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Abstract 

 Ventilator-associated pneumonia (VAP) is one of the most common nosocomial 

pneumonia among intensive care units contributing to high rates of morbidity and mortality. 

Polymicrobial biofilm infections with Pseudomonas aeruginosa and Candida albicans have 

being recently reported in VAP. Their antimicrobial resistance profiles represent a serious 

impact on the treatment of the disease by reducing the effective therapies and affecting the 

state of health of patients. As such, the present work aimed to provide novel insights 

concerning the characterization of single- and dual-species biofilms phenotype involving P. 

aeruginosa and C. albicans under the presence of different antimicrobials agents. Planktonic 

and biofilm assays were performed using P. aeruginosa PAO1, C. albicans SC5314 and four 

clinically important antimicrobials: amphotericin B (AmB), tobramycin (ToB), colistin (CoL) and 

polymyxin B (PolyB) as single or in combination. The quantitative methods (CFUs enumeration 

and biomass quantification) and qualitative methods (SEM, PNA FISH analysis and LIVE/DEAD 

staining) were used to study the single- and dual-species biofilms. The results showed that the 

incubation time did not influence biofilm formed by both pathogens in the overall consortia. 

Concerning single antimicrobials use, P. aeruginosa was the pathogen more sensitive to most 

tested antimicrobials and their effect showed to be concentration and time dependent. For 

antimicrobial combinations it was demonstrated that most formulations presented synergistic 

effect in P. aeruginosa, both in single and in mixed planktonic cultures. Specially, when applied 

to biofilms only AmB/PolyB and ToB/PolyB combinations (particularly with PolyB at high 

concentrations: 256 mg/L), promoted a significant reduction in the number of cultivable cells 

of both strains entrapped in single- and in dual-species biofilms. However, PNA FISH analysis 

and LIVE/DEAD staining showed that both strains are still existent and viable in presence of 

these antimicrobial combinations. In conclusion, different antimicrobial therapies used in this 

work did not display any effectiveness in the treatment of polymicrobial infections associated 

to VAP. Nevertheless, certain antimicrobial combinations tested in this work are essentials to 

future studies in order to better clarify the clinical dosage concentrations. Despite of the 

aforementioned concentrations being toxicity for humans they present strong potency to be 

used in future novel methodologies for VAP therapy. 
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Resumo 

 A pneumonia associada a ventilação (PAV) é uma das pneumonias nosocomiais mais 

comuns nas unidades de cuidados intensivos contribuindo para elevadas taxas de morbidade e 

mortalidade. As infeções polimicrobianas associadas a biofilmes causadas por Pseudomonas 

aeruginosa e Candida albicans têm sido recentemente relatadas na PAV. Os seus perfis de 

resistência antimicrobiana representam um sério impacto no tratamento da doença, devido à 

diminuição da eficácia das terapias afetando assim o estado de saúde dos pacientes. Desta 

forma, o presente trabalho teve como objetivo aumentar o conhecimento relativo à 

caracterização fenotípica de biofilmes simples e duplos envolvendo P. aeruginosa e C. albicans 

na presença de diferentes agentes antimicrobianos. Para tal, foram realizados ensaios 

planctônicos e de biofilmes utilizando P. aeruginosa PAO1, C. albicans SC5314 e quatro 

agentes antimicrobianos de relevância clínica: anfotericina B (AmB), tobramicina (ToB), 

colistina (COL) e polimixina B (PolyB), com utilização única ou em combinação. Os métodos 

quantitativos (enumeração de unidades formadoras de colónias e quantificação de biomassa) 

e métodos qualitativos (visualização em microscópio eletrónico de varrimento, análise PNA- 

FISH e coloração LIVE/ DEAD) foram realizados com o objetivo de estudar os biofilmes simples 

e duplos. Os resultados mostraram que o tempo de incubação não influenciou a formação de 

biofilme por parte de ambos os agentes patogénicos no consórcio global. Relativamente ao 

uso de um único agente antimicrobiano, a bactéria P. aeruginosa foi o agente patogénico mais 

sensível aos antimicrobianos testados revelando um efeito dependente da concentração e do 

tempo. Para combinações de antimicrobianos foi demonstrado que a maioria das formulações 

apresentaram efeito sinérgico em P. aeruginosa, tanto em culturas planctónicas simples como 

mistas. Especialmente, quando aplicados em biofilmes, apenas as combinações AmB / PolyB e 

