076 ... 33.014 33.377

0 39.936 34.968 37.676 34.690 34.039 ... 33.011 33.350

1 48.403 43.410 37.935 31.563 28.527 ... 35.943 44.043

1 48.034 42.978 37.912 31.870 28.829 ... 35.775 43.601

2 55.728 45.359 31.054 19.940 25.045 ... 29.461 35.766

2 55.507 45.234 31.019 20.141 25.393 ... 29.943 36.426

...

Figure 17. Centroid distance signature.

Due to the subtraction of centroid from the boundary coordinates, this operator is

invariant to translation as shown by Rayi Yanu Tara et al. [19] and a rotation of the

hand results in a circularly shift version of the original image. All the features

vectors are normalized prior to training, by subtracting their mean and dividing by

their standard deviation (z-normalization) [66, 143] as follows,

! ! = !!" − ! !!! (23)!

where a is the mean of the instance i, and σ is the respective standard deviation,

achieving this way scale invariance as desired. The vectors thus obtained have zero

mean and a standard deviation of 1.

3.3.2 Train and Classification

The resulting database is used to train a multi-class Support Vector Machine (SVM)

classifier and build a model capable of online hand posture classification as shown in

the diagram of Figure 18. In this diagram one can see that the instances are loaded

Static Gesture Interface (SGI) module 61

into the training system, after which they are normalized. After data normalization,

the classifier is trained and the obtained model is saved.

The SVM is a pattern recognition technique in the area of supervised machine

learning, which works very well with high-dimensional data. When more than two

classes are present, there are several approaches that evolve around the 2-class case

[144]. The one used in our system is the one-against-all approach, where c classifiers

have to be designed and used to separate one class from the rest. One drawback with

this kind of approach is that after the training phase there are regions in the space,

where no training data lie, for which more than one hyper plane gives a positive

value or all of them result in negative values [83].

The SVM algorithm was selected for the final implementation, because in the

experiments that were carried out with the features selected in the previous section,

we were able to achieve very high values of accuracy. Also, the resulting obtained

model was compact and fast, able to be applied in applications with real-time

classification demands.

Figure 18. SVM train diagram.

So, for model training and gesture classification the open source Dlib library was

used, a general-purpose cross-platform C++ library capable of SVM multiclass

classification [145].

The resulting model is used during the classification process as shown in Figure 19.

The user’s hand is detected and an instance feature vector is extracted. The feature

vector is normalized, by the z-normalization method (equation 23), and the SVM

62 Gesture Learning Module Architecture (GeLMA)

model is used to predict the instance class as shown in the two examples of Figure 20

and Figure 21, where the command CLOSE, corresponding to a close hand and the

command FIVE, corresponding to an open hand with all the fingers spread, are

correctly classified.

Figure 19. Hand posture classification diagram, using trained SVM model.

Figure 20. “Close” command detected and correctly classified.

Figure 21. “Five” command detected and correctly classified.

Static Gesture Interface (SGI) module 63

The following image shows the user interface for hand posture model training and

testing. Below the main user interface image, we have information concerning the

current command being learned: name of current command and an example of an

extracted instance feature vector (sample). The recording process is activated by

raising the left hand into the red rectangle, identified in the image as the “Left hand

area”. On the left side of the interface we can see represented the extracted hand

blob image and the respective hand contour used in section 3.3.1.

Figure 22. User interface for the static gesture training and testing.

64 Gesture Learning Module Architecture (GeLMA)

3.4 Dynamic Gesture Interface (DGI) Module

The Dynamic Gesture Interface Module is responsible for hand feature extraction

and model train for each one of the gestures we want the system to learn. Dynamic

gestures are time-varying processes, which show statistical variations, making

HMMs (Hidden Markov Models) a plausible choice for modelling the processes

[146, 147]. In this way, a human gesture can be understood as a HMM where the true

states of the model are hidden in the sense that they cannot be directly observed.

HMMs have been widely used in a successfully way in other areas, like for example

in speech recognition and hand writing recognition systems [75].

As shown in section 2.3.4, given a number of states ! = !!, !!,… , !! !and the

number of distinct symbols in the alphabet represented as ! = !!, !!,… , !! , an

HMM is defined as ! = !,!,Π , where:

• A is a matrix with all the state transition probabilities defined as:

 ! = !!" !!ℎ!"!!!!" ≡ ! !!!! = !! !! = !! !!"#!!!!!"!!ℎ!!!"#"$!!"!!"#$!!
• B is the vector containing the observation probabilities defined as:

! = !! ! !!ℎ!"!!!! !
≡ ! !! = !!|!! = !! !!"#!!!!"!!ℎ!!!"#$%&'()!*!!"#$"%&"

• and!Π is the initial state probabilities defined as:

 ! = ! !! !!ℎ!"!!!! ≡ ! !! = !!

For a better understanding of the process taken to train a set of dynamic gestures and

to learn the HMM model parameters that can be used in an online recognition

system, we will divide this section into two parts: (1) feature extraction for dynamic

hand gesture classification and (2) system train and gesture classification.

3.4.1 Feature Extraction

Dynamic gestures are considered in this work as the 2D path taken by hand in a

certain time period, initiated with hand movement and ending when the hand stops.

For the present study, the 2D features used are sufficient for the dynamic hand

gesture recognition problem.

Dynamic Gesture Interface (DGI) Module 65

Although some authors [13, 148] define gestures as a combination of static and

dynamic gestures, we have designated that in the present study as a user gesture

sequence.

As shown on the diagram of Figure 23, the sequence of points extracted from the

hand path, consisting of the hand centroids (xc, yc), is labelled according to the

distance to the nearest centroid, using a clustering algorithm based on the Euclidean

distance, resulting in a discrete feature vector as the one shown in Figure 24. The

vector thus obtained, our observation sequence ! as explained in section 2.3.4, is

translated to the origin, resulting in a translation invariant feature vector as desired,

and used for gesture train or classification.

Figure 23. Dynamic gesture feature extraction diagram.

Figure 24. Gesture path with respective feature vector after labelling.

66 Gesture Learning Module Architecture (GeLMA)

3.4.2 Train and Classification

The feature vectors obtained in the previous section are used to train the HMM and

learn the model (λ) parameters: the initial state probability vector (Π), the state-

transition probability matrix (A=[aij]) and the observable symbol probability matrix

(B [bj(m)]) as shown in Figure 25.

This step is one of HMMs basic problems – the learning problem: given a training

set of observations sequences X = {Ok}k, we want to learn the model that maximizes

the probability of generating X, namely, we want to find λ* that maximizes P(X | λ)

as explained in [65, 66]. This is done for each gesture that we want to learn.

Figure 25. Learn HMM model parameters from a training set of observations.

During the recognition phase, an output score for the sample gesture is calculated for

each one of the learned HMM models λ=(A,B,Π), as shown in the diagram of Figure

26. The model with the highest score represents the given gesture.

This is another one of HMMs basic problems – the likelihood problem: given a

model λ, we want to evaluate the probability of a given observation sequence,

O={O1, O2, …, OT}, namely, P(O | λ) as explained in [65, 66].

Dynamic Gesture Interface (DGI) Module 67

Figure 26. Output the model with the highest score based on the recognized gesture.

The following two images show examples of gestures, namely “GOAL” and

“DROPBALL”, correctly classified.

Figure 27. "GOAL" command correctly identified.

Figure 28. "DROP-BALL" command correctly identified.

68 Gesture Learning Module Architecture (GeLMA)

The proposed model solution uses a left-right HMM like the one shown in Figure 29.

This kind of HMM has the states ordered in time so that as time increases, the state

index increases or stays de same [65, 66]. This topology has been chosen, since it is

perfectly suitable to model the kind of temporal gestures present in the system as

discussed in [9].

Figure 29. A 4-state left-right HMM model.

The following image shows the user interface for the dynamic hand gesture model

learning and testing, where it is possible to observe, below the RGB camera image, a

gesture example drawn on top of the centroids with the respective Euclidean distance

lines represented in white.

Figure 30. Dynamic gestures learning interface.

Vision-based Hand Gesture Recognition System Architecture 69

3.5 Vision-based Hand Gesture Recognition System Architecture

As explained before, the design of any gesture recognition system essentially

involves the following three aspects: (1) data acquisition and pre-processing; (2)

data representation or feature extraction and (3) classification or decision-making.

Taking this into account, a possible solution to be used in any human-computer

interaction system is represented in the diagram of Figure 31. The system is generic

enough, and can be easily implemented using the previous described modules. For

that, it uses the learned models for online human gesture recognition and

classification. As can be seen in the diagram, the system has also a gesture sequence

module that is responsible for building a sequence of hand gestures (static and

dynamic), classify the built sequence, and transmit a command to any system

interface that can be used to control a robot/system.

As explained in section 3.1, the proposed system is designed to use only one camera

and is based on a set of assumptions. As it can be seen in the diagram, the system

first detects and tracks the user hand, segments the hand from the video image and

extracts the necessary hand features. The features thus obtained are used to identify

the user gesture, using the previous learned models and loaded during system

initialization. If a static gesture is being identified, the obtained features are first

normalized and the obtained instance vector is then used for classification. On the

other hand, if a dynamic gesture is being classified, the obtained hand path is first

labelled according to the predefined alphabet, giving a discrete vector of labels

which is then translated to the origin and finally used for classification. Each

detected gesture is used as input into a module that builds the command sequence,

i.e. accumulates each received gesture until a predefined sequence defined in the

Command Language is found. The sequence thus obtained is classified into one of a

set of predefined number of commands that can be transmitted to the GSI (generic

system interface) for robot / system control.

70 Gesture Learning Module Architecture (GeLMA)

Figure 31. Vision-based hand gesture recognition system architecture.

3.6 Summary

This chapter discussed the importance of developing efficient and able to do real-

time gesture recognition applications, in order to achieve human-computer

interaction systems that are more intuitive and user-friendly. We saw that this type of

systems have a wide range of possible applications like virtual reality, robotics and

telepresence, desktop and tablet PC applications, games and sign language

recognition. They also must satisfy a number of requirements in order to be

successfully implemented as robustness, computationally efficiency, error tolerance

and scalability. The need to have easily configurable systems was addressed, in order

to ensure the necessary flexibility and scalability. Also, since the proposed solution is

based on a single camera a set of assumptions that the system must obey were also

described.

Summary 71

A proposal for a vision-based hand gesture learning system architecture, composed

of four modules, has been described. The first one, the module for hand detection

and tracking, addressed the problem of depth image noise and a simple but efficient

solution was proposed. In the second and the third modules the static and the

dynamic gesture learning interfaces were described. Finally, an integrated solution

based on the discussed architecture, was proposed and described. It was shown that

this type of solutions can and should be generic enough to be integrated in any

human-computer interface for any robot / machine control.

Chapter 4

4 System Implementation

4.1 Introduction

The following sections discuss the algorithms and techniques implemented to solve

the specific tasks necessary to build the modules described in chapter 3. Section 4.2

discusses and presents the pre-processing and hand segmentation implementations.

Section 4.3 will address the static gesture module implementation. In section 4.4 the

dynamic gesture module is described and in section 4.5 the integrated vision-based

hand gesture recognition system implementation is discussed.

4.2 Pre-processing and hand segmentation

As explained in the previous chapter, the first step needed in any hand segmentation

system is hand detection and tracking. For that, the OpenNI [131] framework, which

is able to return the 3D hand position in real-time, was used. Hand segmentation is

implemented in Algorithm 5. The algorithm first updates the sensor depth image

information, and extracts the current hand position, from which a cumulative average

position is calculated as explained in section 3.2.2. If the obtained value is inside the

visible hand area and if the user is being tracked then the hand region is extracted

with the getHandImage() function, otherwise the hand region image is cleared. The

distance travelled by the tracked hand (distance) is also calculated. This value allows

us to determine whether or not the hand is moving. The boolean variable isTracking,

controls if the user is being tracked or not, by the system. The constant ACCUM

represents the number of frames to take into consideration as explained in section

3.2.2.

Algorithm 5. Hand Segmentation

1. handSegmentation(),"handROI"
2. outputs:"
3. !!!!handROI:"binary"image"with"the"extracted"hand"region"of"interest"

4. begin"
5. !!!!updateCameraInformation()9
6. "

7. """"if"userVisible()"then9

74 System Implementation

8. !!!!!!!!handPos"←"getHandPosition()"

9. """"""""if"distance"="0"then"
10. """"""""""""meanPos"←"handPos"
11. """"""""""""lastPos"←"handPos"
12. """"""""endif"
13. "

14. !!!!!!!!meanPos"←"(meanPos"*"(ACCUM"0"1)"+"handPos)"/"ACCUM"

15. !!!!!!!!distance"←"(distance"*"(ACCUM"–"1)"+"length(meanPos"–"lastPos))"/"ACCUM"

16. "

17. !!!!!!!!if"getHandInside(meanPos)"then"
18. """"""""""""if"isTracking"then"
19. """"""""""""""""handROI"←"getHandImage(meanPos)"
20. """"""""""""else"
21. """"""""""""""""handROI"←"Null"
22. """"""""""""endif"
23. """"""""endif"
24. "

25. """"""""lastPos"←"meanPos"

26. !!!!endif"
27. "

28. """"return"handROI"
29. end"

For hand segmentation, the user’s hand must be inside the visible area, defined at

start-up with the following values: minx= 50, miny= 50, maxx= 510 and maxy= 360.

This viewport is called the active hand tracking area. The following algorithm

implementation checks if the user hand is within the defined viewport.

Algorithm 6. Hand Inside Computation

1. HandInside(handPos),"inside"
2. inputs:"
3. !!!!handPos:"a"3D"point"that"represents"the"current"hand"position"
4. !!!!handviewPort:"defined"at"start0up"with"minx,"maxx,"miny,"maxy"

5. outputs:"
6. !!!!inside:"variable"that"represents"if"the"hand"position"is"inside"the"defined"viewport"
7. "

8. begin"
9. """"if""handPos.x">"handviewPort.getMinX()"˄""

10. """"""""handPos.y">"handviewPort.getMinY()"˄"""""""""""""""""

11. """"""""handPos.x"<"handviewPort.getMaxX()"˄""

12. """"""""handPos.y"<"handviewPort.getMaxY()"then"
13. """"""""inside"←""true"
14. !!!!else"
15. """"""""inside"←""false"
16. !!!!endif"
17. """"return"inside"
18. end

Static Gesture Interface Module 75

To address the problem of hand segmentation, the application must update the depth

pixels information and calculate the hand bounding box, as explained in section

3.2.2. As seen before, the hand blob is updated with all the depth image pixels that

fall inside the calculated bounding box and between the two depth planes,

nearThreshold and farThreshold. The hand segmentation implementation is given in

the following algorithm.

Algorithm 7. Get Hand Image

1. getHandImage(handPos),"binaryImage"
2. inputs:""
3. !!!!handPos:"the"current"world"hand"position9
4. outputs:"
5. !!!!binaryImage:"the"binary"image"with"the"extracted"hand"blob"

6. "

7. begin"
8. !!!!depthPixels"←"getDepthPixels()"

9. """"distFactor"←"handPosz"/"divFactor"
10. "

11. """"handArea"←"handPosx,y"0"(startPos"/"distFactor)"
12. """"handAreawidth"←"windowWidth"/distFactor"
13. """"handAreaheight"←"windowHeight"/"distFactor"
14. "

15. """"nearThreshold"←"handPosz"0"vicinity"
16. """"farThreshold"←"handPosz"+"vicinity"
17. "

18. """"numPixels"←"depthPixelswidth"*"depthPixelsheight""
19. """"tempImage"←"0"

20. !!!!for"i"="0"to"numPixels"0"1"do"
21. """"""""if"(depthPixels[i]""≤""farThreshold)"˄"(depthPixels[i]""≥""nearThreshold)"then"
22. """"""""""""tempImage[i]"←"1"

23. """"""""else""
24. """"""""""""tempImage[i]"←"0"

25. """"""""endif""
26. !!!!endfor"
27. "

28. """"binaryImage"←"tempImage(handArea)"
29. """"return"binaryImage"
30. end

4.3 Static Gesture Interface Module

In the static gesture interface module, the hand features for posture classification are

extracted from the segmented hand blob, obtained with Algorithm 5. The features

thus obtained are used to build a dataset that is fed into the SVM training algorithm.

76 System Implementation

The decision function (model) obtained can then be used in real-time hand posture

classification systems. The following algorithm implements the hand posture learn

and classification technique.

Algorithm 8. Hand posture learn and classification algorithm

1. definitions:"
2. !!!!features:"vector"that"contains"the"extracted"hand"centroid"distances"
3. !!!!samples:"matrix"where"each"row"is"an"instance"of"features"

4. !!!!labels:"vector"that"contains"for"each"samples"row"the"corresponding"class"
5. !!!!elapsedTime:"represents"the"elapsed"time"for"feature"extraction"

6. "

7. begin"
8. """"reset(elapsedTime)"
9. """"timeToUpdate"←"50ms"

10. """"""""
11. """"while"extractingHandFeatures"do"
12. !!!!!!!!updateCameraInformation()"

13. "
14. !!!!!!!!if"isTrackingUser()"then"
15. """"""""""""handSegmentation()" "" //"implemented"in"Algorithm 5"
16. "
17. """"""""""""if"isLearning"˄"(elapsedTime">"timeToUpdate)"then9
18. !!!!!!!!!!!!!!!!features"="extractHandCentroid()"
19. """"""""""""""""updateSamples(features)"
20. """"""""""""""""updateLabels(currentClass)"
21. """"""""""""""""reset(elapsedTime)"
22. """"""""""""endif"
23. "
24. """"""""""""if"isClassifying"˄"(elapsedTime">"timeToUpdate)"then"
25. """"""""""""""""class"="predictPostureClass(features)"
26. """"""""""""""""reset(elapsedTime)"
27. """"""""""""""""if"(class"≥""minClassNumber)"˄"(class"≤""maxClassNumber)"then"
28. """"""""""""""""""""buildCommandString(class)"
29. """"""""""""""""else"
30. """"""""""""""""""""return"null"
31. """"""""""""""""endif"
32. """"""""""""endif"
33. "
34. """"""""endif"
35. !!!!endwhile"
36. end

With the proposed implementation, is possible to switch between two modes of use:

• learning - process for learning from features

• recognizing - test online the obtained model

Static Gesture Interface Module 77

While tracking the user, if the system is in learning mode, the extracted features are

stored in the SAMPLES matrix, that has one row for each extracted centroid distance

signature instance, and the respective LABELS vector is updated with the

corresponding class being learned. If the system is in recognizing mode, the extracted

features are used to predict the hand posture class (Algorithm 11.), and if the

predicted class is within the predefined number of classes a command string,

indicative of the corresponding gesture, is built.

4.3.1 Feature extraction

As explained in section 3.3.1, the features used for posture classification were

obtained from the centroid distance. Algorithm 9 implements the centroid distance

calculation technique. The first step is to extract the hand contour from the hand

blob. For that, the OpenCV function findContours() is used with the contour retrieval

mode set to external contour (CV_RETR_EXTERNAL), and the contour

approximation mode set to store all the contour points

(CV_CHAIN_APPROX_NONE).

In the proposed implementation, the number of histogram bins (nrBins), or the

number of equally spaced points extracted from the hand contour, was set to 32. This

value gives us a good compromise between number of features and recognition

ability with the chosen operator. For all the given contour points, it calculates the

distance from the hand centroid and saves the value in the instance variable. The

vector thus obtained, which represents the centroid distance signature, is returned.

Algorithm 9. Centroid Distance Computation

1. centroidDistance(handImage,"centroid),"instance"

2. inputs:"" "

3. !!!!handImage:"image"that"contains"the"hand"blob"

4. !!!!centroid:"the"point"representing"the"hand"centroid"
5. outputs:"
6. !!!!instance:"a"vector"containing"the"centroid"signature"
7. "

8. begin"
9. !!!!if"(contour"←"findContours(handImage))"then"
10. """"""""instance"←"null"
11. """"""""nrBins"←"32"

12. """"""""STEP"←"size(contour)"/"nrBins"+"1"

78 System Implementation

13. "

14. !!!!!!!!for"i"="0"to"size(contour)"0"1"step"STEP"do"
15. """"""""""""point"←"contour[i]"
16. """"""""""""d[i]"←"(point.x"–"centroid.x)^2"+"(point.y"–"centroid.y)^2"
17. !!!!!!!!!!!!instance.pushback("sqrt(d[i])")"
18. """"""""endfor"
19. "

20. """"""""if"size(instance)"<"nrBins"then"
21. """"""""""""for"i"="0"to"nrBins"–"size(instance)"0"1"do"
22. """"""""""""""""instance.pushback(0)"
23. """"""""""""endfor"
24. """"""""endif"
25. "

26. """"""""return"instance"
27. !!!!endif"
28. "

29. """"return"null"
30. end"

4.3.2 Support Vector Machine (SVM) Model Training

After dataset construction the model must be trained. As explained in section 3.3.2,

for model training the open source Dlib library [145] was used. For training, the

trainClassifier algorithm implementation (Algorithm 10) uses three library functions:

randomize_samples(), normalize_samples() and train().

The first one, randomize_samples(), changes the order of the samples in the database

in a random way. The second one, normalize_samples(), normalizes all the samples

by subtracting their mean and dividing by their standard deviation (z-normalization).

This is an important step for numerical stability, preventing one large feature from

smothering others and giving us scale invariance (section 3.3.1). The last one,

train(), is used to obtain the decision function (model) learned with the labelled data.

The model thus obtained is saved for future instance classification.

Algorithm 10. Train Static Gesture Classifier

1. trainClassifier(samples,"labels),"model"
2. inputs:""
3. !!!!samples:"matrix"where"each"row"is"an"instance"of"type"features"

4. !!!!labels:"vector"that"contains"for"each"‘samples’"row"the"corresponding"class"
5. "

6. begin"
7. !!!!randomize_samples(samples,"labels)"
8. !!!!normalize_samples(samples)"
9. """"model"←"train(samples,"labels)"

Dynamic Gesture Interface Module 79

10. !!!!saveModel(model)"
11. """"isTrained"←"true"
12. """"return9model"
13. end"

4.3.3 Hand Posture Classification

After model training, the system is able to classify new hand postures. Algorithm 11

implements hand posture classification. It receives as input a new instance (sample)

for classification, normalizes it, and uses the previous obtained model for class

prediction.

Algorithm 11. Predict Hand Posture Class

1. predictClass(sample),"class"
2. inputs:""
3. !!!!sample:"vector"containing"hand"features"for"classification"with"trained"model""

4. outputs:"
5. !!!!class:"the"value"for"the"predicted"class"
6. "

7. begin"
8. !!!!samp"←"normalize(sample)"
9. """"class"←"model(samp)"
10. """"return"class"
11. end9

4.4 Dynamic Gesture Interface Module

The Dynamic Gesture Interface module is responsible for dynamic gesture model

learning and classification. Here, the sequence of points extracted from the hand path

consisting of the hand centroid mean positions calculated in Algorithm 5, are added

to a gesture instance. The instances thus obtained are used to build a dataset that is

fed into the HMM training algorithm in order to learn the model λ = (A,B,Π)

parameters. The HMM models obtained, one for each gesture, can then be used in

real-time dynamic hand gesture classification systems.

The following algorithm describes the dynamic gesture learn and classification

technique, where like in the static gesture module, we can switch between two modes

of use:

• learning - process for learning from features

• recognizing - test online the obtained models

80 System Implementation

While tracking the user, if the system is in a learning mode and the hand stopped

moving (distance < minDistance as explained in section 3.2.2), the extracted path is

added to the TRAINSET dataset. The sample is only accepted as valid if it has more

than 10 points in size. The dataset is built with one record for each hand path sample.

On the other hand, if the system is in a recognizing mode, the extracted hand path is

passed as an argument to the classifyGesture function (Algorithm 17.) in order to

predict the corresponding gesture class. If a class is found, a command string

indicative of the gesture is built.

