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“Always do your best. What you plant now, you will 

harvest later.” 

 

Og Mandino 
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SINGLE LINE FOR ASSEMBLY JUST-IN-
SEQUENCE MULTIPLE MODELS – ABSTRACT 

The automotive industry is under a deep competitive reorganization 

process that manifests itself both on the demand and on the supply side. The 

competitiveness of this reorganization is highly dependent on a flexible production 

system, able to produce on demand, different vehicles (models) on a single 

assembly line. Due to demand requirements, production has to adjust faster to new 

models, each one with a large number of individual feature variants, and 

complexity grows in production. In addition, lean manufacturing principles 

introduced Just-in-Sequence as a further key issue of modern automotive 

production. In order to explore the single line concept related with the Just-in-

Sequence principle, Car Sequencing policies avoiding blockage and starvation 

caused by product variety are needed.  

The main goal of this project was the development of a mathematical model 

and a computational tool to define the car sequence in the final assembly line in a 

daily production run. The car sequence depends on the daily demand, called the 

production mix, and should avoid line stoppages and minimize the number of 

workers needed to complete the sequence in the minimum time. 

This goal was achieved and we have created a new exact approach for Car 

Sequencing that considers limited capacity, special markets priorities and 

clustering of colors. An Integer Programming model was developed, but when 

considering clustering colors it became more complex and hard to solve. To 

overcome this difficulty a heuristic procedure was presented. Results show that 

the use of this new heuristic integrated with the exact integer model is a good 

approach for the Car Sequencing problems. The models were run in the software 

IBM ILOG 12.2 framework in a Intel® Core™2 Duo CPU T9600 Toshiba laptop @ 

2.80GHz with 6 GB of RAM and we obtained good results for the heuristic in less 

than half an hour, for three hundred cars and seventeen options.  

As a result of our work we show that the clustering of colors improves the 

performance of the global manufacturing system and that our tool can be used 

daily for Car Sequencing in automotive companies.  
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SINGLE LINE FOR ASSEMBLY JUST-IN-
SEQUENCE MULTIPLE MODELS – RESUMO 

Atualmente, a indústria automóvel encontra-se sobre profunda 

reorganização como resultado das alterações na procura dos automóveis. Estas 

reestruturações serão tanto mais competitivas quanto mais flexível for o sistema 

de produção, tendo capacidade de se adaptar a diferentes procuras, de diferentes 

variantes de carros com graus de complexidade diferentes e sendo capaz de 

produzir estes carros numa linha única. Os princípios Lean introduziram o 

conceito just-in-sequence como a chave para a modernização e para a capacidade 

de adaptação a esta nova realidade da indústria automóvel. O conceito de linha 

única associada ao conceito just-in-sequence levou à procura de políticas de 

sequenciação de carros que evitassem o bloqueio e a paragem das linhas. 

O principal objetivo desta tese de doutoramento foi desenvolver um modelo 

matemático e uma ferramenta computacional para definir a sequência dos carros 

na montagem final, num dia de produção. A sequência de carros depende da 

procura diária e deve evitar paragens de linha e minimizar o número de operários 

necessários para completar a sequência no mínimo tempo possível. 

Este objetivo foi alcançado e foi desenvolvida uma nova abordagem exata 

para sequenciar carros considerando capacidade limitada, prioridades para 

mercados especiais e o agrupamento de carros da mesma cor. Foi desenvolvido um 

modelo de programação inteira, mas quando se considerou o agrupamento de 

carros da mesma cor, o modelo tornou-se mais complexo e difícil de resolver. Por 

este motivo, foi criado um modelo heurístico integrado com o modelo inteiro exato, 

que resulta numa boa abordagem para os problemas de sequenciação. Os modelos 

foram testados no software IBM ILOG 12.2 num computador Intel® Core™2 Duo 

CPU T9600 Toshiba laptop @ 2.80GHz with 6 GB of RAM e obtiveram-se bons 

resultados em menos de meia hora, para trezentos carros e dezassete opções. 

Como resultado deste trabalho demonstramos que agrupar os carros por 

cores na montagem final melhora a performance global do sistema de produção e 

que a nossa ferramenta pode ser usada diariamente para sequenciar os carros a 

produzir na montagem final da indústria automóvel. 
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1 INTRODUCTION 

The production in the same line of different cars just-in-sequence causes 

problems that raise important research challenges. Such challenges are related, 

amongst other aspects, to the balancing, sequencing, space allocation for feeding 

and work management in the single line. Also, the operation of a multiproduct 

single line is characterized by a high variability.  

The above issues can be tackled with an appropriate design of the plant 

using the right approaches for balancing and sequencing complex and high 

variability work flows, together with well placed buffers to help reaching the 

adequate throughput with a minor increase of the Work in Progress while 

minimizing costs.  

The studies that focus on the sequencing problems applied to the 

automotive industry do not exist in a large number in the literature. Most of them 

were developed in the ROADEF'2005, where Renault proposed a challenge to 

researchers in this field. The majority of these studies were developed considering 

heuristic approaches as Local Search and Ant Colony Optimization. Only few works 

as Drexl and Kimms (2001) and Prandstetter (2005) applied Exact techniques to 

the Sequencing problem. For this reason this is an area where improvements can 

be done and this is an opportunity to develop a relevant work in industrial 

environments trying to apply exact mathematical models to real problems. We will 

explore such opportunity for the above reasons and also as a result of the current 

manufacturing processes in the automotive industry and the necessity to react to 

diversified market needs. In the automotive sector, particularly, where several 

changes have been made at the production and logistic levels this is a relevant 

issue. Therefore, the design and planning of mixed model assembly lines appears 

nowadays as a core competence to be addressed where sequencing issues dealing 

with blockage and starvation caused by product variety need to be accounted for. 

To study these issues we worked in strict relation with an European car 

manufacturer that holds a plant in Portugal. For confidentiality reasons we can not 

reveal the name of the company but all the developments achieved were shared 

and are being improved with this partner. 
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1.1 PROBLEM DEFINITION  

Analyzing the economic situation in 2008 it is possible to identify that the 

European automotive industry faces new challenges related to the growing of 

competitiveness. As an important playmaker in the European automotive industry, 

our automotive partner had a huge impact in this project. In 2008 they needed to 

address volume, models flexibility and cost reduction to meet the new market 

challenges. Because of this, they decided to implement the concept of a single line, 

allowing to assemble just-in-sequence multiple models in a single assembly line. 

This final assembly line is producing, since 2010, four different models. However, 

two of these models are similar and are usually considered as one unique model.  

In 2008, three possible areas of work were identified considering that in 

2010 our automotive partner should begin the production of cars in a single 

assembly line. These areas are represented in Figure 1 and involve the production 

mix, the line balancing and the stochastic lines analysis. These three main areas are 

currently important research areas in automotive industries worldwide. 

 

Figure 1: Possible areas of research. 

  

Production 
mix

Line 
balancing
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These areas lead us to the identification of many problems that could be 

addressed including: 

 definition of sequencing rules to improve the line performance; 

 definition of a sequence, dependent on the daily demand; 

 optimization of the line balancing to improve the line stoppage times; 

 improving the line performance taking into account the production mix 

and line balancing - iterative process involving the three areas; 

 and many others... 

However, we and our automotive partner in several meetings have decided 

that the present project should focus on sequencing cars for the final assembly line 

so as to ensure the delivery of the vehicles just in sequence, without degrading the 

efficiency of the system. This problem is also an actual recent research problem in 

the scientific community with a high margin for improvements. Thence, in this 

project we intend to formulate: 

 the decision problem that consists in deciding whether it is possible to 

find a sequence that satisfies all capacity constraints; 

 the optimization problem that involves finding a minimum cost 

sequence, where the cost function evaluates constraint violations. 

It is important that this formulation could give results in less than half an 

hour, allowing the planning and re-planning of the sequence for each shift, quickly 

enough not to disturb the current sequence that already entered in production. 

The re-planning is necessary when, for example, an urgent order is requested or 

when a supplier fails a delivery. 
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Summarizing, the research questions can be written as following: 

 Is it possible to build a Car Sequencing model that given a daily demand 

determines the best sequence considering, by order of importance, the 

number of times that a capacity constraint is violated, that special cars  

should come first in the sequence and finally the spread of cars with the 

same color? 

 Is it possible that this model gives solutions in less than half an hour, 

allowing the use of this tool daily for Car Sequencing in automotive 

companies?  

1.2 MAIN CONTRIBUTIONS 

In the last years the mathematical programming software achieved great 

improvements. In the past it was only possible to solve small problems, but 

nowadays with computer and software performance improvements exact methods 

could be feasible. In order to contribute to the development of an exact method 

that could provide efficient solutions to real problems we explore the Car 

Sequencing problem trying to solve it using exact methods. 

We defined in a multi-objective perspective that a good sequence is the one 

that considers by order of importance: 

 Minimization of the number of times that a capacity constraint is 

violated using the ROADEF'2005 method (described in detail on 

subsection 4.3.2); 

 Trying to place all the special cars first in the sequence (described in 

detail on subsection 4.3.3); 

 Minimization of the spread of cars with the same color (described in 

detail on subsection 4.3.4). 
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The concept of an assembly sequence that minimizes the sum of the spread 

values of cars with the same color is different from the traditional concept of 

minimizing the number of color changes in the assembly sequence, presented for 

example in Prandstetter and Raidl (2008). Instead of minimizing just the number 

of color changes, our approach, tries to place the cars of a given color as close as 

possible in the assembly line. The detailed explanation of this concept can be found 

on subsection 4.3.4. As a result of our work we show that this new concept 

improves the performance of the global manufacturing system. However, the 

mathematical model that considers the spread of cars with the same color is more 

complex and harder to solve. For this reason, a new heuristic, also based on exact 

methods, was developed. The new heuristic provides good results in the 30 

minutes constraint defined in the research questions, when tested for three 

different production mixes that might occur in different periods of the year.  

Therefore as a result of this research, we prove that the developed tool can 

be used daily for Car Sequencing in automotive companies. 

1.3 THESIS OVERVIEW 

This PhD thesis is divided in four main parts: 

 The characterization of automotive manufacturing systems considering 

our automotive partner as a case study that supports this 

characterization; 

 The literature review of sequencing models; 

 The mathematical model development; 

 The conclusions and future work. 
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The first part presents the characterization of automotive production 

systems. This characterization is made in section 2. Based on the necessities of our 

automotive partner we decided to focus on the Car Sequencing Models as 

mentioned in section 1. Thus, we started the second part of this PhD thesis with a 

literature review that includes the characterization of assembly lines, in subsection 

3.1. The literature review also includes the existing sequence models, in subsection 

3.2, and the detailed literature review of the Car Sequencing Models in subsection 

3.3. The third part of this work begins with an introduction to mathematical 

models made in subsections 4.1 and 4.2. The developed mathematical 

programming model is described in subsection 4.3. The model that considers the 

spread values, characterized in subsection 4.3.4, is harder to solve and for this 

reason a consolidation of the model was tried as shown in subsection 5.1. This 

consolidation improved the computational times in 45% but we believed that 

better results could be achieved with a new heuristic, based on exact methods. The 

heuristic is described in subsection 5.2. To test the quality of the solutions and the 

robustness of the approach, we developed a random generator that produces 

instances that resemble a daily production mix, and ran computational tests. This 

random generator and the process to create the instances are described in 

subsections 6.1 and 6.2. The new heuristic provides good results in acceptable 

computational times for three different classes of instances of 300 cars (maximum 

available capacity by shift of our automotive partner), each class resembling the 

production mix that occurs in a different period of the year. These results are 

presented in subsection 6.3. The last part of this PhD thesis begins in section 7 

with the impacts of this new model and the conclusions. As a conclusion of this 

PhD work it seems to be possible to develop a tool that can be used daily for Car 

Sequencing in a real case. Finally, some directions for future work are presented in 

subsection 7.1. 
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2 STUDY AND CHARACTERIZATION OF THE CASE-STUDY 

MANUFACTURING SYSTEM 

Our automotive partner was our guide in the development of our 

mathematical model. They helped us deciding the main aspects that should be 

taken into account when developing a generic model to sequence cars in a car 

manufacturer final assembly. Their experience in the area was motivating and the 

real examples given to test the model, of about 200 cars, were also of extreme 

relevance proving that the developed model can be applied to real automotive 

productions systems. 

Data collection in our automotive partner was essential to understand 

which parameters and characteristics are important to develop a generic model to 

apply in Car Sequencing. This data includes information on production system 

inputs and outputs (see Figure 2). 

Production 

System

Models information

Workstations information

System information

Performance measures

Inputs Outputs
 

Figure 2: Generic representation of the data collected. 

The data, represented in the Figure 2, includes information on: 

 Car Models: which cars types are produced, the operations needed to 

produce each unit, operation times and assembly constraints; 

 Workstations: how many, dimension of each station and time needed to 

complete the operation in each station (cycle time); 

 System: current balancing and sequencing approaches including cycle 

time, sequencing constraints and software used to sequence the cars; 

 Performance Measures: number of capacity constraint violation in each 

sequence, number of special cars that should come first in the sequence, 

spread of each car color in the sequence and time to obtain a car 

sequence in the software used to develop the model. 
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This data was collected during a period of around three months. To 

maximize the efficiency during the data collection we have used maps and 

information of our automotive partner, daily, and we have designed and 

supervised the data collection system. This took a lot of time but was necessary to 

guarantee that the retrieved information was correct and was valid to be used for 

this thesis project. 

A summary of important information obtained from the data collection, is 

described in the following subsections. 

2.1 CAR MANUFACTURING PROCESSES 

The car manufacturing process, as shown in Figure 3, is composed by three 

main areas: body, paint and final assembly.  

 

 

 

 

 

Figure 3: Main car manufacturing processes. 

Body Area (Bomey 2012) 

Painting area (Pavarin 2009) 

Final Assembly area (Dal Poggetto 2008) 
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In the Body Area the structure of the car is built by welding processes that 

join metal stampings and pressings. In this area, setup times on the presses are 

high, therefore the best sequence is the one that minimizes the setup times. 

In the Painting area the body is treated, prepared and painted. An important 

objective in this area is to minimize the amount of solvent used to clean the 

painting nozzles for the following main reasons: 

 When a color is changed the nozzles need to be cleaned with solvent; 

 For maintenance reasons after an amount of utilizations the nozzles 

need to be cleaned with solvent;  

 For quality reasons, when a defined maximum number of body cars with 

the same color are painted in a row, the nozzles need to be cleaned with 

solvent.  

The time needed to clean the nozzles also represents a setup time that 

should be minimized. 

In the Final Assembly area the mechanical, electrical and trim components 

are added to the car. Some of these components may require more work content 

operations. The cars that need these components should be dispersed throughout 

the sequence to smooth workload at the affected workstations. The objective is to 

ensure load balancing and component supply to minimize the times needed to 

build the sequence in the final assembly. 

On average, 70% of the car value is added in the final assembly line. 

Consequently, Car Sequencing problems in the literature are more focused on 

finding a good sequence using the final assembly constraints that ensures load 

balancing and component supply (Gravel, Gagné, and Price 2005). Based on this, in 

the following section, a detailed explanation of the final assembly structure is 

described. 
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2.2 STRUCTURE OF FINAL ASSEMBLY 

The final assembly of our automotive partner has the structure represented 

in Figure 4. 

 

Figure 4: Structure of our automotive partner Final Assembly. 

The division in two lines occurs just before the roof assembly of the 

cabriolet Model B. This operation takes more than the cycle time and this is the 

reason for the split. The split involves the duplication of some resources, for 

example, in the two lines exists a workstation to assemble the seats. These 

operations need specific tools that must exist in the two lines of the split. 

Other implication of the split is the buffer needed between M1 and the 

Model B line. Suppose that there are two B Models in a row. The first leaves M1, 

with a cycle time of 1,4 min/unit, and enters in the Model B line, with a cycle time 

of 2,0 min/unit, which is slower. This will imply the existence of a buffer to prevent 

the stoppage of M1 when there are 2 B Models in a row. 
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The assembly lines in automotive industries are composed by a group of 

stations disposed in a line with a transportation system that assures the cars 

movement between the first and the last station. At each station workers execute 

different operations depending on the car model, while cars pass through the 

station. The stations have a length that corresponds to the production cycle time. 

After finishing the work in the car that is crossing the station, the worker returns 

to the beginning of his station (border of the station) or he stops near the next car. 

A representation of the workstations can be seen in Figure 5. 

 

Figure 5: Assembly line and workstations representation. 

Whenever the work defined for a station is not completed, there are two 

possible strategies to deal with it (Tsai 1995). In United States strategy, workers 

are not allowed to cross stations and utility workers are employed on an ad hoc 

basis to finish the work. In Japan strategy, the worker is able to stop the line, 

pushing a button, when he is not able to finish the work. Our automotive partner is 

trying to implement the United States strategy and for this reason it is important 

that the developed model in this PhD thesis considers the number of extra workers 

needed to assemble a sequence that do not obey to all the capacity constraints 

(check the details in subsection 4.3.2). 

In order to simplify the problem, some assumptions were made in this 

thesis work: 

 There are no buffers between the stations; 

 The model-mix cannot be changed in the line (static problem); 

 Multiple models are produced in the line. These models have different 

components, different operations and different processing times; 

 There are a group of rules for sequencing the cars (see Table 1). 
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One of the identified problems is related to the time that cars spend in the 

workstations (cycle time) at the final assembly. This time is constant since the 

workstations have the same dimension. The cycle time is related to the velocity of 

the conveyor. If, for some reason, the time to complete the operations in each 

station exceeds the cycle time, the next model has to compensate this time. The 

following constraints, based on the constraints of our automotive partner, have 

this aspect into account and should be respected in the sequence. We will consider 

them to test our model. 

Table 1: Cars constraints. 

Option 
Option 
Code 

Models 
Constraints  

(m:n – m out of n) 

Model C K8P Model C 1:2 

Model B K8K Model B 1:3 

Right hand drive LOR Model A, B and C 1:3 

Electric sliding door GZ6 Model C 1:4 

Tow bar 1D2/1M6 Model B and C 1:4 

R 20/R Line 6EJ Model A 1:26 

Electric Tailgate 4E7 Model C 1:6 

Japan cars B29 Model A and C 1:6 

Active Suspension 2H1 Model A, B and C 1:3 

Alarm 7AS Model C 1:4 

4x4 1X1 Model C 1:16 

Amplifier 9VE Model A, B and C 1:3 

Bad Floor Package 1SB Model A 1:6 

Head line with big console 7N3 Model C 1:2 

3rd row seats 5KT Model C 1:2 

Slides 6L6 Model C 1:2 

In the following subsection we will describe the demand characteristics 

along the year taking into consideration the demand of our automotive partner. 

2.3 DEMAND CHARACTERISTICS ALONG THE YEAR 

The highest demand predicted is 698 cars by day. The production rate for 

the highest demand is:  

 Model A: 44000 units/year (192 units/day);  

 Model B: 35700 units/year (165 units/day); 

 Model C that includes two similar MPV models: 52600 units/year (229 

units/day) + 25732 units/year (112 units/day); 

 Total: 158032 units/year (698 units/day). 
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Thus we have the units to be sequenced described in Table 2. 

