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Abstract 

 

Three PEGylated derivatives of 1,4,7,10-tetraazacyclododecane-1-((6-amino)hexanoic)-

4,7,10-triacetic acid) (DOTA-AHA) with different molecular weights were prepared and 

characterized. Their Gd(III) chelates were studied in aqueous solution using variable-

temperature 1H nuclear magnetic relaxation dispersion (NMRD) and 17ONMR 

spectroscopy in view of the determination of their relaxivity and the parameters that 

govern it. The relaxivity  varied from 5.1 to 6.5 mM-1.s-1 (37 ºC and 60 MHz) with the 

increasing molecular weight of the PEG chain, being slightly higher than that of the parent 

chelate Gd(DOTA-AHA), due to a small contribution of a slow global rotation of the 

complexes. 

A variable temperature 1H NMR study of several Ln(III) chelates of DOTA-

A(PEG750)HA allowed the determination of the isomeric M/m ratio (M = square 

antiprismatic isomer and m = twisted square antiprismatic isomer, the latter presenting a 

much faster water exchange) which for the Gd(III) chelate was estimated in circa 1:0.2, 

very close to that of [Gd(DOTA)]-. This explains why the PEGylated Gd(III) chelate has 

a water rate exchange similar to that of [Gd(DOTA)]-. The predominance of the M isomer 

is a consequence of the bulky PEG moiety which does not favor the stabilization of the m 

isomer in sterically crowded systems at the substituent site, contrary to what happens with 

less packed asymmetrical DOTA-type chelates with substitution in one of the four acetate 

C(α) atoms. 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Magnetic resonance imaging (MRI) is one of the most powerful and useful techniques in 

medicine for soft tissue imaging. Images are generated by spatially encoding the signal 

coming from the water hydrogen nuclei of the tissues through the application of time-

varying, linear magnetic field gradients and pulses of radiofrequencies.[1] The quality of 

a MRI scan depends on intrinsic properties of the biological tissues such as the density 

(H) of the hydrogen nuclei, the blood flow and the hydrogen nuclei relaxation times (T1 

and T2). In circa 40% of MRI scans there is the need of paramagnetic contrast agents 

(CAs) which shorten the hydrogen nuclei relaxation times of neighboring water 

molecules, increasing the signal intensity on T1 weighted images and decreasing it on T2 

weighted images, enhancing thus the contrast between the body tissues.[2] Gd(III) is 

particularly suitable for the purpose of contrast enhancement in T1 weighted images, due 

to its high magnetic moment and long electronic relaxation time, which results in a strong 

dipolar interaction with the hydrogen nuclei.[3] 

The vast majority of the approved CAs are Gd(III) chelates based both on macrocyclic 

tetraazapolyaminocarboxylate chelators (ex: Dotarem®, Prohance® or Gadovist®) and 

open-chain polyaminocarboxylate chelators (ex: Magnevist®, Omniscan® or 

Multihance®). These low molecular weight extracellular fluid CAs rapidly equilibrate 

between the intravascular and interstitial spaces.[4] This equilibrium decreases the 

effective concentration of Gd(III) within the blood vessels and distributes gadolinium into 

the interstitial tissues where it may increase background noise.[5] 

The effectiveness of any contrast agent is measured by its relaxivity (r), which is the 

enhancement of the water protons relaxation rate imposed by a 1 mM concentration of 

Gd(III) chelate.[6] There are several approaches to increase the relaxivity through the 

optimization of its molecular parameters. The rotational correlation time (R), water 

exchange rate (kex) and electron spin relaxation times (Te) are the most important 

parameters ruling relaxivity. Because Te is mainly dependent on the metal ion it is not 

easily changeable while the other two parameters can be more or less efficiently 

optimized.[6] To increase the rotational correlation time of  the Gd(III) complexes seems 

to be the most straightforward choice and this has been achieved through several 

strategies: formation of multinuclear assemblies, either through covalently bound chelates 

(multimeric structures,[7] linear polymeric structures,[7d, 8] spherical dendrimers[9]) or 



through non-covalently bound chelates (micelles,[10] liposomes[10c, 11]). All these 

multinuclear assemblies of Gd(III) chelates constitute macromolecular CAs which 

compared to small molecule CAs, besides an enhanced relaxivity, present extended 

retention in the blood circulation presenting thus great potential in angiography, cancer 

imaging, kidney imaging, liver imaging, lymphatic imaging, noninvasive visualization of 

drug delivery, etc.[12] 

The insertion of PEG (polyethylene glycol) units in the chelates or in their multinuclear 

assemblies has been exploited over the years considering the advantages that PEGylation 

can offer including prolonged retention time in circulation, increased excretion, decreased 

accumulation in the organs and increased uptake in tumors. The long-chain amphiphilic 

PEG moieties are inert and can increase the solubility of complexes in water[13] and 

prolong circulating half-life of proteins, polymers and small molecules.[14] PEGylation 

has also been shown to reduce immunogenicity.[15] Due to these properties, the 

incorporation of PEG moieties onto radiolabeled DOTA-based bioconjugates in order to 

reduce liver uptake and increase tumor accumulation has been reported over the years.[16] 

In the search for new MRI CAs, the insertion of PEG units in gadolinium containing 

systems has been exploited in different manners, from single chelates[17] to 

copolymeric[8a, 16b, 18] and dendrimeric chelates.[19] The present work aimed at verifying 

the influence of the introduction of PEG moieties on the relaxivity of Gd(III) chelates of 

asymmetrical DOTA-based ligands. For this purpose three derivatives of DOTA-AHA 

(1,4,7,10-tetraazacyclododecane-1-[(6-amino)hexanoic]-4,7,10-triacetic acid) with 

grafted PEG chains with distinct molar masses (750, 550 and 350 g.mol-1; respectively 

L1, L2 and L3 in Figure 1) were synthesized and characterized. The Gd(III) chelates of 

the three DOTA-A(PEG)HA ligands were studied by 1H NMRD and 17ONMR and for a 

better understanding of the PEG pendant groups influence on the relaxometric properties, 

1H NMR studies of several paramagnetic lanthanide chelates of DOTA-A(PEG750)HA 

were also conducted. 

 



 

Figure 1. DOTA-A(PEG)HA (L1, L2, L3). 

 

Results and Discussion 

 

Synthesis 

The PEGylation of DOTA-AHA was accomplished using activated PEG moieties with 

succinic anhydride (scheme 1, compounds 2-4) with the pro-ligand DOTA-AHA (scheme 

1, compound 1). The DOTA-AHA pro-chelator was prepared according to the 

methodology described recently.[20] After deprotection, the PEGylated ligands 1,4,7,10-

tetraazacyclododecane-1-[6-amino(succinate-PEG750-OMe)hexanoic)]-4,7,10-triacetic 

acid (L1 = DOTA-A(PEG750)HA), 1,4,7,10-tetraazacyclododecane-1-[6-

amino(succinate-PEG550-OMe)hexanoic]-4,7,10-triacetic acid (L2 = DOTA-

A(PEG550)HA) and 1,4,7,10-tetraazacyclododecane-1-[6-amino(succinate-PEG350-

OMe)hexanoic]-4,7,10-triacetic acid (L3 = DOTA-A(PEG350)HA) were isolated in good 

yields. 

 



 

Scheme 1. Synthesis of DOTA-AHA PEGylated conjugates. A) succinic anhydride, CHCl3, H2SO4 (95%); 

b) DIPEA, HATU, HOBt, MeCN; c) TFA, DCM. 

 

1H NMRD and 17O NMR relaxometric studies 

To obtain the parameters determining the relaxivity, all PEGylated Gd(III) chelates have 

been studied by 1H relaxometry (Figure 2) and the chelate [Gd(L2)]- has also been studied 

by 17O NMR relaxation and chemical shifts measurements (Figure 3). The results of a 

combined analysis using the Solomon-Bloembergen-Morgan model of the latter chelate 

show that water exchange rate (Table 1) is not influenced by PEGylation in relation to 

Gd(DOTA), being actually slightly higher than that of this chelate (298kex = 4.1x106 s-1).[21] 

These results are in contrast with what has been previously reported for the PEGylated 

hetero-tripodal hydroxypyridonate (HOPO) gadolinium complexes, since the coupling of 

PEG moieties lead to a decrease in the kex values in relation to HOPO complexes without 

PEG.[17a, 17c] In this case, the authors ascribed such effect to the formation of hydrogen 

bonds with water molecules which induce partial displacement of the inner sphere water 

molecules; the strength of these bonds being strong enough for the reduction of the 

number of water molecules in the inner sphere (q) from 2 (non-PEGylated chelate) to 1 

(PEGylated chelates).[17a, 17c] Fixing a long chain like PEG in the more rigid [Gd(DOTA-

A(PEG)HA)]- has only a minor influence on its structure (see M/m ratio in next section), 

and consequently no such effect on the water molecule residence time is observed. We 

therefore fixed the water exchange rate constants in the analysis of the relaxivity data to 

the values of [Gd(L2)]- (Table 1). 