ToB / PolyB (particularmente com PolyB a elevadas concentrações: 256 mg/L), promoveram 

uma redução significativa no número de células viáveis e cultiváveis em ambas as estripes quer 

em biofilmes simples ou duplos. No entanto, a análise PNA FISH e a coloração LIVE/DEAD 

mostrou que ambas as estripes se encontravam presentes e viáveis na presença destas 

combinações antimicrobianas. Em conclusão, as diferentes terapias antimicrobianas usadas 

neste trabalho não apresentaram grande eficácia no tratamento de infeções polimicrobianas 

associados à PAV. No entanto, certas combinações antimicrobianas, já testadas neste trabalho, 

são essenciais para estudos futuros, a fim de melhor clarificar as concentrações de dosagem 

clínicas. Apesar das concentrações acima referidas serem tóxicas para os seres humanos estas 

apresentam forte potencial para serem usadas em futuras metodologias na terapia PAV. 
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Outline and Aims  

 The present thesis reports the work performed at the Biofilm Group in LIBRO- 

Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering 

(University of Minho, Braga, Portugal). 

 The main goal of this work was focus on the characterization of single- and dual-

species (P. aeruginosa or/and C. albicans) biofilms phenotype associated to ventilator 

associated pneumonia (VAP) infection, particularly under the presence of different 

antimicrobial agents. In order to achieve this goal, several aspects were studied throughout 

this work, namely: the ability of both strains to develop biofilm (single- and dual-species) and 

the assessment of the susceptibility to different antimicrobial agents (single and combinations 

of antimicrobials) of both strains in planktonic cultures. Lastly, the effect of antimicrobials 

(single or in combination) in the ability to form biofilms of both strains and their antimicrobial 

resistance profiles were evaluated. 

 This thesis is structured in five chapters. Chapter I. summarizes the state-of-the art, 

carefully reviews relevant aspects concerning VAP, emphasizing the particular case of 

polymicrobial interactions, P. aeruginosa and C. albicans in VAP infections. The interactions 

between P. aeruginosa and C. albicans recently reported in VAP setting and the significance of 

polymicrobial biofilms characteristics on VAP antimicrobial resistance for worsening VAP 

infection are also outlined in this chapter. Chapter II describes the methodologies and 

techniques throughout this work. The rationale beyond methodologies employment is 

discussed therein. The Chapter III reported the different results obtained in the present work 

focus on the capacity of microorganisms to develop biofilm in the absence or presence of 

single or antimicrobial combinations. Chapter IV provides the discussion of this thesis, 

presented the hypothesis has been demonstrated by the new research and then show how the 

field's knowledge has been changed by the addition of this new data. Lastly, Chapter V finalizes 

the thesis by presenting general conclusions of the work performed and proposes future 

research lines are also addressed to improve knowledge in the field. 
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1.1. Contextualization 

 

 According to World Health Organization (WHO), a nosocomial infection (NI) is defined 

as “an infection occurring in a patient in a hospital or other healthcare facility, in whom the 

infection was not present or it was incubating at the time of admission. This include infections 

acquired in the hospital but appearing after discharge and also occupational infections among 

staff of the facility”[1]. NIs are a major source of morbidity and mortality, with prolonged 

hospitalization leading to increased costs in health care sector. NIs incidence in developed 

countries varies between 5 - 10 %, whereas it is reported values up to 25 % in developing 

countries[2][3][4][5]. Furthermore, the highest mortality rates occur after nosocomial pneumonia 

(NP) with a mortality rate of NIs up to 33 %[3] . 

 When patients are admitted in intensive care units (ICU), the NIs occurring in ICU are 

defined as infections that occur after 48 - 72 h of hospital admission. NI is the major 

complication in patients who are hospitalized in the ICU[6]. NIs rates in ICU are almost 5 - 10 

times higher than NIs in other departments with an incidence rate of 15 - 40 %[7].

 According to investigation conducted by WHO in 4 Regions (Europe, Eastern 

Mediterranean, South-East Asia and Western Pacific) infected patients consist of 5 - 10 % 

hospitalized patients and 8.7 % of those patients exhibit NIs. ICU infections correspond to 25 % 

of all NIs[7][8] and consequently overall mortality rate of NIs in ICU patients varies between 10 - 

80 %[9].  

 The major factors associated to the increased NIs’ rate in ICU are documented in the 

literature, such as: staying in ICU more than 48 h, presence of invasive devices such as 

mechanical ventilation (MV), use of urinary catheter and central line, prophylaxis of stress 

ulcer and trauma[10]. In addition, the long-term and irrational use of antimicrobials also leads 

to the development of resistant strains of pathogens. The existence of such resistant strains of 

pathogens is responsible for chronic diseases and long-term hospitalization. For the increased 

NI´ rate also accounts steroids and immunosuppressive therapies, an increased number of 

invasive procedures, the malnutrition and advanced age of patients as well as the leniency of 

hospital staff and infection control committee in maintaining sterile conditions[8][11].  

