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Resumo 

Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos 

implica uma forte componente de investigação em áreas como a visão por 

computador e a aprendizagem computacional. O reconhecimento gestual é uma área 

com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e 

mais simples de comunicar com sistemas baseados em computador, sem a 

necessidade de utilização de dispositivos extras. Assim, o objectivo principal da 

investigação na área de reconhecimento de gestos aplicada à interacção homem-

máquina é o da criação de sistemas, que possam identificar gestos específicos e usá-

los para transmitir informações ou para controlar dispositivos. Para isso as interfaces 

baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de 

forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em 

tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão 

são capazes de trabalhar com soluções específicas, construídos para resolver um 

determinado problema e configurados para trabalhar de uma forma particular. Este 

projeto de investigação estudou e implementou soluções, suficientemente genéricas, 

com o recurso a algoritmos de aprendizagem computacional, permitindo a sua 

aplicação num conjunto alargado de sistemas de interface homem-máquina, para 

reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning 

Module Architecture (GeLMA), permite de forma simples definir um conjunto de 

comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser 

facilmente integrado e configurado para ser utilizado numa série de aplicações. É um 

sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído 

unicamente com bibliotecas de código. As experiências realizadas permitiram 

mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento 

de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de 

gestos dinâmicos. Para validar a solução proposta, foram implementados dois 

sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um 

árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um 

sistema de reconhecimento de gestos baseada em visão com a definição de uma 
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linguagem formal, o CommLang Referee, à qual demos a designação de Referee 

Command Language Interface System (ReCLIS). O sistema identifica os comandos 

baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, 

sendo este posteriormente enviado para um interface de computador que transmite a 

respectiva informação para os robôs. O segundo é um sistema em tempo real capaz 

de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências 

demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de 

forma fiável. Embora a solução implementada apenas tenha sido treinada para 

reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto 

do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de 

interação baseados em visão pode ser a mesma para todas as aplicações e, deste 

modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser 

suficientemente genérica e uma base sólida para o desenvolvimento de sistemas 

baseados em reconhecimento gestual que podem ser facilmente integrados com 

qualquer aplicação de interface homem-máquina. A linguagem formal de definição 

da interface pode ser redefinida e o sistema pode ser facilmente configurado e 

treinado com um conjunto de gestos diferentes de forma a serem integrados na 

solução final. 
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Abstract 

Hand gesture recognition is a natural way of human computer interaction and an area 

of very active research in computer vision and machine learning. This is an area with 

many different possible applications, giving users a simpler and more natural way to 

communicate with robots/systems interfaces, without the need for extra devices. So, 

the primary goal of gesture recognition research applied to Human-Computer 

Interaction (HCI) is to create systems, which can identify specific human gestures 

and use them to convey information or controlling devices. For that, vision-based 

hand gesture interfaces require fast and extremely robust hand detection, and gesture 

recognition in real time. 

Nowadays, vision-based gesture recognition systems are able to work with specific 

solutions, built to solve one particular problem and configured to work in a particular 

manner. This research project studied and implemented solutions, generic enough, 

with the help of machine learning algorithms, allowing its application in a wide 

range of human-computer interfaces, for real-time gesture recognition. 

The proposed solution, Gesture Learning Module Architecture (GeLMA), allows the 

definition in a simple way of a set of commands that can be based on static and 

dynamic gestures and that can be easily integrated and configured to be used in a 

number of applications. It is easy to train and use, and since it is mainly built with 

open source libraries it is also an inexpensive solution. Experiments carried out 

showed that the system achieved an accuracy of 99.2% in terms of hand posture 

recognition and an average accuracy of 93,72% in terms of dynamic gesture 

recognition. To validate the proposed framework, two systems were implemented. 

The first one is an online system able to help a robotic soccer game referee judge a 

game in real time. The proposed solution combines a vision-based hand gesture 

recognition system with a formal language definition, the Referee CommLang, into 

what is called the Referee Command Language Interface System (ReCLIS). The 

system builds a command based on system-interpreted static and dynamic referee 

gestures, and is able to send it to a computer interface which can then transmit the 

proper commands to the robots. The second one is an online system able to interpret 

the Portuguese Sign Language. The experiments showed that the system was able to 
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reliably recognize the vowels in real-time. Although the implemented solution was 

only trained to recognize the five vowels, it is easily extended to recognize the rest of 

the alphabet. These experiments also showed that the core of vision-based interaction 

systems can be the same for all applications and thus facilitate its implementation. 

The proposed framework has the advantage of being generic enough and a solid 

foundation for the development of hand gesture recognition systems that can be 

integrated in any human-computer interface application. The interface language can 

be redefined and the system can be easily configured to train different sets of 

gestures that can be easily integrated into the final solution. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

Hand gesture recognition for human computer interaction is an area of active 

research in computer vision and machine learning. One of the primary goal of 

gesture recognition research, is to create systems, which can identify specific 

gestures and use them to convey information or to control a device. Though, gestures 

need to be modelled in the spatial and temporal domains, where a hand posture is the 

static structure of the hand and a gesture is the dynamic movement of the hand. 

Being hand-pose one of the most important communication tools in human’s daily 

life, and with the continuous advances of image and video processing techniques, 

research on human-machine interaction through gesture recognition led to the use of 

such technology in a very broad range of applications, like touch screens, video 

game consoles, virtual reality, medical applications, among others. 

There are areas where this trend is an asset, as for example in the application of these 

technologies on interfaces that can help people with physical disabilities, or areas 

where it is a complement to the normal way of communicating. 

There are basically two types of approaches for hand gesture recognition: vision-

based approaches and data glove methods. 

This work focus on creating a vision-based approach, to implement a system capable 

of performing gesture recognition for real-time applications. Vision-based hand 

gesture recognition systems were the main focus of the work since they provide a 

simpler and more intuitive way of communication between a human and a computer. 

Using visual input in this context makes it possible to communicate remotely with 

computerized equipment, without the need for physical contact.  

In the context of these research areas, it is important to mention the RoboCup 

competition, a challenging international research and educational initiative, being 

held every year since 1997, that provides a test-bed where a significant number of 

technologies can be experienced and integrated [1, 2]. Every year, new technical 

challenges are presented, and the progress in fields like intelligent robotics, artificial 
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intelligence (AI) and applied technology are extremely relevant, especially in the 

Middle Size League (MSL) [1], and RoboCup@Home league. The RoboCup@Home 

league aims to develop service and assistive robot technology with high relevance for 

future personal domestic applications [3]. On the other hand, the RoboCup MSL 

games, use real wheeled robot teams, to play with an ordinary soccer ball, 

autonomously. One referee and at least one assistant are assigned for judgment of a 

match. They use assisting technology, the RefereeBox, to support them, in particular 

for conveying referee decisions for players, with the help of a wireless 

communication system. 

Also, the possibility to have systems able to interpret sign language in real-time is an 

important aspect to take into account. Those systems could be used to facilitate the 

communication between humans and machines and help disabled people or people 

with physical limitations taking care of generic domestic tasks. 

As previously said, the main objective of this work consists of studying and 

implementing solutions, generic enough, with the help of machine learning 

algorithms, allowing their application in a wide range of human-computer interfaces, 

for online gesture recognition. In pursuit of this, it is intended to use a depth camera 

to detect and track the user hands, and extract information (hand features), for 

gesture classification. With the implemented solutions it is intended to develop an 

integrated vision-based hand gesture recognition system, for offline training of static 

and dynamic hand gestures, in order to create models, that can be used for online 

classification of user commands, that could be defined with the help of a new formal 

language. 

The motivation to apply the developed technologies in the present study, in a vision-

based system for hand gesture recognition relates to a number of factors here 

highlighted, such as the interest in creating: 

• Flexible systems in terms of configuration and capacity of being integrated 

with any human-computer interface. 

• Robust user-independent gesture recognition systems. 

• Systems that can easily learn new gestures that could be used in any human-

computer interface. 
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• Systems that can easily integrate static and dynamic gesture recognition. 

• Systems that can be used in any type of environment. 

• Systems that could easily improve the identification of commands  and 

communication between referees in noisy sports and gaming environments. 

• Systems with improved response time, since the command identified by the 

vision system is automatically transmitted to the human-computer interface 

(avoiding delays due to misinterpretations). 

• Real-time sign language recognition systems. 

• Real-time robotic soccer refereeing systems. 

• Generic human-machine interaction systems that may control any type of 

electronic device with configurable static and dynamic gestures. 

Those solutions could be used to build a wide range of human-computer interfaces, 

as for example, a system able to remotely drive a robot, or in a vision-based 

wheelchair control, a sign language recognition system or on any other kind of 

robot/system command interface that can take advantage of them. 

1.2 Objectives 

The main objective of this work is to build an integrated vision-based system able to 

interpret a set of defined commands composed of static and dynamic gestures. That 

system should provide the ability to quickly learn new gestures and be configured to 

recognize new commands. The solutions should be generic and easily applied to a 

wide range of applications where the core of vision-based interaction is the same 

thereby facilitating its implementation.  

For that, four specific objectives must be achieved by the research, answering the 

following questions: 

• Is it possible to build a set of solutions that can be easily configured to learn 

different static or dynamic gestures for online classification, and be at the 

same time easy to extend and easy to be used by future users? 

• Is it possible to define a new formal command language, capable of 

representing all the system commands or combinations of all the static and 
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dynamic gestures defined, being at the same time simple in its syntax and 

easy to use in any system configuration? 

• Are the implemented solutions generic enough so that it is possible to use 

them to build any vision-based application for a robot/system command 

interface? 

• Is it possible to build a set of solutions, generic enough, able to interpret user 

gestures and apply them to the problem of robotic soccer referee’s commands 

classification, in order to help him judge a game in real time? 

1.3 Approach 

In order to try to answer the questions outlined in the objectives the following 

approaches will be pursued: 

• Identification of hand features that best fit the problem at hand, being at the 

same time simple in terms of computational complexity, for use in real-time 

applications. 

• Test the selected features with machine learning algorithms in order to 

identify the best learning algorithm in terms of classification. 

• Build solutions, that can be easily configured to recognize a specific set of 

static hand postures, thus allowing to learn a model that could be used in any 

online classification system. 

• Build solutions, that can be easily configured to recognize a specific set of 

dynamic gestures, thus allowing to learn models that could be used in any 

online classification system. 

• Build a system that integrates the two types of gestures, and test it in real-

time situations. 

• Train and test the system so that it is able to interpret the set of commands, 

defined with the new formal language. 
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1.4 Contributions 

This work proposes a new generic vision-based hand gesture recognition 

architecture, able to be integrated with any specific human computer interaction 

(HCI) system. 

The description of this scientific contribution is split into two groups. The first group 

is based on the initial work carried out during the hand detection, tracking and 

segmentation problems. The various experiments carried out during this phase 

allowed to conclude that it would be more advantageous to use a camera that could 

output two images, a colour image and a distance image. Therefore, the best option 

was to use the Kinect camera [4] which measures the time-of-flight of a light signal 

between the camera and the objects of interest, for each point of the image. 

Some prototypes were therefore developed, which allowed to reach the first group of 

contributions, here listed: 

• Definition of a formal command language, used in a vision-based system 

prototype, able to interpret a number of finger commands that are used to 

drive a robotic based wheel chair [5]. The language was defined using BNF 

(Bakus Naur form). 

• Implementation of a system able to remotely drive a robot with a finite set of 

hand gestures [6], and that can be easily adapted to any system for remote 

robot operation. 

The second group consists of solving the four specific objectives defined in the first 

section, and they include the following contributions: 

• The implementation of two applications able to train and learn statistical 

based models, for any static or dynamic gesture definition, that may be 

integrated in any system for real time hand gesture classification. 

• The implementation of a generic system able to use static, dynamic or a 

combination of both to classify any gesture in real-time, using the models 

learned in the train phase [7]. 

• The integration of machine learning algorithms to increase the performance 

and effectiveness of real time static and dynamic gesture classification [8]. 
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• A new language definition, the Referee CommLang, which is a formal 

definition of all the commands that the implemented gesture recognition 

system accepts. The language was defined with BNF (Bakus Naur form) [9]. 

1.5 Document Structure 

The reminder of this document is divided into seven chapters and is organized as 

follows: 

• Chapter 1 introduces the motivation and objectives of this work. The four 

specific objectives to be achieved by this work are also discussed together 

with the intended approach. 

• Chapter 2 presents and discusses the foundations necessary to understand the 

scientific and technical concepts involved in the study. The state of the art in 

the areas of hand feature extraction and detection, data-mining techniques, 

static and dynamic gesture recognition, and the use machine-learning 

techniques for pattern classification is also presented. 

• Chapter 3 describes in detail the three implemented modules: the Pre-

Processing and Hand Segmentation module, the Static Gesture Interface and 

the Dynamic Gesture Interface. The modules allow the training of all the 

gestures that will be part of the system, and learn the models that can be used 

in any interactive system for vision-based hand gesture recognition. This 

chapter also discusses all the assumptions that the system must obey. 

• Chapter 4 presents and describes the algorithms implemented and used to 

build all the models from the previous chapter. 

• Chapter 5 presents some case studies implemented with solutions developed 

during the study, which resulted in prototypes with potential for being 

integrated into other systems. 

• Chapter 6 presents the experiments performed in terms of hand feature 

extraction, selection and model learning, for static and dynamic hand gesture 

recognition. It discusses the tools used in order to obtain the optimized 

parameters for the learning algorithms and the process of final model 
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selection. At the end of each section, the obtained results are analysed and 

discussed. 

• The document ends with a chapter that gives an overview of the work 

reported in this thesis, underlining the tools and results achieved and provides 

some future directions. 

 





 

 

Chapter 2 

2 Methodologies and State of the Art 

2.1 Introduction 

Vision-based hand gestures interaction is a challenging interdisciplinary research 

area, which involves areas such as computer vision and graphics, image processing, 

data mining, machine learning, and informatics. To make use of such techniques in a 

successful working system, there are some requirements which the system should 

satisfy [10] such as for example robustness to variations in illumination and to 

occlusions. The system must be computationally efficient, so it can be used in real-

time situations, and it must be error tolerant, giving users the possibility to repeat 

some actions. Also, it should be flexible enough so that it can be adapted to different 

scales of applications, i.e., the core of vision-based interaction should be the same for 

desktop environments and for robot control, for example. 

Vision based gesture recognition has the potential to be a natural and powerful tool 

supporting efficient and intuitive interaction between humans and computers. Visual 

interpretation of hand gestures can help achieving the ease and naturalness desired 

for HCI (Human Computer Interaction). Also, vision has the potential of carrying a 

wealth of information in a non-intrusive manner at a low cost. Therefore, it 

constitutes a very attractive sensing modality for developing hand gesture 

recognition, and can be divided into two categories: 3D model based methods and 

appearance based methods [11, 12]. 

3D model-based methods are used to recover the exact 3D hand pose. Such models 

however have a disadvantage which is computationally intensive, making such 

methods less suitable for real-time applications. On the other side, although 

appearance-based methods are view-dependent, they are more efficient in terms of 

computation time. They aim at recognizing a gesture among a vocabulary, with 

template gestures learned from training data [10, 13, 14]. 

Appearance-based models extract features that are used to represent the object under 

study and must have, in the majority of cases, invariance properties to translation, 

rotation and scale changes. 
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Given this, the approach typically used for vision-based hand gesture recognition 

interfaces can be divided into the following three steps: hand detection and 

tracking, hand feature extraction and hand gesture classification.  

There are many studies on gesture recognition and methodologies well presented in 

the literature [10, 13-16].  

The following sections present some background and the state of the art related with 

the areas of hand feature selection and extraction, static or hand posture classification 

and dynamic gesture classification. The importance of proper feature selection and 

extraction will be addressed and a comprehensive description of some of the 

techniques and algorithms used in the area will be given.  

2.2 Background 

2.2.1  Feature Selection and Extraction 

For vision-based hand gesture recognition and classification, careful feature selection 

for hand shape representation plays an important role. Since visual features provide a 

description of the image content [17], their proper choice for image classification is 

vital for the future performance of the recognition system. Viewpoint invariance and 

user independence are two important requirements for a real-time hand gesture 

recognition system. 

Thus, efficient shape features must present some essential properties such as [17]: 

• Translation, rotation, and scale invariance: meaning that the location, 

rotation and scaling changing of the shape must not affect the quality and 

robustness of extracted features. 

• Occlusion invariance: when some parts of a shape are occluded by other 

objects, the features of the remaining part must not change compared to the 

original shape. 

• Noise resistance: features must be as robust as possible to noise, or the shape 

must be classified the same way independently of the noise strength present. 

• Reliable: as long as one deals with the same pattern, the extracted features 

must remain the same. 
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A shape descriptor, normally in the form of a vector, is a set of numbers that are 

produced to describe the object that the system needs to identify. Descriptors attempt 

to quantify shapes in ways that agree with human intuition, and should meet the 

following requirements: 

• They should be as complete as possible. 

• They should be represented and stored compactly, namely the size of the 

vector must not be too long. 

• The computation of distance between descriptors should be simple in order to 

optimize processing times. 

Many shape descriptors and similarity measures have been used to date in the field of 

gesture recognition for human-computer interaction. A good survey on shape feature 

extraction techniques is presented by Mingqiang [17] and Bourennane [18]. 

 

The following sections will describe and give the corresponding algorithm 

implementations for a set of image features tested throughout the study, namely the 

Centroid Distance Signature [19], the Histogram of Oriented Gradients (HoG) [20-

22], the Local Binary Pattern (LBP) [23], the Fourier Descriptors (FD) [12, 18, 24, 

25] and the Shi-Tomasi Corner detector [26-29]. 

2.2.2  Centroid Distance Signature 

The centroid distance signature is a type of shape signature. This signature is 

expressed by the distance of the hand contour boundary points, from the centroid 

!! ,!!  of the shape and given by the following formula: 

! ! ! = !! − !! !+ !! − !! !; ! = 0,… ,!!! (1)!

where ! ! !is the calculated distance, and !! ,!!  are the coordinates of contour 

points. 

Due to the subtraction of centroid, which represents the hand position, from 

boundary coordinates, the centroid distance representation is invariant to translation. 

Rayi Yanu Tara et al. [19] demonstrated this property and also, that a rotation of the 

hand by an amount θ results in a circularly shift version of the original image. Thus, 
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this shift version can be interpreted as a different gesture, or rotation invariance can 

be achieved by shifting the obtained signature by the rotation amount. The centroid 

distance signature algorithm implementation is given and discussed in section 4.3.1, 

since this was the type of feature selected for the final system implementation. 

2.2.3  Histogram of Oriented Gradients (HoG) 

The essential thought behind the Histogram of Oriented Gradient descriptors is that 

local object appearance and shape within an image can be described by the 

distribution of intensity gradients or edge directions. Since the HoG descriptor 

operates on localized cells, the method is invariant to geometric transformations and 

illumination changes. 

Pixel intensities can be sensitive to lighting variations, which can lead to 

classification problems within the same gesture under different light conditions. So, 

the use of local orientation measures avoids this kind of problem, and the histogram 

gives us translation invariance. Orientation histograms summarize how much of each 

shape is oriented in each possible direction, independent of the position of the hand 

inside the image [30]. This statistical technique is most appropriate for close-ups of 

the hand. 

Although the method is insensitive to small changes in the size of the hand, it is 

sensitive to changes in hand orientation. Again, as in the previous descriptor, this can 

be used to identify a different gesture, or by histogram shifting by the rotation 

amount we can get orientation invariance. The local orientation is calculated using 

image gradients, represented by horizontal and vertical image pixel differences. If dx 

and dy are the outputs of the derivative operators, then the gradient direction is given 

by atan2(dy, dx), and the contrast by !!! + !!!. 

After histogram calculation, a blur in the angular domain is applied, which allows a 

gradual fall-off in the distance between orientation histograms as explained by 

William T. Freeman et al. [31]. Similar to the implementation described in the paper, 

we used the same kernel as defined in the algorithm on line 40. 

The implementation of the histogram of gradients and the respective histogram blur 

computation is shown in the following algorithm. 
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Algorithm 1. Histogram of gradients computation (HoG) 

1. inputs:"" "

2. !!!!image":""a"matrix"containing"the"grey0level"hand"pixels"

3. "

4. outputs:"" "

5. !!!!histogram":"a"vector"containing"the"histogram"of"gradient"values"

6. "

7. begin"
8. """"histSize"←"36"

9. """"initializeHistogramToZero()"

10. !!!!rows"←"getNumbersOfRows(image)"
11. !!!!cols"←"getNumberOfCols(image)"
12. "

13. """"gradientThreshold"←"1.2f"

14. """"dx"←"d(image)"/"dx"
15. """"dy"←"d(image)"/"dy"
16. """"contrast"←"sqrt(dx2"+"dy2)"
17. "

18. """"sum"←"0"

19. !!!!for""i"="0"to"rows!8!1"do"
20. !!!!!!!!for"j"="0"to"cols!0"1"do"
21. """"""""""""sum"←"sum"+"contrast[i,"j]"
22. """"""""endfor"
23. !!!!endfor"
24. "

25. """"grayAverage"←"sum"/"(rows"*"cols)"
26. """"step"←"360"/"histSize"
27. """""

28. """"//00000"define"a"threshold"to"eliminate"low"contrast"gradients"00000"

29. """"threshold"←"grayAverage"*"gradientThreshold"

30. !!!!for"i"="0"to"rows"0"1"do"
31. !!!!!!!!for"j"="0"to"cols!0"1"do""
32. """"""""""""if"contrast[i,"j]">"threshold"then"
33. """"""""""""""""histogram[contrast[i,"j]"/"step]"←"histogram[contrast[i,"j]"/"step]"+"1""
34. """"""""""""endif"
35. """"""""endfor"
36. !!!!endfor"
37. "

38. """"//0000000000000000000"blur"the"histogram"0000000000000000000"

39. """"temp[histSize]"←"0""

40. !!!!filter"←{1,"4,"6,"4,"1}"

41. """"total"←"Σi"filter[i]"
42. "

43. """"for"i"="0"to"histSize"0"1"do"
44. """"""""sum"←"0"

45. !!!!!!!!for"j"="0"to"size(filter)"0"1"do"
46. !!!!!!!!!!!!if"(i02+j)"≥"0"and"(i02+j)"<"histSize"then"
47. """"""""""""""""sum"←"sum"+"(histogram"[(i02+j)]"*"filter[j])"
48. !!!!!!!!!!!!elseif"(i02+j)"<"0""then"
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49. """"""""""""""""sum"←"sum"+"(histogram"[histSize"+"(i02+j)]"*"filter[j])"
50. !!!!!!!!!!!!elseif"((i02+j)"≥"histSize)"then"
51. """"""""""""""""sum"←"sum"+"(histogram"["(i02+j)"%"histSize]"*"filter[j])"
52. """"""""""""endif"
53. """"""""endfor"
54. """"""""temp[i]"←"sum"/"total"
55. !!!!endfor"
56. "

57. !!!!for"i"="0"to"histSize"0"1"do"
58. """"""""histogram[i]"←"temp[i]"
59. !!!!endfor"
60. "

61. """"return"histogram"

62. end"
 

The algorithm first calculates the image gradients on line 14 and 15 using one of 

many possible operators. In the proposed solution implement the Sobel operator was 

used [32-34]. This operator is used to find the approximate absolute gradient 

magnitude at each point in an input grey scale image. The grey average from the 

obtained contrast image is used to define a contrast threshold used to eliminate low 

gradient values during histogram calculation. Also, the number of histogram bins, or 

orientation values, was defined to be 36, so, the contrast image values are mapped to 

the proper histogram range by dividing by the step value defined in line 26. After 

histogram calculation, the respective histogram blur is performed with the defined 

filter initialized in line 40. 

2.2.4  Local Binary Patterns 

Local binary patterns (LBP) is a grey scale invariant local texture operator with 

powerful discrimination and low computational complexity [23, 35-37]. This 

operator labels the pixels of the image by thresholding the neighbourhood of each 

pixel !!! !!!…!!!! , being P the values of equally spaced pixels on a circle of radius 

R (R > 0), by the grey value of its centre !! !and considers the result as a binary code 

that describes the local texture [23, 35, 37]. The binary code is calculated according 

to the following formula: 

! !"#!,! = ! !! − !!!!!,…,!!! 2!!! (2)!
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where, 

! ! ! = 1, ! ≥ 0
0, ! < 0!!

(3)!

Figure 1 illustrates the computation of !"#!,! for a single pixel in a rectangular 3x3 

neighbourhood with the threshold version in the middle and the resulting binary code 

on the right. The pixel g0 is always assigned to be the grey value of the neighbour to 

the right of !!. 

 
Figure 1. Example of a LBP8,1 computation. 

In the general definition, LBP is defined in a circular symmetric neighbourhood, 

which requires interpolation of the intensity values for exact computation. The 

coordinates of gp are given by (-R·sin(2πp/P), R·cos(2πp/P)) [35].  

The LBPP,R operator produces 2p different output values, corresponding to the 

different binary patterns that can be formed by the P pixels in the neighbourhood set. 

As a rotation of a textured input image causes the LBP patterns to translate into a 

different location and to rotate about their origin, if rotation invariance is needed, it 

can be achieved by rotation invariance mapping. In this mapping, each LBP binary 

code is circularly rotated into its minimum value using the following formula: 

! !"#!,!!" = !"#! !"! !"#!,!! !! (4)!

where ROR(x i) denotes the circular bitwise right shift on the P-bit number x, i steps. 

For example, 8-bit LBP codes 00111100b, 11110000b, and 00001111b all map to the 

minimum code 00001111b. For P=8 a total of 36 unique different values is achieved. 

This operator was designated as LBPROT in [38]. 

Ojala et.al [35] had shown however, that LBPROT as such does not provide very 

good discrimination. They have observed that certain local binary patterns are 

fundamental properties of texture, providing the vast majority of all 3x3 patterns 

presented in observed textures. They called this fundamental patterns “uniform” as 
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they have one thing in common – uniform circular structure that contains very few 

spatial transitions. They introduced a uniformity measure U(pattern), which 

corresponds to the number of spatial transitions (bitwise 0/1 changes) in the 

“pattern”. Patterns that have a U value of at most 2 are designated uniform and the 

following operator for grey-scale and rotation invariant texture description was 

proposed: 

! !"#!!,!!!"#! =
! !! − !!!!!,…,!!! ,!!!!"!! !"#!,! ≤ 2
! + 1 , !"ℎ!"#$%! !! (5)!

Equation 5 assigns a unique label corresponding to the number of ‘1’ bits in the 

uniform pattern, while the non-uniform are grouped under the “miscellaneous” label 

(P+1). In practice the mapping from !!"#!,! to !"#!,!!"#! is best implemented with a 

lookup table of 2p elements. The final texture feature employed in texture analysis is 

the histogram of the operator output. 

The local binary pattern implementation is given by the following algorithm. 

Algorithm 2. Local Binary Pattern Image Computation 

1. inputs:"" "

2. !!!!image":""a"matrix"containing"the"binary0segmented"hand"pixels"

3. !!!!neighbours:"the"number"of"neighbours"(default"="8)"

4. !!!!radius:"the"radius"value"(default"="1)"
5. outputs:" "

6. !!!!lbpImage":""a"matrix"containing"the"final"calculated"LBP’s"

7. "

8. begin"
9. """"neighbours"←"max(min(neighbours,"31),"1)"
10. !!!!rows"←"getNumberOfRows(image)"
11. !!!!cols"←"getNumberOfCols(image)"
12. "

13. """"for""n"="0"to"neighbours"0"1"do"
14. !!!!!!!!x"←"(radius)"(cos(2πn"/"(neighbours)))"
15. !!!!!!!!y"←"(radius)"(0sin(2πn"/"(neighbours)))"
16. !!!!endfor"
17. "

18. !!!!fx"←"floor(x)"
19. !!!!fy"←"floor(y)"
20. !!!!cx"←"ceil(x)"
21. !!!!cy"←"ceil(y)"
22. """"ty"←"y"0"fy"

23. """"tx"←"x"0"fx"

24. "
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25. !!!!w1"←"(1"0"tx)"*"(1"0"ty)"
26. !!!!w2"←"tx"*"(1"0"ty)"
27. !!!!w3"←"(1"0"tx)"*"ty"
28. """"w4"←"tx"*"ty"

29. "

30. !!!!for"i"="radius"to"(rows"–"radius)"0"1"do"
31. """"""""for"j"="radius"to"(cols"–"radius)"0"1"do"
32. !!!!!!!!!!!!t"←"w1"*"image"[i"+"fy,"j"+"fx]"+"w2"*"image"[i"+"fy,"j"+"cx)]!"
33. """"""""""""""""""+"w3"*"image"[i"+"cy,"j"+"fx]"+"w4"*"image"[i"+"cy,"j"+"cx]"
34. """"""""endfor"
35. !!!!endfor"
36. "

37. """"lbpImage[i"0"radius,"j"0"radius]"←"lbpImage[i"0"radius,"j"0"radius]""
38. " !!!!!!!!!!!!!!!!+"((t">"image[i,"j])"˄"(abs(t"0"image[i,"j]))"
39. end"

2.2.5  Fourier Descriptors 

Instead of using the original image representation in the spatial domain, feature 

values can also be derived after applying a Fourier transformation. The feature vector 

obtained this way is called a Fourier descriptor [39]. This is another feature normally 

used to describe a region boundary [25, 33], and considered to be more robust with 

respect to noise and minor boundary modifications. 

For computational efficiency, the number of points is chosen to be a power of two 

[12]. The normalized length is generally chosen to be equal to the calculated 

histogram signature length (N). Hence the Fourier Transform we obtain N Fourier 

coefficients Ck given by the following formula: 

! !! = ! !!!!
!!"#$
!!!!

!!! , ! = 0,… ,! − 1!! (6)!

Table 1 shows the relation between motion in the image and the transform domains, 

which can be used in some types of invariance. 

The first coefficient C! is discarded since it represents, in our case, the hand position. 

Hand rotation affects only the phase information, thus if rotation invariance is 

necessary, it can be achieved by taking the magnitude of the coefficients. 
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Table 1: Equivalence between motions in the image and transform domains 

In the image In the transform 

A change in size Multiplication by a constant 

A rotation of Ø about the origin Phase shift 

A translation A change in the DC term 

 

Division of the coefficients by the magnitude of the second coefficient, C!, on the 

other hand, achieves scale invariance. This way, N-1 Fourier descriptors Ik  are 

obtained: 

! !! = !!
!!
, ! = 2,… ,! − 1!! (7)!

Conceil et.al [12], showed that with 20 coefficients the hand shape is well 

reconstructed. Centroid distance Fourier descriptors, obtained by applying the 

Fourier transform on a centroid distance signature, were empirically proven to have 

higher performance than other Fourier descriptors [19, 25, 40].  

