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Abstract  

The aim of this study was to characterize sweet cherry regarding nutritional 

composition of the fruits, and individual phytochemicals and bioactive properties of 

fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, 

tocopherols and phenolic compounds were established. All the preparations (extracts, 

infusions and decoctions) obtained using stems revealed higher antioxidant potential 

than the fruits extract, which is certainly related with its higher phenolic compounds 

(phenolic acids and flavonoids) concentration. The fruits extract was the only one 

showing antitumor potential, revealing selectivity against HCT-15 (colon carcinoma) 

(GI50~74 µg/mL). This could be related with anthocyanins that were only found in fruits 

and not in stems. None of the preparations have shown hepatotoxicity against normal 

primary cells. Overall, this study reports innovative results regarding chemical and 

bioactive properties of sweet cherry stems, and confirmed the nutritional and 

antioxidant characteristics of their fruits. 

 

Keywords: Prunus avium; Fruits/Stems; Nutrients; Phytochemicals; Antioxidant 

activity; Antitumor potential.  
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1. Introduction 

Cherry is the common name for several species of Rosaceae family, Prunoideae 

subfamily, and Prunus genus that have their origin in the Asian continent, and produce 

fruits and hardwood. One of those species is Prunus avium L. (sweet cherry), being 

geographically distributed around the world, with greater prevalence in areas with a 

temperate climate, which encompasses much of Europe (Mediterranean and Central), 

north Africa, Near and Far East, South Australia and New Zealand, and temperate zones 

of the American continent (USA and Canada, Argentina and Chile) (Mariette, Tavaud, 

Arunyawat, Capdeville, Millan & Salin, 2010; Basanta, Plá, Raffo, Stortz & Rojas, 

2014).  

Sweet cherry is one of the most popular temperate fruits, being highly appreciated by 

consumers and studied by the scientific community due to its taste, color and sweetness, 

but also for its nutritional and bioactive properties (Usenik, Fabcic & Stampar, 2008; 

Serra, Seabra, Braga, Bronze, De Sousa & Duarte, 2010; Usenik, Fajt, Mikulic-

Petkovsek, Slatnar, Stampar & Veberic, 2010; Liu et al., 2011; Serradilla, Lozano, 

Bernalte, Ayuso, López-Corrales & González-Gómez, 2011; Ballistreri, Continella, 

Gentile, Amenta, Fabroni & Rapisarda, 2013; Pacifico et al., 2014). The fruits present a 

moderate amount of carbohydrates, especially simple sugars (e.g., glucose, fructose, 

sucrose and sorbitol), and organic acids (e.g., malic, citric, succinic, lactic and oxalic 

acids) (Serrano, Guillen, Martinez-Romero, Castillo & Valero, 2005; Usenik et al., 

2008; Usenik et al., 2010; Serradilla et al., 2011; Ballistreri et al., 2013; Pacifico et al., 

2014).  They have a low glycemic index (Brand-Miller & Foster-Powell, 1999), which 

is an advantage over other fruits and vegetables. Sweet cherry fruits are also considered 

a source of vitamins, especially vitamin C (Schmitz-Eiberger & Blanke, 2012) and 

minerals, such as potassium, phosphorus, calcium and magnesium (Yıgıt, Baydas, & 
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Güleryüz, 2009). Furthermore, they present high levels of water, reduced levels of fat, 

particularly saturated fat, being cholesterol-free and low in calories (McCune, Kubota, 

Stendell-Hollis & Thomson, 2011).  

Sweet cherry fruits contain different phenolic compounds, including phenolic acids 

(hydroxycinnamic derivatives) and flavonoids (anthocyanins, flavan-3-ols and 

flavonols), that have been related with their antioxidant potential (Gao & Mazza, 1995, 

Gonçalves et al., 2004; Fazzari, Fukumoto, Mazza, Livrea, Tesoriere & Di Marco, 

2008; Usenik et al., 2008; González-Gómez, Lozano, Fernández-León, Bernalte, Ayuso 

& Rodríguez, 2010; Serra et al., 2010; Usenik et al., 2010; Ballistreri et al., 2013; 

Pacifico et al., 2014).  

Due to its high content in antioxidants, such as phenolic compounds and vitamins, P. 

avium beneficial effects have been recognized, namely in the prevention of 

cardiovascular diseases, cancer and other diseases related with oxidative stress (Beattie, 

Crozier & Duthie, 2005; Serra, Duarte, Bronze & Duarte, 2011a; Serra et al., 2011b). In 

recent years, the antitumor potential of P. avium fruit extracts have also been reported 

and related with phenolic compounds (Serra et al., 2010; Serra et al., 2011a and 2011b).  

In opposition to the widely studied fruits and despite the traditional use of infusions and 

decoctions prepared from P. avium stems, as sedatives, diuretics and draining (Hooman, 

Mojab, Nickavar & Pouryousefi-Kermani, 2009; Di Cagno et al., 2011), little is known 

about their chemical composition and bioactive properties. Therefore, the aim of this 

study was to chemically characterize sweet cherry (P. avium) fruits and stems regarding 

individual hydrophilic and lipophilic compounds, and to evaluate their bioactive 

properties, namely antioxidant and antitumor potential.  

 

2. Materials and methods 
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2.1. Plant material  

Prunus avium L. fruits and stems were collected randomly, from growing plants in 

Bragança (Northern Portugal) in June 2013, and subsequently separated. The amount of 

samples collected from each part of P. avium was approximately around 600 g for fruits 

that gave 50 g of steams. The botanical identification was confirmed by the biologist, 

Dr. Carlos Aguiar of the Escola Superior Agrária of the Polytechnic Institute of 

Bragança (Trás-os-Montes, Portugal). 

The samples were lyophilised (FreeZone 4.5 model 7750031, Labconco, Kansas City, 

MO, USA), reduced to a fine dried powder (20 mesh), mixed to obtain homogenous 

samples and stored in a desiccator, protected from light, until further analysis.  

 

2.2. Standards and Reagents 

Acetonitrile (99.9%), n-hexane (97%) and ethyl acetate (99.8%) were of HPLC grade 

from Fisher Scientific (Lisbon, Portugal). The fatty acids methyl ester (FAME) 

reference standard mixture 37 (standard 47885-U) was purchased from Sigma (St. 