Algorithm 12. Dynamic gesture learn and classification algorithm

1. definitions:"
2. !!!!sample:"vector"that"contains"the"hand"path"points"
3. !!!!distance:"controls"the"distance"travelled"by"the"user"hand"
4. !!!!minDistance:"threshold"to"control"if"the"hand"is"moving"or"not"

5. !!!!found:"the"gesture"found"
6. "

7. begin"
8. """"while"extractingHandFeatures()"do"
9. !!!!!!!!updateCameraInformation"()"

10. "

11. """"""""if"isTrackingUser()"then"
12. """"""""""""handSegmentation()""//"implemented"in"Algorithm 5"
13. """"""""""""if"isLearning"then"9
14. """"""""""""""""if"distance"<"minDistance"then9
15. !!!!!!!!!!!!!!!!!!!!addPathToGestureDataset()"
16. """"""""""""""""""""gestureReset()"

17. """"""""""""""""else"
18. """"""""""""""""""""handMoving"←"true"
19. """"""""""""""""""""addSample(meanPos)""
20. """"""""""""""""endif"
21. """"""""""""endif"
22. "

23. """"""""""""if"isRecognizing"then""
24. """"""""""""""""if9distance"<"minDistance"then"
25. """"""""""""""""""""found"←"classifyGesture()"

26. """"""""""""""""""""if"found"then"
27. """"""""""""""""""""""""buildCommandString(found)"

28. """"""""""""""""""""endif"
29. """"""""""""""""""""gestureReset()"

30. """"""""""""""""endif"
31. """"""""""""else"
32. """"""""""""""""addSample(meanPos)"

33. """"""""""""endif"
34. "

35. """"""""endif"

Dynamic Gesture Interface Module 81

36. !!!!endwhile"
37. end"

4.4.1 Feature Extraction

In this phase, as explained in section 3.4.1, the hand path sequence of points must be

labelled according to the minimum distance to a set of predefined centroids, using

the Euclidean distance metric. Algorithm 14 implements this procedure and returns a

discrete feature vector containing the labels that are added to the “trainset” dataset.

The obtained dataset will then be used for learning the HMM model parameters.

The following algorithm implements the add gesture technique, which is called every

time a new user gesture is detected. It receives as parameter a set of points that

represent the hand path, verifies if the size of the sample vector is valid and calls the

toObservation function for gesture labelling.

Algorithm 13. Add gesture points to Trainset

1. addGesture(sample)"
2. inputs:"
3. !!!!sample:"the"set"of"points"that"are"part"of"the"gesture"
4. "

5. begin"
6. """"minSampleSize"←"10"

7. """"if"size(sample)">"minSampleSize"then"
8. !!!!!!!!labels"←"toObservation(sample)"" //"implemented"in"Algorithm 14"
9. """"""""trainset.add(labels)"
10. !!!!endif"
11. end

The toObservation algorithm first rescales the set of gesture points to the predefined

hand viewport, the hand visible area as explained in section 4.2, and then labels all

the sample points according to the defined alphabet (section 2.3.4).

Algorithm 14. Label sample points according to defined alphabet

1. toObservation(points),"labels"
2. inputs:"
3. !!!!points:"the"set"of"points"to"be"labelled"according"to"the"defined"alphabet"
4. outputs:"
5. !!!!labels:"discrete"vector"containing"the"labelled"points"(observation)"
6. "

7. begin"
8. """"rescale(points)" "" " //"implemented"in"Algorithm 15"

82 System Implementation

9. !!!!N"←"size(points)"
10. "

11. !!!!for"i"="0"to"N"0"1"do"
12. """"""""label"←"labelPoint(points[i])" " //"implemented"in"Algorithm 16"
13. """"""""labels.add(label)"
14. !!!!endfor"
15. "

16. """"return"labels"
17. end"

Algorithm 15. implements the rescale procedure. The min_element() function finds

the smallest elements in the range (first, last) where first is the first element in the

vector passed as argument and last is the last element in the vector. The

max_element() function finds the greatest element in the range (first, last). The

function map(value, inputMin, inputMax, outputMin, outputMax), re-maps a given

number from one range to another. In other words, it converts the value parameter,

where inputMin < value < inputMax, into a number where outputMin < value <

outputMax.

Algorithm 15. Rescale points to follow inside predefined hand viewport

1. rescale(points,"window)"
2. inputs:"
3. !!!!points:"the"hand"path"points"
4. !!!!window:"the"predefined"hand"viewport"(hand"visible"area)"
5. "

6. begin"
7. """"minx"←"0"

8. """"miny"←"0"

9. """"maxx"←"0"

10. """"maxy"←"0"

11. "

12. !!!!if"size(points)">"1"then"
13. !!!!!!!!minx"←"min_element(points.x)"
14. !!!!!!!!miny"←"min_element(points.y)"
15. !!!!!!!!maxx"←"max_element(points.x)"
16. !!!!!!!!maxy"←"max_element(points.y)"
17. !!!!endif"
18. "

19. """"w"←"maxx"–"minx"
20. """"h"←"maxy"–"miny"
21. !!!!if"w">"h"then"
22. """"""""targetw"←"windowwidth"

23. """"""""ratio"←"targetw"/"w"
24. """"""""targeth"←"h"*"ratio"

Dynamic Gesture Interface Module 83

25. !!!!else"
26. """"""""targeth"←"windowheight"

27. """"""""ratio"←"targeth"/"h"
28. """"""""targetw"←"w"*"ratio"
29. !!!!endif"
30. "

31. """"sizePoints"←"size(points)"
32. !!!!for"i"="0"to"sizePoints!0"1"do"
33. """"""""points[i].x"←"map(points[i].x,"minx,"maxx,"0,"targetw)"
34. """"""""points[i].y"←"map(points[i].y,"miny,"maxy,"0,"targeth)"
35. !!!!endfor"
36. end"

Gesture labelling is an important step for gesture learning and classification. It is in

this phase that the output symbols are obtained, as explained in section 2.3.4.

Algorithm 16. implements the solution for this problem, i.e., it labels a given point

according to the minimum Euclidean distance to the set of centroids. The algorithm

receives as parameters the point to label and the centroids (alphabet) and returns a

label for the given point.

Algorithm 16. Label point according to defined alphabet

1. labelPoint(point,"centroids),"label"
2. inputs:"
3. !!!!point:"the"point"to"be"labelled"using"the"Euclidean"distance"metric"

4. !!!!centroids:"the"set"of"output"symbols"(alphabet)"defined"

5. outputs:"
6. !!!!label:"label"assigned"to"the"point"
7. "

8. begin"
9. """"k"←"size(centroids)"
10. !!!!for"j"="0"to"k"0"1"do"
11. """"""""distance"←"(point.x"–"centroids.x[j])^2"+"(point.y"–"centroids.y[j])^2"
12. "

13. !!!!!!!!if"j"="0"then"
14. """"""""""""minDistance"←"distance"

15. """"""""""""label"←""centroids[j]"
16. """"""""elseif"distance"<"minDistance"then"
17. """"""""""""minDistance"←"distance"

18. """"""""""""label"←""centroids[j]"
19. """"""""endif"
20. !!!!endfor"
21. "

22. """"return9label"
23. end

84 System Implementation

4.4.2 Learn HMM Parameters.

In this section, the “trainset” from section 4.4.1 is used to learn all the model

parameters. For that each dataset record is first converted into a proper library row

vector and passed as a parameter to the train function.

4.4.3 Gesture Classification

After model training, the obtained classifier can be used in new gesture

classifications. Algorithm 17. implements the gesture classification for a given hand

path sample. If the sample size is invalid or too small the function just returns a null

value, otherwise the sample is passed to the classification function and the obtained

gesture class is returned.

Algorithm 17. Gesture classification for a given hand path

1. classifyGesture(sample),"class"
2. inputs:"
3. !!!!sample:"the"set"of"points"that"constitute"the"hand"gesture"
4. outputs:"
5. !!!class:"the"value"for"the"predicted"gesture"class"
6. "

7. begin"
8. """minSampleSize"←"80"

9. """if"size(sample)"<"minSampleSize"then""
10. """"""return"null"
11. !!!else"
12. """"""class"←"classify(sample)"
13. """"""return"class"
14. !!!endif"
15. end"

4.5 Vision-based Hand Gesture Recognition System

The Vision-based Hand Gesture Recognition System is a system that tracks the

user’s hands using a single depth camera, and is able to recognize dynamic and static

gestures for human/computer interaction. The system is also able to build a

combination of dynamic and static gestures as commands that can be used for remote

robot/system control. For this, there is a need to model the command semantics. A

Finite State Machine (FSM) is a usually employed technique to handle this situation

[64, 149]. In the system, the FSM shown in the diagram of Figure 32 and in the state

Vision-based Hand Gesture Recognition System 85

transition table (Table 3) was implemented to control the transition between the three

possible defined states: DYNAMIC, STATIC and PAUSE. A state transition table,

as the name implies, is a table that describes all the conditions and the states those

conditions lead to. In the proposed solution a PAUSE state is used, giving the

possibility to identify transitions between gestures and somehow eliminate all

unintentional actions between DYNAMIC/STATIC or STATIC/STATIC gestures.

Figure 32. The Referee CommLang finite state machine diagram.

Table 3. The Referee CommLang state transition table.

Current State Condition Sate transition

Dynamic Found gesture Pause

Static Found posture Pause

Pause End pause time Static

Pause Command sequence identified Dynamic

Algorithm 18 implements the proposed solution for the vision-based hand gesture

recognition system. When the system starts tracking the user, it switches between the

three possible states. A sequence of dynamic and static gestures can be modelled as

possible commands, which can then be used in any robot/control system interface.

During user tracking, the current right hand position is retrieved and the system tests

if the left hand is inside the left hand viewport (control viewport), which activates

gesture recognition. If during gesture recognition before a gesture is recognized the

user removes its hand outside the control viewport, the gesture information is

cleared.

If the finite state machine is in a DYNAMIC state then a particular dynamic gesture

is classified whenever the tracked hand has stopped moving, controlled by the

86 System Implementation

minDistance variable, and the gesture is only considered valid if the distance

travelled by the hand has a certain size, as explained in section 4.4. Whenever a

dynamic gesture is detected, the state machine information is updated with the

gesture number and the corresponding gesture name and the gesture information are

cleared. If on the other hand, the finite state machine is in a STATIC state, the

tracked hand is segmented and features are extracted. The features are used to predict

the hand posture class with the model obtained in section 4.3.2, and if the predicted

class is within the predefined number of classes, the state machine information is

updated with the gesture number and the corresponding gesture name. The PAUSE

state is entered every time a gesture or hand posture is found, and exited after a

predefined period of time or when a command sequence is identified, as can be seen

in the state transition table (Table 3).

Algorithm 18. Vision-based hand gesture recognition system

1. definitions:"
2. !!!!handPos:!the"current"world"hand"position"
3. !!!!state:"the"state"machine"current"state"(DYNAMIC"or"STATIC)"

4. !!!!isTracking:"boolean"value"that"controls"if"the"user’s"hand"is"being"tracked""
5. !!!!distance:"controls"the"distance"travelled"by"the"user"hand"
6. !!!!minDistance:"threshold"to"control"if"the"hand"is"moving"or"not"

7. !!!!numberOfClasses:"the"total"number"of"gesture"classes"defined"

8. "

9. begin"
10. """"while"trackingUser()"do"
11. !!!!!!!!updateCameraInformation()"

12. "

13. """"""""if"isUsingSkeleton"then"
14. """"""""""""handPos"←"getHandPosition()"

15. """"""""""""isTracking"←"getHandInside()" //"implemented"in"Algorithm 6. "
16. "

17. !!!!!!!!!!!!meanHandPos"←"calculateMeanHandPosition(handPos)"
18. !!!!!!!!!!!!calculateDistanceTravelled()"
19. "

20. !!!!!!!!!!!!if"state"="DYNAMIC"then"
21. """"""""""""""""if"isTracking"then"
22. """"""""""""""""""""if"distance"<"minDistance"then"
23. """"""""""""""""""""""""found"←"classifyGesture()"

24. """"""""""""""""""""""""if"found!then"
25. """"""""""""""""""""""""""""updateStateMachine(state)"
26. """"""""""""""""""""""""""""gesture"←"getGestureName(found)"
27. """"""""""""""""""""""""""""changeStateMachine(PAUSE)"

28. """"""""""""""""""""""""endif"
29. "

Summary 87

30. """"""""""""""""""""""""gestureReset()"

31. """"""""""""""""""""else"
32. """"""""""""""""""""""""addHandPath(meanHandPos)"
33. """"""""""""""""""""endif"
34. """"""""""""""""else"
35. """"""""""""""""""""gestureReset()"

36. """"""""""""""""endif"
37. !!!!!!!!!!!!else9if"state"="STATIC"then"
38. """"""""""""""""if9handInsideViewport()"then"
39. """"""""""""""""""""if"isTracking"then"
40. """"""""""""""""""""""""handSegmentation()" " " //88888!implemented"in"Algorithm 5"
41. """"""""""""""""""""""""features"←"extractHandFeatures()"

42. """"""""""""""""""""""""class"←"predictHandPostureClass(features)"
43. "

44. """"""""""""""""""""""""if"class"≥"0"˄"class"≤"numberOfClasses"then"
45. """"""""""""""""""""""""""""updateStateMachine(state)"
46. """"""""""""""""""""""""""""gesture"←"getGestureName(class)"
47. """"""""""""""""""""""""""""changeStateMachine(PAUSE)"

48. """"""""""""""""""""""""endif"
49. "

50. """"""""""""""""""""endif"
51. """"""""""""""""endif"
52. """"""""""""endif"
53. """"""""endif"
54. "

55. """"lastHandPos"←"meanHandPos"
56. !!!!endwhile"
57. end"

4.6 Summary

In this chapter, the fundamental algorithms that are part of the Vision-based Hand

Gesture Recognition System have been described. Section 4.2 discussed and

presented the pre-processing and hand segmentation implementations. The need for

the user’s hand to be within the visible area, the active hand tracking area, was once

again here reinforced. Section 4.3 addressed the static gesture module

implementation. For model training, the number of features used was 32, which as

discussed, gives a good compromise between the number of features and the

recognition ability. It was seen that in this module, the user can switch between two

modes of use: learning and recognizing, giving the user the possibility to test the just

trained model. Section 4.4 discussed and has given implementations for the dynamic

gesture module. For hand gesture classification it was seen that if the hand path is too

small, then the gesture is considered invalid and a null value is returned. Here, as in

88 System Implementation

the static gesture module, the user can switch between to modes of use: learning and

recognizing. Finally in the last section the integrated vision-based hand gesture

recognition system implementation was discussed, where the need to model the

command semantics was spoken and a solution based on a finite state machine was

proposed. It was seen that using this solution, the system could switch between three

possible states: DYNAMIC, STATIC and PAUSE. As discussed, the PAUSE state

was introduced here, as a possible solution to model the still difficult problem that is:

identify the start and end of a gesture, or gesture transition.

Chapter 5

5 Case Studies

5.1 Introduction

During the course of the study, with the aim of achieving the objectives that were

proposed in chapter 1, a set of questions arose that gave rise to several applications

and prototypes.

One of the first issues faced, was the problem of detecting and tracking the hand.

When it was decided to start using the Kinect it was possible to explore some of its

technologies in order to try to answer that issue. From those experiments it was

implemented an application that gave a user the possibility of remotely control a

robot in terms of direction and speed of movement with a set of simple hand

commands. For these experiments an MSL robot [150] from the Laboratory of

Automation and Robotics at the University of Minho [151] was used, which allowed

testing the effectiveness of the proposed solution and the final implementation and

which gave rise to the final prototype called Vision-based Remote Hand Robot

Control.

In a second stage it was necessary to start identifying hand features, which could be

used with machine learning algorithms in a supervised way for teaching a computer /

robot understand a set of human gestures. During that study, some tests conducted by

other authors were found in order to be able to detect fingertips as possible hand

features. It was decided to test those features in order to verify whether they could be

used robustly in real-time systems for human-robot interaction. From those

experiments came a prototype called Vision-based Hand Robotic Wheel Chair

Control, that allowed a user to drive a robotic base wheelchair, developed at

Laboratory of Automation and Robotics in the University of Minho [152], through a

finite number of finger commands. The experiments were carried out with the aid of

a MSL robot soccer player, since the base used on those robots is equal to the chair

base on which the system was intended to be deployed.

Following the study and with the purpose of testing the proposed solutions,

developed to date, in a system capable of interpreting static and dynamic gestures, an

90 Case Studies

application was implemented capable of recognizing a set of commands defined in a

new formal language for the MSL referee. Since the Laboratory of Automation and

Robotics participates actively on the RoboCup national and international robotic

soccer competitions, an idea arose of trying to find a solution based on vision,

capable of human gestures recognition, that could be used to solve some of the

problems that were identified and that happen during competitions. Thus, emerged

an application called ReCLIS (Referee Command Language Interface System),

capable of interpreting in real-time a set of referee commands, send them to the

RefereeBox (referee's assisting technology) that transmits them to the robots.

In order to test the validity of the hand features being used and compare them with a

new idea that arose for possible hand features, and at the same time test the validity

of the proposed solutions in other types of applications, another prototype was

developed, still in testing phase, able to interpret Portuguese Sign Language.

The following sections describe in detail each one of the applications and prototypes

implemented as well as some of the algorithms used.

5.2 Vision-based Remote Hand Robot Control

5.2.1 Introduction

The Vision-based Remote Hand Robot Control is an application that enables a user

to remotely control a robot with a number of simple hand commands committed in

front of a Kinect camera. The Kinect camera is used to gather depth information and

extract the user’s hand in order to use that to calculate control information to transmit

to the robot. The depth image is used to detect and track the hand by the nearest point

approach as explained in the following section (Hand Segmentation). After hand

detection, two planes are defined as minimum and maximum thresholds for hand

segmentation. The extracted hand blob is used to calculate the hand centroid (relative

position), direction of turning, direction of movement, and the linear velocity that are

transmitted to the robot.

Vision-based Remote Hand Robot Control 91

The system is composed mainly of two modules:

1. The data acquisition and pre-processing module

2. The processing module where all the values used to be transmitted to the

robot, are calculated.

The following image shows the diagram of the proposed system, where the various

modules are represented.

Figure 33. Vision-based Remote Robot Control diagram.

5.2.2 Hand Segmentation

In order to segment the hand region and extract the hand blob, the user’s nearest

point to the camera is first calculated according to equation 24. For that, the current

depth image is passed as a parameter to the calculateNearestPoint algorithm

(Algorithm 19). For each time t, the closest point on the depth image !!is calculated

according to the formula:

! !"#$"%&'#() = !"# ! !, ! ∶ 0 ≤ ! ≤ ℎ!"#ℎ! ! !&!!0 ≤ ! ≤ !"#$ℎ ! !!! (24)!

where I(x,y) is the current depth image and height(I) and width(I) are the respective

image width and height values.

92 Case Studies

Using this minDistance value, two parallel planes in the Z-direction are defined with

values equal to minDistance - margin and minDistance +margin, in order to extract

the hand blob and the hand contour. The constant value margin, added and

subtracted from the minDistance, was defined as 5 which is sufficient to cover all the

depth pixels of interest.

The following algorithm implements the nearest point calculation, giving the depth

image and its size, and returns a point that represents the minimum distance to the

camera and the resulting segmented hand binary blob.

Algorithm 19. Nearest point computation

1. calculateNearestPoint(depthImage,"width,"height),"minDistance,"thImage"
2. inputs:"
3. !!!!depthImage:"current"frame"depth"image"

4. !!!!width:"depth"image"width"

5. !!!!height:"depth"image"height"

6. outputs:"
7. !!!!minDistance:"point"representing"the"user"minimum"distance"to"the"camera"

8. !!!!thImage:"the"resulting"binary"mask"

9. "

10. begin"
11. """"nrPixels"←"width"*"height"
12. """"margin"←"5"

13. "

14. !!!!minDistance"←"depthImage"[0]"
15. !!!!for"i"="1"to"nrPixels!0"1"do"
16. """"""""if"minDistance"="0"˄"depthImage"[i]">"0"then"
17. """"""""""""minDistance"←"depthImage"[i]"
18. """"""""else9if"depthImage"[i]">"0"˄"depthImage"[i]"<"minDistance"then"
19. """"""""""""minDistance"←"depthImage"[i]"
20. """"""""endif"
21. !!!!endfor"
22. "

23. """"nearThreshold"←"minDistance"0"margin"
24. """"farThreshold"←"minDistance"+"margin"
25. "

26. !!!!for"i"="0"to"nrPixels"0"1"do"
27. """"""""if"(depthImage[i]">"nearThreshold)"˄"(depthImage[i]"<"farThreshold)"then"
28. """"""""""""thImage[i]"←"1"

29. """"""""else"
30. """"""""""""thImage[i]"←"0"

31. """"""""endif"
32. !!!!endfor"
33. "

34. """"return9minDistance,"thImage9
35. end"

Vision-based Remote Hand Robot Control 93

The hand centroid is calculated according to equation 25 and equation 26. The value

thus obtained is used as the relative hand position.

! ! = !
! !! !!! (25)!

! ! = !
! !! !!! (26)!

Where xi and yi are the coordinates of the pixels that belong to the hand blob (white

pixels), and n is the number of pixels in the blob.

A new value for the hand position is estimated with a Kalman filter [153] [154],

thereby enabling a smoother hand path, and respectively a smoother robot

movement. This smoother robot movement not only makes it more visibly attractive

but also increases the life expectancy of the robot motors.

The robot direction of movement is calculated according to equation 27, given the

hand vector angle related to the image centre as illustrated in Figure 34.

Figure 34. Robot direction of movement relative to hand position.

! !"#$%&"'(= !"!#2 !",!" !!! (27)!

The vector length represented by the distance between the image centre and the hand

centroid, is then used to calculate the robot linear velocity, which is proportional to

that value according to equation 28.

! !"#$%&' = !"! + !"! !"#$%&'()!!! (28)!

94 Case Studies

Where linearV is the linear velocity transmitted to the robot and the divFactor was

defined as 6, introduced here in order to avoid sudden accelerations. The divFactor

value was adjusted during some experiments.

5.2.3 Orientation

Hand orientation is calculated taking into account two vectors:

1. the vector ! formed between the hand centroid and the farthest point from it.

2. the vector ! parallel to a horizontal line that passes through the centre of the

image as shown in Figure 35.

The angle θ is then obtained by using the dot product between the two vectors

according to equation 29.

Figure 35. Vectors used for robot heading calculation.

! ! = !"#$%((! ∙ !)/‖!‖‖!‖!)!!! (29)!

Being a ⋅ b the dot product between the two vectors and ||a||!the norm of the vector.

The angle θ is used to control robot heading (left or right), as shown in Figure 36.

Figure 36. Robot heading dependent on hand rotation.

Vision-based Remote Hand Robot Control 95

The following algorithm calculates the angle theta and orientation (left or right),

given the hand contour, extracted in section 5.2.2, and the camera image centre.

Algorithm 20. Angle and hand orientation computation

1. calculateOrientation(handContour,"imageCenter,"width,"height),"theta,"orientation,"vAngular"
2. inputs:!
3. !!!!handContour:"the"current"hand"contour"extracted"from"the"hand"blob"image""

4. !!!!imageCenter":"centre"of"camera"image"

5. !!!!width:"depth"image"width"

6. !!!!height:"depth"image"height"

7. outputs:!
8. !!!!theta":"the"hand"angle"used"to"control"the"robot"heading"
9. !!!!orientation":"the"indicative"text"of"turning"(left,"ritght)"
10. !!!!vAngular:"the"angular"velocity"to"be"transmitted"to"the"robot"

11. "

12. begin!
13. """"distance"←"0"

14. !!!!nrPoints!←!getContourNrPoints()!
15. "

16. !!!!for"i"="0"to"nrPoints!0"1"do"
17. """"""""if"handContour[i]y"<"imageCentery"then"
18. """"""""""""v"←"(handContour[i]x"0"imageCenterx,"handContour[i]y"0"imageCentery)"
19. """"""""endif"
20. """"""""lenght"←"!"#$!!! + !!! "

21. """"""""if"distance"<"length"then"
22. """"""""""""distance"←"length"
23. """"""""""""maxPoint"←"(handContour[i]x,"handContour[i]y)"
24. """"""""endif"
25. !!!!endfor!
26. "

27. """"a"←"(maxPointx"0"imageCenterx,"maxPointy"0"imageCentery)"
28. """"b"←"(width"0"imageCenterx,"0)"
29. """"lengtha"←"!"#$!!! + !!! "

30. """"lengthb"←"!"#$!!! + !!! "

31. """""

32. """"//000000000000"normalize"vectors"000000000000"

33. """"a"←"a"/"lengtha" "" "

34. """"b"←"b"/"lengthb!
35. """"theta"←"arcos((a!⋅!b)"/"||a||||b||)""
36. "

37. """rightAngleTh"←"80"

38. """leftAngleTh"←"100"

39. """angularVelocity"←"5"

40. "

41. """"if"theta"<"rightAngleTh"then"
42. """"""""orientation"←"‘Turn"right’"

43. """"""""vAngular"←"0"angularVelocity"
44. """"elseif"theta">"leftAngleTh"then"

96 Case Studies

45. """"""""orientation"←"‘Turn"left’"

46. """"""""vAngular"←"angularVelocity"
47. """"else"
48. """"""""orientation"="‘Forward’"
49. """"""""vAngular"←"0"

50. """"endif"
51. "

52. """"return"theta,"orientation,"vAngular"
53. end"

5.2.4 Prototype implementation

In order to validate the prototype with the proposed method, a MSL (Middle Size

League) soccer robot from Minho team was used to carry out a series of experiments.