The following algorithm implements the centroid distance Fourier descriptors with 

the help of the FFTW library [41]. The algorithm receives a vector with the centroid 

distance signature and builds a complex vector with the real part equal to the centroid 

distance value and the imaginary part initialized to zero. It uses two library functions 

for the Fourier calculation: the fftw_plan_dft_1d function to build the pretended 

Discrete Fourier Transform plan, and the fftw_execute function to execute the plan 

and output the vector with the Fourier Descriptors. 

Algorithm 3. Compute Centroid Distance Signature Fourier Descriptors 

1. inputs:" "

2. !!!!centroidDist:"vector"containing"the"centroid"distance"signature"
3. outputs:" "

4. !!!!out":"fft_complex""vector"variable"that"will"contain"the"descriptors"

5. "

6. begin""""
7. !!!!N"←"20"

8. !!!!planForward"←"fftw_plan_dft_1d(N,"in,"out,""
9. """""""""""""""""""""""""""FFTW_FORWARD,"FFTW_ESTIMATE)"

10. !!!!for"i"="0"to"N"–"1"do"
11. !!!!!!!!in[i][1]"←"centroidDist[i]"
12. !!!!!!!!in[i][1]"←"0.0"

13. !!!!endfor"
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14. "

15. """"out"←"fftw_execute(planForward)"
16. end 

2.2.6  The Shi-Tomasi Corner Detector 

The Shi-Tomasi corner detector algorithm [29] is an improved version of the Harris 

corner detector [27]. The proposed improvement is in how a certain region within the 

image is scored and thus treated as a corner or not. Where the Harris corner detector 

determines the score !  with the eigenvalues !!  and !!  of two regions in the 

following way: 

! ! = !"# !!!! − ! !! + !! !!! (8)!

where the second region is a shifted version of the first one, and if the difference 

between the two is big enough one can say it is a corner, Shi and Tomasi just use the 

minimum of both eigenvalues in the following way: 

! ! = !!"# !!, !! !! (9)!

and if R is greater than a certain predefined value, it can be marked as a corner. They 

demonstrated experimentally in their paper, that this score criterion is much better. 

Corner feature extraction information was implemented with the help of the OpenCV 

[28] library algorithms, so no algorithm implementation is presented here. 

2.2.7  Related Work  

Many authors have used the Histogram of Oriented Gradients (HoG) as a feature 

vector for gesture classification. As explained in section 2.2.3 it has some advantages 

over other methods and is simple and fast to compute. This technique is sometimes 

used in conjunction with others to improve the quality of features or solve some of 

the problems that one technique has per se. 

Freeman et al. [31] presented a method for real-time hand gesture recognition based 

on this technique. They used the HoG as a feature vector for static gesture 

classification and interpolation. They implemented a real-time system able to 

distinguish a small vocabulary of about ten different gestures. Some problems arises 

form this approach namely: different gestures may have similar orientation 
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histograms and the hand must dominate the image, i.e. the method is most 

appropriate for hand close-ups as explained in section 2.2.3. 

Yafei Zhao et al. [21] have also presented a real-time hand gesture recognition 

method, where the histograms of oriented gradients (HoG) are used to describe the 

hand image. The HoG features are computed by dividing the image into overlapped 

blocks and these blocks are divided into smaller un-overlapped spatial regions, which 

are called cells. For each cell a local one-dimensional histogram of gradient 

directions is accumulated over the cell pixels. Local contrast normalization is 

required due to variations in illumination, so block-level histograms are normalized 

using L2-Hys scheme, which is a combination of normalization by the L2-norm and 

then limiting the maximum values to a predefined level and re-normalizing. The 

HoG feature vector is then the concatenated histogram entries from all the cells. The 

extracted HoG features are projected into a low-dimensional subspace using PCA-

LDA (Principal Component Analysis and Linear Discriminant Analysis), since the 

dimensionality of the HoG feature is very high. This way, they were able to project a 

HoG feature from a 1296-dimensional space into a 9-dimensonal sub-space. After 

projecting all the training samples, the mean for each class is calculated and a 

classifier using the nearest neighbour method is constructed. Their system was able 

to recognize gestures in real-time however, the method still had some problems with 

some of the gestures, caused by shadows in the hand, leading to a detection rate 

lower than 80%. 

Hanning Zhou et al. [42], Xingbao et al. [22] and Liang Sha et al. [43] proposed new 

methods for static hand gesture recognition based on an extended Histogram of 

Oriented Gradients features. Hanning Zhou et al. method augments the HoG feature 

with its relative image coordinates, and clusters the resulting vector in order to find a 

compact yet descriptive representation of the hand shape. To extract HoG features 

they used overlapping 24x24 sub-windows divided further into 4x4 blocks. Within 

each pixel block, they collected histograms using 8 bins ranging form 0 to π, 

obtaining a total of 128 feature elements in the local orientation histogram. The 

resulting vector is normalized to unit vector. They augmented the histogram with the 

image coordinates of the upper left corner of the sub-window, centralized to the 



Background  21 

 

median of the coordinates of all pixels belonging to the hand region to ensure 

robustness against in-plane translation. To obtain a compact representation they used 

the k-means clustering algorithm and recorded the mean vectors. Searching the 

nearest neighbour in the database of mean features, using a Euclidean distance 

metric, does hand posture recognition. The experiments showed that the purposed 

method was able to capture the distinct hand shape without requiring clean 

segmentation. Also, they were able to achieve higher recognition rates when 

compared to other techniques, and with a better efficiency in terms of 

computationally speed. On the other hand, Xingbao model uses a skin colour 

histogram of oriented gradients, to construct a human hand detector. Histogram of 

oriented Gradient features was first used by Navneet Dalal [44] with excellent results 

in human detection. Skin colour is the most commonly used cue for segmenting 

hands or faces in gesture analysis. However, approaches based on predefined skin 

colour models suffer from sensitivity to illumination variations. To solve this 

problem, the authors combined skin colour cues with HoG features to construct a 

novel feature: SCHOG. The SCHOG extracted features are used to train a SVM and 

construct a classifier able to detect the users hands. They tested the method on a 

SCHOG dataset and compared the obtained results on an unchanged HoG features 

dataset. The experimental results showed that the SCHOG features exhibited a good 

performance on the testing dataset with a detection rate of 97,8% compared to 94,4% 

on the normal HoG features. Liang Sha et al. presented a framework for hand posture 

recognition in consecutive video frames that used a Mixture of Gaussians to 

construct a model able to segment skin/non skin hand regions and used a particle 

filter [45] to track the hand. The model is trained and updated online to improve hand 

detection and tracking. To extract the Histogram of Oriented Gradients (HoG) 

features descriptor, the input region is divided into 4 cells on which the X and Y 

gradients are calculated. The gradient orientation and magnitude are calculated and 

accumulated in a local 1-D histogram. The calculated histograms for all the cells are 

joined and contrast-normalized to form the final HoG. The authors used the HoG 

descriptor not only as a recognition cue, but also for calibrating coarse tracking 

results. The extracted features are then used to select the class with the help of a 
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posture dataset. They noticed that the gradient information was disturbed with 

cluttered backgrounds or with ill white balance. The system had some problems with 

over-exposure and drastic hand motion since the colour feature based tracker, under 

the above two conditions, could not separate correctly the hand from the background. 

Zondag et al. [20] tested the use of HoG features with two variations of the Adaboost 

algorithm to construct a real-time hand detector for indoor environments with 

cluttered backgrounds and variable illumination. The two variations of Adaboost, 

Gentle [46] and Discrete Adaboost [47], were tested with stump, a machine-learning 

model consisting of a one level decision tree, and Tree weak classifiers. The HoG 

features were compared with Haar-like features and they found that the first ones 

presented a better performance. They recorded four different persons performing the 

“open hand” pose with different backgrounds and varied illumination conditions. 

From the acquired images they constructed three databases with the same samples 

but with different sizes. During the experiments, they used 2/3 of the dataset for 

training and 1/3 for testing and they performed four experiments: search of optimal 

HoG parameters, influence of database size, influence of the database example size 

and comparison of HoG and Haar-like features. The experiments showed that a real-

time hand detector using HoG image features could achieve similar performances to 

a detector using Haar-like features on the created databases, although Haar-like 

features detectors could perform the detection roughly twice as fast. The HoG 

features on the other side have the advantage of having smaller feature vector, so it 

can be used in conjunction with much larger databases. Also, the HoG features 

detector consistently achieved better average false positive rates than Haar-like 

features detectors.  

Mohamed Bécha Kaâniche et al. [48] introduced a new HoG tracker for gesture 

recognition based on local motion learning. They built HoG trajectory descriptors 

(representing local motion) by first selecting in the scene a set of corner points to 

determine textured regions, where they compute the 2D HoG descriptors. Then, they 

track these descriptors, with a new tracking algorithm based on a frame to frame 

HoG tracker and using an extended Kalman filter, in order to build temporal HoG 

descriptors. A newly computed descriptor initializes a new tracking process through 
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the extended Kalman filter. The temporal 2D descriptor is the vector obtained by the 

concatenation of the final descriptor estimate and the positions of the descriptor 

during the tracking process. The learning / recognition of gestures is based on the k-

means clustering algorithm and the k-nearest neighbour classifier. The extracted 

local motion descriptors are extracted from each video on the dataset annotated with 

the corresponding gesture and clustered into k (value defined empirically) clusters. 

With the obtained database of all the clusters, the k-nearest neighbour classifier is 

used to classify the gestures in the test dataset. They tested the tracking algorithm on 

two datasets: a synthetic dataset and a real dataset. They have validated the local 

motion descriptors with the KTH database [49]. They were able to achieve an 

accuracy of 91,33% when using the Shi-Tomasi corner detector [29] (section 2.2.6), 

and an accuracy of 94,67% when using the FAST (Features from Accelerated 

Segment Test) corner detector [50]. 

Local Binary Patterns (LBP) has also been used in some of the implementations 

described in the literature, often used in combination with other methods. As 

explained in section 0, it is a grey scale invariant local texture operator with powerful 

discrimination and low computational complexity. Marek Hrúz et al. [51] presented a 

description of appearance features using this technique, introduced by Ojala [52], to 

describe the manual component of Sign Language. They made experiments with 

these descriptors in order to show its discriminative power for hand shape 

classification. Then, they compared the performance of these features with geometric 

moments describing the trajectory and shape of hands. They tested the recognition 

performance of individual features and their combination on a dataset consisting of 

11 signers and 23 signs with several repetitions. In their experiments, Local Binary 

Patterns outperform the geometric moments. LBP features showed better results than 

geometric moments for SSD (signer semi-dependent) and SI (signer independent) 

tests. When the features were combined they achieved a recognition rate up to 99,7% 

for signer dependent tests and 57,54% for signer independent tests. One drawback of 

the appearance-based features is their strong dependency on the position and 

orientation of the hand relative to the camera. Jinbing Gao et al. [53] proposed a new 

method which they called Adaptive HoG-LBP detector, to track the palm in 
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unfettered colour images, by fusing HoG features and LBP features. They defend 

that the object description ability of the HoG and the LBP are different, so first, they 

determine the strength of each descriptor on the hand image or part of the image 

based on what they call a Confidence Map Computing. The extracted features are 

then fused based on the calculated confidence values and are normalized. The 

resulting features were then used to train an SVM classifier. They built their own 

dataset with 5378 palm images from 28 different users, and were able to achieve an 

accuracy of 95,2% in real-time situations. The classification is done without any pre-

processing such as noise filtering, brightness balance or sharpening. The system 

showed however some problems with hand motion detection, which was defined as 

future work. 

Instead of using the original image representation in the spatial domain, many 

authors propose hand feature representation based on Fourier Descriptors (FD) that, 

as explained in section 2.2.5, being another feature describing the boundary of a 

region are considered to be more robust with respect to noise and minor boundary 

modifications. 

Conseil et al. [12], Barczak et al. [54] and Rayi et al. [19] proposed vision based 

systems for hand posture recognition based on this technique. Conceil et al. 

discussed the invariance properties of FD, and they provided a comparison of 

performances with Hu moments [55]. They made experiments with the Triesch hand 

posture database [56], and with their own database, constructed from images 

acquired from 18 non-expert users, performing the hand postures defined in their 

own gesture vocabulary. The database was build from a very large set of images, 

with various postures of the hand in order to test extensively the performances of FD 

in regard to invariances. Their work showed that Fourier descriptors were able to 

give good recognition rates in comparison with Hu moments, confirming the 

efficiency of FD and their robustness in real-time conditions. Rayi et al. on the other 

hand, used the Centroid Distance Fourier Descriptors as a hand shape descriptor. 

They implemented a system able to classify static hand gestures. For image 

acquisition they used a depth sensor, and hand segmentation was performed on the 

depth image with a threshold operation. A Canny edge detector was used to extract 
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the hand contour. For hand gesture classification they used a similarity degree 

matching, where the smallest distance is considered as a match. For that, they 

evaluated the performance of different distance metrics as classifiers: Euclidean 

distance, Manhattan distance and Canberra distance. The experimental results 

showed that the Centroid Distance Fourier Descriptors with the Manhattan distance-

based classifier achieved the best recognition rates, with an accuracy of 95% and 

with a small computational latency. Barczak et al. made experiments with Moment 

Invariants and Fourier Descriptors features for American Sign Language (ASL), 

where two important properties were covered: invariance to certain transformations 

and discrimination power. Three types of images were used with Moment Invariants: 

grey scale, binary and contours, and two different Fourier descriptors were 

compared, namely complex coordinates and centroid distance. Some problems arise 

from hand images that yield similar contours, because the correspondent ASL 

gesture only differs by the position of the thumb. In those cases, the Fourier 

Descriptors and the Moment Invariants computed would not be able to differentiate 

the classes. 

Bourennane et al. [18] presented a shape descriptor comparison for hand posture 

recognition from video images, with the objective of finding a good compromise 

between accuracy of recognition and computational load for a real-time application. 

They run experiments on two families of contour-based Fourier descriptors and two 

sets of region based moments, all of them invariant to translation, rotation and scale-

changes of hands. They performed systematic tests on the Triesch benchmark 

database [56] and on their own with more realistic conditions, as they claim. The 

overall result of the research showed that the common set Fourier descriptors when 

combined with the k-nearest neighbour classifier had the highest recognition rate, 

reaching 100% in the learning set and 88% in the test set. 

Other types of features, like SIFT (Scale Invariant Feature Transform) [57] and 

SURF (Speeded Up Robust Features) [58] for example had also been used and tested 

with the same goal in mind: to find good features with invariant properties able to 

work in real-time conditions. 
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Wang et al. [59] proposed a system based on the discrete Ada-boost learning 

algorithm integrated with SIFT features, for accomplishing in-plane rotation 

invariant, scale invariant and multi-view hand posture detection. They used a sharing 

feature concept to increase the accuracy of multi-class hand posture recognition. The 

performances of hand detection using the Viola-Jones detector and the proposed 

approach were compared. The results of hand detection using Ada-boost with SIFT 

features were more satisfactory than with the Viola-Jones detector. With the 

implemented solution, they were able to successfully recognize three hand posture 

classes and deal with the problem of background noise. Huynh et al. [60] presented 

an evaluation of the SIFT (scale invariant feature transform), Colour SIFT (CSIFT), 

and SURF (Speeded Up Robust Features) descriptors on very low resolution images. 

The performance of the three descriptors was compared against each other on the 

precision (also called positive predictive value) and recall (also known as sensitivity) 

measures [61] using ground truth correct matching data. Their experimental results 

showed that the precision and the recall performances of SIFT and CSIFT were 

similar. Also, the experimental results showed that both SIFT and Colour SIFT were 

more robust under changes of viewing angle and viewing distance, but SURF was 

superior under changes of illumination and image blurring. In terms of computation 

time, the authors concluded that the SURF descriptors are a good alternative to SIFT 

and CSIFT. 

Kolsch et al. [62] studied view-specific hand posture recognition system, where they 

used the Viola-Jones object recognition method [63] to detect the hand. The used 

method as the disadvantage of being computationally very expensive, prohibiting the 

evaluation of many hand postures. They introduced a frequency analysis-based 

method for instantaneous estimation of class separability, without the need for any 

training. They were also able to optimize the parameters of the detection method, 

achieving significant speed and accuracy improvements. Their study showed that, the 

Viola-Jones detector could achieve excellent detection rates for hand postures. 
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2.3 Machine Learning and Classification 

Classification is generally achieved with a distance metric and nearest neighbour 

rules, but also with other classifiers or machine learning algorithms. Classification 

involves a learning procedure, for which the number of training images and the 

number of gestures are important facts [18]. Ian Millington et al. stated that making 

sure the learning has sensible attributes is part of the art of applying machine 

learning and getting it wrong is one of the main reasons of failure [64]. 

The study and computer modelling of learning processes in their multiple 

manifestations constitutes the topic of machine learning [65]. So, machine learning is 

the task of programming computers to optimize a performance criterion using 

example data or past experience [66]. Thereunto, machine learning uses statistic 

theory in building mathematical models, since its core task is to make inference from 

sample data. 

In machine learning two entities, the teacher and the learner, play a crucial role. The 

teacher is the entity that has the required knowledge to perform a given task. The 

learner is the entity that has to learn the knowledge to perform the task. One can 

distinguish learning strategies by the amount of inference the learner performs on the 

information provided by the teacher. This way, the learning problem can be stated as 

follows: given an example set of limited size, find a concise data description [65]. 

Given this, learning techniques can be grouped in three big families: supervised 

learning, reinforcement learning and unsupervised learning. 

In the current study, all the experiments and system implementations used supervised 

machine learning algorithms, and for that reason this state of the art focus on this 

type of algorithms only. In supervised learning, given a sample of input-output pairs, 

called the training sample, the task is to find a deterministic function that maps any 

input to an output that can predict future observations, minimizing the error as much 

as possible. According to the type of outputs, supervised learning can be 

distinguished in classification and regression learning [66]. In classification 

problems the task is to assign new inputs to one of a number of discrete classes or 

categories. If the output space is formed by the values of a continuous variable, then 

the learning task is known as the problem of regression or function learning [67]. 
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Machine learning algorithms have been applied successfully to many fields of 

research like, face recognition [68], automatic recognition of a musical gesture by a 

computer [69], classification of robotic soccer formations [70], classifying human 

physical activity from on-body accelerometers [71], automatic road-sign detection 

[72, 73], static hand gesture classification [74], dynamic hand gesture classification, 

and speech recognition [75], among others. 

As explained by Jain et al. [76], it is clear that no single approach for classification is 

“optimal”, depending for example on the nature and type of extracted features or the 

type of application. Consequently, it is a common practice sometimes to combine 

several modalities and classifiers for the purpose of pattern classification. In practice, 

the choice of a classifier is a difficult problem and it is often based on which 

classifier(s) happens to be available or known to the user. 

Thus, among the various machine-learning algorithms used for gesture classification 

the following sections will describe the most representative for the current research 

work, in the field of static and dynamic gesture recognition, namely: k-Nearest 

Neighbour (k-NN), Artificial Neural Networks (ANN), Support Vector Machines 

(SVM) and Hidden Markov Models (HMM). 

2.3.1  k-Nearest Neighbour (k-NN) 

The k-Nearest Neighbour algorithm is one of the most simple and popular of all 

machine-learning algorithms. The algorithm simply compares a feature vector to be 

classified with all the features vectors in the training set with known class labels, and 

assigns the vector the most frequent class. To find the nearest neighbour a measure 

of distance is used. Euclidean distance is usually the preferred metric, but other 

metrics can be used as well, like the Mahalanobis distance, the Manhattan distance or 

the Canberra distance [77]. 

This type of classification although often with good results, has a number of 

drawbacks such as the need to define the number k (neighbours), which has direct 

impact on final performance of the algorithm. Also, the entire training set needs to be 

stored and used during classification, which affects performance with increasing size. 

On the other side, there are no restrictions on the distance metric to use. 
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By this rule, for k = 3 for example, the nearest three neighbours are selected (those 

three with the least distance) and their mode, the maximally represented class, is 

assigned to the test sample. If k = 1, then the object is simply assigned to the class of 

its nearest neighbour.  

The k-Nearest Neighbour algorithm for classification can be described as follows: 

Algorithm 4. k-NN classification algorithm 

1. inputs:"
2. """"D"="{(x1,"c1),"…,"(xN,"cN)}:"vectors"with"known"classes"
3. !!!!x"="(x1,"…,"xN):"new"instance"(vector)"to"be"classified"
4. "

5. begin""""
6. !!!!for"each"labelled"instance"(xi,"ci)"do"
7. !!!!!!!!calculate"d(xi,"x),"the"distance"from"the"new"instance"to"(xi,"ci)"

8. !!!!endfor"
9. "

10. !!!!for"i=1"to"N"do"
11. !!!!!!!!order"d(xi,"x)"from"lowest"to"highest"

12. !!!!endfor"
13. "

14. !!!!select"the"k"nearest"instances"to"x:9 !!! "

15. !!!!assign"to"x"the"most"frequent"class"in"!!!"
16. end"

2.3.2  Artificial Neural Networks (ANN) 

An Artificial Neural Networks is a system that attempts to model the way the human 

brain works. It comprises a network of artificial neurons, which are mathematical 

models of biological neurons. Like the biological neuron, an artificial neuron (called 

a perceptron), receives numerical values and outputs a numerical value. There are 

three types of neurons in an ANN – input, hidden and output neurons, as can be seen 

in Figure 2, which are connected in a special pattern known as the neural network’s 

architecture or topology. In this type of architecture (multi-layer perceptron), each 

node takes input from all the nodes in the preceding layer and sends a single output 

to all the nodes in the next layer. For that reason it is called a feedforward network. 



30  Methodologies and State of the Art  

 

 
Figure 2. Artificial Neural Network [78] 

During classification, the input or leftmost layer into the perceptron is provided with 

a numerical value (activation value provided by the system) that is multiplied by a 

weight (connection strengths). The perceptron only fires an output, the rightmost 

layer, when the total strength of the input signals exceeds a certain threshold. 

The weighted input to a perceptron is acted upon by a function, the transfer function, 

which will determine the activation output (Figure 3). Common transfer functions 

used in artificial Neural Networks include the unit step (equation 10), sigmoid 

(equation 11) and Gaussian (equation 12). The activation flows through the network 

through the hidden layers, until it reaches the output nodes. 

! ! ! = 0, ! < 0
1, ! ≥ 0!!

(10)!

! !(!) = 1/((1 + !!")!)!! (11)!

! ! ! = 1 2!"!! !!! ! !!! !! (12)!
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Figure 3. Neural network with inputs, activation function and output represented. [79] 

For learning, the neural network has to be put in a specific learning mode. Here 

another algorithm applies, the learning rule, which although using the original 

perceptron algorithm, it is more complex and the most common algorithm used is the 

backpropagation [64]. This algorithm works in the opposite direction of the 

feedforward algorithm, working backwards from the output. Additional information 

can be found in the books by Haykin [80] and by Gorunescu [81]. 

2.3.3  Support Vector Machines (SVM) 

Support vector machines are a group of supervised learning methods that can be 

applied to classification or regression. SVM’s select a small number of boundary 

feature vectors, support vectors, from each class and builds a linear discriminant 

function that separates them as widely as possible (Figure 4) - maximum-margin 

hyperplane [77]. Maximum-margin hyperplanes have the advantage of being 

relatively stable, i.e., they only move if training instances that are support vectors are 

added or deleted. SVM’s are non-probabilistic classifiers that predict for each given 

input the corresponding class. 

In the two-class example, a set of training samples (feature vectors), each marked as 

belonging to one of the classes is used to learn a model that will be used in the 

classification phase. 

In addition to performing linear classification, SVM’s can efficiently perform non-

linear classification using what is called the kernel trick [82], implicitly mapping 

their inputs into higher-dimensional feature spaces. Mathematically, any function 

K(x, y) is a kernel if it can be written as K(x, y) = Θ(x) ⋅ Θ(y), where Θ is the function 
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that maps an instance into the higher-dimensional feature space. So, the kernel 

function represents a dot product in the feature space created by Θ. Additional 

information can be found in the books by Theodoridis [83] and by Alpaydin [66]. 

 
Figure 4. SVM: support vectors representation with maximum-margin hyperplane [84] 

2.3.4  Hidden Markov Models (HMM) 

The typical model for a stochastic (i.e. random) sequence with a finite number of 

states is called a Markov Model [85]. When the true states of the model ! =
!!, !!, !!,… , !!  are hidden in the sense that they cannot be directly observed, the 

Markov model is called a Hidden Markov Model (HMM). At each state an output 

symbol ! = !!, !!, !!,… , !!  is emitted with some probability, and the state 

transitions to another with some probability, as shown in Figure 5. With discrete 

number of states and output symbols, this model is sometimes called a “discrete 

HMM” and the set of output symbols the alphabet. 

In summary, an HMM has the following elements: 

• N: the number of states in the model ! = !!, !!,… , !! ; 

• M: the number of distinct symbols in the alphabet ! = !!, !!,… , !! ; 

• State transition probabilities: 

 ! = !!" !!ℎ!"!!!!" ≡ ! !!!! = !! !! = !! !!"#!!!!!"!!ℎ!!!"#"$!!"!!"#$!!; 
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• Observation probabilities:  

! = !! ! !!ℎ!"!!!! ! ≡
! !! = !!|!! = !! !!"#!!!!"!!ℎ!!!"#$%&'()!*!!"#$"%&"; 

• Initial state probabilities: ! = ! !! !!ℎ!"!!!! ≡ ! !! = !! ; 

and is defined as ! = !,!,Π , where N and M are implicitly defined in the other 

parameters. The transition probabilities and the observation probabilities are learned 

during the training phase, with known gesture data, which makes this is a supervised 

learning problem [8]. 

 
Figure 5. HMM example with initial probabilities (!), transition probabilities (!!"), 

observation probabilities (!! ! ) and observation sequence (!) represented. 

2.3.5  Related Work 

As explained in section 2.3 no single approach for classification is “optimal”, 

depending for example, on the nature and type of extracted features or the type of 

application. Consequently, as seen before, it is sometimes a common practice to 

combine several modalities and classifiers for the purpose of pattern classification. In 

practice, the choice of a classifier is a difficult one and it is often based on which 

classifier(s) happen to be available or known to the user. 

2.3.5.1 k-Nearest Neighbor 
Being the k-NN algorithm one of the simplest and popular of all machine-learning 

algorithms, normally used in conjunction with a distance metric many authors have 

used it in their implementations. Yang Jufeng et al. [86] implemented a command 
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system based on static hand gesture recognition for controlling a PowerPoint 

presentation that used a k-NN classifier. The hand was detected based on the HSV 

(Hue-Saturation-Value) model and made use of Fourier descriptors as hand features. 

In the experiments the authors used a 4-gesture database with 400 records, divided 

into a train and a test dataset. On the train dataset they achieved an accuracy of 95% 

for the first gesture, 90% for the second, 88,3% for the third and 86,7% for the last 

one. For the test dataset, they obtained a high error rate on the first and third 

gestures, resulting from light conditions on the image and on the quality of hand 

posture image obtained. Also, their system had some limitations on cluttered 

backgrounds and with varying hand angles. 

Bourennane et al. [18] performed experiments on two sets of contour-based Fourier 

descriptors and two sets of region based moments with a k-NN classifier. The overall 

result of the research showed that the common set Fourier descriptors when 

combined with the k-nearest neighbour classifier had the highest recognition rate, 

reaching 100% in the learning set and 88% in the test set. Hanning Zhou et al. [42] 

applied a k-NN classifier with a Euclidean distance metric, for hand posture 

recognition on a dataset composed of mean vectors obtained by clustering a set of 

augmented normalized HoG features. The experiments showed that the purposed 

method was able to capture the distinct hand shape without requiring clean 

segmentation. Also, they were able to achieve higher recognition rates when 

compared to other techniques, and with a better efficiency in terms of 

computationally speed. Mohamed Bécha Kaâniche et al. [48] introduced a new HoG 

tracker for gesture recognition based on local motion learning which used a k-NN 

classifier in the learning/recognition phase. They have validated the local motion 

descriptors with the KTH database [49], with which were able to achieve an accuracy 

of 91,33% when using the Shi-Tomasi corner detector [29] (section 2.2.6), and an 

accuracy of 94,67% when using the FAST (Features from Accelerated Segment Test) 

corner detector [50]. 

Herve Lahamy et al. [87] performed a comparative analysis of hand features and 

classifiers for automatic recognition of eight different gestures, using datasets 

collected with a range camera. The features included Hu-moments, orientation 



Machine Learning and Classification  35 

 

histograms and hand shape associated with its distance transformation image. As 

classifiers, the k-nearest neighbour algorithm (k-NN) and the chamfer distance had 

been chosen. For an extensive comparison, four different databases have been 

collected with variation in translation, orientation and scale. The evaluation was 

performed by measuring the separability of classes, and by analysing the overall 

recognition rates as well as the processing times. The best result were obtained from 

the combination of the chamfer distance classifier and hand shape and distance 

transformation image, but the time analysis revealed that the corresponding 

processing time was not adequate for a real-time recognition. 

2.3.5.2 Artificial Neural Networks (ANN) 
Artificial Neural Networks (ANNs) have also been widely used in the area of vision-

based gesture recognition with very good results. Maung [88], Tasnuva Ahmed [89] 

and Mekala et al. [90] applied Artificial Neural Networks (ANNs) to the problem of 

static hand gesture recognition in a real-time system. Maung applied it to a system 

able to recognize a subset of MAL (Myanmar Alphabet Language) static hand 

gesture in real time. His method extracted HoG features that were used to train an 

ANN classifier. The paper includes experiments with 33 hand postures, and the 

author claims that the method is simple and computationally efficient. The results 

showed that the system was able to achieve an accuracy of 98% on a single hand 

database. One drawback of the method is, that it is efficient as long as the data sets 

are kept small. Tasnuva Ahmed trained the ANN with a database of records 

composed of 33 different features extracted from grey scale and binary hand images, 

that the author claims are rotation, scaling, translation and orientation independent. 

The ANN architecture used had an input layer with 33 inputs, an hidden layer with 

85 nodes or neurons, and an output layer composed of 4 nodes, and used the back-

propagation learning algorithm. The proposed approach was able to achieve an 

accuracy of 88,7% with a database composed of four static gesture types. The system 

presented however some difficulties in varying light conditions and hand tracking. 

Mekala et al. on the other side, used an ANN in a vision-based system for static hand 

Sign Language recognition, based on a HW/SW co-simulation platform. This 

approach intends to increase the speed of execution, while maintaining the 
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flexibility. As feature vectors they used the extracted hand shape and the orientation 

magnitude. The training phase is done on the software platform and the testing phase 

is done on the hardware platform. This is based on a new technique presented in the 

paper called co-simulation neural network. In their method, a part of the neural 

network is designed on the hardware with dedicated ports. The network is built of 16 

input neurons in the input layer, 50 neurons in the first hidden layer, 50 neurons in 

second hidden layer, and 35 neurons in the output layer. The number of neurons 

selected resulted from the analysis of the selected features for image representation. 