 The most common type of NI comes from the respiratory tract infections (RTIs) with 

64.7 % of incidence and NP associated with 2 - 3 fold increase in mortality rates. Urinary tract 

infections, surgical site infections and blood-stream infections are also very frequent sites to 

the onset of NIs in ICU[8][11][12]. Ventilator-associated pneumonia (VAP), one of the major clinical 

problems, is one of the most common infection in adults ICU wherein 10 to 20 % of patients 

receive MV support[13]. Patients admitted with acute respiratory failure undergoing MV are 
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prone to develop NIs due to the high invasive device usage (tracheostomy tube and 

endotracheal intubation)[14]. In this way, the tracheostomy or endotraqueal tube (ET) create 

problems in defense mechanism of the respiratory tract and the risk of cross transmission of 

pathogens while handling and manipulating the ventilator associated devices is higher[8].  

 So, the invasive MV is a risk factor for the increase of NP[15][16], being the VAP one of 

the most severe public health problem[17]. 

 

1.2. Ventilator-associated pneumonia 

 

 The pathogenesis of lower RTI frequently begins with tracheal colonization from the 

oropharynx by leakage around the ET cuff, which may  progress to ventilator-associated 

tracheobronchitis (VAT) and in certain patients to VAP- Figure 1.1[18]. Several studies reported 

controversies concerning the definition of VAT and its distinction from VAP. However, recent 

data suggest that VAT is an important risk factor for VAP[18][19].  

 

 

 

 

 

 

 

 

 

 

 

  

 VAP represents one of the most common NP in patients who need MV to assist or 

control respiration, and it generally occurs 48 – 72 h or thereafter following MV (tracheostomy 

or endotracheal intubation)[20][21][22][23]. Nevertheless, it can also be conceptually defined as a 

lung parenchyma inflammation caused by pathogens that were still incubating or not present 

at the time as MV was started[23][24][25][26]. 

 Based on the timing of onset, it is considered as early-onset VAP if it occurs during the 

first 4 days of MV. Frequently, it is less severe associated with a better prognosis, and mainly 

caused by community pathogens with a positive pattern of antimicrobial sensitivity (e.g. 

Figure 1.1- Pathogenesis of bacterial lower RTI and the disease progresses to its 

most severely state VAP. Image reprinted, from [18]. 
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Streptococcus pneumoniae, Haemophilus influenzae and anaerobes of the oral cavity). Then, 

the late-onset VAP develops 5 or more days after initiation of MV and it is caused by 

multidrug-resistant (MDR) pathogens (e.g., Staphylococcus aureus, Pseudomonas aeruginosa, 

Enterobacteriaceae and Acinetobacter baumannii) selected by exposure to broad-spectrum 

antimicrobials. It is associated with increased morbidity and mortality, prolonged ICU stay and 

longer duration of MV, with excessive health-care costs per event[23][27][28][29][30]. Nevertheless, 

not all the studies consider early- and late-onset VAP within the similar time range frame 

(Table 1.1)[17]. 

 

 

 

 

 

 

 

 

 VAP is a potentially lethal infection and represents one of the most common problem 

among mechanically- ventilated patients in ICU contributing to approximately half of all cases 

of NP[11][34]. It is the second most common NI in the ICU and the most common in mechanically 

ventilated patients affecting 9 - 27 % of all mechanically ventilated patients[27][35]. This risk is 

between 3 and 10 times higher compared to patients who do not receive MV[26][34][36]. 

 Recently reports from surveillance data show that the pooled rate ranges from 0 – 4.4 

cases of VAP per 1.000 ventilator days and depending on the underlying population, type of 

ICU and surveillance method[37]. In addition, the risk of acquiring VAP is high during the first 5 

days of MV (3 %) and the average of duration between intubation and development of VAP is 

about 3.3 days[34][38]. Between the 5th and the 10th day after ventilation, this risk declines to 2 % 

and 1 % per day thereafter, respectively[23][39].  

 VAP is one of the major factors contributing to morbidity and mortality in the 

ICU[22][38][40][41][42]. However the VAP mortality incidence is controversial (earlier studies placed 

the attributable mortality for VAP at between 33 – 50 %), with several recent studies reporting 

as being significant and between 1 to 1.5 %[23][41][42]. Furthermore, VAP significantly increases 

the length of stay in the ICU, the duration of MV, hospital stay and the healthcare 

costs[43][44][45]. This pathology is also responsible for more than half of the prescribed 

antimicrobials in the ICU[23] and the cost to the health care system has been estimated to 

range from $10,000 to $13,000 USD per case of VAP[46][47].  

