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Cancer cells rely mostly on glycolysis to meet their energetic demands, producing large amounts of lactate
that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). The role
of MCTs in the survival of colorectal cancer (CRC) cells is scarce and poorly understood. In this study,
we aimed to better understand this issue and exploit these transporters as novel therapeutic targets alone
or in combination with the CRC classical chemotherapeutic drug 5-Fluorouracil.

For that purpose, we characterized the effects of MCT activity inhibition in normal and CRC derived
cell lines and assessed the effect of MCT inhibition in combination with 5-FU.

Here, we demonstrated that MCT inhibition using CHC (a-cyano-4-hydroxycinnamic acid), DIDS
(4,4’-diisothiocyanatostilbene-2,2’-disulphonic acid) and quercetin decreased cell viability, disrupted
the glycolytic phenotype, inhibited proliferation and enhanced cell death in CRC cells. These results
were confirmed by specific inhibition of MCT1/4 by RNA interference. Notably, we showed that 5-FU
cytotoxicity was potentiated by lactate transport inhibition in CRC cells, either by activity inhibition or
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expression silencing.

These findings provide novel evidence for the pivotal role of MCTs in CRC maintenance and survival,
as well as for the use of these transporters as potential new therapeutic targets in combination with CRC

conventional therapy.

© 2015 Elsevier Ireland Ltd. All rights reserved.

Introduction

The distinct metabolic behaviour observed in tumour cells was
recently recognized as a hallmark of cancer [1]. To support their
energy demands, cancer cells increase the rates of glycolysis, leading
to an overload of lactic acid, which must be exported to the extra-
cellular milieu, decreasing extracellular pH. This acidification
contributes to the malignant phenotype of tumour cells, being as-
sociated with increased invasion [2], suppression of anti-cancer
immune response [3], tumour proliferation, angiogenesis and me-
tastasis [4,5]. Also, high extracellular lactate has been associated with
poor prognosis in cancer patients [5,6].

Monocarboxylate transporters (MCTs) are essential players in the
maintenance of the glycolytic metabolism having a dual role, both
as lactate transporters and pH regulators [7]. The MCT family
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presently comprises 14 members; however, only the first four
(MCT1-4) are known to mediate the proton-coupled transport of
monocarboxylic acids across the plasma membrane [8-14]. CD147
is a chaperone for both MCT1 and MCT4, promoting their correct
plasma membrane expression and activity [15-18]. MCT inhibi-
tion disrupts both cellular and extracellular balance, namely affecting
pH homeostasis, inducing apoptosis [19] and reducing tumour an-
giogenesis, invasion [20], and metastasis [21]. Several agents are
known to inhibit MCT activity like o-cyano-4-hydroxycinnamic acid
(CHC), 4,4’-diisothiocyanatostilbene-2,2’-disulphonic acid (DIDS) and
quercetin [22]. MCTs are currently seen as promising therapeutic
targets in cancer, with encouraging results in various in vitro and
in vivo studies [13,23-30].

Data on the expression of MCTs in colorectal cancer (CRC) are
scarce and contradictory [31-34]. Koukourakis et al. [31] found ex-
pression of MCT1 in cancer cells and in tumour-associated fibroblasts,
while MCT4 was weakly expressed in the tumour environment. Con-
versely, our group [32] detected a significant gain in MCT1 and MCT4
membrane expression, compared with the adjacent normal
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epithelium. More recently [33,34], 50% MCT4 plasma membrane pos-
itive staining in two cohorts of CRC patients was described,
supporting the role of these MCT isoforms in CRC malignancy.

In the recent years, chemotherapeutic treatment of CRC suffered rev-
olutionary changes, with new compounds and regimens approved or
under investigation, namely the development of compounds target-
ing specific alterations in cell signalling pathways [35]. One of the most
commonly used chemotherapeutic agents for the treatment of CRC is
5-fluorouracil (5-FU); however, there is growing evidence for 5-FU re-
sistance [36]. When administered as a single agent, 5-FU activity is
modest, with response rates of less than 10-15% [37]. Efforts have been
made to unravel new combinatory therapies aiming to enhance the ther-
apeutic efficacy of 5-FU and reduce its side effects. Addition of leucovorin
was shown to improve the efficacy of 5-FU with little toxicity [38] and,
more recently, capecitabine (an orally administered prodrug of 5-FU)
and newer monoclonal antibodies targeting the epidermal growth factor
receptor (cetuximab and panitumumab) and the vascular endothelial
growth factor (bevacizumab) have been introduced in CRC therapeu-
tics [39-41].