Table 2: Demand by day. 

Product Quantity by day 

Model A 192 

Model B 165 

Model C 341 

Based on this there are, approximately, 4.95*101683 (698!) different possible 

sequences. 

The production mix (A:B:C) shows the demand of cars by model, that have 

to be produced. Thus, and based on the above information, the production mix by 

day is on average 192:165:341. This production mix is used to establish the 

sequence in which cars are assembled in the line. The daily mix is calculated as a 

function of the demand for each model and follows the process represented in the 

Figure 6. 

 

Figure 6: Our partner process since the order of cars until the shipment to clients. 
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As shown, in Figure 6, the orders are sent in a week basis. These orders are 

first divided by each day of the week. One week later the sequence is sent to the 

suppliers. The production begins in the Body Area one week after the sequence has 

been sent to the suppliers. After two weeks, on Friday, the cars ordered four weeks 

before are ready to be sent to the clients. All quantities planned by day have to be 

ready to send to the client in the end of the last shift, according to the number of 

shifts needed to assemble the cars. If, for some reason, there is a priority, this one 

has to be mentioned to be considered in the mathematical model that will 

determine the sequence. 

The demand for each car model varies along the year. Model B is the one 

with larger demand variability since it is a cabriolet model and presents a seasonal 

demand. The most critical period is before the summer, when the demand for 

Model B is higher.  

The most important aspects of automotive manufacturing systems and 

some important details, of our automotive partner, to build our model, were 

explained in this subsection. In the following sections we will present a revision of 

the literature in the areas of assembly lines and Car Sequencing Models.   
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3 SEQUENCING MODELS FOR ASSEMBLY LINES 

In this section, we will present the literature review in three main areas. 

The first one is about assembly lines. Since we are focusing in Car Sequencing 

Models in single assembly lines, it makes sense to present the main assembly line 

concepts to understand how assembly lines work. The second one is about 

sequencing models. In the literature the Car Sequencing is not the only type of 

sequencing model. Thus it makes sense to introduce the other types of sequencing 

models.  Finally, we will present the literature review for Car Sequencing problems 

which is the main issue of this thesis. 

3.1 ASSEMBLY LINES 

Assembly lines are a special kind of flow-line production systems. In an 

assembly line there is a sequence of tasks each one with a process time and a set of 

precedence relations. These tasks are performed by operators and the work pieces 

have to pass through the workers one after another, in sequence. 

When Henry Ford implemented the concept of assembly line to produce the 

Ford T he began a revolution that resulted in the modern automated assembly line 

concept. This type of lines is ideal to apply the concept of mass production that is 

based on the production of a small number of standardized products in large 

quantities. This concept allows (Scholl 1999): 

 High capacity utilization; 

 Small throughput times; 

 Small in-process-inventories; 

 Regular flow of materials that simplifies the materials control; 

 Less space is needed for storage and material movement because work 

pieces are transferred in the lines; 

 Small number of movements by the operator; 

 Strict division of work that results in high specialization of labor and 

associated learning effects. Less skilled workers are needed and they can 

be trained more quickly. 
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However, there are also disadvantages in the concept of line assembly  

(Scholl 1999): 

 The initial investments are high, especially if automatic equipment is 

needed; 

 Changes in the processes are expensive because all the line is designed 

for the current products; 

 The strict division of work creates simple and repetitive work. This 

influences negatively the workers satisfaction and origins high 

absenteeism and high turnover rates of employees; 

 If one machine fails all the system may stop. For this reason, the quality 

control is very important. 

Nowadays, the reasons that made this model prosper are disappearing. The 

abundance of resources and closed markets are not a reality anymore. Today the 

products life cycle is short, the markets are opened and there is a highly 

competitive context. Therefore, there is the need for an adaption to this new 

reality. Furthermore, in our days, the assembly lines have different technology 

levels according to different needs in terms of flexibility and volume requirements. 

Heilala and Voho (2001) classified the assembly line production strategies in: 

 Sequential manual assembly line – the process is decomposed in small 

process steps. The tasks are very simple and because of this the system 

has great potential for automation. Manual tasks allow flexibility if the 

operators have the right knowledge; 

 Parallel manual assembly line – one operator or a group of operators do 

all the assembly steps and are responsible for assembling one type of 

product. This factor increases job satisfaction and, consequently, the 

quality of the final product. There is potential for flexibility if the 

operators have the right knowledge; 

 Semi-automatic assembly lines – part of the production system is 

automated. Here the most critical activities in terms of time, quality, and 

others, are automated. The key factors are the connections between 

operators and the automatic system, and the kind of pallet conveyor 

system used; 
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 Flexible automatic assembly lines – the assembly process is automated. 

This kind of system is indicated for high volume products in relatively 

big lots; 

 Dedicated automatic assembly lines - the assembly process is automated. 

This kind of system is indicated for mass production (high production 

volume and low variety of products). 

A new concept of assembly lines has emerged from the necessity of the 

companies to adapt to the new markets requirements. Meet these requirements 

imply to produce efficiently with high diversification of customer demands at a low 

cost. This new concept results in the Mixed-Model assembly lines (Duplaga and 

Bragg 1998). Such lines describe a change in the paradigm of production. The 

companies used to build cars in large lots, in rigid assembly lines, and are now 

changing to Mixed-Model assembly lines. Our automotive partner is one of the 

examples and is changing to Mixed-Model assembly lines because these lines are 

more flexible. With them it is possible to produce a high variety of models in the 

same assembly line. The effective utilization of these lines means that two key 

problems have to be solved: 

 the Line Balancing problem - to allocate operations to workstations 

taking into account not only the workload but the logistics activities; 

 the Mixed-Model Sequencing problem - to sequence the models. 
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In the literature, a common approach, to solve balance and sequencing 

problems assumes that the actual arrival sequence is randomly distributed 

according to the demand proportions of various models. Using this assumption, 

Bukchin, Dar-El and Rubinovitz (2002) solved the design of mixed model/just-in-

sequence assembly lines taking into account the layout and workers flexibility 

issues in balancing problems. Their objective was to maximize the system 

efficiency and minimize the cycle time by reducing blockage and starvation 

between stations and designing the line to a make-to-order environment. In a 

situation where the model sequence can be arranged without compromising lead 

time, both line balancing and sequencing should be considered simultaneously to 

achieve a better performance of the assembly line. The work made by Kim, Kim 

and Kim (2000) tried to do that. Some other researchers, as Duplaga and Bragg 

(1998) and Ponnambalam, Aravindan and Naidu (2000), argued that line balancing 

and sequencing should be solved in different time frames. Becker and Scholl 

(2006) considered that the balancing decisions have a time horizon of several 

months and the sequencing problem arises per shift, day or week according to the 

demand. In this work the balancing is firstly determined based on an average 

model-mix and the sequencing problem is then solved considering a frozen line 

balancing. Drexl and Kimms (2001) choose to focus in the sequencing problem. 

They developed an approach that considers Car Sequencing and Level Scheduling 

applying an exact technique.  

3.2 INTRODUCTION TO SEQUENCING MODELS 

One of the goals of Mixed-Model assembly lines is to find an intermixed 

sequence of different types of products that satisfies the demand of all models and 

fulfills the company objectives in terms of costs and time (Scholl 1999).  

As scheduling problems, sequencing problems are combinatorial and may 

have more than one objective function that minimizes, for example, the number of 

violated capacity constraints (Gravel, Gagné, and Price 2005). 
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Boysen, Fliedner and Scholl (2009) divided the sequencing models in three 

different groups assuming that the operations are assigned to workstations and 

that the system is only dependent on the models sequence. Such groups are: 

 Mixed-Model Sequencing – that aims to avoid/minimize sequence-

dependent work overload based on operational characteristics as, for 

example, operation times and station border; 

 Car Sequencing – which objective is to minimize sequence-dependent 

work overload taking into account the sequence and the work overload; 

 Level Scheduling – which goal is to minimize the differences between 

actual and ideal rates and keep a constant rate of usage of the parts used 

in the line (JIT - just-in-time - concepts). 

Nowadays, companies need solutions to apply in real situations where the 

objective is to minimize the work overload and the material requirements. So, Car 

Sequencing and Level Scheduling appear as important approaches for practical 

application and in particularly for the automotive industries. To meet this 

requirement, an extra type of models, called Hybrid Mixed-Models appeared 

whose goal is to achieve simultaneously the minimization of work overload and 

the leveling part usage (Boysen, Fliedner, and Scholl 2009). 

In the following subsections the sequencing models approaches are going to 

be presented. 
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3.2.1 MIXED-MODEL SEQUENCING 

Mixed-Models aim to minimize sequence-dependent work overload. 

Sequencing problems appear when the operations in a workstation take more time 

than the cycle time. In this case the next models in the sequence have to 

compensate this overload, otherwise, the line will stop or additional workers will 

be needed because the workers will not be able to finish their sequence tasks 

without passing the station borders (Scholl 1999, Boysen, Fliedner, and Scholl 

2009). Nevertheless, the ideal situation is to find a solution that mixes the models, 

respecting the clients demand and compensating the differences of production 

times in workstations. The Mixed-Model Sequencing problem tries to find this 

flexible solution taking into account the processing times, worker movements, 

station borders and other operational characteristics (Scholl 1999). 

3.2.2 CAR SEQUENCING MODELS 

Car Sequencing Models arise from practical applications required by the 

automotive industry, nevertheless, these models can be applied to other types of 

industries. Within the automotive industry, these models are usually applied in 

automotive assembly lines, but can also be applied in the other two consecutive 

areas of automotive industries: body and Painting area.  

In the assembly line, the goal of Car Sequencing Models is to control the 

succession of work intensive model options to avoid work overload, using 

sequencing rules of the type Ho:No (Boysen, Fliedner, and Scholl 2009). These rules 

mean that at most Ho out of No successively sequenced cars may require option o  

O, where O is the set of available options. The use of these rules allows expressing 

the problem formulation as a constraint satisfaction problem that enforces the 

sequencing rules observance.  
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3.2.3 LEVEL SCHEDULING 

Level Scheduling is part of the Toyota Production System (Monden 1993). 

The main goal of these models is to minimize the safety stocks in order to obtain a 

just-in-time material supply to the production system (Boysen, Fliedner, and Scholl 

2009). 

Nowadays, companies need solutions to apply in real situations where the 

objective is to minimize the work overload and the material requirements. To meet 

this need, an extra type of models, called Hybrid Mixed-Models, arose. 

3.2.4 HYBRID MIXED-MODELS 

The goal of these models is to achieve simultaneously the objectives of the 3 

models presented previously. So, the minimization of work overload and leveling 

part usage are the targets to be achieved by this approach. Consequently, other 

operational characteristics need to be added (Boysen, Fliedner, and Scholl 2009): 

 Setup operations; 

 Due dates; 

 Assembly line balancing. 

These models consider capacity and material aspects which are important 

for practical application but at the cost of adding more complexity to the existing 

models. For example, Drexl and Kimms (2001) developed an approach that 

considers Car Sequencing and Level Scheduling applying an exact technique called 

Column Generation, used in Branch and Price approaches. 

Following we will present the literature review of the Car Sequencing 

problem since this is the technique that we will apply to solve this problem in this 

PhD thesis.  
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3.3 CAR SEQUENCING PROBLEM IN DETAIL 

The sequencing problem analyzed throughout this PhD work is the Car 

Sequencing problem. Despite the little introduction that was made in subsection 

3.2.2, a more detailed description of the main problem characteristics will be 

addressed now. 

The Car Sequencing problem is usually defined as a linear programming 

problem as the one following described (Drexl and Kimms 2001). 

 

Subject to 

 

(...) 

This formulation includes a set of options o  O and a set of variants, v  V, 

requested by the clients. The options and the variants are the inputs for the model. 

Each car is placed in a position t  T, being |T| the total number of cars. Each 

variant v is composed by a set of options o. The variable  becomes 1 if variant  

is scheduled in period , otherwise is 0. This problem intends to minimize the 

penalties, peno,s, associated with the violation of capacity constraints in one range 

of car slots. These capacity constraints are usually defined using sequencing rules 

of the type Ho:No, meaning that at most Ho out of No successively sequenced cars 

may require option o  O, where O is the set of available options, as explained 

before. The use of these rules allows expressing the problem formulation as a 

constraint satisfaction problem that enforces the sequencing rules observance as 

shown in the equations above. For each option, if a capacity constraint is violated, a 

weight, wo, is associated by increasing the value of the objective function.  

The constraints and the objective function are related to operational 

characteristics. In terms of objective function there are two kinds of approaches 

(Boysen, Fliedner, and Scholl 2009): 
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 Without an objective function - this is not an optimization problem but a 

feasibility problem. It is usually seen in the literature as a Constraint 

Satisfaction Programming problem, where the constraints represent a 

subset of the problem, declaring allowed or forbidden value 

combinations and each one providing a local view of the whole problem. 

The solution of these kind of problems satisfies all the constraints.   

 With an objective function - the goal is to minimize the violations of 

sequencing rules and there are several approaches (Boysen, Fliedner, 

and Scholl 2009) as: 

o minimization of the number of positions where a violation 

occurs, known as the Sliding Window approach (Gottlieb, 

Puchta, and Solnon 2003); 

o minimization of the number of all excessive options in 

violated No, etc. 

The relevant operational characteristics can be classified in terms of: 

 Number of options - special characteristics of a car; 

 Hard and soft sequencing rules - hard rules are related to critical options 

and cannot be violated, soft rules can be violated. These two rules can be 

used in the same model or not depending on the problem; 

 Kind of sequencing rules – there are other rules in addition to 

conventional Ho:No rules as, for example, the restriction of the maximum 

number of direct successions (Boysen, Fliedner, and Scholl 2009); 

 Assignment restrictions - are related to the production cycles available 

for assign model copies. For example, for a group of models there are 

specified cycles where these models can be assigned to (Boysen, 

Fliedner, and Scholl 2009). 
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Gravel, Gagné and Price (2005) and Prandstetter and Raidl (2008) proposed 

an integer linear programming approach for the Car Sequencing problem that 

solves benchmark instances of combinatorial problems in acceptable time and 

proves the solutions optimality. Nevertheless, two major exact solution techniques 

are used to solve combinatorial problems. These are Branch and Bound and the 

Constraint Programming. To address the complexity of this problem, Boysen, 

Fliedner and Scholl (2009) suggested a mix between traditional combinatorial 

optimization and Constraint Programming , as well as the inclusion of more 

efficient heuristics and exact solution procedures. 

In 2005, Renault proposed a challenge, the ROADEF'2005, to researchers in 

this field. This challenge is an extension of the classical Car Sequencing problem. 

The goal was to schedule cars along an assembly line considering two types of 

capacity constraints, imposed by the assembly line and according to their priority, 

and considering paint batching constraints (Solnon et al. 2008). 

To stimulate the competition and provide benchmarks for researchers 

working in this field the researchers Ian Gent and Toby Walsh created the CSPLib 

library. They published it in the Internet (Gent and Walsh 2005). This library offers 

test problems for constraint solvers to help focusing the research into more 

structured problems keeping the researchers away from purely random problems. 

The efficiency of the approaches used in Car Sequencing problems 

decreases as the problem size and difficulty increases. Another relevant aspect is 

that when there is not a feasible solution, long computational times are needed to 

reach this conclusion (Gravel, Gagné, and Price 2005). To solve these models, exact 

and heuristics approaches have been used. A generic description of some of these 

techniques can be seen in the following subsections. 
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3.3.1 EXACT TECHNIQUES 

Exact techniques provide an optimal solution if sufficiently time and 

memory space is given to the model while running in a computer. This means that 

the solution found is the better value for the objective function in a given problem. 

In the Car Sequencing problem of the ROADEF'2005 Challenge this means, for 

example, that the optimal solution minimizes the number of capacity constraints 

violated and the number of color changes. If there is more than one optimal 

solution only one is obtained using this kind of techniques (Prandstetter and Raidl 

2008). 

These techniques work reasonably fast for small problems. However, in 

larger problems, usually real problems, these techniques are not useful due to the 

associated computational times. One approach to improve computational times is 

to use Exact techniques to prove new bounds and integrate them with heuristic 

and Meta-Heuristic techniques (Solnon et al. 2008). 

For the reasons explained above, the Exact techniques area is complex and 

has few results for Car Sequencing problem. So, this area is not fully explored and 

only few authors studied it deeply. The most relevant authors that tried to solve 

the Car Sequencing problem using Exact techniques are A. Drexl, A. Kimms, M. 

Fliedner, M. Prandstetter and N. Boysen. 

Examples of Exact techniques applied in Car Sequencing problems are: 

 Simplex (Prandstetter 2005); 

 Branch and Bound (Fliedner and Boysen 2008); 

 Branch and Cut (Fliedner and Boysen 2008); 

 Branch and Price (Drexl and Kimms 2001, Barnhart et al. 1998); 

 Constraint Programming (Solnon et al. 2008). 

These techniques will be explained following. 
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3.3.1.1 Simplex Method 

The Simplex Method was thought by Jean Baptiste Joseph Fourier, a French 

mathematician and physicist known for initiating the investigation of Fourier 

series. This idea was mechanized algebraically by George Bernard Dantzig an 

American mathematical scientist who made important contributions to operations 

research, computer sciences, economics, and statistics (Schrijver 1998). Basically, 

the idea of the Simplex Method is to perform successive trips on the polyhedron 

represented by a linear program, from vertex to vertex along edges, until an 

optimal vertex is reached. The choice of vertex at each step is largely determined 

by the requirement that this vertex does improve the solution. 

Regarding the Car Sequencing problem this technique is used in several 

softwares to solve mathematical problems. One example is the CPLEX solver from 

IBM ILOG OPL program used to solve the model from Prandstetter (2005). We will 

also use the IBM ILOG OPL solver to test our instances with our models. 

3.3.1.2 Branch and Bound 

The Branch and Bound technique is probably the most used exact solution 

technique for mixed integer linear problems (Fliedner and Boysen 2008). This 

algorithm enumerates all candidate solutions to an optimal integer solution, doing 

successive partitions of the solution space and cutting the search tree by 

considering limits calculated along the enumeration. These cuts are calculated 

using upper and lower estimated bounds of the quantity being optimized. The 

efficiency of the Branch and Bound algorithm depends on the capacity of detect 

and fathom subtrees that do not lead to an optimal solution. If a formulation has a 

symmetric tree, for example, it is important to reformulate the problem to avoid 

enumeration of similar solutions at different nodes of the tree. This fact will allow 

to reduce or eliminate this symmetry and improve the algorithm performance 

(Barnhart et al. 1998). When problems are larger or complex, strong cutting planes 

embedded into the Branch and Bound tree, resulting in Branch and Cut algorithms, 

typically improve the algorithm efficiency (Bradley, Hax, and Magnanti 1977). 
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Fliedner and Boysen (2008) tried to solve the Car Sequencing problem 

developing a special Branch and Bound algorithm which exploits the problem 

structure in order to reduce combinatorial complexity. Drexl, Kimms and 

Matthieβen (2006) proposed a dedicated Branch and Bound algorithm to solve the 

Car Sequencing and Level Scheduling problem from their previous work Drexl and 

Kimms (2001). 