Citation Early-onset VAP Late-onset VAP 

[31] ≤ 4 - 7 days > 7 days 

[32] ≤ 7 days > 7 days 

[33] ≤ 3 - 5 days > 3 - 5 days 

Table 1.1- Different definitions of early and late-onset VAP. Table adapted, from [17]   
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 Due to all the implications for the individual patient (morbidity and mortality) and the 

cost to the healthcare system, it is necessary to explore preventive measures (Table 1.2) along 

with VAP early diagnosis and effective management, in order to reduce these parameters, as 

well as to prevent the onset of the disease[48][49][50][51]. 

 

Table 1.2- Strategies for VAP preventation. Table adapted,  from [50]  

 

 

1.2.1. Risk factors 

 

 The presence of an ET implies the impairment of the mucociliary clearance of 

secretions, the pooling of subglottic secretions around the cuff and it is considered an 

important risk factor for the development of VAP, mainly due to the development of a biofilm 

laden with bacteria within the ET tube[52]. Few studies have demonstrated that the 

predisposing risk factors for the development of the VAP are numerous and are divided into 

three groups related with the host, the hospitalization procedure and the antimicrobial 

therapy (Table 1.3)[34][53][54][55][56]. 

 

 

 

 

 

 

 

 

 

 

 

 

 Non-invasive positive-pressure ventilation  

 Semi-recumbent position to decrease aspiration of oropharyngeal secretions 

 Oral hygiene with chlorhexidine 

 Specialized ETs (subglottic secretion drainage; silver coated) 
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 Table 1.3- Risk  factors of VAP. Table adapted,  from[17]  

Related with host Related with hospitalization 

process 

Related with drug therapy 

 Advanced age  Bronchoscopy  Antacids 
c
 

 Burns  Emergency intubation 
b
  Excessive sedation 

 Chronic or preexisting 

pulmonary disease 

(tuberculosis, chronic 

obstructive pulmonary 

disease 
b
, bronchiolitis) 

 High frequency of antibiotic 

resistance in the hospital unit 

where the patient is 

hospitalized 
a
 

 Antibiotic therapy in the 

previous 90 days 
a
 

 Cigarette smoking  Enteral nutrition  H2-receptor antagonists 

 Coma  Endotracheal intubation  Intravenous sedatives 
b
 

 Gastric colonization  Gastric aspiration 
b
  Immunosuppressive drugs 

(corticosteroids) 
a
 

 Immunosuppressive 

disease 
a
 

 Frequent changes of the 

ventilator circuit 

 Neuromuscular blockers 

 Impaired consciousness  Hospitalization ≥ 5 days 
a
  Prior exposure to 

antibiotics, particularly to 

third-generation 

cephalosporins 

 Male gender  Long-term hospital and ICU 

length of stay 

 Proton pump inhibitors 

 Malnutrition  Long-term intubation  Stress ulcer prophylaxis 

 Neurological/neuromusc

ular disease 

 Multiple central venous lines 
b
  Red blood cells transfusions 

(immunomodulatory 

effects) 

 Organ failure  MV  

 Oropharynx colonization  Nasogastric tube  

 Post-operative acute 

respiratory failure 

 Transportation from ICU to 

other hospital sites 

 

 Post-surgical  Re-intubation 
c
  

 Post- traumatic  Supine body position  

 Septicemia  Thoracic surgery  

 Sinusitis  Tracheostomy 
c
  

 Trauma 
c
   

 Underlying disease, and 

its severity 

  

a
 Risk factor for MDR pathogens 

b
 Specific risk factor of early-onset VAP 

c
 Specific risk factor of late-onset VAP 
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 In addition, there are several sources of VAP pathogens that can be categorized as 

exogenous and endogenous relative to the patient. While the exogenous sources are 

commonly from aerosols of the contaminated air, medical devices (humidifier, ventilator 

circuit, catheter and bronchoscope), health professionals and other patients; oral, pharyngeal 

and gastric flora of the patient, are some fonts that symbolize the endogenous sources[57][58].  

 

1.2.2. Diagnosis of Ventilator-associated pneumonia 

 

 In general, the clinical diagnosis of VAP involves a combination of the clinical 

symptoms/signs, chest radiography, and microbiological data[59]. Despite several clinical 

methods have been recommended, none of the methods have the accurate sensitivity or 

specificity to exactly identify this disease when compared to the demonstration of pneumonia 

on histological samples obtained by either biopsy or necropsy[60]. Clinical symptoms and signs 

include variations in sputum or tracheal secretions in terms of purulence, color and/or 

increasing production; cough; temperature > 38 °C or < 36 °C; rales or bronchial breath sounds 

on examination and worsening oxygenation. Non-specific indicators of infection are obtained 

through laboratory findings including leukocytosis (> 12 × 109 leukocytes/L) or leukopenia (< 

4.0 × 109 leukocytes/L). Lastly, the development of new infiltrates or the presence of persistent 

and/or worsening infiltrate on chest radiography are signs for VAP presence[61][62]. 