The need for more effective therapeutic approaches led us to try
to understand the role of MCTs in CRC cells and explore these trans-
porters as therapeutic targets. Here, we assessed the role of MCTs
on the viability, proliferation and energetic metabolism of CRC
derived cell lines, and explored the potential of combining MCT in-
hibition with 5-FU. We observed that MCT activity inhibition
inhibited cell viability and proliferation, disrupted the glycolytic phe-
notype, and enhanced cell death in CRC cells. These results were
corroborated by MCT expression inhibition. Moreover, we showed
that MCT inhibition potentiated the cytotoxic effect of 5-FU.

Materials and methods
Cell lines and culture conditions

The human colon carcinoma-derived cell lines HCT-15 and RKO were kindly pro-
vided by Dr. Raquel Seruca (IPATIMUP, Porto, Portugal). HCT-15 cells were cultured

in RPMI 1640 medium (Gibco, Invitrogen, USA) supplemented with 10% (v/v) fetal
bovine serum (FBS, Gibco, Invitrogen, USA) and 1% (v/v) penicillin-streptomycin so-
lution (Pen/Strep, Invitrogen, USA). RKO cell line was grown in DMEM medium (Gibco,
Invitrogen, USA) supplemented with 10% FBS and 1% Pen/Strep. The normal-
derived colon mucosa cell line NCM460 was obtained from INCELL Corporation upon
MTA approval (LLC, San Antonio, USA). NCM460 cells were maintained in INCELL’s
enriched M3™ Base medium supplemented with 10% FBS and 1% Pen/Strep. All cell
lines were incubated at 37 °C in a 5% CO, humidified atmosphere.

Paraffin cytoblock preparation and immunocytochemistry

Paraffin cytoblocks of HCT-15, RKO and NCMA460 cells were prepared and MCT1, MCT4,
CD147 and GLUT1 protein expression was evaluated by immunocytochemistry, as pre-
viously described [30]. Detailed information is given in Table 1.

Western blot

MCT1, MCT4, CD147 and GLUT1 protein expression was evaluated by Western blot-
ting, according to the conditions described in Table 2, as previously described [30].

Chemicals

Stock solutions of o-cyano-4-hydroxycinnamic acid (CHC), 4,4’-
diisothiocyanatostilbene-2,2’-disulphonic acid disodium salt hydrate (DIDS), quercetin
and 5-fluorouracil (5-FU) (Sigma-Aldrich, St. Louis, USA) were obtained by disso-
lution in 100% dimethyl sulphoxide (DMSO, Sigma-Aldrich, St. Louis, USA). Working
concentrations were obtained through dilutions in culture medium. The final con-
centration of DMSO was maintained at a maximum of 1%. All controls were performed
using DMSO alone (vehicle).

Cell viability and proliferation assays

Cell viability (biomass) was assessed by the Sulphorhodamine B (SRB) based In
Vitro Toxicology Assay Kit (Sigma-Aldrich, St. Louis, USA) and cell proliferation was
measured with the Cell Proliferation ELISA, BrdU (bromodeoxyuridine) colorimet-
ric assay (Roche, Mannheim, Germany), as previously described [30].

Assessment of glucose and lactate levels
Extracellular levels of glucose (Roche, Germany) and lactate (SpinReact, Spain)

were assessed by the enzymatic colorimetric kits, following the manufacturer’s
instructions.