A computer connected to a Kinect camera grabs hand movements and communicates

the calculated information (heading, angular velocity and linear velocity) through

Wi-Fi to the robot on-board computer, as it attempts to show the image form Figure

37. The robot motion speed transmitted to the robot is proportional to the vector

length that connects the hand centroid to the camera image centre point (red vector in

Figure 38), and hand orientation gives us robot-heading direction (blue line in Figure

38).

Figure 37. Computer connected to a Kinect camera for remote hand gesture robot control.

The human-computer interface for the prototype (Figure 38) was developed using the

C++ language and the openFrameworks toolkit with the OpenCV [28] and the

libfreenect addons under Ubuntu. OpenCV was used for the vision-based operations,

Vision-based Remote Hand Robot Control 97

like hand contour extraction, and libfreenect was used to control the Kinect camera

and get the RGB and depth images.

The system main algorithm implementation is shown below. Every frame the depth

image is updated and the hand blob and corresponding contour are extracted. From

the obtained hand blob, the hand centroid is extracted, for direction of movement

computation, and the hand orientation is calculated (Algorithm 20.). The values for

the linear velocity, angular velocity and direction of turning must be updated every

frame and transmitted to the robot.

Algorithm 21. Vision-based Remote Robot Control

1. definitions:!
2. !!!!nrBlobs:"number"of"blobs"found"in"the"depth"image!
3. !!!!blob:!the"extracted"hand"blob!
4. !!!!vLinear:!"the"linear"velocity"to"be"transmitted"to"the"robot!
5. !!!!direction:!the"direction"of"movement"to"be"transmitted"to"the"robot!
6. "

7. begin!
8. """"while"trackingUser()"do"
9. """"""""updateSensorData()"

10. """"""""width"←"getImageWidth()"

11. """"""""height"←"hetImageHeight()"

12. """"""""depth"←"getCurrentFrameDepthImage()"

13. """"""""calculateNearestPoint(depth,"width,"height)" //0000"implemented"in"Algorithm 19"
14. """"""""estimateHandPosition()"" " " "

15. "

16. """"""""blob"←"segmentHand()"

17. """"""""nrBlobs"←"extractHandBlobContours()"

18. "

19. """"""""imageCenterx!←"320"

20. """"""""imageCentery!←"240"

21. "

22. """"""""if"nrBlobs">"0"then"
23. !!!!!!!!!!!!centroid!←"calculateHandCentroid(blob)"
24. """"""""""""calculateOrientation(blob,"centroid,"width,"height)"//0000"implemented"in"Algorithm

20."
25. """"""""""""dy"←"centroidx"0"imageCenterx"
26. """"""""""""dx"←"imageCentery"–"centroidy"
27. "

28. """"""""""""direction"←"atan2(dy,"dx)"*"180/PI"
29. """"""""""""if"direction"<"0"then""
30. """"""""""""""""direction"←"360"+"direction"
31. """"""""""""endif"
32. "

33. """"""""""""vLinear"←"sqrt(dx^2"+"dy^2)"/"6"
34. """"""""""""trasmitToRobot(vLinear,"vAngular,"direction)"

98 Case Studies

35. """"""""endif"
36. "

37. !!!!endwhile"
38. end"

The tests made with the implemented solution showed that this system is able to

operate in real-time, taking 4ms to calculate the near point for hand segmentation, and

around 1ms to extract the hand blob as can be seen in the information area in the HCI

interface on Figure 38. The communication with the robot is carried out through Wi-

Fi, and transmission speed is dependent on the network conditions.

Figure 38. Human computer interface for the Vision-based Remote Hand Robot Control.

5.3 Vision-based Hand Robotic Wheelchair Control

5.3.1 Introduction

The Vision-based Hand Robotic Wheelchair Control is an application that enables a

user to drive a robotic base wheelchair with a minimum number of finger commands

Vision-based Hand Robotic Wheelchair Control 99

made in front of a Kinect camera. The diagram of Figure 39 shows the modules that

compose the proposed system and the flow of information.

The system is composed of two main modules:

1. a data acquisition and pre-processing module.

2. a processing module, where the finger peaks are extracted to calculate the

values that are going to be transmitted to the robotic platform to control the

wheel-chair.

The application uses a Kinect camera to gather depth information, segment the user’s

hand and extract useful information, enabling the calculation of control information

that is transmitted to the wheelchair robotic base. The depth image is used to detect

the hand by the nearest point approach as explained in section 5.3.3.

Figure 39. Vision-based Hand Robotic Wheel Chair Control diagram.

After having detected the hand position, two planes are defined as minimum and

maximum thresholds for hand segmentation. From the obtained hand blob, the hand

contour is extracted, and the number of fingertips and their position on the hand

contour are calculated using the k-curvature algorithm [155], as explained in section

5.3.4.

100 Case Studies

The index finger is used to control the forward movement and direction of turning

(left or right) as shown in Figure 40 (a, b, c). The thumb controls the lateral

displacement (left or right) as shown in Figure 40 (e, f). Backward movement is

carried out with two fingers forming a ‘V’ structure (Figure 40 d), and the closed

hand is used as the stop command. After finger peak extraction, the gesture is

classified and the respective command information is transmitted to the robotic

platform.

The main goal of the proposed system consists of giving the user the capability to

control a robotic-based wheelchair without the need to touch any physical devices.

With this kind of technology, we expect that people with disabilities can gain a

degree of independence in performing daily life activities, being at the same time an

alternative to some of the already existing solutions.

Figure 40. Finger commands used to drive the wheelchair.

5.3.2 The Wheelchair Command Language Definition

In order to implement all the finger commands this system accepts, a new and formal

language definition was created: the WheelChair CommLang. As in [156], the

language must represent all the possible gestures and at the same time be simple in

its syntax. The language was defined using BNF (Bakus Normal Form or Bakus-

Naur Form) [157]:

Vision-based Hand Robotic Wheelchair Control 101

• Terminal symbols (keywords and operator symbols) are in a CONSTANT-

WIDTH TYPEFACE.

• Choices are separated by vertical bars (|) and in greater-than and less-than

symbols (< CHOICE>).

• Optional elements are in square brackets ([optional]).

• Sets of values are in curly braces ({SET}).

• A syntax description is introduced with ::=.

The language has only one type of command: the Drive Command. The

DRIVE_COMMAND is composed of a COMMAND and a SPEED value. For the

COMMAND the following options are available: STOP, MOVE_FORWARD,

TURN_RIGHT, TURN_LEFF, MOVE_RIGHT and MOVE_LEFT commands. The

SPEED value controls the velocity that we can transmit to the robotic base in the

following set of values: HIGH, MIDDLE, LOW.

<LANGUAGE> ::= {<DRIVE_COMMAND>}

<DRIVE_COMMAND> ::= <COMMAND> [<SPEED>]

SPEED::= <HIGH> | <MIDDLE> | <LOW>

COMMAND ::= <STOP> | <MOVE_FORWARD> | <TURN_RIGHT> | <TURN_LEFT> |
<MOVE_RIGHT> | <MOVE_LEFT>

<STOP> ::= STOP

<MOVE_FORWARD> ::= MOVE_FORWARD

<TURN_RIGHT> ::= TURN_RIGHT

<TURN_LEFT> ::= TURN_LEFT

<MOVE_RIGHT> ::= MOVE_RIGHT

<MOVE_LEFT> ::= MOVE_LEFT

5.3.3 Hand Segmentation

In order to segment the hand region, the nearest point to the camera is calculated on

each frame. For each time t, the closest point on the depth image I is calculated

according to equation 24.

Using the obtained minDistance value, two parallel planes (minDistance-5,

minDistance+5) are defined to extract the hand blob from which the contour is

102 Case Studies

calculated. The hand contour is then used to detect fingertips using the k-curvature

algorithm from the next section.

5.3.4 The k-curvature algorithm

The k-curvature is an algorithm that attempts to find pixels that represent peaks and

valleys along the contour of an object [155], in our case the hand contour.

.
Figure 41. Hand peak and valley point detection

At each pixel position i in the hand contour C (shown as ‘Hand peak’ in Figure 41),

the k-curvature is determined by calculating the angle between the vectors

A=[Ci,Ci−k] and B=[Ci,Ci+k], where ! is a constant set equal to 30 in the prototype

implementation. The angle can be easily calculated using the dot product between

the two vectors (equation 29) as illustrated in Figure 42.

Figure 42. Dot product between vectors A and B

An angle threshold equal to 35º was used, such that only values below this angle will

be considered further.

Vision-based Hand Robotic Wheelchair Control 103

In order to classify the points as peaks or valleys, the cross product between the

vectors is calculated (Figure 43). If the sign of the z component is positive the point

is labelled as a peak and stored, otherwise the point is a valley and is discarded.

It was found that the hand contour used led to the detection of a set of peaks in the

neighbourhood of the strongest locations as candidate peaks, so, an average of all

these points on each finger is calculated in order to define one single peak per finger.

Figure 43. Cross product between two vectors

The following algorithm implements the fingertip detection on the hand contour

passed as parameter and returns the number of fingertips found and their position on

the hand contour.

Algorithm 22. Fingertip detection and extraction

1. detectFingerTips(handsContour),"fingers,"fingerPeaks"
2. inputs:!
3. !!!!handContour:"the"current"hand"contour"extracted"from"the"hand"blob"binary"image""

4. outputs:!
5. !!!!fingers:"the"number"of"found"finger"tips"

6. !!!!fingerPeaks:"vector"containing"all"the"finger"peaks"found"
7. "

8. begin!
9. """"fingers"←"0"

10. """"fingerPeaks"←"null"
11. """"fingerK"←"30"

12. !!!!nrPoints"←"getContourNrPoints(handContour)"
13. "

14. !!!!for"i"="0"to"(nrPoints"–"fingerK)!0"1"do"
15. """"""""if""i"<"fingerK"then"
16. """"""""""""v1←"(handContour[i]x0"handContour[nrPoints"+"i"0"fingerK]x,""
17. """"""""""""""""""""""handContour[i]y"0"handContour[nrPoints"+"i"0"fingerK]y)"
18. """"""""else"
19. """"""""""""v1"←"(handContour[i]x"0"handContour[i"0"fingerK]x,""

104 Case Studies

20. """""""""""""""""""""""handContour[i]y"0"handContour[i"0"fingerK]y)"
21. """"""""endif"
22. """"""""v2"←"(handContour[i]x"0"handContour[i"+"fingerK]x,""
23. """""""""""""""""""handContour[i]y"0"handContour[i"+"fingerK]y)"
24. "

25. """"""""if"i"<"fingerK"then"
26. """"""""""""v13D"←"(handContour[i]x0"handContour[nrPoints"+"i"0"fingerK]x,"
27. """"""""""""""""""""""""""""handContour[i]y0"handContour[nrPoints"+"i"0"fingerK]y,"0)"
28. """"""""else"
29. """"""""""""v13D"←"(handContour[i]x0"handContour[i"0"fingerK]x,"
30. """"""""""""""""""""""""""""handContour[i]y0"handContour[i"0"fingerK]y,"0)"
31. """"""""endif"
32. "

33. """"""""v23D"←"(handContour[i].x"0"handContour[i"+"fingerK].x,""
34. """"""""""""""""""""""""handContour[i].y"0"handContour[i"+"fingerK].y,"0)"
35. "

36. !!!!!!!!vXv"←"crossProduct(v13D,"v23D)"

37. !!!!!!!!lenghtv1"←"sqrt(v1x
2
"+"v1y

2
)"

38. !!!!!!!!lenghtv2"←"sqrt(v2x
2
"+"v2y

2
)"

39. "

40. !!!!!!!!//"0000000000000"normalize"vectors"000000000000000"

41. """"""""v1"←"v1"/"lenghtv1"
42. """"""""v2"←"v2"/"lenghtv2"
43. "

44. !!!!!!!!theta"←"arcos((v1!⋅!v2)"/"||v1||||v2||)""""
45. "

46. !!!!!!!!//"0000000000000"if"theta"<"35"then"we"are"at"a"peak"or"valley"("/\"or"\/")"00000000000000000"
47. """"""""mininumAngle"←"35"

48. """"""""if"abs(theta)"<"mininumAngle"then" "

49. !!!!!!!!!!!!if"vXvz">"0"then"
50. """"""""""""""""fingerPeaks.pushback(handContour[i])"
51. """"""""""""""""fingers"←"fingers"+"1"
52. """"""""""""""""fingerFound"←"true"
53. """"""""""""endif"
54. !!!!!!!!elseif"fingerFound"="true"then"
55. """"""""""""fingerFound"←"false9
56. """"""""endif"
57. !!!!endfor!
58. "

59. !!!!if9fingers">"0"then9
60. !!!!!!!!calculateOrientation()9
61. """"""""return9fingers,"fingerPeaks9
62. """"endif"
63. end

As explained earlier, during the fingertip detection, a set of peaks in the

neighbourhood of the strongest locations are detected as candidate tips so, an average

Vision-based Hand Robotic Wheelchair Control 105

of all the saved peak points on each finger is calculated to define one peak per finger.

The following algorithm implements that solution.

Algorithm 23. Finger point computation

1. calculateFingerPoint"(fingerPeaks),"fingerBlobs!
2. inputs:!
3. !!!!!fingerPeaks:"an"array"with"the"candidate"finger"peaks"
4. outputs:!
5. !!!!!fingerBlobs:"vector"containing"all"the"finger"peaks"found"
6. "

7. begin!
8. """""nrFingers"←"0"

9. !!!!!for"i"="0"to"size(fingerPeaks)"0"1"do"
10. """"""""""sumX"←"0"

11. """"""""""sumY"←"0"

12. """"""""""nrPoints"←"0"

13. "

14. !!!!!!!!!!for"j"="0"to"size(fingerPeaks[i])"0"1"do"
15. """""""""""""""sumX"←"sumX"+"fingerPeaks[i][j]x"
16. """""""""""""""sumY"←"sumY"+"fingerPeaks[i][j]y"
17. """""""""""""""nrPoints"←"nrPoints"+"1"
18. """"""""""endfor"
19. "

20. """"""""""averageX"←"sumX"/"nrPoints"
21. """"""""""averageY"←"sumY"/"nrPoints"
22. """"""""""tempPoint"←"(averageX,"averageY)"
23. """"""""""fingerBlobs.pushBack(tempPoint)"
24. """"""""""nrFingers"←"nrFingers"+"1"
25. """""endfor"
26. end

5.3.5 Direction of turning

The wheelchair turning direction θ is calculated by the dot product between the

control vector, vector between the hand centroid and the fingertip, and a horizontal

vector parallel to a line that crosses the image centre as illustrated in Figure 44 and

given by equation 29.

106 Case Studies

Figure 44. Vectors used in the calculation of finger orientation

Orientation calculation is given by Algorithm 24, based on the calculated finger

blobs, the hand centroid and the number of fingers found. The function returns a

number that represents the type of finger orientation and that is used to build the

command that is sent to the robotic base. A value of zero represents the “move

forward” command (Figure 40 a), a value equal to one represents the “move back”

command (Figure 40 d), a value equal to two or three represents the “turn right” and

“turn left” commands respectively (Figure 40 b and c), a value equal to four or five

represents the “to the right” or “to the left” commands (Figure 40 e and f) and a

value equal to -1 means that no fingers were found. In that case the values to be

transmitted for heading, angular velocity and linear velocity, are all set to zero,

meaning a stop command.

Algorithm 24. Orientation computation based on fingertips

1. calculateOrientation"(fingerBlobs,"centroid,"nrFingers),"orientation"
2. inputs:!
3. !!!!fingerBlobs:!the"position"of"all"the"finger"peaks"
4. !!!!centroid:!the"hand"blob"centroid"coordinates!
5. !!!!nrFingers:!the"number"of"finger"peaks"found!
6. outputs:""
7. !!!!orientation:"number"that"represents"the"type"of"finger"orientation"

8. "

9. begin!
10. !!!!v1←"(fingerBlobs[1]x"0"centroidx,""fingerBlobs[1]y"0"centroidy)"
11. !!!!v2←"(640"0"centroidx,"0)"
12. !!!!lenghtv1"←"sqrt(v1x

2
"+"v1y

2
)"

13. !!!!lenghtv2"←"sqrt(v2x
2
"+"v2y

2
)"

14. "

15. !!!!//"0000000000000"normalize"vectors"000000000000000"

16. """"v1←"v1/"lenghtv1"
17. """"v2"←"v2"/"lenghtv2"

Vision-based Hand Robotic Wheelchair Control 107

18. !!!!fingerAngle!←"arcos((v1!⋅!v2)"/"||v1||||v2||)"
19. "

20. """"maxRightAngle"←"90"

21. """"minRightAngle"←"70"

22. """"maxLeftAngle"←"130"

23. """"minLeftAngle"←"110"

24. """"maxToRightAngle"←"30"

25. """"minToRightAngle"←"0"

26. """"maxToLeftAngle"←"180"

27. """"minToLeftAngle"←"150"

28. "

29. """"if"nrFingers"="1"then"
30. """"""""if"fingerAngle"<"maxRightAngle"˄"fingerAngle">"minRightAngle"then"
31. """"""""""""orientation"←"2"

32. """"""""elseif"fingerAngle"<"minLeftAngle"˄"fingerAngle">"maxLeftAngle"then"
33. """"""""""""orientation"←"3"

34. """"""""elseif""fingerAngle">"minToRightAngle"˄"fingerAngle"<"maxToRightAngle"then"
35. """"""""""""orientation"←"4"

36. """"""""elseif""fingerAngle"<"maxToLeftAngle"˄"fingerAngle">"minToLeftAngle"then"
37. """"""""""""orientation"←"5"

38. """"""""else"
39. """"""""""""orientation"←"0"

40. """"""""endif"
41. !!!!elseif"nrFingers"="2"then"
42. !!!!!!!!v1←"(fingerBlobs[1]x"0"centroidx,""fingerBlobs[1]y"0"centroidy)"
43. !!!!!!!!v2←"(fingerBlobs[1]x"0"centroidx,"fingerBlobs"[1]y"0"centroidy)"
44. !!!!!!!!lenghtv1"←"sqrt(v1x

2
"+"v1y

2
)"

45. !!!!!!!!lenghtv2"←"sqrt(v2x
2
"+"v2y

2
)"

46. "

47. """"""""//"0000000000000"normalize"vectors"000000000000000"

48. """"""""v1←v1/"lenghtv1"

49. """"""""v2"←"v2"/"lenghtv2"

50. """"""""fingerAngle!←"arcos((v1!⋅!v2)"/"||v1||||v2||)"
51. "

52. """"""""moveBackAngle"←"40"

53. """"""""if"fingerAngle"<"moveBackAngle"then"
54. """"""""""""orientation"←"1"

55. """"""""endif"
56. """"else""
57. """"""""orientation"←"01"

58. """"endif"
59. "

60. """"return9orientation"
61. end

5.3.6 Prototype implementation

The Human-Computer Interface (HCI) for the prototype (Figure 45) was

implemented using the C++ language, and the openFrameworks toolkit with the

108 Case Studies

OpenCV and the Kinect addons, ofxOpenCv and ofxKinect respectively, under

Ubuntu. OpenCV was used for some of the vision-based operations like extracting

the hand blob contour, and the Kinect addon was responsible for the RGB and depth

image acquisition. In the HCI interface image it is possible to see below the

segmented hand, the direction of movement, all the values given for linear velocity,

angular velocity, and direction. We have also the number of fingers found and the

angle obtained as explained in section 5.3.4. The fingertip extraction algorithm used

was a reimplementation of a non-working add-on for the openFrameworks, where all

the modifications were given back to the community.

The proposed method consisted of a new way to control a robotic wheelchair with

the use of fingertips as hand features, based on a Kinect camera system to facilitate

the extraction of this information. One major advantage of the proposed method

consists on its simplicity, which leads to rapid learning rates, and gives the user the

needed independent mobility. Also, the use of inexpensive hardware and open source

software tools makes it a solution that can easily be applied to many other

applications where this type of human-computer interfaces could help improve the

quality of human life. The solution is not intended to be the best or only solution, but

an alternative to the many solutions that exist in the market at the moment [158]. The

solution is not universal - every disabled person is different and has different needs.

The main algorithm implementation for the prototype is given in Algorithm 25.

Every frame the depth image is updated and the hand blob and corresponding

contour are extracted. From the obtained hand blob, fingertips and the number of

fingers are calculated and the respective values and commands are set and

transmitted to the robot.

In the proposed solution, and for test purposes, two constants were defined, the linear

velocity (VLIN) and the angular velocity (VANG), with values equal to 10.

Algorithm 25. Vision-based Hand Robotic Wheel Chair Control

1. definitions:!
2. !!!!nrBlobs:"number"of"blobs"found"in"the"depth"image!
3. !!!!nrFingers:!number"of"fingers"found"in"the"hand"blob!
4. !!!!blob:!the"extracted"hand"blob!
5. !!!!vLinear:!"the"linear"velocity"to"be"transmitted"to"the"robot!
6. !!!!vAngular:!the"angular"velocity"to"be"transmitted"to"the"robot!

Vision-based Hand Robotic Wheelchair Control 109

7. !!!!direction:!the"direction"of"movement"to"be"transmitted"to"the"robot!
8. !!!!command:!"the"string"command"representation!
9. "

10. begin!
11. """"VLIN"←"10!
12. """"VANG"←"10!
13. "

14. """"while"trackingUser()"do"
15. """"""""updateSensorData()"

16. """"""""image"←"getCurrentFrameDepthImage()"

17. """"""""calculateNearestPoint(image)"
18. """"""""extractNearPoints(image)"
19. "

20. """"""""nrBlobs"←"findDepthImageContours()"

21. """"""""if"nrBlobs">"0"then"
22. """"""""""""blob"←"getDepthImageBlob(image)"
23. """"""""""""boundingBox"←"calculateBlobCentroid(blob)"
24. """"""""""""nrFingers"←"findFingerTips(blob)"
25. "

26. """"""""""""if"nrFingers"="0"then"
27. """"""""""""""""vLinear"←"0"

28. """"""""""""""""vAngular"←"0"

29. """"""""""""""""direction"←"0"

30. """"""""""""""""command"←"‘Stop’"

31. """"""""""""elseif"nrFingers"="2"then"
32. """"""""""""""""orientation"←"getFingerOrientation()"

33. """"""""""""""""if"orientation"="0"then"
34. """"""""""""""""""""vLinear"←"VLIN"

35. """"""""""""""""""""vAngular"←"0"

36. """"""""""""""""""""direction"←"0"

37. """"""""""""""""""""command"←"‘Move"forward’"

38. """"""""""""""""elseif"orientation"="1"then"
39. """"""""""""""""""""vLinear"←"VLIN"

40. """"""""""""""""""""vAngular"←"0"

41. """"""""""""""""""""direction"←"180"

42. """"""""""""""""""""command"←"‘Move"back’"

43. """"""""""""""""elseif"orientation"="2"then"
44. """"""""""""""""""""vLinear"←"0"

45. """"""""""""""""""""vAngular"←"0VANG"

46. """"""""""""""""""""direction"←"0"

47. """"""""""""""""""""command"←"‘Turn"right’"

48. """"""""""""""""elseif"orientation"="3"then"
49. """"""""""""""""""""vLinear"←"0"

50. """"""""""""""""""""vAngular"←"VANG"

51. """"""""""""""""""""direction"←"0"

52. """"""""""""""""""""command"←"‘Turn"left’"

53. """"""""""""""""elseif"orientation"="4"then"
54. """"""""""""""""""""vLinear"←"VLIN"

55. """"""""""""""""""""vAngular"←"0"

56. """"""""""""""""""""direction"←"90"

110 Case Studies

57. """"""""""""""""""""command"←"‘To"the"right’"

58. """"""""""""""""elseif"orientation"="5"then"
59. """"""""""""""""""""vLinear"←"VLIN"

60. """"""""""""""""""""vAngular"←"0"

61. """"""""""""""""""""direction"←"270"

62. """"""""""""""""""""command"←"‘To"the"left’"

63. """"""""""""""""else""
64. """"""""""""""""""""command"←"null"
65. """"""""""""""""endif"
66. """"""""""""""""transmitToRobot(vLinear,!vAngular,!direction)"
67. """"""""""""endif"
68. """"""""endif"
69. !!!!endwhile!
70. end

Figure 45. HCI for the Vision-Based Hand Robotic Wheelchair Control prototype

Referee CommLang Prototype 111

5.4 Referee CommLang Prototype

5.4.1 Introduction

The Referee CommLang Prototype is a real-time vision-based system that is able to

interpret a set of commands defined for the MSL (Middle Size League) referee, and

send them directly to the RefereeBox [159] (referee’s assisting technology), which

transmits the proper commands to the robots. The commands were defined in a new

formal language described in section 5.4.2 and given in Table 4.