Louis, MO, USA), as also were other individual fatty acid isomers, L-ascorbic acid, 

trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), tocopherol and sugar 

standards. Phenolic compound standards were purchased from Extrasynthèse (Genay, 

France). Racemic tocol, 50 mg/mL, was purchased from Matreya (Pleasant Gap, PA, 

USA). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) was obtained from Alfa Aesar (Ward 

Hill, MA, USA). Foetal bovine serum (FBS), L-glutamine, hank’s balanced salt solution 

(HBSS), trypsin-EDTA (ethylenediaminetetraacetic acid), penicillin/streptomycin 

solution (100 U/mL and 100 mg/mL, respectively), RPMI-1640 and DMEM media 

were from Hyclone (Logan, Utah, USA). Acetic acid, ellipticine, sulphorhodamine B 

(SRB), trypan blue, trichloroacetic acid (TCA) and Tris were from Sigma Chemical Co. 



6 
 

(St Louis, MO USA). Water was treated in a Milli-Q water purification system (TGI 

Pure Water Systems, Greenville, SC, USA).  

 

2.3. Chemical characterization  

2.3.1. Macronutrients composition 

The fruits were analysed for their nutritional chemical composition (proteins, fat, 

carbohydrates and ash) through standard procedures (AOAC, 1995). The crude protein 

content (N × 6.25) of the samples was estimated by the macro-Kjeldahl method; the 

crude fat was determined by extracting a known weight of powdered sample with 

petroleum ether, using a Soxhlet apparatus; the ash content was determined by 

incineration at 600±15 ºC. Total carbohydrates were calculated by difference. Energy 

was calculated according to the following equation: Energy (kcal) = 4 × (g protein + g 

carbohydrate) + 9 × (g fat).  

 

2.3.2. Hydrophilic compounds 

Free sugars. Free sugars were determined by a high performance liquid chromatograph 

(HPLC) system consisted of an integrated system with a pump (Knauer, Smartline 

system 1000, Berlin, Germany), degasser system (Smart line manager 5000) and an 

auto-sampler (AS-2057 Jasco, Easton, MD, USA), coupled to a refraction index 

detector (RI detector Knauer Smartline 2300) as previously described by the authors 

(Stojković et al., 2013). Sugars identification was made by comparing the relative 

retention times of sample peaks with standards. Data were analyzed using Clarity 2.4 

Software (DataApex, Podohradska, Czech Republic). Quantification was based on the 

RI signal response of each standard, using the internal standard (IS, melezitose) method 
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and by using calibration curves obtained from the commercial standards of each 

compound. The results were expressed in g per 100 g of fresh weight. 

 

Organic acids. Organic acids were determined following a procedure previously 

described by the authors (Dias et al., 2013). The analysis was performed using a 

Shimadzu 20A series UFLC (Shimadzu Coperation, Kyoto, Japan). Separation was 

achieved on a SphereClone (Phenomenex, Torrance, CA, USA) reverse phase C18 

column (5 µm, 250 mm × 4.6 mm i.d) thermostatted at 35 ºC.  The elution was 

performed with sulphuric acid 3.6 mM using a flow rate of 0.8 mL/min. Detection was 

carried out in a DAD, using 215 nm and 245 nm (for ascorbic acid) as preferred 

wavelengths. The organic acids found were quantified by comparison of the area of 

their peaks recorded at 215 or 245 nm with calibration curves obtained from 

commercial standards of each compound. The results were expressed in mg per 100 g of 

fresh weight.  

 

2.3.3. Lipophilic compounds 

Fatty acids. Fatty acids were determined after a transesterification procedure as 

described previously by the authors (Stojković et al., 2013). The fatty acids profile was 

analyzed with a DANI 1000 gas chromatographer (GC) equipped with a split/splitless 

injector and a flame ionization detector (FID). Fatty acid identification was made by 

comparing the relative retention times of FAME peaks from samples with standards. 

The results were recorded and processed using Clarity 4.0.1.7 Software (DataApex, 

Podohradska, Czech Republic) and expressed in relative percentage of each fatty acid.  
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Tocopherols. Tocopherols were determined following a procedure previously described 

by the authors (Stojković et al., 2013). Analysis was performed by HPLC (equipment 

described above), and a fluorescence detector (FP-2020; Jasco) programmed for 

excitation at 290 nm and emission at 330 nm. The compounds were identified by 

chromatographic comparisons with authentic standards. Quantification was based on the 

fluorescence signal response of each standard, using the IS (tocol) method and by using 

calibration curves obtained from commercial standards of each compound. The results 

were expressed in µg per 100 g of fresh weight. 

 

2.4. Evaluation of bioactive properties and phenolic compounds 

2.4.1. Preparation of extracts, infusions and decoctions 

The hydromethanolic extracts were obtained from the lyophilized stems and fruits. Each 

sample (1 g) was extracted by stirring with 30 mL of methanol/water (80:20, v/v) (25 ºC 

at 150 rpm) for 1 h and subsequently filtered through Whatman No. 4 paper. The 

residue was then extracted with an additional 20 mL of methanol/water (80:20, v/v) (25 

ºC at 150 rpm) for 1 h. The combined extracts were evaporated at 35 ºC (rotary 

evaporator Büchi R-210, Flawil, Switzerland) to remove the methanol. For purification, 

the extract solution was deposited onto a C-18 SepPak® Vac 3 cc cartridge 

(Phenomenex), previously activated with methanol followed and water; sugars and 

more polar substances were removed by passing through 10 mL of water and the 

purified samples were further eluted with 5 mL of methanol. The extract was 

concentrated under vacuum. 

The infusions were prepared from the lyophilized stems. Each sample (1 g) was added 

to 200 mL of boiling distilled water and left to stand at room temperature for 5 min, and 

then filtered under reduced pressure. The obtained infusion was frozen and lyophilized. 