3.3.1.3 Branch and Cut 

The Branch and Cut technique is a mix between the Branch and Bound 

algorithm and the Cutting Plane method. It is also defined as a generalization of the 

Branch and Bound technique with linear programming relaxations that allows the 

separation and cut throughout the Branch and Bound tree (Barnhart et al. 1998). 

In this technique classes of valid inequalities are not used in the linear 

programming relaxation because of the huge number of constraints to handle 

efficiently that will not lead to an optimal solution. During the linear programming 

relaxation if an optimal solution to the linear programming relaxation is infeasible, 

a separation problem (subproblem) is solved to try to find violated inequalities 

and add them to the linear programming in order to cut off the infeasible solution. 

This is repeated until no violated inequalities are found. After this, the tree 

branching is performed (Barnhart et al. 1998). 

The CPLEX from IBM ILOG OPL solver uses a Branch and Cut algorithm 

which splits the major integer problem in a series of smaller linear programming 

sub problems.  
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3.3.1.4 Branch and Price 

The Branch and Price algorithm uses a similar strategy to the Branch and 

Cut algorithm. The difference is that in Branch and Price the procedure focuses on 

column generation whether in the Branch and Cut the focuses is in row generation. 

Column generation is used to solve the linear programming relaxation within the 

Branch and Bound technique (Alvelos 2005). Nevertheless, column generation and 

row generation are complementary procedures very useful to improve linear 

programming relaxation. There are some algorithms that use these two 

approaches (Barnhart et al. 1998). In Branch and Price sets of columns are not 

used in the linear programming relaxation because of the huge number of columns 

to handle efficiently that will have their associated variable equal to zero in an 

optimal solution (Barnhart et al. 1998). To verify the optimality of the linear 

programming solution a pricing problem (sub problem), that is a separation 

problem for the dual linear programming, is solved to identify columns to enter the 

basis. If the columns are found, the linear programming is reoptimized. After this, 

the tree branching is executed. 

Drexl and Kimms (2001), applied Branch and Price algorithms in their work 

to solve the linear programming relaxation from their Car Sequencing and Leveling 

model. 

3.3.2 HEURISTIC TECHNIQUES 

Heuristic techniques are approaches designed to solve a given problem 

faster than the Exact techniques. Although, heuristic techniques do not guarantee 

the optimal solution to that problem, it is intended to gain in computational 

performance and/or conceptual simplicity. So, heuristics are used to solve real 

difficult problems reasonably well in a reasonable amount of time. 

Heuristic techniques as Meta-Heuristics can also be used to provide good 

initial solutions to use in exact approaches reducing the search space more 

efficiently (Solnon et al. 2008). 
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3.3.2.1 Greedy Heuristics 

As the name suggests with this procedure the sequence is built in a greedy 

way. This means that at each stage a locally optimum is chosen which may or may 

not lead to a globally optimum solution of a given problem. Once a car is moved 

into a position, it cannot be removed. 

Gottlieb, Puchta and Solnon (2003) made an evaluation of some Greedy 

Heuristics used to solve the Car Sequencing problem, such as: 

 Random Choice – choose randomly a car from sequence; 

 Static Highest Utilization Rates – choose the car with highest utilization 

rate; 

 Dynamic Highest Utilization Rates – the difference between the static and 

dynamic highest utilization rates is that in the dynamic the utilization 

rates are updated each time a car is added; 

 Static Sum of Utilization Rates – here the sum of utilization rates of the 

required options is considered; 

 Dynamic Sum of Utilization Rates- the difference between the static and 

dynamic sum of utilization rates is that in the dynamic the sum of 

utilization rates is updated each time a car is added; 

 Dynamic Even Distribution – in this heuristic the first car is selected 

randomly among the cars requiring the maximum number of options. 

The other ones are selected considering a distribution of the options and 

selecting the cars that on average require an option that is in minority in 

the sequence under construction. 

Local Search, Ant Colony Optimization and many other techniques, use 

Greedy Heuristics, similar to the ones presented before, to compute initial 

solutions (Gottlieb, Puchta, and Solnon 2003, Bautista, Pereira, and Adenso-Díaz 

2008). 
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3.3.2.2 Local Search Algorithms 

In Local Search Algorithms the search space is explored moving from one 

solution to another solution in the space of candidate solutions until a given 

stoppage criterion is reached. Examples of stoppage criteria are:  

 an optimal sequence is found; 

 a time bound is achieved; 

 a maximum number of moves is performed.  

The algorithm starts from a candidate solution and then iteratively moves 

to a neighbor solution. This is only possible if a neighborhood relation is defined 

on the search space. The choice of which one to move to is taken using only 

information about the solutions in the neighborhood of the current one, hence the 

name Local Search (Puchta and Gottlieb 2002). 

The approach depends on (Solnon et al. 2008): 

 the way of construction of the initial sequence - usually random 

permutation of the vehicles to produce; 

 the neighborhood considered at each move - different moves can be 

considered (Solnon et al. 2008, Puchta and Gottlieb 2002): 

o Insert or Forward/backward Insert - removes a group of cars 

from its current position and inserts it after or before the 

current position; 

o Swap - the position of two cars is exchanged; 

o Transposition or SwapT - is a special case of Swap. Means that 

two consecutive cars are exchanged; 

o SwapS - is also a special case of Swap. Means that two cars 

which option requirements are different in one or two 

options, exchange their positions; 

o Lin2Opt - reverses the positions of a subsequence of cars; 

o Random or Shuffle - randomly re-arranges a subsequence of 

cars. 

http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
http://en.wikipedia.org/w/index.php?title=Neighborhood_relation&action=edit&redlink=1
http://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
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 the search strategy - given a neighborhood, different heuristics or Meta-

Heuristics can be chosen to decide which is the next move in the 

following iteration (Solnon et al. 2008). 

The different kind of movements considered affect only part of the 

sequence. For this reason, it is faster to evaluate the change in the objective 

function due to the change in positions instead of evaluating the whole sequence 

after each move. Transposition and SwapS, in particular, are evaluated very 

quickly because Transposition only changes two neighboring positions and SwapS 

changes one or two options, meaning that only constraints for these options will be 

evaluated (Puchta and Gottlieb 2002). 

Estellon, Gardi and Nouioua (2008) won the ROADEF'2005 Challenge 

developing a fast Local Search method. The main contribution of this paper, 

beyond the good results, is the explanation about how to make the exploration 

efficiently by maintaining special data structures. 

3.3.3 META-HEURISTIC TECHNIQUES 

Meta-Heuristics are a result of combining heuristics to optimize a problem 

by iteratively trying to improve a candidate solution with regard to a given 

measure of quality. These techniques have been most generally applied to 

problems classified as NP-Hard or NP-Complete by the theory of computational 

complexity, as Car Sequencing problems. Some examples of Meta-Heuristics 

applied in Car Sequencing problems are now presented: 

 Ant Colony Optimization Algorithms (Gottlieb, Puchta, and Solnon 

2003); 

 Genetic Algorithms (Warwick and Tsang 1995); 

 Simulated Annealing (Briant, Naddef, and Mounie 2008); 

 Tabu Search (Cordeau, Laporte, and Pasin 2008, Reis 2007, Warwick and 

Tsang 1995). 

These techniques are going to be explained in the following subsections. 

  



MIT Portugal Program  Sequencing Models for Assembly Lines 

32                                                              Single line for assembly just-in-sequence multiple models 

3.3.3.1 Ant Colony Optimization 

The Ant Colony Optimization algorithm is based on the behavior of real ant 

colonies. The idea is to solve the problem as a search for a minimum cost path and 

use artificial ants to search for good paths (Gottlieb, Puchta, and Solnon 2003). The 

behavior of these artificial ants is similar to the behavior of real ant colonies 

because in artificial ant colonies they lay pheromone trails on components of the 

minimum cost path and they choose the best path taking into account the 

probabilities that depend on pheromone trails that have been previously laid by 

the colony (Solnon et al. 2008). Different authors applied this method in the Car 

Sequencing problem. In the algorithm of Gottlieb, Puchta and Solnon (2003) a 

greedy heuristic is used to achieve pheromone trails. In Gottlieb, Puchta and 

Solnon (2003) it is also shown that the Local Search performance of Puchta and 

Gottlieb (2002) is worse than the Ant Colony Optimization algorithm developed by 

them, for small computational time limits. For larger limits both approaches have 

similar results. Gravel, Gagné and Price (2005) presented another Ant Colony 

Optimization algorithm that integrates a Local Search procedure to improve the 

solutions constructed by the ants. 

3.3.3.2 Genetic Algorithms 

The Genetic Algorithms are inspired in the nature biological processes and 

evolution and have also been applied to the Car Sequencing problem (Joly and 

Frein 2008). This search technique is stochastic and explores combinatorial search 

spaces simulating the evolution and recombining candidate solutions, called 

population, which are associated with fitness values related to a specific domain of 

the objective function (Warwick and Tsang 1995). The goal of the Genetic 

Algorithms is to combine solutions to obtain new ones considering the existence of 

mutations (Joly and Frein 2008). Each candidate solution is called individual, thus 

the idea is to combine two individuals to obtain a new one, like a crossover 

between two parents.  
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In Warwick and Tsang (1995) the search space is explored through 

selection, cross-over and mutation, the main genetic operators. At each generation, 

sequences are combined by cross-over operations. The new sequences may not 

satisfy the constraints, so they are greedily repaired by mutation operators and 

each offspring hill-climbed by a swap function similar to the one used in Local 

Search approaches. This approach has been shown to work well in problems 

characterized by low utilization percentages. Nevertheless, in larger problems the 

number of successful runs decreases (Warwick and Tsang 1995). The main steps of 

this technique are (Joly and Frein 2008): 

 Generate an initial solution - usually random permutation of the vehicles 

to produce but other techniques can be used; 

 Parent selection - considering, for example, that the better the objective 

function, the greater is the probability of being selected; 

 Determine the crossover operator - some well known methods include: 

o Order based crossover - builds an offspring choosing a sub-

sequence from one parent and preserving the relative order 

of vehicles from the other parent; 

o Partially mapped crossover operator - builds an offspring 

choosing some vehicles from one parent and preserving the 

order and position of as many vehicles as possible from the 

other parent; 

o Cycle crossover - builds an offspring considering that each 

vehicle and its position comes from one of the parents; 

o Uniform order crossover - builds an offspring choosing a sub-

sequence from one parent. Vehicles in this subsequence are 

permuted with vehicles of the same position in the other 

parent sequence. 
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 Determine the mutation operator - using the following operators often 

used in literature (Zinflou, Gagné, and Gravel 2008): 

o Reflection - consists in randomly select two positions and 

reverse the subsequence between these two positions; 

o Random_swap - consists in randomly exchange the positions 

of two cars that have different characteristics; 

o Group_exchange- consists in randomly exchange the position 

of two subsequences of consecutive cars with the same 

characteristic; 

o Block_reflection - consists in selecting a subsequence of 

consecutive cars with the same characteristic and inverting 

the position of the cars included in this subsequence. 

 Population evaluation - this evaluation is made using the value of the 

objective function for each individual; 

 Selection of the surviving population - this selection is made considering 

that the better the individuals, the greater is the probability for them to 

survive in the next generation. 

As Zinflou, Gagné and Gravel (2008) mentioned, Genetic Algorithms are 

efficient approaches if the different mechanisms of the algorithm, as crossover 

and/or mutation operators, were designed to deal with the specificities of the 

problem.  
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3.3.3.3 Simulated Annealing 

The Simulated Annealing technique takes inspiration from the annealing 

process in metallurgy. By analogy with this process, a set of solutions of a certain 

problem is associated with the energy state. The objective function corresponds to 

the physical energy of the solid and the ground state corresponds to a global 

optimal solution (Reis 2007). This neighborhood search heuristic allows an escape 

from local optima by accepting solutions that may not be better than the last 

solution found. The probability of preserving a worse solution depends on the 

temperature parameter that initially is defined by the user as a high value that 

decreases during the run of the algorithm. Consequently, the probability of 

accepting worsening moves decreases during the run of the algorithm (Joly and 

Frein 2008). Thus, this probability depends on the difference between the value of 

the objective function of the last step solution and the current value of the 

objective function, and on the temperature parameter (Reis 2007). The result is a 

good approximation to the global optimum of a given function in a large search 

space.  

This technique needs an initial solution that is usually obtained by random 

permutation of the vehicles to be produced. Then at each step a solution is created 

and if it improves the objective function value it is accepted, otherwise it may be 

accepted depending on the temperature parameter value, as explained before.  

Simulated Annealing guarantees a convergence after running a sufficiently 

large number of iterations. Though this is not very helpful, since the annealing time 

required to ensure a significant probability of success will usually exceed the time 

required for a complete search of the decision space (Reis 2007). If an acceptable 

good solution found in a fixed amount of time is preferable than the best possible 

solution that takes a long time, Simulated Annealing may be more effective than 

exhaustive enumeration (Brailsford, Potts, and Smith 1999). Comparing with other 

heuristics, Simulated Annealing is usually expensive in a computational sense. 

Nevertheless, the other heuristics tend to generate solutions far from the optimum. 

http://en.wikipedia.org/wiki/Global_optimum
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Search_space
http://en.wikipedia.org/wiki/Search_space
http://en.wikipedia.org/wiki/Search_space
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Briant, Naddef and Mounie (2008) developed an algorithm that uses two 

different methods in two different phases to solve the Car Sequencing problem 

from ROADEF'2005 Challenge. In the first one they used a Greedy algorithm to 

minimize the number of color changes. In the second one, a dynamic Simulated 

Annealing procedure was used to optimize all the criteria considered in the model: 

capacity constraints and color changes. 

3.3.3.4 Tabu Search 

The Tabu Search technique uses a Local Search procedure to move from a 

solution to another in the neighborhood until a defined criteria has been satisfied. 

This Local Search procedure uses a tabu list to restrict the moves between  

solutions (Warwick and Tsang 1995). The tabu list is a short-term memory that 

contains solutions that have been visited recently and forbidding moves. The way 

that it is managed plays a crucial part in the effectiveness and efficiency of the 

technique. For instance, if the number of forbidden moves is too high the algorithm 

may miss good solutions. To avoid this situation the algorithm, usually, has a 

criteria that override the tabu status of certain movements (Reis 2007). The 

efficiency can also be improved using methods that exploits the long-term memory 

of the search process either by recovering the best solutions obtained so far or 

recovering the attributes of that solutions (Reis 2007). 

Cordeau, Laporte and Pasin (2008) developed and iterated Tabu Search 

algorithm  to solve the Car Sequencing problem from ROADEF'2005 Challenge. The 

algorithm can start from any car permutation and the paper results show that the 

heuristic was flexible, easy to implement, and fast since it gives results in less than 

a second on test instances with more than 1000 cars. Although, it has obtained 

slightly worse solutions than the best algorithm found in ROADEF'2005 Challenge 

from Estellon, Gardi, and Nouioua (2008). 
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3.3.4 REMARKS 

This PhD thesis work focuses on the Car Sequencing problem for the 

reasons explained in section 1. Some authors as Prandstetter and Raidl (2008), 

referred above, used  Constraint Programming and Integer Programming models 

to help solving the Car Sequencing problem. These models solved using the Exact 

techniques, mentioned on subsection 3.3.1, reach their limit when one hundred or 

so vehicles with few options are considered (Estellon, Gardi, and Nouioua 2008).  

The Car Sequencing problem is a NP-hard (non-deterministic polynomial-

time hard) problem as Kis (2004) proved and as years before Gent (1998) proved 

as being NP-complete. For this reason, it was necessary to develop new strategies 

to solve Car Sequencing problems effectively. Several heuristics have been 

proposed as Greedy algorithms (Gottlieb, Puchta, and Solnon 2003), Local Search 

(Estellon, Gardi, and Nouioua 2008, Gottlieb, Puchta, and Solnon 2003), Ant Colony 

Optimization (Gottlieb, Puchta, and Solnon 2003), Genetic Algorithms (Solnon et al. 

2008), Simulated Annealing (Briant, Naddef, and Mounie 2008) and Tabu Search 

(Cordeau, Laporte, and Pasin 2008). 

With the improvements made in mathematical programming software in 

the last years we decided to develop an exact method that could provide efficient 

solutions to real problems. This is clearly an area where improvements need to be 

reached to solve exact models effectively. Therefore, in the following section, we 

will present an introduction to mathematical models concepts as well as a new 

Integer Programming model for Car Sequencing. 
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4 MATHEMATICAL MODELS 

Mathematical models are used to describe the reality, to test ideas and to 

make predictions about the reality. These models are usually used to model 

industrial processes, traffic patterns, message transmission, linguistic 

characteristics, atmospheric circulation patterns, stress distribution in engineering 

structures, the growth and development of landforms, and other processes in 

science and engineering. Modeling these processes, we are able to do experiments 

on mathematical representations of the real world without interfere in it (Vries 

2001). 

A mathematical model usually describes a system or a reality, using a set of 

variables, that represent some properties of the system, and a set of equations that 

establish relationships between the variables. But represent the reality in a model 

is often very complex resulting in a trade-off between simplicity and accuracy. 

Regarding this matter Howard Wilson Emmons, professor from the Mechanical 

Engineer Department of the University of Harvard, said that we should: 

 

“... not to produce the most comprehensive descriptive model but to produce 

the simplest possible model that incorporates the major features of the phenomenon 

of interest”. 

Howard Wilson Emmons 

One of the challenges of the modeling process is to describe the reality 

precisely without compromise the simplicity of the model. 
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Mathematical programming approaches that define mathematical models 

can be linear or nonlinear according to linearity or not of the constraints and/or 

the objective function. These approaches can be classified as (Wolsey 1998): 

 Mixed Integer Programming - if some but not all the variables are 

integer; 

 

Subject to 

 

 

 

where A is an m by n matrix, G is an m by p matrix, c an n-dimensional 

row vector, h is a p row-vector, b an m-dimensional column vector, x an 

n-dimensional column vector of variables unknown and y is a p column-

vector of integer variables. 

 Integer Programming - if all variables are integer; 

 

Subject to 

 

 

 0-1 or Binary Integer Programming - if all variables have 0-1 values; 

 

Subject to 
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 Combinatorial Optimization - if the problem is to find a minimum weight 

feasible subset. 

 

where N is a finite set N = {1, ... ,n}, cj are weights for each j N and S is a 

set of feasible subsets of N. 

Being the variables of a Car Sequencing problem integers, Integer 

Programming is going to be used to solve our model. For this reason this approach 

will be explained in detail in the following subsection. 