Table 1
Details on the immunocytochemical procedure used to evaluate the expression of the different proteins.
Protein Antigen retrieval Positive control Detection system Antibody
Company Dilution Incubation
MCT1 Citrate buffer (10 mM, pH =6.0) Colon carcinoma R.T.U. VECTASTAIN® Elite® ABC Kit Chemicon 1:200 Overnight, 4 °C
98 °C; 20 min (Vector Laboratories) Ref. AB3538P
MCT4 Citrate buffer (10 mM, pH = 6.0) Colon carcinoma Ultravision Detection System Santa Cruz Biotechnology 1:500 2 hours, RT
98 °C; 20 min Anti-polyvalent, HRP Ref. sc-50329
(Lab Vision Corporation)
CD147 EDTA (1 mM, pH=38) Colon carcinoma Ultravision Detection System Zymed 1:500 2 hours, RT
98 °C; 15 min Anti-polyvalent, HRP Ref. 18-7344
(Lab Vision Corporation)
GLUT1 Citrate buffer (10 mM, pH =6.0) Skin Ultravision Detection System Abcam 1:500 2 hours, RT
98 °C; 10 min Anti-polyvalent, HRP Ref. ab15309-500
(Lab Vision Corporation)
Table 2
Western-blot conditions to evaluate the expression of the different proteins.
Protein Primary polyclonal antibody Secondary antibody
Company Dilution Incubation Reactivity Dilution Incubation
MCT1 Santa Cruz Biotechnology 1:500 Overnight, 4 °C Anti-mouse 1:5000 45 min, RT
Ref. sc-365501
MCT4 Santa Cruz Biotechnology 1:2000 Overnight, 4 °C Anti-rabbit 1:5000 45 min, RT
Ref. sc-50329
CD147 Santa Cruz Biotechnology 1:200 Overnight, 4 °C Anti-mouse 1:5000 45 min, RT
Ref. sc-71038
GLUT1 Abcam 1:800 Overnight, 4 °C Anti-rabbit 1:5000 45 min, RT

Ref. ab15309-500

RT, room temperature.
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Cell death assay

Cell death (apoptosis/necrosis) was determined by Annexin V-FLOUS Apopto-
sis Kit (Roche, Mannheim, Germany), according to the manufacturer’s instructions
and as previously described [30]. The percentage of apoptosis/necrosis in the cell
population was analysed by flow cytometry (LSRII model, BD Biosciences).

Downregulation of MCT1 and MCT4 expression

Silencing of MCT1 and MCT4 expression was performed with siRNA (s580 and
s17417, respectively, Ambion, Foster City, CA, USA), using an adequate control (scram-
ble siRNA, #4390843, Ambion, Foster City, CA, USA). Lipofectamine (RNAIMAX 13778-
075, Invitrogen, Carlsbad, CA, USA) was used as permeabilization agent, according
to the manufacturer’s instructions.

Drug dose-effect analyses

The combined effect of 5-FU and lactate transport inhibitors (CHC, DIDS and quer-
cetin) was analysed by calculating the combination index (CI) using the CalcuSyn
software (Biosoft, Cambridge, UK). When Cl < 1, the effect is considered as syner-
gistic, CI =1 is additive, and CI > 1 antagonistic.

Statistical analysis

Statistical analysis was performed with GraphPad Prism 5 software. Statistical
significance was assessed by unpaired t-test or one-way ANOVA, followed by Tukey
or Dunnett post test. The threshold for significance was considered p < 0.05.

Results

CRC and normal colon-derived cell lines express MCT1, MCT4, CD147
and GLUT1 and CRC cells show a more glycolytic profile

Immunocytochemical (Fig. 1A) and Western blot (Fig. 1B) char-
acterization of MCT1, MCT4, CD147 and GLUT1 revealed that all
proteins are expressed, mainly at the plasma membrane, in CRC
(HCT15, RKO) and normal colon-derived (NCM460) cell lines.

By analysing glucose consumption and lactate production of the
different cell lines (Fig. 1C), we observed that the CRC derived cells
consume more glucose and produce more lactate over time than
NCM460 cells. RKO cells appear to be more glycolytic than HCT-
15 since they exhibited a higher consumption of glucose and lactate
production up to 24 hours.

CHC, DIDS and quercetin impair viability and disrupt the glycolytic
phenotype of colorectal carcinoma cells but not of normal colon

CRC and normal (NCM460) cells were treated with the known
lactate transport inhibitors CHC, DIDS and quercetin for 24 hours.
All tested compounds inhibited in a similar way HCT-15 and RKO
cell viability, in a dose dependent-manner, which was not ob-
served for NCM460 cells, within the range of the concentrations used
(Fig. 2A).

To better understand the inhibitory effect of CHC, DIDS and quer-
cetin on HCT-15 and RKO cells, the effect on energetic metabolism
was assessed. Cells were treated with the correspondent ICsq values
determined at 24 hours (HCT-15: CHC=10.55 mM, DIDS = 0.80 mM,
quercetin = 142.7 uM; RKO: CHC =9.42 mM, DIDS = 0.88 mM, quer-
cetin=121.9 uM), and the extracellular amounts of glucose and
lactate were estimated over time. Treatment with CHC and quer-
cetin significantly decreased glucose consumption and lactate
production in HCT-15 cells (Fig. 2B), with reduction in glucose con-
sumption and lactate production already after 4 hours of incubation.
In RKO cells, only the treatment with CHC significantly affected
glucose consumption (Fig. 2B). Regarding lactate production, CHC
and DIDS treatment showed a significant inhibitory effect in the first
4 hours, with no differences for the remaining incubation periods.
Finally, quercetin was the only compound able to inhibit lactate pro-
duction along time in RKO cells (Fig. 2B).