9 
 

The decoctions were also prepared from the lyophilized stems. Each sample (1 g) was 

added to 200 mL of distilled water, heated (heating plate, VELP scientific) and boiled 

for 5 min. The mixture was left to stand for 5 min and then filtered under reduced 

pressure. The obtained decoction was frozen and lyophilized. 

The extracts, infusions and decoctions were redissolved in the corresponding solvent 

(final concentration 5 mg/mL) for antioxidant activity evaluation and phenolic 

compounds analysis, or water (final concentration 8 mg/mL) for antitumor activity 

evaluation.  

The final solutions obtained were further diluted to different concentrations to be 

submitted to distinct bioactivity evaluation in vitro assays. The results were expressed in 

i) EC50 values (sample concentration providing 50% of antioxidant activity or 0.5 of 

absorbance in the reducing power assay) for antioxidant activity, or ii) GI50 values 

(sample concentration that inhibited 50% of the net cell growth) for antitumor activity. 

Trolox and ellipticine were used as positive controls in antioxidant and antitumor 

activity evaluation assays, respectively (Dias et al., 2013). 

 

2.4.2. In vitro antioxidant activity assays 

DPPH radical-scavenging activity was evaluated by using an ELX800 microplate reader 

(Bio-Tek Instruments, Inc; Winooski, VT, USA), and calculated as a percentage of 

DPPH discolouration using the formula: [(ADPPH-AS)/ADPPH] × 100, where AS is the 

absorbance of the solution containing the sample at 515 nm, and ADPPH is the 

absorbance of the DPPH solution. Reducing power was evaluated by the capacity to 

convert Fe3+ into Fe2+, measuring the absorbance at 690 nm in the microplate reader 

mentioned above. Inhibition of β-carotene bleaching was evaluated though the β-

carotene/linoleate assay; the neutralization of linoleate free radicals avoids β-carotene 
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bleaching, which is measured by the formula: β-carotene absorbance after 2h of 

assay/initial absorbance) × 100. Lipid peroxidation inhibition in porcine (Sus scrofa) 

brain homogenates was evaluated by the decrease in thiobarbituric acid reactive 

substances (TBARS); the colour intensity of the malondialdehyde-thiobarbituric acid 

(MDA-TBA) was measured by its absorbance at 532 nm; the inhibition ratio (%) was 

calculated using the following formula: [(A - B)/A] × 100%, where A and B were the 

absorbance of the control and the sample solution, respectively (Dias et al., 2013; Roriz, 

Barros, Carvalho, Santos-Buelga & Ferreira, 2014). 

 

2.4.3. Antitumor activity in human tumor cell lines 

Five human tumor cell lines were used: MCF-7 (breast adenocarcinoma), NCI-H460 

(non-small cell lung cancer), HCT-15 (colon carcinoma), HeLa (cervical carcinoma) 

and HepG2 (hepatocellular carcinoma). Cells were routinely maintained as adherent cell 

cultures in RPMI-1640 medium containing 10% heat-inactivated FBS (MCF-7, NCI-

H460 and HCT-15) and 2 mM glutamine or in DMEM supplemented with 10% FBS, 2 

mM glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin (HeLa and HepG2 

cells), at 37 ºC, in a humidified air incubator containing 5% CO2. Each cell line was 

plated at an appropriate density (7.5 × 103 cells/well for MCF-7, NCI-H460 and HCT-

15 or 1.0 × 104 cells/well for HeLa and HepG2) in 96-well plates and allowed to attach 

for 24 h. Cells were then treated for 48 h with various extract concentrations. Following 

this incubation period, the adherent cells were fixed by adding cold 10% trichloroacetic 

acid (TCA, 100 µL) and incubated for 60 min at 4 ºC. Plates were then washed with 

deionised water and dried; sulphorhodamine B solution (0.1% in 1% acetic acid, 100 

µL) was then added to each plate well and incubated for 30 min at room temperature. 

Unbound SRB was removed by washing with 1% acetic acid. Plates were air-dried, the 
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bound SRB was solubilised with 10 mM Tris (200 µL) and the absorbance was 

measured at 540 nm in the microplate reader mentioned above (Dias et al., 2013). 

 

2.4.4. Hepatotoxicity 

A cell culture was prepared from a freshly harvested porcine liver obtained from a local 

slaughter house, and it was designed as PLP2. Briefly, the liver tissues were rinsed in 

hank’s balanced salt solution containing 100 U/mL penicillin, 100 µg/mL streptomycin 

and divided into 1×1 mm3 explants. Some of these explants were placed in 25 cm2 

tissue flasks in DMEM medium supplemented with 10% fetal bovine serum, 2 mM 

nonessential amino acids and 100 U/mL penicillin, 100 mg/mL streptomycin and 

incubated at 37 ºC with a humidified atmosphere containing 5% CO2. The medium was 

changed every two days. Cultivation of the cells was continued with direct monitoring 

every two to three days using a phase contrast microscope. Before confluence was 

reached, cells were subcultured and plated in 96-well plates at a density of 1.0×104 

cells/well, and cultivated in DMEM medium with 10% FBS, 100 U/mL penicillin and 

100 µg/mL streptomycin (Dias et al., 2013; Stojković et al., 2013). 

 

2.4.5. Phenolic compounds composition 

Phenolic compounds were determined by High-Performance Liquid Chromatography 

(HPLC, Hewlett-Packard 1100, Agilent Technologies, Santa Clara, CA, USA) as 

previously described by the authors (Dias et al., 2013; Roriz et al., 2014). Double online 

detection was carried out in the diode array detector (DAD) using 280 nm and 370 nm 

as preferred wavelengths and in a mass spectrometer (MS) connected to the HPLC 

system via the DAD cell outlet. The phenolic compounds were identified by comparing 

their retention time, UV-vis and mass spectra with those obtained from standard 
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compounds, when available. Otherwise, peaks were tentatively identified comparing the 

obtained information with available data reported in the literature. For quantitative 

analysis, a calibration curve for each available phenolic standard was constructed based 

on the UV signal. For the identified phenolic compounds for which a commercial 

standard was not available, the quantification was performed through the calibration 

curve of other compound from the same phenolic group. The results were expressed in 

mg per g of extract, infusion or decoction. 