With the proposed solution, there is the possibility of eliminating the assistant

referee, thereby allowing a more natural game interface. The application uses a finite

state machine, as the one described in section 4.5, for referee command construction.

As stated before, the system is always in one of three possible states: DYNAMIC,

STATIC and PAUSE. On start-up, the system enters the DYNAMIC state and waits

until a dynamic gesture is correctly classified. When this happens, the system enters

the PAUSE state for a predefined period of time, necessary to model the transitions

between gestures. After that time, the system transitions to the STATIC state and

remains in this state until a valid command sequence, composed of one or more hand

postures, is found. At this point the system returns to the DYNAMIC state, waiting

for a new command sequence.

The following sections describe the Referee Command Language (Referee

CommLang) and the prototype implementation.

5.4.2 The Referee Command Language Definition

This section presents the Referee CommLang keywords with a syntax summary and

description. The Referee CommLang is a new and formal definition of all commands

that the system is able to identify. As in [156], the language must represent all the

possible gesture combinations (static and dynamic) and at the same time be simple in

its syntax. The language was defined with BNF (Bakus Normal Form or Bakus-Naur

Form) [157]:

• Terminal symbols (keywords and operator symbols) are in a CONSTANT-

WIDTH TYPEFACE.

112 Case Studies

• Choices are separated by vertical bars (|) and in greater-than and less-than

symbols (< CHOICE>).

• Optional elements are in square brackets ([optional]).

• Sets of values are in curly braces ({SET}).

• A syntax description is introduced with ::=.

The language has three types of commands: Team commands, Player commands

and Game commands. This way, a language is defined to be a set of commands that

can be a TEAM_COMMAND, a GAME_COMMAND or a PLAYER_COMMAND.

The TEAM_COMMAND is composed of the following ones: KICK_OFF,

CORNER, THROW_IN, GOAL_KICK, FREE_KICK, PENALTY, GOAL or

DROP_BALL. A GAME_COMMAND can be the START or STOP of the game, a

command to end the game (END_GAME), cancel the just defined command

(CANCEL) or resend the last command (RESEND). For the END_GAME

command, it is necessary to define the game part, identified by PART_ID with one

of four commands – 1ST, 2ND, EXTRA or PEN (penalties).

<LANGUAGE>::={<COMMAND>}

<COMMAND>::=<TEAM_COMMAND> | <GAME_COMMAND> | <PLAYER_COMMAND>

<TEAM_COMMAND>::=<KICK_OFF> | <CORNER> | <THROW_IN> | <GOAL_KICK> |
<FREE_KICK> | <PENALTY> | <GOAL> | <DROP_BALL>

<GAME_COMMAND>::=<START> | <STOP> | <END_GAME> | <CANCEL> | <RESEND>

<PLAYER_COMMAND>::=<SUBSTITUTION> | <PLAYER_IN> | <PLAYER_OUT> |
<YELLOW_CARD> | <RED_CARD>

For the TEAM_COMMANDS there are several options: KICK_OFF, CORNER,

THROW_IN, GOAL_KICK, FREE_KICK, PENALTY and GOAL that need a

TEAM_ID (team identification) command, that can be one of two values - CYAN or

MAGENTA, and finally the DROP_BALL command.

<KICK_OFF> ::= KICK_OFF <TEAM_ID>

<CORNER> ::= CORNER <TEAM_ID>

<THROW_IN> ::= THROW_IN <TEAM_ID>

<GOAL_KICK> ::= GOAL_KICK <TEAM_ID>

<FREE_KICK> ::= FREE_KICK <TEAM_ID>

<PENALTY> ::= PENALTY <TEAM_ID>

Referee CommLang Prototype 113

<GOAL> ::= GOAL <TEAM_ID>

<DROP_BALL> ::= DROP_BALL

For the PLAYER_COMMAND, first there is a SUBSTITUTION command with the

identification of the player out (PLAYER_OUT) and the player in (PLAYER_IN)

the game with the PLAYER_ID command. The PLAYER_ID can take one of seven

values (PL1, PL2, PL3, PL4, PL5, PL6, PL7). For the remaining commands,

PLAYER_IN, PLAYER_OUT, YELLOW_CARD or RED_CARD, it is necessary to

define the TEAM_ID as explained above, and the PLAYER_ID.

<SUBSTITUTION> ::= SUBSTITUTION <PLAYER_IN> <PLAYER_OUT>

<PLAYER_IN> ::= PLAYER_IN <TEAM_ID> <PLAYER_ID>

<PLAYER_OUT> ::= PLAYER_OUT <TEAM_ID> <PLAYER_ID>

<YELLOW_CARD> ::= YELLOW_CARD <TEAM_ID> <PLAYER_ID>

<RED_CARD> ::= RED_CARD <TEAM_ID> <PLAYER_ID>

<START> ::= START

<STOP> ::= STOP

<END_GAME> ::= END_GAME <PART_ID>

<CANCEL> ::= CANCEL

<RESEND> ::= RESEND

<TEAM_ID > ::= CYAN | MAGENTA

<PLAYER_ID> ::= PL1 | PL2 | PL3 | PL4 | PL5 | PL6 | PL7

<PART_ID> ::= 1ST | 2ND | EXTRA | PEN

5.4.3 Prototype Implementation

The Human-Computer Interface for the prototype was implemented using the same

previous tools. Also, for SVM training and classification the Dlib library was used,

and for HMM training and classification the openFrameworks addon, ofxSequence,

was used. This addon is a C++ porting of a MatLab code from Kevin Murphing

(HMM MatLab Toolbox) [160].

The proposed system involves two modules, as shown in the diagram of Figure 46:

1. data acquisition, pre-processing and feature extraction

2. gesture classification with the models obtained in section 3.3 and 3.4

As explained in section 5.4.1, a referee command is composed by a sequence of

dynamic gestures (Figure 47) and a set of static gestures (Figure 48). The static

114 Case Studies

gestures are used to identify one of the following commands: team number, player

number or game part.

Figure 46. Referee CommLang Interface diagram with all the modules

Figure 47. The set of dynamic gestures defined and used in the Referee CommLang.

Figure 48. The set of hand postures trained and used in the Referee CommLang.

The following sequence of images shows the Referee Command Language user

interface with the “GOAL, TEAM1, PLAYER2” sequence of commands being

recognized.

Referee CommLang Prototype 115

Figure 49. The "GOAL" gesture recognized.

Figure 50. The "GOAL, TEAM1" sequence recognized.

Figure 51. The "GOAL, TEAM1, PLAYER2" sequence recognized.

In the following sequence of images, another sequence of commands is being

recognized: the “SUBSTUTUTION, TEAM1, PLAYER-IN-1, PLAYER-OUT-3”.

116 Case Studies

Figure 52. The "SUBSTITUTION" gesture recognized.

Figure 53. The "SUBSTITUTION TEAM-1" sequence recognized.

Figure 54. The "SUBSTITUTION TEAM-1 PLAYER-IN-1" sequence recognized

Sign Language Recognition Prototype 117

Figure 55. The "SUBSTITUTION TEAM-1 PLAYER-IN-1 PLAYER-OUT-3" sequence

recognized

5.5 Sign Language Recognition Prototype

5.5.1 Introduction

The Sign Language Recognition Prototype is a real-time vision-based system whose

purpose is to recognize the Portuguese Sign Language given in the alphabet of

Figure 57. The purpose of the application was to test two types of hand features and

verify, with the models learned, their performance in terms of real-time

classification.

For that, the user must be positioned in front of the camera, doing the sign language

gestures, that will be interpreted by the system and their classification will be

displayed on the right side of the interface.

The diagram from Figure 56 shows the modules that compose the proposed system

architecture. It is manly composed of two modules:

1. data acquisition, pre-processing and feature extraction

2. sign language gesture classification

At the moment the system is trained to recognize only the vowels, but it is easily

extended to recognize the rest of the alphabet.

118 Case Studies

Figure 56. Sign Language Recognition Prototype diagram

Figure 57. Portuguese Language manual alphabet

5.5.2 Prototype Implementation

The human-computer interface for the prototype was developed using the C++

language, and the openFrameworks toolkit with the following two addons: the

OpenCV and the OpenNI addons, ofxOpenCv and ofxOpenNI respectively. Also, for

SVM training and classification the application uses the Dlib library.

In the following sequence of images it is possible to see the Sign Language Prototype

with all the vowels correctly classified.

Sign Language Recognition Prototype 119

Figure 58. The vowel A correctly classified

Figure 59. The vowel E correctly classified

Figure 60. The vowel I correctly classified

120 Case Studies

Figure 61. The vowel O correctly classified

Figure 62. The vowel U correctly classified

5.6 Summary

This chapter presented a set of applications that were implemented during the study

namely: the vision-based remote hand robot control system, the vision-based hand

robotic wheel-chair control system, the Referee CommLang Prototype system and

the Sign Language Recognition Prototype. The first one is a system that enables a

user to remotely control a robot / system with a number of simple hand commands

made in front of a camera. The system uses the segmented hand information to

derive heading and also velocity values that are transmitted to the robot. The second

one is a system that enables a user to drive a robotic base wheelchair with a

minimum number of finger commands made in front of a camera. Once again, the

segmented hand is used to extract the finger information and build the proper

Summary 121

commands that are transmitted to the robot. A new formal language definition for the

finger commands was presented. The third is a real-time vision-based system that is

able to interpret a set of commands defined for the MSL referee and transmit them to

the RefereeBox. For that, a new formal language definition was also presented,

capable of representing all the necessary defined RefereeBox commands.

The last system is a prototype for Portuguese Sign Language recognition. Although it

is only trained to identify the vowels at the moment, the system is easily extended to

recognize the rest of the alphabet. The reason for working with vowels only is

explained by the fact that the main goal was to validate the implemented solutions in

another type of human-computer interaction application, and so, only a few gestures

were trained. It was however possible to verify the validity of the proposed methods

in another type of real-time human-computer interface, where the core of the vision-

based interaction is the same for all applications.

Table 4. Command set definition with associated odes and text description

Nº Command 1st Gesture 2nd Gesture 3rd Gesture 4th Gesture Code (TEXT)

1 CORNER

TEAM
11 – CORNER, TEAM 1

12 – CORNER, TEAM 2

2 THROW_IN

TEAM
21 – THROW_IN, TEAM 1

22 – THROW_IN, TEAM 2

3 GOAL_KICK TEAM
31 – GOAL_KICK, TEAM 1

32 – GOAL_KICK, TEAM 2

4 FREE_KICK

TEAM
41 – FREE_KICK, TEAM 1

42 – FREE_KICK, TEAM 2

5 PENALTY

TEAM
51 – PENALTY, TEAM 1

52 – PENALTY, TEAM 2

6 KICK_OFF

TEAM
61 – KICK_OFF, TEAM 1

62 – KICK_OFF, TEAM 2

7 GOAL

TEAM PLAYER
71(1-7) – GOAL, TEAM1, PLAYER(1-7)

72(1-7) – GOAL, TEAM2, PLAYER(1-7)

8 SUBSTITUTION TEAM PLAYER_IN PLAYER_OUT
81(1-7)(1-7) – SUBSTITUTION, TEAM 1, PLAYER_IN(1-7), PLAYER_OUT(1-7)

82(1-7)(1-7) – SUBSTITUTION, TEAM 2, PLAYER_IN(1-7), PLAYER_OUT(1-7)

9 DROP_BALL

 9 - DROP_BALL

10 END_GAME

101 – END_GAME, PART 1

102 – END_GAME, PART 2

11 RESEND

 11 – CANCEL

12 RESEND “Wave” 12 - RESEND

6 Experiments and Results

6.1 Introduction

In chapter 3, the Gesture Learning Module Architecture (GeLMA) and the

connection between its various modules was described. Some of the requisites that a

system based on vision for human-robot interaction must satisfy, in order to be

successfully implemented, were listed. It was also mentioned that, to implement such

a system, it is necessary to be able to learn models that can be used in real-time

gesture classification situations.

The aim of the proposed system is to enable the recognition of static or dynamic

gestures or a combination of both. Thus, in order to select a set of hand features that

could meet the requirements of robustness, computationally efficiency, error

tolerance and scalability, a set of experiments were performed with hand features

collected from a set of users who executed the pre-defined gestures in front of a

Kinect camera. The extracted features were used alone or combined, in order to find

which of them behaved better within a pre-established set of parameters. Those

experiments were performed with the help of the RapidMiner Community Edition

[161], in order to select machine learning algorithms that would achieve the best

classification results for the given datasets. RapidMiner is an open-source data

mining solution that enables to explore data and at the same time simplify the

construction of analysis processes and the evaluation of different approaches. It has

more than 400 data-mining operators that can be used and almost arbitrarily

combined. This way, RapidMiner can be seen as integrated development

environment (IDE) for machine learning and data mining, and a valuable tool in this

field.

Experiments were also performed with dynamic gestures features in order to learn

HMM parameters, and build classifiers able to do real-time dynamic gesture

recognition. For the HMM model learning and implementation the Dlib library

[145], a general purpose cross-platform C++ library, was used. This is a library for

developing portable applications dealing within a number of areas, including

machine learning.

126 Experiments and Results

The following sections describe in detail each of the experiments and present the

results in order to prove that the objectives of this work (section 1.2) were achieved

in order to validate the approach and the adopted methodology.

The presentation will be carried out in accordance with the various aspects and

developments of the implemented prototypes. With this approach, it is intended to

show an evolution of the choices made and the results achieved during the work

progress.

6.2 Comparative study of machine learning algorithms for hand posture
classification

6.2.1 Experimental Setup

This experiment intended to carry a comparative study of the following four machine

learning algorithms, k-Nearest Neighbour (k-NN), Naïve Bayes (NB), Artificial

Neural Network (ANN) and Support Vector Machines (SVM), applied to two datasets

composed of different sets of hand features. The main goal of the experiment was to

understand if machine-learning algorithms could improve and could be used

efficiently in real-time human-computer interaction systems applied to hand posture

classification.

For that, two datasets were used composed of different features and analysed the

efficiency of each ML algorithm in terms of its recognition rate accuracy. The first

dataset was composed by the following features: hand angle, mean and variance of

the segmented grey image hand, 36 values from the orientation histogram, and 100

values from the hand radial signature. The second dataset was composed by the

following features: hand angle, mean and variance of the segmented hand grey

image, area and perimeter of the binary hand blob and the number of convexity

defects. A convexity defect is “another useful way of comprehending the shape of an

object by its convex hull and then compute its convexity defects” [28]. Figure 63

illustrates the concept of convexity defects using a hand image, with the

corresponding convex hull represented as the dark line around the hand. The regions

(A-H) are the convexity defects in the hand contour.

Comparative study of machine learning algorithms for hand posture classification 127

Some samples from the two datasets, before normalization with the z-normalization

method (section 3.3.1), are represented on the next two tables. The total number of

records used in the first dataset was 1295 with ten representative classes, and in the

second dataset were 945, also with ten representative classes. The features were

extracted with the help of four users and in a laboratory controlled environment.

Figure 63. Hand convexity defects [28].

Table 5. Sample values for the 1st dataset prior to vector normalization.

Class Angle Mean Var. Hog-1 Hog-2 … Rs-99 Rs-100

1 0.123 0.038 1 0.109 0.140 … 0.022 0.028

1 0.131 0.037 1 0.107 0.142 … 0.023 0.025

2 0.173 0.076 1 0.284 0.398 … 0.110 0.110

2 0.174 0.076 1 0.255 0.374 … 0.106 0.108

3 0.147 0.063 1 0.124 0.170 … 0.032 0.032

3 0.144 0.065 1 0.106 0.144 … 0.018 0.018

4 0.119 0.053 1 0.125 0.183 … 0.054 0.055

4 0.126 0.059 1 0.120 0.185 … 0.044 0.043

... …

128 Experiments and Results

Table 6. Sample values for the 2nd dataset prior to vector normalization.

Class Angle Mean Variance Area Perimeter Convexity
Defects

1 0.034 0.009 0.265 1 0.077 0

1 0.035 0.009 0.263 1 0.082 0.0003

2 0.027 0.014 0.152 1 0.075 0

2 0.028 0.014 0.164 1 0.075 0.0003

3 0.047 0.047 1 0.878 0.104 0.0004

3 0.043 0.045 1 0.841 0.099 0.0004

4 0.033 0.045 1 0.816 0.102 0.0003

4 0.044 0.065 0.944 1 0.133 0.0004

...

Since the first step in the experimental setup was the creation of the datasets with the

corresponding hand features, a C++ application was created (Figure 64), able to

interface with a Kinect camera and extract all the necessary information. For hand

feature extraction, the corresponding grey image hand (bottom left) and the binary

hand image (bottom centre) were used.

Figure 64. Application user interface used for hand feature extraction.

In the image, it is possible to observe the segmented grey hand with the

corresponding histogram below the main camera image. To the right it can be seen

Comparative study of machine learning algorithms for hand posture classification 129

the hand binary blob with radials, used to compute the radial signature histogram,

drawn on top of it. Below the hand blob it is the respective hand information: area,

perimeter, number of convexity defects and angle. To the right of the hand blob the

radial signature histogram is displayed. On the top right side, on the right of the

camera image, the hand gradients and the respective HoG (Histogram of

Gradients)can be seen. Displayed on the camera image, on the top left of the

application interface, there is the information concerning system status. In the

present case the system is in a learning state, and recording values for the first

dataset.

After dataset creation, the obtained files are converted to Excel files in order to be

imported to RapidMiner for algorithm performance testing, parameter optimization

and learner selection. As explained before, the four chosen algorithms (k-NN, Naïve

Bayes, ANN, SVM) were applied to the two datasets, and the experiments were

performed under the assumption of the k-fold cross validation method. The k-fold

cross validation is used to determine how accurately a learning algorithm will be

able to predict data not trained with [68]. In the k-fold cross-validation, the dataset X

is divided randomly into k equal sized parts, Xi : i =1,…, k. The learning algorithm is

then trained k times, using k-1 parts as the training set and the one that stays out as

the validation set. A value of k=10 is normally used, giving a good rule of

approximation, although the best value depends on the used algorithm and the

dataset [66, 77]. As explained by Ian H. Witten et al. [77], “extensive tests on

numerous different datasets, with different learning techniques, have shown that 10

is about the right number of folds to get the best estimate of errors”.

Prior to learning and model application, the data was normalized as explained before.

Finally, a performance test was carried out, based on the number of counts of test

records correctly and incorrectly predicted by the model.

Since classifier settings and parameters used are important aspects to take into

account, for all the algorithms a parameter optimization analysis was carried out.

For the simplest of the algorithms, the k-NN, a value of k=1 (number of neighbours

used) for the two datasets was obtained with an Euclidean distance metric.

130 Experiments and Results

The following images show RapidMiner process setup for the k-NN dataset 1

analysis with the corresponding setups. The first image has represented the file

import phase, data normalization and cross-validation configuration, with the number

of validations set to 10, as explained before. For the sampling type there are three

possible options: linear, shuffled and stratified. Linear sampling simply divides the

dataset into partitions without changing the order, i.e. subsets with consecutive

samples are created. The shuffled sampling builds random subsets with the dataset,

i.e., examples are chosen randomly for making subsets. Stratified sampling builds

random subsets and ensures that the class distribution in the subsets is the same as in

the whole dataset, i.e. each subset contains roughly the same proportions of the

number of classes. This parameter has not been changed during the tests, where the

default value was accepted.

The second image is the actual k-NN learning process configuration, model

application and performance testing. For the k-NN algorithm, as it can be seen on the

right side, the k is set to one and an Euclidean distance measure is applied.

Figure 65. First RapidMiner setup screen for the k-NN dataset 1 analysis.

Comparative study of machine learning algorithms for hand posture classification 131

Figure 66. Second RapidMiner setup screen for the k-NN dataset 1 analysis (training and

testing).

For the artificial neural network, the number of training cycles was defined as

constant and equal to 500. The learning rate, and the momentum were obtained via

parameter optimization. The learning rate is user-designated and used to determine

how much the weights can be modified based on the change direction and change

rate. The higher the learning rate, the faster the network is trained. Momentum

basically allows a change to the ANN weights, during learning, to persist for a

number of adjustment cycles. It is used to prevent the system from converging to a

local minimum or saddle point [76, 80]. The following table shows the obtained

values for the two datasets, after parameter optimization.

Table 7. Artificial Neural Network (ANN) parameter setup used.

Parameters Values
Dataset 1 Dataset 2

Learning rate 0.1 0.33
Momentum rate 0.1 0.18
Training cycles 500 500
Hidden layers in the network 1 1

132 Experiments and Results

In the following images, the RapidMiner processes setup configurations for the two

datasets are represented. The first image, common to all configurations, has the file

import, data normalization and cross validation setup. In the second image, the actual

ANN learning process configuration, model application and performance testing are

configured. For the ANN algorithm, as can be seen on the parameter definition of

Figure 68, the learning rate and the momentum are both set to 0.1, value obtained

during the parameter optimization phase with the best accuracy results.

Figure 67. First RapidMiner setup screen for the ANN dataset 1 analysis.

Comparative study of machine learning algorithms for hand posture classification 133

Figure 68. RapidMiner ANN DataSet1 analysis (second screen).

For the SVM tests, the RapidMiner libSVM [162] algorithm implementation was

used, which supports multiclass learning with the “one-against-one” approach [163,

164]. The type of SVM used was the C-SCV, and the kernels obtained after

parameter optimization were the sigmoid for dataset 2 with a C value equal to 0 and

the rbf (radial basis function) kernel with a C value equal to 10 for dataset 1 as

shown on the table below.

Table 8. Parameters obtained after SVM optimization process

Parameters Dataset 1 Dataset 2
Kernel type rbf Sigmoid
Cost parameter - C 10 0

The RapidMiner process setup screens are shown in the following two images.

Figure 69 shows the parameter optimization configuration window, where the type of

kernels for optimization are defined, that in the setup were the poly, rbf and sigmoid.

For the C parameter, values in the range 1 to 10 with a linear scale were defined.

Figure 70 shows the actual SVM learning process configuration and the testing phase

where the obtained model is tested and the performance value returned. For the SVM

134 Experiments and Results

algorithm, as can be seen on the parameter definition on Figure 70, the kernel type

was set to rbf and the C value was set to 10, as obtained during the optimization

phase.

Figure 69. RapidMiner parameter optimization setup for the SVM dataset 1 analysis.

Figure 70. Second RapidMiner screen setup for the SVM dataset 1 analysis.

Comparative study of machine learning algorithms for hand posture classification 135

6.2.2 Results

The results obtained with the two datasets are represented in Table 9. Here one can

observe the obtained accuracy in each algorithm for both datasets and the respective

time spent on the tests.

Table 9. Accuracy obtained on both datasets with each algorithm,
and time spent in the tests.