 So, in the absence of a reference standard and the poor reliability of clinical criteria, 

the clinician needs to balance all factors, including the overall clinical status of the patient to 

take a treatment decision. In addition, respiratory tract sampling should be routinely 

conducted when there is a clinical suspicion of VAP via non-bronchoscopic or bronchoscopic 

techniques. Bronchoscopic sampling includes bronchoalveolar lavage (BAL) or protected 

specimen brush demonstrating superiority in relation to non-bronchoscopic techniques that 

include endotracheal aspirates and mini-BAL[63].  

 

1.2.3. Pathogenesis of Ventilator-associated pneumonia 

 

 There is a variety of microorganisms that cause VAP, including bacteria, fungi and 

viruses; and this disease may be due to a single pathogen or can have polymicrobial 

origin[34][64]. However, the fungi and virus are present in low incidence only when the immune 

system of the patients is weakened, increasing the magnitude of this health problem[31][34].  
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Figure 1.2- Pathogens causing VAP, together with their frequencies. Figure adapted, from [51]. 

 The composition of pathogens that causes VAP typically depends on the duration of 

MV[65][66]. 

 In general, early-VAP (typically occurring in less than 5 days after MV) is caused by 

pathogens that are sensitive to antimicrobials (Haemophilus influenzae, Streptococcus 

pneumoniae, methicillin-sensitive Staphylococcus aureus (MSSA) or Enterobacteriaceae) 

whereas late-onset VAP (occurring after 5 days of MV) is caused by MDR microorganisms, 

which are more difficult to treat and it encompasses MDR bacteria, such as P. aeruginosa, 

Acinetobacter species, methicillin-resistant S. aureus (MRSA) and extended-spectrum beta-

lactamase producing bacteria (ESBL))[27][67][68][69][70][71].  

 Furthermore, the patients with and without risk factors for VAP  infection with MDR 

microorganisms and the type of ICU population (i.e. medical, surgical and trauma) could also 

be associated with specific pathogens as the causative VAP agent[65][66][69][72][73]. Nevertheless, 

gram-negative bacilli are frequently involved in the pathogenesis of VAP accounting for 60 % of 

all VAP cases. Figure 1.2 summarizes the typical pathogens causing VAP[65] 

 

 

1.3. Monomicrobial and polymicrobial infections in Ventilator-associated 

pneumonia 

 

 Although mostly VAP infections are initiated by a single pathogen or virulence factor-

monomicrobial origin, currently the incidence of a complex milieu of microorganisms - 

polymicrobial origin is increasing[23][62][64][68]. These consortia of microorganisms typically 
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coexist as combinations of highly structured communities of bacteria, viruses, protozoans, and 

fungi attached to biotic and abiotic surfaces, such as mechanical ventilator, in VAP infections. 

Their architectures are facilitated by specific inter-microbial and microbial-host 

interactions[74][75][76]. The existence of mixed species population can contribute to a shift and 

decrease in the host immunity, promoting the colonization and subsequent infection by 

opportunistic pathogens that exploit unique niches in the polymicrobial environment[77].In 

addition, it has been reported that polymicrobial infections can change significantly the 

treatment and patient outcome, leading to that the necessary criteria for characterizing 

diagnosing and treatment these infections are still not well defined[78][79].  

 Pseudomonas aeruginosa and Candida albicans are example pathogens that have been 

reported in infections associated to VAP. 

 

1.3.1. P. aeruginosa 

 

 P. aeruginosa is a motile non-fermentative gram-negative bacilli belonging to the 

family Pseudomonadaceae. It is an opportunistic pathogen considered to be one of the main 

causes of NI in immunocompromised patients[80][81] and it is associated with late-onset VAP[38].  

 Throughout the history, P. aeruginosa received several names based on its 

characteristic blue-green coloration observed in culture. In 1850, Sédillot had reported for the 

first time the discoloration of surgical wound dressings associated with a transferable agent[81]. 

Fordos extracted the pigment responsible for the blue coloration in 1860, and in 1862 Lucke 

was the first to associate this infectious microorganisms to the rod-shaped morphology[82][83]. 

In 1882, Carle Gessard, a chemist and bacteriologist from Paris-France, discovered P. 

aeruginosa performing an experiment that identified the growth of this microbe in cutaneous 

wounds of two patients with bluish-green pus[84]. P. aeruginosa (Bacillus pyocyaneus) was 

reported as the causative pathogen of blue-green purulence in the wounds of patients has 

reported in several additional studies between 1889 and 1894[85]. The ability of invasion and 

dissemination of P. aeruginosa leading to severe acute and chronic infections was recognized 

by Freeman in 1916[86]. In 1960s, P. aeruginosa emerged as an important human pathogen[87]. 