 

 

Figure 2. 1H NMRD profile of [Gd(L1)]- (■, □; red), [Gd(L2)]- (, ○; black) and [Gd(L3)]- (▲, Δ; blue) 

chelates at 25 ºC (filled symbols) and 37 °C (empty symbols). The lines represent the best fit of the data 

resulted from simultaneous fitting based on SBM equations. 

 

 

Figure 3. Reduced 17O transverse (□) and longitudinal (○) relaxation rates and reduced chemical shifts (◊) 

(B = 9.4 T) for the [Gd(L2)]- chelate. The lines represent the best simulation fit of experimental data. 

 

 

 

 

 



The 1H NMRD profiles of the PEGylated compounds (Figure 2) show that the relaxivity 

reaches its maximum at 60 MHz. PEGylation of the chelates results in improved 

relaxivity values in relation to its parent chelate Gd(DOTA-AHA)[20] at all applied 

frequencies (Gd(DOTA-A(PEG750)HA): 38% augmentation in r1 at 37 ºC and 60 MHz). 

If one compares relaxivity with that of Gd(DOTA) the increase is 110%.[21] This 

improvement is in contrast to what has been observed on PEGylation of DTPA-BMA 

based complexes.[8a] This difference can probably be attributed to the 10 times slower 

water exchange on [Gd(DTPA-BA)-PEG] which is limiting relaxivity in that case. 

 

Table 1. Relaxometric parameters for [Gd(L1)]-, [Gd(L2)]- and [Gd(L3)]- The [Gd(L2)]- parameters were 

obtained from the simultaneous analysis of 17O NMR and 1H NMRD data, using the Solomon-

Bloembergen-Morgan approach(a)(b). 

Parameter [GdL1]- [GdL2]- [GdL3]- 

H‡ (kJ.mol-1) 47 47 ± 5.4 47 

298kex (106 s-1) 5.0 5.1  ± 0.8 5.0 

A/ћ (106 rad.s-1)  -2.9 ± 0.2(c)  

COS  0.1   

298g (ps) > 40000 10000 9000 ± 7000 

298l (ps) 235 ± 9 231 ± 7 212 ± 4 

S2 0.05 ± 0.01 0.041 ± 0.006 0.02 ± 0.003 

298v (ps) 13 ± 3 16 ± 2 22 ± 3 

(a) The italicized values of parameters in the table were calculated from 17O NMR measurements of 

[Gd(L2)]-
 and kept as constant parameters for the NMRD fitting of the other two [Gd(L1)]- and [Gd(L3)]- 

compounds. 

(b) Other parameters fixed in the fitting procedure are: 2 /1020 = 1.0 s-2, rGdO = 2.5 Å, rGdH = 3.1 Å, aGdH = 

3.6 Å, EGdH = 20 kJ.mol-1 and q = 1. 

(c) The unusually small value of A/ћ is due to experimental 17O 1/T2r data and 1/T1e which is mainly defined 

by 1H NMRD. 

 

Through the analysis of the 1H NMRD profiles, it is also noticeable that the relaxivity is 

related to the PEG molecular weight. [Gd(L1)]-(r1 = 6.5 mM-1.s-1at 37 ºC and r1 = 8.0 

mM-1.s-1at 25 ºC and 60 MHz), which is the chelate with an heavier PEG moiety, has 

higher relaxivity in comparison to [Gd(L2)]-(r1 = 5.9 mM-1.s-1at 37 ºC and r1 = 7.8 mM-

1.s-1at 25 ºC and 60 MHz), which in turn has a higher value than that of the smaller chelate 

[Gd(L3)]- (r1 = 5.1 mM-1.s-1at 37 ºC and r1 = 6.8 mM-1.s-1at 25 ºC and 60 MHz). This 



trend is most perceptible at frequencies where the rotational correlation time has more 

influence on the relaxivity values (between 40 and 100 MHz). 

The NMRD profiles (Figure 2) could only be fitted using a Lipari-Szabo model free 

approach taking into account internal rotational motion.[22] All three compounds show a 

very long g corresponding to the global rotation of the complexes and a much shorter l 

describing the actual rotation of the Gd-H vectors (Table 1).The model free order 

parameter S2 is for all compounds very small with values from 0.05 to 0.02. This shows 

that the rotation of the Gd-H vector is largely dominated by the short local correlation 

time which is for all compounds between 210 to 235 ps. The global rotation of the ligands 

with longer PEG chains [Gd(L1)]- and [Gd(L2)]- are slow (10 ns) and even the compound 

with the shortest PEG chain has a g ≈ 9 ns. A consequence of the small values for S2is 

the small relaxivity hump shown for all three compounds. However, even for such a small 

order parameter, the contribution of the global motion leads to a relaxivity increase of ≈ 

20% at 60 MHz (Figure 4). At high magnetic fields (B0 > 3 T) the slow global motion has 

no influence on the relaxivities. 

 

 

Figure 4. 1H NMRD profile of [Gd(L2)]- at 25 ºC (filled symbols) and 37 °C (empty symbols). The lines 

represent the best fit of the data (S2 = 0.04); the dashed lines are calculated using the same parameters 

except S2 set to zero. 

 

 

 

 

 

 



1H NMR studies of paramagnetic lanthanide L1 chelates 

The trivalent lanthanide complexes of DOTA-based ligands exhibit a variety of 

conformational and coordination isomers which may display dynamic behavior on the 

NMR timescale.[23] The isomers of their Gd(III) chelates have been found to have 

different relaxivity properties.[24] Considering this, some 1H NMR studies have been 

performed with some paramagnetic lanthanide L1 chelates. 

1H NMR is a valuable technique for the solution study of the isomers of the Ln(III) 

complexes of DOTA and its derivatives.[23a, 23b] The high symmetry of DOTA leads to the 

existence of two isomers of the [Ln(DOTA)]- chelates in solution, with square 

antiprismatic (M) and twisted square antiprismatic (m) geometries.[25] These isomers have 

the same [3.3.3.3] square conformation with fourfold symmetry of the 

tetraazacyclododecane ring, where all its ethylenic groups adopt a  or  conformation, 

thus leading to conformations of clockwise or counterclockwise helicity,  or . 

They only differ on the layout of the four acetate pendant arms, resulting from rotations 

around the N-CH2-CO2 bonds, with either a clockwise () or counterclockwise () 

helicity. These lead to the two diastereoisomers existing in solution (m and M), with 

separate NMR resonances, each of which is an enantiomer pair: the square antiprismatic 

(M) geometry results from the opposite helicity of the tetraaza ring and the acetate arms 

(() or ()), while the twisted antiprismatic (m) geometry has the same ring 

and acetate helicity (() or ()). Thus M and m differ in the value and sign of 

the twist angle  between the diagonals of the parallel squares formed by four N-atoms 

and the four carboxylate O-atoms in the coordination polyhedron of the DOTA chelates 

(typical values of  ≈ +35º and  ≈ -15º, respectively, found from crystallographic 

structures).[23a] The isomer M shows a wider paramagnetic shift range than m throughout 

the lanthanide series. The isomer m is dominant relative to M for the early Ln(III) chelates 

(Ln = La – Pr), but M becomes dominant for the smaller ions (Ln = Eu – Lu).[23c] 

Similarly to the ligand DOTASA,[26] L1 is an asymmetrical derivative of DOTA, with 

one of the four acetate C() atoms substituted. In the case of L1 the asymmetry is 

introduced through the inclusion of an amide-PEG-bearing group, leading to the existence 

of a chiral center in the ligand and a site of asymmetry in the complexes which double 

the number of possible isomeric species. As we have obtained the ligand L1 as a racemic 

mixture of the (R) and (S) enantiomers, the complete identification of all possible 

stereoisomers requires identification of the configuration (R) of the chiral C-atom of the 



ligand, together with the four arrangements of the ligand itself in the complex described 

above for DOTA complexes. Due to this, in solution there can be up to eight stereoisomers 

of [Ln(L1)]- of the type W-X (W = I or (S); X = M (() or ()) or m (() 

or ()), consistent with four enantiomer pairs: I-M, I-m, (S)-M and (S)-m. 