CHC, DIDS and quercetin impair CRC cell proliferation and induce cell
death

As shown in Fig. 2C, all compounds significantly inhibited the
proliferation of both cell lines. CHC appears to have a stronger effect
on RKO than HCT-15 cells, whereas DIDS and quercetin showed a
similar capacity to inhibit proliferation.

Since the effect of the lactate transport inhibitors studied could
be attributed not only to inhibition of the proliferative capacity of
the cells but also to induction of cell death (apoptosis/necrosis),
annexin V/PI staining was assessed. As shown in Fig. 2D, cell death
significantly increased after treatment with DIDS for both cell lines,
while quercetin significantly increased RKO cell death, with no sig-
nificant effect on HCT-15 cells. CHC did not increase the percentage
of cell death in both cell lines. Among the three compounds tested,
DIDS was the most potent in inducing cell death in both CRC cell
lines. Moreover, HCT-15 appears to be more sensitive to these lactate
transport inhibitors, since a higher overall percentage of dead cells
were observed (Fig. 2D).

Downregulation of MCT1 or MCT4 mimics the effects of lactate
transport inhibition

In order to confirm if the results previously observed in CRC cells
were a consequence of MCT1/4 activity inhibition, downregulation
of MCT1 or MCT4 expression was performed using specific sSiRNAs
in HCT-15 and RKO cells. As shown in Fig. 3A, an effective reduc-
tion of MCT1 or MCT4 expression was observed upon MCT1 or MCT4
targeting by siRNAs in both cell lines.

As observed for MCT activity inhibition with CHC, DIDS and
quercetin for both CRC cell lines, MCT1 or MCT4 downregulation
decreased HCT-15 and RKO cell viability after 24 hours of silenc-
ing (Fig. 3B). Likewise, a reduction of the proliferative capacity of
these cells was obtained upon silencing of MCT1 or MCT4 (Fig. 3C).
Similar to the results obtained with MCT activity inhibition, MCT1
or MCT4 downregulation induced a significant decrease in glucose
consumption and lactate production (siMCT1) in HCT-15 cells, while
MCT4 silencing resulted in a significant inhibition of lactate pro-
duction in RKO cells (Fig. 3D).

MCT activity inhibition enhances 5-FU cytotoxic effect in CRC cells

5-FU decreased HCT-15 and RKO cell biomass in a dose-dependent
manner, while no cytotoxic effect was observed on the normal colon
cell line, as shown in Fig. 4A. To test if monocarboxylate transport
inhibition could potentiate the cytotoxic effect of 5-FU in CRC cells,
two approaches were followed: combination and pre-treatment
assays. For the combination assay, CRC cells were incubated simul-
taneously with the lactate transport inhibitors and increasing
concentrations of 5-FU during 24 hours. The combination of either
CHC or DIDS with 5-FU resulted in an increase of 5-FU cytotoxic effect
in CRC cell lines (Fig. 4B). For HCT-15 cells, a synergistic effect was
consistently observed only when combining DIDS with 5-FU. For RKO
cells, a synergism was observed with the combination of 5-FU with
either CHC or DIDS (only for 5-FU higher doses) (Table 3). To assess
the effect of lactate transport inhibitors as pre-treatment, CRC cells
were pre-incubated with the lactate transport inhibitors (for 24 hours)
and then treated with increasing concentrations of 5-FU during 48
hours. As observed in Fig. 4C, pre-incubation of both CRC cell lines
with CHC, DIDS and quercetin sensitized cells to 5-FU.