The complete sequencing of a wild-type P. aeruginosa (PAO1) strain, achieved in 2000, has 

provided access to useful information about its pathogenicity and potential for resistance[88]. 

 Its adaptability to different environments is associated with the high proportion of 

predicted regulatory genes in P. aeruginosa genome in comparison to all other sequenced 

bacterial genomes[88][89]. P. aeruginosa is a non-fastidious microorganisms having a broad 

range of growth substrate and minimal nutrient requirements[90]. Moreover, it is tolerant to 
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high temperatures ≈50 °C and it is able of growing under aerobic as well as anaerobic 

conditions[91].  

 P. aeruginosa stands out as a threatening microorganism capable of causing severe 

invasive disease and trigger persisting infections nearly impossible to eradicate. Its 

pathogenesis is mediated by multiple bacterial virulence factors that facilitate adhesion and/or 

disrupter of host cell signaling pathways[92].  

 Several virulence mechanisms, as initial role in motility and adhesion to the 

epithelium, have been described for P. aeruginosa infecting airway epithelia. These are 

probably associated with subsequent tissue damage, invasion, and dissemination of this 

pathogen[93][94][95][96]. There are some virulence determinants that contribute to the 

development of the disease: type III secretion system (such as T3SS with four effector 

cytotoxins : ExoS, ExoT, ExoU and ExoY), type IV secretion system, quorum sensing (QS) and 

biofilm formation, lipopolysaccharide (LPSS) (such as Lipid A and O-polysaccharide), proteases 

(such as elastase and alkaline protease (AprA)), alginate, pyocyanin (PYO), exotoxin A (ExoA), 

flagellum and type IV pili and oxidant generation in the airspace[97][98][99][100][101].  

 Furthermore, P. aeruginosa is commonly found to be the first or second major 

pathogen causing VAP (22.8 %)[102][103] and it is the most frequently isolated gram-negative 

microorganism both at early- and late-VAP[104].  VAP caused by P. aeruginosa is associated to 

high morbidity and mortality in ICU and it is related with increased length of ICU stay and high 

treatment costs[105].  

 

1.3.2. C. albicans 

 

 C. albicans is typically a harmless eukaryotic commensal yeast that is member of the 

family Sccharomycetaceae[106]. It is an opportunistic fungal pathogen in humans and therefore 

it is easily found in indwelling medical devices (such as mechanical ventilator) mostly 

associated with biofilms[107][108][109][110][111][112].   

 Historically, C. albicans was discovery in year 400 B.C. by Greek physician, Hippocrates 

that identified a microbial infection caused by this pathogen[113]. But till late twentieth century 

it was not studied like any other model microorganisms[114][115][116]. In the 1970s and 1980s, 

some laboratories started working on C. albicans, and in the 1990s, a large number of yeast 

laboratories changed to study different aspects of C. albicans promoting the initiation of 

genome sequencing of the SC5314 strain in 1996. The completion and availability of genome 

sequence of C. albicans SC5314 occurred in 2004 allowing start rigorous research activities and 

expand the knowledge of this important pathogen[116][117][118].  
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 C. albicans is a dimorphic species that can grow as yeast or filamentous forms, and it is 

one of the only two Candida species capable of forming true hyphae[119][120]. Transitions 

between the two phenotypes can be induced in complex media, chemically defined media and 

serum and can be favored by temperatures above 35 °C and a pH ranging between 6.5 and 7.0 

or slightly alkaline[121][122][123][124].  

 It is predominantly diploid, but it may present aneuploidy since it exhibits a high 

degree of genome plasticity and reveals frequent losses of heterozygosity, as well as, gross 

chromosomal rearrangements. Though reproduction is predominantly clonal and under 

stressful conditions C. albicans can also utilize a parasexual cycle[125]. The ability of C. albicans 

to infect different niches at various anatomic sites of the host and express infection-associated 

genes is an essential step for the establishment of an infection with success[126].  The 

pathogenicity will depend on the several of virulence factors and fitness attributes presented 

by C. albicans: morphological transition between yeast and hyphal forms, expression of 

adhesins and invasins on the cell surface, contact sensing and thigmotropism, formation of 

biofilms, phenotypic switching and secretion of hydrolytic enzymes[126][127][128][129][130]. In 

addition, fitness attributes include rapid adaptation to fluctuations in environmental pH, 

metabolic flexibility, powerful nutrient acquisition systems and robust stress response 

machineries[130].  Studies about virulence factors of Candida species have shown that C. 

albicans is the most pathogenic microorganism in the Candida group[131][132] and it has the 

highest levels of virulence factors, which contributes to increased severity and persistence of 

infections and consequently difficult for eradication[133].  