Anthocyanins. Each fruit sample (1 g) was extracted with 30 mL of methanol containing 

0.5% trifluoroacetic acid (TFA), and filtered through a Whatman nº 4 paper. The 

residue was then re-extracted twice with additional 30 mL portions of 0.5% TFA in 

methanol. The combined extracts were evaporated at 35 ºC to remove the methanol, and 

re-dissolved in water. For purification, the extract solution was deposited onto a C-18 

SepPak® Vac 3 cc cartridge (Phenomenex), previously activated with methanol 

followed by water; sugars and more polar substances were removed by passing through 

10 mL of water and anthocyanins were further eluted with 5 mL of methanol:water 

(80:20, v/v) containing 0.1% TFA. The extract was concentrated under vacuum, 

lyophilized, re-dissolved in 1 mL of 20% aqueous methanol and filtered through a 0.22-

µm disposable LC filter disk for HPLC analysis. Anthocyanins were determined by 

HPLC as previously described by the authors (Roriz et al., 2014). Double detection was 

carried out by DAD, using 520 nm as the preferred wavelength, and in a MS connected 

to the HPLC system via the DAD cell outlet. The anthocyanins were tentatively 

identified by comparing their UV-vis and mass spectra with available standards and 

data in our compound library and the literature. The results were expressed in µg per g 

of extract, infusion or decoction. 
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2.5. Statistical analysis 

Three samples were used for each preparation and all the assays were carried out in 

triplicate. The results are expressed as mean values and standard deviation (SD). The 

results were analyzed using one-way analysis of variance (ANOVA) followed by 

Tukey’s HSD test with α = 0.05. In the case of nutritional value, hydrophilic and 

lipophilic compounds, a Student´s t-test was used to determine the significant difference 

among two different samples, with α = 0.05. This treatment was carried out using SPSS 

v. 22.0 program.  

 

3. Results and discussion 

3.1. Chemical characterization of P. avium fruits and stems  

The results of the nutritional characterization of P. avium (sweet cherry) fruits are 

shown in Table 1. Carbohydrates were the most abundant macronutrients, followed by 

proteins. Fat content was low, and the energetic contribution was ~58 kcal/100 g fw. 

Pacifico et al. (2014) reported the chemical composition of P. avium, being the values 

described by these authors very similar to the ones obtained in this study.  

Hydrophilic compounds (free sugars and organic acids) were determined in fruits and 

stems. The main sugars and derivatives found either in fruits or stems were fructose, 

glucose and sorbitol (Table 1), being glucose the most abundant in fruits followed by 

fructose, while in stems all the compounds were found in similar amounts. Contrarily to 

the inexistent studies on stems, there are some reports on sugars composition of sweet 

cherry fruits (Usenik et al., 2008, 2010; Serradilla et al., 2011; Ballistreri et al., 2013; 

Pacifico et al., 2014). Those authors report the presence of the same sugars, with similar 

values, although some of them also detected the presence of sucrose (Usenik et al., 

2008, 2010; Pacifico et al., 2014).  
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Oxalic, malic, ascorbic, citric and fumaric acids were found in the fruits of P. avium 

(Table 1), while stems presented oxalic, malic, shikimic and citric acids. Malic acid was 

the most abundant organic acid in both parts, also being reported by other authors in 

fruits as the main acid (Usenik et al., 2008, 2010; Serradilla et al., 2011; Ballistreri et 

al., 2013). Otherwise, those authors did not describe the presence of ascorbic acid, but 

identified shikimic acid. Schmitz-Eiberger and Blanke (2012) were the only authors 

reporting the presence of ascorbic acid in the fruits; nevertheless, the amount found by 

them was much higher than the one determined in this study, probably due to the 

different ripening stage of the analysed fruits, but these differences could also be 

explained by the different extraction methodologies applied.  

Fatty acids (FA) and tocopherols composition of fruits and stems are shown in Table 2. 

In fruits, polyunsaturated fatty acids (PUFA) predominated over saturated fatty acids 

(SFA) and monounsaturated fatty acids (MUFA), whilst in stems SFA predominated 

over MUFA and PUFA. In fruits, the FA determined in higher percentages were linoleic 

acid (C18:2n6), oleic acid (C18:1n9), palmitic acid (C16:0) and α-linolenic acid 

(C18:3n3), while in stems the order of abundance was C16:0, C18:1n9, C18:2n6 and 

C18:3n3. Regarding tocopherols, δ-tocopherol was not detected in both parts of P. 

avium, being γ-tocopherol only present in steams; stems revealed the highest 

concentration in tocopherols. α-Tocopherol was the most abundant isoform in both 

parts, being more abundant in stems. To our best knowledge there are no reports on 

lipophilic compounds of P. avium. 

 

3.2. Bioactivity of different preparations from P. avium fruits and stems  

The in vitro antioxidant and antitumor properties of different preparations of P. avium 

fruits and stems were evaluated, and the results are given in Table 3. Due to the 
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traditional use P. avium stems, as sedatives, diuretics and draining (Hooman et al., 

2009; Di Cagno et al., 2011), infusions and decoctions were also prepared and tested to 

compare with the bioactivity of the extracts obtained from stems and fruits.  

The antioxidant potential of sweet cherry fruits was previously reported (Chaovanalikit 

& Wrolstad, 2004; Serra et al., 2010, 2011a, 2011b; Schmitz-Eiberger & Blanke, 2012). 

Nevertheless, in the present study, all the preparations obtained using stems revealed 

higher antioxidant potential than the tested extract from fruits. Particularly, stems 

extracts gave the highest antioxidant activity in all the assays, followed by decoctions 

and, then, infusions. This was probably related to the higher phenolic compounds 

concentration found in stems, in comparison with fruits (Tables 4 and 5). Regarding 

antitumor potential, no activity (up to 400 µg/mL) was observed for MCF-7 (breast 

carcinoma), NCI-H460 (lung carcinoma), HeLa (cervical carcinoma) and HepG2 

(Hepatocellular carcinoma) cell lines. The fruits extract was the only one showing 

activity and revealed selectivity against HCT-15 (colon carcinoma) (GI50~74 µg/mL; 

Table 3). This might be related to the presence of anthocyanins that were only found in 

fruits and not in stems (Table 5). In fact, the cytotoxicity of P. avium fruits for other 

human colon cancer cells (HT29) has been previously reported (Serra et al., 2010, 

2011a, 2011b).   