The authors claim that the co-simulation platform was able to reduce the recognition 

times, with a 100% success rate for all the sign language alphabets (A to Z). Haitham 

Hasan et al. [91] presented a novel technique for static hand gesture recognition for 

human-computer interaction based on the hand shape analysis and an ANN for hand 

gesture classification. Their main goal was to explore the utility of a NN approach 

for the recognition of hand gestures. The system was divided into three parts: (1) pre-

processing, (2) feature extraction and (3) classification. The main efforts were made 

in the feature extraction and classification. As hand features they used complex 

moments (CMs) introduced by Abu-Mostafa [92] as a simple and straightforward 

way to derive moment invariants. The CMs are very simple to compute and quite 

powerful in providing an analytic characteristic for moments invariant. They are a set 

of values extracted from the image that have the property of invariance to image 

rotation. Moment invariant can be used as a feature for object classification and 

recognition. They tested a Neural Network (NN) with the extracted hand contour and 

a Neural Network with the complex moments. The system was able to achieve a 

recognition rate of 70,83% using the contour but suffered from invariance to 

translation, while the second method achieved an accuracy of 86,38%. Nevertheless, 

the system presented some problems to recognize the same gesture under different 

light conditions, which is a serious limitation 

2.3.5.3 Support Vector Machines (SVM) 
Being Support Vector Machines (SVMs) a group of supervised learning methods that 

can be applied to classification or regression, and in addition to performing linear 

classification, can efficiently perform non-linear classification using what is called 
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the kernel trick (section 2.3.3), they have been widely applied to the problem of hand 

gesture recognition. Ching-Tang Hsieh et al. [93] presented a fast hand detection and 

an effective feature extraction process for a real-time hand gesture recognition 

system based on a SVM classifier. The system was comprised of four steps: (1) the 

use of the Camshift Algorithm (Continuously Adaptive Mean Shift) for skin colour 

tracking, primarily intended to perform efficient head and face tracking in a 

perceptual user interface [94], (2) the use of the Boundary Extraction Algorithm 

(BEA), proposed by Liu [95], to extract the hand contour, (3) extraction of Fourier 

Descriptors (FDs) for shape description and (4) shape classification using a SVM. As 

shown in section 2.2.5, Fourier descriptors have some advantages, namely invariance 

to starting boundary point, deformation and rotation. For the problem of hand gesture 

recognition with different view angles, the authors acquired multiple images. Each 

gesture contained 1000 images with a total of 5000 images for all the gestures. The 

experimental results showed they were able to achieve an average accuracy of 

93,4%, demonstrating their system was feasible. Yen-Ting Chen et al. [96] presented 

a system that allows effective recognition of multiple-angle hand gestures in finger 

guessing games. They used three webcams set at front, left and right directions of the 

hand for image acquisition. By using images from three different cameras, three 

SVMs classifiers were trained. After the training process, the constructed classifiers 

were fused, according to three different plans. In the first, with simple voting, each 

classifier contributes equally to the final result, while in the second and third plans, 

the recognition rates were regarded as fusion factors, i.e. the recognition rate 

obtained with one of the cameras for one gesture was given as a fusion factor. As the 

experimental results had shown, the fusion strategy made the recognition system 

more robust and reliable, being able to achieve an accuracy of 93,33% in terms of 

multi-view hand gesture recognition. Jinbing Gao et al. [53] trained a SVM with 

features obtained by fusing HoG features and LBP features to track the palm in 

unfettered colour images. They called the proposed method Adaptive HoG-LBP 

detector. They defend that the object description ability of the HoG and the LBP are 

different, so first, they determine the strength of each descriptor on the hand image or 

part of the image based on what they call a Confidence Map Computing. The 



38  Methodologies and State of the Art  

 

extracted features are then fused based on the calculated confidence values and are 

normalized. They built their own dataset with 5378 palm images from 28 different 

users, and the experiments showed that they were able to achieve an accuracy of 

95,2% in real-time situations. The classification is done without any pre-processing 

such as noise filtering, brightness balance or sharpening. The system showed 

however some problems with hand motion detection, which was defined as future 

work. Liu Yun t al. [97] presented an automatic hand gesture recognition system that 

consisted of two modules: a hand detection module and a gesture recognition 

module. For hand detection, they used the Viola-Jones method [63]. For hand 

recognition and SVM train, they used Hu invariant moments [55] of the hand image 

as feature vectors. Hu invariant moments have the advantage of being invariant to 

translation, scale and rotation. To overcome the linearity of the basic SVM classifier 

the authors used the on-vs-all approach, which separates a single class from all the 

remaining classes. The experiments showed that the system were able to achieve a 

total recognition accuracy of 96,2% for the three hand postures defined in the 

dataset. However, the system showed some problems with test images acquired 

under strong light conditions, which led to some incorrect results. The authors had 

concluded, that in those cases, the failure mainly stems from erroneous segmentation 

of background areas as belonging to hand regions. Jung-Ho Ahn et al. [98] presented 

a real-time colour based tracking method, which they called the hand motion vectors. 

The system was able to track both hands and was based on the mean-shift (MS) 

tracking algorithm. They assumed that a gesture was performed in front of a camera, 

and the starting and end postures are the same. For the occlusion recovery problem, 

they presented a tracking method that used a predicted window, i.e. the candidate 

hand window position was predicted by using past motion information. As hand 

features the authors used a simple and efficient feature extraction method. They 

stated that all hand trajectories are not equally important to identify a gesture, so, by 

singular state analysis they filtered out the trivial trajectories. For that, they defined 

three states of hand trajectories with their respective mathematical descriptions: hold 

state, dynamic state and occlusion state. With those definitions a motion vector 

would be classified as singular or normal. After feature extraction, motion vectors 
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were normalized and a quantization process transformed a sequence of motion 

vectors into a set of symbols (codewords). A vector quantizer consists of a codebook 

and a quantization function, that in the proposed system simple mapped the motion 

vectors to the nearest codeword. For gesture classification they used a SVM, but to 

perform SVM classification first they had to make sure that all the features were in 

the same space, so they had to make vectors of features with constant length. 

Unfortunately, as the experimental results showed, they had very high error rates, 

mainly in two gestures that were very similar, and the SVM recognition rate was not 

so high. The problem stemmed from very noise data, where several states appear in 

several features.  Nasser H. Dardas et al. [99] presented a system for real-time 

interaction with an application or videogame via hand gestures. The system was able 

to detect and track a bare hand in cluttered backgrounds using skin detection. To 

remove other skin-like areas, they first detect the face with the Viola-Jones method, 

which was replaced by a black circle. After face subtraction, other skin areas are 

detected using the HSV colour model. The contours of skin areas are extracted and 

compared with all hand gestures contours loaded from a dataset, to get rid of non-

hand skin-like objects still present in the image. As hand features, they used key 

points extracted with the SIFT (scale invariant feature transform) algorithm. Since 

the obtained features were too high dimensionality to be used efficiently, the authors 

solved the problem with the bag-of-features approach [100, 101] to reduce the 

dimensionality of the feature space. This way, each training image can be described 

as a “bag-of-words” vector by mapping key points to a vector of visual words. With 

the obtained feature representation a multi-class SVM was trained. The testing stage 

proved that effectiveness of the proposed scheme in terms of accuracy and speed. 

Experiments showed that the system could achieve satisfactory real-time 

performance regardless of the frame resolution and with an accuracy of 96,23% 

under variable scale, orientation and illumination conditions and also with cluttered 

backgrounds. The authors identified three important factors that could affect the 

accuracy of the system, namely the quality of the webcam used in the training and 

testing stages, the number of training images and choosing the number of clusters 

used as codebook size. Chen-Chiung Hsieh et al. [102] proposed a real-time hand 
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gesture recognition system that consisted of three major parts: digital zoom, adaptive 

skin detection and hand gesture recognition. The first module detected the user's 

face, and applied trivial trimming and bilinear interpolation for zooming in, so that 

the face and upper body occupied the central part of the image. The second module 

was based on an adaptive skin colour model for hand region extraction. By adaptive 

skin colour model, the effects from lighting, environment, and camera could be 

greatly reduced, and the robustness of static hand gesture recognition could be 

improved. A ROI was defined under user’s face, and a three level grey-level Haar-

like feature was used to extract the hand region. For dynamic gestures, they observed 

the motion history image (MHI) for each dynamic directional hand gesture and 

designed four groups of Haar-like directional patterns able to recognize up, down, 

left and right movements. The benefit of the motion history image was that it could 

preserve object trajectories in a frame. Those patterns count the number of black-

white patterns as statistical features for classification. They investigated the use of a 

Neural Network for dynamic gesture recognition, but found that the accuracy rate 

stopped at about 85% because some variations of different dynamic hand gestures 

were similar. To overcome this problem, they investigated a new approach based on 

a SVM for dynamic hand gesture classification. The overall system was able to 

obtain a recognition rate of 93,13% for dynamic gestures and 95,07% for static hand 

gestures in average.   

2.3.5.4 Hidden Markov Models (HMM) 
Since dynamic gestures are time-varying processes, which show statistical variations, 

HMMs are a plausible choice for modelling them. In this way, a human gesture can 

be understood as a HMM where the true states of the model are hidden in the sense 

that they cannot be directly observed. Many authors have used HMMs for gesture 

recognition. 

Chen et al. [103] introduced a hand gesture recognition system to recognize 

continuous gestures with a stationary background. The system is composed of four 

modules: a real-time hand tracking and extraction module, a feature extraction 

module, and an HMM training module and gesture recognition module. First, they 

applied a real-time hand tracking and extraction algorithm to trace the moving hand 
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and extract the hand region, and then they used Fourier Descriptors to characterize 

spatial features and motion analysis to characterize temporal features. They 

combined the spatial and temporal features of the input image sequence as the 

feature vector. During the recognition phase, the extracted feature vector was 

separately scored against different HMMs. The model with the highest score 

indicated the corresponding gesture. They have tested the system with a dataset built 

with 20 different gestures obtained with different users, and they were able to 

achieve an accuracy of 85%. They had some problems with wrong gesture 

identification that they claim have originated in the limited number of records used 

to estimate the parameters of the HMMs. Yoon et al. [104] proposed a system 

consisting of three different modules: (1) hand localization, (2) hand tracking and (3) 

gesture spotting. The hand location module detects hand candidate regions, on the 

basis of skin colour and motion. The hand-tracking algorithm calculates the moving 

hand regions centroids, connects them, and outputs a hand path. The gesture-spotting 

algorithm divides the trajectory into real and meaningless segments. To construct a 

feature database they used a combined and weighted location, angle and velocity 

feature codes, and employed a k-means clustering algorithm for the HMM codebook. 

In their experiments, 2400 trained gestures and 2400 untrained gestures were used 

for training and testing, respectively. They were able to obtain an accuracy of 93% in 

a batch test and an accuracy of 85% on the on-line test that used direct camera input 

and real time HMM recognition. 

Nguyen Dang Binh et al. [105] introduced a real-time gesture recognition system, for 

single hand gestures, that could be used in unconstrained environments. The system 

was composed of three modules: hand tracking, gesture training and gesture 

recognition using pseudo two dimension Hidden Markov Models (P2-DHMMs), 

introduced and applied by Agazzi and Kuo to the problem of optical character 

recognition [106]. The P2-DMHH uses observation vectors that are composed of 

two-dimensional Discrete Cosine Transform (2-D DCT) coefficients. Their main 

contribution was the combination in the P2-DHMM framework of the hand region 

information and the motion information. They tested the system using the American 
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Sign Language gestures. The training data was composed of 30 images for each one 

of the 36 gestures. They were able to obtain an overall accuracy of 98%. 

Mahmoud Elmezain et al. [107] proposed an automatic system based on Hidden 

Markov Models and that is able to recognize both isolated and continuous gestures 

for Arabic number (0-9) recognition in real time. To handle isolated gestures, three 

different HMM topologies (Ergodic, Left-Right and Left-Right Banded) with 

different number of states were tested. Hand skin segmentation is done with a 

Gaussian Mixture Model applied to stereo colour images with complex backgrounds. 

From the obtained hand they extracted three basic features: location, orientation and 

velocity. The orientation is quantized by dividing the value by 20º to generate code 

words that are between 1 and 18. The discrete vector thus obtained is used as input to 

the HMM. For continuous gesture recognition, the system is designed to segment and 

recognize an isolated gesture by what the authors called the zero-code word 

detection. Although some gestures contain the zero-code word in some segment 

parts, they used a static velocity threshold to overcome the problem of incorrect 

classifications or gesture separation. Also, in order to take into account the transition 

between gestures, the system ignores some links between the two gestures by 

neglecting some frames adaptively after detecting the gesture end point. In their 

experiments they used 30 video sequences for isolated gestures and 70 video 

sequences for continuous gestures. They were able to achieve an average accuracy of 

98,94% for the isolated gestures and average accuracy of 95,7% for the continuous 

gestures. 

Omer Rashid et al. [108] proposed an interaction system through gesture and posture 

recognition for alphabets and numbers. The gesture system was able to recognize the 

hand motion trajectory using HMM whereas the posture system classifies the static 

hand at the same instance of time. In the proposed system, 3D information is 

exploited for segmentation and detection of face and hands using normal Gaussian 

distributions and depth information. For the gestures, they compute the orientation of 

two consecutive hand centroids, for all the points in the hand path, which is then 

quantized in the range 1 to 18, in order to generate the code words. The obtained 

quantized values gives a discrete vector that is used to train the HMM. For the 
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problem of posture recognition, feature vectors are computed from statistical and 

geometrical properties of the hand. As statistical features they used Hu-Moments 

(area, mean, variance, covariance and skewness), and as geometrical features the 

authors used the circularity and rectangularity in order to exploit the hand shape. 

These features are then combined together to form a feature set which is used to train 

a SVM for classification and recognition. The experimental results of the proposed 

framework could successfully integrate both gesture and posture recognition. For the 

gesture system a recognition rate of 98% was achieved (alphabets and numbers) and 

for the posture system a recognition rate of 98,65% and 98,6% for ASL alphabets 

and numbers was achieved respectively. 

Sara Bilal et al. [109] provide a good survey on approaches which are based on 

Hidden Markov Models (HMM) for hand posture and gesture recognition for HCI 

applications. Their main goal was to provide a survey of HCI applications using hand 

gestures which have been developed based on vision systems using HMM’s. In their 

paper they gave a brief introduction to the computational tools used to manipulate 

HMM’s, they presented HCI applications that have been developed using HMM for 

hand posture and/or gesture recognition and they made a comparison of HMM with 

other existing methods for hand posture and/or gesture recognition techniques. The 

authors had concluded in the paper that most of the developed systems have been 

designed for a certain HCI application and might not achieve the same declared 

accuracy for another application, being this dependent on many factors such as: 

using data gloves or bare hands, the number of database samples, isolated words or 

sentence level recognition in case of SL (Sign Language) and using single hand or 

two hands. 

2.3.5.5 Others 
Many authors have presented studies were they tested different classifiers, for the 

problem of classification performance, or even used different classifiers on different 

parts of their systems with different goals in mind. Anand H. Kulkarni et al. [110] 

presented a robust hand gesture recognition system for static gesture classification 

based on 11 Zernike moments (ZMs) [111] and tested the extracted features with 

three different classifiers: the k-NN (k-Nearest Neighbour), the ANN (Artificial 
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Neural Network) and the SVM (Support Vector Machine). Zernike moments have 

the advantage of being rotation and scaling invariant. A comparative study was 

carried out to test which classifier performed better in recognizing the pre-defined set 

of gestures. The SVM was the classifier that obtained the best results with an 

accuracy of 91% compared to 77,5% for the k-NN and 82,5% for the ANN. Avilés et 

al. [112] made an empirical comparison of three classification techniques, namely, 

Neural Networks, Decision Trees and Hidden Markov Models, focused not only on 

the problem of classification performance in gesture recognition, but also trying to 

find the best in respect to knowledge description, feature selection, error distribution 

and computational time for training. The results showed that none of the techniques 

is a definitive alternative for all the questions addressed in the study. They used a 

gesture database with more than 7000 samples performed by 15 users. While Neural 

Networks and Hidden Markov Models obtained higher recognition rates in 

comparison to Decision Trees, they claim that the knowledge description of decision 

trees allows them to analyse interesting information suck as the similarity of 

gestures. Also, due to the required computational time for training, decision trees 

could be adequate for fast prototyping gesture recognition interfaces for HCI 

(Human Computer Interaction). Average recognition rates for their experiments, 

with a database built from 15 people making 9 different dynamic gestures were, 

95,07% for the ANN, 94,84% for the HMM and 87,3% for the DT’s. Omer Rashid et 

al. [108] presented a system for ASL (American Sign Language) gesture (dynamic) 

and posture (static) recognition of alphabets and numbers able to provide interaction 

through. In their system, they have exploited 3D information for segmentation and 

detection of face and hands using normal Gaussian distribution and depth 

information. For gesture, orientation of two consecutive hand centroid points is 

computed which is then quantized to generate code words. HMMs were trained with 

the Baum Welch algorithm and classification was done with the Viterbi path 

algorithm. Feature vectors were computed from statistical and geometrical properties 

of the hand, namely, Hu-Moments, circularity, rectangularity and fingertips. After 

normalization, the extracted features were then used to train a SVM, used later for 

classification and recognition. Experimental results showed that the proposed 
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framework was able to successfully integrate both the gesture and posture 

recognition systems, where the gesture recognition system achieved a recognition 

rate of 98% (for alphabets and numbers) and the posture recognition system achieved 

a recognition rate of 98,65% and 98,6% for alphabets and numbers respectively. 

Oshita et al. [113] on the other hand proposed a general gesture recognition system 

method, based on two different machine-learning algorithm: the Self-Organizing 

Map (SOM), developed in 1982 by Tuevo Kohonen [114], and the Support Vector 

Machine (SVM) [115]. Their system could handle any kind of input data from any 

input device. In the experiments they used two Nintendo Wii Remote controllers, 

with acceleration sensors. The SOM is used to divide the sample data into phases and 

construct a state machine. Then, they apply the SVM to learn the transition 

conditions between nodes. An independent SVM is applied at each node. They tested 

the method with two kinds of gestures: a simple one, performed with just one 

controller, and a more complex one done with the two controllers. Their method 

showed some problems in the presence of noise, since the classification using SOM 

does not work well in those situations. Because of this, automatic gesture recognition 

was not able to achieve a good recognition rate. 

Other methods were also tried out with good results, like the one by Bailador et al. 

[116], were an approach to the problem of real-time gesture recognition using 

inexpensive accelerometers was presented. It is based on the idea of creating 

specialized signal predictors for each gesture class. The errors between the measured 

acceleration of a given gesture and the predictors are used for classification. The 

predictors were implemented using Continuous Time Recurrent Neural Networks 

(CTRNN), which are networks of continuous model neurons without constraints 

placed on their connectivity [117], and that exhibit rich dynamics [118]. The 

dynamic and non-linear nature of the CTRNN makes them suited for temporal 

information processing. They used a set of eight different gestures to test the 

performance and accuracy of the recognition method. Two different datasets were 

recorded, with gestures made by only one person in different condition and with 

twenty instances for each gesture, resulting in a total of 160 gesture instances per 
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dataset. With this, they were able to obtain a recognition rate of 98% for the training 

set and 94% for the testing set. 

2.4 Summary 

In this chapter the methodologies normally used for vision-based hand gesture 

recognition addressed. Some of the methods studied and implemented for the 

problem of hand feature extraction, posture classification and dynamic gesture 

classification were described. 

In terms of hand features for gesture classification, it was seen that many possibilities 

exist with different results, and careful feature selection is vital for the future success 

of the recognition system. Also, efficient features must present some essential 

properties like: translation, rotation and scale invariance, occlusion invariance, noise 

resistance and be reliable.  

A review of the state of the art in the area was conducted, which showed clearly the 

variety of experiments done so far in the field, with or without combinations of 

features, and where we could note that there is no single solution for the problem at 

the moment. 

In terms of gesture classification, some of the most used machine learning algorithms 

were described. We saw that in practice, the choice of a classifier is a difficult 

problem, and that no single approach is ‘optimal’ depending on the nature and type 

of extracted features or the type of application. A review of the state of the art in this 

area was also undertaken, where we could note that it is sometimes common practice 

to combine several classifiers with the goal of obtaining a better pattern 

classification.  

Despite all the work done in the area so far, we can conclude that there is still a long 

way to go in order to achieve a natural gesture-based interface for human/computer 

communication and interaction. Each possible contribution is a step forward in the 

attempt to reach such a solution. 

 



 

 

Chapter 3 

3 Gesture Learning Module Architecture (GeLMA) 

3.1 Introduction 

As analysed in the previous chapter, vision-based hand gesture recognition is an area 

of active current research in computer vision and machine learning [88]. Being a 

natural way of human interaction, it is an area where many researchers are working 

on, with the goal of making human computer interaction (HCI) easier and natural, 

without the need for any extra devices [74, 119]. 

As Hasanuzzaman et al. [120] argue, it is necessary to develop efficient and real time 

gesture recognition systems, in order to perform more human-like interfaces between 

humans and robots. 

Although it is difficult to implement a vision-based interface for generic usage, it is 

nevertheless possible to design this type of interface for a controlled environment 

[10, 121]. Furthermore, computer vision based techniques have the advantage of 

being non-invasive and based on the way human beings perceive information from 

their surroundings [8]. 

 

Vision-based hand gesture recognition systems have a wide range of possible 

applications [13, 18], of which some are here highlighted: 

• Virtual reality: enable realistic manipulation of virtual objects using ones hands 

[122, 123], for 3D display interactions or 2D displays that simulate 3D 

interactions. 

• Robotics and Tele-presence: gestures used to interact with robots and to control 

robots [6] are similar to fully-immersed virtual reality interactions, however the 

worlds are often real, presenting the operator with video feed from cameras 

located on the robot. Here, for example, gestures can control a robot’s hand and 

arm movements to reach for and manipulate actual objects, as well as its 

movement through the world. 

• Desktop and Tablet PC Applications: In desktop computing applications, 

gestures can provide an alternative interaction to mouse and keyboard [124-
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127]. Many gestures for desktop computing tasks involve manipulating 

graphics, or annotating and editing documents using pen-based gestures. 

• Games: track a player’s hand or body position to control movement and 

orientation of interactive game objects such as cars, or use gestures to control 

the movement of avatars in a virtual world. Play Station 2 for example has 

introduced the Eye Toy [128], a camera that tracks hand movements for 

interactive games, and Microsoft introduced the Kinect [4] that is able to track 

users full body to control games. 

• Sign Language: this is an important case of communicative gestures. Since sign 

languages are highly structural, they are very suitable as test-beds for vision-

based algorithms [11, 19, 129, 130]. 

However, to be able to implement such systems, there are a number of requirements 

that the system must satisfy, in order to be implemented in a successful way [10], 

which are: 

• Robustness: the system should be user independent and robust enough to factors 

like visual noise, incomplete information due for example to occlusions, 

variations of illumination, etc. 

• Computational efficiency: vision based interaction requires real-time systems, 

so the algorithms and learning techniques should be the most effective possible 

and computational cost effective. 

• Error tolerance: mistakes on vision-based systems should be tolerated and 

accepted. If some mistake is made, the user should be able to repeat the 

command, instead of letting the system make wrong decisions. 

• Scalability: the system must be easily adapted and configured so that it can 

serve a number of different applications. The core of vision based applications 

for human computer interaction should be the same, regardless of the 

application. 

In order to be able to implement a vision-based solution that can be generic enough, 

with the help of machine learning algorithms, allowing its application in a wide 

range of interfaces for online gesture recognition, we need to have systems that allow 
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training gestures and learning models capable of being used in real-time interaction 

systems. These systems should be easily configurable in terms of the number and 

type of gestures that they can train, to ensure the necessary flexibility and scalability. 

 

In order to build a solution that could meet all the previous requirements, three 

modules were implemented. These modules allow you to train, in a supervised way, 

all the necessary gestures that will be part of future vision-based hand gesture 

recognition systems, for human / computer interaction. 

The implemented modules are: the Pre-Processing and Hand Segmentation (PHS) 

module, the Static Gesture Interface (SGI) module and the Dynamic Gesture 

Interface (DGI) module as shown in the diagram of Figure 6. From the diagram, one 

can see that user hand must be detected, tracked and segmented on each frame. The 

segmented hand is passed as an argument to the SGI module to extract hand features 

that are saved into a features dataset. This dataset is later used for model training, 

and the resulting model is also for future use. The detected hand is passed as a 

parameter to the DGI module, where the hand centroid is calculated and used for 

hand path construction. Each hand path is labelled according to a defined alphabet 

resulting in a feature vector that is saved into the gesture dataset. This dataset is later 

used for model training and the corresponding obtained model is saved. The user has 

also the possibility to define the final commands that the system will be able to 

interpret in the command language definition module. 

For the Command Language Definition (CLD) module, only a simple version was 

implemented able to be integrated with the final framework, being the final version 

implementation planned for further work. 

The system uses only one camera, and is based on a set of assumptions, hereby 

defined: 

1. The user must be within a defined perimeter area, in front of the camera. 

2. The user must be within a defined distance range, due to camera limitations. 

The system defined values are 0.7m for the near plane and 3m for the far 

plane. 

3. Hand pose is defined with a bare hand and not occluded by other objects. 
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4. The system must be used indoor, since the selected camera does not work 

well under sun light conditions. 

The following sections describe in detail each one of the proposed modules. First, it 

is described the PHS (Pre-Processing and Hand Segmentation) module, where the 

problem of hand detection and tracking is addressed, as well as the problem of hand 

segmentation. Secondly, it is described the SGI (Static Gesture Interface) module, 

responsible for training static gestures and learn the model for a set of predefined 

hand postures, and finally it is described the DGI (Dynamic Gesture Interface) 

module, which is responsible for the dynamic gesture training, creating one model 

for each one of the predefined gestures to be used.  

 
Figure 6. The static and dynamic gesture training and learning architecture. 
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3.2 Pre-Processing and Hand Segmentation (PHS) module 

The Pre-Processing and Hand Segmentation module is responsible for hand 

detection, tracking and segmentation, trying to minimize the effects of noise present 

in depth image as explained in section 3.2.2.  

Pre-processing and feature extraction plays an important role on the rest of system, 

namely, gesture recognition or classification. The approach used in the study is based 

on appearance-based methods [11, 18, 119]. Although viewpoint dependent, this type 

of methods is computationally efficient. They model gestures by relating the 

appearance of a given gesture to the appearance of a set of template gestures. The 

approach mainly consists of extracting a set of features that represent the content of 

the images [18]. Thus, good hand segmentation and proper choice of visual features 

are vital for the future performance of the recognition system.  

Taking this into consideration, and to get a better understanding of the steps taken in 

this phase, this section is divided into two parts: (1) hand detection and tracking, and 

(2) hand segmentation. 

3.2.1  Hand Detection and Tracking 

For hand feature extraction, first the hand must be detected and tracked as shown in 

the diagram of Figure 7, under the PHS (Pre-Processing and Hand Segmentation) 

module, and the hand segmented for later use. 

To solve this problem a Kinect camera with the OpenNI framework interface [131] is 

used, that is able to detect and track the hand position in space in real-time, as 

intended shown in Figure 8. OpenNI is a non-profitable consortium formed to 

promote and standardize the compatibility and interoperability of Natural Interaction 

(NI), devices, applications and middleware [131].  

 
Figure 7. Pre-processing and feature extraction diagram. 



52 Gesture Learning Module Architecture (GeLMA) 

 

The Kinect has a depth sensor consisting of an infrared laser projector combined 

with a monochrome CMOS sensor - an active pixel sensor - (Figure 9 and Figure 

10), which is able to capture video data in 3D under any ambient light conditions 

[132]. The camera returns a depth image, updated 60 times per second according to 

Primesense [133], as shown in Figure 11 where different depth values are 

represented with different grey values. This is considered a great advantage over 

other type of cameras. 

 
Figure 8. Hand tracking in real-time (hand path represented in white). 

 
Figure 9. Inside Kinect controller [134] 
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Figure 10. Kinect Interface [135] 

 

 
Figure 11. Kinect RGB and depth images. 

Then, the hand must be segmented from the depth image, colour image or both as 

required, and as discussed in the following section. 
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3.2.2  Hand Segmentation 

Hand segmentation is achieved by defining a bounding box (handArea) around the 

active hand position (handPos). The bounding box defines the ROI (region of 

interest) as shown in Figure 12, according to the following set of equations and used 

with the depth or grey image for segmentation: 

! !"#$%&'$() = (ℎ!"#$%&(!))/!"#$%&'()!! (13)!

! ℎ!"#$%&!(!, !) = ℎ!"#$%&(!, !) − !"#$"%&!/!"#$%&'$()!! (14)!

! ℎ!"#$%&!.!"#$ℎ = !"#$%!&"$'ℎ/!"#$%&'$()!! (15)!

! ℎ!"#$%&!. ℎ!"#ℎ! = !"#$%!&'"(ℎ!/!"#$%&'$()!! (16)!

The distFactor value is used to keep the bounding box aspect ratio, according to the 

hand distance to the camera, as shown in Figure 12. The value in parenthesis 

represents the real depth distance.  

In the current system implementation the values for divFactor, startPos, 

windowWidth and windowHeight were defined as 1000, 60, 120 and 110 

respectively. The value for divFactor was obtained by experimentation, with the goal 

of achieving the minimum bounding box that would include the entire hand and 

which size would be relative to the hand distance to the camera. 

    
Figure 12. Bounding box size relative to the hand distance to the camera. 
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As soon as the bounding box is set, two parallel planes are defined, the near and far 

threshold planes, in the vicinity of the hand position according to the following 

formulas: 

! !"#$%&#!" = ℎ!"#$%& ! − !"#"$"%&!! (17)!

! !"#$%"&' = ℎ!"#$%& ! + !"#"$"%&!! (18)!

The vicinity variable was defined as 200 for the current implementation. This way, a 

3D bounding box is defined, as shown in Figure 13, and all the hand pixels that fall 

inside it are extracted, forming what we call a hand blob (Figure 14). The hand blob 

is a binary image, where all the pixels belonging to the hand are represented in white. 

The image thus obtained is used as input to the feature extraction phase. 

 
Figure 13. Hand bounding box with the near and far-threshold planes represented (left); 3D 

bounding box obtained for hand segmentation (right). 

 
Figure 14. Hand blob extracted from the depth image and used for feature extraction. 

As explained by Andersen et al. [136], one of the problems with the Kinect depth 

image is the presence of noise, which has implications in the quality of the final 

image and which means that the extracted hand position is not stable, even without 

apparent movement. This has implications on the quality of the final features 
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extracted from the segmented hand, resulting in possible different values for the 

same hand posture, as discussed by Trigueiros et al. [8]. 

Trying to solve this problem, several approaches have been tried out. Camplani et al. 