Considering this, up to four sets of 1H NMR signals are to be expected from these 

enantiomer pairs. The lack of C4 symmetry removes the signal degeneracy found in the 

NMR spectra of [Ln(DOTA)]- complexes and leads to a large number of resonances for 

each isomer in the 1H NMR spectra. 

The special properties of the paramagnetic Pr(III), Nd(III), Sm(III) and Eu(III) chelates 

of L1 were investigated by 1H NMR at three different temperatures (25 ºC, 40 ºC and 60 

ºC), showing a large number of partially overlapping resonances covering paramagnetic 

shift ranges in accordance with those observed for the corresponding DOTA chelates.[25b, 

25d] Previous 1H NMR studies with the symmetrical [Ln(DOTA)]- chelates, and with a 

variety of lanthanide derivatives of DOTA,[23a] have demonstrated that the two 

diastereoisomers m and M are present in solution, with a relative proportion that is a 

function of the lanthanide ion, temperature, solvent and the steric crowding of the 

chelate.[23a, 23c] Steric crowding favors the m isomer and this has been demonstrated by 

comparing the populations of both isomers of lanthanide(III) complexes of DOTA and 

DOTA analogs.[27] 

The two isomers are characterized by different dipolar shifts, with complexes of the M 

form possessing the larger paramagnetic shift for a given ligand resonance. Through the 

analysis of the obtained 1H NMR spectra, the M/m isomer ratio could be determined for 

several complexes. For this purpose it is particularly useful to observe the resonance in 

the most-shifted axial ring proton, ax1, which is well separated from the others.[23a, 23c, 25] 

For example, in the case of [Ln(DOTA)]- complexes this resonance is observed at circa 

+30-50 ppm and circa +150-160 ppm for the M isomers, while for the corresponding m 

forms, the axial ring protons ax1 has resonances at lower frequencies, at circa +10-30 

ppm and circa +90-100 ppm for Eu(III) and Yb (III) complexes, respectively.[23a, 28] 

Similarly to what has been previously found in asymmetric DOTA-based complexes, the 

ax1 protons of most of the studied Ln(III) complexes of L1 originated two sets of well 

separated signals, which could be assigned to the isomers M and m, as shown in Figures 

5 and 6. The chemical shifts of the axial protons in the chelates of Pr(III), Nd(III) and 

Sm(III) are negative while in the case of Eu(III) they are positive, according to the 

Bleaney constants, which are negative for the first cations and positive for the latter.[29] 



Integration of those signals afforded the isomer ratios M/m, as shown in Table 2. As 

expected, isomer m is dominant for the early lanthanide chelate (praseodymium), 

decreasing its fraction along the lanthanide series, as the ionic radius of the Ln(III) ions 

decreases.[23a, 23c] Density functional theory (DFT) calculations on DOTA-like complexes 

showed that the stabilization of the M isomer on proceeding to the right across the 

lanthanide series is the result of an increased binding energy of the ligand to the metal for 

this isomer as the charge density of the lanthanide ion increases.[27b] 

It is known that m isomers of lanthanide macrocyclic DOTA-type chelates have about 50 

times faster water exchange (kex) than M isomers.[30] For [Gd(DOTA)]- an M/m isomer 

ratio of circa 6:1 was calculated by interpolation of the ratio for the Eu(III) and Tb(III) 

chelates, while for [Gd(DOTASA)]2- an isomer ratio of 1:1 was obtained, accounting for 

a 50% increase in the water exchange rate of the latter chelate.[26] The comparison of the 

observed M/m ratio for the present PEGylated chelate shows that despite the preservation 

of the trend in the M/m ratio just described, the dominance of the m isomer for the 

complexes of the early Ln(III) ions is not so significant as in other cases.[26, 28b] By analogy 

with the ratio obtained for other Gd(III) chelates, which show to be close to that of the 

corresponding Eu(III) chelates, a value of circa 1:0.2 can be estimated for our Gd(III) 

chelate, very close to that of [Gd(DOTA)]-. This might be a consequence of the PEG 

moiety, which is a bulky substituent that does not favor the stabilization of the m form in 

sterically crowded systems [28c] as it happens in less bulky systems, such as in DOTASA 

chelates.[31] The predominance of the M isomer could explain why [Gd(L1)]- has a similar 

water exchange rate to [Gd(DOTA)]-. Exchange between the m and M isomers is 

demonstrated by the broadening at 40 ºC (Figure 6) and further signal collapse of the 

resonances of both isomers observed at 60 ºC.[25c] 

 

Table 2. 1H NMR chemical shifts (ppm) of the ax1 protons of the paramagnetic lanthanide L1 chelates in 

M and m isomeric forms at 25 °C and pH=7. 

Metal Ion M Isomer m Isomer M/m Ratio 

Pr -47.16; -40.31 -31.55; -28.81; -24.81; -23.87 1 : 1.5 

Nd -24.38; -21.21 -11.99; -10.31; -8.24; -7.80 1 : 1 

Sm -3.53; -3.04; -2.49 Not Assigned --- 

Eu 33.16; 36.83 13.34; 14.01; 16.77; 18.19 1 : 0.25 

 



 

Figure 5. 1H NMR resonances of the ax1 protons of the M and m isomers of the paramagnetic lanthanide 

L1 chelates at pH=7.1 and 25 °C. a) Ln = Pr; b) Ln = Nd; c) Ln = Sm; d) Ln = Eu. 



 

Figure 6. 1H NMR resonances of the ax1 protons of the M and m isomers of the paramagnetic lanthanide 

L1 chelates at pH=7.1 and 40 °C. a) Ln = Pr; b) Ln = Nd; c) Ln = Sm; d) Ln = Eu. 



 

 

Conclusion 

 

Using a synthetic methodology previously described for the chelator DOTA-AHA, it was 

possible to prepare three PEGylated derivatives [DOTA-A(PEG)HA]. The Gd(III) 

chelates of these ligands were designed as potential MRI contrast agents, taking into 

consideration an enhancement of the relaxivity thanks to longer rotational correlation 

times and the fact that PEG moieties may also act as pharmacokinetic modifiers, including 

a prolongation of their circulating time, with concomitant possibility of using them in 

angiography. 

The three PEGylated Gd(III) chelates were studied by 1H relaxometry and 17O NMR was 

used for the characterization of [Gd(L2)]-, allowing the determination of the parameters 

that govern their relaxivities.The PEGylation of Gd(DOTA-AHA) resulted in a relaxivity 

increase, which is specially noteworthy considering that in the past other authors have 

considered the PEGylation of paramagnetic chelates a not so efficient way of increasing 

relaxivity. Our results can be explained taking into consideration that a) PEGylation did 

not decrease the number of bound water molecules; b) PEGylation did not affect 

negatively the water exchange rate; c) the rotational motion is dominated by fast local 

motion with a small contribution due to a slow global reorientation.    

1H NMR studies of paramagnetic [Ln(L1)]- chelates were conducted, putting in evidence 

the ratio of the square antiprismatic (M) and the twisted square antiprismatic isomers (m) 

in solution. Contrary to other DOTA-type chelates asymmetrically substituted in one of 

the four acetate C(α) atoms, which in some cases can increase the proportion of the m 

isomer which displays the faster water exchange rate, the inclusion of PEG chains in the 

chelates did not alter the isomeric M/m ratio proportion, which in this regard is similar to 

that of [Gd(DOTA)]-. 

 

 

 

 

 

 



 

 

Experimental 

 

Chemicals and Materials 

Analytical grade solvents were used and dried by the usual methods when was needed. 

Analytical grade reagents were purchased from Sigma-Aldrich, Acros, Bachem, Merck, 

Chematech and used without further purification. 17O-enriched water was purchased from 

IsoTrade GmbH (Mönchengladbach, Germany). 

The reactions were monitored by thin layer chromatography (TLC) on glass plates coated 

with silica gel 60 F254 (Whatman) and detection was made by examination under UV light 

(240 nm), by adsorption of iodine vapor and/or by spraying with ninhydrin. 

Chromatographic separations were performed on silica gel 60 (Whatman 230-240 Mesh). 