None of the tested preparations have shown hepatotoxicity against normal primary cells 

(Table 3; GI50 > 400 µg/mL for PLP2).  

 

3.3. Analysis of phenolic compounds  

The HPLC phenolic profiles of P. avium stems and fruits extract were recorded at 280 

and 370 nm, and shown in Figures 1A and B. The peak characteristics and tentative 

identities are presented in Tables 4 and 5. Twenty-six compounds were detected in 
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stems, seven of which were phenolic acid derivatives and nineteen were flavonoids. 

Twelve compounds were identified in fruits (Table 4), three of which phenolic acid 

derivatives, three anthocyanins, and six other flavonoids. 

Phenolic acids.  

Sinapic acid (compound 7 in stems) was positively identified according to its retention, 

mass and UV-vis characteristics by comparison with a commercial standard. Compound 

1 in stems and fruits ([M-H]- at m/z 353) was identified as 3-O-caffeoylquinic acid 

(neochlorogenic acid), yielding a base peak at m/z 191 and the ion at m/z 179 with an 

intensity >60% base peak, characteristic of 3-acylchlorogenic acids as reported by 

Clifford, Johnston, Knight and Kuhnert (2003) and Clifford, Knight and Kuhnert 

(2005). Compound 4 (stems) and compounds 3 and 4 (fruits) were identified as 3-p-

coumaroylquinic acid, yielding the base peak at m/z 191, as reported by Clifford, Zheng 

and Kuhnert (2006). Furthermore, in fruits they were identified as cis and trans isomers 

of this compound; the assignment was made based on their relative order of elution, as 

hydroxycinnamoyl cis derivatives would be expected to elute before the corresponding 

trans ones, as observed after UV irradiation (366 nm, 24 h) of hydroxycinnamic acids in 

our laboratory. Therefore, compound 4 (stems) and compound 3 (fruits) were identified 

as the cis-3-p-coumaroylquinic acid. Both 3-O-caffeoylquinic and 3-p-coumaroylquinic 

acids have been described in P. avium fruits (Gonçalves et al., 2004; Fazzari et al., 

2008; González-Gómez et al., 2010; Usenik et al., 2008, 2010; Jakobek, Seruga, Voca, 

Sindrak & Dobricevic, 2009a; Jakobek, Seruga, Seruga, Novak & Medvidovic-

Kosanovic, 2009b; Liu et al., 2011; Serra et al., 2010, 2011a and 2011b; Serradilla et 

al., 2011; Ballistreri et al., 2013; Pacifico et al., 2014). 

In stems, compounds 2, 9 and 10 were identified as caffeic, p-coumaric and ferulic acid 

hexosides, based on the respective fragment ions released at m/z 179 [caffeic acid-H]-, 
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163 [coumaric acid-H]- and 193 [ferulic acid-H]- after loss of a hexosyl moiety (-162 

mu). Compound 5 presented the same pseudomolecular ion, UV spectra and 

fragmentation pattern to compound 2, and therefore it was tentatively identified as trans 

caffeic acid hexoside, taking into account the statement above.  

Flavonoids 

The following flavonoids detected in the stems were positively identified by comparison 

with commercial standards: catechin (compound 6), quercetin-3-O-rutinoside 

(compound 15), quercetin-3-O-glucoside (compound 16), kaempferol-3-O-rutinoside 

(compound 19), and kaempferol-3-O-glucoside (compound 21). The remaining 

compounds were tentatively assigned based on their UV and mass spectral 

characteristics, and previous identifications in Prunus species when available. 

Compound 11 (in stems) and 7 (in fruits) presented a UV spectrum characteristic of 

flavonols (λmax at 350 nm) and a pseudomolecular ion [M-H]- at m/z 771, releasing three 

fragments at m/z 609 ([M-162]-, loss of a hexosyl moiety), 463 ([M-162]-, loss of a 

deoxyhexoside moiety) and 301 [quercetin-H]- ([M-162]-, loss of a hexosyl moiety). 

Thus, the compound was identified as a quercetin-O-deoxyhexosylhexoside-O-

hexoside. Similarly, compound 12 in stems could be identified as a kaempferol-O-

deoxyhexosylhexoside-O-hexoside. The deoxyhexosylhexoside substituent in these 

compounds could be associated to rutinose, owing to the positive identification of 

quercetin and kaempferol 3-O-rutinosides in P. avium stems. As far as we know, these 

compounds have not been previously identified in P. avium. Peak 20 with similar 

spectral characteristics as compound 15 (rutin) and a molecular mass 15 mu higher than 

it allowed assigning the compound as a methyl quercetin-O-rutinoside. 

Tentative identifications of peaks 17 (genistein-7-O-glucoside), 18 (naringenin-7-O-

glucoside, prunin) and 24 (chrysin-7-O-glucoside) were made taking into account their 



18 
 

previous description in the bark of P. avium and P. cerasus (Hasegawa, 1957; Geibel, 

Geiger & Treutter, 1990; Wang, Nair, Strasburg, Booren & Gray, 1999). Compound 8 

in the fruit presented the same pseudomolecular ion ([M-H]- at m/z 433) as compound 

18 in the stems, releasing a fragment at m/z 271 ([M-narigenin]-). This peak eluted 

earlier than compound 18 in the stems, so that they cannot have the same identity, and 

therefore it was tentatively assigned as narigenin-O-hexoside.  

Compounds 25 (stems) and 9 (fruits) presented a pseudomolecular ion [M-H]- at m/z 

447 that would match with either sakuranin (sakuranetin-5-O-glucoside) or 

dihydrowogonin-7-O-glucoside. The presence of sakuranin in fruits of P. avium has 

been indicated by Treutter, Galensa, Feucht and Schmid (1987) and Serra et al. (2011b 

and 2010), whereas dihydrowogonin-7-O-glucoside was identified as a main component 

in callus, phloem and bark of P. avium (Treutter et al., 1985; Geibel et al., 1990). The 

fact that this peak was the majority compound in the stems of P. avium here analysed, 

as well as the observation that 7-O-glucosides are characteristic of P. avium, whereas 5-

O-glucosides would be more typical of P. cerasus (Geibel et al, 1990; Geibel & Feucht, 

1991), might support dihydrowogonin-7-O-glucoside rather than sakuranin as an 

identity for the compounds, although a definitive structure cannot be concluded. 