[137], presented an efficient hole filling strategy that they claim is able to improve 

the quality of the depth maps. Their proposed approach is based on a joint-bilateral 

filtering framework that includes spatial and temporal information. The missing 

depth values are obtained applying iteratively a joint-bilateral filter to their 

neighbour pixels. Others authors like Bongalon [138] tried to solve the problem by 

averaging data from multiple image frames. We tested this approach, in an attempt to 

improve the quality of the final features, averaging over 20 frames in a first 

approach, but the result was a tremendous reduction on the obtained frame rate. We 

tried to reduce the number of frames used for averaging, but the final results were 

also not satisfactory. As we were using the whole depth image, the process became 

too heavy. A Kalman filter applied to the tracked hand position was also tested, 

however, the results obtained with the implemented approach were superior to the 

ones obtained with this method. 

The final approach used, tested with good results in another implementation [6], 

without degrading the performance in terms of frame rate, was a cumulative average 

of hand position, over three frames, according to the following formulas: 

! !"#$%&' !, !, ! = !"#$%&' !,!,! ∗ !""#$!! !!!"#$%& !,!,!
!""#$ !! (19)!

In the formula, the ACCUM variable represents the number of frames to take into 

consideration. Using this method, we were able to improve the precision of the 

extracted features with impact in the final model obtained for hand classification. 

For dynamic gesture feature extraction, where the need to identify the start and end 

of a gesture exists, it was used a value that allows us to identify whether the hand is 

moving. That value is also averaged over three frames in the following manner: 

! !"#$%&'( = !"#$%&'(∗ !""#$−1 +!!"#$%ℎ !"#$%&'−!"#$%&#
!""#$ !! (20)!

The lastPos value is updated each frame with the latest mean hand position 

(meanPos) calculate with equation 19. At system initialization the distance value is 
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set to 0, and the meanPos and lastPos are initialized during the first frame 

acquisition with the current handPos. 

3.3 Static Gesture Interface (SGI) module 

The Static Gesture Interface module is responsible for hand feature extraction and 

system training for static gesture classification. Static gestures, also sometimes 

designated hand postures, are considered a static form of hand pose [139, 140].  

For the problem of static hand gesture recognition, first it is necessary to extract 

meaningful features from the hand image, as explained in section 2.2.1, to train the 

system to recognize the required hand postures. Training implies the use of the 

extracted features to learn models, with the help of machine learning algorithms, that 

can be used in real-time human computer interaction interfaces.  

This section is divided into two parts: (1) features extraction for static hand 

classification and (2) system train and gesture classification. 

3.3.1  Feature Extraction 

Careful hand features selection and extraction are very important aspects to consider 

in computer vision applications for hand gesture recognition and classification for 

real-time human-computer interaction. This step is crucial to determine in the future 

whether a given hand shape matches a given model, or which of the representative 

classes is the most similar. According to Wacs et al. [141] proper feature selection, 

and their combination with sophisticated learning and recognition algorithms, can 

affect the success or failure of any existing and future work in the field of human 

computer interaction using hand gestures.  

Feature extraction methods determine the appropriate subspace of dimensionality m 

in the original feature space of dimensionality d (m ≤ d) [76]. 
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Thus, the problem of feature selection can be defined as follows:  

Given: 

1. {F(xi), i=1,...,d}, a feature set of dimension d and, 

2. E(F), the classification error 

Select : 

3. {S(xj), j=1,...,m}, a subset of dimension m  (m ≤ d) 

such that E(S) is minimum 

After a comparison study of different hand image features for hand pose 

classification [8], trying to understand the one that achieved the best results, being at 

the same time simple in terms of computational complexity, it was decided to use a 

one-dimensional function, called the centroid distance (section 2.2.2). This function, 

which is derived from the object boundary coordinates, is also called a shape 

signature as shown in [25, 142]. According to Zhang et al. [24] and Trigueiros et al. 

[8], it gives very good results in shape retrieval and classification. This type of 

signature can describe the shape by itself, and can be a pre-processing step for other 

feature extraction algorithms, like for example Fourier descriptors, as shown in [8]. 

Being one of a set of possible shape descriptors, the centroid distance is expressed by 

the distance of the contour boundary points, (xi, yi); i=0,…, N-1, from the object 

centroid (xc, yc), as follows: 

! ! ! = ! ! − !! ! + ! ! − !!! !!,!!!! = 0,… ,! − 1!! (21)!

So, first it is necessary to extract the hand contour, as shown in the diagram from 

Figure 16 resulting in an image like the one shown in Figure 15. From the hand 

binary blob received as parameter, the contour is extracted and sampled to a fixed 

number of points (N), which in the proposed solution implementation was set to 32. 

This value was obtained after several tests with a number of different powers of 2, 

giving good final results in terms of classification accuracy. The space between two 

consecutive candidate points is given by the following formulae: 

! !"#$ = ! !"#$(!"#$"%&) ! + 1!! (22)!
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where the function size(contour) returns the number of elements in the vector that 

contains the hand contour points.  

From the obtained discrete values, the centroid distance is calculated resulting a 

centroid distance feature vector. The obtained vector is saved into an instance 

database. Each centroid distance feature vector is calculated every 50 milliseconds, 

according to equation 1, and saved in an instance database similar to the one shown 

in Table 2. 

 
Figure 15. Hand contour extracted from hand blob. 

 
Figure 16. Centroid distance feature calculation diagram. 

In terms of visual representation, each centroid distance vector can be represented 

graphically in the form of an histogram, called the centroid distance signature, as 

shown in Figure 17.  
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Table 2. Hand centroid distance feature vectors prior to normalization. 

Class Value1 Value2 Value3 Value4 Value5 … Value31 Value32 

0 39.949 34.985 37.611 34.741 34.076 ... 33.014 33.377 

0 39.936 34.968 37.676 34.690 34.039 ... 33.011 33.350 

1 48.403 43.410 37.935 31.563 28.527 ... 35.943 44.043 

1 48.034 42.978 37.912 31.870 28.829 ... 35.775 43.601 

2 55.728 45.359 31.054 19.940 25.045 ... 29.461 35.766 

2 55.507 45.234 31.019 20.141 25.393 ... 29.943 36.426 

... ... ... ... ... ... ... ... ... 

 
Figure 17. Centroid distance signature. 

Due to the subtraction of centroid from the boundary coordinates, this operator is 

invariant to translation as shown by Rayi Yanu Tara et al. [19] and a rotation of the 

hand results in a circularly shift version of the original image. All the features 

vectors are normalized prior to training, by subtracting their mean and dividing by 

their standard deviation (z-normalization) [66, 143] as follows, 

! ! = !!" − ! !!! (23)!

where a is the mean of the instance i, and σ is the respective standard deviation, 

achieving this way scale invariance as desired. The vectors thus obtained have zero 

mean and a standard deviation of 1. 

3.3.2  Train and Classification 

The resulting database is used to train a multi-class Support Vector Machine (SVM) 

classifier and build a model capable of online hand posture classification as shown in 

the diagram of Figure 18. In this diagram one can see that the instances are loaded 
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into the training system, after which they are normalized. After data normalization, 

the classifier is trained and the obtained model is saved. 

The SVM is a pattern recognition technique in the area of supervised machine 

learning, which works very well with high-dimensional data. When more than two 

classes are present, there are several approaches that evolve around the 2-class case 

[144]. The one used in our system is the one-against-all approach, where c classifiers 

have to be designed and used to separate one class from the rest. One drawback with 

this kind of approach is that after the training phase there are regions in the space, 

where no training data lie, for which more than one hyper plane gives a positive 

value or all of them result in negative values [83]. 

The SVM algorithm was selected for the final implementation, because in the 

experiments that were carried out with the features selected in the previous section, 

we were able to achieve very high values of accuracy. Also, the resulting obtained 

model was compact and fast, able to be applied in applications with real-time 

classification demands. 

 
Figure 18. SVM train diagram. 

So, for model training and gesture classification the open source Dlib library was 

used, a general-purpose cross-platform C++ library capable of SVM multiclass 

classification [145]. 

The resulting model is used during the classification process as shown in Figure 19. 

The user’s hand is detected and an instance feature vector is extracted. The feature 

vector is normalized, by the z-normalization method (equation 23), and the SVM 
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model is used to predict the instance class as shown in the two examples of Figure 20 

and Figure 21, where the command CLOSE, corresponding to a close hand and the 

command FIVE, corresponding to an open hand with all the fingers spread, are 

correctly classified. 

 
Figure 19. Hand posture classification diagram, using trained SVM model. 

 
Figure 20. “Close” command detected and correctly classified. 

 
Figure 21. “Five” command detected and correctly classified. 
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The following image shows the user interface for hand posture model training and 

testing. Below the main user interface image, we have information concerning the 

current command being learned: name of current command and an example of an 

extracted instance feature vector (sample). The recording process is activated by 

raising the left hand into the red rectangle, identified in the image as the “Left hand 

area”. On the left side of the interface we can see represented the extracted hand 

blob image and the respective hand contour used in section 3.3.1. 

 
Figure 22. User interface for the static gesture training and testing. 
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3.4 Dynamic Gesture Interface (DGI) Module 

The Dynamic Gesture Interface Module is responsible for hand feature extraction 

and model train for each one of the gestures we want the system to learn. Dynamic 

gestures are time-varying processes, which show statistical variations, making 

HMMs (Hidden Markov Models) a plausible choice for modelling the processes 

[146, 147]. In this way, a human gesture can be understood as a HMM where the true 

states of the model are hidden in the sense that they cannot be directly observed. 

HMMs have been widely used in a successfully way in other areas, like for example 

in speech recognition and hand writing recognition systems [75]. 

As shown in section 2.3.4, given a number of states ! = !!, !!,… , !! !and the 

number of distinct symbols in the alphabet represented as ! = !!, !!,… , !! , an 

HMM is defined as ! = !,!,Π , where: 

• A is a matrix with all the state transition probabilities defined as:  

 ! = !!" !!ℎ!"!!!!" ≡ ! !!!! = !! !! = !! !!"#!!!!!"!!ℎ!!!"#"$!!"!!"#$!! 
• B is the vector containing the observation probabilities defined as:  

! = !! ! !!ℎ!"!!!! !
≡ ! !! = !!|!! = !! !!"#!!!!"!!ℎ!!!"#$%&'()!*!!"#$"%&" 

• and!Π is the initial state probabilities defined as:   

 ! = ! !! !!ℎ!"!!!! ≡ ! !! = !!  

For a better understanding of the process taken to train a set of dynamic gestures and 

to learn the HMM model parameters that can be used in an online recognition 

system, we will divide this section into two parts: (1) feature extraction for dynamic 

hand gesture classification and (2) system train and gesture classification. 

3.4.1  Feature Extraction 

Dynamic gestures are considered in this work as the 2D path taken by hand in a 

certain time period, initiated with hand movement and ending when the hand stops. 

For the present study, the 2D features used are sufficient for the dynamic hand 

gesture recognition problem. 
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Although some authors [13, 148] define gestures as a combination of static and 

dynamic gestures, we have designated that in the present study as a user gesture 

sequence. 

As shown on the diagram of Figure 23, the sequence of points extracted from the 

hand path, consisting of the hand centroids (xc, yc), is labelled according to the 

distance to the nearest centroid, using a clustering algorithm based on the Euclidean 

distance, resulting in a discrete feature vector as the one shown in Figure 24. The 

vector thus obtained, our observation sequence ! as explained in section 2.3.4, is 

translated to the origin, resulting in a translation invariant feature vector as desired, 

and used for gesture train or classification. 

 
Figure 23. Dynamic gesture feature extraction diagram. 

 

 
Figure 24. Gesture path with respective feature vector after labelling. 
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3.4.2  Train and Classification 

The feature vectors obtained in the previous section are used to train the HMM and 

learn the model (λ) parameters: the initial state probability vector (Π), the state-

transition probability matrix (A=[aij]) and the observable symbol probability matrix 

(B [bj(m)]) as shown in Figure 25.  

This step is one of HMMs basic problems – the learning problem: given a training 

set of observations sequences X = {Ok}k, we want to learn the model that maximizes 

the probability of generating X, namely, we want to find λ* that maximizes P(X | λ) 

as explained in [65, 66]. This is done for each gesture that we want to learn.  

 
Figure 25. Learn HMM model parameters from a training set of observations. 

During the recognition phase, an output score for the sample gesture is calculated for 

each one of the learned HMM models λ=(A,B,Π), as shown in the diagram of Figure 

26. The model with the highest score represents the given gesture. 

This is another one of HMMs basic problems – the likelihood problem: given a 

model λ, we want to evaluate the probability of a given observation sequence, 

O={O1, O2, …, OT}, namely, P(O | λ) as explained in [65, 66]. 
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Figure 26. Output the model with the highest score based on the recognized gesture. 

The following two images show examples of gestures, namely “GOAL” and 

“DROPBALL”,  correctly classified. 

 
Figure 27. "GOAL" command correctly identified. 

 
Figure 28. "DROP-BALL" command correctly identified. 
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The proposed model solution uses a left-right HMM like the one shown in Figure 29. 

This kind of HMM has the states ordered in time so that as time increases, the state 

index increases or stays de same [65, 66]. This topology has been chosen, since it is 

perfectly suitable to model the kind of temporal gestures present in the system as 

discussed in [9]. 

 
Figure 29. A 4-state left-right HMM model. 

The following image shows the user interface for the dynamic hand gesture model 

learning and testing, where it is possible to observe, below the RGB camera image, a 

gesture example drawn on top of the centroids with the respective Euclidean distance 

lines represented in white. 

 
Figure 30. Dynamic gestures learning interface. 
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3.5 Vision-based Hand Gesture Recognition System Architecture 

As explained before, the design of any gesture recognition system essentially 

involves the following three aspects: (1) data acquisition and pre-processing; (2) 

data representation or feature extraction and (3) classification or decision-making. 

Taking this into account, a possible solution to be used in any human-computer 

interaction system is represented in the diagram of Figure 31. The system is generic 

enough, and can be easily implemented using the previous described modules. For 

that, it uses the learned models for online human gesture recognition and 

classification. As can be seen in the diagram, the system has also a gesture sequence 

module that is responsible for building a sequence of hand gestures (static and 

dynamic), classify the built sequence, and transmit a command to any system 

interface that can be used to control a robot/system. 

As explained in section 3.1, the proposed system is designed to use only one camera 

and is based on a set of assumptions. As it can be seen in the diagram, the system 

first detects and tracks the user hand, segments the hand from the video image and 

extracts the necessary hand features. The features thus obtained are used to identify 

the user gesture, using the previous learned models and loaded during system 

initialization. If a static gesture is being identified, the obtained features are first 

normalized and the obtained instance vector is then used for classification. On the 

other hand, if a dynamic gesture is being classified, the obtained hand path is first 

labelled according to the predefined alphabet, giving a discrete vector of labels 

which is then translated to the origin and finally used for classification. Each 

detected gesture is used as input into a module that builds the command sequence, 

i.e. accumulates each received gesture until a predefined sequence defined in the 

Command Language is found. The sequence thus obtained is classified into one of a 

set of predefined number of commands that can be transmitted to the GSI (generic 

system interface) for robot / system control. 
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Figure 31. Vision-based hand gesture recognition system architecture. 

3.6 Summary 

This chapter discussed the importance of developing efficient and able to do real-

time gesture recognition applications, in order to achieve human-computer 

interaction systems that are more intuitive and user-friendly. We saw that this type of 

systems have a wide range of possible applications like virtual reality, robotics and 

telepresence, desktop and tablet PC applications, games and sign language 

recognition. They also must satisfy a number of requirements in order to be 

successfully implemented as robustness, computationally efficiency, error tolerance 

and scalability. The need to have easily configurable systems was addressed, in order 

to ensure the necessary flexibility and scalability. Also, since the proposed solution is 

based on a single camera a set of assumptions that the system must obey were also 

described. 
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A proposal for a vision-based hand gesture learning system architecture, composed 

of four modules, has been described. The first one, the module for hand detection 

and tracking, addressed the problem of depth image noise and a simple but efficient 

solution was proposed. In the second and the third modules the static and the 

dynamic gesture learning interfaces were described. Finally, an integrated solution 

based on the discussed architecture, was proposed and described. It was shown that 

this type of solutions can and should be generic enough to be integrated in any 

human-computer interface for any robot / machine control. 

 





 

 

Chapter 4 

4 System Implementation 

4.1 Introduction 

The following sections discuss the algorithms and techniques implemented to solve 

the specific tasks necessary to build the modules described in chapter 3. Section 4.2 

discusses and presents the pre-processing and hand segmentation implementations. 

Section 4.3 will address the static gesture module implementation. In section 4.4 the 

dynamic gesture module is described and in section 4.5 the integrated vision-based 

hand gesture recognition system implementation is discussed. 

4.2 Pre-processing and hand segmentation 

As explained in the previous chapter, the first step needed in any hand segmentation 

system is hand detection and tracking. For that, the OpenNI [131] framework, which 

is able to return the 3D hand position in real-time, was used. Hand segmentation is 

implemented in Algorithm 5. The algorithm first updates the sensor depth image 

information, and extracts the current hand position, from which a cumulative average 

position is calculated as explained in section 3.2.2. If the obtained value is inside the 

visible hand area and if the user is being tracked then the hand region is extracted 

with the getHandImage() function, otherwise the hand region image is cleared. The 

distance travelled by the tracked hand (distance) is also calculated. This value allows 

us to determine whether or not the hand is moving. The boolean variable isTracking, 

controls if the user is being tracked or not, by the system. The constant ACCUM 

represents the number of frames to take into consideration as explained in section 

3.2.2. 

Algorithm 5. Hand Segmentation 

1. handSegmentation(),"handROI"
2. outputs:"
3. !!!!handROI:"binary"image"with"the"extracted"hand"region"of"interest"

4. begin"
5. !!!!updateCameraInformation()9
6. "

7. """"if"userVisible()"then9
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8. !!!!!!!!handPos"←"getHandPosition()"

9. """"""""if"distance"="0"then"
10. """"""""""""meanPos"←"handPos"
11. """"""""""""lastPos"←"handPos"
12. """"""""endif"
13. "

14. !!!!!!!!meanPos"←"(meanPos"*"(ACCUM"0"1)"+"handPos)"/"ACCUM"

15. !!!!!!!!distance"←"(distance"*"(ACCUM"–"1)"+"length(meanPos"–"lastPos))"/"ACCUM"

16. "

17. !!!!!!!!if"getHandInside(meanPos)"then"
18. """"""""""""if"isTracking"then"
19. """"""""""""""""handROI"←"getHandImage(meanPos)"
20. """"""""""""else"
21. """"""""""""""""handROI"←"Null"
22. """"""""""""endif"
23. """"""""endif"
24. "

25. """"""""lastPos"←"meanPos"

26. !!!!endif"
27. "

28. """"return"handROI"
29. end"

 
For hand segmentation, the user’s hand must be inside the visible area, defined at 

start-up with the following values: minx= 50, miny= 50, maxx= 510 and maxy= 360. 

This viewport is called the active hand tracking area. The following algorithm 

implementation checks if the user hand is within the defined viewport. 

Algorithm 6. Hand Inside Computation 

1. HandInside(handPos),"inside"
2. inputs:"
3. !!!!handPos:"a"3D"point"that"represents"the"current"hand"position"
4. !!!!handviewPort:"defined"at"start0up"with"minx,"maxx,"miny,"maxy"

5. outputs:"
6. !!!!inside:"variable"that"represents"if"the"hand"position"is"inside"the"defined"viewport"
7. "

8. begin"
9. """"if""handPos.x">"handviewPort.getMinX()"˄""

10. """"""""handPos.y">"handviewPort.getMinY()"˄"""""""""""""""""

11. """"""""handPos.x"<"handviewPort.getMaxX()"˄""

12. """"""""handPos.y"<"handviewPort.getMaxY()"then"
13. """"""""inside"←""true"
14. !!!!else"
15. """"""""inside"←""false"
16. !!!!endif"
17. """"return"inside"
18. end 
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To address the problem of hand segmentation, the application must update the depth 

pixels information and calculate the hand bounding box, as explained in section 

3.2.2. As seen before, the hand blob is updated with all the depth image pixels that 

fall inside the calculated bounding box and between the two depth planes, 

nearThreshold and farThreshold. The hand segmentation implementation is given in 

the following algorithm. 

Algorithm 7. Get Hand Image 

1. getHandImage(handPos),"binaryImage"
2. inputs:""
3. !!!!handPos:"the"current"world"hand"position9
4. outputs:"
5. !!!!binaryImage:"the"binary"image"with"the"extracted"hand"blob"

6. "

7. begin"
8. !!!!depthPixels"←"getDepthPixels()"

9. """"distFactor"←"handPosz"/"divFactor"
10. "

11. """"handArea"←"handPosx,y"0"(startPos"/"distFactor)"
12. """"handAreawidth"←"windowWidth"/distFactor"
13. """"handAreaheight"←"windowHeight"/"distFactor"
14. "

15. """"nearThreshold"←"handPosz"0"vicinity"
16. """"farThreshold"←"handPosz"+"vicinity"
17. "

18. """"numPixels"←"depthPixelswidth"*"depthPixelsheight""
19. """"tempImage"←"0"

20. !!!!for"i"="0"to"numPixels"0"1"do"
21. """"""""if"(depthPixels[i]""≤""farThreshold)"˄"(depthPixels[i]""≥""nearThreshold)"then"
22. """"""""""""tempImage[i]"←"1"

23. """"""""else""
24. """"""""""""tempImage[i]"←"0"

25. """"""""endif""
26. !!!!endfor"
27. "

28. """"binaryImage"←"tempImage(handArea)"
29. """"return"binaryImage"
30. end 

4.3 Static Gesture Interface Module 

In the static gesture interface module, the hand features for posture classification are 

extracted from the segmented hand blob, obtained with Algorithm 5. The features 

thus obtained are used to build a dataset that is fed into the SVM training algorithm. 
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The decision function (model) obtained can then be used in real-time hand posture 

classification systems. The following algorithm implements the hand posture learn 

and classification technique.  

Algorithm 8. Hand posture learn and classification algorithm 

1. definitions:"
2. !!!!features:"vector"that"contains"the"extracted"hand"centroid"distances"
3. !!!!samples:"matrix"where"each"row"is"an"instance"of"features"

4. !!!!labels:"vector"that"contains"for"each"samples"row"the"corresponding"class"
5. !!!!elapsedTime:"represents"the"elapsed"time"for"feature"extraction"

6. "

7. begin"
8. """"reset(elapsedTime)"
9. """"timeToUpdate"←"50ms"

10. """"""""
11. """"while"extractingHandFeatures"do"
12. !!!!!!!!updateCameraInformation()"

13. "
14. !!!!!!!!if"isTrackingUser()"then"
15. """"""""""""handSegmentation()" "" //"implemented"in"Algorithm 5"
16. "
17. """"""""""""if"isLearning"˄"(elapsedTime">"timeToUpdate)"then9
18. !!!!!!!!!!!!!!!!features"="extractHandCentroid()"
19. """"""""""""""""updateSamples(features)"
20. """"""""""""""""updateLabels(currentClass)"
21. """"""""""""""""reset(elapsedTime)"
22. """"""""""""endif"
23. "
24. """"""""""""if"isClassifying"˄"(elapsedTime">"timeToUpdate)"then"
25. """"""""""""""""class"="predictPostureClass(features)"
26. """"""""""""""""reset(elapsedTime)"
27. """"""""""""""""if"(class"≥""minClassNumber)"˄"(class"≤""maxClassNumber)"then"
28. """"""""""""""""""""buildCommandString(class)"
29. """"""""""""""""else"
30. """"""""""""""""""""return"null"
31. """"""""""""""""endif"
32. """"""""""""endif"
33. "
34. """"""""endif"
35. !!!!endwhile"
36. end 
 

With the proposed implementation, is possible to switch between two modes of use:  

• learning - process for learning from features 

• recognizing - test online the obtained model 
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While tracking the user, if the system is in learning mode, the extracted features are 

stored in the SAMPLES matrix, that has one row for each extracted centroid distance 

signature instance, and the respective LABELS vector is updated with the 

corresponding class being learned. If the system is in recognizing mode, the extracted 

features are used to predict the hand posture class (Algorithm 11. ), and if the 

predicted class is within the predefined number of classes a command string, 

indicative of the corresponding gesture, is built. 

4.3.1  Feature extraction 

As explained in section 3.3.1, the features used for posture classification were 

obtained from the centroid distance. Algorithm 9 implements the centroid distance 

calculation technique. The first step is to extract the hand contour from the hand 

blob. For that, the OpenCV function findContours() is used with the contour retrieval 

mode set to external contour (CV_RETR_EXTERNAL), and the contour 

approximation mode set to store all the contour points 

(CV_CHAIN_APPROX_NONE). 

In the proposed implementation, the number of histogram bins (nrBins), or the 

number of equally spaced points extracted from the hand contour, was set to 32. This 

value gives us a good compromise between number of features and recognition 

ability with the chosen operator. For all the given contour points, it calculates the 

distance from the hand centroid and saves the value in the instance variable. The 

vector thus obtained, which represents the centroid distance signature, is returned.  

Algorithm 9. Centroid Distance Computation 

1. centroidDistance(handImage,"centroid),"instance"

2. inputs:"" "

3. !!!!handImage:"image"that"contains"the"hand"blob"

4. !!!!centroid:"the"point"representing"the"hand"centroid"
5. outputs:"
6. !!!!instance:"a"vector"containing"the"centroid"signature"
7. "

8. begin"
9. !!!!if"(contour"←"findContours(handImage))"then"
10. """"""""instance"←"null"
11. """"""""nrBins"←"32"

12. """"""""STEP"←"size(contour)"/"nrBins"+"1"
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13. "

14. !!!!!!!!for"i"="0"to"size(contour)"0"1"step"STEP"do"
15. """"""""""""point"←"contour[i]"
16. """"""""""""d[i]"←"(point.x"–"centroid.x)^2"+"(point.y"–"centroid.y)^2"
17. !!!!!!!!!!!!instance.pushback("sqrt(d[i])")"
18. """"""""endfor"
19. "

20. """"""""if"size(instance)"<"nrBins"then"
21. """"""""""""for"i"="0"to"nrBins"–"size(instance)"0"1"do"
22. """"""""""""""""instance.pushback(0)"
23. """"""""""""endfor"
24. """"""""endif"
25. "

26. """"""""return"instance"
27. !!!!endif"
28. "

29. """"return"null"
30. end"

4.3.2  Support Vector Machine (SVM) Model Training 

After dataset construction the model must be trained. As explained in section 3.3.2, 

for model training the open source Dlib library [145] was used. For training, the 

trainClassifier algorithm implementation (Algorithm 10) uses three library functions: 

randomize_samples(), normalize_samples() and train().  

The first one, randomize_samples(), changes the order of the samples in the database 

in a random way. The second one, normalize_samples(), normalizes all the samples 

by subtracting their mean and dividing by their standard deviation (z-normalization).  

This is an important step for numerical stability, preventing one large feature from 

smothering others and giving us scale invariance (section 3.3.1). The last one, 

train(), is used to obtain the decision function (model) learned with the labelled data. 

The model thus obtained is saved for future instance classification.  

Algorithm 10. Train Static Gesture Classifier 

1. trainClassifier(samples,"labels),"model"
2. inputs:""
3. !!!!samples:"matrix"where"each"row"is"an"instance"of"type"features"

4. !!!!labels:"vector"that"contains"for"each"‘samples’"row"the"corresponding"class"
5. "

6. begin"
7. !!!!randomize_samples(samples,"labels)"
8. !!!!normalize_samples(samples)"
9. """"model"←"train(samples,"labels)"
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10. !!!!saveModel(model)"
11. """"isTrained"←"true"
12. """"return9model"
13. end"

4.3.3  Hand Posture Classification  

After model training, the system is able to classify new hand postures. Algorithm 11 

implements hand posture classification. It receives as input a new instance (sample) 

for classification, normalizes it, and uses the previous obtained model for class 

prediction. 

Algorithm 11. Predict Hand Posture Class 

1. predictClass(sample),"class"
2. inputs:""
3. !!!!sample:"vector"containing"hand"features"for"classification"with"trained"model""

4. outputs:"
5. !!!!class:"the"value"for"the"predicted"class"
6. "

7. begin"
8. !!!!samp"←"normalize(sample)"
9. """"class"←"model(samp)"
10. """"return"class"
11. end9

4.4 Dynamic Gesture Interface Module 

The Dynamic Gesture Interface module is responsible for dynamic gesture model 

learning and classification. Here, the sequence of points extracted from the hand path 

consisting of the hand centroid mean positions calculated in Algorithm 5, are added 

to a gesture instance. The instances thus obtained are used to build a dataset that is 

fed into the HMM training algorithm in order to learn the model λ = (A,B,Π) 

parameters. The HMM models obtained, one for each gesture, can then be used in 

real-time dynamic hand gesture classification systems.  

The following algorithm describes the dynamic gesture learn and classification 

technique, where like in the static gesture module, we can switch between two modes 

of use:  

• learning - process for learning from features 

• recognizing - test online the obtained models 
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While tracking the user, if the system is in a learning mode and the hand stopped 

moving (distance < minDistance as explained in section 3.2.2), the extracted path is 

added to the TRAINSET dataset. The sample is only accepted as valid if it has more 

than 10 points in size. The dataset is built with one record for each hand path sample. 

On the other hand, if the system is in a recognizing mode, the extracted hand path is 

passed as an argument to the classifyGesture function (Algorithm 17.) in order to 

predict the corresponding gesture class. If a class is found, a command string 

indicative of the gesture is built. 

Algorithm 12. Dynamic gesture learn and classification algorithm 

1. definitions:"
2. !!!!sample:"vector"that"contains"the"hand"path"points"
3. !!!!distance:"controls"the"distance"travelled"by"the"user"hand"
4. !!!!minDistance:"threshold"to"control"if"the"hand"is"moving"or"not"

5. !!!!found:"the"gesture"found"
6. "

7. begin"
8. """"while"extractingHandFeatures()"do"
9. !!!!!!!!updateCameraInformation"()"

10. "

11. """"""""if"isTrackingUser()"then"
12. """"""""""""handSegmentation()""//"implemented"in"Algorithm 5"
13. """"""""""""if"isLearning"then"9
14. """"""""""""""""if"distance"<"minDistance"then9
15. !!!!!!!!!!!!!!!!!!!!addPathToGestureDataset()"
16. """"""""""""""""""""gestureReset()"

17. """"""""""""""""else"
18. """"""""""""""""""""handMoving"←"true"
19. """"""""""""""""""""addSample(meanPos)""
20. """"""""""""""""endif"
21. """"""""""""endif"
22. "

23. """"""""""""if"isRecognizing"then""
24. """"""""""""""""if9distance"<"minDistance"then"
25. """"""""""""""""""""found"←"classifyGesture()"

26. """"""""""""""""""""if"found"then"
27. """"""""""""""""""""""""buildCommandString(found)"

28. """"""""""""""""""""endif"
29. """"""""""""""""""""gestureReset()"

30. """"""""""""""""endif"
31. """"""""""""else"
32. """"""""""""""""addSample(meanPos)"

33. """"""""""""endif"
34. "

35. """"""""endif"
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36. !!!!endwhile"
37. end"

4.4.1  Feature Extraction 

In this phase, as explained in section 3.4.1, the hand path sequence of points must be 

labelled according to the minimum distance to a set of predefined centroids, using 

the Euclidean distance metric. Algorithm 14 implements this procedure and returns a 

discrete feature vector containing the labels that are added to the “trainset” dataset. 