 

Instruments 

The 1H and 13C NMR spectra (assigned by DEPT, HSQC and HMBC techniques) were 

recorded on a Bruker Avance III 400 spectrometer, operating at 400.13 MHz and 100.62 

MHz, for 1H and 13C NMR respectively. The 1H NMR spectra of DOTA-A(PEG750)HA 

paramagnetic lanthanide complexes were recorded on a Varian Unity Plus 300, operating 

at 299.938 MHz. The chemical shifts () are reported in ppm, relative to TMS 

(tetramethylsilane) for CDCl3 solvent (1H, =7.26; 13C, =77.16) or DMSO solvent (1H, 

=2.50; 13C, =39.52), and relative to TSP (3-(trimethylsilyl)propionic-2,2,3,3-d4 acid 

sodium salt) for D2O solvent (1H, =4.79).[32] The pH measurements were performed on 

a pH meter Crimson micro TT 2050 with an electrode Mettler Toledo InLab 422. 

The proton longitudinal relaxation rates (1/T1) for the water nuclear magnetic relaxation 

dispersion profiles (NMRD) were measured using the following equipment: Bruker 

minispecs mq20 0.47 T (1H Larmor frequency: 20 MHz); mq30 0.70 T (30 MHz); mq40 

0.94 T (40 MHz); and mq60 1.41 T (60 MHz); Bruker Avance console connected to 

2.35 T (100 MHz) and 4.7 T (200 MHz) cryomagnets and Bruker Avance II 9.4 T 

(400 MHz). The temperature was controlled either by a thermostated gas flow 

(cryomagnets) or by pumping a thermostated liquid trough the probe (minispecs). All 

temperatures were measured by substitution technique.[33] The variable-temperature 17O 

measurements were performed on a Bruker Avance II 9.4 T (17O Larmor frequency: 



54.3 MHz) spectrometer, equipped with a Bruker BVT3000 temperature control unit and 

a Bruker BCU05 cooling unit. The susceptibility measurements were performed on a 

Bruker Avance 400 spectrometer, also equipped with a BVT-3000 temperature control 

unit. 

 

Synthesis 

succinate-PEG750-OMe, 2 

HO-PEG750-OMe (4.2 g, 5.4 mmol) was dissolved in dry CHCl3 (20 mL) and to this 

solution succinic anhydride (554 mg, 5.3 mmol) and a catalytic amount of sulfuric acid 

(95%) were added. The solution was stirred for 6 hours at reflux temperature and 

concentrated under reduced pressure to afford compound 2 (4.7 g) as a colorless oil. The 

product was used without further purification. 1H NMR (400 MHz, CDCl3, TMS) : 2.61-

2.71 (4H, m, - and -CH2 succinate), 3.38 (3H, s, OMe), 3.54-3.56 (2H, m, -CH2 

PEG), 3.59-3.72 (nH, m, -CH2 PEG + nPEG), 4.24-4.27 (2H, m, -CH2 PEG) ppm. 13C 

NMR (100 MHz, CDCl3, TMS) :  28.95 (-CH2 succinate), 29.41 (-CH2 succinate), 

58.98 (OMe), 63.80 (-CH2 PEG), 68.93 (-CH2 PEG), 70.46, 70.48, 70.50 (nPEG), 

71.88 (-CH2 PEG), 172.02 (C=O), 174.36 (C=O) ppm. LRMS (ESI+) – m/z: calculated 

for: n = 17 – C41H80O22 (MH+) 925.52; found 925.75 (MH+); n = 16 – C39H76O21 (MH+) 

881.50; found 881.75, (MH+); n = 15 – C37H72O20 (MH+) 837.47; found 837.67, (MH+); 

n = 14 – C35H68O19 (MH+) 793.44; found 793.69, (MH+); n = 13 – C33H64O18 (MH+) 

749.42; found 749.70 (MH+). 

 

succinate-PEG550-OMe, 3 

Using a similar procedure to that previously described for compound 2, but using HO-

PEG550-OMe (2.2 g, 3.7 mmol) it was possible to obtain compound 3 (2.5 g) as a colorless 

oil. The product was used without further purification.1H NMR (400 MHz, DMSO, TMS) 

: 2.43-2.58 (4H, m, - and -CH2 succinate), 3.23 (3H, s, OMe), 3.39-3.43 (2H, m, -

CH2 PEG), 3.46-3.54 (nH, m, nPEG), 3.58 (2H, t, J=4.8 Hz, -CH2 PEG), 4.11 (2H, t, 

J=4.6 Hz, -CH2 PEG) ppm. 13C NMR (100 MHz, DMSO, TMS) :  28.61, 28.64 (- 

and -CH2 succinate), 58.03 (OMe), 63.44 (-CH2 PEG), 68.22 (-CH2 PEG), 69.57, 

69.72, 69.77 (nPEG), 71.27 (-CH2 PEG), 171.94 (C=O), 173.35 (C=O) ppm. LRMS 

(ESI+) – m/z: calculated for: n = 13 – C33H64O18 (MH+) 749.42; found 749.83, (MH+); n 

= 12 – C31H60O17 (MH+) 705.39; found 705.50, (MH+); n = 11 – C29H56O16 (MH+) 661.36; 



found 661.42, (MH+); n = 10 – C27H52O15 (MH+) 617.34; found 317.42, (MH+); n = 9 – 

C25H48O14 (MH+) 573.31; found 573.52 (MH+). 

succinate-PEG350-OMe, 4 

Using a similar procedure to that previously described for compound 2, but using HO-

PEG350-OMe (4.3 g, 12.2 mmol) it was possible to obtain compound 4 (5.4 g) as a 

colorless oil. The product was used without further purification. 1H NMR (400 MHz, 

DMSO, TMS) : 2.43-2.59 (4H, m, -CH2 succinate + -CH2 succinate), 3.23 (3H, s, 

OMe), 3.39-3.44 (2H, m, -CH2 PEG), 3.48-3.55 (nH, m, nPEG), 3.59 (2H, t, J=4.8 Hz, 

-CH2 PEG), 4.11 (2H, t, J=4.6 Hz, -CH2 PEG) ppm. 13C NMR (100 MHz, DMSO, 

TMS) :  28.57, 28.64 (-CH2 succinate) + (-CH2 succinate), 58.02 (OMe), 63.44 (-

CH2 PEG), 68.23 (-CH2 PEG), 69.56, 69.72, 69.77 (nPEG), 71.27 (-CH2 PEG), 171.89 

(C=O), 173.34 (C=O) ppm. LRMS (ESI+): calculated for: n = 9 – C25H48O14 (MH+) 

573.31; found 573.70 (MH+); n = 8 – C23H44O13 (MH+) 529.29; found 529.36 (MH+); n 

= 7 – C21H40O12 (MH+) 485.26; found 485.63 (MH+); n = 6 – C19H36O11 (MH+) 441.23; 

found 441.92 (MH+); n = 5 – C17H32O10 (MH+) 397.21; found 397.83 (MH+). 

 

DO3A(t-Bu)-A(succinate-PEG750-OMe)HA(Be), 5 

DO3A(t-Bu)-AHA(Be) (370 mg, 457 mol) was dissolved in dry MeCN (30 mL) and to 

this solution, succinate-PEG750-OMe (544 mg, 640 mol), DIPEA (80 L, 457 mol), 

HOBt (104 mg, 767 mol) and HATU (292 mg, 767 mol) were added. The solution was 

stirred for 48 hours at room temperature and more HOBt (104 mg, 767 mol) and HATU 

(292 mg, 767 mol) were added. The solution was stirred for more 48 hours at room 

temperature and concentrated under reduced pressure to give a yellow oil. The oil was 

dissolved in ethyl acetate (75 mL), and the organic phase was washed with KHSO4 1M 

(2 x 45 mL), NaHCO3 1M (2 x 45 mL) and brine (2 x 45 mL). The organic phases were 

combined, dried with anhydrous MgSO4 and concentrated under reduced pressure to 

afford compound 5 (485 mg, 65 %) as a yellow solid.  1H NMR (400 MHz, CDCl3, TMS) 

: 1.15-1.50 (31H, mb, -CH2 + -CH2 + CH3t-Bu), 1.62-1.81 (2H, m, -CH2), 1.97-3.34 

(28H, m, CH2 cyclen + -CH2 + CH2COR + -CH2 succinate + -CH2 succinate), 3.36 

(3H, s, OMe), 3.50-3.65 (nH, mb, nPEG + -CH), 3.65-3.73 (2H, m, -CH2 PEG), 4.13-

4.22 (2H, m, -CH2 PEG), 6.86 (1H, s, CH Benzhydryl), 7.20-7.44 (10H, m, ArH) ppm. 