Compound 23 in the stems, with a pseudomolecular ion ([M-H]- at m/z 579) 132 mu 

higher than compound 25 and similar fragmentation pattern, could be assigned as a 

pentosylhexoside derivative of either dihydrowogonin or sakuranetin. 

Compounds 3 (stems) and 6 (fruits) ([M-H]- at m/z 465) and compounds 8 and 13 

(stems) ([M-H]- at m/z 449), all of them releasing a fragment ion from the loss of 162 

mu (hexosyl moiety), may be assigned as O-hexosides of the dihydroflavonols taxifolin 

and aromadendrin, respectively, as those aglycones had been reported to occur in the 

wood of P. avium (Hasegawa, 1957). Although the nature and position of the sugar 
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cannot be established, compounds 3 and 8 (stems) might be speculated to be 7-O-

glucosides, suggested to be characteristics of the bark of P. avium (Geibel et al., 1990; 

Geibel & Feucht, 1991). Compound 14, with similar characteristics as compound 8 and 

a molecular weight 15 mu higher than it, might correspond to a methyl aromadendrin-

O-hexoside. Compound 5 ([M-H]- at m/z 611) in fruits, also released a fragment ion at 

m/z 303 ([taxifolin-H]-; loss of a deoxyhexosylhexoside moiety, -308 mu), being 

tentatively identified as taxifolin-O-deoxyhexosylhexoside.   

Compound 22 (stems) presented a pseudomolecular ion [M-H]- at m/z 549, releasing a 

fragment at m/z 255 ([M-132-162]-) that might be associated to pinocembrin, a 

flavanone reported in the wood of different Prunus species (Hasegawa, 1957). Thus, the 

compound was tentatively assigned as pinocembrin-O-pentosyl-hexoside. 

Finally, compound 26 in the stems presented a pseudomolecular ion [M-H]- at m/z 283 

releasing a fragment ion at m/z 268 (loss of a CH3 group), which might be coherent with 

a methyl genistein.  

 

Anthocyanins. The anthocyanin profile obtained for P. avium fruit is shown in the 

chromatogram of Figure 1C, and the identities and concentrations of three identified 

anthocyanins are presented in Table 5. Cyanidin-3-O-glucoside (compound 10), 

cyanidin 3-O-rutinoside (compound 11) and peonidin-3-O-rutinoside (compound 12) 

were confirmed by comparison of their chromatographic, UV and mass spectral 

characteristics with data in our library. Cyanidin-3-O-rutinoside (compound 11) was the 

majority anthocyanin found in this sample. These three anthocyanins are the most 

commonly found in P. avium fruits (Gao & Mazza, 1995; Usenik et al., 2008; Usenik et 

al., 2010; Serradilla et al., 2011; Ballistreri et al., 2013). 
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In literature there are several reports on the identification and quantification of phenolic 

compounds in P. avium fruits, being the following compounds the most commonly 

found: phenolic acids (neochlorogenic, chlorogenic and p-coumaroylquinic acids), 

anthocyanins (cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, peonidin-3-O-

glucoside, peonidin-3-O-rutinoside and pelargonidin-3-O-rutinoside), flavonols (rutin) 

and flavan-3-ols (catechin, epicatechin) (Gao & Mazza, 1995; Gonçalves et al., 2004; 

Fazzari et al., 2008; González-Gómez et al., 2010; Usenik et al., 2008; Usenik et al., 

2010; Liu et al., 2011; Serra et al., 2010; Serradilla et al., 2011; Ballistreri et al., 2013; 

Pacifico et al., 2014). Moreover, Usenik et al. (2010) also reported the presence of some 

procyanidin derivatives, and Serra et al. (2011a) of quercetin-3-O-glucoside.  

 

Overall, P. avium (sweet cherry) is one of the most popular temperate fruits, being 

highly appreciated by consumers and studied by the scientific community. In opposition 

to the widely studied fruits and despite the traditional medicinal use of infusions and 

decoctions prepared from P. avium stems, nothing is known about their chemical 

composition and bioactive properties. Therefore, the present study reports innovative 

results regarding chemical characterization and bioactive properties of sweet cherry 

stems. The traditional use of their infusions and decoctions was scientifically validated; 

otherwise, the extracts could be incorporated in nutraceutical or pharmaceutical 

products.  
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Table 1. Characterization of P. avium fruits in macronutrients, and of fruits and stems 

in hydrophilic compounds.  

Macronutrients in Fruits 

Moisture (g/100 g) 85.24 ± 2.52 Ash (g/100 g) 0.40 ± 0.10 

Fat (g/100 g) 0.04 ± 0.00 Carbohydrates (g/100 g) 13.90 ± 1.72 

Proteins (g/100 g) 0.42 ± 0.01 Energy (kcal/100 g) 57.65 ± 6.85 

Hydrophilic compounds Stems Fruits t-Students test  
p-value 

Fructose 1.10 ± 0.05 5.47 ± 0.34 <0.001 

Glucose 0.92 ± 0.05 6.02 ± 0.10 <0.001 

Sorbitol 1.06 ± 0.05 1.62 ± 0.06 <0.001 

Sum (g/100 g) 3.08 ± 0.06 13.85 ± 0.86 <0.001 

Oxalic acid 64.97 ± 0.75 29.61 ± 0.95 <0.001 

Malic acid 659.18 ± 0.68 715.78 ± 0.68 <0.001 

Ascorbic acid nd 1.92 ± 0.11 - 

Shikimic acid 1.96 ± 0.04 nd - 

Citric acid 211.02 ± 0.62 6.53 ± 0.30 <0.001 

Fumaric acid nd 0.37 ± 0.02 - 

Sum (mg/100 g) 937.13 ± 0.85 754.21 ± 1.23 <0.001 

Results are expressed in fresh weight basis (Mean ± SD); nd- not detected.  
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Table 2. Characterization of P. avium stems and fruits in lipophilic compounds. 