The obtained dataset will then be used for learning the HMM model parameters. 

The following algorithm implements the add gesture technique, which is called every 

time a new user gesture is detected. It receives as parameter a set of points that 

represent the hand path, verifies if the size of the sample vector is valid and calls the 

toObservation function for gesture labelling.  

Algorithm 13. Add gesture points to Trainset 

1. addGesture(sample)"
2. inputs:"
3. !!!!sample:"the"set"of"points"that"are"part"of"the"gesture"
4. "

5. begin"
6. """"minSampleSize"←"10"

7. """"if"size(sample)">"minSampleSize"then"
8. !!!!!!!!labels"←"toObservation(sample)"" //"implemented"in"Algorithm 14"
9. """"""""trainset.add(labels)"
10. !!!!endif"
11. end 
 

The toObservation algorithm first rescales the set of gesture points to the predefined 

hand viewport, the hand visible area as explained in section 4.2, and then labels all 

the sample points according to the defined alphabet (section 2.3.4). 

Algorithm 14. Label sample points according to defined alphabet 

1. toObservation(points),"labels"
2. inputs:"
3. !!!!points:"the"set"of"points"to"be"labelled"according"to"the"defined"alphabet"
4. outputs:"
5. !!!!labels:"discrete"vector"containing"the"labelled"points"(observation)"
6. "

7. begin"
8. """"rescale(points)" "" " //"implemented"in"Algorithm 15"
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9. !!!!N"←"size(points)"
10. "

11. !!!!for"i"="0"to"N"0"1"do"
12. """"""""label"←"labelPoint(points[i])" " //"implemented"in"Algorithm 16"
13. """"""""labels.add(label)"
14. !!!!endfor"
15. "

16. """"return"labels"
17. end"
 

Algorithm 15. implements the rescale procedure. The min_element() function finds 

the smallest elements in the range (first, last) where first is the first element in the 

vector passed as argument and last is the last element in the vector. The 

max_element() function finds the greatest element in the range (first, last). The 

function map(value, inputMin, inputMax, outputMin, outputMax), re-maps a given 

number from one range to another. In other words, it converts the value parameter, 

where inputMin < value < inputMax, into a number where outputMin < value < 

outputMax. 

Algorithm 15. Rescale points to follow inside predefined hand viewport 

1. rescale(points,"window)"
2. inputs:"
3. !!!!points:"the"hand"path"points"
4. !!!!window:"the"predefined"hand"viewport"(hand"visible"area)"
5. "

6. begin"
7. """"minx"←"0"

8. """"miny"←"0"

9. """"maxx"←"0"

10. """"maxy"←"0"

11. "

12. !!!!if"size(points)">"1"then"
13. !!!!!!!!minx"←"min_element(points.x)"
14. !!!!!!!!miny"←"min_element(points.y)"
15. !!!!!!!!maxx"←"max_element(points.x)"
16. !!!!!!!!maxy"←"max_element(points.y)"
17. !!!!endif"
18. "

19. """"w"←"maxx"–"minx"
20. """"h"←"maxy"–"miny"
21. !!!!if"w">"h"then"
22. """"""""targetw"←"windowwidth"

23. """"""""ratio"←"targetw"/"w"
24. """"""""targeth"←"h"*"ratio"
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25. !!!!else"
26. """"""""targeth"←"windowheight"

27. """"""""ratio"←"targeth"/"h"
28. """"""""targetw"←"w"*"ratio"
29. !!!!endif"
30. "

31. """"sizePoints"←"size(points)"
32. !!!!for"i"="0"to"sizePoints!0"1"do"
33. """"""""points[i].x"←"map(points[i].x,"minx,"maxx,"0,"targetw)"
34. """"""""points[i].y"←"map(points[i].y,"miny,"maxy,"0,"targeth)"
35. !!!!endfor"
36. end"
 

Gesture labelling is an important step for gesture learning and classification. It is in 

this phase that the output symbols are obtained, as explained in section 2.3.4. 

Algorithm 16. implements the solution for this problem, i.e., it labels a given point 

according to the minimum Euclidean distance to the set of centroids. The algorithm 

receives as parameters the point to label and the centroids (alphabet) and returns a 

label for the given point.  

Algorithm 16. Label point according to defined alphabet 

1. labelPoint(point,"centroids),"label"
2. inputs:"
3. !!!!point:"the"point"to"be"labelled"using"the"Euclidean"distance"metric"

4. !!!!centroids:"the"set"of"output"symbols"(alphabet)"defined"

5. outputs:"
6. !!!!label:"label"assigned"to"the"point"
7. "

8. begin"
9. """"k"←"size(centroids)"
10. !!!!for"j"="0"to"k"0"1"do"
11. """"""""distance"←"(point.x"–"centroids.x[j])^2"+"(point.y"–"centroids.y[j])^2"
12. "

13. !!!!!!!!if"j"="0"then"
14. """"""""""""minDistance"←"distance"

15. """"""""""""label"←""centroids[j]"
16. """"""""elseif"distance"<"minDistance"then"
17. """"""""""""minDistance"←"distance"

18. """"""""""""label"←""centroids[j]"
19. """"""""endif"
20. !!!!endfor"
21. "

22. """"return9label"
23. end 
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4.4.2  Learn HMM Parameters.  

In this section, the “trainset” from section 4.4.1 is used to learn all the model 

parameters. For that each dataset record is first converted into a proper library row 

vector and passed as a parameter to the train function. 

4.4.3  Gesture Classification 

After model training, the obtained classifier can be used in new gesture 

classifications. Algorithm 17. implements the gesture classification for a given hand 

path sample. If the sample size is invalid or too small the function just returns a null 

value, otherwise the sample is passed to the classification function and the obtained 

gesture class is returned. 

Algorithm 17. Gesture classification for a given hand path 

1. classifyGesture(sample),"class"
2. inputs:"
3. !!!!sample:"the"set"of"points"that"constitute"the"hand"gesture"
4. outputs:"
5. !!!class:"the"value"for"the"predicted"gesture"class"
6. "

7. begin"
8. """minSampleSize"←"80"

9. """if"size(sample)"<"minSampleSize"then""
10. """"""return"null"
11. !!!else"
12. """"""class"←"classify(sample)"
13. """"""return"class"
14. !!!endif"
15. end"

4.5 Vision-based Hand Gesture Recognition System 

The Vision-based Hand Gesture Recognition System is a system that tracks the 

user’s hands using a single depth camera, and is able to recognize dynamic and static 

gestures for human/computer interaction. The system is also able to build a 

combination of dynamic and static gestures as commands that can be used for remote 

robot/system control. For this, there is a need to model the command semantics. A 

Finite State Machine (FSM) is a usually employed technique to handle this situation 

[64, 149]. In the system, the FSM shown in the diagram of Figure 32 and in the state 
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transition table (Table 3) was implemented to control the transition between the three 

possible defined states: DYNAMIC, STATIC and PAUSE. A state transition table, 

as the name implies, is a table that describes all the conditions and the states those 

conditions lead to. In the proposed solution a PAUSE state is used, giving the 

possibility to identify transitions between gestures and somehow eliminate all 

unintentional actions between DYNAMIC/STATIC or STATIC/STATIC gestures. 

 
Figure 32. The Referee CommLang finite state machine diagram. 

Table 3. The Referee CommLang state transition table. 

Current State Condition Sate transition 

Dynamic Found gesture Pause 

Static Found posture Pause 

Pause End pause time Static 

Pause Command sequence identified Dynamic 

 

Algorithm 18 implements the proposed solution for the vision-based hand gesture 

recognition system. When the system starts tracking the user, it switches between the 

three possible states. A sequence of dynamic and static gestures can be modelled as 

possible commands, which can then be used in any robot/control system interface.  

During user tracking, the current right hand position is retrieved and the system tests 

if the left hand is inside the left hand viewport (control viewport), which activates 

gesture recognition. If during gesture recognition before a gesture is recognized the 

user removes its hand outside the control viewport, the gesture information is 

cleared. 

If the finite state machine is in a DYNAMIC state then a particular dynamic gesture 

is classified whenever the tracked hand has stopped moving, controlled by the 



86  System Implementation 

 

minDistance variable, and the gesture is only considered valid if the distance 

travelled by the hand has a certain size, as explained in section 4.4. Whenever a 

dynamic gesture is detected, the state machine information is updated with the 

gesture number and the corresponding gesture name and the gesture information are 

cleared.  If on the other hand, the finite state machine is in a STATIC state, the 

tracked hand is segmented and features are extracted. The features are used to predict 

the hand posture class with the model obtained in section 4.3.2, and if the predicted 

class is within the predefined number of classes, the state machine information is 

updated with the gesture number and the corresponding gesture name. The PAUSE 

state is entered every time a gesture or hand posture is found, and exited after a 

predefined period of time or when a command sequence is identified, as can be seen 

in the state transition table (Table 3).  

Algorithm 18. Vision-based hand gesture recognition system 

1. definitions:"
2. !!!!handPos:!the"current"world"hand"position"
3. !!!!state:"the"state"machine"current"state"(DYNAMIC"or"STATIC)"

4. !!!!isTracking:"boolean"value"that"controls"if"the"user’s"hand"is"being"tracked""
5. !!!!distance:"controls"the"distance"travelled"by"the"user"hand"
6. !!!!minDistance:"threshold"to"control"if"the"hand"is"moving"or"not"

7. !!!!numberOfClasses:"the"total"number"of"gesture"classes"defined"

8. "

9. begin"
10. """"while"trackingUser()"do"
11. !!!!!!!!updateCameraInformation()"

12. "

13. """"""""if"isUsingSkeleton"then"
14. """"""""""""handPos"←"getHandPosition()"

15. """"""""""""isTracking"←"getHandInside()" //"implemented"in"Algorithm 6. "
16. "

17. !!!!!!!!!!!!meanHandPos"←"calculateMeanHandPosition(handPos)"
18. !!!!!!!!!!!!calculateDistanceTravelled()"
19. "

20. !!!!!!!!!!!!if"state"="DYNAMIC"then"
21. """"""""""""""""if"isTracking"then"
22. """"""""""""""""""""if"distance"<"minDistance"then"
23. """"""""""""""""""""""""found"←"classifyGesture()"

24. """"""""""""""""""""""""if"found!then"
25. """"""""""""""""""""""""""""updateStateMachine(state)"
26. """"""""""""""""""""""""""""gesture"←"getGestureName(found)"
27. """"""""""""""""""""""""""""changeStateMachine(PAUSE)"

28. """"""""""""""""""""""""endif"
29. "
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30. """"""""""""""""""""""""gestureReset()"

31. """"""""""""""""""""else"
32. """"""""""""""""""""""""addHandPath(meanHandPos)"
33. """"""""""""""""""""endif"
34. """"""""""""""""else"
35. """"""""""""""""""""gestureReset()"

36. """"""""""""""""endif"
37. !!!!!!!!!!!!else9if"state"="STATIC"then"
38. """"""""""""""""if9handInsideViewport()"then"
39. """"""""""""""""""""if"isTracking"then"
40. """"""""""""""""""""""""handSegmentation()" " " //88888!implemented"in"Algorithm 5"
41. """"""""""""""""""""""""features"←"extractHandFeatures()"

42. """"""""""""""""""""""""class"←"predictHandPostureClass(features)"
43. "

44. """"""""""""""""""""""""if"class"≥"0"˄"class"≤"numberOfClasses"then"
45. """"""""""""""""""""""""""""updateStateMachine(state)"
46. """"""""""""""""""""""""""""gesture"←"getGestureName(class)"
47. """"""""""""""""""""""""""""changeStateMachine(PAUSE)"

48. """"""""""""""""""""""""endif"
49. "

50. """"""""""""""""""""endif"
51. """"""""""""""""endif"
52. """"""""""""endif"
53. """"""""endif"
54. "

55. """"lastHandPos"←"meanHandPos"
56. !!!!endwhile"
57. end"

4.6 Summary 

In this chapter, the fundamental algorithms that are part of the Vision-based Hand 

Gesture Recognition System have been described. Section 4.2 discussed and 

presented the pre-processing and hand segmentation implementations. The need for 

the user’s hand to be within the visible area, the active hand tracking area, was once 

again here reinforced. Section 4.3 addressed the static gesture module 

implementation. For model training, the number of features used was 32, which as 

discussed, gives a good compromise between the number of features and the 

recognition ability. It was seen that in this module, the user can switch between two 

modes of use: learning and recognizing, giving the user the possibility to test the just 

trained model. Section 4.4 discussed and has given implementations for the dynamic 

gesture module. For hand gesture classification it was seen that if the hand path is too 

small, then the gesture is considered invalid and a null value is returned. Here, as in 
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the static gesture module, the user can switch between to modes of use: learning and 

recognizing. Finally in the last section the integrated vision-based hand gesture 

recognition system implementation was discussed, where the need to model the 

command semantics was spoken and a solution based on a finite state machine was 

proposed. It was seen that using this solution, the system could switch between three 

possible states: DYNAMIC, STATIC and PAUSE. As discussed, the PAUSE state 

was introduced here, as a possible solution to model the still difficult problem that is: 

identify the start and end of a gesture, or gesture transition. 

 



 

 

Chapter 5 

5 Case Studies 

5.1 Introduction 

During the course of the study, with the aim of achieving the objectives that were 

proposed in chapter 1, a set of questions arose that gave rise to several applications 

and prototypes.  

One of the first issues faced, was the problem of detecting and tracking the hand. 

When it was decided to start using the Kinect it was possible to explore some of its 

technologies in order to try to answer that issue. From those experiments it was 

implemented an application that gave a user the possibility of remotely control a 

robot in terms of direction and speed of movement with a set of simple hand 

commands. For these experiments an MSL robot [150] from the Laboratory of 

Automation and Robotics at the University of Minho [151] was used, which allowed 

testing the effectiveness of the proposed solution and the final implementation and 

which gave rise to the final prototype called Vision-based Remote Hand Robot 

Control. 

In a second stage it was necessary to start identifying hand features, which could be 

used with machine learning algorithms in a supervised way for teaching a computer / 

robot understand a set of human gestures. During that study, some tests conducted by 

other authors were found in order to be able to detect fingertips as possible hand 

features. It was decided to test those features in order to verify whether they could be 

used robustly in real-time systems for human-robot interaction. From those 

experiments came a prototype called Vision-based Hand Robotic Wheel Chair 

Control, that allowed a user to drive a robotic base wheelchair, developed at 

Laboratory of Automation and Robotics in the University of Minho [152], through a 

finite number of finger commands. The experiments were carried out with the aid of 

a MSL robot soccer player, since the base used on those robots is equal to the chair 

base on which the system was intended to be deployed. 

Following the study and with the purpose of testing the proposed solutions, 

developed to date, in a system capable of interpreting static and dynamic gestures, an 
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application was implemented capable of recognizing a set of commands defined in a 

new formal language for the MSL referee. Since the Laboratory of Automation and 

Robotics participates actively on the RoboCup national and international robotic 

soccer competitions, an idea arose of trying to find a solution based on vision, 

capable of human gestures recognition, that could be used to solve some of the 

problems that were identified and that happen during competitions. Thus, emerged 

an application called ReCLIS (Referee Command Language Interface System), 

capable of interpreting in real-time a set of referee commands, send them to the 

RefereeBox (referee's assisting technology) that transmits them to the robots. 

In order to test the validity of the hand features being used and compare them with a 

new idea that arose for possible hand features, and at the same time test the validity 

of the proposed solutions in other types of applications, another prototype was 

developed, still in testing phase, able to interpret Portuguese Sign Language. 

The following sections describe in detail each one of the applications and prototypes 

implemented as well as some of the algorithms used. 

5.2 Vision-based Remote Hand Robot Control 

5.2.1  Introduction 

The Vision-based Remote Hand Robot Control is an application that enables a user 

to remotely control a robot with a number of simple hand commands committed in 

front of a Kinect camera. The Kinect camera is used to gather depth information and 

extract the user’s hand in order to use that to calculate control information to transmit 

to the robot. The depth image is used to detect and track the hand by the nearest point 

approach as explained in the following section (Hand Segmentation). After hand 

detection, two planes are defined as minimum and maximum thresholds for hand 

segmentation. The extracted hand blob is used to calculate the hand centroid (relative 

position), direction of turning, direction of movement, and the linear velocity that are 

transmitted to the robot.  
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The system is composed mainly of two modules:  

1. The data acquisition and pre-processing module 

2. The processing module where all the values used to be transmitted to the 

robot, are calculated.  

The following image shows the diagram of the proposed system, where the various 

modules are represented. 

 
Figure 33. Vision-based Remote Robot Control diagram. 

5.2.2  Hand Segmentation 

In order to segment the hand region and extract the hand blob, the user’s nearest 

point to the camera is first calculated according to equation 24. For that, the current 

depth image is passed as a parameter to the calculateNearestPoint algorithm 

(Algorithm 19). For each time t, the closest point on the depth image !!is calculated 

according to the formula: 

! !"#$"%&'#() = !"# ! !, ! ∶ 0 ≤ ! ≤ ℎ!"#ℎ! ! !&!!0 ≤ ! ≤ !"#$ℎ ! !!! (24)!

where I(x,y) is the current depth image and height(I) and width(I) are the respective 

image width and height values. 
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Using this minDistance value, two parallel planes in the Z-direction are defined with 

values equal to minDistance - margin and minDistance +margin, in order to extract 

the hand blob and the hand contour. The constant value margin, added and 

subtracted from the minDistance, was defined as 5 which is sufficient to cover all the 

depth pixels of interest. 

The following algorithm implements the nearest point calculation, giving the depth 

image and its size, and returns a point that represents the minimum distance to the 

camera and the resulting segmented hand binary blob. 

Algorithm 19. Nearest point computation 

1. calculateNearestPoint(depthImage,"width,"height),"minDistance,"thImage"
2. inputs:"
3. !!!!depthImage:"current"frame"depth"image"

4. !!!!width:"depth"image"width"

5. !!!!height:"depth"image"height"

6. outputs:"
7. !!!!minDistance:"point"representing"the"user"minimum"distance"to"the"camera"

8. !!!!thImage:"the"resulting"binary"mask"

9. "

10. begin"
11. """"nrPixels"←"width"*"height"
12. """"margin"←"5"

13. "

14. !!!!minDistance"←"depthImage"[0]"
15. !!!!for"i"="1"to"nrPixels!0"1"do"
16. """"""""if"minDistance"="0"˄"depthImage"[i]">"0"then"
17. """"""""""""minDistance"←"depthImage"[i]"
18. """"""""else9if"depthImage"[i]">"0"˄"depthImage"[i]"<"minDistance"then"
19. """"""""""""minDistance"←"depthImage"[i]"
20. """"""""endif"
21. !!!!endfor"
22. "

23. """"nearThreshold"←"minDistance"0"margin"
24. """"farThreshold"←"minDistance"+"margin"
25. "

26. !!!!for"i"="0"to"nrPixels"0"1"do"
27. """"""""if"(depthImage[i]">"nearThreshold)"˄"(depthImage[i]"<"farThreshold)"then"
28. """"""""""""thImage[i]"←"1"

29. """"""""else"
30. """"""""""""thImage[i]"←"0"

31. """"""""endif"
32. !!!!endfor"
33. "

34. """"return9minDistance,"thImage9
35. end"
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The hand centroid is calculated according to equation 25 and equation 26. The value 

thus obtained is used as the relative hand position. 

! ! = !
! !! !!! (25)!

! ! = !
! !! !!! (26)!

Where xi and yi are the coordinates of the pixels that belong to the hand blob (white 

pixels), and n is the number of pixels in the blob. 

A new value for the hand position is estimated with a Kalman filter [153] [154], 

thereby enabling a smoother hand path, and respectively a smoother robot 

movement. This smoother robot movement not only makes it more visibly attractive 

but also increases the life expectancy of the robot motors. 

The robot direction of movement is calculated according to equation 27, given the 

hand vector angle related to the image centre as illustrated in Figure 34. 

 
Figure 34. Robot direction of movement relative to hand position. 

! !"#$%&"'( = !"!#2 !",!" !!! (27)!

 

The vector length represented by the distance between the image centre and the hand 

centroid, is then used to calculate the robot linear velocity, which is proportional to 

that value according to equation 28. 

! !"#$%&' = !"! + !"! !"#$%&'()!!! (28)!
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Where linearV is the linear velocity transmitted to the robot and the divFactor was 

defined as 6, introduced here in order to avoid sudden accelerations. The divFactor 

value was adjusted during some experiments.  

5.2.3  Orientation 

Hand orientation is calculated taking into account two vectors:  

1. the vector ! formed between the hand centroid and the farthest point from it. 

2. the vector ! parallel to a horizontal line that passes through the centre of the 

image as shown in Figure 35.  

The angle θ is then obtained by using the dot product between the two vectors 

according to equation 29. 

 
Figure 35. Vectors used for robot heading calculation. 

! ! = !"#$%((! ∙ !)/‖!‖‖!‖!)!!! (29)!

Being a ⋅ b the dot product between the two vectors and ||a||!the norm of the vector. 

The angle θ is used to control robot heading (left or right), as shown in Figure 36.  

 
Figure 36. Robot heading dependent on hand rotation. 
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The following algorithm calculates the angle theta and orientation (left or right), 

given the hand contour, extracted in section 5.2.2, and the camera image centre. 

Algorithm 20. Angle and hand orientation computation 

1. calculateOrientation(handContour,"imageCenter,"width,"height),"theta,"orientation,"vAngular"
2. inputs:!
3. !!!!handContour:"the"current"hand"contour"extracted"from"the"hand"blob"image""

4. !!!!imageCenter":"centre"of"camera"image"

5. !!!!width:"depth"image"width"

6. !!!!height:"depth"image"height"

7. outputs:!
8. !!!!theta":"the"hand"angle"used"to"control"the"robot"heading"
9. !!!!orientation":"the"indicative"text"of"turning"(left,"ritght)"
10. !!!!vAngular:"the"angular"velocity"to"be"transmitted"to"the"robot"

11. "

12. begin!
13. """"distance"←"0"

14. !!!!nrPoints!←!getContourNrPoints()!
15. "

16. !!!!for"i"="0"to"nrPoints!0"1"do"
17. """"""""if"handContour[i]y"<"imageCentery"then"
18. """"""""""""v"←"(handContour[i]x"0"imageCenterx,"handContour[i]y"0"imageCentery)"
19. """"""""endif"
20. """"""""lenght"←"!"#$ !!! + !!! "

21. """"""""if"distance"<"length"then"
22. """"""""""""distance"←"length"
23. """"""""""""maxPoint"←"(handContour[i]x,"handContour[i]y)"
24. """"""""endif"
25. !!!!endfor!
26. "

27. """"a"←"(maxPointx"0"imageCenterx,"maxPointy"0"imageCentery)"
28. """"b"←"(width"0"imageCenterx,"0)"
29. """"lengtha"←"!"#$ !!! + !!! "

30. """"lengthb"←"!"#$ !!! + !!! "

31. """""

32. """"//000000000000"normalize"vectors"000000000000"

33. """"a"←"a"/"lengtha" "" "

34. """"b"←"b"/"lengthb!
35. """"theta"←"arcos((a!⋅!b)"/"||a||||b||)""
36. "

37. """rightAngleTh"←"80"

38. """leftAngleTh"←"100"

39. """angularVelocity"←"5"

40. "

41. """"if"theta"<"rightAngleTh"then"
42. """"""""orientation"←"‘Turn"right’"

43. """"""""vAngular"←"0"angularVelocity"
44. """"elseif"theta">"leftAngleTh"then"
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45. """"""""orientation"←"‘Turn"left’"

46. """"""""vAngular"←"angularVelocity"
47. """"else"
48. """"""""orientation"="‘Forward’"
49. """"""""vAngular"←"0"

50. """"endif"
51. "

52. """"return"theta,"orientation,"vAngular"
53. end"

5.2.4  Prototype implementation 

In order to validate the prototype with the proposed method, a MSL (Middle Size 

League) soccer robot from Minho team was used to carry out a series of experiments. 

A computer connected to a Kinect camera grabs hand movements and communicates 

the calculated information (heading, angular velocity and linear velocity) through 

Wi-Fi to the robot on-board computer, as it attempts to show the image form Figure 

37. The robot motion speed transmitted to the robot is proportional to the vector 

length that connects the hand centroid to the camera image centre point (red vector in 

Figure 38), and hand orientation gives us robot-heading direction (blue line in Figure 

38). 

 
Figure 37. Computer connected to a Kinect camera for remote hand gesture robot control. 

The human-computer interface for the prototype (Figure 38) was developed using the 

C++ language and the openFrameworks toolkit with the OpenCV [28] and the 

libfreenect addons under Ubuntu. OpenCV was used for the vision-based operations, 
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like hand contour extraction, and libfreenect was used to control the Kinect camera 

and get the RGB and depth images.  

The system main algorithm implementation is shown below. Every frame the depth 

image is updated and the hand blob and corresponding contour are extracted. From 

the obtained hand blob, the hand centroid is extracted, for direction of movement 

computation, and the hand orientation is calculated (Algorithm 20.). The values for 

the linear velocity, angular velocity and direction of turning must be updated every 

frame and transmitted to the robot. 

Algorithm 21. Vision-based Remote Robot Control 

1. definitions:!
2. !!!!nrBlobs:"number"of"blobs"found"in"the"depth"image!
3. !!!!blob:!the"extracted"hand"blob!
4. !!!!vLinear:!"the"linear"velocity"to"be"transmitted"to"the"robot!
5. !!!!direction:!the"direction"of"movement"to"be"transmitted"to"the"robot!
6. "

7. begin!
8. """"while"trackingUser()"do"
9. """"""""updateSensorData()"

10. """"""""width"←"getImageWidth()"

11. """"""""height"←"hetImageHeight()"

12. """"""""depth"←"getCurrentFrameDepthImage()"

13. """"""""calculateNearestPoint(depth,"width,"height)" //0000"implemented"in"Algorithm 19"
14. """"""""estimateHandPosition()"" " " "

15. "

16. """"""""blob"←"segmentHand()"

17. """"""""nrBlobs"←"extractHandBlobContours()"

18. "

19. """"""""imageCenterx!←"320"

20. """"""""imageCentery!←"240"

21. "

22. """"""""if"nrBlobs">"0"then"
23. !!!!!!!!!!!!centroid!←"calculateHandCentroid(blob)"
24. """"""""""""calculateOrientation(blob,"centroid,"width,"height)"//0000"implemented"in"Algorithm 

20."
25. """"""""""""dy"←"centroidx"0"imageCenterx"
26. """"""""""""dx"←"imageCentery"–"centroidy"
27. "

28. """"""""""""direction"←"atan2(dy,"dx)"*"180/PI"
29. """"""""""""if"direction"<"0"then""
30. """"""""""""""""direction"←"360"+"direction"
31. """"""""""""endif"
32. "

33. """"""""""""vLinear"←"sqrt(dx^2"+"dy^2)"/"6"
34. """"""""""""trasmitToRobot(vLinear,"vAngular,"direction)"
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35. """"""""endif"
36. "

37. !!!!endwhile"
38. end"
 

The tests made with the implemented solution showed that this system is able to 

operate in real-time, taking 4ms to calculate the near point for hand segmentation, and 

around 1ms to extract the hand blob as can be seen in the information area in the HCI 

interface on Figure 38. The communication with the robot is carried out through Wi-

Fi, and transmission speed is dependent on the network conditions. 

 
Figure 38. Human computer interface for the Vision-based Remote Hand Robot Control. 

5.3 Vision-based Hand Robotic Wheelchair Control 

5.3.1  Introduction 

The Vision-based Hand Robotic Wheelchair Control is an application that enables a 

user to drive a robotic base wheelchair with a minimum number of finger commands 
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made in front of a Kinect camera. The diagram of Figure 39 shows the modules that 

compose the proposed system and the flow of information.  

The system is composed of two main modules:  

1. a data acquisition and pre-processing module. 

2. a processing module, where the finger peaks are extracted to calculate the 

values that are going to be transmitted to the robotic platform to control the 

wheel-chair. 

The application uses a Kinect camera to gather depth information, segment the user’s 

hand and extract useful information, enabling the calculation of control information 

that is transmitted to the wheelchair robotic base. The depth image is used to detect 

the hand by the nearest point approach as explained in section 5.3.3.  

 
Figure 39. Vision-based Hand Robotic Wheel Chair Control diagram. 

After having detected the hand position, two planes are defined as minimum and 

maximum thresholds for hand segmentation. From the obtained hand blob, the hand 

contour is extracted, and the number of fingertips and their position on the hand 

contour are calculated using the k-curvature algorithm [155], as explained in section 

5.3.4.  
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The index finger is used to control the forward movement and direction of turning 

(left or right) as shown in Figure 40 (a, b, c). The thumb controls the lateral 

displacement (left or right) as shown in Figure 40 (e, f). Backward movement is 

carried out with two fingers forming a ‘V’ structure (Figure 40 d), and the closed 

hand is used as the stop command. After finger peak extraction, the gesture is 

classified and the respective command information is transmitted to the robotic 

platform. 

The main goal of the proposed system consists of giving the user the capability to 

control a robotic-based wheelchair without the need to touch any physical devices. 

With this kind of technology, we expect that people with disabilities can gain a 

degree of independence in performing daily life activities, being at the same time an 

alternative to some of the already existing solutions. 

 
Figure 40. Finger commands used to drive the wheelchair. 

5.3.2  The Wheelchair Command Language Definition 

In order to implement all the finger commands this system accepts, a new and formal 

language definition was created: the WheelChair CommLang. As in [156], the 

language must represent all the possible gestures and at the same time be simple in 

its syntax. The language was defined using BNF (Bakus Normal Form or Bakus-

Naur Form) [157]: 
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• Terminal symbols (keywords and operator symbols) are in a CONSTANT-

WIDTH TYPEFACE. 

• Choices are separated by vertical bars ( | ) and in greater-than and less-than 

symbols (< CHOICE>). 

• Optional elements are in square brackets ([optional]). 

• Sets of values are in curly braces ({SET}). 

• A syntax description is introduced with ::=. 

The language has only one type of command: the Drive Command. The 

DRIVE_COMMAND is composed of a COMMAND and a SPEED value. For the 

COMMAND the following options are available: STOP, MOVE_FORWARD, 

TURN_RIGHT, TURN_LEFF, MOVE_RIGHT and MOVE_LEFT commands. The 

SPEED value controls the velocity that we can transmit to the robotic base in the 

following set of values: HIGH, MIDDLE, LOW. 