13C NMR (100 MHz, CDCl3, TMS) : 26.43 (-CH2), 27.78 (CH3t-Bu), 28.91, 29.33, 

29.60 (-CH2 + -CH2 + -CH2 succinate), 30.62 (-CH2 succinate), 39.00 (-CH2), 



44.38, 47.36, 47.80, 48.15 (CH2 cyclen), 55.53 (CH2COR), 58.83 (OMe), 61.35 (-CH), 

63.46 (-CH2 PEG), 68.68 (-CH2 PEG), 70.13, 70.27, 70.37 (nPEG), 71.69 (-CH2 

PEG), 78.09 (CH Benzhydryl), 81.91 (C t-Bu), 126.41 (ArH), 128.15 (ArH), 128.54 

(ArH), 139.98 (C ArH), 171.65 (C=O), 172.12 (C=O), 172.54 (C=O t-Bu), 175.10 (C=O 

Benzhydryl) ppm. 

 

DO3A(t-Bu)-A(succinate-PEG550-OMe)HA(Be), 6 

Using a similar procedure to the previously described for compound 5, but with succinate-

PEG550-OMe (324 mg, 498 mol) it was possible to obtain compound 6 (347 mg, 68 %) 

as a yellow solid. 1H NMR (400 MHz, CDCl3, TMS) : 1.18-1.57 (31H, mb, -CH2 + -

CH2 + CH3 t-Bu), 1.61-1.79 (2H, m, -CH2), 1.97-3.31 (28H, mb, CH2 cyclen + -CH2 + 

CH2COR + -CH2 succinate + -CH2 succinate), 3.34 (3H, s, OMe), 3.49-3.65 (nH, m, 

nPEG + -CH), 3.66-3.69 (2H, m, -CH2 PEG), 4.17-4.24 (2H, m, -CH2 PEG), 6.86 

(1H, s, CH Benzhydryl), 7.22-7.39 (10H, m, ArH) ppm. 13C NMR (100 MHz, CDCl3, 

TMS) : 26.39 (-CH2), 27.77 (CH3t-Bu), 28.90, 29.07, 29.63 (-CH2 + -CH2 + -CH2 

succinate), 30.62 (-CH2 succinate), 39.00 (-CH2), 44.29, 47.27, 47.75, 48.10 (CH2 

cyclen), 55.39 (CH2COR), 58.68 (OMe), 61.31 (-CH), 63.59 (-CH2 PEG), 68.88 (-

CH2 PEG), 69.71, 69.92, 70.19 (nPEG), 71.37 (-CH2 PEG), 78.06 (CH Benzhydryl), 

81.92 (C t-Bu), 126.38 (CH), 128.11 (CH), 128.55 (CH), 140.01 (C ArH), 171.71 (C=O), 

172.20 (C=O), 172.84 (C=O t-Bu), 175.11 (C=O Benzhydryl) ppm. 

 

DO3A(t-Bu)-A(succinate-PEG350-Ome)HA(Be), 7 

Using a similar procedure to the previously described for compound 5, but with succinate-

PEG350-OMe (178 mg, 396 mol) it was possible to obtain compound 7 (194 mg, 79 %) 

as a yellow solid. 1H NMR (400 MHz, CDCl3, TMS) : 1.18-1.55 (31H, mb, -CH2 + -

CH2 + CH3t-Bu), 1.64-1.82 (2H, m, -CH2), 1.96-3.32 (28H, mb, CH2 cyclen + -CH2 + 

CH2COR + -CH2 succinate + -CH2 succinate), 3.35 (3H, s, OMe), 3.51-3.65 (nH, m, 

nPEG + -CH), 3.65-3.71 (2H, m, -CH2 PEG), 4.16-4.25 (2H, m, -CH2 PEG), 6.85 

(1H, s, CH Benzhydryl), 7.22-7.43 (10H, m, ArH) ppm. 13C NMR (100 MHz, CDCl3, 

TMS) : 26.45 (-CH2), 27.77 (CH3t-Bu), 28.95, 29.34, 29.62 (-CH2 + -CH2 + -CH2 

succinate), 30.60 (-CH2 succinate), 38.99 (-CH2), 44.30, 47.28, 47.75, 48.13 (CH2 

cyclen), 55.52 (CH2COR), 58.83 (OMe), 61.30 (-CH), 63.45 (-CH2 PEG), 68.68 (-



CH2 PEG), 70.09, 70.26, 70.35 (nPEG), 71.68 (-CH2 PEG), 78.06 (CH Benzhydryl), 

81.90 (C t-Bu), 126.39 (CH), 128.12 (CH), 128.55 (CH), 139.96 (C ArH), 171.65 (C=O), 

172.11 (C=O), 172.56 (C=O t-Bu), 175.08 (C=O Benzhydryl) ppm. 

 

DOTA-A(PEG750)HA, L1 

DO3A(t-Bu)-A(succinate-PEG750-OMe)HA(Be), 5 (480 mg, 292 mol) was dissolved in 

DCM (7 mL) and in TFA (7 mL). The solution was stirred overnight at room temperature 

and concentrated under reduced pressure to give a purple oil. The oil was washed with n-

hexane (2x) and with water (2x) to give a yellow oil. The oil was dissolved in water (70 

mL) and the aqueous solution was washed with DCM (4 x 35 mL) and concentrated under 

reduced pressure to afford compound L1 (400 mg) as a yellow solid in a trifluoroacetate 

salt form. 1H NMR (400 MHz, D2O, TSP) : 1.35-1.93 (6H, mb, -CH2 + -CH2 + -

CH2), 2.50-2.59 (2H, m, -CH2 succinate), 2.67-2.73 (2H, m, -CH2 succinate), 2.88-

4.23 (25H, mb, CH2 cyclen + -CH + -CH2 + CH2CO2H), 3.39 (3H, s, OMe), 3.51-3.73 

(nH, mb, nPEG), 3.77-3.81 (2H, m, -CH2 PEG), 4.25-4.29 (2H, m, -CH2 PEG) ppm. 

13C NMR (100 MHz, D2O, TSP) : 23.63 (-CH2), 28.00 (-CH2), 28.17 (-CH2), 29.43 

(-CH2 succinate), 30.27 (-CH2 succinate), 38.71 (-CH2), 50.47, 51.19, 53.46, 54.35 

(CH2 cyclen), 58.63 (OMe), 60.35 (CH2CO2H),61.17 (-CH), 64.01 (-CH2 PEG), 68.42 

(-CH2 PEG), 68.42, 69.56, 69.62 (nPEG), 70.97 (-CH2 PEG), 168.49 (C=O), 174.41 

(C=O), 174.70 (C=O), 176.79 (C=O) ppm. LRMS (ESI+): calculated for: n = 18 – 

C63H119N5O30 (MH+) 1426.80, (MH2
2+) 713.90; found 1426.80, (MH+), 713.87 (MH2

2+); 

n = 17 – C61H115N5O29 (MH+) 1382.78, (MH2
2+) 691.89; found 1382.78, (MH+), 691.86 

(MH2
2+); n = 16 – C59H111N5O28 (MH+) 1338.75, (MH2

2+) 669.88; found 1338.75, (MH+), 

669.85 (MH2
2+); n = 15 – C57H107N5O27 (MH+) 1294.72, (MH2

2+) 647.86; found 1294.72, 

(MH+), 647.83 (MH2
2+); n = 14 – C55H103N5O26 (MH+) 1250.70, (MH2

2+) 625.85; found 

1250.70, (MH+), 625.82 (MH2
2+). 

 

DOTA-A(PEG550)HA, L2 

Using a similar procedure to the previously described for compound L1, but using 

DO3A(t-Bu)-A(succinate-PEG550-OMe)HA(Be)  (347 mg, 241 mol) it was possible to 

obtain compound L2 (313 mg) as a yellow solid in trifluoroacetate salt form. 1H NMR 

(400 MHz, D2O, TSP) : 1.31-1.86 (6H, mb, -CH2 + -CH2 + -CH2), 2.43 (2H, t, 

J=6.6Hz, -CH2 succinate), 2.56 (2H, t, J=6.4Hz, -CH2 succinate), 2.72-4.25 (25H, mb, 



CH2 cyclen) + -CH + -CH2 + CH2CO2H), 3.28 (3H, s, OMe), 3.50-3.70 (nH, mb, nPEG 

+ -CH2 PEG), 4.12-4.17 (2H, m, -CH2 PEG) ppm. 13C NMR (100 MHz, D2O, TSP): 

23.64 (-CH2), 28.08 (-CH2), 28.65 (-CH2), 29.32 (-CH2 succinate), 30.24 (-CH2 

succinate), 38.89 (-CH2), 45.48, 50.65, 53.19, 54.05 (CH2 cyclen), 57.96 (OMe), 60.29 

(CH2CO2H),61.07 (-CH), 63.94 (-CH2 PEG), 68.34 (-CH2 PEG), 69.32, 69.34, 69.56 

(nPEG), 70.89 (-CH2 PEG), 168.72 (C=O), 174.36 (C=O), 174.54 (C=O), 176.79 (C=O) 

ppm. LRMS (ESI+): calculated for: n = 14 – C55H103N5O26 (MNa+) 1272.78, (MNaH2+) 

636.84; found 1272.79, (MNa+), 638.89 (MnaH2+); n = 13 – C53H99N5O25 (MNa+) 

1228.65, (MNaH2+) 614.83; found 1382.76, (MNa+), 614.88 (MNaH2+); n = 12 – 

C51H95N5O24 (MNa+) 1184.63, (MNaH2+) 592.81; found 1184.73, (MNa+), 592.87 

(MnaH2+); n = 11 – C49H91N5O23 (MNa+) 1140.60, (MnaH2+) 570.80; found 1140.71, 

(MNa+), 570.85 (MnaH2+). 