4.1 INTEGER PROGRAMMING  

Integer Programming deals with mathematical optimization problems in 

which all variables are discrete or integer (Wolsey 1998, Schrijver 1998). The 

application in problems of real life is extensive and includes Car Sequencing, 

Vehicle Routing, Scheduling problems, Production Planning problems, 

Telecommunications and Cutting problems, among others.  

Car Sequencing problems, for example, are combinatorial because the 

optimal solution is a subset of a finite set, and for this reason, can be solved by 

enumeration. The maximum capacity of our automotive partner is 300 cars per 

shift. Thus our goal is to find the better sequence for each shift among all the 

possible combinations. To enumerate all the possible solutions for sequence these 

300 cars per shift, is necessary to calculate the number of possible solutions. This 

corresponds to 300! that is approximately, 3.06*10614. As we can conclude, 

enumeration can only be helpful for small problems and that is why improvements 

in the models and algorithms are needed to achieve solutions faster. 

As mentioned in subsection 3.3.1, many of the real life problems are hard to 

solve. For this reason, industries that use Integer Programming models, usually, 

stop the model when the first solution that satisfies the constraints is found. This 

can result in losses of mega-dollars and for this reason better models, better 

algorithms and better software are needed (Wolsey 2003). 
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In the last years, a lot of improvements were made due to a combination of 

improved modeling, superior linear programming software, faster computers, new 

Cutting Plane theory and algorithms, new heuristic methods and Branch and Cut 

and Integer Programming decomposition algorithms (Wolsey 1998). The use of 

inequalities to improve formulations and obtain tighter bounds is one of the areas 

with the most progress in the last years as shown in Wolsey (1998), Wolsey (2003) 

and Junger et al. (2010). 

Nevertheless, it is necessary to distinguish equivalent formulations because 

they can result in faster or slower times to achieve results. We can see an example 

of equivalent formulations in the Figure 7. 

 

Figure 7: Graphic representation of 3 formulations, P1, P2 and P3, of the same problem. 

Geometry can help us find which the best formulation is. Looking at Figure 

7 we can distinguish three different formulations, P1, P2 and P3. Formulation P3 is 

better because if we solve a linear program over P3 the optimal solution is an 

extreme point (Wolsey 1998). 

In most cases the ideal formulation has an enormous (exponential) number 

of inequalities that need to be described, turning the characterization of conv(X) a 

very difficult task. Therefore, it is important to distinguish which formulation is 

better. 



MIT Portugal Program  Mathematical Models 

42                                                              Single line for assembly just-in-sequence multiple models 

Recently, Constraint Programming is also being used to model Car 

Sequencing problems. For this reason, and despite not being applied in our model, 

it makes sense to do an introduction about this technique in the following 

subsection. 

4.2 CONSTRAINT PROGRAMMING  

This is a generic technique that aims to optimize a function, or to find a 

feasible solution, subject to constraints over discrete and/or continuous variables. 

In other words, is a technique used to solve constraint satisfaction problems. 

Through Constraint Programming language, it is possible to solve a constraint 

satisfaction problem specifying only the variables and constraints that the 

algorithm is going to solve, using generic algorithms called constraint solvers. 

These solvers usually employ a systematic exploration of the search space that 

enumerates assignments of values to variables (Solnon et al. 2008). Lookahead 

algorithms are effective reducing the size of the search space. After this, a 

constraint propagation is applied, to restrict the domains of other variables whose 

values are not fixed yet, until a solution is found or until it is proven that the 

problem has no solution (Brailsford, Potts, and Smith 1999).  

Several works that use  Constraint Programming to solve the Car 

Sequencing problem consider that a solution is valid when all the capacity 

constraints are satisfied in the final solution. Nevertheless, Bergen, van Beek and 

Carchrae (2001) proposed a  Constraint Programming model for a Car Sequencing 

problem that includes hard and soft constraints that can be violated at a cost. To 

solve this model they applied three different approximation algorithms: Local 

Search algorithm, backtracking algorithm and Branch and Bound algorithm. The 

Branch and Bound algorithm was the one with better results when tested with six 

real world instances. 

In several works, Constraint Programming shown to be an effective 

technique to solve easy or small Car Sequencing instances as the others Exact 

techniques, but it has not yet been useful for harder or larger instances (Solnon et 

al. 2008). Nevertheless, it has the advantage of its declarative nature, allowing 

constraints to be expressed more easily. 
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Were identified in this subsection the basic concepts of Constraint 

Programming. These concepts are applied in mathematical programming software 

that help solving the mathematical models. Mathematical programming software 

has improved in the last years. We observed in the literature that it is practical 

now to solve problems with a dozen of options and about 300 cars (Prandstetter 

and Raidl 2008). Therefore, we took a step further, and explored the concept of an 

assembly sequence that minimizes not only the capacity constraints violations but 

also the sum of the spread values of cars with the same color. The model developed 

for the Car Sequencing will now be presented and the special features will be 

explained in detail.   

4.3 NEW INTEGER PROGRAMMING MODEL FOR CAR SEQUENCING 

This subsection explains in detail the developed mathematical model as 

well as the basic concepts of our mathematical formulation. 

4.3.1 MATHEMATICAL FORMULATION 

As mentioned before, a mathematical model was developed for the Car 

Sequencing problem. This one used as a starting point the OPL Model example for 

Car Sequencing included in the IBM ILOG 12.2 CPLEX Optimization Studio, and the 

model presented by Drexl and Kimms (2001). Our model considers that: 

 Cars in production are placed on an assembly line; 

 Cars move through various stations that install options on the cars, such 

as air conditioning and radios; 

 The assembly line can thus be viewed as composed by slots and each car 

must be allocated to a single slot; 

 Cars cannot be allocated arbitrarily, since it exists limited capacity and 

therefore car options must be considered.  To each option that limits the 

production capacity a capacity constraint is associated; 

 Cars with special colors to special markets should be placed first in the 

sequence; 

 Cars with the same color should be placed together in the sequence. In 

this work we are measuring the spread of cars with the same color 

trying to minimize it. 
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The objective function considers three special features: 

 The number of times that a capacity constraint is violated using the 

ROADEF'2005 method (Prandstetter 2005). Each capacity constraint has 

different levels of priority according to the extra time needed to 

assemble that option; 

 The special cars that should come first in the sequence; 

 The spread of cars with the same color. 

The OPL Model for Car Sequencing is a Constraint Programming model. This 

simplifies the algorithm but increases the computation time. So, we have decided 

to change the model to use an algorithm based in the CPLEX algorithm from IBM 

ILOG 12.2 CPLEX Optimization Studio. This allows us to reduce the computational 

times from more than one day to four seconds for a test set of 698 cars, 

considering only the number of times that a capacity constraint is violated, as we 

will show later on. 

It is important to underline that the CP Optimizer engine uses two 

techniques for solving optimization problems: search strategies and constraint 

propagation while the CPLEX implements optimizers based on the simplex 

algorithms (both primal and dual simplex) as well as primal-dual logarithmic 

barrier algorithms and a sifting algorithm. For problems with integer variables the 

CPLEX uses essentially the tree search as well as Branch and Cut algorithms. 
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The set of parameters and variables used in the developed model are shown 

in Table 3. The variables are used to store the results of the model or to model 

some special characteristics. 

Table 3: Parameters and Variables of our new Integer Programming approach for Car Sequencing. 

Parameters Variables 

O - set of options, index o cost - objective function value 

V - set of variants, index v 
peno,t - penalty associated with constraint 

violations 

C - set of colors, index c  

dc - number of colors that should come in the 
first positions of the sequence (these colors 
should come in first place in the matrix that 

represents ) 

 

dt - number of the first positions of the 
sequence that should have the cars with the dc 

colors ( ) 
 

T - positions in the sequence =  , index t  

- demand of variant v  

wo - extra time that option o takes into a critical 
workstation (1+extra time) 

 

Ho:No - at most Ho out of No successively 
sequenced may require option o  O 

 

  

  

 - weight associated with the part of the 
objective function that evaluates capacity 

constraint violations 
 

 - weight associated with the part of the 
objective function that evaluates if special colors 

are placed in the first dt positions of the 
sequence 
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As shown in Table 3 the new Integer Programming formulation includes a 

set of options o  O, a set of colors c  C and a set of variants v  V, requested by the 

clients, that are the inputs of the model. Each variant v is composed by a set of 

options o and exactly one color c. The 0-1 matrix oo,v includes the options of each 

variant. If option o is part of the variant v, the value is 1, otherwise is 0. The 

elements of the 0-1 matrix cc,v, define the color of each variant. If color c is part of 

the variant v, the value is 1, otherwise is 0. Each car is placed in a position t  T, 

being |T| the total number of cars. Furthermore, there is an input representing the 

number of colors of the special cars dc   C. The first colors in the matrix cc,v are the 

colors of the special cars dc. The number of special cars dt is equal to 

. The total demand is equal to , being Dv the demand of each 

variant, and corresponds to the number of positions in the sequence T. Each option 

has a capacity constraint associated, Ho:No, meaning that at most Ho out of No 

successively sequenced, may require option o  O. Each capacity constraint has 

different levels of priority according to the extra time needed to assembly that 

option wo   IR+. The wo will also allow the calculation of the extra workers needed 

to complete the job when a capacity constraint is violated and where they are 

needed considering the position of the car in the sequence and the capacity 

constraint violated. 

The problem has a hierarchical multi-objective function, composed by three 

terms (Table 4 and Figure 8). The first priority is to minimize the capacity 

constraints violations. The second is to place the special cars first in the sequence. 

The third priority represents the spread problem. These objectives may be 

conflicting. For this reason it was decided to have a single objective function with a 

proper choice of weights for each term. The α weight is attributed to the part of the 

objective function that evaluates capacity constraint violations. The β weight is 

attributed to the part of the objective function that evaluates if special colors are 

placed in the first dt positions of the sequence. A weight equal to one is attributed 

to the spread problem part of the objective function.  
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The Integer Programming formulation is defined in Table 4. 

Table 4: New Integer Programming approach for Car Sequencing. 

 Our model 

Objective 
function 

 (1) 

 
 

(2) 

 (3) 

 (4) 

Constraints 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 
 (10) 

 (11) 
 (12) 

 (13) 
 (14) 

Comparing the OPL model with our formulation, the OPL model does not 

consider an objective function being a Constraint Satisfaction Programming 

problem. In opposition our model is an optimization problem, which goal is to 

minimize the objective defined in the objective function (1). The OPL model 

solution satisfies all the constraints, and ours as explained before minimizes the 

violations of capacity constraints (2), penalizes the special cars that are not placed 

in the first positions of the sequence (3) and evaluates the cars color spread (4). 

Equations (3) and (4) intend to put together the cars with the same color. The 

difference between equations (3) and (4) is that the equation (3) intends to put the 

cars with special color together and in the first places of the sequence, while 

equation (4) only intends to put the cars with special color together. 
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The objective function (1) considers the number of violations of a capacity 

constraint, using the ROADEF'2005 method (Prandstetter 2005)  in equation (2), 

the displacement of cars for special markets in equation (3), and the sum of the 

spread of cars with the same color, in equation (4). Considering the constraints, 

equation (5) guarantees that exactly one car is produced in each period t. To 

ensure that the number of cars produced by variant corresponds to the customer 

demand, equation (6) was implemented. Constraints (7) and (11) guarantee that 

each capacity constraint violation is correctly counted, using the ROADEF'2005 

method (Prandstetter 2005) and the variable peno,t. Constraints (8-10) guarantee 

that the function ( tcstart , - tcend , ) takes the value 1 in the periods t in which cars 

with color c are produced, and 0 otherwise. Constraints (12-14) enforce variables 

to be binary. 

Accordingly, and as referred before, we have a hierarchical multi-objective 

function that includes three measures as Figure 8 suggests. 

 

Figure 8: Hierarchical multi-objective function. 

The first priority is to minimize the capacity constraints violations and has 

associated an α weight equal to 50000. The second priority is to place the special 

cars first in the sequence and has associated a β weight equal to 10. These weights 

are higher because, according to our industrial partner, obeying capacity 

constraints and the displacement of special cars is more important for final 

assembly goals than the color spread. Thus, the third priority is the spread 

problem that has a weight equal to 1. As mentioned before, a proper choice of 

these weights will enforce, for instance, that solutions with an extra capacity 

constraint violation will never occur if it is possible to have a solution without that 

extra capacity constraint violation. That is why, testing these parameters in the 

IBM ILOG software, we achieve the values α equal to 50000 and β equal 10. 

Objective Function

Capacity Constraint Problem

(α = 50 000)

Special Cars 
Problem

(β = 10)

Spread 
Problem 
(weight 

= 1)
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In the following subsections we will explain carefully how we count the 

capacity constraint violations and the concepts of "special cars come first" and 

"color spread". 

4.3.2 COUNTING THE CAPACITY CONSTRAINT VIOLATIONS 

In the literature are mentioned, at least, three methods that count the 

capacity constraint violation: the Sliding Window mentioned before in the 

subsection 3.3 from Gravel, Gagné and Price (2005), the ROADEF'2005 approach 

explained in Prandstetter (2005) and the FB method from Fliedner and Boysen 

(2008).  

In the Sliding Window approach only the subsequences of length No, where 

a violation occurs, are counted. The constraint that represents this approach is the 

following (Gravel, Gagné, and Price 2005). 

 

In Golle, Rothlauf and Boysen (2011) the difference between  and  is 

replaced by a biggest integer (B). But the use of the difference between  and  

is enough to guarantee that only the subsequences of length No, where a violation 

occurs, are counted. 

The ROADEF'2005 approach introduced in the ROADEF Challenge 2005 

counts the number of violations following the equation (7) from Table 4. 

The FB method counts all option occurrences leading to a rule violation. The 

following constraint represents this approach (Fliedner and Boysen 2008). 

 

To analyze the differences between the approaches, we will compare the 

results of the constraint violation evaluation for each method, in Table 5. All the 

calculations are in the Appendix I. Remember that the objective function is to 

minimize the sum of penalties for all the methods. 
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Table 5: Comparison between different methods to calculate capacity constraint violations. 

Sequences 
ROADEF'2005 

method 
Sliding Window 

method 

FB method 
(considering 

 ) 

abbbaaabbbaa 
(option b - 1:3) 

8 6 4 

bbbaaaaaabbb 
(option b - 1:3) 

6 4 4 

abbabaabbaba 
(option b - 1:3) 

6 6 4 

abbaabbaabba 
(option b - 1:3) 

6 6 3 

Analyzing the results summarized on Table 5, the ROADEF'2005 approach 

is the one that penalizes more violations of capacity constraints. This method 

counts the number of violations in each subsequence of . The Sliding Window 

method, as the ROADEF'2005, tends to double count some rule violations and 

weights them differently depending on their position in the sequence. That is why 

the first and second sequences have different values despite the sequence of cars b 

be the same in the two cases and the only difference is the group position of cars b. 

This should not happen and that is why Fliedner and Boysen (2008) created the FB 

method. However the FB method, for example, does not distinguish the sequence 1 

from the sequence 3. As can be seen, sequence 3 is not so bad as sequence 1, 

because it allow workers to rest, not obliging them to do 3 b's in a row. The 

ROADEF'2005 method is the only approach that distinguishes this case. 

Based on this performance study and taking into account the goal of the 

problem under study we have decided to adopt the ROADEF'2005 approach in the 

model developed. The main reason discussed with our automotive partner is the 

fact that this approach is sensitive to the number of cars that exist in a row. 
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4.3.3 SPECIAL CARS COME FIRST 

Our industrial partner defined that it is important to assemble first in the 

sequence cars with special colors, destined to special markets. These cars have to 

be delivered in the beginning of the day and that is why it is important to produce 

them first in the sequence. Being the mathematical programming a powerful tool 

to model special features we decided to introduce a penalty in the objective 

function of the mathematical programming model, as shown in the Figure 9. 

 

Figure 9: Representation of the objective function for 30 special cars and 40 car slots, considering that 
special cars should come first in the sequence. 

As an example, suppose that 30 special cars are to be produced on a given 

day. If they do not come first in the sequence, a penalty in the optimization 

function is triggered as in Figure 9. Special cars until the 30th position, inclusively, 

will not have penalties. On the other hand, if a special car is sequenced after slot 

30, the value of the penalty corresponds to the difference between the slot (car 

position) and the number of special cars, multiplied by a constant, chosen to be 

three in this example.  

Notice that it may not be possible to place the first 30 cars first in the 

sequence without violating capacity constraints. Therefore, as these objectives 

may be conflicting, were given different weights in the objective function as 

explained before in subsection 4.3.1. 
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4.3.4 MINIMIZATION OF THE COLOR SPREAD SUM 

The model that considers capacity constraint violations and that special 

cars should come first, works well, but during the model conceptualization we 

have considered important to include colors spread in the model. This could 

improve the synchronization between painting and final assembly, allowing to 

reduce the Work in Progress, to diminish the consumption of solvents in the 

Painting area because of the decrease in color changes, as well as reducing costs 

with suppliers of the final assembly. If it would be possible to assemble by car 

color, our suppliers that deliver painted pieces, could deliver also by color, saving 

money on the sequence rearranging to deliver at our automotive partner final 

assembly. 

Previous models in the literature, as the model of Prandstetter and Raidl 

(2008), considered the number of color changes. They assumed that there is a 

color change in a car sequence if two adjacent cars have different colors. Notice 

that the number of color changes is the same when two cars are just two slots 

apart (with another color in between) or when they are three hundred slots apart. 

For this reason, we introduced the concept of an assembly sequence that 

minimizes the sum of the spread values of cars with the same color, trying to place 

the cars of a given color as close as possible in the assembly sequence. Solutions 

with reduced color spread allow to batch cars with the same color in the Painting 

area and we claim that this concept improves the performance of the global 

system. 

A solution provided by our model is shown in Figure 10. The first row 

represents the cars colors and the second one represents the car option 

considering only the car model. Yellow cars, in the second row, have a capacity 

constraint of 1:2 and orange cars have a capacity constraint of 2:3. This example 

has 187 cars of 3 types, 32 variants, 10 options, 11 colors, 74 special cars, α equal 

to 50000 and β equal to 10. 

 

Figure 10: Solution provided by the new Integer Programming formulation. 
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In the example shown in Figure 10 the special cars were the ones with black 

color. All the special cars are placed first in the sequence and are all together. For 

this reason the corresponding color spread is equal to zero. On the other hand, for 

example, to avoid the violation of capacity constraints, there are two cars placed 

among the red cars. Therefore, the red color spread is equal to seven (two plus five 

red cars). Globally this solution, non-optimal, shows a total color spread of 210 (23 

plus 187 cars) and was obtained in, approximately, one hour and a half.  

The strategy is then to use the batch sequence of the final assembly to 

determine the order in which cars are painted. In this example the batch sequence 

would be black, red, white, etc. After the cars being painted, they would enter the 

assembly line using the sequence determined before by the model. Before entering 

to final assembly, changes in positions are needed, violating the batch painting 

sequence. Nevertheless, these violations are allowed, because the company wants 

to keep always a number of cars in the buffer between the painting and the final 

assembly to avoid stock-outs. The changes in positions are also necessary because, 

as mentioned before, the priority in the final assembly is to avoid the violation of 

capacity constraints to prevent line stoppages.  