<LANGUAGE> ::= {<DRIVE_COMMAND>} 

<DRIVE_COMMAND> ::=  <COMMAND> [<SPEED>] 

SPEED::= <HIGH> | <MIDDLE> | <LOW> 

COMMAND ::= <STOP> | <MOVE_FORWARD> | <TURN_RIGHT> | <TURN_LEFT> | 
<MOVE_RIGHT> | <MOVE_LEFT> 

 

<STOP> ::=  STOP 

<MOVE_FORWARD> ::= MOVE_FORWARD  

<TURN_RIGHT> ::=  TURN_RIGHT 

<TURN_LEFT> ::=  TURN_LEFT 

<MOVE_RIGHT> ::=  MOVE_RIGHT 

<MOVE_LEFT> ::= MOVE_LEFT 

5.3.3  Hand Segmentation 

In order to segment the hand region, the nearest point to the camera is calculated on 

each frame. For each time t, the closest point on the depth image I is calculated 

according to equation 24. 

Using the obtained minDistance value, two parallel planes (minDistance-5, 

minDistance+5) are defined to extract the hand blob from which the contour is 
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calculated. The hand contour is then used to detect fingertips using the k-curvature 

algorithm from the next section. 

5.3.4  The k-curvature algorithm 

The k-curvature is an algorithm that attempts to find pixels that represent peaks and 

valleys along the contour of an object [155], in our case the hand contour. 

.  
Figure 41. Hand peak and valley point detection 

At each pixel position i in the hand contour C (shown as ‘Hand peak’ in Figure 41), 

the k-curvature is determined by calculating the angle between the vectors 

A=[Ci,Ci−k] and B=[Ci,Ci+k], where ! is a constant set equal to 30 in the prototype 

implementation. The angle can be easily calculated using the dot product between 

the two vectors (equation 29) as illustrated in Figure 42. 

 
Figure 42. Dot product between vectors A and B 

An angle threshold equal to 35º was used, such that only values below this angle will 

be considered further. 
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In order to classify the points as peaks or valleys, the cross product between the 

vectors is calculated (Figure 43). If the sign of the z component is positive the point 

is labelled as a peak and stored, otherwise the point is a valley and is discarded. 

It was found that the hand contour used led to the detection of a set of peaks in the 

neighbourhood of the strongest locations as candidate peaks, so, an average of all 

these points on each finger is calculated in order to define one single peak per finger. 

 

Figure 43. Cross product between two vectors 

The following algorithm implements the fingertip detection on the hand contour 

passed as parameter and returns the number of fingertips found and their position on 

the hand contour. 

Algorithm 22. Fingertip detection and extraction 

1. detectFingerTips(handsContour),"fingers,"fingerPeaks"
2. inputs:!
3. !!!!handContour:"the"current"hand"contour"extracted"from"the"hand"blob"binary"image""

4. outputs:!
5. !!!!fingers:"the"number"of"found"finger"tips"

6. !!!!fingerPeaks:"vector"containing"all"the"finger"peaks"found"
7. "

8. begin!
9. """"fingers"←"0"

10. """"fingerPeaks"←"null"
11. """"fingerK"←"30"

12. !!!!nrPoints"←"getContourNrPoints(handContour)"
13. "

14. !!!!for"i"="0"to"(nrPoints"–"fingerK)!0"1"do"
15. """"""""if""i"<"fingerK"then"
16. """"""""""""v1←"(handContour[i]x0"handContour[nrPoints"+"i"0"fingerK]x,""
17. """"""""""""""""""""""handContour[i]y"0"handContour[nrPoints"+"i"0"fingerK]y)"
18. """"""""else"
19. """"""""""""v1"←"(handContour[i]x"0"handContour[i"0"fingerK]x,""
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20. """""""""""""""""""""""handContour[i]y"0"handContour[i"0"fingerK]y)"
21. """"""""endif"
22. """"""""v2"←"(handContour[i]x"0"handContour[i"+"fingerK]x,""
23. """""""""""""""""""handContour[i]y"0"handContour[i"+"fingerK]y)"
24. "

25. """"""""if"i"<"fingerK"then"
26. """"""""""""v13D"←"(handContour[i]x0"handContour[nrPoints"+"i"0"fingerK]x,"
27. """"""""""""""""""""""""""""handContour[i]y0"handContour[nrPoints"+"i"0"fingerK]y,"0)"
28. """"""""else"
29. """"""""""""v13D"←"(handContour[i]x0"handContour[i"0"fingerK]x,"
30. """"""""""""""""""""""""""""handContour[i]y0"handContour[i"0"fingerK]y,"0)"
31. """"""""endif"
32. "

33. """"""""v23D"←"(handContour[i].x"0"handContour[i"+"fingerK].x,""
34. """"""""""""""""""""""""handContour[i].y"0"handContour[i"+"fingerK].y,"0)"
35. "

36. !!!!!!!!vXv"←"crossProduct(v13D,"v23D)"

37. !!!!!!!!lenghtv1"←"sqrt(v1x
2
"+"v1y

2
)"

38. !!!!!!!!lenghtv2"←"sqrt(v2x
2
"+"v2y

2
)"

39. "

40. !!!!!!!!//"0000000000000"normalize"vectors"000000000000000"

41. """"""""v1"←"v1"/"lenghtv1"
42. """"""""v2"←"v2"/"lenghtv2"
43. "

44. !!!!!!!!theta"←"arcos((v1!⋅!v2)"/"||v1||||v2||)""""
45. "

46. !!!!!!!!//"0000000000000"if"theta"<"35"then"we"are"at"a"peak"or"valley"("/\"or"\/")"00000000000000000"
47. """"""""mininumAngle"←"35"

48. """"""""if"abs(theta)"<"mininumAngle"then" "

49. !!!!!!!!!!!!if"vXvz">"0"then"
50. """"""""""""""""fingerPeaks.pushback(handContour[i])"
51. """"""""""""""""fingers"←"fingers"+"1"
52. """"""""""""""""fingerFound"←"true"
53. """"""""""""endif"
54. !!!!!!!!elseif"fingerFound"="true"then"
55. """"""""""""fingerFound"←"false9
56. """"""""endif"
57. !!!!endfor!
58. "

59. !!!!if9fingers">"0"then9
60. !!!!!!!!calculateOrientation()9
61. """"""""return9fingers,"fingerPeaks9
62. """"endif"
63. end 
 

As explained earlier, during the fingertip detection, a set of peaks in the 

neighbourhood of the strongest locations are detected as candidate tips so, an average 
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of all the saved peak points on each finger is calculated to define one peak per finger. 

The following algorithm implements that solution. 

Algorithm 23. Finger point computation 

1. calculateFingerPoint"(fingerPeaks),"fingerBlobs!
2. inputs:!
3. !!!!!fingerPeaks:"an"array"with"the"candidate"finger"peaks"
4. outputs:!
5. !!!!!fingerBlobs:"vector"containing"all"the"finger"peaks"found"
6. "

7. begin!
8. """""nrFingers"←"0"

9. !!!!!for"i"="0"to"size(fingerPeaks)"0"1"do"
10. """"""""""sumX"←"0"

11. """"""""""sumY"←"0"

12. """"""""""nrPoints"←"0"

13. "

14. !!!!!!!!!!for"j"="0"to"size(fingerPeaks[i])"0"1"do"
15. """""""""""""""sumX"←"sumX"+"fingerPeaks[i][j]x"
16. """""""""""""""sumY"←"sumY"+"fingerPeaks[i][j]y"
17. """""""""""""""nrPoints"←"nrPoints"+"1"
18. """"""""""endfor"
19. "

20. """"""""""averageX"←"sumX"/"nrPoints"
21. """"""""""averageY"←"sumY"/"nrPoints"
22. """"""""""tempPoint"←"(averageX,"averageY)"
23. """"""""""fingerBlobs.pushBack(tempPoint)"
24. """"""""""nrFingers"←"nrFingers"+"1"
25. """""endfor"
26. end 

5.3.5  Direction of turning 

The wheelchair turning direction θ is calculated by the dot product between the 

control vector, vector between the hand centroid and the fingertip, and a horizontal 

vector parallel to a line that crosses the image centre as illustrated in Figure 44 and 

given by equation 29. 
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Figure 44. Vectors used in the calculation of finger orientation 

Orientation calculation is given by Algorithm 24, based on the calculated finger 

blobs, the hand centroid and the number of fingers found. The function returns a 

number that represents the type of finger orientation and that is used to build the 

command that is sent to the robotic base. A value of zero represents the “move 

forward” command (Figure 40 a), a value equal to one represents the “move back” 

command (Figure 40 d), a value equal to two or three represents the “turn right” and 

“turn left” commands respectively (Figure 40 b and c), a value equal to four or five 

represents the “to the right” or “to the left” commands (Figure 40 e and f) and a 

value equal to -1 means that no fingers were found. In that case the values to be 

transmitted for heading, angular velocity and linear velocity, are all set to zero, 

meaning a stop command. 

Algorithm 24. Orientation computation based on fingertips 

1. calculateOrientation"(fingerBlobs,"centroid,"nrFingers),"orientation"
2. inputs:!
3. !!!!fingerBlobs:!the"position"of"all"the"finger"peaks"
4. !!!!centroid:!the"hand"blob"centroid"coordinates!
5. !!!!nrFingers:!the"number"of"finger"peaks"found!
6. outputs:""
7. !!!!orientation:"number"that"represents"the"type"of"finger"orientation"

8. "

9. begin!
10. !!!!v1←"(fingerBlobs[1]x"0"centroidx,""fingerBlobs[1]y"0"centroidy)"
11. !!!!v2←"(640"0"centroidx,"0)"
12. !!!!lenghtv1"←"sqrt(v1x

2
"+"v1y

2
)"

13. !!!!lenghtv2"←"sqrt(v2x
2
"+"v2y

2
)"

14. "

15. !!!!//"0000000000000"normalize"vectors"000000000000000"

16. """"v1←"v1/"lenghtv1"
17. """"v2"←"v2"/"lenghtv2"
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18. !!!!fingerAngle!←"arcos((v1!⋅!v2)"/"||v1||||v2||)"
19. "

20. """"maxRightAngle"←"90"

21. """"minRightAngle"←"70"

22. """"maxLeftAngle"←"130"

23. """"minLeftAngle"←"110"

24. """"maxToRightAngle"←"30"

25. """"minToRightAngle"←"0"

26. """"maxToLeftAngle"←"180"

27. """"minToLeftAngle"←"150"

28. "

29. """"if"nrFingers"="1"then"
30. """"""""if"fingerAngle"<"maxRightAngle"˄"fingerAngle">"minRightAngle"then"
31. """"""""""""orientation"←"2"

32. """"""""elseif"fingerAngle"<"minLeftAngle"˄"fingerAngle">"maxLeftAngle"then"
33. """"""""""""orientation"←"3"

34. """"""""elseif""fingerAngle">"minToRightAngle"˄"fingerAngle"<"maxToRightAngle"then"
35. """"""""""""orientation"←"4"

36. """"""""elseif""fingerAngle"<"maxToLeftAngle"˄"fingerAngle">"minToLeftAngle"then"
37. """"""""""""orientation"←"5"

38. """"""""else"
39. """"""""""""orientation"←"0"

40. """"""""endif"
41. !!!!elseif"nrFingers"="2"then"
42. !!!!!!!!v1←"(fingerBlobs[1]x"0"centroidx,""fingerBlobs[1]y"0"centroidy)"
43. !!!!!!!!v2←"(fingerBlobs[1]x"0"centroidx,"fingerBlobs"[1]y"0"centroidy)"
44. !!!!!!!!lenghtv1"←"sqrt(v1x

2
"+"v1y

2
)"

45. !!!!!!!!lenghtv2"←"sqrt(v2x
2
"+"v2y

2
)"

46. "

47. """"""""//"0000000000000"normalize"vectors"000000000000000"

48. """"""""v1←v1/"lenghtv1"

49. """"""""v2"←"v2"/"lenghtv2"

50. """"""""fingerAngle!←"arcos((v1!⋅!v2)"/"||v1||||v2||)"
51. "

52. """"""""moveBackAngle"←"40"

53. """"""""if"fingerAngle"<"moveBackAngle"then"
54. """"""""""""orientation"←"1"

55. """"""""endif"
56. """"else""
57. """"""""orientation"←"01"

58. """"endif"
59. "

60. """"return9orientation"
61. end 

5.3.6  Prototype implementation 

The Human-Computer Interface (HCI) for the prototype (Figure 45) was 

implemented using the C++ language, and the openFrameworks toolkit with the 
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OpenCV and the Kinect addons, ofxOpenCv and ofxKinect respectively, under 

Ubuntu. OpenCV was used for some of the vision-based operations like extracting 

the hand blob contour, and the Kinect addon was responsible for the RGB and depth 

image acquisition. In the HCI interface image it is possible to see below the 

segmented hand, the direction of movement, all the values given for linear velocity, 

angular velocity, and direction. We have also the number of fingers found and the 

angle obtained as explained in section 5.3.4. The fingertip extraction algorithm used 

was a reimplementation of a non-working add-on for the openFrameworks, where all 

the modifications were given back to the community.  

The proposed method consisted of a new way to control a robotic wheelchair with 

the use of fingertips as hand features, based on a Kinect camera system to facilitate 

the extraction of this information. One major advantage of the proposed method 

consists on its simplicity, which leads to rapid learning rates, and gives the user the 

needed independent mobility. Also, the use of inexpensive hardware and open source 

software tools makes it a solution that can easily be applied to many other 

applications where this type of human-computer interfaces could help improve the 

quality of human life. The solution is not intended to be the best or only solution, but 

an alternative to the many solutions that exist in the market at the moment [158]. The 

solution is not universal - every disabled person is different and has different needs. 

The main algorithm implementation for the prototype is given in Algorithm 25. 

Every frame the depth image is updated and the hand blob and corresponding 

contour are extracted. From the obtained hand blob, fingertips and the number of 

fingers are calculated and the respective values and commands are set and 

transmitted to the robot.  

In the proposed solution, and for test purposes, two constants were defined, the linear 

velocity (VLIN) and the angular velocity (VANG), with values equal to 10. 

Algorithm 25. Vision-based Hand Robotic Wheel Chair Control 

1. definitions:!
2. !!!!nrBlobs:"number"of"blobs"found"in"the"depth"image!
3. !!!!nrFingers:!number"of"fingers"found"in"the"hand"blob!
4. !!!!blob:!the"extracted"hand"blob!
5. !!!!vLinear:!"the"linear"velocity"to"be"transmitted"to"the"robot!
6. !!!!vAngular:!the"angular"velocity"to"be"transmitted"to"the"robot!
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7. !!!!direction:!the"direction"of"movement"to"be"transmitted"to"the"robot!
8. !!!!command:!"the"string"command"representation!
9. "

10. begin!
11. """"VLIN"←"10!
12. """"VANG"←"10!
13. "

14. """"while"trackingUser()"do"
15. """"""""updateSensorData()"

16. """"""""image"←"getCurrentFrameDepthImage()"

17. """"""""calculateNearestPoint(image)"
18. """"""""extractNearPoints(image)"
19. "

20. """"""""nrBlobs"←"findDepthImageContours()"

21. """"""""if"nrBlobs">"0"then"
22. """"""""""""blob"←"getDepthImageBlob(image)"
23. """"""""""""boundingBox"←"calculateBlobCentroid(blob)"
24. """"""""""""nrFingers"←"findFingerTips(blob)"
25. "

26. """"""""""""if"nrFingers"="0"then"
27. """"""""""""""""vLinear"←"0"

28. """"""""""""""""vAngular"←"0"

29. """"""""""""""""direction"←"0"

30. """"""""""""""""command"←"‘Stop’"

31. """"""""""""elseif"nrFingers"="2"then"
32. """"""""""""""""orientation"←"getFingerOrientation()"

33. """"""""""""""""if"orientation"="0"then"
34. """"""""""""""""""""vLinear"←"VLIN"

35. """"""""""""""""""""vAngular"←"0"

36. """"""""""""""""""""direction"←"0"

37. """"""""""""""""""""command"←"‘Move"forward’"

38. """"""""""""""""elseif"orientation"="1"then"
39. """"""""""""""""""""vLinear"←"VLIN"

40. """"""""""""""""""""vAngular"←"0"

41. """"""""""""""""""""direction"←"180"

42. """"""""""""""""""""command"←"‘Move"back’"

43. """"""""""""""""elseif"orientation"="2"then"
44. """"""""""""""""""""vLinear"←"0"

45. """"""""""""""""""""vAngular"←"0VANG"

46. """"""""""""""""""""direction"←"0"

47. """"""""""""""""""""command"←"‘Turn"right’"

48. """"""""""""""""elseif"orientation"="3"then"
49. """"""""""""""""""""vLinear"←"0"

50. """"""""""""""""""""vAngular"←"VANG"

51. """"""""""""""""""""direction"←"0"

52. """"""""""""""""""""command"←"‘Turn"left’"

53. """"""""""""""""elseif"orientation"="4"then"
54. """"""""""""""""""""vLinear"←"VLIN"

55. """"""""""""""""""""vAngular"←"0"

56. """"""""""""""""""""direction"←"90"
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57. """"""""""""""""""""command"←"‘To"the"right’"

58. """"""""""""""""elseif"orientation"="5"then"
59. """"""""""""""""""""vLinear"←"VLIN"

60. """"""""""""""""""""vAngular"←"0"

61. """"""""""""""""""""direction"←"270"

62. """"""""""""""""""""command"←"‘To"the"left’"

63. """"""""""""""""else""
64. """"""""""""""""""""command"←"null"
65. """"""""""""""""endif"
66. """"""""""""""""transmitToRobot(vLinear,!vAngular,!direction)"
67. """"""""""""endif"
68. """"""""endif"
69. !!!!endwhile!
70. end 
 

 

 
Figure 45. HCI for the Vision-Based Hand Robotic Wheelchair Control prototype 
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5.4 Referee CommLang Prototype 

5.4.1  Introduction 

The Referee CommLang Prototype is a real-time vision-based system that is able to 

interpret a set of commands defined for the MSL (Middle Size League) referee, and 

send them directly to the RefereeBox [159] (referee’s assisting technology), which 

transmits the proper commands to the robots. The commands were defined in a new 

formal language described in section 5.4.2 and given in Table 4. 

With the proposed solution, there is the possibility of eliminating the assistant 

referee, thereby allowing a more natural game interface. The application uses a finite 

state machine, as the one described in section 4.5, for referee command construction. 

As stated before, the system is always in one of three possible states: DYNAMIC, 

STATIC and PAUSE. On start-up, the system enters the DYNAMIC state and waits 

until a dynamic gesture is correctly classified. When this happens, the system enters 

the PAUSE state for a predefined period of time, necessary to model the transitions 

between gestures. After that time, the system transitions to the STATIC state and 

remains in this state until a valid command sequence, composed of one or more hand 

postures, is found. At this point the system returns to the DYNAMIC state, waiting 

for a new command sequence. 

The following sections describe the Referee Command Language (Referee 

CommLang) and the prototype implementation. 

5.4.2  The Referee Command Language Definition 

This section presents the Referee CommLang keywords with a syntax summary and 

description. The Referee CommLang is a new and formal definition of all commands 

that the system is able to identify. As in [156], the language must represent all the 

possible gesture combinations (static and dynamic) and at the same time be simple in 

its syntax. The language was defined with BNF (Bakus Normal Form or Bakus-Naur 

Form) [157]: 

• Terminal symbols (keywords and operator symbols) are in a CONSTANT-

WIDTH TYPEFACE. 
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• Choices are separated by vertical bars ( | ) and in greater-than and less-than 

symbols (< CHOICE>). 

• Optional elements are in square brackets ([optional]). 

• Sets of values are in curly braces ({SET}). 

• A syntax description is introduced with ::=. 

The language has three types of commands: Team commands, Player commands 

and Game commands. This way, a language is defined to be a set of commands that 

can be a TEAM_COMMAND, a GAME_COMMAND or a PLAYER_COMMAND. 

The TEAM_COMMAND is composed of the following ones: KICK_OFF, 

CORNER, THROW_IN, GOAL_KICK, FREE_KICK, PENALTY, GOAL or 

DROP_BALL. A GAME_COMMAND can be the START or STOP of the game, a 

command to end the game (END_GAME), cancel the just defined command 

(CANCEL) or resend the last command (RESEND). For the END_GAME 

command, it is necessary to define the game part, identified by PART_ID with one 

of four commands – 1ST, 2ND, EXTRA or PEN (penalties). 

<LANGUAGE>::={<COMMAND>} 

<COMMAND>::=<TEAM_COMMAND> | <GAME_COMMAND> | <PLAYER_COMMAND>  

<TEAM_COMMAND>::=<KICK_OFF> | <CORNER> | <THROW_IN> | <GOAL_KICK> | 
<FREE_KICK> |  <PENALTY> | <GOAL> | <DROP_BALL> 

<GAME_COMMAND>::=<START> | <STOP> | <END_GAME> | <CANCEL> | <RESEND>  

<PLAYER_COMMAND>::=<SUBSTITUTION> | <PLAYER_IN> | <PLAYER_OUT> | 
<YELLOW_CARD> | <RED_CARD> 

For the TEAM_COMMANDS there are several options: KICK_OFF, CORNER, 

THROW_IN, GOAL_KICK, FREE_KICK, PENALTY and GOAL that need a 

TEAM_ID (team identification) command, that can be one of two values - CYAN or 

MAGENTA, and finally the DROP_BALL command. 

<KICK_OFF> ::= KICK_OFF <TEAM_ID>  

<CORNER> ::= CORNER <TEAM_ID>  

<THROW_IN> ::= THROW_IN <TEAM_ID>  

<GOAL_KICK> ::= GOAL_KICK <TEAM_ID>  

<FREE_KICK> ::= FREE_KICK <TEAM_ID>  

<PENALTY> ::= PENALTY <TEAM_ID>  
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<GOAL> ::= GOAL <TEAM_ID>  

<DROP_BALL> ::= DROP_BALL 

 
For the PLAYER_COMMAND, first there is a SUBSTITUTION command with the 

identification of the player out (PLAYER_OUT) and the player in (PLAYER_IN) 

the game with the PLAYER_ID command. The PLAYER_ID can take one of seven 

values (PL1, PL2, PL3, PL4, PL5, PL6, PL7). For the remaining commands, 

PLAYER_IN, PLAYER_OUT, YELLOW_CARD or RED_CARD, it is necessary to 

define the TEAM_ID as explained above, and the PLAYER_ID. 

<SUBSTITUTION> ::= SUBSTITUTION <PLAYER_IN> <PLAYER_OUT>  

<PLAYER_IN> ::= PLAYER_IN <TEAM_ID> <PLAYER_ID>  

<PLAYER_OUT> ::= PLAYER_OUT <TEAM_ID> <PLAYER_ID>  

<YELLOW_CARD> ::= YELLOW_CARD <TEAM_ID> <PLAYER_ID>  

<RED_CARD> ::= RED_CARD <TEAM_ID> <PLAYER_ID> 

<START> ::= START  

<STOP> ::= STOP  

<END_GAME> ::= END_GAME <PART_ID>  

<CANCEL> ::= CANCEL  

<RESEND> ::= RESEND 

<TEAM_ID > ::= CYAN | MAGENTA  

<PLAYER_ID> ::= PL1 | PL2 | PL3 | PL4 | PL5 | PL6 | PL7  

<PART_ID> ::= 1ST | 2ND | EXTRA | PEN 

5.4.3  Prototype Implementation 

The Human-Computer Interface for the prototype was implemented using the same 

previous tools. Also, for SVM training and classification the Dlib library was used, 

and for HMM training and classification the openFrameworks addon, ofxSequence, 

was used.  This addon is a C++ porting of a MatLab code from Kevin Murphing 

(HMM MatLab Toolbox) [160]. 

The proposed system involves two modules, as shown in the diagram of Figure 46: 

1. data acquisition, pre-processing and feature extraction 

2. gesture classification with the models obtained in section 3.3 and 3.4 

As explained in section 5.4.1, a referee command is composed by a sequence of 

dynamic gestures (Figure 47) and a set of static gestures (Figure 48). The static 
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gestures are used to identify one of the following commands: team number, player 

number or game part. 

 
Figure 46. Referee CommLang Interface diagram with all the modules  

 
Figure 47. The set of dynamic gestures defined and used in the Referee CommLang. 

 
Figure 48. The set of hand postures trained and used in the Referee CommLang. 

The following sequence of images shows the Referee Command Language user 

interface with the “GOAL, TEAM1, PLAYER2” sequence of commands being 

recognized.  
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Figure 49. The "GOAL" gesture recognized. 

 
Figure 50. The "GOAL, TEAM1" sequence recognized. 

 
Figure 51. The "GOAL, TEAM1, PLAYER2" sequence recognized. 

In the following sequence of images, another sequence of commands is being 

recognized: the “SUBSTUTUTION, TEAM1, PLAYER-IN-1, PLAYER-OUT-3”. 
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Figure 52. The "SUBSTITUTION" gesture recognized. 

 
Figure 53. The "SUBSTITUTION TEAM-1" sequence recognized. 

 
Figure 54. The "SUBSTITUTION TEAM-1 PLAYER-IN-1" sequence recognized 
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Figure 55. The "SUBSTITUTION TEAM-1 PLAYER-IN-1 PLAYER-OUT-3" sequence 

recognized 

5.5 Sign Language Recognition Prototype 

5.5.1  Introduction 

The Sign Language Recognition Prototype is a real-time vision-based system whose 

purpose is to recognize the Portuguese Sign Language given in the alphabet of 

Figure 57. The purpose of the application was to test two types of hand features and 

verify, with the models learned, their performance in terms of real-time 

classification.  

For that, the user must be positioned in front of the camera, doing the sign language 

gestures, that will be interpreted by the system and their classification will be 

displayed on the right side of the interface. 

The diagram from Figure 56 shows the modules that compose the proposed system 

architecture. It is manly composed of two modules:  

1. data acquisition, pre-processing and feature extraction 

2. sign language gesture classification 

At the moment the system is trained to recognize only the vowels, but it is easily 

extended to recognize the rest of the alphabet.  
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Figure 56. Sign Language Recognition Prototype diagram 

 
Figure 57. Portuguese Language manual alphabet 

5.5.2  Prototype Implementation 

The human-computer interface for the prototype was developed using the C++ 

language, and the openFrameworks toolkit with the following two addons: the 

OpenCV and the OpenNI addons, ofxOpenCv and ofxOpenNI respectively. Also, for 

SVM training and classification the application uses the Dlib library. 

In the following sequence of images it is possible to see the Sign Language Prototype 

with all the vowels correctly classified. 
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Figure 58. The vowel A correctly classified 

 
Figure 59. The vowel E correctly classified 

 
Figure 60. The vowel I correctly classified 
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Figure 61. The vowel O correctly classified 

 
Figure 62. The vowel U correctly classified 

5.6 Summary 

This chapter presented a set of applications that were implemented during the study 

namely: the vision-based remote hand robot control system, the vision-based hand 

robotic wheel-chair control system, the Referee CommLang Prototype system and 

the Sign Language Recognition Prototype. The first one is a system that enables a 

user to remotely control a robot / system with a number of simple hand commands 

made in front of a camera. The system uses the segmented hand information to 

derive heading and also velocity values that are transmitted to the robot. The second 

one is a system that enables a user to drive a robotic base wheelchair with a 

minimum number of finger commands made in front of a camera. Once again, the 

segmented hand is used to extract the finger information and build the proper 
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commands that are transmitted to the robot. A new formal language definition for the 

finger commands was presented. The third is a real-time vision-based system that is 

able to interpret a set of commands defined for the MSL referee and transmit them to 

the RefereeBox. For that, a new formal language definition was also presented, 

capable of representing all the necessary defined RefereeBox commands. 

The last system is a prototype for Portuguese Sign Language recognition. Although it 

is only trained to identify the vowels at the moment, the system is easily extended to 

recognize the rest of the alphabet. The reason for working with vowels only is 

explained by the fact that the main goal was to validate the implemented solutions in 

another type of human-computer interaction application, and so, only a few gestures 

were trained. It was however possible to verify the validity of the proposed methods 

in another type of real-time human-computer interface, where the core of the vision-

based interaction is the same for all applications. 

 





 

 

Table 4. Command set definition with associated odes and text description 

Nº Command 1st Gesture 2nd Gesture 3rd Gesture 4th Gesture Code (TEXT) 

1 CORNER 
 

TEAM   
11 – CORNER, TEAM 1 

12 – CORNER, TEAM 2 

2 THROW_IN 
 

TEAM   
21 – THROW_IN, TEAM 1 

22 – THROW_IN, TEAM 2 

3 GOAL_KICK  TEAM   
31 – GOAL_KICK, TEAM 1 

32 – GOAL_KICK, TEAM 2 

4 FREE_KICK 

 

TEAM   
41 – FREE_KICK, TEAM 1 

42 – FREE_KICK, TEAM 2 

5 PENALTY 
 

TEAM   
51 – PENALTY, TEAM 1 

52 – PENALTY, TEAM 2 

6 KICK_OFF 

 

TEAM   
61 – KICK_OFF, TEAM 1 

62 – KICK_OFF, TEAM 2 

7 GOAL 

 

TEAM PLAYER  
71(1-7) – GOAL, TEAM1, PLAYER(1-7) 

72(1-7) – GOAL, TEAM2, PLAYER(1-7)  

8 SUBSTITUTION  TEAM PLAYER_IN PLAYER_OUT 
81(1-7)(1-7) – SUBSTITUTION, TEAM 1, PLAYER_IN(1-7), PLAYER_OUT(1-7) 

82(1-7)(1-7) – SUBSTITUTION, TEAM 2, PLAYER_IN(1-7), PLAYER_OUT(1-7) 

9 DROP_BALL 

 

   9 - DROP_BALL 

10 END_GAME 
 

   
101 – END_GAME, PART 1 

102 – END_GAME, PART 2 

11 RESEND 
 

   11 – CANCEL 

12 RESEND “Wave”    12 - RESEND 

 





 

 

6 Experiments and Results 

6.1 Introduction 

In chapter 3, the Gesture Learning Module Architecture (GeLMA) and the 

connection between its various modules was described. Some of the requisites that a 

system based on vision for human-robot interaction must satisfy, in order to be 

successfully implemented, were listed. It was also mentioned that, to implement such 

a system, it is necessary to be able to learn models that can be used in real-time 

gesture classification situations. 

The aim of the proposed system is to enable the recognition of static or dynamic 

gestures or a combination of both. Thus, in order to select a set of hand features that 

could meet the requirements of robustness, computationally efficiency, error 

tolerance and scalability, a set of experiments were performed with hand features 

collected from a set of users who executed the pre-defined gestures in front of a 

Kinect camera. The extracted features were used alone or combined, in order to find 

which of them behaved better within a pre-established set of parameters. Those 

experiments were performed with the help of the RapidMiner Community Edition 

[161], in order to select machine learning algorithms that would achieve the best 

classification results for the given datasets. RapidMiner is an open-source data 

mining solution that enables to explore data and at the same time simplify the 

construction of analysis processes and the evaluation of different approaches. It has 

more than 400 data-mining operators that can be used and almost arbitrarily 

combined. This way, RapidMiner can be seen as integrated development 

environment (IDE) for machine learning and data mining, and a valuable tool in this 

field. 