In order to confirm if treatment of CRC cells with 5-FU could
enhance the inhibition of glycolytic metabolism observed upon MCT
activity inhibition with CHC, DIDS and quercetin, cells were incu-
bated simultaneously with the correspondent ICso of 5-FU and the
MCT inhibitors for 12 hours and the effects on glucose consumption
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Fig. 1. Protein expression and metabolic profile of human colorectal and normal colon cell lines. A) Immunocytochemical expression of MCT1, MCT4, CD147 and GLUT1 in
human colorectal (HCT-15 and RKO) and normal colon (NCM460) cell lines (400x magnification); B) Western blotting of 1) HCT-15, 2) RKO and 3) NCM460 cell lines for
MCT1 (50 kDa), MCT4 (52 kDa), CD147 (50-60 kDa) and GLUT1 (55 kDa). B-actin was used as internal loading control; C) CRC-derived (HCT-15 and RKO) and normal colon
(NCM460) cell lines extracellular amounts of glucose and lactate, overtime (4, 8, 10 and 24 hours). Values are expressed as mean + SD of at least 3 independent experi-

ments, each in triplicate.

and lactate production were assessed. As observed in Fig. 4D, with
the exception of glucose consumption in HCT-15 cells, 5-FU per se
inhibited the glycolytic metabolism of CRC cells, as a statistically
significant decrease in glucose consumption and lactate produc-
tion was obtained. Importantly, the combination with 5-FU enhanced
significantly the inhibitory effect of MCT activity inhibitors on CRC
glycolytic metabolism (Fig. 4D).

MCT1/MCT4 expression silencing supports the potentiation of 5-FU
cytotoxic effect by lactate transport inhibitors

Aiming to confirm the potentiation of 5-FU cytotoxic effect ob-
tained with MCT activity inhibitors, we combined specific MCT1 or
MCT4 downregulation by RNA interference with this chemothera-
peutic drug in CRC cell lines. The treatment of HCT-15 and RKO cells,
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Fig. 2. Effect of lactate transport inhibition on cell biomass, metabolism, proliferation and death. A) Effect of CHC, DIDS and quercetin on HCT-15, RKO and NCM460 total
cell biomass (Sulphorhodamine B assay). Cell lines were incubated with increasing concentrations of CHC, DIDS and quercetin for 24 hours. B) Effect of CHC, DIDS and quer-
cetin on HCT-15 and RKO glucose consumption and lactate production. Cells were incubated with the calculated ICso values for CHC, DIDS and quercetin for 10 h, and glucose
and lactate were quantified over time (4, 8 and 10 hours). C) Effect of CHC, DIDS and quercetin on HCT-15 and RKO cell proliferation BrdU incorporation. Cells were incu-
bated with the calculated ICso values for CHC, DIDS and quercetin for 24 hours. D) Effect of CHC, DIDS and quercetin on HCT-15 and RKO cell death (annexin-V/PI (flow
cytometry)). Cells were incubated with the calculated ICso values for CHC, DIDS and quercetin for 24 hours; *p <0.05, when compared to control (DMSO 1%). Results are
expressed as the mean + SD of at least 3 independent experiments, each in triplicate.
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Fig. 3. Effect of MCT1 and MCT4 downregulation on cell viability, proliferation and metabolism. A) Western blot analysis of MCT1 (50 kDa) and MCT4 (52 kDa) expression
in siMCT1 and siMCT4 HCT-15 and RKO cells. Cells were transfected with scramble, siMCT1 or siMCT4 and expression of MCT isoforms was evaluated after 120 hours; effect
of MCT1 and MCT4 downregulation on B) cell viability, C) cell proliferation and D) glucose consumption/lactate production; ***p <0.001, **p <0.01, *p <0.05, siMCT1 and
siMCT4 cells compared with scramble. Results represent the mean + SD of at least 3 independent experiments, each in triplicate.

Table 3
Combinatory interaction between 5-FU and lactate transport inhibitors (CHC, DIDS
and quercetin). CI was calculated using CalcuSyn 2.0 software.

5-FU + CHC Cl

5-FU+DIDS (I

5-FU (mM) + quercetin ~ C

(mM) (mM) (uM)

HCT-15

0.01+10.55 0938 0.01+0.80 0.699  0.01+142.7 >2
0.1+10.55 1.024 0.1+0.80 0.538 0.1+ 142.7 >2
1+10.55 0.983 1+0.80 0.440 1+142.7 >2
10+10.55 1.604 10+0.80 0.847 10+ 142.7 >2
RKO

0.01+9.42 0981 0.01+0.88 1.045 0.01+1219 >2
0.1+9.42 0.986 0.1+0.88 1.042 0.1+121.9 >2
1+9.42 0.640 1+0.88 0.779 1+1219 >2
10+9.42 0.455 10+0.88 0.561 10+121.9 >2

CI, combination index.

with MCT1 or MCT4 siRNA oligos, in combination with 5-FU, re-
sulted in an evident decrease of 5-FU ICso values when compared
with the control cells (scramble siRNA) (Fig. 5A). For HCT-15 cell line,
the 5-FU ICso value decreased from 5.34 mM in control cells to
2.94 mM and 1.65 mM in cells treated with siMCT1 and siMCT4, re-
spectively. Concerning RKO cells, the ICso value of 5-FU for control
cells treated with scramble siRNA decreased from 2.11 mM to
0.66 mM and 0.62 mM upon silencing of MCT1 or MCT4, respec-
tively (Fig. 5A).