This strategy may also provide better logistics with the suppliers, for 

instance, in the case of the bumpers, which have an attribute color and are 

supplied in a sequence that follows the final assembly sequence plan. Delivering 

bumpers when colors are clustered may enable the supplier to batch production 

and to reduce the operations needed to organize the sequence, reducing their costs 

and even reducing sequence supply errors. 

This new model that counts the spread of each color has an increased 

complexity, and presents larger computational times to obtain a solution. For this 

reason, improvements in the model have been studied, as it will be described in the 

following section. These model improvements were achieved trying to consolidate 

the model including the search of valid inequalities and bounds that, when found, 

improve computational times. A heuristic approach was also studied to try to 

achieve better results. 
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5 MODEL IMPROVEMENTS  

Model improvements can be achieved looking for a model consolidation by 

improving the bounds with valid inequalities and adding strong inequalities. 

Therefore, lower and upper bounds and additional inequalities were studied to 

strengthen the model and to improve computational times.  

Another way of improving the model is to develop a heuristic to integrate 

with it. But first of all we will describe our achievements when trying to 

consolidate the model. 

5.1 MODEL CONSOLIDATION 

We started this approach using three different cutting planes based on the 

capacity constraint part of the objective function represented by the equation (2), 

on the special cars term of the objective function represented by the equation (3), 

and on the color spread part of the objective function represented by the equation 

(4). Our first approach was to solve each problem independently and introduce the 

results as new constraints as shown in the following constraints.   

 (15) 

 (16) 

For each color we have introduced a new constraint with the optimal 

solution of the capacity constraint and the color spread model. So, considering the 

spread inferior limit, we will have as many constraints as the number of colors. 

 

 

(17) 
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Following we will present the improvements of each cut in the objective 

function value for four different instances with the characteristics described in the 

Table 6. 

Table 6: Instances to evaluate cuts improvements (also used in section 6). 

Instance 
number 

Number 
Cars 

Mix 
(A:B:C) 

Number 
Options 

Number 
Variants 

Number 
Colors 

Number 
Special 

Cars 

Average 
utilization 

rate 

Options 
with 

utilization 
rate > 1 

1 300 37:121:142 14 115 16 79 0,24 - 

17 300 61:114:125 14 97 16 53 0,24 - 

23 300 50:100:150 15 104 18 57 0.2 - 

24 300 58:77:165 14 116 19 62 0.23 O1 (1.10) 

The instances characteristics include a number of cars equal to 300 in the 

four instances. This value corresponds to the maximum capacity by shift in our 

automotive partner. The mix value corresponds to the demand of each model 

(A:B:C) and the sum is always equal to 300. The number of options, variants, colors 

and special cars vary according to the distributions of the demand. The demand 

characteristics are explained in detail in subsection 6.2. There are 17 possible 

options with associated capacity constraints as expressed in the following table. 

Table 7: Instances characteristics - options and capacity constraints. 

Option 
Capacity 

constraint 

Option 1 1:2 

Option 2 1:2 

Option 3 1:3 

Option 4 1:3 

Option 5 1:4 

Option6 1:4 

Option 7 1:26 

Option 8 1:6 

Option 9 1:6 

Option 10 1:3 

Option 11 1:4 

Option 12 1:16 

Option 13 1:3 

Option 14 1:6 

Option 15 1:2 

Option 16 1:2 

Option 17 1:2 
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The results of applying the cuts to the model are in Table 8. The data that 

originates it, is on Appendix II. The Table 8 includes, for each instance, the best 

solutions after 5, 20 and 30 minutes. Three different use cases were tested 

separately for each of the four instances: 

 First case – constraint (17); 

 Second case - constraints (15) and (16); and  

 Third case – constraints (15), (16) and (17). 

The percentage of improvement was calculated according to the next 

function. 

 

Table 8: Results of strengthening the model. 

  

% 
Improvement 

Constraint (17) 

% 
Improvement 

Constraints 
(15)+(16) 

% 
Improvement 

Constraints 
(15)+(16)+(17) 

I 1 

Best solution after 5 minutes 99.27% 0.00% 100.00% 

Best solution after 20 minutes 4.55% 0.00% -68.18% 

Best solution after 30 minutes 9.09% 0.00% 0.00% 

I 17 

Best solution after 5 minutes 24.53% 0.00% 100.00% 

Best solution after 20 minutes 100.00% 100.00% 100.00% 

Best solution after 30 minutes 100.00% 100.00% 100.00% 

I 23 

Best solution after 5 minutes 99.99% 0.00% 99.99% 

Best solution after 20 minutes 99.99% 0.00% 99.99% 

Best solution after 30 minutes 0.27% 0.00% 0.27% 

I 24 

Best solution after 5 minutes 0.01% 0.00% 0.00% 

Best solution after 20 minutes 0.03% 0.00% 0.00% 

Best solution after 30 minutes 0.03% 0.00% 0.00% 

 
Average improvements 44.81% 16.67% 44.34% 
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The average improvements are considered calculating the average of the 

results in each test for each instance. We have concluded that the constraint 

represented by the constraint (17) have improved the results in about 45% on 

average. Constraints (15) and (16) have improved the model in about 17% and 

constraints (15), (16) and (17) have improved the model in 44%. Despite the 

improvements of constraint (17) and constraints (15), (16) and (17) be similar, 

constraint (17) is slightly better since it gives better solutions in all instances while 

constraints (15), (16) and (17) do not provide solutions within 30 minutes for 

instance 24. 

The results for the capacity constraint and special cars problems, that lead 

to the inclusion of constraints (15) and (16), are easily found, solving the capacity 

constraint and the special cars problems independently. These results are obtained 

in a few seconds in the IBM ILOG 12.2. 

The results of the spread problem for each color that lead to the inclusion of 

constraint (17) are however difficult to achieve. Easily these take more than 5 

minutes to reach an optimal solution. Based on this fact and in order to overcome 

this drawback we have developed the following strategy. 

If  “Result of the capacity constraint model” = 0 then 

Solve the problem using the procedure below 

else “Solve the problem using the model in IBM ILOG 12.2”  

 If “the time to solve the problem is > 5 minutes” then 

  “Use the inferior limit achieved” 

  If “Inferior limit is integer” then 

   “Use the integer inferior limit achieved” 

  Else “Use the next integer value” 

  End if 

Else “Use the optimal solution” 

 End if 

End if 
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As described in the procedure above if the result of the capacity constraint 

is equal to zero it is better to find the result of the spread problem for each color 

using the procedure that will be described following. This new procedure achieves 

the correct value in less than one minute for each color if we follow the tips 

described next. One is to calculate the minimum number of slots that a considered 

number of cars will occupy, without violating capacity constraints, following the 

next function. 

 

This function has to be used carefully since it is necessary to take into 

account the capacity constraints of each car. Other cars that obey to other capacity 

constraints can be allocated to the slots between the slots occupied by the cars 

sequenced before. To calculate the number of free slots between the first and last 

car that is being analyzed we have to use the following function. 

 

As an example consider 12 cars (a) with the capacity constraint 1:2, 4 cars 

(b) with capacity constraint 1:3 and 3 cars (c) without capacity constraints. The 

procedure is the following: 

1. Choose the option with a higher number of cars. 

In this case are the a’s  

2. Calculate the number of slots needed to sequence these cars 

 = 2(12-1) + 1 = 23 

3. Calculate the number of free slots between the first and last car 

 = (2-1)(12-1) = 11 

Illustrating this sequence we have: 

a__a__a__a__a__a__a__a__a__a__a__a (11 free slots + 12 a cars) 

4. Choose the next option with the higher number of cars 

In this case are the b’s 

5. Compare the number of cars with the number of free slots calculated in 

3.  

In this case 4 < 11 
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6. Calculate the number of slots needed to sequence these cars 

 = 3(4-1) + 1 = 10 

6.1 If the number of cars and slots calculated in 5 and 6 is inferior to the 

number of free slots we will not need more slots to sequence these cars. 

6.1.1 “Based on the illustration” include the cars in the free slots. 

    aba__aba__aba__aba__a__a__a__a 

6.1.2 Repeat the process from 4-7 until you do not have cars to sequence 

6.2 If the number of cars and slots calculated in 5 and 6 is higher you will 

need more slots to sequence these cars after the last car sequenced. 

6.2.1 Imagine that you have 7 b’s. In this case the result of the point 5 

would be 7<11 and the result of the point 6 would be 3(7-1) + 1 = 19>11. 

“Based on the illustration” include the cars in the free slots and create the new 

slots to include the cars that do not fit in the empty slots.     

 aba__aba__aba__aba__aba__aba__b 

6.2.2 Repeat the process from 4-6 until you do not have cars to 

sequence. 

Notice that, if the result of the capacity constraint is different than zero it is 

advisable not to use this procedure, because the cars where the capacity 

constraints are violated can vary depending on the color that we are optimizing. 

For this reason, in these cases, we have done it using the IBM ILOG 12.2 framework 

to do all this calculations, as described in the procedure presented before. 

Despite the good results when using constraint (17) in the model, we think 

that the processing times can be improved without big penalizations for our 

solution, bringing better times and acceptable solutions for our industrial partner. 

For this reason, a heuristic, described in following subsection, was created to be 

integrated with the exact "capacity constraint, special cars and spread model" 

explained in subsection 4.3. 

  



MIT Portugal Program  Model Improvements 

60                                                              Single line for assembly just-in-sequence multiple models 

5.2 NEW HEURISTIC APPROACH FOR CAR SEQUENCING  

Preliminary computational results have shown that the model that 

considers the capacity constraints and the special cars issue is solved with CPLEX 

12.2, provided by IBM-ILOG in a few seconds for 300 cars on average. These 

preliminary results can be consulted in Appendix III. However when the color 

spread is considered the model becomes much harder to solve as can be seen in 

the results described on the column “Without heuristic” from Appendix IV. For this 

reason a heuristic approach based on the integer model presented in subsection 

4.3 was pursued. Our strategy enabled us to keep the original framework, which is 

a powerful modeling tool, allowing at the same time to take into consideration new 

features. 

The basic idea behind the heuristic is an approximate measure of the spread 

value. Instead of measuring the spread by considering the total number of slots 

occupied by the cars of a given color, the heuristic measures the spread by 

considering a total number of intervals, with 5, 10 or 25 slots for example, 

occupied by the cars of a given color. The heuristic simplifies the problem by 

dividing the whole sequence into intervals, thus reducing the number of variables 

and consequently the problem complexity. 

To reduce the number of variables of the final matrix of colors and slots, the 

concept of number of intervals was created. Each interval represents a group of 

cars from a group of slots according with the following equation. 
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In each interval the cars color of each slot are clustered, as the following 

example explains (Figure 11). 

 

Figure 11: Clustering of cars color of each slot, considering 3 colors and a number of intervals equal to 
2 in a range of 4 cars. 

The correct number of intervals is evaluated considering the computational 

results. The number of intervals should be as closest as possible to the number of 

slots, to achieve results as close as possible to the optimal solution of the real 

problem. It is estimated that this approximation should follow the next constraint, 

that will be explored in subsection 5.2.2. 

 

This means that the spread of the real problem is at most the width of the 

interval multiplied by the value of the heuristic spread.  

In summary, the heuristic simplifies the problem by dividing the whole 

sequence in small intervals, thus reducing the number of variables and 

consequently the problem complexity. On the other hand, instead of an optimal 

global solution the output will be an optimal local solution. 
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5.2.1 HEURISTIC INTEGER PROGRAMMING FORMULATION 

The new formulation for the problem includes a similar objective function 

represented by equations (1-3) from subsection 4.3.1, and the constraints (5-7) 

and (11-12) of the integer linear program also described in subsection 4.3.1. 

However, the variables start and end will have a different definition due to the 

concept of number of intervals. So the parameters nint and nlarge were created: 

nint represents the number of intervals; nlarge represents the width of the interval 

and is obtained taking into consideration the next equation. 

 

A new decision variable was created to represent the colors of each interval 

and the variables startc,t and endc,t were modified as following: 

 startc,s - 0-1 decision variable. Becomes 1 when the first interval of cars, s, 

with s  {1 … nint}, with the color c is scheduled and remains 1 until the 

last interval; 

 endc,s - 0-1 decision variable. Becomes 1 in the next interval of cars, s, 

with s  {1 … nint}, after the last interval of cars, s, with the color c is 

scheduled and remains 1 until the last interval of cars s; 

 bintc,s - 0-1 decision variable. Becomes 1 if color c is scheduled in the 

period s, with s  {1 … nint}. 
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Thus, our new Integer Programming formulation that includes the heuristic 

is defined in Table 9. 

Table 9: New Heuristic Integer Programming approach for Car Sequencing. 

 Our model 

Objective 
function 

 (1) 

 
 

(2) 

 (3) 

 (4a) 

Constraints 

 (5) 

 (6) 

 

(7) 

 (15) 

 (8a) 

 (9a) 

 (10a) 

 (11) 

 (12) 

 (13a) 

 (14a) 

 (18) 

In the following subsection we will present in detail how the approximation 

to estimate the spread of the heuristic was achieved. 
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5.2.2 SPREAD ESTIMATION 

The original problem minimizes the value of the color spread, i.e., the sum 

of the lengths of all the color intervals in terms of positions. On the other hand, the 

heuristic is a modified problem that minimizes the value of the interval color 

spread, i.e., the sum of the lengths of all the color blocks in terms of intervals. It can 

be solved for any choice of nint intervals each with nlarge positions. In the 

following analysis, we consider that nint * nlarge = T, being nint, nlarge and T 

integer values. The heuristic is still an Integer Programming problem, but it was 

denoted as such, because it provides an approximate solution for the original 

problem.  

We will show that it is possible to derive an approximation guarantee for 

the value of the color spread of the solution obtained by the heuristic. Of course, 

when we solve the modified problem, the optimal solution found may be the 

optimal solution for the original problem. However, when this does not happen, 

the color spread of the heuristic solution (measured in terms of the color spread in 

the original problem), does never exceed by more than a pre-defined amount the 

value of color spread of the optimal solution of the original problem, as shown 

below. 

The result has a general scope, and is valid for any problem where a 

strategy of minimizing spread is applied. When addressing this sequencing 

problem, this analysis is valid when we just consider, in the objective function, the 

value of the spread, and ignore the other terms. 

Let xi represents the solution that minimizes the color spread in the original 

problem, and s(xi) the corresponding optimal value of the color spread. When we 

solve the heuristic, for a given choice of nint, and minimize the interval color 

spread, attaining the optimal integer solution for the modified problem, we get a 

solution that will be denoted as xninth. Let bnint(xninth) be the (optimal) number of 

color intervals in the modified problem. This solution will have a corresponding 

value of color spread (measured in the original problem) equal to s(xninth).  
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Let bnint(xi) be the number of intervals occupied by the optimal solution of 

the original problem, xi, that has fewer intervals occupied. In fact we may have 

alternative optimal solutions in the original problem in terms of the value of 

spread, but one (or some) occupying fewer intervals. Note that the number of color 

intervals of the optimal solution of the modified problem, bnint(xninth), can never 

have a number of blocks greater than bnint(xi), because the solution xi is a valid 

solution at hand when we solve the modified problem. Therefore bnint(xninth) <= 

bnint(xi).  

Let us analyze first the case when bnint(xninth) = bnint(xi) = b. The relation 

s(xninth) >= s(xi) holds, because we may have alternative optimal solutions to the 

modified problem with different values of spread in terms of the original problem. 

We want to show that s(xninth) <= Kmax s(xi), where Kmax is the worst case 

approximation guarantee. Clearly, the optimal solution of the modified problem 

has a color spread that obeys the following inequality: 

 s(xninth) <= b * nlarge,        (19) 

otherwise it would occupy more than b=bnint(xi) blocks, and it would not be 

the optimal solution of the modified problem. 

Clearly we would like to have an a priori value for Kmax that does not depend 

on the value of b, which is unknown a priori. We can derive a rough value with a 

simple analysis. Consider the worst case situation in which all the b blocks have 

just one position occupied in the solution of the original problem. Then, s(xninth) <= 

nlarge s(xi).  

However, when the number of intervals is larger than the number of colors, 

nint >= C, which is a more common situation, we can derive a tighter result. In this 

case, due to the structure of the solutions, both in the original problem and in the 

heuristic, in which the color interval remains active from the first position until the 

last position, we can have, at most, 2C intervals in the solution of the original 

problem with just one position filled, at both ends of each color block, while the 

intervals in the middle are part of the color interval, and contribute with nlarge 

positions. Therefore, for an optimum solution of the original problem that occupies 

b intervals, the value of the spread: 

            s(xi) >= 2C + (b -2C)*nlarge.          (20) 
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Furthermore, it cannot be smaller than T: 

                                    s(xi) >= T,       (21) 

which combines into: 

 

   (22) 

 

Combining this relation with (17), we obtain: 

 

   (23) 

 

The approximation guarantee K(b), in s(xninth) <= K(b) s(xi), is a piecewise 

function that depends on the value of b. There is a breakpoint, bp, when 

b*nlarge+2C(1-nlarge) = T, meaning:  

 

        (24) 

 

Notice that nint <= b <= C * nint. This range can be divided in two parts: in 

the first part,  where (21) holds, and, in the second part, 

 where (20) holds. It is easy to check that, for the approximation 

guarantee K(b), the value of K(b) increases as b increases in the first part, while, in 

the second part, the value of K(b) decreases as b increases. Therefore, the 

maximum value of K(b)= Kmax, which corresponds to the worst case approximation 

guarantee, occurs for one of the integers neighboring the breakpoint bp, and so it 

can be calculated beforehand, making it possible to choose a suitable value of 

nlarge in order not to incur an approximation larger than a pre-defined value. 
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Another case happens when bnint(xninth) < bnint(xi), meaning that there is a 

solution xi’ to the original problem that is not optimal (having a spread s(xi’) larger 

than the optimum, s(xi), but occupying fewer blocks. Clearly the solution xi’ is 

available when we solve the heuristic. The ratio to calculate, K(b), has, in the 

numerator, the value of the largest spread (in terms of positions) of the heuristic 

solution and, in the denominator, the value of the spread of the original solution. If 

there is a solution to the modified problem that occupies fewer blocks, the 

heuristic will find it, and the worst value in the numerator will be smaller. On the 

other hand, the value in the denominator will be larger. Therefore, the value of 

K(b) indicated in (23) is larger, and will provide a valid approximation guarantee 

Q.E.D.. 

Considering the example shown in the following Figure 12, with T equal to 

30, nlarge equal to 5, nint equal to 6 and C equal to 3. Assuming that the optimal 

solution is the one given in the second diagram with a spread s(xi) equal to 30 and  

occupying b equal to 6 intervals. The heuristic will also find a solution occupying 8 

intervals (the intervals shown in Figure 12), but the heuristic solution might be the 

one in the third diagram, with a spread (in terms of positions) equal to 38. This 

heuristic solution has a spread that exceeds the optimal spread by 26.6%.  