 

DOTA-A(PEG350)HA, L3 

Using a similar procedure to the previously described for compound L1, but using 

DO3A(t-Bu)-A(succinate-PEG350-OMe)HA(Be)(277 mg, 223 mol)  it was possible to 

obtain compound L3 (252 mg) as a yellow solid in trifluoroacetate salt form. 1H NMR 

(400 MHz, D2O, TSP) : 1.29-1.83 (6H, mb, -CH2 + -CH2 + -CH2), 2.37-2.47 (2H, m, 

-CH2 succinate), 2.48-2.62 (2H, m, -CH2 succinate), 2.75-4.12 (25H, mb, CH2 cyclen 

+ -CH + -CH2 + CH2CO2H), 3.34 (3H, s, OMe), 3.46-3.63 (nH, mb, nPEG), 3.63-3.67 

(2H, m, -CH2 PEG), 4.10-4.14 (2H, m, -CH2 PEG) ppm. 13C NMR (100 MHz, D2O, 

TSP) : 23.66 (-CH2), 28.06 (-CH2), 29.30 (-CH2), 29.37 (-CH2 succinate), 30.22 

(-CH2 succinate), 38.62 (-CH2), 45.36, 50.71, 53.25, 53.95 (CH2 cyclen), 57.93 (OMe), 

60.26 (CH2CO2H),61.08 (-CH), 63.92 (-CH2 PEG), 68.30 (-CH2 PEG), 69.29, 69.31, 

69.45 (nPEG), 70.86 (-CH2PEG), 168.35 (C=O), 174.47 (C=O), 174.64 (C=O), 176.73 

(C=O) ppm. LRMS (ESI+): calculated for: n = 10 – C47H87N5O22 (MH2
2+) 537.80; found 

537.56, (MH2
2+); n = 9 – C45H83N5O21 (MH2

2+) 515.78; found 515.34, (MH2
2+); n = 8 – 

C43H79N5O20 (MH2
2+) 493.77; found 493.28, (MH2

2+); n = 7 – C41H75N5O19 (MH2
2+) 

471.76; found 471.30 (MH2
2+); n = 6 – C39H71N5O18 (MH2

2+) 449.75; found 449.25 

(MH2
2+). 

 

 

 



Relaxometric Studies 

 

Sample Preparation 

To an aqueous solution of the ligand, a GdCl3 solution in a 1:1 mole ratio was added 

dropwise (a slight excess of ligand was used). The pH was adjusted to around 4 with the 

addition of a 0.01 M NaOH solution and the solution was stirred for 1 hour at 60 ºC. The 

pH was adjusted to 5 with the addition of a 0.01 M NaOH solution and the solution was 

stirred overnight. The pH was then adjusted to 5.7 and the solution was concentrated 

under reduced pressure. 

In all cases, to the final solution, H2
17O (17O = 20.2 %) was added to obtain a final 2% 17O-

enrichment in order to improve the sensitivity of 17O NMR measurements. The absence 

of free metal was checked with xylenol orange.[34] The final concentration of Gd(III) was 

determined by susceptibility measurements in the presence of t-butanol.[35] The Gd(III) 

concentration in the samples were ≈ 8 mM. 

 

1H NMRD 

Sample tubes with an outer diameter of 5 mm were used for measurements. The proton 

longitudinal relaxation rates (1/T1) for the water nuclear magnetic relaxation dispersion 

profiles (NMRD) were measured at 0.47 T (1H Larmor frequency: 20 MHz), 0.70 T 

(30 MHz), 0.94 T (40 MHz), 1.41 T (60 MHz), 2.35 T (100 MHz), 4.7 T (200 MHz) and 

9.4 T (400 MHz). The longitudinal relaxation rates of three chelates with known 

concentration were measured at two different temperatures (25 and 37 ºC). Acidified 

water (pH = 3.0) was used as an external reference. The relaxivities r1 (mM-1.s-1) were 

calculated using equation 1 using diamagnetic relaxation contributions 1/T1(d) of 0.31 s-1 

(400 MHz) / 0.40 s-1 (20 MHz) for 25 ºC and 0.25 s-1 (400 MHz) / 0.29 s-1 (20 MHz) for 

37 ºC, respectively. 

 

𝑟1 =
1

[𝐺𝑑(𝐼𝐼𝐼)]
(

1

𝑇1
−

1

𝑇1(d)
) , with [Gd(III)] in mM (1) 

 

For full equations see Supplementary Information (SI). 

 

 

 



17O NMR 

The samples were sealed in glass spheres adapted for 10 mm NMR tubes, in order to 

avoid susceptibility corrections to the chemical shifts.[36] Variable-temperature 17O 

measurements were performed at 9.4 T (17O Larmor frequency: 54.3 MHz). The 

longitudinal (1/T1) and transverse (1/T2) relaxation rates were measured using the 

inversion-recovery[37] and the Carr–Purcell–Meiboom–Gill[38] pulse sequences, 

respectively, and chemical shifts () were measured at 12 different temperatures in the 

range from 5 to 65 °C. The reduced relaxation rates T1r and T2r and the reduced chemical 

shift differences r, with respect to a pH 3.0 water reference (2% 17O-enrichment), were 

calculated using equations 2 to 4. The number of water molecules in the inner sphere of 

the complex q was fixed to one. 

 

1

𝑇ir
=

1

𝑃𝑀
(

1

𝑇i
−

1

𝑇i
ref) , where i = 1, 2 (2) 

 

∆𝜔𝑟 =
1

𝑃𝑀
(𝜔 − 𝜔ref) (3) 

 

𝑃M =
𝑞[M(n)]

55.56
 (4) 

 

For full equations see Supplementary Information (SI) 

 

Data Analysis 

For fits of the 1H NMRD and 17O NMR data, a Solomon–Bloembergen-based theory was 

used[36b, 39]  supplemented with the Lipari–Szabo free-model approach for the internal 

rotation.[40] The simultaneous fits were performed using Visualiseur/Optimiseur[41] 

running on a MATLAB® 8.0 (R2012b) platform. 

 

 

 

 

 

 

 



1H NMR studies of paramagnetic lanthanide DOTA-A(PEG750)HA chelates 

 

Samples preparation 

To an aqueous solution of the ligand, the corresponding LnCl3 solution in 1:1 mole ratio 

was added dropwise (a slight excess of ligand was used: 5%). The pH was adjusted to 

around 4 with the addition of a 0.01 M NaOH solution and the solution was stirred for 1 

hour at 60 ºC. The pH was adjusted to 5 with the addition of a 0.01 M NaOH solution and 

the solution was stirred overnight. The pH was then adjusted to 7 and the solution was 

concentrated under reduced pressure. 

 

Measurements 

The solutions were prepared by dissolving the respective chelate in D2O (700 L). The 

proton spectra of the Pr(III), Nd(III), Sm(III), Eu(III) and Yb(III) chelates were obtained 

at 7, 25, 40 and 60 ºC. The 1H NMR spectra were recorded on a Varian Unity Plus 300 

spectrometer, operating at 299.938 MHz. 