 Although, generally, the etiology of VAP is typically bacterial, fungal airway 

colonization (such as by C. albicans) is a frequent finding in patients submitted to 

MV[134][135][136][137]. Even if Candida species infections are rare causes of VAP, mostly of these 

occur in immunocompromised patients[31][134]. Recent studies reported that critically ill patients 

with VAP, exhibit pulmonary C. albicans colonization in 57 % of these patients and means an 

independent risk factor for MDR super-infection associated with an increased risk of NP, 

prolonged length of ICU and mortality[134][138][139].  

 

1.3.3. P. aeruginosa- C. albicans polymicrobial infection 

 

 Rarely the microorganisms exist as single-species planktonic forms. Instead, they are 

frequently found in complex polymicrobial communities attached to biotic and abiotic sites, 

known as biofilms[140].  
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 Currently, the bacterial-fungal interactions are one example of polymicrobial infections 

growing with directly and indirectly influence of each other in several manners. The virulence 

of bacteria[141] or fungi[142] can also be altered within the polymicrobial consortium: for 

instance, bacterial factors can influence fungal growth or even its physiology[143]. Also, fungal 

factors can regulate bacterial behavior and survival[143]. In addition to antagonistic interactions 

(an association between two microorganisms that is detrimental to at least one of them and 

that is caused by the release of metabolites or cell components[144]), it is possible to occur 

beneficial interactions in mixed environments where different species are able to provide 

protection for each other against an attacking immune response or antimicrobial agent. Thus, 

these bacterial-fungal interplay contributes to the worsening health condition of the patient 

(Figure 1.3)[143]. 

 

 

 

 

 

 

 

 

 

 

 

 The particular association case of P. aeruginosa and C. albicans in ICU is frequently 

exhibited although their importance to human health is not yet completely understood[145][146]. 

Mixed species biofilms involving C. albicans and several pathogenic bacteria such as P. 

aeruginosa on the surface of medical devices (e.g. mechanical ventilator) and in some 

susceptible sites of the human body are critical for the development of infectious disorders[147].  

 VAP is the most commonly NI and approximately 25 % of all cases occur due to P. 

aeruginosa[65]. C. albicans is also highly represented in this niche[148][149]. So, the occurrence of 

P. aeruginosa and C. albicans in the respiratory tract not only increases the risk of developing 

VAP[138] but also interferes with VAP-associated mortality[150].  

 The environmental conditions are important factors to determinate the outcome of 

wide spectrum of interactions between P. aeruginosa and C. albicans (Figure 1.4).  

 

Figure 1.3- Survival curves for polymicrobial infections. Image reprinted, from [445]. 



Introduction 

Chapter I | 14 

 

 

 

 

 

 

 

 

 

 

 

 The ability of the bacteria to distinguish different fungal morphotypes is likely due to 

the specificity in the cell wall surface proteins such as[152][153]: 1) the mannoproteins located 

along the surface of filaments that promote the favorable acid-base conditions[154][155]; and 2) 

the P. aeruginosa chitin binding protein[156].  

 After attachment, P. aeruginosa are able to form a biofilm along C. albicans filaments 

but not on yeast cells[151]. This biofilm formation induces death of the fungal cell, caused by the 

action of two pseudomonal virulence factors: 1) a secreted haemolytic phospholipase C (PlcH) 

that degrades phosphatidylcholine and 2) redoxactive phenazines, which create highly toxic 

reactive oxygen species (ROS)[151][157]. Also, biofilm formation is essential for fungal killing in 

liquid cocultures[151]. The restriction in space during growth on agar plates leads to the 

production of phenazines by P. aeruginosa which induces toxicity for both forms of C. albicans, 

yeast and hyphae[157]. In vitro antagonism interactions are observed between P. aeruginosa 

and C. albicans in chronic infections, such as when bacteria encounter hyphae[158][159]. 

 P. aeruginosa mutants defective in flagellar motility promote a poor fungal 

colonization and a reduced capacity of killing. The bacterial growth is not capable of killing 

unless the mutant defective occurs in type IV pili, capable of forming large biofilms being able 

of killing defect[151]. Additionally, P. aeruginosa produces various enzymes and small molecules 

including PlcH, phenazines and the QS molecule 3-oxo-C12-homoserine lacton (3OC12HSL), 

which have effect in the biology and survival of C. albicans. PlcH is a secreted lethal enzyme 

once degrades phospholipids of eukaryotic cells, namely fungi[160][161][162][163]. For this reason, a 

mutant defective in PlcH production is attenuated in killing fungal filaments[151]. P. aeruginosa 

also secretes small molecules such as redox-active phenazines that inhibit filamentation and 

biofilm development in C. albicans[164][165]. At low concentrations, phenazine methosulfate (an 

analog of P. aeruginosa 5MPCA) and PYO suppress filamentation and simultaneously increases 