 

Figure 12: Example with the spread of the heuristic and best and worst scenario for the spread of the 
real problem. 

For this example, the values of K(b) are in Table 10. 

Table 10: Values of K(b) for the example represented by Figure 12. 

b 6 7 8 9 10 11 12 13 14 15 16 17 18 

K(b) 1.00 1.17 1.33 1.50 1.67 1.77 1.67 1.59 1.52 1.47 1.43 1.39 1.36 
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For an optimal solution with b equal to 8, the value of K(8) is equal to 1.33. 

In the example, the heuristic solution shown is 26.6% within the optimal. 

Furthermore, the choice of nlarge equal to 5 guarantees an approximation 

calculated as follows. The breakpoint occurs for 10.8. In (21), K(10) is equal to 1.67 

and K(11) equal to 1.77. Therefore, the value of the spread (in terms of positions) 

of the solution obtained from the heuristic will never be worse than the optimal 

solution by more than 77%.  

Consider another example used in the computational tests, with T equal to 

300, nlarge equal to 5, nint equal to 60 and C equal to 11. The breakpoint occurs for 

77.6. Calculations done as above lead to . This means that 

the value of the spread (in terms of positions) of the solution obtained from the 

heuristic will never be worse than the optimal solution by more than 29.1% . 
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6 COMPUTATIONAL RESULTS 

In order to be sure that, as a result of this research, it is possible to develop 

a robust tool that can be used daily for Car Sequencing at automotive assembly 

companies, we have decided to test the models with data that simulates our 

industrial partner’s environment. This data was created using a Random Generator 

developed for this project. This Random Generator allows the creation of “random 

instances” based on our industrial partner’s demand of 42 weeks from 2010 and 

2011 and considering different scenarios according to our goals. 

6.1 THE RANDOM GENERATOR 
As mentioned before, to test the model a Random Generator was created 

using Microsoft Visual Basic 6.5. This Random Generator creates scenarios to 

simulate our industrial partner’s environment and gives the following data that 

will be used as parameters into the models described in subsection 4.3 and in 

section 5. 

 Demand of each model (Models A, B and C); 

 Demand of each variant; 

 Matrix with options of each variant; 

 Matrix with color of each variant. 

The demand for each model (Models A, B and C) is created independently, 

considering all the possible combinations of options and taking into account the 

demand percentage of the cars with different options per day. These percentages 

vary according to the scenarios in consideration. 

Firstly, to calculate the demand of each model, we took into account the 

percentage of demand of each model to calculate the probability of being a Model 

A, a Model B and a Model C. As demands are independent and the model cannot be, 

for example, a Model A and a Model B at the same time, the probabilities 

correspond to the demand percentage of each model, for the considered scenario. 
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Secondly and finally, 300 random values between 0 and 1 are generated, 

since the maximum available capacity of our automotive partner is 300 per shift. 

Based on the random value obtained, a decision will be made: 

 if the number is in the interval [0 , Model B probability], the car is a 

Model B; 

 if the number is in the interval [Model B probability, Model B probability 

+ Model C probability], the car is a Model C; 

 otherwise, it is a Model A. 

The demand of each variant is calculated using the same strategy. However, 

it is necessary to calculate the probabilities of occurrence of each variant taking 

into consideration the demand of each option. These probabilities are calculated 

considering the examples described in Table 11. 

Table 11: Calculation of variant probabilities - example. 

 Variant 1 Variant 2 Variant 3 

Option 1 
(O1) 

1 0 1 

Option 2 
(O2) 

0 0 1 

Option 3 
(O3) 

0 0 1 

Option 4 
(O4) 

1 0 1 

Probability 
of 

occurrence 

% demand O1 * 
(1-% demand O2) * 
(1-% demand O3) * 

% demand O4 

(1-% demand) * 
(1-% demand O2) * 
(1-% demand O3) * 
(1-% demand O4) 

% demand O1 * 
% demandO2 * 
% demand O3 * 
% demand O4 
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Finally, to calculate the demand of each variant, x random values according 

to all possible variants of each model are created. Based on the random value a 

decision will be made: 

 if the number is in the interval [0 , Probability Var1], the car is a Variant 

1; 

 if the number is in the interval [Probability Var1 , Probability Var1+ 

Probability Var2], the car is a Variant 2; 

 if the number is in the interval [Probability Var1+ Probability Var2 , 

Probability Var1 + Probability Var2 + Probability Var3], the car is a 

Variant 3; 

 and so on, until the second last variant; 

 otherwise, it belongs to the last variant. 

The demand of each color is calculated using the same strategy. However, it 

is necessary to calculate the probabilities of occurrence of each color taking into 

consideration the demand of each color. As in the case of the models probabilities, 

the demand of each color is independent and a variant has only one color. Thus, 

the probabilities correspond to the demand percentage of each color, for the 

considered scenario.  

To calculate de demand of each color, x random values according to all 

possible variants of each model are created. Based on the random value a decision 

will be made: 

 if the number is in the interval [0 , Probability Color1], the car has the 

color 1; 

 if the number is in the interval [Probability Color1 , Probability Color1 + 

Probability Color2], the car has the color 2; 

 if the number is in the interval [Probability Color1 + Probability Color2, 

Probability Color1 + Probability Color2 + Probability Color3], the car has 

the color 3; 

 and so on until the second last variant; 

 otherwise, it belongs to the last color. 
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Based on the calculated demands of car models, variants and colors, the 

matrixes with the options of each variant and with the color of each variant are 

created. 

The final result, represented in Figure 13, will be used as an input to the 

models presented in subsection 4.3 and in section 5. 

 

Figure 13: Results of the Random Generator - Layout. 

  

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 Var13 Var14 Var15 Var16 Var17 Var18 Var19 Var20 Var21 Var22 Var23 Var24 Var25 Var26 Var27 Var28 Var29 Var30 Var31 Var32 Var33

Demand 28 35 79 1 1 1 1 1 28 6 6 7 1 10 6 4 1 1 27 3 8 5 4 12 5 6 1 1 6 1 1 2 1

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 Var13 Var14 Var15 Var16 Var17 Var18 Var19 Var20 Var21 Var22 Var23 Var24 Var25 Var26 Var27 Var28 Var29 Var30 Var31 Var32 Var33

/*Sharan*/  1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/*EOS*/ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GZ6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1M6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6L6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5KT/5KU 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

EOH (sci) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0

TA2/6EJ (sci) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Weight

/*Sharan*/  1

/*EOS*/ 1

GZ6 1

1M6 1

6L6 1

5KT/5KU 1

EOH (sci) 1

TA2/6EJ (sci) 1

u l

/*Sharan*/  2 3

/*EOS*/ 1 2

GZ6 1 3

1M6 1 3

6L6 1 2

5KT/5KU 1 3

EOH (sci) 1 6

TA2/6EJ (sci) 1 19

lastday

2T2T 0

4C4C 0

4Y4Y 0

7B7B 0

7C7C 0

8E8E 0

B4B4 1

P0P0 0

U1U1 0

X3X3 0

Z2Z2 0

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 Var13 Var14 Var15 Var16 Var17 Var18 Var19 Var20 Var21 Var22 Var23 Var24 Var25 Var26 Var27 Var28 Var29 Var30 Var31 Var32 Var33

2T2T 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0

4C4C 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4Y4Y 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

7B7B 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

7C7C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8E8E 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

B4B4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

P0P0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

U1U1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X3X3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Z2Z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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6.2 THE INSTANCES 

Three models of cars were considered, models A, B and C. Three different 

possible scenarios were taken into consideration by assuming peaks for each 

model. The instances generated and tested are in the Table 12. 

Table 12: Instances characteristics. 

Instance 
number 

Number 
Cars 

Mix 
(A:B:C) 

Number 
Options 

Number 
Variants 

Number 
Colors 

Number 
Special 

Cars 

Average 
utilization 

rate 

Options 
with 

utilization 
rate > 1 

1 300 37:121:142 14 115 16 79 0,24  

2 300 74:51:175 14 103 19 52 0,24 O1 (1,17) 

3 300 48:99:153 14 113 17 69 0,23 O1 (1,02) 

4 300 54:83:163 15 121 19 65 0,23 O1 (1,09) 

5 300 52:105:143 14 102 18 53 0,2  

6 300 48:103:149 15 109 18 80 0,21  

7 300 56:109:135 15 107 18 59 0,23  

8 300 82:77:141 14 107 21 62 0,26  

9 300 56:112:132 14 108 20 57 0,22  

10 300 72:37:191 14 109 17 49 0,26 O1 (1,27) 

11 300 42:99:159 14 110 17 76 0,23 O1 (1,06) 

12 300 66:41:193 14 113 18 50 0,25 O1 (1,29) 

13 300 61:95:144 14 95 18 50 0,21  

14 300 40:101:159 14 106 15 77 0,24 O1 (1,06) 

15 300 61:102:137 14 103 19 59 0,25  

16 300 83:77:140 15 102 21 54 0,21  

17 300 61:114:125 14 97 16 53 0,24  

18 300 57:124:119 15 98 19 43 0,18  

19 300 61:88:151 15 107 18 51 0.21 O1 (1,01) 

20 300 52:97:151 15 116 19 68 0.25 O1 (1,01) 

21 300 39:116:146 14 111 16 82 0.23  

22 300 41:146:113 14 110 18 86 0.25  

23 300 50:100:150 15 104 18 57 0.2 O1 

24 300 58:77:165 14 116 19 62 0.23 O1 (1,10) 

25 300 47:106:147 14 115 20 64 0.24  

26 300 60:96:144 16 109 19 70 0.24  

27 300 76:82:142 15 110 21 68 0.23  
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As explained before in subsection 4.1, the instances characteristics include a 

number of cars equal to 300 in all instances. This value corresponds to the 

maximum capacity by shift in our automotive partner. The mix value corresponds 

to the demand of each model (A:B:C) and the sum is always equal to 300. The 

number of options, variants, colors and special cars vary according to the 

distributions of the demand. There are 17 possible options with associated 

capacity constraints as expressed in the Table 7. The average utilization rate is 

calculated taking into consideration the following function. 

 

6.3 RESULTS AND ANALYSIS OF COMPUTATIONAL TESTS 

The instances created by the random generator, as mentioned before, were 

tested using the IBM ILOG 12.2 framework in a Intel® Core™2 Duo CPU T9600 

Toshiba laptop @ 2.80GHz with 6 GB of RAM.  

Firstly, we solved the model just with the capacity constraints as part of the 

objective function (equation 2 – subsection 4.3.1). Then we have addressed the 

model variant that considers capacity constraint and special cars, taking into 

account the equations (2) and (3) of subsection 4.3.1 as part of the objective 

function. Finally, we have solved the global problem that includes the capacity 

constraint, special cars and color spread model considering the equations (2), (3) 

and (4a) of the subsection 5.2.1 as part of the objective function. For the global 

problem we have searched the best solutions obtained after 5, 20 and 30 minutes, 

acceptable times for achieving a solution for planning the sequence just before 

each shift. Still, the model can be ran for longer times aiming at better solution 

values. 

To analyze the results we have decided to use box plots since they appear as 

an easy way to see data organized considering statistical values. Also, they are 

useful for seeing a big picture of the data without being overly detailed (Siegel 

2012). 
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This statistical tool is a standardized way of displaying the distribution of 

data based on five sample statistics:  

 Minimum – the smallest data value, excluding outliers and extremes (0th 

percentile); 

 First quartile – the 25th percentile, ¼ of the way in from the minimum; 

 Median - the 50th percentile, in the middle; 

 Third quartile- the 75th percentile, ¾ of the way in from the minimum; 

 Maximum - the highest data value, excluding outliers and extremes 

(100th percentile). 

Values that are far from the middle data set are considered outliers. As we 

used IBM SPSS version 20 and this software considers two types of outliers we will 

designated them as outliers and extremes. Outliers are values which are between 

one and a half and three box lengths from either end of the box and considering a 

normal distribution of the data. Extreme values are more than three box lengths 

from either end of the box. 

In the following subsections we will present the results and analyzes of the 

capacity constraint model, capacity constraint + special cars model and global 

model. 
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6.3.1 RESULTS AND ANALYZES OF THE CAPACITY CONSTRAINT MODEL AND OF THE 

CAPACITY CONSTRAINT + SPECIAL CARS MODEL 

In the Appendix III the results for the capacity constraint model and of the 

capacity constraint + special cars model can be found. These results are presented 

in a table similar to the following example (Table 13). 

Table 13: Structure of the table from Appendix III. 
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Each row of the Table 13 means the following: 

 Time (s) – time, in seconds, to solve the problem optimally; 

 Capacity constraint violations - number of capacity constraints violated. 

This number is minimum when the model finds the optimal solution; 

 Position last special cars – without brackets is the position of the last 

special car. Between brackets is the number of special cars.  When an 

optimal solution is found, we can see if it is possible to have all the 

special cars together; 

 Spread – sum of the distances between the first and last car of each color. 

This number is not minimum because we are not taking this value into 

consideration in the objective function; 

 Node – node where the optimal solution is found. When an optimal 

solution is not found in 30 minutes represents the node where the 

search stopped; 

 Solutions found – number of solutions found by the model until the 

optimal solution is found or within 30 minutes. 

The results presented in detail in Appendix III show that 2 instances out of 

27 did not obtain optimal solutions for the capacity constraint model and for the 

capacity constraint + special cars model. This represents 7% of the results. We can 

also conclude that usually, when an optimal solution is not found for the capacity 

constraint model, an optimal solution is also not found for the capacity constraint + 

special cars model. 
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Considering the instances that achieved an optimal solution in 30 minutes 

we have analyzed the results using box plots. These box plots are represented in 

the Figure 14. 

 

Figure 14: Box plots with the time to solve the Capacity Constraint Problem and the Capacity Constraint 
+ Special Cars Problem. 

From the analysis of the Figure 14 we can conclude that the median of the 

time to solve the Capacity Constraint and the Special Cars Problem is lower than 

the time to solve the Capacity Constraint Problem. So we can assume that the time 

values to achieve optimal solutions tend to be smaller in the case of the Capacity 

Constraint and of the Special Cars Problem. However, the size of the whiskers tells 

us that the dispersion of the data is higher in that case. The highest value of the 

sample, without considering outliers, is highest also in the case of the Capacity 

Constraint and the Special Cars Problem. The solutions of these two problems have 

outliers and extremes. In this case there is only one outlier which is instance 19 for 

the Capacity Constraint Problem and there are 3 extremes: instances 20 and 27 for 

the Capacity Constraint Problem; and instance 2 for the Capacity Constraint and 

Special Cars Problem. 
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Following, in Figure 15, we will present the spread distributions for the 

Capacity Constraint Problem and for the Capacity Constraint and Special Cars 

Problem. 

 

Figure 15: Box plots with the spread of the Capacity Constraint Problem and the Capacity Constraint + 
Special Cars Problem. 

Analyzing Figure 15 we can conclude that the median spread of the Capacity 

Constraint and the Special Cars Problem is lower than the spread of the Capacity 

Constraint Problem. So we can assume that the spread values of optimal solutions 

tend to be smaller in the case of the Capacity Constraint and the Special Cars 

Problem. However, the size of the whiskers indicates that the dispersion of the 

data is similar in these cases. The highest value of the sample, without considering 

outliers or extremes, is highest also in the case of the Capacity Constraint Problem. 

The solutions of the Capacity Constraint and the Special Cars Model have one 

outlier for instance 21 meaning that the spread value is between one and a half and 

three box lengths from the beginning of the box, considering a normal distribution 

of the data. 
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Considering all the data from Appendix III, we built a summary table 

presented in Table 14. 

Table 14: Summary table with the results of the capacity constraint model and of the capacity 
constraint + special cars model. 

Instance 
number 

Final solution with 
capacity constraints 

violations 

Final solution without 
all the special cars in 

the first  positions 

Running times of the 
capacity constraint 

model (s) 

Running times of the 
capacity constraint + 
special cars model (s) 

1   9.25 20.93 

2 x x 9.56 185.33 

3 x x 18.35 2.98 

4 x  11.81 15.43 

5   6.58 8.42 

6  x 8.31 3.68 

7  x 8.10 2.42 

8 Optimal solution not found in 1800 seconds 

9  x 6.72 1.76 

10 x  8.30 11.39 

11 x  9.52 10.87 

12 x  7.24 12.65 

13  x 6.96 2.01 

14 x x 8.35 2.92 

15  x 7.38 6.66 

16 Optimal solution not found in 1800 seconds 

17   5.54 1.28 

18 x x 5.68 1.14 

19 x x 20.34 9.31 

20 x x 36.16 2.96 

21   8.55 2.37 

22  x 8.46 8.47 

23  x 14.27 7.05 

24 x  10.70 11.39 

25  x 8.33 3.10 

26  x 12.61 4.43 

27  x 42.09 16.74 

Analyzing the results shown in Table 14 it seems that the existence of 

capacity constraints violations in the optimal solution of the capacity constraint 

problem does not make the problem more complex, since the running times to 

achieve optimal solutions are similar to the running times of instances without 

capacity constraint violations. Another possible conclusion is that the addition of 

special cars to the Capacity Constraint Problem does not add complexity to the 

problem because the median of the time values to achieve optimal solutions is 

inferior in this case. 
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Analyzing the nodes where the optimal solutions were found, for the 

Capacity Constraint Problem, only in instance 27 the solution was not found in the 

node 0. This represents 4% of the instances. This instance is the one that took 

more time to achieve a solution. This fact suggests that, maybe, the time to solve 

these kind of instances is higher. For the Capacity Constraint and the Special Cars 

Problem only the solution of instance 2 was not found in node 0. Again it seems 

that maybe the time to solve the instances that do not find the optimal in node 0, is 

higher than the usual, because this instance represents an extreme (see Figure 14). 

6.3.2 RESULTS AND ANALYSES OF GLOBAL MODEL 

We will present now the analyses of the results for the global problem. 

These results are presented in Appendix IV in a table similar to the following 

example (Table 15). 

Table 15: Structure of the table from Appendix IV. 
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These results have the following information when optimal solutions are 

not found within 5, 20 and 30 minutes: 

 Spread after 5, 20 and 30 minutes – sum of the distances between the 

first and last car of each color. This number is minimum when the model 

founds the optimal solution for the “Without heuristic” Problem. When 

the optimal solution is found for the problem that considers the 

heuristic, a minimum value of spread, taking into account the number of 

intervals as explained in subsection 5.2.1, is found; 

 GAP after 5, 20 and 30 minutes – is calculated using the following 

equation: 

 

 Node after 5, 20 and 30 minutes – represents the node where the search 

was after 5, 20 and 30 minutes; 

 Solutions found – number of solutions found by the model after 5, 20 and 

30 minutes. 

o When a solution is not found within 5 minutes, in the line 

“Best solution after 5 minutes” will appear “Not found”; 

o When a solution is not found within 20 minutes, in the lines 

“Best solution after 5 minutes” and “Best solution after 20 

minutes” will appear “Not found”; 

o When a solution is not found within 30 minutes, in the lines 

“Best solution after 5 minutes”, “Best solution after 20 

minutes” and “Best solution after 30 minutes” will appear 

“Not found”. 
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When an optimal solution is achieved within 30 minutes appears the 

following information in the line “Optimal Solution”: 

 Time (s) – time, in seconds, to solve the problem optimally; 

 Capacity constraint violations - number of capacity constraints violated. 