 

Abbreviations 

 

Be Benzhydryl 

CA Contrast agent 

Cyclen 1,4,7,10-tetraazacyclododecane 

DCM Dichloromethane 

DEPT Distortionless enhancement by polarization transfer 

DIPEA N,N-Diisopropylethylamine 

DMSO Dimethyl sulfoxide 

DOTA 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid 

DOTA-AHA 1,4,7,10-Tetraazacyclododecane-1-[(6-amino)hexanoic]-

4,7,10-triacetic acid 

DOTA-A(PEG750)HA 1,4,7,10-Tetraazacyclododecane-1-[6-amino(MeO-PEG750-

succinate)]hexanoic-4,7,10-triacetic acid 

DOTA-A(PEG550)HA 1,4,7,10-Tetraazacyclododecane-1-[6-amino(MeO-PEG550-

succinate)]hexanoic-4,7,10-triacetic acid 



DOTA-A(PEG350)HA 1,4,7,10-Tetraazacyclododecane-1-[6-amino(MeO-PEG350-

succinate)]hexanoic-4,7,10-triacetic acid 

DOTASA 1,4,7,10-Tetraazacyclododecane-1-succinic acid-4,7,10-

triacetic acid 

ESI Electrospray ionization 

HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxid hexafluorophosphate 

HMBC Heteronuclear multiple bond correlation 

HOBt 1-Hydroxybenzotriazole 

HOPO Hetero-tripodal hydroxypyridonate 

HSA Human serum albumin 

HSQC Heteronuclear Single Quantum Coherence 

LRMS Low resolution mass spectrometry 

MeCN Acetonitrile 

MRI Magnetic resonance imaging 

NMR Nuclear magnetic resonance 

NMRD Nuclear magnetic relaxation dispersion 

PEG Poly(ethylene) glycol 

SD Standard deviation 

TFA Trifluoroacetic acid 

TMS Tetramethylsilane 

TSP 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt 

TLC Thin layer chromatography 

t-Bu tert-Butyl 

 

Acknowledgements 

 

The authors thank the Foundation for Science and Technology (FCT–Portugal) for 

financial support through the NMR Portuguese network (Bruker 400 Avance III-Univ 

Minho); FCT and FEDER (European Fund for Regional Development)-

COMPETE/QREN/EU for financial support through the research unity PEst-

C/QUI/UI686/2013 and the PhD grant attributed to André Fontes 

(SFRH/BD/63676/2009) also financed by the POPH and FSE. 



Bibliography 

 

[1] S. Mansson, A. Bjornerud, in The Chemistry of Contrast Agents in Medical 

Magnetic Resonance Imaging, John Wiley & Sons, Inc, Chichester, 2001. 

[2] E. Toth, L. Helm, A. A. Merbach, in The Chemistry of Contrast Agents in Medical 

Magnetic Resonance Imaging, John Wiley & Sons, Chichester, 2013, pp. 25-82. 

[3] R. B. Lauffer, Chem. Rev. 1987, 87, 901-927. 

[4] C. F. G. C. Geraldes, S. Laurent, Contrast Media Mol. Imaging 2009, 4, 1-23. 

[5] E. C. Unger, J. D. Schilling, A. N. Awad, K. E. McIntyre, M. T. Yoshino, G. D. 

Pond, A. Darkazanli, G. C. Hunter, V. M. Bernhard, JMRI-J. Magn. Reson. 

Imaging 1995, 5, 1-5. 

[6] P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 

2293-2352. 

[7] aW.-h. Li, G. Parigi, M. Fragai, C. Luchinat, T. J. Meade, Inorg. Chem. 2002, 41, 

4018-4024; bB. Jebasingh, V. Alexander, Inorg. Chem. 2005, 44, 9434-9443; cJ. 

Rudovsky, M. Botta, P. Hermann, A. Koridze, S. Aime, Dalton Trans. 2006, 

2323-2333; dY. Song, E. K. Kohlmeir, T. J. Meade, Journal of the American 

Chemical Society 2008, 130, 6662-+; eD. J. Mastarone, V. S. R. Harrison, A. L. 

Eckermann, G. Parigi, C. Luchinat, T. J. Meade, Journal of the American 

Chemical Society 2011, 133, 5329-5337; fJ. Tanwar, A. Datta, A. K. Tiwari, S. 

Chaturvedi, H. Ojha, M. Allard, N. K. Chaudary, M. Thirumal, A. K. Mishra, 

Dalton Trans. 2011, 40, 3346-3351. 

[8] aE. Toth, I. van Uffelen, L. Helm, A. E. Merbach, D. Ladd, K. Briley-Saebo, K. 

E. Kellar, Magn. Reson. Chem. 1998, 36, S125-S134; bB. Zarabi, A. Nan, J. Zhuo, 

R. Gullapalli, H. Ghandehari, Mol. Pharm. 2006, 3, 550-557; cH. Y. Lee, H. W. 

Jee, S. M. Seo, B. K. Kwak, G. Khang, S. H. Cho, Bioconjugate Chem. 2006, 17, 

700-706. 

[9] aV. J. Venditto, C. A. S. Regino, M. W. Brechbiel, Mol. Pharm. 2005, 2, 302-

311; bH. Kobayashi, M. W. Brechbiel, Adv. Drug Deliv. Rev. 2005, 57, 2271-

2286; cS. Langereis, A. Dirksen, T. M. Hackeng, M. H. P. van Genderen, E. W. 

Meijer, New J. Chem. 2007, 31, 1152-1160. 

[10] aJ. P. Andre, E. Toth, H. Fischer, A. Seelig, H. R. Macke, A. E. Merbach, Chem.-

Eur. J. 1999, 5, 2977-2983; bG. M. Nicolle, E. Toth, K. P. Eisenwiener, H. R. 

Macke, A. E. Merbach, J. Biol. Inorg. Chem. 2002, 7, 757-769; cW. J. M. Mulder, 



G. J. Strijkers, G. A. F. van Tilborg, A. W. Griffioen, K. Nicolay, NMR Biomed. 

2006, 19, 142-164; dA. Fontes, M. I. M. Prata, C. F. G. C. Geraldes, J. P. Andre, 

Nuclear Medicine and Biology 2011, 38, 363-370. 

[11] aS. Aime, D. D. Castelli, D. Lawson, E. Terreno, Journal of the American 

Chemical Society 2007, 129, 2430-2431; bN. Kamaly, T. Kalber, A. Ahmad, M. 

H. Oliver, P. W. So, A. H. Herlihy, J. D. Bell, M. R. Jorgensen, A. D. Miller, 

Bioconjugate Chem. 2008, 19, 118-129; cS. Laurent, L. V. Elst, C. Thirifays, R. 

N. Muller, Eur. Biophys. J. Biophys. Lett. 2008, 37, 1007-1014. 

[12] J. B. Tang, Y. Q. Sheng, H. J. Hu, Y. Q. Shen, Prog. Polym. Sci. 2013, 38, 462-

502. 

[13] J. M. Harris, N. E. Martin, M. Modi, Clin. Pharmacokinet. 2001, 40, 539-551. 

[14] aP. Bailon, A. Palleroni, C. A. Schaffer, C. L. Spence, W. J. Fung, J. E. Porter, G. 

K. Ehrlich, W. Pan, Z. X. Xu, M. W. Modi, A. Farid, W. Berthold, Bioconjugate 

Chem. 2001, 12, 195-202; bA. N. Lukyanov, R. M. Sawant, W. C. Hartner, V. P. 

Torchilin, J. Biomater. Sci.-Polym. Ed. 2004, 15, 621-630; cT. Lammers, R. 

Kuhnlein, M. Kissel, V. Subr, T. Etrych, R. Pola, M. Pechar, K. Ulbrich, G. Storm, 

P. Huber, P. Peschke, J. Control. Release 2005, 110, 103-118; dF. M. Veronese, 

O. Schiavon, G. Pasut, R. Mendichi, L. Andersson, A. Tsirk, J. Ford, G. F. Wu, 

S. Kneller, J. Davies, R. Duncan, Bioconjugate Chem. 2005, 16, 775-784. 

[15] X. H. He, P. C. Shaw, S. C. Tam, Life Sci. 1999, 65, 355-368. 

[16] aX. Y. Chen, E. Sievers, Y. P. Hou, R. Park, M. Tohme, R. Bart, R. Bremner, J. 

R. Bading, P. S. Conti, Neoplasia 2005, 7, 271-279; bA. Vaidya, Y. G. Sun, Y. 

Feng, L. Emerson, E. K. Jeong, Z. R. Lu, Pharm. Res. 2008, 25, 2002-2011; cS. 

J. DeNardo, R. W. Liu, H. Albrecht, A. Natarajan, J. L. Sutcliffe, C. Anderson, L. 

Peng, R. Ferdani, S. R. Cherry, K. S. Lam, J. Nucl. Med. 2009, 50, 625-634; dS. 