 Stems Fruits t-Students test 

p-value 

C6:0     0.17 ± 0.00     0.07 ± 0.01 <0.001 

C8:0     0.40 ± 0.00     0.12 ± 0.02 <0.001 

C10:0     0.53 ± 0.03     0.17 ± 0.03 <0.001 

C12:0     0.94 ± 0.02     0.70 ± 0.02 <0.001 

C13:0     0.03 ± 0.00 tr - 

C14:0     1.86 ± 0.02     1.30 ± 0.01 <0.001 

C14:1     0.00 ± 0.00      0.04 ± 0.00 <0.001 

C15:0     0.75 ± 0.02     0.73 ± 0.01 0.212 

C16:0   21.98 ± 0.40   22.27 ± 0.77 0.459 

C16:1     0.82 ± 0.02     0.34 ± 0.07 <0.001 

C17:0     1.20 ± 0.01     0.97 ± 0.02 <0.001 

C18:0     8.39 ± 0.02     0.53 ± 0.04 <0.001 

C18:1n9   18.61 ± 0.17   23.95 ± 0.54 <0.001 

C18:2n6   17.64 ± 0.01   25.08 ± 0.07 <0.001 

C18:3n3   16.83 ± 0.03   15.39 ± 0.20 <0.001 

C20:0     2.95 ± 0.04     0.91 ± 0.02 <0.001 

C20:1     0.11 ± 0.00     0.07 ± 0.01 <0.001 

C20:3n3+C21:0     0.40 ± 0.03     0.14 ± 0.00 <0.001 

C22:0     3.44 ± 0.20     0.64 ± 0.04 <0.001 

C24:0     2.90 ± 0.10     0.58 ± 0.01 <0.001 

SFA (percentage)   45.58 ± 0.18   35.00 ± 0.73 <0.001 

MUFA (percentage)   19.55 ± 0.19   24.40 ± 0.46 <0.001 

PUFA (percentage)   34.87 ± 0.01   40.60 ± 0.28 <0.001 

α-tocopherol 512.58 ± 15.06 104.06 ± 9.39 <0.001 

β-tocopherol   31.94 ± 4.30   11.81 ± 2.09 <0.001 

γ-tocopherol   23.58 ± 1.08 nd - 

Sum (µg/100 g) 568.10 ± 18.28 115.87 ± 11.48 <0.001 

The results of fatty acids are expressed in relative percentage; The results of tocopherols are expressed in 

fresh weight basis (mean ± SD); tr- traces. Caproic acid (C6:0); Caprylic acid (C8:0); Capric acid 

(C10:0); Lauric acid (C12:0); Tridecanoic acid (C13:0); Myristic acid (C14:0); Myristoleic acid (C14:1); 

Pentadecanoic acid (C15:0); Palmitic acid (C16:0); Palmitoleic acid (C16:1); Heptadecanoic acid 

(C17:0); Stearic acid (C18:0); Oleic acid (C18:1n9c); Linoleic acid (C18:2n6c); α-Linolenic acid 

(C18:3n3); Arachidic acid (C20:0); Eicosenoic acid (C20:1c); cis-11, 14, 17-Eicosatrienoic acid and 

Heneicosanoic acid (C20:3n3 + C21:0); Behenic acid (C22:0); Lignoceric acid (C24:0).  
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Table 3. Bioactive properties of different preparations from P. avium fruits and stems. 

 

Samples Stems Fruits 

 Extracts Infusions Decoctions Extracts 

Antioxidant activity (EC50, mg/mL) 

DPPH scavenging activity 0.36 ± 0.01d 0.63 ±0.01c 0.54 ± 0.01b 0.99 ± 0.01a 

Reducing power  0.18 ± 0.02d 0.44 ± 0.03b 0.31± 0.01c 0.57 ±0.01a 

β - Carotene bleaching inhibition 0.30 ± 0.01d 0.42 ±0.06b 0.35 ± 0.04c 1.80 ± 0.04a 

TBARS inhibition 0.07 ± 0.00d 0.24 ±0.01b 0.13 ± 0.01c 1.46 ± 0.09a 

Antitumor activity (GI50 values, µg/mL) 

HCT-15 (colon carcinoma) >400 >400 >400 73.51±6.37 

Hepatotoxicity (GI50 value, µg/mL) 

PLP2 >400 >400 >400 >400 

The antioxidant activity was expressed as EC50 values (Mean ± SD), what means that higher values 

correspond to lower reducing power or antioxidant potential. EC50: Extract concentration corresponding 

to 50% of antioxidant activity or 0.5 of absorbance in reducing power assay. Trolox EC50 values: 41 

µg/mL (reducing power), 42 µg/mL (DPPH scavenging activity), 18 µg/mL (β-carotene bleaching 

inhibition) and 23 µg/mL (TBARS inhibition). GI50 values (Mean ± SD) correspond to the sample 

concentration achieving 50% of growth inhibition in human tumour cell lines or in liver primary culture 

PLP2. Ellipticine GI50 values: 1.42 µg/mL (HCT-15) and 2.06 µg/mL (PLP2). In each row different 

letters mean significant differences between species (p<0.05).  
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Table 4. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and 

quantification of phenolic compounds in P. avium stem extracts, infusions and decoctions. 