This number is minimum when the model finds the optimal solution; 

 Position last special cars – without brackets is the position of the last 

special car. Between brackets is the number of special cars.  When an 

optimal solution is found, we can see if it is possible to have all the 

special cars together; 

 Spread – sum of the distances between the first and last car (considering 

the first and last car) of each color. This number is minimum because we 

are taking this value into consideration in the objective function; 

 Node – node where the optimal solution is found;  

 Solutions found – number of solutions found by the model until the 

optimal solution is found. 

o When an optimal solution is achieved before 5 minutes of 

running time, in the lines “Best solution after 5 minutes”, 

“Best solution after 20 minutes” and “Best solution after 30 

minutes”  will appear “Optimal solution found before”;  

o When an optimal solution is achieved between 5 and 20 

minutes of running time, in the lines “Best solution after 20 

minutes” and “Best solution after 30 minutes”  will appear 

“Optimal solution found before”; 

o When an optimal solution is achieved between 20 and 30 

minutes of running time, in the line “Best solution after 30 

minutes” will appear “Optimal solution found before”. 
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Following we will present the box plots with the results for the spread of 

the global problem in the first 5, 20 and 30 minutes of running time. The meaning 

of the x axis is the following: 

 The first letter represents which kind of results we are analyzing: S – 

Spread; G – GAP; Nd – Node; Nr – Number of solutions (see Figure 16); 

 

Figure 16: Example with the meaning of the first letter from the x axis in the box plot graphics. 

 The second letter represents which problem we are analyzing: A- 

without heuristic; B – 100 intervals Heuristic; C – 10 intervals Heuristic; 

D – 5 intervals Heuristic (see Figure 17); 

 

Figure 17: Example with the meaning of the second letter from the x axis in the box plot graphics. 
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 The third letter represents the running time to achieve those results (see 

Figure 18). 

 

Figure 18: Example with the meaning of the numbers from the x axis in the box plot graphics. 

In the next picture, Figure 19, we will present the box plots representing the 

spread results. 

 

Figure 19: Box plots with the spread of the global problem in the first 5, 20 and 30 minutes of running 
time. 
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Analyzing the data from Figure 19 we can conclude that the median of the 

10 and 5 Intervals Heuristics in the first 20 and 30 minutes of running time is 

lower than in the other cases. So we can assume that the spread values tend to be 

smaller in these cases. The size of the whiskers tells us that the dispersion of the 

data is similar in these cases because the size of the whiskers is similar when 

comparing 10 and 5 Intervals Heuristics in the first 20 minutes and 10 and 5 

Intervals Heuristics in the first 30 minutes. Comparing the 10 and 5 Intervals 

Heuristics in the first 20 and 30 minutes of running time the highest value of the 

sample, without considering outliers or extremes, is for the case of the 5 Intervals 

Heuristic. For this reason, we can conclude that for the spread, the 10 Intervals 

Heuristic is slightly better.  

Analyzing the spread values, there are outliers and extremes in the tests 

SA5, SB5, SB30 and SD5. The outliers and extremes with smaller values of spread, 

for example, in the case of instances 13, 14 and 17 for the SA30 problem, are not a 

problem because this means that the model in these cases achieved smaller values 

of spread than the usual. The outliers and extremes with higher values of spread, 

as in the case of instances 2 and 5 for the SC20 problem, mean that sometimes the 

model achieved higher values of spread than the usual within the expected time. 
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Following we will present the box plots with the GAP for the global problem 

in the first 5, 20 and 30 minutes of running time (Figure 20).  

 

Figure 20: Box plots with the GAP of the global problem in the first 5, 20 and 30 minutes of running 
time. 

Analyzing the data from Figure 20 we can conclude that the median of the 

10 and 5 Intervals Heuristics in the first 20 and 30 minutes of running time is 

lower than in the other cases. So we can assume that the GAP values tend to be 

smaller in these cases. The size of the whiskers tells us that the dispersion of the 

data in the case GD30 is small because the size of the whiskers is smaller. 

Comparing GC20, GC30, GD20 and GD30 the median tend to be smaller in the cases 

of 5 intervals Heuristic (GD20 and GD30), so we can conclude that for the GAP, the 

5 Intervals Heuristic is slightly better.  

Problems GC20, GD5 and GD20 do not have outliers and extremes. The 

outliers and extremes with smaller values of GAP as in the case of instances 2, 10, 

12 and 14 for the GA20 problem are not a problem because the model in these 

cases achieved a smaller GAP than the usual within the expected time. The outliers 

and extremes with higher values of GAP as in the case of instances 8, 16 and 27 for 

the GC30 problem mean that sometimes the model takes more than the usual to 

approximate the solutions to the inferior limit within the expected time. 
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In the following figure we will present the results in terms of node achieved 

within the considered time, in each kind of test (Figure 21). 

 

Figure 21: Box plots of the global problem with the node where the model was searching in the first 5, 
20 and 30 minutes of running time. 

Analyzing Figure 21 we can see that in the first 5 minutes the model is 

usually searching in the node 0. After 20 minutes only in the cases of 10 and 5 

intervals heuristic the search leaves the node 0. We can conclude also that the 

median of the 10 and 5 Intervals Heuristics in the first 20 and 30 minutes of 

running time is higher than in the other cases.  

Problems NdA30, NdB20, NdB30, NdC30 and NdD5 have outliers and 

extremes. These outliers and extremes are always for nodes higher than the usual, 

as in the case of instances 1, 5, 17 and 21 for the NdA30 problem, meaning that 

sometimes the model searches in more nodes than the usual within the expected 

time. 
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Following we will present the box plots with the number of solutions found 

in the first 5, 20 and 30 minutes of running time (Figure 22). 

 

Figure 22: Number of solutions found in the first 5, 20 and 30 minutes of running time. 

In the first 7 problems analyzed we can see that usually the number of 

solutions found is 10 because the median has that value. For the 10 Interval 

Heuristic in the first 20 and 30 minutes and for the 5 Interval Heuristic in the first 

5, 20 and 30 minutes the values are higher meaning that more solutions were 

found within the considered running times. 

Problems NrA20, NrA30, NrB20, NrB30, NrC5 and NrC30 have outliers and 

extremes. The outliers and extremes with a smaller number of solutions found as 

in the case of instances 5, 6, 13, 16 and 23 for the NrB30 problem, mean that in 

these cases the number of solutions found is lower than the usual. The outliers and 

extremes with a bigger number of solutions found as in the case of instances 9, 11, 

18 and 19 for the NrB30 problem, mean that the number of solutions found is 

higher than the usual. 
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Analyzing optimal solutions in each problem for all instances, optimal 

solutions were achieved in the following cases: 

 Instance 3 – 5 and 10 Intervals Heuristics; 

 Instance 4 – 5 and 10 Intervals Heuristics; 

 Instance 11 – 5 and 10 Intervals Heuristics; 

 Instance 12 – 5 and 10 Intervals Heuristics; 

 Instance 14 – 5 and 10 Intervals Heuristics; 

 Instance 19 – 5 Interval Heuristic; 

 Instance 24 – 5 and 10 Intervals Heuristics. 

This means that optimal solutions are only found using the global model 

and with a number of intervals equal to 5 and 10. And only in one case (instance 

19) an optimal solution was found only with a number of intervals equal to 5. This 

can help us concluding that the 10 Intervals Heuristic is enough to produce good 

results when it is possible to find optimal solutions within 30 minutes, with 

exception for the case of the instance 19. 

In the next box plots we will analyze the time, the spread, the node and the 

number of solutions found before finding an optimal solution. 
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6.3.3 RESULTS AND ANALYSES OF OPTIMAL SOLUTIONS 

The box plots presented in this subsection represent the results when an 

optimal solution is achieved. Here we are not analyzing each instance and each 

kind of problem as we have done in subsections 6.3.1 and 6.3.2, but we are just 

looking for the results that achieved optimal solutions. 

 

Figure 23: Box plot with the time, in seconds, to achieve optimal solutions. 

The box plot represented in Figure 23 shows the minimum value of the 

sample is 39.52 seconds and the maximum value is 1801.02 seconds. The median 

is equal to 438.85 seconds, less than 10 minutes. The box plot is skewed down. The 

top whisker is also much longer than the bottom whisker. This means that the 

dispersion of values of the sample, smaller than the median, is inferior than the 

ones above the median. 
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Following we will present the box plot for the spread values of optimal 

solutions (Figure 24). 

 

Figure 24: Box plot with the optimal spread of the optimal solutions. 

Analyzing the Figure 24 we can conclude that the minimum value of the 

sample is 1084 and the maximum value is 2050. The median is equal to 1609 and 

is closer to the top of the box. This means that the dispersion of values of the 

sample, higher than the median, is inferior than the ones above the median. 
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The next picture represents the box plot with the values of the nodes where 

the optimal solutions were found (Figure 25). 

 

Figure 25: Box plot representing the nodes where the optimal solutions were found. 

Examining Figure 25 we can conclude that only in two instances the optimal 

solution was not found in the node 0. These instances are the number 5 and the 

number 11. So we can affirm that in 92.59% of the instances the optimal solution 

was found in the node 0. 
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Following we will present the results in terms of number of solutions found 

until the achievement of the optimal solution (Figure 26). 

 

Figure 26: Box plot representing the number of solutions found to achieve the optimal solution. 

Analyzing Figure 26 the minimum value of the sample is 11 and the 

maximum value is 15. The median is equal to 12. Only instances 5 and 11 are 

outliers meaning that these values deviate from the standard values of the sample. 

6.3.4 FINAL ANALYSES 

Considering the capacity constraint problem and the capacity constraint 

and special cars problems, the optimal solutions can be obtained in less than 1 

minute, on average, for all instances. The complexity of the problem increases 

when the spread is considered because times to achieve optimal solutions are 

higher. The median is approximately 438,85 seconds for 26% of the instances. In 

74% of the instances the time to find the optimal solution is more than 30 minutes.  
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The 10 Intervals Heuristic and the 5 Intervals Heuristic led to better results 

in terms of spread and GAP. The 10 Intervals Heuristic brings slightly better results 

in terms of spread but the 5 Intervals Heuristic gives us results closer to the 

optimum because the results have a slightly inferior GAP. Thus, analyzing the 

inclusion of the spread in the model, the heuristic approach gives us always better 

results, in 30 minutes, in terms of spread and GAP. Thus we can say that solutions 

that significantly reduce the color spread can be consistently obtained within 30 

minutes, using the heuristic and a number of intervals equal to 10. If we consider 

the GAP, a number of intervals equal to 5 brings results slightly closer to the 

optimum when compared with a number of intervals equal to 10. Even though, 

further research could show better choices in terms of the number of intervals. 

Concluding, the heuristic allow us to find better solutions in less time when 

comparing it to the exact approach without intervals.  
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7 CONCLUSIONS 

Nowadays markets are highly competitive and for this reason the design 

and planning of mixed model assembly lines appears as a core competence, where 

sequencing issues, dealing with blockage and starvation caused by product variety, 

need to be accounted for.  

We intend with this PhD thesis to enrich the mathematical models that exist 

in the literature to solve Car Sequencing problems.  These models applied to the 

automotive industry do not exist in a large number in the scientific community and 

most of them were initiated and/or developed in the ROADEF'2005. 

Our new model for Car Sequencing includes a new hierarchical exact 

approach and a heuristic that:  

 tries to obey to all the capacity constraints, finding a solution that 

minimizes the number of capacity constraint violations;  

 places all special cars first in the sequence; 

 when capacity constraint violations cannot be avoided, will allow to find 

the number of extra workers (relief men) as the workstation and correct 

time when the extra workers are needed; 

 cluster cars with the same color, minimizing the color spread. 

Considering that the color spread, in the model, is a new concept developed 

in this PhD thesis. We believe that, at least, the following issues may be envisaged 

with car sequence plans that take into account color spread: 
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 Better synchronization between painting and final assembly 

o If the car sequence plan for the final assembly has one blue car 

first in the sequence (meaning to assemble the car in the early 

morning) and one last blue car in the sequence (meaning to 

assemble the car late in the afternoon), both blue cars have to be 

painted in a batch in the previous day, and stored in the Random 

Access Storage (RAS), between the Painting and the Assembly 

Line;  

o On the other hand, if both cars appear close in the sequence, a 

better synchronization between Painting and Final Assembly may 

be obtained, possibly reducing Work in Progress. Therefore, 

solutions that minimize color spread and cluster cars in groups 

may render paint batch scheduling easier. 

 Better logistics with suppliers 

o Considering, for instance, the case of bumpers, which have an 

attribute color, and are supplied in a sequence that follows the car 

sequence plan. Delivering bumpers when colors are clustered may 

reduce the supplier operations needed to reorganize the sequence, 

reducing their costs and even reducing sequence supply errors.  

The model results show that solutions that satisfy just the capacity 

constraints and special cars can be obtained in less than a 1 minute, on average. 

Considering the global problem, the model was strengthened improving the times 

in 45%, and a new heuristic was created to improve the computational times 

allowing to achieve results in less than 30 minutes. Solutions that significantly 

reduce the color spread can be consistently obtained within 30 minutes, using the 

heuristic and a number of intervals equal to 10. If we evaluate solutions near the 

heuristic optimum, a number of intervals equal to 5 brings results slightly closer to 

the heuristic optimum when compared with a number of intervals equal to 10.  
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Concluding, the results show that our model is robust and can be used as a 

tool to create production plans for sequencing cars in final assembly automotive 

industries. When capacity constraint violations cannot be avoided, it allows to 

easily find the number of extra workers (relief men), as well as the workstations 

and the correct times when the extra workers are needed. Also, as shown in this 

PhD thesis, the color spread concept allows improving the global performance of 

the cars manufacturers production systems. 

The research questions developed on subsection 1.1 were answered with 

success since: 

 We built  a Car Sequencing model that, given a daily demand, determines 

the best sequence considering, by order of importance, the number of 

times that a capacity constraint is violated, that special cars should come 

first in the sequence and the minimization of the spread of cars with the 

same color; 

 Our model is able to determine solutions in less than half of an hour 

allowing the use of our model for Car Sequencing in automotive 

companies. 

In the following subsection we will indicate some paths for further research.  

7.1 FUTURE WORK 

This model was developed to be applied to sequence cars in final assembly 

of cars manufacturers. Nevertheless, when we decided to consider colors as in the 

ROADEF'2005 challenge, we saw that this model will allow working in the 

sequence of the Painting area creating batches to paint the cars.  This model, 

allows the reduction of solvent consumption, while at the same time will also help 

to improve the synchronization between painting and final assembly. Although, we 

did not consider the painting batch size, the rework and other effects that can 

change the sequence of the Painting area, we will consider it for future work. 
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In our literature review we considered four types of sequencing models: 

Mixed-Model Sequencing, Car Sequencing, Level Scheduling and Hybrid Mixed-

Models. However, in conversations with our industry partner, we decided to focus 

on Car Sequencing because their main objective was to minimize line stoppages. 

During the project we decided to improve the Car Sequencing method and we 

thought in two possible alternatives: considering leveling of part supply or 

considering colors. We decided to consider colors as in ROADEF'2005 challenge 

because it will allow to work in the sequence of the Painting area and in the 

sequence of the final assembly. Also, better results can be obtained applying the 

developed model in the final assembly logistic. A good example that shows that 

better results can be obtained is the case of bumpers, where the leveling of part 

supply without considering colors may increase the costs of rearrange the 

sequence. In our model, supplier constraints can also be considered when a part 

cannot be delivered in a row for supplier reasons, including them as capacity 

constraints. Nevertheless, the Level Scheduling and Hybrid Mixed-Models can be 

explored in future improvements of the model presented in this PhD thesis. It 

would be also interesting to include Mixed-Model Sequencing for cases where the 

design or re-design of the assembly line is needed. 

A deeper study of the weights of the multi-objective function should be 

done, in order to accomplish a better refinement in the achievement of 

better/faster optimal solutions. 

The study of new cutting planes and strong valid inequalities for Car 

Sequencing is a challenging problem poorly studied until now. We tried to start an 

analysis on this work calculating the inferior limits for the Car Sequencing problem 

and we consider it a challenging problem for future research. Our calculations for 

the inferior limits can be modeled for example as a mathematical programming 

problem but further research is necessary. 