H. Hausner, D. L. Kukis, M. K. J. Gagnon, C. E. Stanecki, R. Ferdani, J. F. 

Marshall, C. J. Anderson, J. L. Sutcliffe, Mol. Imaging 2009, 8, 111-121; eL. Li, 

F. Turatti, D. Crow, J. R. Bading, A. L. Anderson, E. Poku, P. J. Yazaki, L. E. 

Williams, D. Tamvakis, P. Sanders, D. Leong, A. Raubitschek, P. J. Hudsony, D. 

Colcher, J. E. Shively, J. Nucl. Med. 2010, 51, 1139-1146; fS. Dapp, C. Muller, 

E. G. Garayoa, P. Blauenstein, V. Maes, L. Brans, D. A. Tourwe, R. Schibli, 

EJNMMI research 2012, 2, 24; gJ. Gallo, I. S. Alam, J. Jin, Y.-J. Gu, E. O. 

Aboagye, W.-T. Wong, N. J. Long, Dalton Trans. 2014, 43, 5535-5545. 



[17] aD. M. J. Doble, M. Botta, J. Wang, S. Aime, A. Barge, K. N. Raymond, Journal 

of the American Chemical Society 2001, 123, 10758-10759; bM. Botta, S. Quici, 

G. Pozzi, G. Marzanni, R. Pagliarin, S. Barra, S. G. Crich, Org. Biomol. Chem. 

2004, 2, 570-577; cM. K. Thompson, D. M. J. Doble, L. S. Tso, S. Barra, M. 

Botta, S. Aime, K. N. Raymond, Inorg. Chem. 2004, 43, 8577-8586. 

[18] aE. C. Unger, D. K. Shen, G. L. Wu, L. Stewart, T. O. Matsunaga, T. P. Trouard, 

Magn. Reson. Mat. Phys. Biol. Med. 1999, 8, 154-162; bP. Mi, H. Cabral, D. 

Kokuryo, M. Rafi, Y. Terada, I. Aoki, T. Saga, I. Takehiko, N. Nishiyama, K. 

Kataoka, Biomaterials 2013, 34, 492-500. 

[19] aL. D. Margerum, B. K. Campion, M. Koo, N. Shargill, J. J. Lai, A. Marumoto, 

P. C. Sontum, J. Alloy. Compd. 1997, 249, 185-190; bH. Kobayashi, S. 

Kawamoto, T. Saga, N. Sato, A. Hiraga, T. Ishimori, J. Konishi, K. Togashi, M. 

W. Brechbiel, Magn.Reson.Med. 2001, 46, 781-788; cZ. Jaszberenyi, L. Moriggi, 

P. Schmidt, C. Weidensteiner, R. Kneuer, A. E. Merbach, L. Helm, E. Toth, J. 

Biol. Inorg. Chem. 2007, 12, 406-420. 

[20] A. Fontes, S. Karimi, L. Helm, M. Yulikov, P. M. Ferreira, J. P. André, Eur. J. 

Inorg. Chem. 2015, 2015, 1579-1591. 

[21] S. Laurent, L. V. Elst, R. N. Muller, Contrast Media Mol. Imaging 2006, 1, 128-

137. 

[22] aF. A. Dunand, E. Toth, R. Hollister, A. E. Merbach, J. Biol. Inorg. Chem. 2001, 

6, 247-255; bF. Yerly, A. Borel, L. Helm, A. E. Merbach, Chemistry – A European 

Journal 2003, 9, 5468-5480. 

[23] aJ. A. Peters, E. Zitha-Bovens, E. Corsi, C. F. G. C. Geraldes, in The Chemistry 

of Contrast Agents in Medical Magnetic Resonance Imaging (Eds.: E. Toth, A. E. 

Merbach), Wiley, Chichester, 2001; bL. Frullano, J. Rohovec, J. A. Peters, C. 

Geraldes, in Contrast Agents I: Magnetic Resonance Imaging, Vol. 221 (Ed.: W. 

Krause), Springer-Verlag Berlin, Berlin, 2002, pp. 25-60; cS. Aime, M. Botta, M. 

Fasano, M. P. M. Marques, C. F. G. C. Geraldes, D. Pubanz, A. E. Merbach, Inorg. 

Chem. 1997, 36, 2059-2068. 

[24] S. Aime, M. Botta, E. Garino, S. G. Crich, G. Giovenzana, R. Pagliarin, G. 

Palmisano, M. Sisti, Chem.-Eur. J. 2000, 6, 2609-2617. 

[25] aJ. F. Desreux, Inorg. Chem. 1980, 19, 1319-1324; bS. Aime, M. Botta, G. 

Ermondi, Inorg. Chem. 1992, 31, 4291-4299; cV. Jacques, J. F. Desreux, Inorg. 

Chem. 1994, 33, 4048-4053; dM. P. M. Marques, C. F. G. C. Geraldes, A. D. 



Sherry, A. E. Merbach, H. Powell, D. Pubanz, S. Aime, M. Botta, J. Alloy. Compd. 

1995, 225, 303-307. 

[26] J. P. Andre, E. Brucher, R. Kiraly, R. A. Carvalho, H. Macke, C. Geraldes, 

Helvetica Chimica Acta 2005, 88, 633-646. 

[27] aJ. Rudovský, P. Cígler, J. Kotek, P. Hermann, P. Vojtíšek, I. Lukeš, J. A. Peters, 

L. Vander Elst, R. N. Muller, Chemistry – A European Journal 2005, 11, 2373-

2384; bC. Platas-Iglesias, Eur. J. Inorg. Chem. 2012, 2012, 2023-2033. 

[28] aJ. A. K. Howard, A. M. Kenwright, J. M. Moloney, D. Parker, M. Port, M. Navet, 

O. Rousseau, M. Woods, Chem. Commun. 1998, 1381-1382; bM. Woods, S. 

Aime, M. Botta, J. A. K. Howard, J. M. Moloney, M. Navet, D. Parker, M. Port, 

O. Rousseaux, Journal of the American Chemical Society 2000, 122, 9781-9792; 

cS. Aime, M. Botta, G. Ermondi, E. Terreno, P. L. Anelli, F. Fedeli, F. Uggeri, 

Inorg. Chem. 1996, 35, 2726-2736. 

[29] E. Toth, L. Helm, A. A. Merbach, in The Chemistry of Contrast Agents in Medical 

Magnetic Resonance Imaging, John Wiley & Sons, Chichester, 2013, pp. 209-

276. 

[30] aS. Aime, A. Barge, M. Botta, A. S. De Sousa, D. Parker, Angew. Chem.-Int. Edit. 

1998, 37, 2673-2675; bS. Aime, A. Barge, J. I. Bruce, M. Botta, J. A. K. Howard, 

J. M. Moloney, D. Parker, A. S. de Sousa, M. Woods, Journal of the American 

Chemical Society 1999, 121, 5762-5771; cF. A. Dunand, S. Aime, A. E. Merbach, 

Journal of the American Chemical Society 2000, 122, 1506-1512. 

[31] J. P. Andre, H. R. Maecke, E. Toth, A. A. Merbach, J. Biol. Inorg. Chem. 1999, 

4, 341-347. 

[32] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515. 

[33] C. Ammann, P. Meier, A. E. Merbach, J. Magn. Reson. 1982, 46, 319-321. 

[34] G. Brunisholz, M. Randin, Helvetica Chimica Acta 1959, 42, 1927-1938. 

[35] D. M. Corsi, C. Platas-Iglesias, H. v. Bekkum, J. A. Peters, Magn. Reson. Chem. 

2001, 39, 723-726. 

[36] aA. D. Hugi, L. Helm, A. E. Merbach, Helvetica Chimica Acta 1985, 68, 508-521; 

bI. Solomon, Physical Review 1955, 99, 559-565. 

[37] R. L. Vold, J. S. Waugh, M. P. Klein, D. E. Phelps, The Journal of Chemical 

Physics 1968, 48, 3831-3832. 

[38] S. Meiboom, D. Gill, Review of Scientific Instruments 1958, 29, 688-691. 



[39] aN. Bloembergen, The Journal of Chemical Physics 1957, 27, 572-573; bN. 

Bloembergen, L. O. Morgan, The Journal of Chemical Physics 1961, 34, 842-850. 

[40] aG. Lipari, A. Szabo, Journal of the American Chemical Society 1982, 104, 4546-

4559; bG. Lipari, A. Szabo, Journal of the American Chemical Society 1982, 104, 

4559-4570. 

[41] F. Yerly, EPFL, Lausanne, 2003. 

 

 