 Classifier k-NN Naïve
Bayes

ANN SVM

Dataset 1
Accuracy (%) 95,45 25,87 96,99 91,66

Time 8s 1s 46m33s 3m10s

Dataset 2
Accuracy (%) 88,52 66,50 85,18 80,02

Time 1s 1s 32s 1m08s

To analyse how classification errors are distributed among classes a confusion matrix

for each trained algorithm was calculated, and the obtained results are shown on

Table 10 through Table 17.

In the field of machine learning, a confusion matrix is a table layout that allows

visualization of an algorithm performance, typically a supervised learning one. In

RapidMiner, each row of the matrix represents the instances in a predicted class,

while each column represents the instances in an actual class. The name, confusion

matrix, stems from the fact that it makes it easy to see if the system is confusing two

classes (i.e. commonly mislabelling one as another) [66, 77, 165].

The confusion matrix accuracy is calculated according to the following formula:

! !""#$!"% = ! !!! !!" , ! = 1,… , !; ! = 1,… , !!!! (30)!

136 Experiments and Results

Table 10. k-NN confusion matrix for dataset 1
 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 91 1 0 0 1 0 0 0 0 1
2 0 131 0 0 0 1 1 0 0 5
3 1 0 122 1 0 0 0 2 0 1
4 0 0 0 102 3 1 0 0 0 0
5 0 0 1 2 123 0 0 0 0 0
6 0 0 0 0 0 122 7 0 0 0
7 0 0 0 0 0 5 120 0 0 0
8 0 0 1 0 0 0 0 146 0 0
9 1 0 0 0 0 0 0 0 155 0

10 0 2 0 1 0 0 0 0 0 144

Table 11. k-NN confusion matrix for dataset 2

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 59 1 2 0 0 0 0 0 4 1
2 0 74 0 0 0 0 1 0 0 1
3 2 0 49 1 2 0 0 3 1 3
4 0 0 1 38 10 0 0 1 0 2
5 0 0 0 6 52 6 2 0 0 2
6 0 0 0 0 5 68 1 0 1 1
7 0 0 0 0 0 1 86 0 0 0
8 7 0 5 1 1 0 0 92 0 0
9 0 0 0 0 0 1 0 0 82 0

10 2 1 5 0 2 1 0 2 1 87

Table 12. Naïve Bayes confusion matrix for dataset 1

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 11 4 6 0 0 1 7 7 0 1
2 14 49 0 24 25 24 20 0 12 24
3 25 4 24 27 66 55 54 7 65 21
4 0 0 0 0 0 0 0 0 0 0
5 0 10 0 0 1 14 9 0 0 2
6 0 3 0 0 0 0 0 0 0 0
7 6 6 18 4 4 6 10 8 16 0
8 33 0 73 47 24 15 5 123 43 5
9 3 0 3 0 0 0 1 3 19 0

10 1 58 0 4 7 14 22 0 0 98

Table 13. Naïve Bayes confusion matrix for dataset 2

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 62 0 0 0 0 0 0 3 11 1
2 2 74 0 0 0 0 0 0 0 2
3 2 0 54 1 0 0 0 7 2 5
4 0 0 2 34 5 0 0 0 0 1
5 0 0 1 8 64 8 2 0 2 2
6 0 0 0 1 1 67 3 0 1 4
7 0 0 0 0 1 2 84 0 0 1
8 4 1 3 2 0 0 0 79 0 9
9 0 0 0 0 0 0 0 0 72 1

10 0 1 2 0 1 0 0 9 1 71

Comparative study of machine learning algorithms for hand posture classification 137

Table 14. ANN confusion matrix for dataset 1
 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 91 0 4 0 1 0 0 0 2 0
2 0 129 0 0 1 1 2 0 0 1
3 0 1 117 0 0 0 1 0 0 2
4 0 0 3 103 1 0 0 0 0 0
5 1 2 0 2 122 2 2 0 0 1
6 0 0 0 0 1 125 0 0 0 0
7 0 0 0 1 0 1 122 0 1 0
8 1 0 0 0 0 0 0 148 0 0
9 0 0 0 0 0 0 1 0 152 0

10 0 2 0 0 1 0 0 0 0 147

Table 15. ANN confusion matrix for dataset 2

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 62 0 0 0 0 0 0 3 11 1
2 2 74 0 0 0 0 0 0 0 2
3 2 0 54 1 0 0 0 7 2 5
4 0 0 2 34 5 0 0 0 0 1
5 0 0 1 8 64 8 2 0 2 2
6 0 0 0 1 1 67 3 0 1 4
7 0 0 0 0 1 2 84 0 0 1
8 4 1 3 2 0 0 0 79 0 9
9 0 0 0 0 0 0 0 0 72 1

10 0 1 2 0 1 0 0 9 1 71

Table 16. SVM confusion matrix for dataset 1

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 85 0 0 0 0 4 0 1 0 1
2 0 116 0 4 0 1 1 0 0 3
3 0 0 115 7 1 1 0 0 0 1
4 0 0 3 86 11 3 1 0 0 1
5 3 0 0 9 112 10 2 0 0 1
6 0 2 0 0 0 109 4 0 0 0
7 0 0 0 0 0 1 119 0 0 0
8 4 0 6 0 0 0 0 146 0 0
9 1 0 0 0 0 0 0 1 155 0

10 0 16 0 0 3 0 1 0 0 144

Table 17. SVM confusion matrix for dataset 2

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 59 0 0 0 0 0 0 0 10 0
2 0 65 0 0 0 0 0 0 0 12
3 3 0 37 0 1 1 0 6 7 2
4 0 0 2 33 2 0 0 0 0 1
5 0 0 0 10 67 9 2 0 0 5
6 0 0 0 0 0 64 2 0 0 1
7 0 0 0 0 0 3 85 0 0 0
8 3 0 13 0 0 0 0 74 0 11
9 0 0 0 0 1 0 0 1 72 0

10 5 11 10 3 1 0 0 17 0 65

138 Experiments and Results

6.2.3 Discussion

Hand gesture recognition is a difficult problem and this experiment was only a small

step towards trying to achieve the results needed in the field of real-time human

computer interaction.

The main goal of the study was to learn the type of hand features that could be used

for the problem at hand, and start learning how the type of selected features behave

in terms of supervised machine learning. Thus, a comparative study of four machine

learning algorithms applied to two datasets, composed of different types of features,

for static posture recognition and classification for human computer interaction was

carried out. As explained before, all the experiments were done with the RapidMiner

tool, in an Intel Core i7 (2.8 GHz) Max OSX computer with 4Gb (DDR3) of RAM.

In terms of accuracy, it is possible to see from the obtained results that dataset 2

achieved a lower accuracy than dataset 1 in all the algorithms, except in the Naïve

Bayes. On the other hand, although the best results have been obtained by the neural

network with dataset 1, it took a lot of time to train and test the data as can be seen in

Table 9, with a dataset comprising few records. With shorter time periods we have

the k-NN algorithm with only 8 seconds used and an accuracy result very close to

that obtained by the ANN, and the SVM algorithm with 3 minutes and 10 seconds

and accuracy superior to 90%. For three of the learning algorithms, with dataset 1, it

was possible to obtain accuracies above 90%, which was encouraging.

Although the number of records in the two databases was different, this factor does

not contribute to the differences in accuracy. The number of features present in each

dataset has however contributed to the time spent in the training and testing phases.

Also, in dataset 1 the variance feature in the dataset is constant and equal to 1. This is

due to the normalization (z-normalization) step taken, and because of this, this

feature does not bring any added value to the final result and can be discarded in

future experiments.

Some authors had already used the HoG as feature vectors for gesture classification.

As seen before, this gave some problems with different gestures having similar

orientation histograms. To avoid this type of problems many authors used variations

of it, where for example the features are computed by dividing the image into

Comparative study of seven different feature extraction algorithms 139

overlapped blocks called cells. The resulting HoG is obtained by a concatenation of

all the obtained histograms of the individual cells (Yafei Zhao et al. [21]). Other

approaches used a skin colour histogram of gradients, which combine skin colour

cues with HoG features to construct a novel feature: SCHOG. With the approach

developed (feature vectors that are formed by a composition of individual features)

better results than the first approach were achieved but it was inferior to the second

one. Compared to other variations and other tests performed with similar features,

like the one by Zondag et al. [20], our approach seemed very promising, and further

tests should be performed, especially with the HoG operator, which being simple and

fast to compute offers advantages with illumination variation images, and the radial

signature, which being also simple in terms of computationally complexity gives a

good representation of the object shape.

The achieved results, permit to conclude that the dataset 1 features resulted better as

possible solutions for hand gesture identification, and that further experiments should

be carried out with them, or even possibly try them separately. From the obtained

results, it can be easily proven that feature selection and data preparation phases are

important ones, especially with low-resolution images, which is the case of depth

images captured with the Kinect camera.

6.3 Comparative study of seven different feature extraction algorithms

6.3.1 Experimental Setup

This experiment aimed to conduct a comparative study of seven different hand

feature extraction algorithms for static hand posture classification. As explained

before, careful selection of hand features for shape representation plays an important

role in the final system performance. Some requirements like viewpoint invariance

and user independence are important aspects to take into consideration. Also, as

described in section 2.2.1, efficient shape features must present some essential

properties, like for example translation, rotation and scale invariance. So, in this

study it was important to understand which features, that when used isolated,

responded better in real-time human-computer interaction systems and at the same

140 Experiments and Results

time addressed the described properties being simple in terms of computationally

efficiency.

For that, seven datasets with different features extracted from the segmented hand

were used. The hand features used in the current experiment, and described in

section 2.2, were: the Radial Signature (RS), the Radial Signature Fourier

Descriptors (RSFD), the Centroid Distance (CD), the Centroid Distance Fourier

descriptors (CDFD), the Histogram of Gradients (HoG), the Shi-Tomasi Corner

Detector and the Uniform Local Binary Patterns (ULBP).

For the problem at hand, two types of images obtained with the Kinect camera were

used during the feature extraction phase. The first one, the hand grey scale image

was used with the HoG operator (Figure 71), the LBP (local binary pattern) operator

(Figure 72) and the Shi-Tomasi corner detector (Figure 73). The second one, the

binary hand blob, was used in the Radial Signature (Figure 74), the Radial Signature

Fourier Descriptors (Figure 75), the Centroid Distance Signature (Figure 76) and the

Centroid Distance Signature Fourier Descriptors (Figure 77).

For all the operators, as explained in section 3.2, the hand is detected and tracked as

shown on each of the images, where the hand being tracked is surrounded by a white

square labelled with the hand world position. For the ones that use the grey image,

like the HoG operator, described in section 2.2.3, it can be seen in Figure 71 both

extracted hand images below the RGB image and to the right the respective

orientation histogram image. For the Local Binary Pattern operator, described in

section 2.2.4, it can be seen in Figure 72 the obtained LBP image below the depth

camera image.

Comparative study of seven different feature extraction algorithms 141

Figure 71. HoG (Histogram of Gradients) operator feature extraction.

Figure 72. Local Binary Pattern operator feature extraction.

For the Shi-Tomasi corner detector, described in section 2.2.6, we can see in Figure

73 the identified points of interest displayed on top of the hand image, below the

depth camera image. For those operators that used the hand binary blob, like the

radial signature and the centroid distance, described in section 2.2.2, Figure 74 and

Figure 76 show the respective histogram images below the depth camera image. For

142 Experiments and Results

the Fourier Descriptors, described in section 2.2.5, the first ten obtained Fourier

Descriptors are represented below the respective signature as shown in Figure 75 and

Figure 77. This representation was used for control purposes only.

Figure 73. The Shi-Tomasi corner detector operator feature extraction

Figure 74. Radial Signature operator feature extraction.

Comparative study of seven different feature extraction algorithms 143

Figure 75. Radial Signature Fourier Descriptors (RSFD) operator feature extraction.

Figure 76. Centroid Distance operator feature extraction.

144 Experiments and Results

Figure 77. Centroid Distance Fourier Descriptors operator feature extraction.

As stated before, the main goal of the experiment was to learn features, that isolated,

responded better in real-time human-computer interaction systems. For that, a

gesture vocabulary with 10 hand postures (represented in Figure 78) was defined,

and videos from 20 users performing the postures, in front of the camera, for later

processing were recorded. For data acquisition, an application capable of recording

videos from the Kinect was implemented. The application was built in C++ with

openFrameworks and the OpenNI library [131]. The main user interface is shown in

Figure 79.

For each user, the videos were saved in a folder with an associated user information

file (name, age, sex and gender). During gesture recording the application displays

the necessary information to help the user know at any instant the current hand

posture to perform and time spent in the current process, as shown in Figure 80. Each

posture is recorded during 15 seconds, after which the application switches to a

pause state. In this phase, the next posture to be recorded is shown on the right side

of the user interface, under “Hand Command” and a countdown value is displayed on

top of the RGB image, enabling user hand posture changing (Figure 81).

Comparative study of seven different feature extraction algorithms 145

Figure 78. The defined gesture vocabulary (1. palm, 2. fist, 3. one-finger, 4. two-fingers,

5. three-fingers, 6. four-fingers, 7. five-fingers, 8. ok, 9. move-left and 10. circle)

Figure 79. Main user interface for the Kinect video recording application.

146 Experiments and Results

Figure 80. Posture recording. "Fist" and "One Finger" postures.

Figure 81. Posture recording pause period.

Comparative study of seven different feature extraction algorithms 147

As explained before (section 3.3.1), feature selection, data set preparation and data

transformation, are important phases in the process of data analysis. To construct the

right model it is necessary to understand the data under analysis. Successful data

mining involves far more than selecting a learning algorithm and running it over

your data [77].

In order to process the recorded videos, a C++ application, using openFrameworks,

OpenCV [28] and OpenNI [131], was developed. The application main user

interface, shown in Figure 82, allows the processing of a single file or the selection

of a user folder in order to process all the associated video files as shown in Figure

83. The application runs through all the folder video files and extracts for each one of

the operators under study the respective hand features and saves them in separate

datasets.

On the application user interface, information regarding the system state is displayed

on top of the camera RGB image. In the image of Figure 82, for example, it is

possible to see that the system is in a “Processing” state and is processing frame 50

of 381. The type of algorithm or operator in use at any time, for feature processing, is

also an option that can be selected by the user as shown in Figure 84.

Figure 82. Main user interface for the videos processing application.

148 Experiments and Results

Figure 83. User data folder selection for feature extraction.

Figure 84. Operator type selection (in the image the Radial Histogram was selected).

All the datasets were converted to Excel files to be imported into RapidMiner for

data analysis and in order to find the best learner algorithm among the following

four: k-NN, Naïve Bayes, ANN and SVM.

All the datasets were analysed with RapidMiner, and as in previous examples, under

the assumption of the k-fold cross validation method with k set to 10. The type of

Comparative study of seven different feature extraction algorithms 149

sampling used for the current experiments was the stratified sampling, which, as

explained in the previous section builds random subsets and ensures that the class

distribution in the subsets is the same as in the whole dataset, i.e. each subset

contains roughly the same proportions of the number of classes. For all the

algorithms under study, a parameter optimization, for some of the parameters in each

algorithm, was carried out.

In the following sequence of images RapidMiner process configurations used for

each of the learners is explained, with the corresponding setups for the parameter

optimization. For the ANN algorithm, the number of training cycles was defined as

constant and equal to 500. The learning rate was obtained via parameter

optimization. The next image shows the configuration window for the optimization

parameter selection where, the learning rate parameter has values defined in the

range of 0 to 1 with an increment of 0.1.

Figure 85. RapidMiner configuration for ANN Radial Signature feature analysis, with

parameter optimization.

150 Experiments and Results

For the k-NN the only parameter optimized was the number of neighbours, k. The

following image shows the first configuration window, with values defined in the

range 1 to 10 with a linear scale increment.

Figure 86. RapidMiner configuration for the k-NN Radial Signature Fourier Descriptors

feature analysis with parameter optimization (first screen).

In the following window, the optimization setup window, the cross validation

operator is defined, and as it can be seen it has attached a ‘Log’ operator. This option

enables the visualization of the values obtained during the optimization process, in

terms of accuracy for all the selected parameters as shown in the simple example

output of Figure 88.

Figure 89 shows the training and testing configuration window, where on the right

side, under “Parameters”, it can be seen the configuration for the k-NN algorithm

with k=1 and the “Numerical measure” set to the Euclidean distance. These values

were set according to the obtained ones during the optimization phase.

Comparative study of seven different feature extraction algorithms 151

Figure 87. Validation configuration with an option for Log display.

Figure 88. Example of Log table obtained during parameter optimization.

For SVM training and testing, with the HoG features, the kernel type and the C

parameter were once again obtained via parameter optimization. Figure 90 to Figure

92 show the parameter optimization configuration window, the cross-validation

configuration window and the training and testing configuration window. The first

one shows the range defined for the SVM parameter C to be optimized. It is defined

with values in the range 0 to 10 with a linear scale. The last one shows the type of

SVM used, the C-SVC, and some of the parameters that can be learned.

152 Experiments and Results

Figure 89. The training and testing configuration window for the k-NN learner.

Figure 90. RapidMiner configuration for SVM histogram of gradients feature analysis with

parameter optimization (first screen).

Comparative study of seven different feature extraction algorithms 153

Figure 91. RapidMiner SVM cross validation and log parameter configuration window.

Figure 92. Configuration used for SVM model training and testing.

154 Experiments and Results

6.3.2 Results

After analysis of the different datasets, the obtained results were in most of the cases

encouraging, although in other cases weaker than we expected.

The algorithms performance, based on the counts of test records correctly and

incorrectly predicted by the model, was analysed. Table 18 summarizes the best

learning algorithm for each dataset with the corresponding optimized parameters

obtained and its respective achieved accuracy.

Table 18. Best learning algorithm, in terms of accuracy, for each of the datasets and
parameters obtained during optimization.

Dataset Best learning

algorithm

Parameters obtained by

optimization

Accuracy

Radial Signature Neural Net learning rate = 0.1 91,0%

Centroid Distance Neural Net learning rate = 0.3 90,1%

Radial Sign. Fourier Descriptors k-NN k (number of neighbours) = 1 82,3%

Centroid dist. Fourier Descriptors k-NN k (number of neighbours) = 1 79.5%

Uniform Local Binary Patterns SVM (libSVM) Kernel = RBF ; C = 6 89,3%

Histogram of Gradients SVM (libSVM) Kernel = RBF ; C = 2 61,5%

Shi-Tomasi corners Neural Net learning rate = 0.1 21,9%

In order to analyse how classification errors are distributed among classes, a

confusion matrix was computed for each dataset with the learner that obtained the

best result. The resulting confusion matrices are represented in the following tables.

Comparative study of seven different feature extraction algorithms 155

Table 19. Radial signature dataset confusion matrix.

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 234 1 2 2 3 4 2 6 4 6
2 2 290 8 2 2 3 1 3 0 6
3 2 1 273 2 4 5 5 2 2 8
4 1 1 4 252 6 3 2 4 1 0
5 5 1 4 2 291 7 1 5 0 0
6 2 1 2 5 1 281 8 6 2 0
7 2 1 2 4 1 3 290 3 0 6
8 2 3 5 3 2 4 0 250 1 5
9 7 3 9 0 2 3 2 1 276 4

10 0 8 3 4 4 2 2 2 1 258

Table 20. Centroid distance dataset confusion matrix.

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 343 7 2 2 5 1 2 2 6 12
2 9 335 4 4 8 4 12 3 1 1
3 1 2 314 5 43 0 1 3 0 5
4 1 0 2 287 7 3 1 12 1 8
5 2 1 1 2 309 3 8 7 0 9
6 2 1 0 7 4 345 3 5 9 4
7 5 4 4 4 0 4 321 1 2 2
8 3 3 9 3 5 2 1 299 3 3
9 2 4 6 0 7 3 3 5 308 1

10 2 4 3 8 11 5 5 9 1 271

Table 21. Radial signature Fourier confusion matrix.

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 250 1 4 2 9 12 3 3 2 2
2 2 275 10 6 8 3 17 8 1 17
3 3 5 249 9 7 5 6 17 0 16
4 7 12 11 248 8 6 7 10 1 0
5 6 2 4 20 241 16 10 14 2 8
6 12 3 3 2 21 245 9 4 2 2
7 3 8 3 5 4 7 228 2 0 10
8 3 2 13 6 7 9 12 220 1 9
9 9 1 1 0 2 4 0 6 287 1

10 1 3 6 0 2 1 6 5 1 232

Table 22. Centroid distance Fourier confusion matrix.

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 261 17 4 3 13 9 8 5 12 5
2 8 258 7 8 9 4 8 10 5 6
3 9 12 295 11 8 2 6 5 6 7
4 6 6 8 234 7 11 6 7 7 11
5 2 3 5 6 273 3 12 4 17 17
6 2 5 4 6 8 290 15 1 6 17
7 1 6 6 8 3 10 284 12 9 11
8 9 11 6 5 6 4 3 260 4 14
9 9 6 7 11 5 7 6 6 242 8

10 2 6 7 4 7 15 10 15 8 237

156 Experiments and Results

Table 23. Local binary patterns dataset confusion matrix.
 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 460 7 4 4 2 2 6 5 10 15
2 12 499 7 7 8 9 7 3 11 7
3 2 4 457 24 11 1 2 1 5 9
4 9 9 12 486 30 6 0 0 8 17
5 3 15 18 35 522 8 3 0 5 17
6 10 14 2 4 11 531 4 2 7 15
7 3 2 1 0 0 1 517 1 2 4
8 10 1 1 0 0 5 3 554 1 0
9 5 7 7 8 1 9 4 0 525 4

10 15 5 31 13 9 4 2 0 1 457

Table 24. Histogram of gradients dataset confusion matrix.

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 174 15 14 11 5 0 1 17 19 17
2 24 207 8 11 10 13 8 9 25 12
3 18 10 199 25 12 4 2 6 20 13
4 7 5 22 168 24 15 3 4 10 24
5 8 7 11 18 181 19 15 4 6 19
6 0 7 2 9 24 195 19 5 7 15
7 16 39 16 21 34 62 259 39 20 38
8 10 4 3 5 6 2 1 189 5 3
9 30 19 17 9 8 3 1 12 176 14

10 10 15 16 23 13 11 11 3 19 161

Table 25. Shi-Tomasi corner detector confusion matrix.

 Actual class

 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d
cl

as
s

1 45 26 36 22 23 19 15 17 30 25
2 22 77 34 16 10 18 16 5 15 59
3 46 40 49 52 49 40 27 33 25 42
4 28 30 41 43 48 35 27 23 22 27
5 23 16 36 36 30 42 22 23 14 11
6 29 21 39 42 46 56 53 26 29 27
7 16 23 15 30 34 35 75 16 31 28
8 27 5 37 23 32 37 16 139 14 9
9 27 22 12 13 20 26 38 7 104 24

10 24 58 21 26 23 17 27 7 30 63

6.3.3 Discussion

The goal of this experiment was to carry a comparative study of seven different

algorithms for hand feature extraction, aimed at static hand gesture classification and

recognition, for human computer interaction.

All the data analysis experiments were carried with RapidMiner, on an Intel Core i7

(2.8 GHz) Max OSX computer with 4Gb (DDR3) of RAM.

It was important to test the robustness of all the algorithms, applied individually, in

terms of scale, translation and rotation invariance. After all the tests and having

Comparative study of seven different feature extraction algorithms 157

analysed the obtained results the conclusion was that further pre-processing on the

video frames was necessary in order to minimize the number of different feature

values obtained for the same hand posture, due to the presence of noise in the depth

image. The depth video images obtained with the Kinect camera had low resolution

and some noise. It was observed that some imprecision on data recordings results

from those problems, leading to more difficult gesture classification and model

learning. This is possible to observe on the confusion matrices, where many wrong

predictions in each type of features contributed to the final low classification results,

being the worst case the Shi-Tomasi corner detector.

Due to this situation, it was decided that a temporal filtering and/or a spatial filtering

should be used and would be tested and analysed to see if better results could be

achieved.

It has been found that the radial signature and the centroid distance were the best

shape descriptors tested in this experiment in terms of robustness and computation

complexity. The simplicity of these results follows the Occam’s razor principle

which states that “simpler explanations are more plausible and any unnecessary

complexity should be shaved off”.

Better results were expected from the Fourier descriptors, after having analysed

related work on the area with this type of features. In this case, even with the

algorithm that achieved the best results, the k-NN with k=1, the results fell far short

from the expected.