Peak 
Rt  

(min) 

λmax 

 (nm) 

Molecular ion  

[M-H]- (m/z) 

MS2 

(m/z) 
Tentative identification 

Quantification (mg/g) 

Extracts Infusions Decoctions 

1 5.2 328 353 191(100),179(60),173(5),135(50) 3-O-Caffeolyquinic acid 0.43 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 

2 6.4 326 341 179(100) cis Caffeic acid hexoside 0.17 ± 0.01 0.10 ± 0.01 0.12 ± 0.02 

3 6.6 282,342sh 465 303(100) Taxifolin-7-O-hexoside 0.79 ± 0.04  0.29 ± 0.01 0.19 ±0.01 

4 6.9 312 337 191(21),173(6),163(100),155(54) p-coumaroylquinic acid 0.53 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 

5 7.1 322 341 179(100) trans Caffeic acid hexoside 0.49 ± 0.02 0.07 ± 0.01 0.09 ± 0.01 

6 7.8 278 289 245(56), 203(19), 137(44) Catechin 3.74 ± 0.01 0.42 ± 0.04 0.44 ± 0.05 

7 9.4 312 223 - Sinapic acid 0.29 ± 0.01 0.17 ± 0.01 0.15 ± 0.01 

8 9.6 285,342sh 449 287(100) Aromadendrin-7-O-hexoside 2.66 ± 0.07 1.22 ± 0.04 0.86 ± 0.02 

9 10.9 312 325 163(100) p-coumaric acid hexoside 0.68 ± 0.04 0.32 ± 0.02 0.25 ± 0.01 

10 13.1 324 355 193(100) Ferulic acid hexoside 0.30 ± 0.03 0.20 ± 0.01 0.17± 0.01 

11 15.4 350 771 609(100),463(20),301(41) Quercetin-O-rutinoside-O-hexoside 0.44 ± 0.01 0.02 ± 0.00 0.03 ± 0.00 

12 15.6 346 755 593(100),447(47),285(55) Kaempferol-O-rutinoside-O-hexoside 0.55 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 

13 17.5 286,334sh 449 287(100) Aromadendrin-O-hexoside 0.31 ± 0.04 tr tr 

14 19.3 288,348sh 463 301(100),286(17) Methyl-aromadendrin-O-hexoside 0.06 ± 0.01 tr tr 

15 19.7 356 609 301(100) Quercetin-3-O-rutinoside 0.87 ± 0.02 nd nd 

16 21.0 356 463 301(100) Quercetin-3-O-glucoside 0.27 ± 0.02 nd nd 

17 21.9 256/330 431 269(100) Genistein-7-O-glucoside 0.55 ± 0.03 nd nd 

18 22.5 284,338sh 433 271(100) Naringenin-7-O-glucoside 2.96 ± 0.02 0.14 ± 0.02 0.08 ± 0.01 

19 23.3 352 593 285(100) Kaempferol-3-O-rutinoside 0.88 ± 0.03 nd nd 
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20 24.4 356 623 315(75),300(21) Methyl quercetin-O-rutinoside 0.15 ± 0.01  nd nd 

21 24.8 352 447 285(100) Kaempferol-3-O-glucoside 0.30 ± 0.01 nd nd 

22 29.4 286,336sh 549 255(100) Pinocembrin-O-pentosylhexoside 0.23 ± 0.01 0.05 ± 0.01 0.03 ± 0.00 

23 30.1 290,340sh 579 285(90),270(14) Dihydrowogonin/sakuranetin-O-pentosylhexoside 0.36 ± 0.01 tr tr 

24 32.2 258/316 415 253(100) Chrysin-7-O-glucoside 0.50 ± 0.01 tr tr 

25 33.4 286/346 447 285(85),270(100) 
Dihydrowogonin 7-O-glucoside/sakuranetin 5-O-

glucoside 

13.63 ± 0.05 8.49 ± 0.13 5.66 ± 0.05 

26 34.3 272/348 283 268(100)  Methyl genistein  0.31 ± 0.01 0.08 ± 0.02 0.03 ± 0.00 

     Phenolic acids 2.90 ± 0.07a 1.04 ± 0.04b 0.98 ± 0.07c 

     Flavonoids 29.54 ± 0.10a 10.83 ± 0.27b 7.39 ± 0.12c 

     Total phenolic compounds 32.44 ± 0.17a 11.88 ± 0.30b 8.37 ± 0.19c 

 
nd-not detected; tr-traces. In each row, different letters mean significant differences (p<0.05).  
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Table 5. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, identification and 
quantification of phenolic compounds in P. avium fruit extracts. 

Peak 
Rt 

(min) 

λmax 

(nm) 

Molecular ion 

[M-H]- (m/z) 

MS2 

(m/z) 
Identification 

Quantification 

(mg/g) 

1 5.2 328 353 191(100),179(66),173(9),161(10),135(62) 3-O-caffeoylquinic acid 0.83 ± 0.03 

2 5.7 278 451 289(20),245(5),137(100) Catechin hexoside 1.68 ± 0.01 

3 6.9 312 337 191(68),173(8),163(100),155(3),119(59) cis p-coumaroylquinic acid 0.56 ± 0.01 

4 7.1 310 337 191(51),173(8),163(100),155(5),119(40) trans p-coumaroylquinic acid 0.23 ± 0.02 

5 7.9 342 611 303(13),285(76) Taxifolin-O-deoxyhexosylhexoside 0.66 ± 0.01 

6 8.5 350 465 303(22),285(100) Taxifolin-O-hexoside 0.13 ± 0.01 

7 15.3 350 771 609(100),463(25),301(42) Quercetin-O-rutinoside-O-hexoside 0.42 ± 0.01 
8 15.6 268,sh342 433 271(20),253(75) Narigenin-O-hexoside 0.17 ± 0.01 

9 33.4 288,sh346 447 285(92),270(22) 
Dihydrowogonin 7-O-glucoside/sakuranetin 5-O-

glucoside 

0.62 ± 0.01 

     Phenolic acids 1.62 ± 0.05 

     Flavonoids (non-anthocyanins) 3.96 ± 0.04 

     Total phenolic compounds 5.58 ± 0.09 

Peak 
Rt 

(min) 

λmax 

(nm) 

Molecular ion 

[M+H]+ (m/z) 

MS2 

(m/z) 
Identification 

Quantification 

(µg/g) 

10 18.2 512 449 287(100) Cyanidin-3-O-glucoside 2.19 ± 0.27 
11 19.6 518 595 449(10),287(100) Cyanidin-3-O-rutinoside 14.50 ± 0.64 
12 25.5 524 609 463(8),301(100) Peonidin-3-O-rutinoside 0.64 ± 0.01 

     Anthocyanins  17.34 ± 0.91 
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