Experiments were also performed with dynamic gestures features in order to learn 

HMM parameters, and build classifiers able to do real-time dynamic gesture 

recognition. For the HMM model learning and implementation the Dlib library 

[145], a general purpose cross-platform C++ library, was used. This is a library for 

developing portable applications dealing within a number of areas, including 

machine learning. 
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The following sections describe in detail each of the experiments and present the 

results in order to prove that the objectives of this work (section 1.2) were achieved 

in order to validate the approach and the adopted methodology. 

The presentation will be carried out in accordance with the various aspects and 

developments of the implemented prototypes. With this approach, it is intended to 

show an evolution of the choices made and the results achieved during the work 

progress. 

6.2 Comparative study of machine learning algorithms for hand posture 
classification 

6.2.1  Experimental Setup 

This experiment intended to carry a comparative study of the following four machine 

learning algorithms, k-Nearest Neighbour (k-NN), Naïve Bayes (NB), Artificial 

Neural Network (ANN) and Support Vector Machines (SVM), applied to two datasets 

composed of different sets of hand features. The main goal of the experiment was to 

understand if machine-learning algorithms could improve and could be used 

efficiently in real-time human-computer interaction systems applied to hand posture 

classification. 

For that, two datasets were used composed of different features and analysed the 

efficiency of each ML algorithm in terms of its recognition rate accuracy. The first 

dataset was composed by the following features: hand angle, mean and variance of 

the segmented grey image hand, 36 values from the orientation histogram, and 100 

values from the hand radial signature. The second dataset was composed by the 

following features: hand angle, mean and variance of the segmented hand grey 

image, area and perimeter of the binary hand blob and the number of convexity 

defects. A convexity defect is “another useful way of comprehending the shape of an 

object by its convex hull and then compute its convexity defects” [28]. Figure 63 

illustrates the concept of convexity defects using a hand image, with the 

corresponding convex hull represented as the dark line around the hand. The regions 

(A-H) are the convexity defects in the hand contour. 
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Some samples from the two datasets, before normalization with the z-normalization 

method (section 3.3.1), are represented on the next two tables. The total number of 

records used in the first dataset was 1295 with ten representative classes, and in the 

second dataset were 945, also with ten representative classes. The features were 

extracted with the help of four users and in a laboratory controlled environment. 

 
Figure 63. Hand convexity defects [28]. 

Table 5. Sample values for the 1st dataset prior to vector normalization. 

Class Angle Mean Var. Hog-1 Hog-2 … Rs-99 Rs-100 

1 0.123 0.038 1 0.109 0.140 … 0.022 0.028 

1 0.131 0.037 1 0.107 0.142 … 0.023 0.025 

2 0.173 0.076 1 0.284 0.398 … 0.110 0.110 

2 0.174 0.076 1 0.255 0.374 … 0.106 0.108 

3 0.147 0.063 1 0.124 0.170 … 0.032 0.032 

3 0.144 0.065 1 0.106 0.144 … 0.018 0.018 

4 0.119 0.053 1 0.125 0.183 … 0.054 0.055 

4 0.126 0.059 1 0.120 0.185 … 0.044 0.043 

... ... ... ... ... ... … ... ... 
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Table 6. Sample values for the 2nd dataset prior to vector normalization.  

Class Angle Mean Variance Area Perimeter Convexity 
Defects 

1 0.034 0.009 0.265 1 0.077 0 

1 0.035 0.009 0.263 1 0.082 0.0003 

2 0.027 0.014 0.152 1 0.075 0 

2 0.028 0.014 0.164 1 0.075 0.0003 

3 0.047 0.047 1 0.878 0.104 0.0004 

3 0.043 0.045 1 0.841 0.099 0.0004 

4 0.033 0.045 1 0.816 0.102 0.0003 

4 0.044 0.065 0.944 1 0.133 0.0004 

... ... ... ... ... ... ... 

 

Since the first step in the experimental setup was the creation of the datasets with the 

corresponding hand features, a C++ application was created (Figure 64), able to 

interface with a Kinect camera and extract all the necessary information. For hand 

feature extraction, the corresponding grey image hand (bottom left) and the binary 

hand image (bottom centre) were used. 

 
Figure 64. Application user interface used for hand feature extraction. 

In the image, it is possible to observe the segmented grey hand with the 

corresponding histogram below the main camera image. To the right it can be seen 
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the hand binary blob with radials, used to compute the radial signature histogram, 

drawn on top of it. Below the hand blob it is the respective hand information: area, 

perimeter, number of convexity defects and angle. To the right of the hand blob the 

radial signature histogram is displayed. On the top right side, on the right of the 

camera image, the hand gradients and the respective HoG (Histogram of 

Gradients)can be seen. Displayed on the camera image, on the top left of the 

application interface, there is the information concerning system status. In the 

present case the system is in a learning state, and recording values for the first 

dataset. 

After dataset creation, the obtained files are converted to Excel files in order to be 

imported to RapidMiner for algorithm performance testing, parameter optimization 

and learner selection. As explained before, the four chosen algorithms (k-NN, Naïve 

Bayes, ANN, SVM) were applied to the two datasets, and the experiments were 

performed under the assumption of the k-fold cross validation method. The k-fold 

cross validation is used to determine how accurately a learning algorithm will be 

able to predict data not trained with [68]. In the k-fold cross-validation, the dataset X 

is divided randomly into k equal sized parts, Xi : i =1,…, k. The learning algorithm is 

then trained k times, using k-1 parts as the training set and the one that stays out as 

the validation set. A value of k=10 is normally used, giving a good rule of 

approximation, although the best value depends on the used algorithm and the 

dataset [66, 77]. As explained by Ian H. Witten et al. [77], “extensive tests on 

numerous different datasets, with different learning techniques, have shown that 10 

is about the right number of folds to get the best estimate of errors”. 

Prior to learning and model application, the data was normalized as explained before. 

Finally, a performance test was carried out, based on the number of counts of test 

records correctly and incorrectly predicted by the model. 

Since classifier settings and parameters used are important aspects to take into 

account, for all the algorithms a parameter optimization analysis was carried out. 

For the simplest of the algorithms, the k-NN, a value of k=1 (number of neighbours 

used) for the two datasets was obtained with an Euclidean distance metric.  
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The following images show RapidMiner process setup for the k-NN dataset 1 

analysis with the corresponding setups. The first image has represented the file 

import phase, data normalization and cross-validation configuration, with the number 

of validations set to 10, as explained before. For the sampling type there are three 

possible options: linear, shuffled and stratified. Linear sampling simply divides the 

dataset into partitions without changing the order, i.e. subsets with consecutive 

samples are created. The shuffled sampling builds random subsets with the dataset, 

i.e., examples are chosen randomly for making subsets. Stratified sampling builds 

random subsets and ensures that the class distribution in the subsets is the same as in 

the whole dataset, i.e. each subset contains roughly the same proportions of the 

number of classes. This parameter has not been changed during the tests, where the 

default value was accepted. 

The second image is the actual k-NN learning process configuration, model 

application and performance testing. For the k-NN algorithm, as it can be seen on the 

right side, the k is set to one and an Euclidean distance measure is applied. 

 
Figure 65. First RapidMiner setup screen for the k-NN dataset 1 analysis. 
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Figure 66. Second RapidMiner setup screen for the k-NN dataset 1 analysis (training and 

testing). 

For the artificial neural network, the number of training cycles was defined as 

constant and equal to 500. The learning rate, and the momentum were obtained via 

parameter optimization. The learning rate is user-designated and used to determine 

how much the weights can be modified based on the change direction and change 

rate. The higher the learning rate, the faster the network is trained. Momentum 

basically allows a change to the ANN weights, during learning, to persist for a 

number of adjustment cycles. It is used to prevent the system from converging to a 

local minimum or saddle point [76, 80]. The following table shows the obtained 

values for the two datasets, after parameter optimization. 

Table 7. Artificial Neural Network (ANN) parameter setup used. 

Parameters Values 
Dataset 1 Dataset 2 

Learning rate 0.1 0.33 
Momentum rate 0.1 0.18 
Training cycles 500 500 
Hidden layers in the network 1 1 
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In the following images, the RapidMiner processes setup configurations for the two 

datasets are represented. The first image, common to all configurations, has the file 

import, data normalization and cross validation setup. In the second image, the actual 

ANN learning process configuration, model application and performance testing are 

configured. For the ANN algorithm, as can be seen on the parameter definition of 

Figure 68, the learning rate and the momentum are both set to 0.1, value obtained 

during the parameter optimization phase with the best accuracy results. 

 
Figure 67. First RapidMiner setup screen for the ANN dataset 1 analysis. 
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Figure 68. RapidMiner ANN DataSet1 analysis (second screen). 

For the SVM tests, the RapidMiner libSVM [162] algorithm implementation was 

used, which supports multiclass learning with the “one-against-one” approach [163, 

164]. The type of SVM used was the C-SCV, and the kernels obtained after 

parameter optimization were the sigmoid for dataset 2 with a C value equal to 0 and 

the rbf (radial basis function) kernel with a C value equal to 10 for dataset 1 as 

shown on the table below. 

Table 8. Parameters obtained after SVM optimization process 

Parameters Dataset 1 Dataset 2 
Kernel type rbf Sigmoid 
Cost parameter - C 10 0 

 

The RapidMiner process setup screens are shown in the following two images. 

Figure 69 shows the parameter optimization configuration window, where the type of 

kernels for optimization are defined, that in the setup were the poly, rbf and sigmoid. 

For the C parameter, values in the range 1 to 10 with a linear scale were defined. 

Figure 70 shows the actual SVM learning process configuration and the testing phase 

where the obtained model is tested and the performance value returned. For the SVM 
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algorithm, as can be seen on the parameter definition on Figure 70, the kernel type 

was set to rbf and the C value was set to 10, as obtained during the optimization 

phase. 

 
Figure 69. RapidMiner parameter optimization setup for the SVM dataset 1 analysis. 

 
Figure 70. Second RapidMiner screen setup for the SVM dataset 1 analysis. 
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6.2.2  Results 

The results obtained with the two datasets are represented in Table 9. Here one can 

observe the obtained accuracy in each algorithm for both datasets and the respective 

time spent on the tests. 

Table 9. Accuracy obtained on both datasets with each algorithm,  
and time spent in the tests. 

 Classifier k-NN Naïve 
Bayes 

ANN SVM 

Dataset 1 
Accuracy (%) 95,45 25,87 96,99 91,66 

Time 8s 1s 46m33s 3m10s 

Dataset 2 
Accuracy (%) 88,52 66,50 85,18 80,02 

Time 1s 1s 32s 1m08s 

 

To analyse how classification errors are distributed among classes a confusion matrix 

for each trained algorithm was calculated, and the obtained results are shown on 

Table 10 through Table 17. 

In the field of machine learning, a confusion matrix is a table layout that allows 

visualization of an algorithm performance, typically a supervised learning one. In 

RapidMiner, each row of the matrix represents the instances in a predicted class, 

while each column represents the instances in an actual class. The name, confusion 

matrix, stems from the fact that it makes it easy to see if the system is confusing two 

classes (i.e. commonly mislabelling one as another) [66, 77, 165]. 

The confusion matrix accuracy is calculated according to the following formula: 

! !""#$!"% = ! !!! !!" , ! = 1,… , !; ! = 1,… , !!!! (30)!
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Table 10. k-NN confusion matrix for dataset 1 
  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 91 1 0 0 1 0 0 0 0 1 
2 0 131 0 0 0 1 1 0 0 5 
3 1 0 122 1 0 0 0 2 0 1 
4 0 0 0 102 3 1 0 0 0 0 
5 0 0 1 2 123 0 0 0 0 0 
6 0 0 0 0 0 122 7 0 0 0 
7 0 0 0 0 0 5 120 0 0 0 
8 0 0 1 0 0 0 0 146 0 0 
9 1 0 0 0 0 0 0 0 155 0 

10 0 2 0 1 0 0 0 0 0 144 

Table 11. k-NN confusion matrix for dataset 2 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 59 1 2 0 0 0 0 0 4 1 
2 0 74 0 0 0 0 1 0 0 1 
3 2 0 49 1 2 0 0 3 1 3 
4 0 0 1 38 10 0 0 1 0 2 
5 0 0 0 6 52 6 2 0 0 2 
6 0 0 0 0 5 68 1 0 1 1 
7 0 0 0 0 0 1 86 0 0 0 
8 7 0 5 1 1 0 0 92 0 0 
9 0 0 0 0 0  1 0 0 82 0 

10 2 1 5 0 2 1 0 2 1 87 

Table 12. Naïve Bayes confusion matrix for dataset 1 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 11 4 6 0 0 1 7 7 0 1 
2 14 49 0 24 25 24 20 0 12 24 
3 25 4 24 27 66 55 54 7 65 21 
4 0 0 0 0 0 0 0 0 0 0 
5 0 10 0 0 1 14 9 0 0 2 
6 0 3 0 0 0 0 0 0 0 0 
7 6 6 18 4 4 6 10 8 16 0 
8 33 0 73 47 24 15 5 123 43 5 
9 3 0 3 0 0 0 1 3 19 0 

10 1 58 0 4 7 14 22 0 0 98 

Table 13. Naïve Bayes confusion matrix for dataset 2 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 62 0 0 0 0 0 0 3 11 1 
2 2 74 0 0 0 0 0 0 0 2 
3 2 0 54 1 0 0 0 7 2 5 
4 0 0 2 34 5 0 0 0 0 1 
5 0 0 1 8 64 8 2 0 2 2 
6 0 0 0 1 1 67 3 0 1 4 
7 0 0 0 0 1 2 84 0 0 1 
8 4 1 3 2 0 0 0 79 0 9 
9 0 0 0 0 0  0 0 0 72 1 

10 0 1 2 0 1 0 0 9 1 71 
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Table 14. ANN confusion matrix for dataset 1 
  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 91 0 4 0 1 0 0 0 2 0 
2 0 129 0 0 1 1 2 0 0 1 
3 0 1 117 0 0 0 1 0 0 2 
4 0 0 3 103 1 0 0 0 0 0 
5 1 2 0 2 122 2 2 0 0 1 
6 0 0 0 0 1 125 0 0 0 0 
7 0 0 0 1 0 1 122 0 1 0 
8 1 0 0 0 0 0 0 148 0 0 
9 0 0 0 0 0 0 1 0 152 0 

10 0 2 0 0 1 0 0 0 0 147 

Table 15. ANN confusion matrix for dataset 2 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 62 0 0 0 0 0 0 3 11 1 
2 2 74 0 0 0 0 0 0 0 2 
3 2 0 54 1 0 0 0 7 2 5 
4 0 0 2 34 5 0 0 0 0 1 
5 0 0 1 8 64 8 2 0 2 2 
6 0 0 0 1 1 67 3 0 1 4 
7 0 0 0 0 1 2 84 0 0 1 
8 4 1 3 2 0 0 0 79 0 9 
9 0 0 0 0 0 0 0 0 72 1 

10 0 1 2 0 1 0 0 9 1 71 

Table 16. SVM confusion matrix for dataset 1 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 85 0 0 0 0 4 0 1 0 1 
2 0 116 0 4 0 1 1 0 0 3 
3 0 0 115 7 1 1 0 0 0 1 
4 0 0 3 86 11 3 1 0 0 1 
5 3 0 0 9 112 10 2 0 0 1 
6 0 2 0 0 0 109 4 0 0 0 
7 0 0 0 0 0 1 119 0 0 0 
8 4 0 6 0 0 0 0 146 0 0 
9 1 0 0 0 0 0 0 1 155 0 

10 0 16 0 0 3 0 1 0 0 144 

Table 17. SVM confusion matrix for dataset 2 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 59 0 0 0 0 0 0 0 10 0 
2 0 65 0 0 0 0 0 0 0 12 
3 3 0 37 0 1 1 0 6 7 2 
4 0 0 2 33 2 0 0 0 0 1 
5 0 0 0 10 67 9 2 0 0 5 
6 0 0 0 0 0 64 2 0 0 1 
7 0 0 0 0 0 3 85 0 0 0 
8 3 0 13 0 0 0 0 74 0 11 
9 0 0 0 0 1 0 0 1 72 0 

10 5 11 10 3 1 0 0 17 0 65 
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6.2.3  Discussion 

Hand gesture recognition is a difficult problem and this experiment was only a small 

step towards trying to achieve the results needed in the field of real-time human 

computer interaction. 

The main goal of the study was to learn the type of hand features that could be used 

for the problem at hand, and start learning how the type of selected features behave 

in terms of supervised machine learning. Thus, a comparative study of four machine 

learning algorithms applied to two datasets, composed of different types of features, 

for static posture recognition and classification for human computer interaction was 

carried out. As explained before, all the experiments were done with the RapidMiner 

tool, in an Intel Core i7 (2.8 GHz) Max OSX computer with 4Gb (DDR3) of RAM. 

In terms of accuracy, it is possible to see from the obtained results that dataset 2 

achieved a lower accuracy than dataset 1 in all the algorithms, except in the Naïve 

Bayes. On the other hand, although the best results have been obtained by the neural 

network with dataset 1, it took a lot of time to train and test the data as can be seen in 

Table 9, with a dataset comprising few records. With shorter time periods we have 

the k-NN algorithm with only 8 seconds used and an accuracy result very close to 

that obtained by the ANN, and the SVM algorithm with 3 minutes and 10 seconds 

and accuracy superior to 90%. For three of the learning algorithms, with dataset 1, it 

was possible to obtain accuracies above 90%, which was encouraging. 

Although the number of records in the two databases was different, this factor does 

not contribute to the differences in accuracy. The number of features present in each 

dataset has however contributed to the time spent in the training and testing phases. 

Also, in dataset 1 the variance feature in the dataset is constant and equal to 1. This is 

due to the normalization (z-normalization) step taken, and because of this, this 

feature does not bring any added value to the final result and can be discarded in 

future experiments. 

Some authors had already used the HoG as feature vectors for gesture classification. 

As seen before, this gave some problems with different gestures having similar 

orientation histograms. To avoid this type of problems many authors used variations 

of it, where for example the features are computed by dividing the image into 



Comparative study of seven different feature extraction algorithms 139 

 

overlapped blocks called cells. The resulting HoG is obtained by a concatenation of 

all the obtained histograms of the individual cells (Yafei Zhao et al. [21]). Other 

approaches used a skin colour histogram of gradients, which combine skin colour 

cues with HoG features to construct a novel feature: SCHOG. With the approach 

developed (feature vectors that are formed by a composition of individual features) 

better results than the first approach were achieved but it was inferior to the second 

one. Compared to other variations and other tests performed with similar features, 

like the one by Zondag et al. [20], our approach seemed very promising, and further 

tests should be performed, especially with the HoG operator, which being simple and 

fast to compute offers advantages with illumination variation images, and the radial 

signature, which being also simple in terms of computationally complexity gives a 

good representation of the object shape. 

The achieved results, permit to conclude that the dataset 1 features resulted better as 

possible solutions for hand gesture identification, and that further experiments should 

be carried out with them, or even possibly try them separately. From the obtained 

results, it can be easily proven that feature selection and data preparation phases are 

important ones, especially with low-resolution images, which is the case of depth 

images captured with the Kinect camera. 

6.3 Comparative study of seven different feature extraction algorithms 

6.3.1  Experimental Setup 

This experiment aimed to conduct a comparative study of seven different hand 

feature extraction algorithms for static hand posture classification. As explained 

before, careful selection of hand features for shape representation plays an important 

role in the final system performance. Some requirements like viewpoint invariance 

and user independence are important aspects to take into consideration. Also, as 

described in section 2.2.1, efficient shape features must present some essential 

properties, like for example translation, rotation and scale invariance. So, in this 

study it was important to understand which features, that when used isolated, 

responded better in real-time human-computer interaction systems and at the same 
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time addressed the described properties being simple in terms of computationally 

efficiency. 

For that, seven datasets with different features extracted from the segmented hand 

were used. The hand features used in the current experiment, and described in 

section 2.2, were: the Radial Signature (RS), the Radial Signature Fourier 

Descriptors (RSFD), the Centroid Distance (CD), the Centroid Distance Fourier 

descriptors (CDFD), the Histogram of Gradients (HoG), the Shi-Tomasi Corner 

Detector and the Uniform Local Binary Patterns (ULBP). 

For the problem at hand, two types of images obtained with the Kinect camera were 

used during the feature extraction phase. The first one, the hand grey scale image 

was used with the HoG operator (Figure 71), the LBP (local binary pattern) operator 

(Figure 72) and the Shi-Tomasi corner detector (Figure 73). The second one, the 

binary hand blob, was used in the Radial Signature (Figure 74), the Radial Signature 

Fourier Descriptors (Figure 75), the Centroid Distance Signature (Figure 76) and the 

Centroid Distance Signature Fourier Descriptors (Figure 77).  

For all the operators, as explained in section 3.2, the hand is detected and tracked as 

shown on each of the images, where the hand being tracked is surrounded by a white 

square labelled with the hand world position. For the ones that use the grey image, 

like the HoG operator, described in section 2.2.3, it can be seen in Figure 71 both 

extracted hand images below the RGB image and to the right the respective 

orientation histogram image. For the Local Binary Pattern operator, described in 

section 2.2.4, it can be seen in Figure 72 the obtained LBP image below the depth 

camera image. 
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Figure 71. HoG (Histogram of Gradients) operator feature extraction. 

 
Figure 72. Local Binary Pattern operator feature extraction. 

For the Shi-Tomasi corner detector, described in section 2.2.6, we can see in Figure 

73 the identified points of interest displayed on top of the hand image, below the 

depth camera image. For those operators that used the hand binary blob, like the 

radial signature and the centroid distance, described in section 2.2.2, Figure 74 and 

Figure 76 show the respective histogram images below the depth camera image. For 
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the Fourier Descriptors, described in section 2.2.5, the first ten obtained Fourier 

Descriptors are represented below the respective signature as shown in Figure 75 and 

Figure 77. This representation was used for control purposes only. 

 
Figure 73. The Shi-Tomasi corner detector operator feature extraction 

 
Figure 74. Radial Signature operator feature extraction. 
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Figure 75. Radial Signature Fourier Descriptors (RSFD) operator feature extraction. 

 

 
Figure 76. Centroid Distance operator feature extraction. 
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Figure 77. Centroid Distance Fourier Descriptors operator feature extraction. 

As stated before, the main goal of the experiment was to learn features, that isolated, 

responded better in real-time human-computer interaction systems. For that, a 

gesture vocabulary with 10 hand postures (represented in Figure 78) was defined, 

and videos from 20 users performing the postures, in front of the camera, for later 

processing were recorded. For data acquisition, an application capable of recording 

videos from the Kinect was implemented. The application was built in C++ with 

openFrameworks and the OpenNI library [131]. The main user interface is shown in 

Figure 79.  

For each user, the videos were saved in a folder with an associated user information 

file (name, age, sex and gender). During gesture recording the application displays 

the necessary information to help the user know at any instant the current hand 

posture to perform and time spent in the current process, as shown in Figure 80. Each 

posture is recorded during 15 seconds, after which the application switches to a 

pause state. In this phase, the next posture to be recorded is shown on the right side 

of the user interface, under “Hand Command” and a countdown value is displayed on 

top of the RGB image, enabling user hand posture changing (Figure 81).  
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Figure 78. The defined gesture vocabulary (1. palm, 2. fist, 3. one-finger, 4. two-fingers,  

5. three-fingers, 6. four-fingers, 7. five-fingers, 8. ok, 9. move-left and 10. circle) 

 

 

 

 
Figure 79. Main user interface for the Kinect video recording application. 
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Figure 80. Posture recording. "Fist" and "One Finger" postures. 

 
Figure 81. Posture recording pause period. 
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As explained before (section 3.3.1), feature selection, data set preparation and data 

transformation, are important phases in the process of data analysis. To construct the 

right model it is necessary to understand the data under analysis. Successful data 

mining involves far more than selecting a learning algorithm and running it over 

your data [77].  

In order to process the recorded videos, a C++ application, using openFrameworks, 

OpenCV [28] and OpenNI [131], was developed. The application main user 

interface, shown in Figure 82, allows the processing of a single file or the selection 

of a user folder in order to process all the associated video files as shown in Figure 

83. The application runs through all the folder video files and extracts for each one of 

the operators under study the respective hand features and saves them in separate 

datasets. 

On the application user interface, information regarding the system state is displayed 

on top of the camera RGB image. In the image of Figure 82, for example, it is 

possible to see that the system is in a “Processing” state and is processing frame 50 

of 381. The type of algorithm or operator in use at any time, for feature processing, is 

also an option that can be selected by the user as shown in Figure 84.  

 
Figure 82. Main user interface for the videos processing application. 
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Figure 83. User data folder selection for feature extraction. 

 
Figure 84. Operator type selection (in the image the Radial Histogram was selected). 

All the datasets were converted to Excel files to be imported into RapidMiner for 

data analysis and in order to find the best learner algorithm among the following 

four: k-NN, Naïve Bayes, ANN and SVM. 

All the datasets were analysed with RapidMiner, and as in previous examples, under 

the assumption of the k-fold cross validation method with k set to 10. The type of 
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sampling used for the current experiments was the stratified sampling, which, as 

explained in the previous section builds random subsets and ensures that the class 

distribution in the subsets is the same as in the whole dataset, i.e. each subset 

contains roughly the same proportions of the number of classes. For all the 

algorithms under study, a parameter optimization, for some of the parameters in each 

algorithm, was carried out. 

In the following sequence of images RapidMiner process configurations used for 

each of the learners is explained, with the corresponding setups for the parameter 

optimization. For the ANN algorithm, the number of training cycles was defined as 

constant and equal to 500. The learning rate was obtained via parameter 

optimization. The next image shows the configuration window for the optimization 

parameter selection where, the learning rate parameter has values defined in the 

range of 0 to 1 with an increment of 0.1. 

 
Figure 85. RapidMiner configuration for ANN Radial Signature feature analysis, with 

parameter optimization.  
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For the k-NN the only parameter optimized was the number of neighbours, k. The 

following image shows the first configuration window, with values defined in the 

range 1 to 10 with a linear scale increment.  

 
Figure 86. RapidMiner configuration for the k-NN Radial Signature Fourier Descriptors 

feature analysis with parameter optimization (first screen). 

In the following window, the optimization setup window, the cross validation 

operator is defined, and as it can be seen it has attached a ‘Log’ operator. This option 

enables the visualization of the values obtained during the optimization process, in 

terms of accuracy for all the selected parameters as shown in the simple example 

output of Figure 88. 

Figure 89 shows the training and testing configuration window, where on the right 

side, under “Parameters”, it can be seen the configuration for the k-NN algorithm 

with k=1 and the “Numerical measure” set to the Euclidean distance. These values 

were set according to the obtained ones during the optimization phase. 
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Figure 87. Validation configuration with an option for Log display. 

 
Figure 88. Example of Log table obtained during parameter optimization. 

For SVM training and testing, with the HoG features, the kernel type and the C 

parameter were once again obtained via parameter optimization. Figure 90 to Figure 

92 show the parameter optimization configuration window, the cross-validation 

configuration window and the training and testing configuration window. The first 

one shows the range defined for the SVM parameter C to be optimized. It is defined 

with values in the range 0 to 10 with a linear scale. The last one shows the type of 

SVM used, the C-SVC, and some of the parameters that can be learned. 
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Figure 89. The training and testing configuration window for the k-NN learner. 

 

 
Figure 90. RapidMiner configuration for SVM histogram of gradients feature analysis with 

parameter optimization (first screen). 
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Figure 91. RapidMiner SVM cross validation and log parameter configuration window. 

 

 
Figure 92. Configuration used for SVM model training and testing. 
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6.3.2  Results 

After analysis of the different datasets, the obtained results were in most of the cases 

encouraging, although in other cases weaker than we expected.  

The algorithms performance, based on the counts of test records correctly and 

incorrectly predicted by the model, was analysed. Table 18 summarizes the best 

learning algorithm for each dataset with the corresponding optimized parameters 

obtained and its respective achieved accuracy. 

Table 18. Best learning algorithm, in terms of accuracy, for each of the datasets and 
parameters obtained during optimization.  

Dataset Best learning 

algorithm 

Parameters obtained by 

optimization 

Accuracy 

Radial Signature Neural Net learning rate = 0.1 91,0% 

Centroid Distance Neural Net learning rate = 0.3 90,1% 

Radial Sign. Fourier Descriptors k-NN k (number of neighbours) = 1 82,3% 

Centroid dist. Fourier Descriptors k-NN k (number of neighbours) = 1 79.5% 

Uniform Local Binary Patterns SVM (libSVM) Kernel = RBF ; C = 6 89,3% 

Histogram of Gradients SVM (libSVM) Kernel = RBF ; C = 2 61,5% 

Shi-Tomasi corners Neural Net learning rate = 0.1 21,9% 

 

In order to analyse how classification errors are distributed among classes, a 

confusion matrix was computed for each dataset with the learner that obtained the 

best result. The resulting confusion matrices are represented in the following tables. 
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Table 19. Radial signature dataset confusion matrix. 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 234 1 2 2 3 4 2 6 4 6 
2 2 290 8 2 2 3 1 3 0 6 
3 2 1 273 2 4 5 5 2 2 8 
4 1 1 4 252 6 3 2 4 1 0 
5 5 1 4 2 291 7 1 5 0 0 
6 2 1 2 5 1 281 8 6 2 0 
7 2 1 2 4 1 3 290 3 0 6 
8 2 3 5 3 2 4 0 250 1 5 
9 7 3 9 0 2 3 2 1 276 4 

10 0 8 3 4 4 2 2 2 1 258 

Table 20. Centroid distance dataset confusion matrix. 