For the case of the Local Binary Patterns although the obtained accuracy was 89,3%

with a SVM, some more experiences should be done in the future in order to try to

achieve better results. Some authors used combinations of LBP features, like

geometric moments used by Marek Hrúz et al. [51] with a combined accuracy of

99,7% for signer dependent tests but with only 57,4% for signer independent tests.

Others, like Jinbing Gao et al. [53], used a combination of LBP features with HoG

features to train a SVM classifier and were able to achieve an accuracy of 95,2% in

real-time situations.

For the Histogram of Gradients, although with a different implementation from the

ones described in the literature, the values obtained were largely disappointing with

158 Experiments and Results

an accuracy of 61,5%. When compared with previous experiences with this type of

feature, the results were much worse than expected, which has somehow

demonstrated that as described in the literature, variations in its simplest form or

combined with other types of features can give better results.

This experience was an important step towards starting to realize what kind of

features and which classifiers could be used in future system implementations in

order to obtain robust hand recognition in real-time.

6.4 Integration of Static and Dynamic Gestures

6.4.1 Experimental Setup

This experiment main goal was to test the integration of static and dynamic gestures

into a unique vision-based system for real-time human/computer interaction. For

that, a decision had to be made for the type of features to use in static hand posture

classification, and the type of features to use in dynamic gesture classification. Also,

a method to integrate the two types of gestures in the final system had to be chosen

as well.

Thus, the experiment was divided into three parts, with the first two having its own

application for feature extraction and model training and testing.

For static hand posture classification it was decided to use as hand features, the

centroid distance features, since these were the one that gave better results in

previous experiments, being at the same simple in terms of computationally

complexity, making them good candidates for applications that implied real-time

recognition. So, the first part of the experiment implied the development of an

application for hand feature extraction and model training and testing for a set of

predefined static postures. For the type of features used, the hand binary blob had to

be segmented and the hand contour calculated. For feature extraction, model learning

and testing, a C++ application was built with openFrameworks, OpenCV [28],

OpenNI [131] and the Dlib machine-learning library [145]. Figure 93 shows the

main user interface for the application, with a sample vector (feature vector) for the

posture being learned displayed below the RGB image.

Integration of Static and Dynamic Gestures 159

Figure 93. Static gesture feature extraction and model learning user interface

A centroid distance dataset was built with 7848 records each with 32 feature values

obtained from four users. The features thus obtained were analysed with RapidMiner

in order to find the best learner and the best parameters through a parameter

optimization process.

The second part of the experiment implied the development of an application for the

acquisition of hand motion sequences (dynamic gestures) for each of the defined

gestures, feature extraction, model training and testing. For these features, the hand

path set of points were used and labelled according to a set of predefined centroids or

alphabet. As explained in section 3.4, gestures are time-varying processes which

show statistical variations, so, it was decided to model this type of gestures with

Hidden Markov Models.

A C++ application was built with openFrameworks, OpenNI and an

openFrameworks addon implementation of the HMM algorithm for classification

and recognition of numeric sequences (ofxSequence). This addon is a C++ porting

implementation of a MATLAB code from Kevin Murphy [166]. Figure 94 shows the

main user interface for the application, with a hand path drawn on top of the

centroids with the corresponding labels marked as white lines. For each gesture that

required training, a dataset was built and the system trained in order to learn the

160 Experiments and Results

corresponding model parameters. For the experiment, the number of observation

symbols defined was 64 with 4 hidden states. Several values for the number of

observations in the set {16, 25, 36, 49, 64, 81}, and hidden states, ranging from 2 to

12 were tried out, without significant improvements for values greater than the

selected ones, so those were the ones implemented in the final system.

For the tests, a new set of datasets were built with data from four different users with

a total of 25 per gesture and per user, totalling 1100 records for the predefined 11

gestures (Figure 47). The final test datasets were then analysed with the previous

obtained models.

Figure 94. Dynamic gestures feature extraction and model training user interface.

The final step was concerned with the decision of how to integrate the two types of

gestures. Due to the characteristics of the camera used, it was not possible to define

gestures with changing postures during the all hand path, since the obtained image

became blurred and therefore difficult to work. Also, as the identification of the start

and end of a dynamic gesture, as in natural human language, it is still a difficult task

where there is still a lot of work to be carried out, it was decided to model gestures as

sequences of commands, composed of static and dynamic gestures, with a finite state

Integration of Static and Dynamic Gestures 161

machine to control the transitions between them. Although there may be other

possibilities of implementation for this type of problem, this was the final decision.

6.4.2 Results

The first part of the experiment, as explained in the previous section, implied the

analysis of the obtained features in order to find the best learner for the given data,

and the best parameters through a parameter optimization process.

In order to find the best learner for the data under analysis, a process was built in

Rapid Miner that iterates through the following three possible learning algorithms:

the SVM, the ANN and the k-NN, and select the best result. The following images

show the Rapid Miner configurations for the process setup, i.e., from the main screen

setup with a parameter optimization definition, through the specification of the three

learning algorithms to test, in the final one. By opening the “Optimize Parameters

Grid” object by double-clicking it, we get to the Validation setup (Figure 96). Here,

the parameters and type of cross-validation to be used are defined, which in the

current experiment were performed with a 10-fold cross validation with a stratified

sampling type. The same way, by opening the “Validation” object, goes next to the

Training and Testing setup (Figure 97), where is selected in the training phase a

Select Sub-Process object for learner selection and in the testing phase the Apply

Model object and the Performance object that will give the accuracy for each one of

the chosen algorithms. Selecting the “Select Sub-Process” object opens the final

setup window shown in Figure 98. This is where the learners to test are defined in

order to obtain for the given data, the best one.

162 Experiments and Results

Figure 95. First Rapid miner setup screen for the Find Best Learner Process

(Read dataset and Parameter Optimization)

Figure 96. Second Rapid miner setup screen for the Find Best Learner Process (Validation)

Integration of Static and Dynamic Gestures 163

Figure 97. Third Rapid miner setup screen for the Find Best Learner Process

(Select Sub-Process).

Figure 98. Fourth Rapid miner setup screen for the Find Best Learner Process

(Learn algorithms definitions).

After running this Rapid Miner process, the best learning algorithm obtained was the

SVM and therefore the one implemented in the final system.

164 Experiments and Results

The next step was to find the best parameters for the selected learner. For this, a rbf

kernel was selected, since as explained in the Rapid Miner documentation, this is a

reasonable first choice, and so was the one decided to use on the experiments.

A parameter optimization was thus carried out on two of the SVM parameters: the

cost parameter C value, with values in the range 0 to 10, and the parameter gamma,

with ranges from 0.1 to 0.9, as shown in the configuration window of Figure 99.

With the experiment an accuracy of 99,2% was achieved for the given hand features

and the obtained best parameters were 6 for the cost value C and 0.1 for the gamma

value with the rbf kernel.

Figure 99. Centroid distance dataset SVM parameter optimization.

In order to analyse how classification errors were distributed among classes, a

confusion matrix was computed for the dataset under analysis with the final result

shown in the following table.

Integration of Static and Dynamic Gestures 165

Table 26. Centroid distance confusion matrix
 Actual class

Pr
ed

ic
te

d
cl

as
s

 1 2 3 4 5 6 7

1 588 0 0 0 0 2 0

2 2 706 0 0 1 0 1

3 0 1 578 1 0 0 0

4 0 0 12 715 3 0 0

5 0 1 1 13 536 1 3

6 1 8 0 1 5 693 12

7 2 0 0 2 6 9 751

For the dynamic gestures testing and since RapidMiner did not had at the time of this

writing the possibility to test datasets composed of HMM observation records, a

function based on the following formula was implemented and included in the

system in order to obtain an accuracy for each model and also a final average

accuracy.

! !""#$!"% = !#!!"##$!%&'!!"#$%&'#$!!"#$$#!!"!#$!!"#!i!"!!!!"" ×100%!! (31)!

As explained in the previous section, the test datasets were analysed with the

previous obtained models and the final accuracy results obtained are represented in

the following table.

Table 27. Hidden Markov Models accuracy for each gesture defined (Figure 47)

Gesture 1 2 3 4 5 6 7 8 9 10 11

Accuracy 75% 100% 100% 100% 92% 88% 92% 100% 100% 96% 88%

So, for the dynamic gesture recognition, with the HMM models trained with the

selected features, an average accuracy of 93,72% was achieved with the test dataset.

6.4.3 Discussion

The goal of this experiment was to test the integration of static and dynamic gestures

into a unique vision-based system for real-time human/computer interaction.

The experimental results showed that the system was able to recognize the

combination of gestures and hand postures in real-time, although with some

166 Experiments and Results

limitations due to the nature of the camera used. Despite these limitations, for the

hand posture recognition, with the SVM model trained with the selected features, an

accuracy of 99,2% was achieved.

In the centroid distance confusion matrix one can verify the existence of some high

error classification values between command number four and three, between

number five and four and between number six and seven, and that contributed to the

0,8% of false positives.

However, when comparing the results with those that have been reviewed in the

literature in terms of SVM classification, these features managed to achieve a level

of performance far superior to those presented, and so, this could be a good solution

for vision-based interfaces for human / computer interaction.

Ching-Tang Hsieh et al. [93] used Fourier Descriptors as hand features to train a

SVM classifier and obtained an accuracy of 93,4%. Yen-Ting Chen et al. [96] on the

other hand trained three SVM’s, with data from three cameras, fused later according

to three different plans. With this implementation their were able to achieve a final

accuracy of 93,3% although with the advantage of being a multi-view hand gesture

recognition. Jinbing Gao et al. [53] proposed an adaptive HoG-LBP detector method

with which they were able to achieve a final accuracy of 95,2%. Liu Yun t al. [97]

presented an automatic hand gesture recognition system based on Hu invariant

moment features and a SVM classifier. They were able to achieve a total recognition

rate of 96,2% for a dataset composed of three postures. Nasser H. Dardas et al. [99]

used SIFT features with a final accuracy of 96,23%.

For the dynamic gesture recognition, although the obtained average accuracy of

93,72% is considered satisfactory, there is still some work to be carried out in this

area in order to improve the obtained results. One could observe from the individual

gestures accuracy that gesture one obtained a result considered low relative to

expectable. Also notice during the tests, that this particular gesture was sometimes

confused with gesture number ten (END GAME). Also, gestures six and eleven

obtained low accuracy values. Some more tests must be performed, including new

model construction with data obtained from more users and features obtained from

3D hand paths should also be experimented.

A Comparative Study of Hand Features for Sign Language Recognition 167

The proposed solution was able to achieve better results than some implementations

described in the literature (section 2.3.5.4), like the solution proposed by Chen et al.

[103] with an accuracy of 85% and the solution proposed by Yoon et al. [104] with

an accuracy of 93% in the batch tests and 85% on the online tests. However, we got

worst results compared to the solution proposed by Nguyen Dang Binh et al. [105]

with an accuracy of 98% and Mahmoud Elmezain et al. [107] with an average

accuracy of 98,94% for the isolated gestures and an average accuracy of 95,7% for

the continuous gestures.

As a final conclusion it is possible to say that, although the system still needs to

evolve and is not a final solution, it was able to successfully integrate posture and

gesture recognition with good results during the online tests carried in the laboratory

under different types of conditions and different users.

6.5 A Comparative Study of Hand Features for Sign Language Recognition

6.5.1 Experimental Setup

This experiment mail goal was to compare the centroid distance hand features, used

in the previous experiment, with a new type of features built from the hand depth

image distance values, in order to test which one could achieve better results in

Portuguese Sign Language recognition. The distance values, which represent the

distance from the object to the camera, can be seen in the image of Figure 100, with

different distances represented by different grey values. The distance values could

represent, in our opinion, good hand features giving a more possible hand

representations with the same viewpoint.

For the centroid distance, in this experiment, only 16 feature values were used. For

the distance values, the hand image is resized to be 16x16 pixels in size, giving a

final vector with 256 features. So, for this experiment, two types of images were

used during the feature extraction phase:

1. the binary hand blob for the centroid distance histogram calculation, as in the

previous experiment.

2. the hand distance image for the distance feature vector.

168 Experiments and Results

For the centroid distance database, a total of 2170 records with 16 features were

used, and for the distance values database, a total of 2488 records with 256 features

were used.

Figure 100. Hand depth image.

For data acquisition and pre-processing, the same application from the previous

experiment was used and a function to extract the hand distance values, resize it and

build the feature vector was implemented.

All the datasets were converted to Excel files to be imported into RapidMiner for

data analysis. The experiment was divided into two phases with the purpose of

testing for each dataset which parameters to use. First, the goal was to test in terms of

SVM classification, which kernels would achieve the bests results with the two

datasets among the following: linear, sigmoid, rbf (radial basis function) and

polynomial. Although the rbf kernel is a reasonable first choice, there are some

situations where this is not suitable. In particular, when the number of features is

very large, one may just use the linear kernel. This was the reason that led us to

perform this test. Second, for each dataset, it was decided to run a parameter

optimization test dependent on the chosen kernel type, in order to obtain the best

parameters to be implemented in the final solution. Figure 101 shows the

RapidMiner process configuration for the kernel and the C (cost value) parameter

optimization.

Although in this experiment the datasets contained only features corresponding to the

vowels, the model is easily extendable to the rest of the alphabet.

A Comparative Study of Hand Features for Sign Language Recognition 169

Figure 101. RapidMiner sign language dataset, kernel type and C value, parameter

optimization

6.5.2 Results

The first phase of the experiment, as explained in the previous section, was to learn

which kernels behaved better in terms of SVM data classification for the two

datasets. As can be seen on Table 28, for both datasets, the obtained best kernel type

was the linear kernel, with a difference only on the obtained C parameter. For this

reason the second part of the experiment was unnecessary, since the linear kernel

does not need any further parameter optimization.

Table 28. Obtained kernel type and C value for the
two datasets through parameter optimization

Parameters Dataset 1 Dataset 2
kernel type linear linear
C 1 2

The following table presents the obtained accuracy for each dataset with the

corresponding kernel type and C value.

170 Experiments and Results

Table 29. Obtained accuracy for each dataset.

Parameters Dataset 1 Dataset 2
Kernel type Linear linear
C 1 2
accuracy 99,4% 99,6%

In order to analyse how classification errors are distributed among classes, a

confusion matrix was computed for each one of the datasets under study. The

resulting confusion matrixes are represented in the following two tables.

Table 30. Centroid distance features confusion matrix

 Actual class
1 2 3 4 5

Pr
ed

ic
te

d

cl
as

s

1 455 0 0 2 0
2 0 394 1 1 0
3 0 0 401 1 0
4 4 2 0 382 0
5 0 0 1 0 439

Table 31. Distance features confusion matrix

 Actual class
1 2 3 4 5

Pr
ed

ic
te

d

cl
as

s

1 622 0 8 0 10
2 0 543 1 0 1
3 0 3 451 0 0
4 0 0 0 413 0
5 0 0 1 0 434

6.5.3 Discussion

The goal of this experiment was to carry a comparative study of two different types

of hand features for the problem of sign language recognition using a support vector

machine (SVM). It was decided to choose this learning algorithm since it had already

shown good results in the previous experiment, in terms of classification, with one of

the hand features under study. From Table 29 one can easily see that the two

different features gave similar results in terms of classification accuracy, with only a

small difference of 0,2%. From the obtained results so far, one can conclude that the

new features are not an asset, having the disadvantage of being heavier in terms of

number of features and final sizes of the dataset and generated model. The

Summary 171

corresponding confusion matrix also shows, that some major classification errors

occurred between gesture one, the ‘A’ vowel, and gestures three and five,

corresponding to the ‘E’ and ‘U’ vowels respectively.

The centroid distance, on the other hand, being simple in terms of computational

complexity gives rise to smaller datasets and a small model file.

Although the results were encouraging, further tests should be carried out, including

not only more features from new users as well as the rest of the alphabet in the

datasets.

6.6 Summary

This chapter presented a set of experiments carried out during the current thesis, in

order to find hand features that could give good results in terms of hand gesture

recognition for real-time vision-based systems.

The main goal of the first two and the last experiments was to discover features that

could be used in static hand gesture classification. The third experiment also had the

intention to test and select features that could be used in dynamic gesture

classification.

With the selected features, the intention was to learn models, using machine learning

algorithms, that could be used on those systems.

For data analysis, RapidMiner was used, giving us the possibility to rapidly explore

different scenarios with different learning algorithms with the created datasets. This

tool was a crucial factor in the analysis of all obtained data.

With this set of experiments, it was possible to arrive to a set of features and a

learning algorithm that generated a model able to achieve an accuracy of 99.4% in

terms of static hand posture classification. It was also possible, with the selected and

tested features for dynamic gestures and the Markov models generated for each

gesture, to obtain very good classification results, with an average accuracy of

93,72%.

Although the results obtained so far, in terms of static gestures and in terms of

dynamic gestures are very encouraging, after analysing them it is possible to

conclude that further work may still be carried out in this area. It is however

172 Experiments and Results

important to point out that the implemented solutions are a solid foundation for the

development of generic gesture recognition systems that could be used with any

interface for human computer interaction.

7 Conclusions and Future Work

This chapter gives an overview of the work reported in this thesis, along with main

results and conclusions. The tools and results achieved are underlined and some

development perspectives and future directions are also presented.

7.1 Synthesis of Developed Work

The main goal of this work was the study, project and implement real time gesture

recognition solutions, generic enough, with the help of machine learning algorithms,

in order to allow their application in a wide range of human-machine interfaces. In

this context, the work carried out comprised the:

• Study of the concepts of object classification, feature extraction and the

various methodologies proposed by researchers in order to perform gesture

classification.

• Analyse of application fields, appropriate for the application of the

methodologies for gesture recognition, namely: remote robot control, robotic

wheel-chair control, the RoboCup soccer league, the RoboCup@Home

league and sign language recognition.

• Study of the approaches of other researchers in the area of the domains of

interest, with emphasis on methodologies for static gesture recognition and

dynamic gesture recognition.

• Identification of hand features that are simple in terms of computational

complexity, to be used in real-time applications.

• Definition of a new and formal language – Wheelchair CommLang – that

allows the representation of all the possible gestures that can be used as

commands to control a robotic based wheelchair.

• Definition of a new and formal language – Referee CommLang – that allows

the representation of all possible gesture combinations (static and dynamic)

for the MSL referee commands.

• Development of an application that enables a user to remotely control a robot

with a number of simple hand commands.

174 Conclusions and Future Work

• Development of an application that enables a user to drive a robotic base

wheelchair with a minimum number of finger commands.

• Development of two applications for offline training of static and dynamic

hand gestures, in order to create models that can be used for online gesture

classification.

• Development of an integrated vision-based hand gesture recognition system,

for the classification of the MSL referee commands defined in the new formal

language (Referee CommLang).

7.2 Main Results and Conclusions

Hand gestures are a powerful way for human communication, with lots of potential

applications in the area of human computer interaction. Vision-based hand gesture

recognition techniques have many proven advantages compared with traditional

devices. However, hand gesture recognition is a difficult problem and the current

work is only a small contribution towards achieving the results needed in the field.

The main objective of this work was to study and implement solutions that could be

generic enough, with the help of machine learning algorithms, allowing its

application in a wide range of human-computer interfaces, for online gesture

recognition. To achieve this, a set of implementations for processing and retrieving

hand user information, learn statistical models and able to do online classification

were created. The final prototype is a generic solution for a vision-based hand

gesture recognition system, that is able to interpret static and dynamic gestures and

that can be integrated with any human robot/system interface. The implemented

solution, based on supervised learning algorithms, is easily configured to process

new hand features or to learn different static and dynamic gestures, while creating

statistical models that can be used in any real-time user interface for online gesture

classification.

For the problem of static hand posture classification, the hand features that give good

classification results were identified, being at the same time simple in terms of

computational complexity, for use in any real-time application. The selected features

were tested with the help of the RapidMiner tool for machine learning and data

Main Results and Conclusions 175

mining. That way, it was possible to identify a learning algorithm that was able to

achieve very good results in terms of pattern classification, and that was the one used

in the final solution.

For the case of dynamic gesture recognition, the choice fell on Hidden Markov

Models, due to the nature of the data, gestures, which are time-varying processes.

This type of models has proven to be very effective in other areas of application, and

had already been applied successfully to the problem of gesture recognition. The

evaluation of the trained gestures with this prototype proved that, it was possible to

successfully integrate static and dynamic gestures in the generic system for human /

computer interaction. Although in the implementation only 2D hand paths were used

in order to extract dynamic gesture features, it was shown that for the current system

configuration and the set of predefined assumptions, that type of information was

enough.

It was also possible to prove through this study, and with the various experiments

which were carried, that proper feature selection for image classification is vital for

the future performance of the recognition system. It was possible to learn and select

sensible features that could be effectively used with machine learning algorithms in

order to increase the performance and effectiveness of online static and dynamic

gesture classification.

To demonstrate the effectiveness of our vision based gesture recognition system, the

proposed methods were evaluated with the Referee CommLang Prototype, able to

interpret user commands defined in the new formal language, the Referee

CommLang, created with the aim of interpreting a set of commands made by a

robotic soccer referee. The proposed methods were also evaluated with the Sign

Language Recognition prototype, able to interpret the Portuguese Sign Language

vowels.

An important aspect to report on the implemented solution has to do with the fact

that new users were able to learn the system very quickly and were able to start using

it in a normal way after a short period of time, making it a solution that can be easily

adapted and applied to other areas of application.

176 Conclusions and Future Work

Although to date, the system has been tested in laboratory under various conditions

and with various users, it was not possible to test the prototype in a real competition

environment with real situations due to calendar restrictions, but it is expected to

validate on next year’s National Open.

7.3 Limitations

Despite all the work carried out, the final solution has some limitations mainly due to

the type of camera used. Although the camera has advantages in some aspects that

were explored in the development of the project, it has however some limitations

with implications in the final work. Following are present the main system

limitations.

• The system is only prepared to work immediately with the camera used in the

experiments.

• Hand pose must be defined with a bare hand and not occluded by other

objects, i.e., the selected hand features are not robust to partial occlusions.

• The system is not capable of viewpoint independent hand gesture recognition.

• The system needs that the user is positioned in front of the camera, within a

predefined perimeter area and within a defined distance range due to camera

limitations.

• The system does not allow continuous dynamic gestures.

• The current system does allow the recognition of static gestures during the

execution of dynamic gesture, due to camera limitations.

• The system only works in indoor environments due to the characteristics of

the camera used.

7.4 Major Contributions

The major contributions of this thesis are:

• Definition of a new and formal command language which may be used in any

type of vision-based system, able to interpret a large number of commands.

Those commands can be used to control, among others, a robotic wheelchair

or a robotic soccer game. This language was defined using Bakus Naur form

Development Perspectives and Future Work 177

with the advantage of being simple in its syntax and easily adapted to other

areas of application.

• Project and implementation of a system that is able to remotely drive a robot

or control a electronic device using a finite set of hand gestures. The system

is flexible enough to be easily adapted, with minor changes, to control

distinct robots performing remote operations and other kinds of systems.

• Implementation of two applications able to train and learn statistical based

models, for static or dynamic gesture recognition. The learned models may

then be integrated in any vision-based system for real time hand gesture

classification.

• Implementation of a generic system able to recognize static, dynamic or a

combination of both types of gestures to classify any sequence of gestures in

real-time, using previously learned models. The classification is controlled by

the command definition with the new formal language.

• Definition of methodologies enabling the integration of machine learning

algorithms to increase the performance and effectiveness of real time static

and dynamic gesture classification systems.

• Development of three fully-functional gesture based control applications for

robot remote control, MSL robotic soccer refereeing and sign language

recognition, in order to validate the approach.

7.5 Development Perspectives and Future Work

Although the objectives of this thesis are fulfilled, many situations arose during the

study that should be implemented and some others experimented and explored.

So, this section identifies some possible developments and further work that on one

hand can be implemented as a complement to what was developed during this thesis,

or as promising and worth exploring areas.

In short, as major development prospects and further work it is suggested:

• To improve the data acquisition phase, thus giving the possibility to improve the

type of hand features extracted, being able to construct more reliable statistical

178 Conclusions and Future Work

models for online classification. In order to pursue this objective, ways must be

found to reduce the noise present in the type of cameras used in the present study,

or possibly try new cameras available at the moment, with improved depth

resolution and with a higher frame frequency.