Furthermore, 5-FU per se led to a significant reduction in lactate
production for both CRC-derived cell lines in cells treated with scram-
ble (Fig. 5B1), and upon MCT1 (Fig. 5B2) and MCT4 (Fig. 5B3)
silencing. Concerning glucose consumption, only the treatment with
5-FU in HCT-15 silenced for MCT4 led to a significant decrease

(Fig. 5B3). Moreover, treatment of CRC cells with MCT1 or MCT4
siRNAs in combination with 5-FU led to a statistically significant
reduction in glucose consumption for both cell lines and a decrease
in lactate production in HCT-15 cells upon MCT1 silencing, when
comparing to control cells (scramble siRNA) treated with 5-FU
(Fig. 5C).

Discussion

MCTs are essential players in the maintenance of cancer cell me-
tabolism, being promising therapeutic targets [7,13,23-28]; however,
the role of MCTs in CRC cell survival and metabolism is still poorly
understood. Here, we aimed to characterize the dependence of CRC
cells on MCT activity for survival, proliferation and maintenance of
energetic metabolism as well as test if MCT inhibition could potentiate
the cytotoxic effect of 5-FU, a classical chemotherapeutic agent.

Following our previous findings in human CRC primary tumours
[32], we aimed to further dissect the expression of MCTs in CRC
derived cells. For that, we evaluated the expression of MCT1, MCT4,
CD147 (MCT1/4 chaperone) and GLUT1 (glucose transporter) in CRC
(HCT-15 and RKO) and in a normal human colon epithelium
(NCM460) derived cell line. The positive expression of both MCT
isoforms, CD147 and GLUT1 in the CRC cell lines HCT-15 and RKO,
supports the adoption of a glycolytic phenotype. On the other hand,
we demonstrated for the first time the expression of MCT1, MCT4
and CD147 in the normal colon cell line NCM460. The expression
of MCT1 and its chaperone in normal colon cells was expected [42]
since MCT1 is important in the transport of short chain fatty acids
(SCFAs) in the colon [43]. SCFAs were demonstrated to protect normal
colon mucosa and induce apoptosis of CRC cells in vitro [43,44].
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Fig. 4. Effect of 5-FU, 5-FU plus lactate transport inhibition combination and pre-treatment on cell biomass and metabolism. A) Effect of 5-FU treatment on HCT-15, RKO
and NCM460 on total cell biomass (Sulphorhodamine B assay). Cell lines were incubated with increasing concentrations of 5-FU for 24 hours. B) Effect of 5-FU + CHC, DIDS
and quercetin combination on HCT-15 and RKO total cell biomass (Sulphorhodamine B assay). Cell lines were incubated with increasing concentrations of 5-FU along with
the correspondent ICsg values for CHC, DIDS and quercetin for 24 hours. ***p <0.001, **p <0.01, *p <0.05, when compared to 5-FU alone. C) Effect of pre-treatment with
lactate transport inhibitors on sensitization of cells to 5-FU (Sulphorhodamine B assay). CRC cells were pre-incubated with the correspondent ICso values for the lactate
transport inhibitors (for 24 hours) and then treated with increasing concentrations of 5-FU during 48 hours. ***p <0.001, **p <0.01, *p < 0.05, when compared to 5-FU alone.
D) Effect of 5-FU plus CHC, DIDS and quercetin combination on HCT-15 and RKO cell metabolism. CRC cells were incubated simultaneously with the correspondent ICsq of
5-FU and MCT inhibitors for 12 hours and the effects on glucose consumption and lactate production were assessed. ***p < 0.001, **p < 0.01, *p < 0.05. Results represent the
mean + SD of at least 3 independent experiments, each in triplicate.
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Fig. 5. Effect of MCT1 and MCT4 downregulation combined with 5-FU on cell biomass and metabolism. A) Effect of 5-FU treatment on HCT-15 and RKO cells, with MCT1 or
MCT4 silencing, on total cell biomass (Sulphorhodamine B assay). Cell lines were incubated with increasing concentrations of 5-FU for 24 hours. B) Effect of 5-FU on HCT-15
and RKO cells, with B1) scramble, B2) MCT1 and B3) MCT4 silencing, on cell metabolism, when compared with control condition (DMSO 1%). C) Effect of 5-FU on HCT-15
and RKO cells, with MCT1 or MCT4 silencing, on cell metabolism, when compared with scramble condition treated with 5-FU. CRC cells were incubated with the ICso values
of 5-FU obtained in Fig. 4A for 12 hours and the effects on glucose consumption and lactate production were assessed. ***p <0.001, **p < 0.01, *p <0.05. Results represent
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76 R. Amorim et al./Cancer Letters 365 (2015) 68-78