Finally, further research could show better choices in terms of the number 

of intervals for the developed heuristic. 
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Appendix I: Comparison of different methods to calculate capacity 
constraint violations 
 

Sequences 
Subsequences 

for calculations 

ROADEF'2005 

method 

Sliding Window 

method 

FB method 

(considering 

 ) 

abbbaaabbbaa 

(option b - 1:3) 

 

abb 1 
 

 

bbb 2 
 

 

bba 1 
 

 

baa 0 
 

 

aaa 0 
 

 

aab 0 
 

 

abb 1 
 

 

bbb 2 
 

 

bba 1 
 

 

baa 0 
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aa 
not calculated in 

this approach 

not calculated in 

this approach 
 

a 
not calculated in 

this approach 

not calculated in 

this approach 
 

Total 8 6 4 

bbbaaaaaabbb 

(option b - 1:3) 

bbb 2 
 

 

bba 1 
 

 

baa 0 
 

 

aaa 0 
 

 

aaa 0 
 

 

aaa 0 
 

 

aaa 0 
 

 

aab 0 
 

 

abb 1 
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bbb 2 
 

 

bb 
not calculated in 

this approach 

not calculated in 

this approach 
 

b 
not calculated in 

this approach 

not calculated in 

this approach 
 

Total 6 4 4 

abbabaabbaba 

(option b - 1:3) 

abb 1 
 

 

bba 1 
 

 

bab 1 
 

 

aba 0 
 

 

baa 0 
 

 

aab 0 
 

 

abb 1 
 

 

bba 1 
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bab 1 
 

 

aba 0 
 

 

ba 
not calculated in 

this approach 

not calculated in 

this approach 
 

a 
not calculated in 

this approach 

not calculated in 

this approach 
 

Total 6 6 4 

abbaabbaabba 

(option b - 1:3) 

abb 1 
 

 

bba 1 
 

 

baa 0 
 

 

aab 0 
 

 

abb 1 
 

 

bba 1 
 

 

baa 0 
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aab 0 
 

 

abb 1 
 

 

bba 1 
 

 

ba 
not calculated in 

this approach 

not calculated in 

this approach 
 

a 
not calculated in 

this approach 

not calculated in 

this approach 
 

Total 6 6 3 
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Appendix II: Cuts Improvements Evaluation 
 

  

Without 
cuts 

Constraint 
17  

Constraints 
15+16 

Constraints 
15+16+17 

% Improvement 
Constraint 17 

% Improvement 
Constraints 
15+16 

% Improvement 
Constraints 
15+16+17 

Instance 
1 

Best solution after 5 minutes 6857566 50308 6857566 37 99.27% 0.00% 100.00% 

Best solution after 20 minutes 22 21 22 37 4.55% 0.00% -68.18% 

Best solution after 30 minutes 22 20 22 22 9.09% 0.00% 0.00% 

Optimal Solution 
Solution 
not found 

Solution 
not found 

Solution 
not found 

Solution not 
found 

Solution not 
found 

Solution not 
found 

Solution not 
found 

Instance 
17 

Best solution after 5 minutes 9552247 7209104 
Solution 
not found 21 24.53% 0.00% 100.00% 

Best solution after 20 minutes 9552247 20 21 21 100.00% 100.00% 100.00% 

Best solution after 30 minutes 9552247 20 21 21 100.00% 100.00% 100.00% 

Optimal Solution 
Solution 
not found 

Solution 
not found 

Solution 
not found 

Solution not 
found 

Solution not 
found 

Solution not 
found 

Solution not 
found 

Instance 
23 

Best solution after 5 minutes 6553367 749 
Solution 
not found 758 99.99% 0.00% 99.99% 

Best solution after 20 minutes 6553367 747 
Solution 
not found 746 99.99% 0.00% 99.99% 

Best solution after 30 minutes 746 744 
Solution 
not found 744 0.27% 0.00% 0.27% 

Optimal Solution 
Solution 
not found 

Solution 
not found 

Solution 
not found 

Solution not 
found       

Instance 
24 

Best solution after 5 minutes 1450486 1450270 
Solution 
not found 

Solution not 
found 0.01% 0.00% 0.00% 

Best solution after 20 minutes 1450486 1450035 
Solution 
not found 

Solution not 
found 0.03% 0.00% 0.00% 

Best solution after 30 minutes 1450486 1450035 
Solution 
not found 

Solution not 
found 0.03% 0.00% 0.00% 

Optimal Solution 
Solution 
not found 

Solution 
not found 

Solution 
not found 

Solution not 
found 

Solution not 
found 

Solution not 
found 

Solution not 
found 

     

Average 
improvements 44.81% 16.67% 44.34% 
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Appendix III: Results of the capacity constraint model and the capacity constraint + special cars model 
 

 

Instances 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
C

ap
ac

it
y 

co
n

st
ra

in
t 

p
ro

b
le

m
 

O
p

ti
m

al
 s

o
lu

ti
o

n
 

Time (s) 9.25 9.56 18.35 11.81 6.58 8.31 8.10 Optimal 
Solution 

not 
obtained 
in 1800 
seconds 

Best 
solution: 

4 

Inferior 
limit: 0 

Spread: 
4706 

Node: 
2596 

Solutions 
found: 15 

6.72 8.30 9.52 7.24 6.96 8.35 7.38 
Optimal 
Solution 

not 
obtained 
in 1800 
seconds 

Best 
solution:5 

Inferior 
limit: 0 

Spread: 
4469 

Node: 
21338 

Solutions 
found: 18 

5.54 5.68 

Capacity 

constraint 

violations 

0 49 5 25 0 0 0 0 81 17 85 0 17 0 0 0 

Spread 3203 4012 3485 3759 3997 3544 3656 3604 4048 3266 3914 3650 3411 3672 3874 3978 

Node 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Solutions 
found 

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

p
ro

b
le

m
 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 20.93 185.33 2.98 15.43 8.42 3.68 2.42 Optimal 
Solution 

not 
obtained 
in 1800 
seconds 

Best 
solution: 

4 
violations 
+ 71 (62) 

Inferior 
limit: 0 

violations 
+ 73 (62) 

Spread: 
3521 

Node: 
32713 

Solutions 
found: 7 

1.76 11.39 10.87 12.65 2.01 2.92 6.66 
Optimal 
Solution 

not 
obtained 
in 1800 
seconds 

Best 
solution: 5 
violations 
+ 71 (54) 

Inferior 
limit: 0 

violations 
+ 75 (54) 

Spread: 
3575 

Node: 
27448 

Solutions 
found: 8 

1.28 1.14 

Capacity 

constraint 

violations 

0 49 5 25 0 0 0 0 81 17 85 0 17 0 0 0 

Position last 

special cars 

79 

(79) 

55 

(52) 

78 

(69) 

65 

(65) 

53 

(53) 

85 

(80) 

71 

(59) 

55 

(57) 

49 

(49) 

76 

(76) 

50 

(50) 

50 

(51) 

82 

(77) 

71 

(59) 

53 

(53) 

55 

(43) 

Spread 2336 3317 2833 2832 3123 2863 3324 3007 3016 2591 2977 2966 2371 3167 2881 2953 

Node 
0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Solutions 
found 

12 17 1 2 2 1 1 1 2 2 2 1 1 2 1 1 
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Instances 

19 20 21 22 23 24 25 26 27 

C
ap

ac
it

y 
co

n
st

ra
in

t 
p

ro
b

le
m

 

O
p

ti
m

al
 s

o
lu

ti
o

n
 

Time (s) 20.34 36.16 8.55 8.46 14.27 10.70 8.33 12.61 42.09 

Capacity 

constraint 

violations 

1 1 0 0 0 29 0 0 0 

Spread 4047 3856 3242 3231 3808 3936 4146 4099 4335 

Node 
0 0 0 0 0 0 0 0 38 

Solutions 
found 

12 12 11 11 11 11 11 11 13 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

p
ro

b
le

m
 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 9.31 3.96 2.37 8.47 7.05 11.39 3.10 4.43 16.74 

Capacity 

constraint 

violations 

1 1 0 0 0 29 0 0 0 

Position last 

special cars 

78 

(51) 

92 

(68) 

82 

(82) 

109 

(86) 

73 

(57) 

62 

(62) 

77 

(64) 

95 

(70) 

97 

(68) 

Spread 3324 2786 2197 2663 2975 3118 3206 3503 3294 

Node 
0 0 0 0 0 0 0 0 0 

Solutions 
found 

2 1 1 2 1 1 1 1 1 

 



 

112 

 

Appendix IV: Results of the model that considers capacity constraints, special cars and cars color 
 

 

Instance 1 Instance 2 Instance 3 Instance 4 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 3242 3435 3324 1291 3665 3813 3831 2315 

Not found Not found 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

Not found Not found 

4007 2548 

GAP 99.99% 99.99% 99.99% 99.96% 77.41% 72.79% 75.86% 76.46% 86.38% 84.53% 

Node 0 0 0 0 0 0 0 0 0 0 

Solutions 
found 

10 10 10 10 10 10 10 10 10 10 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

20
 m

in
u

te
s 

Spread 3242 3435 778 804 3665 3813 3831 2315 3872 3857 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

4468 3984 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 99.99% 99.99% 36.36% 14.29% 77.41% 72.79% 75.86% 75.52% 97.00% 96.83% 86.71% 84.50% 

Node 0 4 34 49 0 0 0 16 0 0 0 0 

Solutions 
found 

10 10 18 15 10 10 10 11 10 10 10 10 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 

30
 m

in
u

te
s 

Spread 3241 3435 778 842 3665 3813 3818 2315 3872 3857 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

4468 3984 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 99.99% 99.99% 36.36% 10.00% 77.41% 72.79% 73.93% 75.52% 97.00% 96.83% 86.71% 84.50% 

Node 3 10 96 438 0 0 3 24 0 0 0 0 

Solutions 
found 

15 10 18 16 10 10 16 11 10 10 10 10 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found 

58.59 57.64 

Not found Not found 

731.57 1118.17 

Capacity 
constraint 
violations 

5 5 25 25 

Position last 
special cars 

78 (69) 78 (69) 65 (65) 65 (65) 

Spread 1278 1911 2032 1653 

Node 0 0 0 0 

Solutions 
Found 

11 11 12 13 
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Instance 5 Instance 6 Instance 7 Instance 8 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 4032 

Not found 

4544 1220 3923 

Not found 

3864 2062 3643 3689 1634 1056 4235 4375 4552 2862 

GAP 99.99% 100.00% 26.92% 99.99% 100.00% 100.00% 99.99% 99.99% 44.42% 0.68% 100.00% 100.00% 100.00% 100% 

Node 0 0 2 0 0 0 0 0 0 1 0 0 0 0 

Solutions 
Found 

10 10 12 10 10 10 10 10 11 11 10 10 10 10 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

2
0 

m
in

u
te

s 

Spread 4032 

Not found 

4544 1220 3923 

Not found 

777 975 3643 3689 798 1056 4235 4375 1487 1686 

GAP 99.99% 100.00% 26.92% 99.99% 5.79% 2.65% 99.99% 99.99% 1.10% 0.68% 100.00% 100.00% 99.87% 99.93% 

Node 0 0 36 0 20 38 0 4 21 42 0 0 6 17 

Solutions 
Found 

10 10 12 10 14 11 10 12 17 11 10 10 11 13 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

30
 m

in
u

te
s 

Spread 4032 3840 1187 1220 3923 1066 777 975 3643 3689 798 1056 4235 4375 1487 1774 

GAP 99.99% 100.00% 48.89% 26.92% 99.99% 58.35% 5.79% 3% 99.99% 99.99% 1.10% 0.68% 100.00% 100.00% 99.87% 99.90% 

Node 4 4 2 53 0 1 39 102 0 13 21 141 0 0 21 36 

Solutions 
Found 

10 7 16 12 10 2 14 11 10 12 17 11 10 10 11 17 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found 

Capacity 
constraint 
violations 

Position last 
special cars 

Spread 

Node 

Solutions 
Found 
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Instance 9 Instance 10 Instance 11 Instance 12 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 3818 3911 3929 2938 3644 3871 3934 4133 3763 3698 3534 1646 

Not found 

3696 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 99.99% 100.00% 100.00% 100.00% 64.94% 67.48% 65.97% 61.43% 88.13% 89.84% 89.19% 0.01% 65.01% 

Node 0 0 0 0 0 0 0 0 0 0 0 0 0 

Solutions 
Found 

10 10 10 10 10 10 10 11 10 10 10 11 10 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 

2
0

 m
in

u
te

s 

Spread 3818 3911 987 1092 3644 3871 2369 4133 3763 2278 1170 

Optimal 
solution 
found 
before 

4171 3696 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 99.99% 100.00% 7.02% 2.63% 64.94% 67.48% 8.18% 61% 88.13% 66.78% 22.76% 63.67% 65.01% 

Node 0 0 12 50 0 0 7 15 0 0 18 0 0 

Solutions 
Found 

10 10 21 17 10 10 16 11 10 17 14 10 10 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

30
 m

in
u

te
s 

Spread 3818 3911 987 916 3644 3871 2369 4133 3763 2278 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

4171 3696 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 99.99% 99.99% 7.02% 1% 64.94% 67.48% 8.18% 61% 88.13% 66.78% 63.67% 65.01% 

Node 0 4 49 81 0 0 15 30 0 2 0 0 

Solutions 
Found 

10 16 21 19 10 10 16 11 10 17 10 10 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found 

1801.02 438.85 

Not found Not found 

66.58 78.2 

Capacity 
constraint 
violations 

17 17 85 85 

Position last 
special cars 

76 (76) 76 (76) 50 (50) 50 (50) 

Spread 1294 1484 1408 2050 

Node 36 0 0 0 

Solutions 
Found 

15 12 11 11 
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Instance 13 Instance 14 Instance 15 Instance 16 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 4123 

Not found 

3952 915 3411 3476 2380 

Optimal 
solution 
found 
before 

3970 4061 3908 2430 4224 

Not found 

4513 2684 

GAP 99.99% 100.00% 12.12% 88.21% 89.35% 43.57% 99.99% 99.99% 100.00% 100.00% 99.98% 99.98% 99.98% 

Node 0 0 0 0 0 0 0 0 0 0 0 0 0 

Solutions 
Found 

10 10 12 10 10 11 10 10 10 10 10 10 10 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 

2
0

 m
in

u
te

s 

Spread 4123 793 864 915 682 3476 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

3970 4061 1139 1352 4224 

Not found 

1507 2684 

GAP 99.99% 46.79% 24.44% 12.12% 0.03% 89.35% 99.99% 99.99% 3.78% 1.74% 99.98% 99.59% 99.98% 

Node 0 0 10 42 0 0 0 0 19 28 0 6 0 

Solutions 
Found 

10 7 15 12 11 10 10 10 16 16 10 14 10 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

30
 m

in
u

te
s 

Spread 99.99% 793 864 932 682 3476 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

3970 4061 1139 1352 4224 4307 1507 2684 

GAP 0 46.79% 24.44% 9.38% 0.03% 89.35% 99.99% 99.99% 3.78% 1.74% 99.98% 99.98% 99.59% 99.98% 

Node 10 8 29 142 6 0 0 0 37 62 0 2 23 0 

Solutions 
Found 

99.99% 7 15 13 11 10 10 10 16 16 10 2 14 10 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found 

856.87 39.52 

Not found Not found Not found Not found Not found Not found Not found Not found 

Capacity 
constraint 
violations 

17 17 

Position last 
special cars 

82 (77) 82 (77) 

Spread 1100 1655 

Node 0 0 

Solutions 
Found 

12 11 
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Instance 17 Instance 18 Instance 19 Instance 20 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 4059 3790 3772 3822 4009 3468 3887 1142 

Not found 

3888 1689 1306 

Not found 

4115 3961 2260 

GAP 99.99% 100.00% 100.00% 100.00% 99.98% 99.99% 99.99% 1.12% 99.37% 0.07% 0.02% 99.41% 99.37% 99.37% 

Node 0 0 0 0 0 0 0 4 0 0 9 0 0 0 

Solutions 
Found 

10 10 10 10 10 10 10 13 10 11 13 10 10 10 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 

2
0

 m
in

u
te

s 

Spread 1092 783 733 910 4009 3446 836 1142 3772 911 1094 

Optimal 
solution 
found 
before 

3936 2444 1769 1758 

GAP 99.04% 36.33% 13.79% 5.00% 99.98% 99.99% 2.41% 1.12% 99.32% 0.29% 0.03% 99.44% 95.34% 53.65% 66.35% 

Node 0 16 30 8 0 0 27 61 0 2 20 0 0 0 0 

Solutions 
Found 

12 11 16 13 10 13 14 13 10 13 14 10 11 11 11 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

30
 m

in
u

te
s 

Spread 1092 783 733 910 4009 3446 836 1142 3772 911 1094 

Optimal 
solution 
found 
before 

3936 2444 847 1046 

GAP 99% 36.33% 13.79% 5.00% 99.98% 99.99% 2.41% 1.12% 99.32% 0.29% 0.03% 99.44% 95.34% 0.02% 0.01% 

Node 5 27 76 8 0 6 59 485 0 17 28 0 0 0 0 

Solutions 
Found 

12 11 16 13 10 13 14 13 10 13 14 10 11 16 13 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found 

747.67 

Not found Not found Not found Not found 

Capacity 
constraint 
violations 

1 

Position last 
special cars 

78 (51) 

Spread 1084 

Node 38 

Solutions 
Found 

15 
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Instance 21 Instance 22 Instance 23 Instance 24 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 3419 3343 3513 900 3303 3312 3528 1792 4003 

Not found 

3832 1293 4119 

Not found 

4169 1940 

GAP 100.00% 100.00% 100.00% 14.29% 99.98% 99.98% 99.98% 2.60% 99.98% 100.00% 1.34% 82.33% 81.07% 0.02% 

Node 0 0 0 8 0 0 0 8 0 0 0 0 0 0 

Solutions 
Found 

10 10 10 13 10 10 10 11 10 10 11 10 10 11 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 

2
0

 m
in

u
te

s 

Spread 3419 3343 812 900 3303 3312 744 1792 4003 

Not found 

1161 1293 4119 

Not found 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 100.00% 100.00% 33.33% 14.29% 99.98% 99.98% 0.48% 2.60% 99.98% 3.00% 1.34% 82.33% 

Node 0 0 0 57 0 0 25 19 0 9 34 0 

Solutions 
Found 

10 10 14 13 10 10 13 11 10 16 11 10 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

30
 m

in
u

te
s 

Spread 3419 3343 812 900 3303 3312 744 1092 4003 3862 1161 1215 4119 

Not found 

Optimal 
solution 
found 
before 

Optimal 
solution 
found 
before 

GAP 100.00% 100.00% 33.33% 14.29% 99.98% 99.98% 0.48% 0.41% 99.98% 99.98% 3.00% 1.07% 82.33% 

Node 2 0 8 153 0 6 47 36 0 2 34 52 0 

Solutions 
Found 

10 10 14 13 10 10 13 13 10 5 16 13 10 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found 

867.37 358.51 

Capacity 
constraint 
violations 

29 29 

Position last 
special cars 

62 (62) 62 (62) 

Spread 1826 1609 

Node 0 0 

Solutions 
Found 

12 12 
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Instance 25 Instance 26 Instance 27 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

Without 
heuristic 

With 
heuristic 

100 
intervals 

With 
heuristic 

10 
intervals 

With 
heuristic 5 
intervals 

C
ap

ac
it

y 
co

n
st

ra
in

t 
+ 

sp
ec

ia
l c

ar
s 

+
 s

p
re

ad
 p

ro
b

le
m

 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 5
 

m
in

u
te

s 

Spread 4036 4174 4236 983 3852 4086 4199 1061 4239 4146 4297 2900 

GAP 99.99% 99.99% 99.99% 99.49% 99.98% 99.98% 99.98% 0.17% 99.97% 99.97% 99.97% 99.98% 

Node 0 0 0 0 0 0 0 3 0 0 0 0 

Solutions 
Found 

10 10 10 12 10 10 10 14 10 10 10 10 

B
e

st
 s

o
lu

ti
o

n
 a

ft
er

 

2
0

 m
in

u
te

s 

Spread 4036 4174 943 983 3852 4086 1030 1061 4239 4146 1034 1404 

GAP 99.99% 99.99% 2.08% 99.49% 99.98% 99.98% 0.75% 0.17% 99.97% 99.97% 95.65% 0.44% 

Node 0 0 9 29 0 0 20 51 0 1 1 12 

Solutions 
Found 

10 10 15 12 10 10 11 14 10 11 12 14 

B
es

t 
so

lu
ti

o
n

 a
ft

er
 

30
 m

in
u

te
s 

Spread 4036 4174 943 999 3852 1697 1030 1061 4239 4146 1034 1251 

GAP 99.99% 99.99% 2.08% 0.58% 99.98% 99.48% 0.75% 0.17% 99.97% 99.97% 95.65% 0.31% 

Node 0 0 23 42 0 1 36 104 0 6 14 47 

Solutions 
Found 

10 10 15 15 10 11 11 14 10 11 12 14 

O
p

ti
m

al
 S

o
lu

ti
o

n
 

Time (s) 

Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found 

Capacity 
constraint 
violations 

Position last 
special cars 

Spread 

Node 

Solutions 
Found 
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