• Build an add-on that would allow to easily configure system settings in terms of

number and type of static and dynamic gestures.

• Implement the Command Definition Language module. This module would allow

to easily managing settings related to the definition of the new commands.

• Explore other machine learning algorithms applied to the problem of hand

gesture classification and compare obtained results.

• Include not only the possibility of 3D gestures but also to work with several

cameras to thereby obtain a full 3D environment and achieve view-independent

recognition, thus eliminating some limitations of the current system.

• Explore the possibility of applying stereo vision instead of only depth range

cameras, applied to human / computer interaction and particularly to hand gesture

recognition.

• Introduce gesture recognition with both hands, enabling the creation of more

natural interaction environments.

• Investigate and try to find more reliable solutions for the identification of the

beginning and end of a gesture.

• Build systems that are able to recognize continuous gestures, i.e., without the

need to introduce pauses for gesture or command construction.

• Explore reinforcement learning as a way to start with a reduced number of hand

features per gesture, reducing the time to learn the models, and be able to learn

with user interaction, possibly using multimodal dialog strategies.

• Explore unsupervised learning applied to gesture recognition. Give the

robot/system the possibility to learn by interaction with the user, again with the

possibility of multimodal strategies.

As a final conclusion one can say that although there is still much to do in the area,

the implemented solutions are a solid foundation for the development of generic

gesture recognition systems that could be used with any interface for human

Development Perspectives and Future Work 179

computer interaction. The interface language can be redefined and the system can be

easily configured to train different set of gestures that can be easily integrated with

any desired solution.

References

[1]$ M.$T.$Committe.$(2013,$April$2013).$Middle$Size$Robot$League$RulesandRegulationsfor2013.$

Available:$http://wiki.robocup.org/wiki/Middle_Size_LeagueLRules$

[2]$ L.$P.$Reis,$F.$Almeida,$L.$Mota,andN.$Lau,$"CoordinationinMultiLrobot$Systems:$Applications$

in$Robotic$Soccer,"inAgentsandArtificial$Intelligence.$vol.$358,$J.$Filipe$and$A.$Fred,$Eds.,$ed:$

Springer$Berlin$Heidelberg,$2013,$pp.$3L21.$

[3]$ RoboCup.$(2013,$April$2013).$RoboCup@Home.$Available:$http://www.robocup.org/robocupL

home/$

[4]$ J.$R.$Chowdhury,$"Kinect$SensorforXbox$Gaming,"$M.Tech$CSE,$IIT$Kharagpur,$2012.$

[5]$ P.$ Trigueiros$ and$ F.$ Ribeiro,$ "VisionLbased$Hand$WheelChair$ Control,"$ in$ 12th$ International$

ConferenceonAutonomous$Robot$SystemsandCompetitions,$Guimarães,$Portugal,$2012,$pp.$

39L43.$

[6]$ P.$ Trigueiros,$ F.$ Ribeiro,$ and$ G.$ Lopes,$ "VisionLbased$ hand$ segmentation$ techniques$ for$

humanLrobot$interaction$for$realLtime$applications,"inIII$ECCOMAS$Thematic$Conference$on$

Computational$Vision$and$Medical$ Image$Processing,$Olhão,$Algarve,$Portugal,$2011,$pp.$31L

35.$

[7]$ P.$Trigueiros,$F.$Ribeiro,$and$L.$P.$Reis,$"VisionLbased$Gesture$Recognition$System$for$HumanL

Computer$ Interaction,"$ in$ IV$ ECCOMAS$ Thematic$ Conference$ on$ Computational$ Vision$ and$

Medical$Image$Processing,$Funchal.$Madeira,$2013.$

[8]$ P.$Trigueiros,$F.$Ribeiro,$and$L.$P.$Reis,$"A$Comparative$Studyofdifferent$image$featuresfor

hand$ gesture$ machine$ learning,"$ in$ 5th$ International$ Conference$ on$ Agents$ and$ Artificial$

Intelligence,$Barcelona,$Spain,$2013.$

[9]$ P.$ Trigueiros,$ F.$ Ribeiro,$ and$ L.$ P.$ Reis,$ "Vision$ Based$ Referee$ Sign$ Language$ Recognition$

System$ for$ the$ RoboCupMSL League,"$ in$ 17th$ annual$ RoboCup$ International$ Symposium,$

Eindhoven,$Holland,$2013.$

[10]$ G.$ R.$ S.$ Murthy$ and$ R.$ S.$ Jadon,$ "A$ Review$ of$ Vision$ Based$ Hand$ Gestures$ Recognition,"$

International$Journal$of$Information$TechnologyandKnowledge$Management,$vol.$2,$pp.$405L

410,$JulyLDecember$2009$2009.$

[11]$ S.Ongand$S.Ranganath,$"Automatic$sign$language$analysis:$A$survey$andthefuture$beyond$

lexical$meaning,"$IEEE$Trans.$Pattern$Analysis$ans$Machine$Intelligence,$vol.$27,$pp.$873L891,$

June$2005$2005.$

[12]$ S.$ Conseil,$ S.$ Bourenname,$ and$ L.$ Martin,$ "Comparison$ of$ Fourier$ Descriptors$ and$ Hu$

Moments$ for$Hand$Posture$Recognition,"$presentedat the$15th$European$Signal$Processing$

Conference$(EUSIPCO),$Poznan,$Poland,$2007.$

References

[13]$ S.$Mitra$and$T.$Acharya.$ (2007,May2007)$Gesture$recognition:ASurvey.$ IEEE$Transactions$

on$ Systems,$ Man$ and$ Cybernetics.$ 311L324.$ Available:$

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4154947$

[14]$ G.$ Simion,$ V.$ Gui,$ and$M.$Otesteanu,$ "Vision$ Based$ Hand$Gesture$ Recognition:$ A$ Review,"$

International$Journal$of$Circuits,$SystemsandSignal$Processing,$vol.$6,$pp.$275L282,$2012.$

[15]$ S.$ Rautaray$ and$ A.$ Agrawal,$ "Vision$ based$ hand$ gesture$ recognition$ for$ human$ computer$

interaction:asurvey,"$Artificial$Intelligence$Review,$pp.$1L54,$2012/11/01$2012.$

[16]$ R.$ Z.$ Khan$ and$ N.$ A.$ Ibraheem,$ "Hand$ Gesture$ Recognition:$ A$ Literature$ Review,"$

International$ Journal$ of$ Artificial$ Intelligence$&$ Applications,$ vol.$ 3,$ pp.$ 161L174,$ July$ 2012$

2012.$

[17]$ Y.$Mingqiang,$ K.$ Idiyo,$ and$ R.$ Joseph,$ "A$ Survey$ of$ Shape$ Feature$ Extraction$ Techniques,"$

Pattern$Recognition,$pp.$43L90,$November$2008$2008.$

[18]$ S.$Bourennane$and$C.$Fossati,$"Comparison$of$shape$descriptorsforhand$posture$recognition$

in$video,"$Signal,$Image$and$Video$Processing,$vol.$6,$pp.$147L157,$2010.$

[19]$ R.$ Y.$ Tara,$ P.$ I.$ Santosa,$ and$ T.$ B.$ Adji,$ "Sign$ Language$ Recognition$ in$ Robot$ Teleoperation$

using$Centroid$Distance$Fourier$Descriptors,"$International$JournalofComputer$Applications,$

vol.$48,$June$2012$2012.$

[20]$ J.$ A.$ Zondag,$ T.$ Gritti,$ and$ V.$ Jeanne,$ "Practical$ study$ on$ realLtime$ hand$ detection,"$ in$ 3rd$

International$Conference$on$Affective$Computingand Intelligent$ InteractionandWorkshops$

Amsterdam,theNetherlands,$2009,$pp.$1L8.$

[21]$ Z.$ Yafei,$ W.$ Weidong,$ and$ W.$ Yuehai,$ "A$ realLtime$ hand$ gesture$ recognition$ method,"$ in$

International$Conference$on$Electronics,$CommunicationsandControl,$Ningbo,$China,$2011,$

pp.$2475L2478.$

[22]$ M.$ Xingbao,$ L.$ Jing,$ and$ D.$ Yingchun,$ "An$ extended$ HOG$ model:$ SCHOG$ for$ human$ hand$

detection,"inInternational$Conference$on$Systems$and$Informatics,$Yantai,$China,$2012,$pp.$

2593L2596.$

[23]$ M.$ PietiKainen,$ A.$ Hadid,$ G.$ Zhao,$ and$ T.$ Ahonen,$ Computer$ Vision$ Using$ Local$ Binary$

Patterns.$London:$SpringerLVerlag,$2011.$

[24]$ D.$Zhang$and$G.$Lu,$"A$Comparative$Study$on$Shape$Retrieval$Using$Fourier$Descriptors$with$

Different$Shape$Signatures,"$Journal$of$Visual$CommunicationandImage$Representation,$pp.$

41L60,$//$2003.$

[25]$ D.$ Zhang$ and$G.$ Lu,$ "A$ comparative$ Study$ of$ Fourier$Descriptors$ for$ Shape$Representation$

and$ Retrieval,"$ in$ Proc.$ of$ 5th$ Asian$ Conference$ on$ Computer$ Vision$ (ACCV),$ Melbourne,$

Australia,$2002,$pp.$646LL651.$

 References

[26]$ T.$Tuytelaars$and$K.$Mikolajczyk,$"Local$ Invariant$Feature$Detectors:ASurvey,"$Foundations$

and$Trends$in$Computer$GraphicsandVision,$vol.$3,$pp.$177L280,$2007.$

[27]$ C.$ Harris$ and$ M.$ Stephens,$ "A$ combined$ corner$ and$ edge$ detector,"$ in$ The$ Fourth$ Alvey$

Vision$Conference,$1988,$pp.$147–151.$

[28]$ G.$Bradski$and$A.$Kaehler,$ Learning$OpenCV:$Computer$Vision$with$ the$OpenCV$Library,$1st$

ed.:$O'Reilly$Media,$2008.$

[29]$ J.Shiand$C.$Tomasi,$"Good$FeaturestoTrack,"$presented$attheInternacional$Conference$on$

Computer$Vision$and$Pattern$Recognition,$Seattle,$WA,$USA,$1994.$

[30]$ M.$Roth,$K.$Tanaka,$C.$Weissman,$and$W.$Yerazumis.$(1998,$MayL1998)$Computer$Visionfor

Interactive$Computer$Graphics.$IEEE$Computer$Graphics$And$Applications.$42L53.$$

[31]$ W.$ T.$ Freeman$ and$ M.$ Roth,$ "Orientation$ Histograms$ for$ Hand$ Gesture$ Recognition,"$

Mitsubishi$Electric$Research$Laboratories,$Cambridge$Research$CenterDecember$1994$1994.$

[32]$ R.$ C.$ Gonzalez$ and$ R.$ E.$ Woods,$ Digital$ Image$ Processing:$ AddisonLWesley$ Longman$

Publishing,$2001.$

[33]$ W.$E.$SnyderandH.$Qi,$Machine$Vision:$Cambridge$University$Press,$2004.$

[34]$ E.$ R.$ Davies,$ Machine$ Vision$ L$ Theory,$ Algorithms,$ Practicalities,$ 3rd$ Edition$ ed.:$ Morgan$

Kaufmann,$2005.$

[35]$ T.$ Ojala,$M.$ PeitiKainen,$ and$ T.$Maenpã,$ "Multiresolution$ grayLscale$ and$ rotation$ invariant$

texture$ classification$ with$ local$ binary$ patterns,"$ IEEE$ Trans.$ Pattern$ Analysis$ ans$Machine$

Intelligence,$vol.$24,$pp.$971L987,$July$2002$2002.$

[36]$ M.$Hruz,$J.$Trojanova,$and$M.$Zelezny,$"Local$binary$pattern$based$features$for$sign$language$

recognition,"$Pattern$Recognition$and$$Image$Analysis,$vol.$21,$pp.$398L401,$2011.$

[37]$ D.$Unay,$A.$Ekin,$M.$Cetin,$R.$ Jasinschi,andA.$Ercil,$ "RobustnessofLocal$Binary$Patterns$ in$

BrainMRImage$Analysis,"$in$29th$Annual$Conference$oftheIEEE$EMBS,$Lyon,$France,$2007,$

pp.$2098L2101.$

[38]$ M.$ Pietikainen,$ T.$ Ojala,$ and$ Z.$ Xu,$ "RotationLInvariant$ Texture$ Classification$ using$ Feature$

Distributions,"$Pattern$Recognition,$vol.$33,$pp.$43L52,$2000.$

[39]$ M.$Treiber,$An$Introduction$to$Object$Recognition:$Springer,$2010.$

[40]$ F.$Y.$Shih,$Image$ProcessingandPattern$Recognition:$FundamentalsandTechniques.$Canada:$

WileyandSons,$2008.$

[41]$ M.$Frigo,$"A$Fast$Fourier$Transform$Compiler,"inACM$SIGPLAN$ConferenceonProgramming$

Language$Design$and$Implementation$(PLDI$'99),$Atlanta,$Georgia,$1999.$

[42]$ Z.$ Hanning,$ D.$ J.$ Lin,$ and$ T.$ S.$ Huang,$ "Static$ Hand$ Gesture$ Recognition$ based$ on$ Local$

Orientation$ Histogram$ Feature$ Distribution$ Model,"$ in$ Computer$ Vision$ and$ Pattern$

Recognition$Workshop,$2004.$CVPRW$'04.$Conference$on,$2004,$pp.$161L161.$

References

[43]$ S.$Liang,$W.$Guijin,$Y.$Anbang,$L.$Xinggang,$and$C.$Xiujuan,$"Hand$posture$recognition$in$video$

using$multiple$cues,"inIEEE$International$ConferenceonMultimediaandExpo,NewYork,$NY,$

USA,$2009,$pp.$886L889.$

[44]$ N.$ Dalal$ and$ B.$ Triggs,$ "Histograms$ of$ Oriented$ Gradients$ for$ Human$ Detection,"$ in$

International$Conference$on$Computer$Vision$&$Pattern$Recognition,$Grenoble,$France,$2005,$

pp.$886L893.$

[45]$ M.$Isard$and$A.$Blake,$"Condensation$L$Conditional$Density$Propagation$for$Visual$Tracking,"$

International$Journal$of$Computer$Vision,$vol.$29,$pp.$5L28,$1998/08/01$1998.$

[46]$ J.$ Friedman,$ T.$ Hastie,$ and$ R.$ Tibshirani,$ "Additive$ Logistic$ Regression:$ a$ Statistical$ View$ of$

Boosting,"TheAnnalsofStatistics,$vol.$38,$pp.$337L374,$2000.$

[47]$ Y.$ Freund$ and$ R.$ Schapire,$ "Experiments$ with$ a$ New$ Boosting$ Algorithm,"$ in$ 13th$

International$Conference$on$Machine$Learning,$Bari,$Italy,$1996,$pp.$148L156.$

[48]$ M.$B.$KaanicheandF.$Bremond,$"TrackingHoGDescriptors$ for$Gesture$Recognition,"$ in$6th$

IEEE$ International$ Conference$ on$ Advanced$ Video$ and$ Signal$ Based$ Surveillance,$ Genova,$

Italy,$2009,$pp.$140L145.$

[49]$ C.$Schuldt,$ I.$Laptev,$and$B.$Caputo,$"Recognizing$human$actions:$a$ localSVMapproach,"$ in$

17th$International$ConferenceonPattern$Recognition,$Cambridge,$UK,$2004,$pp.$32L36.$

[50]$ E.$Rosten$and$T.$Drummond,$"Machine$learningforhighLspeed$corner$detection,"$presented$

attheProceedingsofthe$9th$European$conference$on$Computer$VisionLVolume$Part$I,$Graz,$

Austria,$2006.$

[51]$ M.$Hruz,$J.$Trojanova,$and$M.$Zelezny,$"Local$binary$pattern$based$features$for$sign$language$

recognition,"$Pattern$Recognit.$Image$Anal.,$vol.$21,$pp.$398L401,$2011.$

[52]$ T.$ Ojala,$M.$ Pietikäinen,$ and$ D.$ Harwood,$ "A$ comparative$ study$ of$ texture$measures$ with$

classification$ based$ on$ featured$ distributions,"$ Pattern$ Recognition,$ vol.$ 29,$ pp.$ 51L59,$ 1//$

1996.$

[53]$ J.Gaoand$Q.$Cao,$"Adaptive$HOGLLBP$Based$LearningforPalm$Tracking,"$in$2nd$International$

ConferenceonComputerandInformation$Applications,$Taiyuan,$Shanxi,$China,$2012,$pp.$543L

546.$

[54]$ A.$ L.$C.$Barczak,$A.$Gilman,$H.$H.$Reyes,$and$T.$Susnjak,$ "AnalysisofFeature$ Invarianceand

DiscriminationforHand$Images:$Fourier$Descriptors$versus$Moment$Invariants,"$presented$at$

the$International$Conference$Image$and$Vision$Computing,NewZeland,$2011.$

[55]$ M.LK.$ Hu,$ "Visual$ pattern$ recognition$ by$ moment$ invariants,"$ Information$ Theory,$ IRE$

Transactions$on,$vol.$8,$pp.$179L187,$february$1962.$

 References

[56]$ J.$ Triesch$ and$ C.$ v.$ d.$ Malsburg,$ "Robust$ Classification$ of$ Hand$ Postures$ against$ Complex$

Backgrounds,"$ in$ International$ Conference$ on$ Automatic$ Face$ and$ Gesture$ Recognition,$

Killington,$Vermont,$USA,$1996,$pp.$170L175.$

[57]$ D.$ G.$ Lowe,$ "Object$ Recognition$ from$ local$ scaleLinvariant$ features,"$ in$ International$

ConferenceonComputer$Viison,$Corfu,$Greece,$1999,$pp.$1150L1157.$

[58]$ H.$Bay,$A.$Ess,$T.$Tuytelaars,$and$L.$V.$Gool,$"SpeededLUp$Robust$Features$(SURF),"$Computer$

VisionandImage$Understanding,$vol.$110,$pp.$346L359,$June$2008$2008.$

[59]$ C.LC.$Wang$and$K.LC.$Wang,$"Hand$Posture$Recognition$Using$Adaboost$with$SIFT$for$Human$

Robot$ Interaction,"$ in$ Proceedings$ of$ the$ International$ Conference$ on$ Advanced$ Robotics$

Jeju,$Korea,$2008.$

[60]$ D.$ Q.$ Huynh,$ "Evaluation$ of$ Three$ Local$ Descriptors$ on$ Low$ Resolution$ Images$ for$ Robot$

Navigation,"in24th$International$Conference$Image$and$Vision$Computing,$Wellington,$New$

Zealand,$2009,$pp.$113L118$$

[61]$ T.$ Fawcett,$ "ROC$Graphs:$NotesandPractical$Considerations$ for$Data$Mining$Researchers,"$

ed,$2003.$

[62]$ M.$ Kolsch$ and$M.$ Turk,$ "Robust$ hand$ detection,"$ in$ 6th$ IEEE$ International$ Conference$ on$

Automatic$Face$and$Gesture$Recognition,$Seoul,$South$Korea,$2004,$pp.$614L619.$

[63]$ P.$ Viola$ and$ M.$ Jones,$ "Robust$ RealLtime$ Object$ Detection,"$ International$ Journal$ of$

Computer$Vision$Ltoappear,$//$2002.$

[64]$ I.$Millington$and$J.$Funge,$Artificial$IntelligenceforGames,$second$edition$ed.:$Elsevier,$2009.$

[65]$ F.$ Camastra$ and$ A.$ Vinciarelli,$ Machine$ Learning$ for$ Audio,$ Image$ and$ Video$ Analysis:$

Springer,$2008.$

[66]$ E.$Alpaydin,$IntroductiontoMachine$Learning:$MIT$Press,$2004.$

[67]$ R.$Herbrich,$Learning$Kernel$Classifiers:$Theory$and$Algorithms:$MIT$Press,$2003.$

[68]$ B.$M.$Faria,$N.$Lau,andL.$P.$Reis,$"Classification$of$Facial$Expressions$Using$Data$Mining$and$

machine$ Learning$ Algorithms,"$ in$ 4ª$ Conferência$ Ibérica$ de$ Sistemas$ e$ Tecnologias$ de$

Informação,$Póvoa$de$Varim,$Portugal,$2009,$pp.$197L206.$

[69]$ N.$E.$Gillian,$"Gesture$RecognitionforMusician$Computer$Interaction,"$Doctor$of$Philosophy,$

Music$Department,$FacultyofArts,$Humanities$and$Social$Sciences,$Belfast,$2011.$

[70]$ B.$M.$ Faria,$ L.$ P.$Reis,$N.$ Lau,$ and$G.$Castillo,$ "Machine$ Learning$Algorithms$applied$ to$ the$

Classification$ of$ Robotic$ Soccer$ Formations$ ans$ Opponent$ Teams,"$ presented$ at$ the$ IEEE$

Conference$on$$CyberneticsandIntelligent$Systems$(CIS),$Singapore,$2010.$

[71]$ A.$ Mannini$ and$ A.$ M.$ Sabatini,$ "Machine$ learning$ methods$ for$ classifying$ human$ physical$

activity$from$onLbody$accelerometers,"$Sensors,$vol.$10,$pp.$1154L1175,$2010.$

References

[72]$ R.$ VicenLBueno,$ R.$ GilLPita,$ M.$ P.$ JaraboLAmores,$ and$ F.$ LópezLFerreras,$ "Complexity$

ReductioninNeural$Networks$ApppliedtoTraffic$Sign$Recognition$Tasks,"$2004.$

[73]$ S.$MaldonadoLBáscon,$S.$LafuenteLArroyo,$P.$GilLJiménez,$and$H.$GómezLMoreno.$(2007,$June$$

2007)$ RoadLSign$ detection$ and$ Recognition$ Based$ on$ Support$ Vector$ Machines.$ IEEE$

TransactionsonIntelligent$Transportation$Systems.$264L278.$$

[74]$ P.$Trigueiros,$F.$Ribeiro,$and$L.$P.$Reis,$"A$comparison$of$machine$learning$algorithms$applied$

to$ hand$ gesture$ recognition,"$ in$ 7th$ Iberian$ Conference$ on$ Information$ Systems$ and$

Technologies,$Madrid,$Spain,$2012,$pp.$41L46.$

[75]$ L.$ R.$ Rabiner,$ "A$ tutorial$ on$ hidden$ Markov$ models$ and$ selected$ applications$ in$ speech$

recognition,"$Proceedings$oftheIEEE,$vol.$77,$pp.$257L286,$1989.$

[76]$ A.$K.$Jain,$R.$P.$W.$Duin,andJ.$Mao,$"Statisitical$Pattern$Recognition:AReview,"$IEEE$Trans.$

Pattern$Analysis$ans$Machine$Intelligence,$vol.$22,$pp.$4L36,$Janurary$2000$2000.$

[77]$ I.$ H.$ Witten,$ E.$ Frank,$ and$ M.$ A.$ Hall,$ Data$ Mining$ L$ Pratical$ Machine$ Learning$ Tools$ and$

Techniques,$Third$Edition$ed.:$Elsevier,$2011.$

[78]$ T.$Ivry$and$S.$Michal.$(8$Nov$2012).$License$Plate$Number$Recognition$Using$Artificial$Neural$

Network.$ Available:$ http://www.cs.bgu.ac.il/~icbv061/StudentProjects/ICBV061/ICBVL2006L

1LTorIvryLShaharMichal/index.php$

[79]$ WikiBooks.$ (2012,$ 8$ Nov$ 2012).$ Artificial$ Neural$ Networks/Activation$ Functions.$ Available:$

http://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions$

[80]$ S.$Haykin,$Neural$Networks$LAComprehensive$Foundation,$2nd$ed.$Delhi:$Prentice$Hall,$1999.$

[81]$ F.$Gorunescu,$Data$Mining$L$Concepts,$ModelsandTechniques$vol.$12:$SpringerLVerlag,$2011.$

[82]$ A.$ BenLHur$ and$ J.$ Weston,$ "A$ User’s$ Guide$ to$ Support$ Vector$ Machines,"$ in$ Data$ Mining$

Techniquesforthe$Life$Sciences.$vol.$609,$ed:$Humana$Press,$2008,$pp.$223L239.$

[83]$ S.$Theodoridis$and$K.$Koutroumbas,$Pattern$Recognition,$4th$Edition:$Elsevier,$2009.$