In this study, we also addressed the effects of lactate transport
inhibition in human CRC cell lines in comparison to normal colon
derived cells, using the compounds CHC, DIDS and quercetin, which
are known to inhibit lactate transport [11,13,25,45,46]. We dem-
onstrated that MCT activity inhibition with these compounds
inhibited CRC cells biomass, in a dose-dependent manner and with
similar ICso values, increased cell death and decreased cell prolif-
eration. There was an overall decrease in both glucose consumption
and lactate production in HCT-15 cells after treatment with all the
compounds. In opposition, no significant alterations in the meta-
bolic rates were found for RKO cells. The reduction of glucose
consumption observed is probably due to a negative feedback upon
inhibition of lactate transport. Upon MCT activity inhibition, lactate
levels within the cell increase and this overload will negatively signal
for glucose entrance into the cells. Importantly, the normal colon
cell line was less glycolytic and less sensitive to MCT inhibition than
CRC cell lines, which is probably related with the lower expres-
sion of MCT1 and MCT4 in normal colon cells. This selectivity for
CRC cells could constitute a valuable approach to be further ex-
ploited in the use of MCT targeting in CRC therapy.

Our results support the hypothesis that MCTs could be prom-
ising targets in future CRC therapies and corroborate previous in vitro
and in vivo studies in various tumour models using these MCT ac-
tivity inhibitors [47]. In CRC cells, other authors observed an
inhibition of cell survival along with an increase of apoptosis upon
treatment with CHC [48]. The authors linked the alterations ob-
served in cell survival with disruption of lactate efflux and glucose
uptake, pH homeostasis, expression of glucose transporters and HIF-
10, and generation of nitric oxide [48]. In order to investigate a novel
method to enhance radiosensitivity of gliomas, Colen et al. suc-
cessfully disrupted cell metabolic balance and survival with CHC
[25]. Moreover, it was also shown that, when applied in situ, CHC
is nontoxic at concentrations up to 20 mmol/L, in an orthotopic nude
rat brain model. More recently, in two glioma cell lines and in an
organotypic (brain) slice culture, glioma cell invasion impairment
was shown upon lactate efflux inhibition with CHC, with no adverse
neurologic effects on control animals [49]. Using both CHC and MCT1
downregulation, antitumour effects were documented without
evident toxicity in three different models of animal and human
tumours [13]. More recent studies from our group showed an overall
decrease in glycolytic metabolism, cell proliferation, migration and
invasion, as well as an increase in cell death in glioma [30] and breast
cancer cells [29], upon lactate transport inhibition with CHC [29,30]
and quercetin [29]. Using oocytes transfected with rat MCT1 or MCT4,
Dimmer et al. [46] demonstrated that 500 uM DIDS reduced lactate
transport by 60% in rat MCT4, while with superior concentrations
(up to 2 mM) the transporter remained insensitive. In contrast, lactate
uptake via MCT1 was completely blocked by DIDS [46].

Taking into account that CHC, DIDS and quercetin are not MCT
specific inhibitors [50], it cannot be excluded that the results ob-
served with these compounds are due to inhibition of other cell
targets. Thus, we performed downregulation of MCT1 and MCT4 ex-
pression with specific siRNAs. Overall, the effects of MCT1 or MCT4
expression inhibition were similar to inhibition of MCT activity, con-
firming the pivotal role of MCT isoforms 1 and 4 in the maintenance
of CRC survival and glycolytic metabolism. As observed in this tumour
model, the effects of MCT activity inhibition with CHC and quer-
cetin were corroborated by MCT1 silencing in glioma and breast
tumour models [29,30]. Additionally, siRNA specific for MCT1 and
MCT2 reduced lactate efflux in glioma cells, with concomitant de-
crease in intracellular pH, and reduction of cell viability with
prolonged silencing [24]. Le Floch et al. [51] showed that MCT1/2
inhibition with AR-C155858 (specific MCT1/2 inhibitor) in Ras-
transformed fibroblasts led to suppression of lactate export, glycolytic
rates, and tumour growth. When MCT4 expression was restored, cells
became resistant to MCT1/2 inhibition and reestablishment of

tumorigenicity was observed. Moreover, in this same study, using
human colon adenocarcinoma cells, CD147 gene silencing, alone or
in combination with MCT1/MCT4 silencing, reduced glycolytic flux
as well as tumour growth [51].