  Actual class 

  1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 343 7 2 2 5 1 2 2 6 12 
2 9 335 4 4 8 4 12 3 1 1 
3 1 2 314 5 43 0 1 3 0 5 
4 1 0 2 287 7 3 1 12 1 8 
5 2 1 1 2 309 3 8 7 0 9 
6 2 1 0 7 4 345 3 5 9 4 
7 5 4 4 4 0 4 321 1 2 2 
8 3 3 9 3 5 2 1 299 3 3 
9 2 4 6 0 7 3 3 5 308 1 

10 2 4 3 8 11 5 5 9 1 271 

Table 21. Radial signature Fourier confusion matrix. 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 250 1 4 2 9 12 3 3 2 2 
2 2 275 10 6 8 3 17 8 1 17 
3 3 5 249 9 7 5 6 17 0 16 
4 7 12 11 248 8 6 7 10 1 0 
5 6 2 4 20 241 16 10 14 2 8 
6 12 3 3 2 21 245 9 4 2 2 
7 3 8 3 5 4 7 228 2 0 10 
8 3 2 13 6 7 9 12 220 1 9 
9 9 1 1 0 2 4 0 6 287 1 

10 1 3 6 0 2 1 6 5 1 232 

Table 22. Centroid distance Fourier confusion matrix. 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 261 17 4 3 13 9 8 5 12 5 
2 8 258 7 8 9 4 8 10 5 6 
3 9 12 295 11 8 2 6 5 6 7 
4 6 6 8 234 7 11 6 7 7 11 
5 2 3 5 6 273 3 12 4 17 17 
6 2 5 4 6 8 290 15 1 6 17 
7 1 6 6 8 3 10 284 12 9 11 
8 9 11 6 5 6 4 3 260 4 14 
9 9 6 7 11 5 7 6 6 242 8 

10 2 6 7 4 7 15 10 15 8 237 
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Table 23. Local binary patterns dataset confusion matrix. 
  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 460 7 4 4 2 2 6 5 10 15 
2 12 499 7 7 8 9 7 3 11 7 
3 2 4 457 24 11 1 2 1 5 9 
4 9 9 12 486 30 6 0 0 8 17 
5 3 15 18 35 522 8 3 0 5 17 
6 10 14 2 4 11 531 4 2 7 15 
7 3 2 1 0 0 1 517 1 2 4 
8 10 1 1 0 0 5 3 554 1 0 
9 5 7 7 8 1 9 4 0 525 4 

10 15 5 31 13 9 4 2 0 1 457 

Table 24. Histogram of gradients dataset confusion matrix. 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 174 15 14 11 5 0 1 17 19 17 
2 24 207 8 11 10 13 8 9 25 12 
3 18 10 199 25 12 4 2 6 20 13 
4 7 5 22 168 24 15 3 4 10 24 
5 8 7 11 18 181 19 15 4 6 19 
6 0 7 2 9 24 195 19 5 7 15 
7 16 39 16 21 34 62 259 39 20 38 
8 10 4 3 5 6 2 1 189 5 3 
9 30 19 17 9 8 3 1 12 176 14 

10 10 15 16 23 13 11 11 3 19 161 

Table 25. Shi-Tomasi corner detector confusion matrix. 

  Actual class  

 1 2 3 4 5 6 7 8 9 10 

Pr
ed

ic
te

d 
cl

as
s 

1 45  26 36 22 23 19 15 17 30 25 
2 22 77  34 16 10 18 16 5 15 59 
3 46 40 49  52 49 40 27 33 25 42 
4 28 30 41 43  48 35 27 23 22 27 
5 23 16 36 36 30  42 22 23 14 11 
6 29 21 39 42 46 56  53 26 29 27 
7 16 23 15 30 34 35 75  16 31 28 
8 27 5 37 23 32 37 16 139 14 9 
9 27 22 12 13 20 26 38 7 104 24 

10 24 58 21 26 23 17 27 7 30 63  

6.3.3  Discussion 

The goal of this experiment was to carry a comparative study of seven different 

algorithms for hand feature extraction, aimed at static hand gesture classification and 

recognition, for human computer interaction. 

All the data analysis experiments were carried with RapidMiner, on an Intel Core i7 

(2.8 GHz) Max OSX computer with 4Gb (DDR3) of RAM. 

It was important to test the robustness of all the algorithms, applied individually, in 

terms of scale, translation and rotation invariance. After all the tests and having 
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analysed the obtained results the conclusion was that further pre-processing on the 

video frames was necessary in order to minimize the number of different feature 

values obtained for the same hand posture, due to the presence of noise in the depth 

image. The depth video images obtained with the Kinect camera had low resolution 

and some noise. It was observed that some imprecision on data recordings results 

from those problems, leading to more difficult gesture classification and model 

learning. This is possible to observe on the confusion matrices, where many wrong 

predictions in each type of features contributed to the final low classification results, 

being the worst case the Shi-Tomasi corner detector. 

Due to this situation, it was decided that a temporal filtering and/or a spatial filtering 

should be used and would be tested and analysed to see if better results could be 

achieved. 

It has been found that the radial signature and the centroid distance were the best 

shape descriptors tested in this experiment in terms of robustness and computation 

complexity. The simplicity of these results follows the Occam’s razor principle 

which states that “simpler explanations are more plausible and any unnecessary 

complexity should be shaved off”.  

Better results were expected from the Fourier descriptors, after having analysed 

related work on the area with this type of features. In this case, even with the 

algorithm that achieved the best results, the k-NN with k=1, the results fell far short 

from the expected. 

For the case of the Local Binary Patterns although the obtained accuracy was 89,3% 

with a SVM, some more experiences should be done in the future in order to try to 

achieve better results. Some authors used combinations of LBP features, like 

geometric moments used by Marek Hrúz et al. [51] with a combined accuracy of 

99,7% for signer dependent tests but with only 57,4% for signer independent tests. 

Others, like Jinbing Gao et al. [53], used a combination of LBP features with HoG 

features to train a SVM classifier and were able to achieve an accuracy of 95,2% in 

real-time situations. 

For the Histogram of Gradients, although with a different implementation from the 

ones described in the literature, the values obtained were largely disappointing with 
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an accuracy of 61,5%. When compared with previous experiences with this type of 

feature, the results were much worse than expected, which has somehow 

demonstrated that as described in the literature, variations in its simplest form or 

combined with other types of features can give better results. 

This experience was an important step towards starting to realize what kind of 

features and which classifiers could be used in future system implementations in 

order to obtain robust hand recognition in real-time. 

6.4 Integration of Static and Dynamic Gestures 

6.4.1  Experimental Setup 

This experiment main goal was to test the integration of static and dynamic gestures 

into a unique vision-based system for real-time human/computer interaction. For 

that, a decision had to be made for the type of features to use in static hand posture 

classification, and the type of features to use in dynamic gesture classification. Also, 

a method to integrate the two types of gestures in the final system had to be chosen 

as well. 

Thus, the experiment was divided into three parts, with the first two having its own 

application for feature extraction and model training and testing.  

For static hand posture classification it was decided to use as hand features, the 

centroid distance features, since these were the one that gave better results in 

previous experiments, being at the same simple in terms of computationally 

complexity, making them good candidates for applications that implied real-time 

recognition. So, the first part of the experiment implied the development of an 

application for hand feature extraction and model training and testing for a set of 

predefined static postures. For the type of features used, the hand binary blob had to 

be segmented and the hand contour calculated. For feature extraction, model learning 

and testing, a C++ application was built with openFrameworks, OpenCV [28], 

OpenNI [131] and the Dlib machine-learning library [145]. Figure 93 shows the 

main user interface for the application, with a sample vector (feature vector) for the 

posture being learned displayed below the RGB image. 
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Figure 93. Static gesture feature extraction and model learning user interface 

A centroid distance dataset was built with 7848 records each with 32 feature values 

obtained from four users. The features thus obtained were analysed with RapidMiner 

in order to find the best learner and the best parameters through a parameter 

optimization process.  

The second part of the experiment implied the development of an application for the 

acquisition of hand motion sequences (dynamic gestures) for each of the defined 

gestures, feature extraction, model training and testing. For these features, the hand 

path set of points were used and labelled according to a set of predefined centroids or 

alphabet. As explained in section 3.4, gestures are time-varying processes which 

show statistical variations, so, it was decided to model this type of gestures with 

Hidden Markov Models. 

A C++ application was built with openFrameworks, OpenNI and an 

openFrameworks addon implementation of the HMM algorithm for classification 

and recognition of numeric sequences (ofxSequence). This addon is a C++ porting 

implementation of a MATLAB code from Kevin Murphy [166]. Figure 94 shows the 

main user interface for the application, with a hand path drawn on top of the 

centroids with the corresponding labels marked as white lines. For each gesture that 

required training, a dataset was built and the system trained in order to learn the 
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corresponding model parameters. For the experiment, the number of observation 

symbols defined was 64 with 4 hidden states. Several values for the number of 

observations in the set {16, 25, 36, 49, 64, 81}, and hidden states, ranging from 2 to 

12 were tried out, without significant improvements for values greater than the 

selected ones, so those were the ones implemented in the final system. 

For the tests, a new set of datasets were built with data from four different users with 

a total of 25 per gesture and per user, totalling 1100 records for the predefined 11 

gestures (Figure 47). The final test datasets were then analysed with the previous 

obtained models. 

 
Figure 94. Dynamic gestures feature extraction and model training user interface. 

The final step was concerned with the decision of how to integrate the two types of 

gestures. Due to the characteristics of the camera used, it was not possible to define 

gestures with changing postures during the all hand path, since the obtained image 

became blurred and therefore difficult to work. Also, as the identification of the start 

and end of a dynamic gesture, as in natural human language, it is still a difficult task 

where there is still a lot of work to be carried out, it was decided to model gestures as 

sequences of commands, composed of static and dynamic gestures, with a finite state 
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machine to control the transitions between them. Although there may be other 

possibilities of implementation for this type of problem, this was the final decision. 

6.4.2  Results 

The first part of the experiment, as explained in the previous section, implied the 

analysis of the obtained features in order to find the best learner for the given data, 

and the best parameters through a parameter optimization process. 

In order to find the best learner for the data under analysis, a process was built in 

Rapid Miner that iterates through the following three possible learning algorithms: 

the SVM, the ANN and the k-NN, and select the best result. The following images 

show the Rapid Miner configurations for the process setup, i.e., from the main screen 

setup with a parameter optimization definition, through the specification of the three 

learning algorithms to test, in the final one. By opening the “Optimize Parameters 

Grid” object by double-clicking it, we get to the Validation setup (Figure 96). Here, 

the parameters and type of cross-validation to be used are defined, which in the 

current experiment were performed with a 10-fold cross validation with a stratified 

sampling type. The same way, by opening the “Validation” object, goes next to the 

Training and Testing setup (Figure 97), where is selected in the training phase a 

Select Sub-Process object for learner selection and in the testing phase the Apply 

Model object and the Performance object that will give the accuracy for each one of 

the chosen algorithms. Selecting the “Select Sub-Process” object opens the final 

setup window shown in Figure 98. This is where the learners to test are defined in 

order to obtain for the given data, the best one.  
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Figure 95. First Rapid miner setup screen for the Find Best Learner Process  

(Read dataset and Parameter Optimization) 

 

 
Figure 96. Second Rapid miner setup screen for the Find Best Learner Process (Validation) 
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Figure 97. Third Rapid miner setup screen for the Find Best Learner Process  

(Select Sub-Process). 

 

 
Figure 98. Fourth Rapid miner setup screen for the Find Best Learner Process  

(Learn algorithms definitions). 

After running this Rapid Miner process, the best learning algorithm obtained was the 

SVM and therefore the one implemented in the final system.  
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The next step was to find the best parameters for the selected learner. For this, a rbf 

kernel was selected, since as explained in the Rapid Miner documentation, this is a 

reasonable first choice, and so was the one decided to use on the experiments.  

A parameter optimization was thus carried out on two of the SVM parameters: the 

cost parameter C value, with values in the range 0 to 10, and the parameter gamma, 

with ranges from 0.1 to 0.9, as shown in the configuration window of Figure 99. 

With the experiment an accuracy of 99,2% was achieved for the given hand features 

and the obtained best parameters were 6 for the cost value C and 0.1 for the gamma 

value with the rbf kernel. 

 
Figure 99. Centroid distance dataset SVM parameter optimization. 

In order to analyse how classification errors were distributed among classes, a 

confusion matrix was computed for the dataset under analysis with the final result 

shown in the following table.  
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Table 26. Centroid distance confusion matrix 
 Actual class 

Pr
ed

ic
te

d 
cl

as
s 

 1 2 3 4 5 6 7 

1 588 0 0 0 0 2 0 

2 2 706 0 0 1 0 1 

3 0 1 578 1 0 0 0 

4 0 0 12 715 3 0 0 

5 0 1 1 13 536 1 3 

6 1 8 0 1 5 693 12 

7 2 0 0 2 6 9 751 

 

For the dynamic gestures testing and since RapidMiner did not had at the time of this 

writing the possibility to test datasets composed of HMM observation records, a 

function based on the following formula was implemented and included in the 

system in order to obtain an accuracy for each model and also a final average 

accuracy. 

! !""#$!"% = !#!!"##$!%&'!!"#$%&'#$!!"#$$#!!"!#$!!"#!i!"!!!!"" ×100%!! (31)!

As explained in the previous section, the test datasets were analysed with the 

previous obtained models and the final accuracy results obtained are represented in 

the following table. 

Table 27. Hidden Markov Models accuracy for each gesture defined (Figure 47) 

Gesture  1 2 3 4 5 6 7 8 9 10 11 

Accuracy 75% 100% 100% 100% 92% 88% 92% 100% 100% 96% 88% 

 
So, for the dynamic gesture recognition, with the HMM models trained with the 

selected features, an average accuracy of 93,72% was achieved with the test dataset. 

6.4.3  Discussion 

The goal of this experiment was to test the integration of static and dynamic gestures 

into a unique vision-based system for real-time human/computer interaction.  

The experimental results showed that the system was able to recognize the 

combination of gestures and hand postures in real-time, although with some 
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limitations due to the nature of the camera used. Despite these limitations, for the 

hand posture recognition, with the SVM model trained with the selected features, an 

accuracy of 99,2% was achieved.  

In the centroid distance confusion matrix one can verify the existence of some high 

error classification values between command number four and three, between 

number five and four and between number six and seven, and that contributed to the 

0,8% of false positives. 

However, when comparing the results with those that have been reviewed in the 

literature in terms of SVM classification, these features managed to achieve a level 

of performance far superior to those presented, and so, this could be a good solution 

for vision-based interfaces for human / computer interaction. 

Ching-Tang Hsieh et al. [93] used Fourier Descriptors as hand features to train a 

SVM classifier and obtained an accuracy of 93,4%. Yen-Ting Chen et al. [96] on the 

other hand trained three SVM’s, with data from three cameras, fused later according 

to three different plans. With this implementation their were able to achieve a final 

accuracy of 93,3% although with the advantage of being a multi-view hand gesture 

recognition. Jinbing Gao et al. [53] proposed an adaptive HoG-LBP detector method 

with which they were able to achieve a final accuracy of 95,2%. Liu Yun t al. [97] 

presented an automatic hand gesture recognition system based on Hu invariant 

moment features and a SVM classifier. They were able to achieve a total recognition 

rate of 96,2% for a dataset composed of three postures. Nasser H. Dardas et al. [99] 

used SIFT features with a final accuracy of 96,23%. 

For the dynamic gesture recognition, although the obtained average accuracy of 

93,72% is considered satisfactory, there is still some work to be carried out in this 

area in order to improve the obtained results. One could observe from the individual 

gestures accuracy that gesture one obtained a result considered low relative to 

expectable. Also notice during the tests, that this particular gesture was sometimes 

confused with gesture number ten (END GAME). Also, gestures six and eleven 

obtained low accuracy values. Some more tests must be performed, including new 

model construction with data obtained from more users and features obtained from 

3D hand paths should also be experimented.  
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The proposed solution was able to achieve better results than some implementations 

described in the literature (section 2.3.5.4), like the solution proposed by Chen et al. 

[103] with an accuracy of 85% and the solution proposed by Yoon et al. [104] with 

an accuracy of 93% in the batch tests and 85% on the online tests. However, we got 

worst results compared to the solution proposed by Nguyen Dang Binh et al. [105] 

with an accuracy of 98% and Mahmoud Elmezain et al. [107] with an average 

accuracy of 98,94% for the isolated gestures and an average accuracy of 95,7% for 

the continuous gestures. 

As a final conclusion it is possible to say that, although the system still needs to 

evolve and is not a final solution, it was able to successfully integrate posture and 

gesture recognition with good results during the online tests carried in the laboratory 

under different types of conditions and different users. 

6.5 A Comparative Study of Hand Features for Sign Language Recognition 

6.5.1  Experimental Setup 

This experiment mail goal was to compare the centroid distance hand features, used 

in the previous experiment, with a new type of features built from the hand depth 

image distance values, in order to test which one could achieve better results in 

Portuguese Sign Language recognition. The distance values, which represent the 

distance from the object to the camera, can be seen in the image of Figure 100, with 

different distances represented by different grey values. The distance values could 

represent, in our opinion, good hand features giving a more possible hand 

representations with the same viewpoint.  

For the centroid distance, in this experiment, only 16 feature values were used. For 

the distance values, the hand image is resized to be 16x16 pixels in size, giving a 

final vector with 256 features. So, for this experiment, two types of images were 

used during the feature extraction phase: 

1. the binary hand blob for the centroid distance histogram calculation, as in the 

previous experiment. 

2. the hand distance image for the distance feature vector. 
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For the centroid distance database, a total of 2170 records with 16 features were 

used, and for the distance values database, a total of 2488 records with 256 features 

were used. 

 
Figure 100. Hand depth image. 

For data acquisition and pre-processing, the same application from the previous 

experiment was used and a function to extract the hand distance values, resize it and 

build the feature vector was implemented. 

All the datasets were converted to Excel files to be imported into RapidMiner for 

data analysis. The experiment was divided into two phases with the purpose of 

testing for each dataset which parameters to use. First, the goal was to test in terms of 

SVM classification, which kernels would achieve the bests results with the two 

datasets among the following: linear, sigmoid, rbf (radial basis function) and 

polynomial. Although the rbf kernel is a reasonable first choice, there are some 

situations where this is not suitable. In particular, when the number of features is 

very large, one may just use the linear kernel. This was the reason that led us to 

perform this test. Second, for each dataset, it was decided to run a parameter 

optimization test dependent on the chosen kernel type, in order to obtain the best 

parameters to be implemented in the final solution. Figure 101 shows the 

RapidMiner process configuration for the kernel and the C (cost value) parameter 

optimization. 

Although in this experiment the datasets contained only features corresponding to the 

vowels, the model is easily extendable to the rest of the alphabet. 
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Figure 101. RapidMiner sign language dataset, kernel type and C value, parameter 

optimization 

6.5.2  Results 

The first phase of the experiment, as explained in the previous section, was to learn 

which kernels behaved better in terms of SVM data classification for the two 

datasets. As can be seen on Table 28, for both datasets, the obtained best kernel type 

was the linear kernel, with a difference only on the obtained C parameter. For this 

reason the second part of the experiment was unnecessary, since the linear kernel 

does not need any further parameter optimization. 

Table 28. Obtained kernel type and C value for the  
two datasets through parameter optimization 

Parameters Dataset 1 Dataset 2 
kernel type linear linear 
C 1 2 

 

The following table presents the obtained accuracy for each dataset with the 

corresponding kernel type and C value. 



170  Experiments and Results 

 

Table 29. Obtained accuracy for each dataset. 

Parameters Dataset 1 Dataset 2 
Kernel type Linear linear 
C 1 2 
accuracy 99,4% 99,6% 

 

In order to analyse how classification errors are distributed among classes, a 

confusion matrix was computed for each one of the datasets under study. The 

resulting confusion matrixes are represented in the following two tables. 

Table 30. Centroid distance features confusion matrix 

 Actual class 
1 2 3 4 5 

Pr
ed

ic
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d 
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s 

1 455 0 0 2 0 
2 0 394 1 1 0 
3 0 0 401 1 0 
4 4 2 0 382 0 
5 0 0 1 0 439 

Table 31. Distance features confusion matrix 

 Actual class 
1 2 3 4 5 

Pr
ed

ic
te

d 

cl
as

s 

1 622 0 8 0 10 
2 0 543 1 0 1 
3 0 3 451 0 0 
4 0 0 0 413 0 
5 0 0 1 0 434 

6.5.3  Discussion 

The goal of this experiment was to carry a comparative study of two different types 

of hand features for the problem of sign language recognition using a support vector 

machine (SVM). It was decided to choose this learning algorithm since it had already 

shown good results in the previous experiment, in terms of classification, with one of 

the hand features under study. From Table 29 one can easily see that the two 

different features gave similar results in terms of classification accuracy, with only a 

small difference of 0,2%. From the obtained results so far, one can conclude that the 

new features are not an asset, having the disadvantage of being heavier in terms of 

number of features and final sizes of the dataset and generated model. The 
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corresponding confusion matrix also shows, that some major classification errors 

occurred between gesture one, the ‘A’ vowel, and gestures three and five, 

corresponding to the ‘E’ and ‘U’ vowels respectively. 

The centroid distance, on the other hand, being simple in terms of computational 

complexity gives rise to smaller datasets and a small model file. 

Although the results were encouraging, further tests should be carried out, including 

not only more features from new users as well as the rest of the alphabet in the 

datasets.  

6.6 Summary 

This chapter presented a set of experiments carried out during the current thesis, in 

order to find hand features that could give good results in terms of hand gesture 

recognition for real-time vision-based systems. 

The main goal of the first two and the last experiments was to discover features that 

could be used in static hand gesture classification. The third experiment also had the 

intention to test and select features that could be used in dynamic gesture 

classification. 

With the selected features, the intention was to learn models, using machine learning 

algorithms, that could be used on those systems. 

For data analysis, RapidMiner was used, giving us the possibility to rapidly explore 

different scenarios with different learning algorithms with the created datasets. This 

tool was a crucial factor in the analysis of all obtained data. 

With this set of experiments, it was possible to arrive to a set of features and a 

learning algorithm that generated a model able to achieve an accuracy of 99.4% in 

terms of static hand posture classification. It was also possible, with the selected and 

tested features for dynamic gestures and the Markov models generated for each 

gesture, to obtain very good classification results, with an average accuracy of 

93,72%.  

Although the results obtained so far, in terms of static gestures and in terms of 

dynamic gestures are very encouraging, after analysing them it is possible to 

conclude that further work may still be carried out in this area. It is however 
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important to point out that the implemented solutions are a solid foundation for the 

development of generic gesture recognition systems that could be used with any 

interface for human computer interaction. 

 



 

 

7 Conclusions and Future Work 

This chapter gives an overview of the work reported in this thesis, along with main 

results and conclusions. The tools and results achieved are underlined and some 

development perspectives and future directions are also presented. 

7.1 Synthesis of Developed Work 

The main goal of this work was the study, project and implement real time gesture 

recognition solutions, generic enough, with the help of machine learning algorithms, 

in order to allow their application in a wide range of human-machine interfaces. In 

this context, the work carried out comprised the: 

• Study of the concepts of object classification, feature extraction and the 

various methodologies proposed by researchers in order to perform gesture 

classification. 

• Analyse of application fields, appropriate for the application of the 

methodologies for gesture recognition, namely: remote robot control, robotic 

wheel-chair control, the RoboCup soccer league, the RoboCup@Home 

league and sign language recognition. 

• Study of the approaches of other researchers in the area of the domains of 

interest, with emphasis on methodologies for static gesture recognition and 

dynamic gesture recognition. 

• Identification of hand features that are simple in terms of computational 

complexity, to be used in real-time applications. 

• Definition of a new and formal language – Wheelchair CommLang – that 

allows the representation of all the possible gestures that can be used as 

commands to control a robotic based wheelchair. 

• Definition of a new and formal language – Referee CommLang – that allows 

the representation of all possible gesture combinations (static and dynamic) 

for the MSL referee commands. 

• Development of an application that enables a user to remotely control a robot 

with a number of simple hand commands. 
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• Development of an application that enables a user to drive a robotic base 

wheelchair with a minimum number of finger commands. 

• Development of two applications for offline training of static and dynamic 

hand gestures, in order to create models that can be used for online gesture 

classification. 

• Development of an integrated vision-based hand gesture recognition system, 

for the classification of the MSL referee commands defined in the new formal 

language (Referee CommLang). 

7.2 Main Results and Conclusions 

Hand gestures are a powerful way for human communication, with lots of potential 

applications in the area of human computer interaction. Vision-based hand gesture 

recognition techniques have many proven advantages compared with traditional 

devices. However, hand gesture recognition is a difficult problem and the current 

work is only a small contribution towards achieving the results needed in the field. 

The main objective of this work was to study and implement solutions that could be 

generic enough, with the help of machine learning algorithms, allowing its 

application in a wide range of human-computer interfaces, for online gesture 

recognition. To achieve this, a set of implementations for processing and retrieving 

hand user information, learn statistical models and able to do online classification 

were created. The final prototype is a generic solution for a vision-based hand 

gesture recognition system, that is able to interpret static and dynamic gestures and 

that can be integrated with any human robot/system interface. The implemented 

solution, based on supervised learning algorithms, is easily configured to process 

new hand features or to learn different static and dynamic gestures, while creating 

statistical models that can be used in any real-time user interface for online gesture 

classification.  

For the problem of static hand posture classification, the hand features that give good 

classification results were identified, being at the same time simple in terms of 

computational complexity, for use in any real-time application. The selected features 

were tested with the help of the RapidMiner tool for machine learning and data 
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mining. That way, it was possible to identify a learning algorithm that was able to 

achieve very good results in terms of pattern classification, and that was the one used 

in the final solution. 

For the case of dynamic gesture recognition, the choice fell on Hidden Markov 

Models, due to the nature of the data, gestures, which are time-varying processes. 

This type of models has proven to be very effective in other areas of application, and 

had already been applied successfully to the problem of gesture recognition. The 

evaluation of the trained gestures with this prototype proved that, it was possible to 

successfully integrate static and dynamic gestures in the generic system for human / 

computer interaction. Although in the implementation only 2D hand paths were used 

in order to extract dynamic gesture features, it was shown that for the current system 

configuration and the set of predefined assumptions, that type of information was 

enough. 

It was also possible to prove through this study, and with the various experiments 

which were carried, that proper feature selection for image classification is vital for 

the future performance of the recognition system. It was possible to learn and select 

sensible features that could be effectively used with machine learning algorithms in 

order to increase the performance and effectiveness of online static and dynamic 

gesture classification. 

To demonstrate the effectiveness of our vision based gesture recognition system, the 

proposed methods were evaluated with the Referee CommLang Prototype, able to 

interpret user commands defined in the new formal language, the Referee 

CommLang, created with the aim of interpreting a set of commands made by a 

robotic soccer referee. The proposed methods were also evaluated with the Sign 

Language Recognition prototype, able to interpret the Portuguese Sign Language 

vowels. 

An important aspect to report on the implemented solution has to do with the fact 

that new users were able to learn the system very quickly and were able to start using 

it in a normal way after a short period of time, making it a solution that can be easily 

adapted and applied to other areas of application. 
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Although to date, the system has been tested in laboratory under various conditions 

and with various users, it was not possible to test the prototype in a real competition 

environment with real situations due to calendar restrictions, but it is expected to 

validate on next year’s National Open. 

7.3 Limitations 

Despite all the work carried out, the final solution has some limitations mainly due to 

the type of camera used. Although the camera has advantages in some aspects that 

were explored in the development of the project, it has however some limitations 

with implications in the final work. Following are present the main system 

limitations. 

• The system is only prepared to work immediately with the camera used in the 

experiments. 

• Hand pose must be defined with a bare hand and not occluded by other 

objects, i.e., the selected hand features are not robust to partial occlusions. 

• The system is not capable of viewpoint independent hand gesture recognition. 

• The system needs that the user is positioned in front of the camera, within a 

predefined perimeter area and within a defined distance range due to camera 

limitations. 

• The system does not allow continuous dynamic gestures. 

• The current system does allow the recognition of static gestures during the 

execution of dynamic gesture, due to camera limitations. 

• The system only works in indoor environments due to the characteristics of 

the camera used. 

7.4 Major Contributions 

The major contributions of this thesis are: 

• Definition of a new and formal command language which may be used in any 

type of vision-based system, able to interpret a large number of commands. 

Those commands can be used to control, among others, a robotic wheelchair 

or a robotic soccer game. This language was defined using Bakus Naur form 
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with the advantage of being simple in its syntax and easily adapted to other 

areas of application. 

• Project and implementation of a system that is able to remotely drive a robot 

or control a electronic device using a finite set of hand gestures.  The system 

is flexible enough to be easily adapted, with minor changes, to control 

distinct robots performing remote operations and other kinds of systems. 

•  Implementation of two applications able to train and learn statistical based 

models, for static or dynamic gesture recognition. The learned models may 

then be integrated in any vision-based system for real time hand gesture 

classification. 

• Implementation of a generic system able to recognize static, dynamic or a 

combination of both types of gestures to classify any sequence of gestures in 

real-time, using previously learned models. The classification is controlled by 

the command definition with the new formal language. 

• Definition of methodologies enabling the integration of machine learning 

algorithms to increase the performance and effectiveness of real time static 

and dynamic gesture classification systems. 

• Development of three fully-functional gesture based control applications for 

robot remote control, MSL robotic soccer refereeing and sign language 

recognition, in order to validate the approach. 

7.5 Development Perspectives and Future Work 

Although the objectives of this thesis are fulfilled, many situations arose during the 

study that should be implemented and some others experimented and explored. 

So, this section identifies some possible developments and further work that on one 

hand can be implemented as a complement to what was developed during this thesis, 

or as promising and worth exploring areas. 

In short, as major development prospects and further work it is suggested: 

• To improve the data acquisition phase, thus giving the possibility to improve the 

type of hand features extracted, being able to construct more reliable statistical 
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models for online classification. In order to pursue this objective, ways must be 

found to reduce the noise present in the type of cameras used in the present study, 

or possibly try new cameras available at the moment, with improved depth 

resolution and with a higher frame frequency. 

• Build an add-on that would allow to easily configure system settings in terms of 

number and type of static and dynamic gestures. 

• Implement the Command Definition Language module. This module would allow 

to easily managing settings related to the definition of the new commands. 

• Explore other machine learning algorithms applied to the problem of hand 

gesture classification and compare obtained results. 

• Include not only the possibility of 3D gestures but also to work with several 

cameras to thereby obtain a full 3D environment and achieve view-independent 

recognition, thus eliminating some limitations of the current system. 

• Explore the possibility of applying stereo vision instead of only depth range 

cameras, applied to human / computer interaction and particularly to hand gesture 

recognition. 

• Introduce gesture recognition with both hands, enabling the creation of more 

natural interaction environments. 

• Investigate and try to find more reliable solutions for the identification of the 

beginning and end of a gesture. 

• Build systems that are able to recognize continuous gestures, i.e., without the 

need to introduce pauses for gesture or command construction. 

• Explore reinforcement learning as a way to start with a reduced number of hand 

features per gesture, reducing the time to learn the models, and be able to learn 

with user interaction, possibly using multimodal dialog strategies. 

• Explore unsupervised learning applied to gesture recognition. Give the 

robot/system the possibility to learn by interaction with the user, again with the 

possibility of multimodal strategies. 

As a final conclusion one can say that although there is still much to do in the area, 

the implemented solutions are a solid foundation for the development of generic 

gesture recognition systems that could be used with any interface for human 
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computer interaction. The interface language can be redefined and the system can be 

easily configured to train different set of gestures that can be easily integrated with 

any desired solution. 
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