[84]$ D.$ S.$ Sayad.$ (2010,$ 8$ Nov$ 2012).$ Support$ Vector$Machine$ L$ Classification$ (SVM).$ Available:$

http://www.saedsayad.com/support_vector_machine.htm$$

[85]$ G.$A.$ Fink,$Markov$Models$ for$ Pattern$ recognition$ L$ From$Theory$ to$Applications:$ Springer,$

2008.$

[86]$ Y.$ Jufeng,$X.$ Jing,$ L.$Mingda,$ Z.$Dingzhen,$and$W.$Congchao,$ "A$ realLtime$command$system$

basedonhand$gesture$recognition,"in7th$International$ConferenceonNatural$Computation,$

Shanghai,$China$2011,$pp.$1588L1592.$

[87]$ H.$Lahamy$and$D.$D.$Lichti,$"Performance$analysis$of$different$classification$methods$for$hand$

gesture$recognition$using$range$cameras,"$ in$Videometrics,$Range$Imaging,$and$Applications$

XI,$Munich,$Germany,$2011.$

 References

[88]$ T.$ H.$ H.$ Maung,$ "RealLTime$ Hand$ Tracking$ and$ Gesture$ Recognition$ System$ Using$ Neural$

Networks,"$Proceedings$of$World$AcademyofScience:$Engineering$&$Technology,$vol.$50,$pp.$

466L470,$2009.$

[89]$ T.$ Ahmed,$ "A$ Neural$ Network$ based$ Real$ Time$ Hand$ Gesture$ Recognition$ System,"$

International$Journal$of$Computer$Applications,$vol.$59,$pp.$17L22,$December$2012$2012.$

[90]$ P.$Mekala,$ J.$ Fan,$W.LC.$ Lai,$ and$ C.LW.$ Hsue,$ "Gesture$ Recognition$ Using$ Neural$ Networks$

BasedonHW/SW$Cosimulation$Platform,"$Advances$in$Software$Engineering,$vol.$2013,$p.$13,$

2013.$

[91]$ H.$ Hasan$ and$ S.$ AbdulLKareem,$ "Static$ hand$ gesture$ recognition$ using$ neural$ networks,"$

Artificial$Intelligence$Review,$pp.$1L35,$2012/01/01$2012.$

[92]$ Y.$ S.$ AbuLMostafa$ and$ D.$ Psaltis,$ "RecognitiveAspectsofMoment$ Invariants,"$ IEEE$

TRANSACTIONS$ ON$ PATTERN$ ANALYSIS$ AND$MACHINE$ INTELLIGENCE,$ vol.$ 6,$ pp.$ 698L706,$

1984.$

[93]$ H.$ChingLTang,$Y.$ChengLHsiang,$H.$KuoLMing,$C.$LiLMing,$and$K.$ChinLYen,$"A$real$time$hand$

gesture$ recognition$ system$ based$ on$ DFT$ and$ SVM,"$ in$ 8th$ International$ Conference$ on$

Information$Science$and$Digital$Content$Technology,$Jeju,$Korea,$2012,$pp.$490L494.$

[94]$ G.$ Bradski,$ "Computer$ Vision$ Face$ Tracking$ For$ Use$ in$ a$ Perceptual$ User$ Interface,"$ Intel$

Technology$Journal,$1998.$

[95]$ Y.$H.$Liu,$"Feature$AnalysisandClassifier$Design$and$Their$ApplicationstoPattern$Recognition$

and$Data$Mining,"$Ph.D.,$National$Taiwan$University,$R.O.C.,$2003.$

[96]$ C.$ YenLTing$ and$ T.$ KuoLTsung,$ "MultipleLangle$ Hand$ Gesture$ Recognition$ by$ Fusing$ SVM$

Classifiers,"$ in$ IEEE$ International$ Conference$ on$ Automation$ Science$ and$ Engineering,$

Washington$DC,$USA,$2007,$pp.$527L530.$

[97]$ Y.$ LiuandP.$Zhang,$ "An$Automatic$Hand$Gesture$Recognition$System$BasedonViolaLJones$

Method$ and$ SVMs,"$ in$ Computer$ Science$ and$ Engineering,$ 2009.$ WCSE$ '09.$ Second$

International$Workshop$on,$2009,$pp.$72L76.$

[98]$ J.LH.$Ahn,$C.$Choi,$and$T.LS.$Kim,$"Gesture$Recognition$using$Singular$State$Analysisandthe$

Support$Vector$Machine,"$Pacific$Science$Review,$vol.$9,$pp.$29L34,$2007.$

[99]$ N.$H.$DardasandN.$D.$Georganas,$"RealLTime$Hand$Gesture$DetectionandRecognition$Using$

BagLofLFeatures$ and$ Support$ Vector$ Machine$ Techniques,"$ Instrumentation$ and$

Measurement,$IEEE$Transactions$on,$vol.$60,$pp.$3592L3607,$2011.$

[100]$ Y.LG.$Jiang,$C.LW.$Ngo,$and$J.$Yang,$"Towards$optimal$bagLofLfeatures$for$object$categorization$

and$semantic$video$ retrieval,"$presented$at$ the$6th$ International$Conference$on$ Imageand

Video$Retrieval,$Amsterdam,TheNetherlands,$2007.$

References

[101]$ S.$Lazebnik,$C.$Schmid,$and$J.$Ponce,$"Beyond$BagsofFeatures:$Spatial$Pyramid$Matching$for$

Recognizing$ Natural$ Scene$ Categories,"$ presented$ at$ the$ Proceedings$ of$ the$ 2006$ IEEE$

Computer$Society$ConferenceonComputer$Vision$and$Pattern$RecognitionLVolume$2,$2006.$

[102]$ C.LC.$Hsieh$and$D.LH.$Liou,$"Novel$Haar$features$for$realLtime$hand$gesture$recognition$using$

SVM,"$Journal$of$RealLTime$Image$Processing,$pp.$1L14,$2012/11/01$2012.$

[103]$ F.LS.$ Chen,$ C.LM.$ Fu,$ and$ C.LL.$ Huang,$ "Hand$ gesture$ recognition$ using$ a$ realLtime$ tracking$

method$ and$ hidden$ Markov$ models,"$ Image$ and$ Vision$ Computing,$ vol.$ 21,$ pp.$ 745L758,$

2003.$

[104]$ H.LS.$ Yoon,$ J.$ Soh,$Y.$ J.$Bae,$ and$H.$ Seung$Yang,$ "Hand$gesture$ recognition$using$ combined$

featuresoflocation,$angle$and$velocity,"$Pattern$Recognition,$vol.$34,$pp.$1491L1501,$//$2001.$

[105]$ N.$ D.$ Binh,$ E.$ Shuichi,$ and$ T.$ Ejima,$ "RealLTime$ Hand$ Tracking$ and$ Gesture$ Recognition$

System,"$ in$ Proceedings$ of$ International$ Conference$ on$Graphics,$ Vision$ and$ Image$ Cairo$ L$

Egypt,$2005,$pp.$362LL368.$

[106]$ O.$E.$Agazzi$ and$S.Ls.$Kuo,$ "Pseudo$TwoLDimensional$Hidden$Markov$Models$ for$Document$

Recognition,"$AT&T$Technical$Journal,$vol.$72,$pp.$60L72,$1993.$

[107]$ M.$Elmezain,$A.$AlLHamadi,$ J.$Appenrodt,$and$B.$Michaelis,$ "A$Hidden$Markov$ModelLbased$

Continuous$Gesture$ Recognition$ System$ for$Hand$Motion$ Trajectory,"$ in$ 19th$ International$

ConferenceonPattern$Recognition,$Tampa,$Florida,$USA,$2008,$pp.$1L4.$

[108]$ O.$Rashid,$A.$AlLHamadi,$ and$B.$Michaelis,$ "A$ framework$ for$ the$ integrationofgestureand

posture$ recognition$ using$ HMM$ and$ SVM,"$ in$ IEEE$ International$ Conference$ on$ Intelligent$

ComputingandIntelligent$Systems,$Shangai,$China,$2009,$pp.$572L577.$

[109]$ S.$ Bilal,$ R.$ Akmeliawati,$ A.$ Shafie,$ and$ M.$ Salami,$ "Hidden$ Markov$ model$ for$ human$ to$

computer$ interaction:$ a$ study$ on$ human$ hand$ gesture$ recognition,"$ Artificial$ Intelligence$

Review,$pp.$1L22,$2011/12/01$2011.$

[110]$ Anand.H.Kulkarni$ and$ Sachin.A.Urabinahatti,$ "Performance$ Comparison$ of$ Three$ Different$

Classifiers$ for$ HCI$ Using$ hand$ Gestures,"$ International$ Journal$ of$ Modern$ Engineering$

Research$(IJMER),$vol.$2,$pp.2857L$2861,$ulyLAug$2012$2012.$

[111]$ A.$ Khotanzad$ and$ H.$ Yaw$Hua,$ "Invariant$ image$ recognition$ by$ Zernike$moments,"$ Pattern$

AnalysisandMachine$Intelligence,$IEEE$Transactions$on,$vol.$12,$pp.$489L497,$1990.$

[112]$ H.$H.$Avilés,$W.$Aguilar,andL.$A.$Pineda,$"On$the$Selection$ofaClassification$Technique$for$

the$ Representation$ and$ Recognition$ of$ Dynamic$ Gestures.,"$ in$ Advances$ in$ Artificial$

IntelligenceLIBERAMIA$2008,$11th$IberoLAmerican$ConferenceonAI,$Lisboa,$Portugal,$2008,$

pp.$412L421.$

 References

[113]$ M.$Oshita$ and$ T.$Matsunaga,$ "Automatic$ learning$ of$ gesture$ recognition$model$ using$ SOM$

and$SVM,"$in$International$ConferenceonAdvancesinVisual$Computing,$Las$Vegas,$NV,$USA,$

2010,$pp.$751L759.$

[114]$ T.$Kohonen,$SelfLOrganizing$Maps$vol.$30:$SpringerLVerlagNewYork,$Inc.,$2001.$

[115]$ C.$Cortes$and$V.$Vapnik,$"SupportLvector$networks,"$Machine$Learning,$vol.$20,$pp.$273L297,$

1995/09/01$1995.$

[116]$ G.$ Bailador,$ D.$ Roggen,$ G.$ Tröster,$ and$ G.$ Triviño,$ "Real$ time$ gesture$ recognition$ using$

continuous$ time$ recurrent$neural$networks,"$ in$2nd$ International$Conference$on$Body$Area$

Networks,$Florence,$Italy,$2007,$pp.$1L8.$

[117]$ J.$C.$Gallagherand J.$M.$Fiore,$"Continuous$ time$recurrent$neural$networks:$a$paradigm$for$

evolvable$ analog$ controller$ circuits,"$ in$ National$ Aerospace$ and$ Electronics$ Conference,$

Dayton,$Ohio,$USA,$2000,$pp.$299L304.$

[118]$ R.$ D.$ Beer,$ "On$ the$ dynamics$ of$ small$ continuousLtime$ recurrent$ neural$ networks,"$ Adapt.$

Behav.,$vol.$3,$pp.$469L509,$1995.$

[119]$ A.$ Chaudhary,$ J.$ L.$ Raheja,$ K.$ Das,$ and$ S.$ Raheja,$ "Intelligent$ Approaches$ to$ interact$ with$

Machines$using$Hand$Gesture$RecognitioninNatural$way:$A$Survey,"$International$Journal$of$

Computer$Science$&$Engineering$Survey,$vol.$2,$pp.$122L133,Feb2011$2011.$

[120]$ M.$Hasanuzzaman,$V.$Ampornaramveth,$T.$Zhang,$M.$A.$Bhuiyan,$Y.$Shirai,andH.Ueno,$"RealL

time$ VisionLbased$Gesture$ Recognition$ for$ Human$ Robot$ Interaction,"$ in$ IEEE$ International$

ConferenceonRoboticsandBiomimetics,$Shenyang,$China,$2004,$pp.$413L418.$

[121]$ T.$Huang$and$V.$Pavlovic,$"Hand$Gesture$Modeling,$Analysis,andSynthesis,"inIn$Proc.$of$IEEE$

International$Workshop$on$Automatic$FaceandGesture$Recognition,$1995,$pp.$73L79.$

[122]$ J.LH.$ Yoon,$ J.LS.$ Park,$ and$ M.$ Y.$ Sung,$ "VisionLBased$ bareLhand$ gesture$ interface$ for$

interactive$augmented$reality$applications,"$in$5th$international$conference$on$Entertainment$

Computing,$Cambridge,$UK,$2006,$pp.$386L389.$

[123]$ V.$Buchmann,$S.$Violich,$M.$Billinghurst,$and$A.$Cockburn,$ "FingARtips:$gesture$based$direct$

manipulation$ in$ Augmented$ Reality,"$ presented$ at$ the$ 2nd$ international$ Conference$ on$

Computer$Graphics$and$Interactive$TechniquesinAustralasiaandSouth$East$Asia,$Singapore,$

2004.$

[124]$ R.LD.$Vatavu,$L.$Anthony,$and$J.$O.$Wobbrock,$"Gesturesaspoint$clouds:$a$$P$recognizer$for$

user$ interface$ prototypes,"$ presented$ at$ the$ 14th$ ACM$ international$ conference$ on$

Multimodal$interaction,$Santa$Monica,$California,$USA,$2012.$

[125]$ J.$O.$Wobbrock,$A.$D.$Wilson,$and$Y.$Li,$"Gestures$without$libraries,$toolkitsortraining:$a$$1$

recognizer$ for$ user$ interface$prototypes,"$ presented$ at$ the$Proceedings$of$ the$20th$ annual$

References

ACM$ symposium$ on$ User$ interface$ software$ and$ technology,$ Newport,$ Rhode$ Island,$ USA,$

2007.$

[126]$ Y.$ Li,$ "Protractor:$ a$ fast$ and$accurate$gesture$ recognizer.,"$presented$at$ the$Conference$on$

Human$Factors$in$Computing$Systems,$Atlanta,$Georgia,$USA,$2010.$

[127]$ S.$ Kratz$ and$ M.$ Rohs,$ "Protractor3D:$ a$ closedLform$ solution$ to$ rotationLinvariant$ 3D$

gestures,"$presented$atthe16th$International$ConferenceonIntelligent$User$Interfaces,$Palo$

Alto,$CA,$USA,$2011.$

[128]$ T.$ Kim.$ (2008,$ 29L03L2013).$ InLDepth:$ Eye$ To$ Eye$ L$ The$ History$ Of$ EyeToy.$ Available:$

http://www.gamasutra.com/phpLbin/news_index.php?story=20975$

[129]$ Z.$ Zafrulla,$ H.$ Brashear,$ T.$ Starner,$ H.$ Hamilton,$ and$ P.$ Presti,$ "American$ sign$ language$

recognition$with$the$kinect,"$presentedatthe$13th$International$Conference$on$Multimodal$

Interfaces,$Alicante,$Spain,$2011.$

[130]$ G.$A.$ t.$Holt,$M.$J.$T.$Reinders,$E.$A.$Hendriks,$H.$d.$Ridder,$and$A.$ J.$v.$Doorn,$"Influence$of$

handshape$ information$ on$ automatic$ sign$ language$ recognition,"$ in$ 8th$ International$

Conference$ on$ Gesture$ in$ Embodied$ Communication$ and$ HumanLComputer$ Interaction,$

Bielefeld,$Germany,$2010,$pp.$301L312.$

[131]$ OpenNI.$(2013).$The$standard$frameworkfor3D$sensing.$Available:$http://www.openni.org/$

[132]$ B.$Glennoah,$"Microsoft$Kinect$Sensor$Evaluation,"$NASA$20110022972,$August$05$2011.$

[133]$ L.$PrimeSense.$(2013,$September$2012).$PrimeSense.$$

[134]$ B.$ Widenhofer.$ (2010).$ Inside$ Xbox$ 360’s$ Kinect$ controller.$ Available:$

http://www.eetimes.com/document.asp?doc_id=1281322$

[135]$ L.$ Hacker.$ (2012,$ 8$ Nov$ 2012).$ LabView$ Kinect$ Interface.$ Available:$

http://labviewhacker.com/doku.php?id=projects:lv_kinect_interface:lv_kinect_interface$

[136]$ M.$ R.$ Andersen,$ T.$ Jensen,$ P.$ Lisouski,$ A.$ K.$Mortensen,$M.K.$ Hansen,$ T.$ Gregersen,$ et$ al.,$

"Kinect$ Depth$ Sensor$ Evaluation$ for$ Computer$ Vision$ Applications,"$ Department$ of$

Engineering$–$ElectricalandComputer$Engineering,$Aarhus$UniversityFebruary$2012$2012.$

[137]$ M.$Camplani$and$L.$ Salgado,$ "Efficient$ spatioLtemporal$hole$ filling$ strategy$ for$Kinect$depth$

maps,"$ThreeLDimensional$Image$Processing$(3DIP)andApplications$II,$vol.$8290,$p.$10,$2012.$

[138]$ B.$ Bongalon.$ (2011).$ Experiment$ to$ remove$ noise$ in$ Kinect$ depth$ maps.$ Available:$

http://borglabs.com/blog/experimentLtoLremoveLnoiseLinLkinectLdepthLmaps$

[139]$ P.$Garg,$N.$Aggarwal,$and$S.$Sofat,$"Vision$Based$Hand$Gesture$Recognition,"$World$Academy$

of$Science,$EngineeringandTechonology,$pp.$972L977,$2009.$

[140]$ J.$J.$StephanandS.$Khudayer,$"Gesture$Recognition$for$HumanLComputer$Interaction$(HCI),"$

International$Journal$of$Advancements$in$Computing$Technology,$vol.$2,$pp.$30L35,$2010.$

 References

[141]$ J.$ P.$ Wachs,$ H.$ Stern,$ and$ Y.$ Edan,$ "Cluster$ labeling$ and$ parameter$ estimation$ for$ the$

automated$setup$ofahandLgesture$recognition$system,"$Systems,$ManandCybernetics,$Part$

A:$Systems$and$Humans,$IEEE$Transactions$on,$vol.$35,$pp.$932L944,$2005.$

[142]$ H.$ Kauppinen,$ T.$ Seppanen,$ and$ M.$ Pietikainen,$ "An$ experimental$ comparison$ of$

autoregressiveandFourierLbased$descriptors$in$2D$shape$classification,"$Pattern$Analysis$and$

Machine$Intelligence,$IEEE$Transactions$on,$vol.$17,$pp.$201L207,$1995.$

[143]$ D.$C.$MontgomeryandG.$C.$Runger,$Applied$StatisticsandProbability$ for$Engineers:$Wiley,$

1994.$

[144]$ S.$ Theodoridis$ and$ K.$ Koutroumbas,$ An$ Introduction$ to$ Pattern$ Recognition:$ A$ Matlab$

Approach:$Academic$Press,$2010.$

[145]$ D.$E.$King,$"DlibLml:$A$Machine$Learning$Toolkit,"$JournalofMachine$Learning$Research,$vol.$

10,$pp.$1755L1758,$2009.$

[146]$ L.$ R.$ Rabiner$ and$ B.$ H.$ Juang,$ "An$ introduction$ to$ hidden$ Markov$ models,"$ IEEE$ ASSp$

Magazine,$1986.$

[147]$ Y.$ Wu$ and$ T.$ S.$ Huang,$ "VisionLBased$ Gesture$ Recognition:$ A$ Review,"$ presented$ at$ the$

Proceedings$ of$ the$ International$ Gesture$ Workshop$ on$ GestureLBased$ Communication$ in$

HumanLComputer$Interaction,$1999.$

[148]$ L.$ RungLHuei$ and$ O.$ Ming,$ "A$ realLtime$ continuous$ gesture$ recognition$ system$ for$ sign$

language,"$ in$ Third$ IEEE$ International$ Conference$ on$ Automatic$ Face$ and$ Gesture$

Recognition,$Nara,$Japan,$1998,$pp.$558L567.$

[149]$ M.$Buckland,$Programming$Game$AIbyExample:$Wordware$Publishing,$Inc.,$2005.$

[150]$ A.$F.$Ribeiro,$G.$Lopes,$J.$Costa,$J.$P.$Rodrigues,$B.$Pereira,$J.$Silva,$et$al.,$"MinhoMSL:anew$

generationofsoccer$robots,"$presentedatthe$Robocup$2011,$Istambul,$2011.$

[151]$ F.$ Ribeiro.$ (2006,$ April,$ 2013).$ Grupo$ de$ Automação$ e$ Robótica.$ Available:$

http://www.robotica.dei.uminho.pt$

[152]$ A.$F.$Ribeiro.(2007)ENIGMA$:$CadeiradeRodas$Omnidireccional.$Robótica.$50L51.$$

[153]$ G.$Welch$and$G.$Bishop,$"An$Introductiontothe$Kalman$Filter,"$SIGGRAPH$2001,$2001.$

[154]$ P.$S.$Maybeck,$Stochastic$models,$estimation,$and$control$vol.$1:$Academic$Press,$1979.$

[155]$ S.$Malik,$"RealLtime$Hand$trackingandFinger$Tracking$for$Interaction,"$2003.$

[156]$ L.$P.$ReisandN.$Lau,$"COACH$UNILANG$LAStandard$Language$for$Coaching$a$(Robo)$Soccer$

Team,"inRoboCup$2001:$Robot$Soccer$WorldCupV.$vol.$2377,$A.$Birk,$S.$Coradeschi,andS.$

Tadokoro,$Eds.,$ed:$Springer$Berlin$Heidelberg,$2002,$pp.$183L192.$

[157]$ J.$W.$Backus,$F.$L.$Bauer,$J.$Green,$C.$Katz,$J.$McCarthy,$A.$J.$Perlis,etal.$(1960,$January$1963)$

Revised$Report$on$ the$Algorithmic$ Language$ALGOL$60.$Communications$of$ the$ACM.$1L17.$

Available:$http://doi.acm.org/10.1145/366193.366201$

References

[158]$ F.$Mónica,$S.$Vasconcelos,$L.$P.$Reis,andN.$Lau,$"Evaluationofdistinct$input$methodsofan$

intelligent$ wheelchair$ in$ simulated$ and$ real$ environments:$ a$ performance$ and$ usability$

study,"20130808DCOML$20130827$2013.$

[159]$ T.$ Niemueller.$ (2013).$ RoboCup$ Logistics$ League$ L$ Referee$ Box.$ Available:$

http://www.robocupLlogistics.org/refbox$

[160]$ K.$ Murphy.$ (1998).$ Hidden$ Markov$ Model$ (HMM)$ Toolbox$ for$ Matlab.$ Available:$ Hidden$

Markov$Model$(HMM)$Toolbox$for$Matlab$

[161]$ R.$ Miner.$ (December$ 2011).$ RapidMiner$:$ Report$ the$ Future.$ Available:$ http://rapidL

i.com/content/view/181/196/$

[162]$ C.LC.$Chang$and$C.LJ.$Lin,$"LIBSVM:$A$library$for$support$vector$machines,"$ACM$Transactions$

on$Intelligent$SystemsandTechnology,$vol.$2,$p.$27,$2011.$

[163]$ C.LW.Hsuand$C.LJ.$Lin,$"A$ComparisonofMethodsforMulticlass$Support$Vector$Machines,"$

IEEE$Transactions$on$Neural$Networks,$vol.$13,$pp.$415L425,$March,$2002$2002.$

[164]$ S.$Knerr,$L.$Personnaz,$and$G.$Dreyfus,$"SingleLlayer$learning$revisited:$a$stepwise$procedure$

for$ building$ and$ training$ a$ neural$ network,"$ in$ Neurocomputing.$ vol.$ 68,$ F.$ Soulié$ and$ J.$

Hérault,$Eds.,$ed:$Springer$Berlin$Heidelberg,$1990,$pp.$41L50.$

[165]$ S.$ V.$ Stehman,$ "Selecting$ and$ interpreting$ measures$ of$ thematic$ classification$ accuracy,"$

Remote$Sensing$of$Environment,$vol.$62,$pp.$77L89,$10//$1997.$

[166]$ K.$ Murphy.$ (1998).$ Hidden$ Markov$ Model$ (HMM)$ Toolbox$ for$ Matlab.$ Available:$

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html$

$

$