The classical chemotherapeutic drug 5-FU has been largely used
in CRC treatment, although there is growing evidence for 5-FU re-
sistance [36] and low efficacy [37]. Several efforts have been made
to explore new combination therapies, aiming to enhance the ef-
ficacy of 5-FU and reduce side effects. In the present work, we showed
for the first time in a CRC model that the use of CHC, DIDS and quer-
cetin potentiates the cytotoxic effect of 5-FU, and this effect was even
more evident when cells were pre-treated with the lactate trans-
portinhibitors. These results led us to conclude that these MCT activity
inhibitors, by arresting the glycolytic flux through inhibition of lactate
transport, turn CRC cells more sensitive to standard therapy. Con-
sequently, pre-treatment of CRC cells with glycolytic inhibitors,
namely lactate transport inhibitors, might be a promising strategy
for patients with this malignancy. Moreover, we also demonstrated
that 5-FU per se arrested glycolytic flux of CRC cells and potenti-
ated the inhibitory effect on glycolysis obtained with MCT activity
inhibitors. Importantly, and since these compounds are not MCT spe-
cific inhibitors, we downregulated MCT1 and MCT4 expression with
specific siRNAs and assessed the effects of combining MCT1 or MCT4
silencing with 5-FU on cell biomass and metabolism. The results
obtained with MCT1 or MCT4 silencing corroborated and sup-
ported the potentiation of 5-FU cytotoxic effect obtained with lactate
transport activity inhibition, namely, we could observe a reduction
of 5-FU ICsp values and an impairment in the glycolytic metabolism.

The beneficial use of metabolic inhibitors, namely MCT inhibi-
tors, in combination with gold-standard therapy, was already
described in other studies. Colen et al. [25] observed that pre-
treatment of glioma cells with CHC enhanced the sensitivity of these
cells to radiotherapy. Moreover, in a cell line derived from colon ad-
enocarcinoma, the authors described an enhanced cytotoxicity of
cisplatin together with decreased expression of multidrug resis-
tance regulating genes, when cells were pre-treated with CHC [48].
Recently, Miranda-Gongalves et al. showed that CHC potentiated the
effect of temozolomide, the gold standard anti-glioblastoma che-
motherapeutic agent, with an important synergistic effect [30].

The mechanism by which 5-FU ultimately benefits from tumour
cell glycolytic metabolism arrest, namely lactate transport inhibi-
tion, remains unclear. However, recent studies demonstrated an
association between 5-FU sensitivity and glucose uptake. In human
liver cancer cells, it was observed that 5-FU resistant cells showed
higher glucose uptake and lactate production when compared with
cells sensitive to 5-FU [52]. By establishing a 5-FU-resistant human
colon cancer cell line, Liu et al. [53] demonstrated that resistance
to 5-FU was associated with overexpression of GLUT1 and specific
inhibition of this glycolytic marker increased the sensitivity of these
5-FU resistant cells to the chemotherapeutic drug [53]. Moreover,
in a study using PIK3CA mutant and wild-type gastric cancer cells,
the authors described higher resistance to 5-FU when cells were
cultured with lower concentrations of glucose [54]. A recent study
also reported that inhibition of the glycolytic metabolism by tar-
geting pyruvate dehydrogenase kinase-1 (PDK-1) with the specific
inhibitor dichloroacetate was able to re-sensitize gastric cancer cells
to 5-FU [55]. Taken together, these studies support the use of gly-
colytic inhibitors as a pre-treatment or in combination with 5-FU
for novel therapeutic protocols to overcome chemotherapeutic
resistance.

Overall, our findings showed that MCT activity is important in
the survival of CRC and support the use of MCTs as new molecular
targets for CRC treatment. Our results also suggest that inhibition
of these transporters alone or in combination with 5-FU should be
further explored as a novel therapeutic approach for this malig-
nancy in the clinical context.
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