Figure 1.4- Interactions between P. aeruginosa and C. albicans. Image reprinted, from [468]. 
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the fermentative metabolism and glycolysis modifying the Krebs cycle and affecting the 

production of metabolites associated with amino acid metabolism[164][165]. Furthermore, recent 

studies indicate that the extent of metabolic inhibition is directly associated with the extent of 

inhibition of morphology within the consortium[164]. Like phenazines, the P. aeruginosa QS 

molecule, 3OC12HSL, inhibits fungal germination and stimulates the filament-to-yeast 

transition through a different pathway where the adenylate cyclase presents as the direct 

target[166][167][168].   

 C. albicans also secretes a QS molecule, farnesol (FOH), which regulates its own 

morphology repressing hyphal growth regardless of the conditions that normally induces the 

filamentation (such as serum and 37 °C)[169]. Like PYO, the presence of FOH is also associated to 

changes in C. albicans metabolic pathways[170] and consequently changes in fungal metabolism, 

which indirectly affects other microorganisms in the consortium. Furthermore, FOH (which has 

limited structural similarity to 3OC12HSL) also represses the filamentation and promotes the 

filament-to-yeast transition through the inhibition of adenylate cyclase[166][169][171][172][173][174]. 

FOH also inhibits the production of the Pseudomonas quinolone, signal that positively 

regulates phenazine synthesis, thereby reducing phenazine production[141]. On the other hand, 

it can restore levels of butyryl homoserine lactone, which in turn activates the LasT-regulated 

components capable of inducing phenazine biosynthesis[175]. These data show that C. albicans 

may contribute for the regulation of P. aeruginosa virulence pathways, once FOH also inhibits 

bacterial swarming (rapid and coordinated movement of bacterial cells across a surface) 

motility. Thus, high FOH levels are associated with bacterial switch from a motile to sessile 

lifestyle[168]. 

 

1.4. Biofilms in Ventilator-associated pneumonia 

 

 Biofilms are the most prevalent growth form of microorganisms and are commonly 

defined as structurally complex communities of cells attached to an inert (e.g. medical devices 

such as mechanical ventilator) or living (e.g. lung tissue) surface and embedded in an 

extracellular matrix (ECM) that is composed by substances produced by microbial 

cells[176][177][178][179][180][181][182][183][184]. The model for biofilm formation (Figure 1.5) is extremely 

complex and so far, nine distinct stages have been identified. 
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 In the presence of changing environmental conditions this structure provides an 

advantageous strategy for survival and adaptation of microorganisms: 1) defense and 

protection from the hostile host environment; 2) preferential colonization in areas that are 

rich in nutrients; 3) benefits associated with cooperativity as part of a community, and 4) for 

some species it is their normal default growth mode[178][182][185][186].  

 The presence of biofilms in medical devices has some major consequences such 

chronic infections. It is estimated that up to 80 % of all infections worldwide are biofilm-

related being almost impossible to eradicate given the inherent resistance to antimicrobial 

agents[187][188].  

 The mucus accumulation, the impairment of host defense mechanisms and the 

introduction of pathogens in sterile airways are favorable conditions for the development of 

Figure 1.5- The nine stages of biofilm formation. Image adopted, from [469]. 
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biofilms on the distal part of the ET in mechanically ventilated patients[189][190][191][192][193][194]. 

Besides, there is correlation between the presence of a biofilm on the ET and the development 

of VAP[195][189][196]. However, although VAP development, the biofilm formation on ET also 

promotes (partial) ET obstruction[190][197][198], subglottic stenosis[199] and bronchopulmonary.  

 It is important to refer that P. aeruginosa plays an important role in the development 

of VAP. Several studies have been frequently identified P. aeruginosa in ET biofilms. 

Additionally, it was already suggested that C. albicans is also one of the causative agents of 

VAP biofilms[31][58][62][68][189][190][192][194][200][201][202][203][204][205][206][207][208][209][210].Nonetheless, the 

precise mechanism of Candida species in the development of VAP is not well understood once 

it is hard to distinguish between harmless colonization of Candida species in the airways and 

the development of an infection associated to its presence[23][211].  

 The formation of VAP biofilms on ET may be associated with a polymicrobial nature. A 

model for the development of ET biofilms was suggested based on literature data (Figure 1.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

At first, the leakage occurs at the ET cuff and the nasopharyngeal secretions 

(containing oral bacteria) leach out and it goes into the trachea and accumulates at the distal 

end of the ET. Then, the bacterial adhesion is favored by ET surface and due to nutrients 

availability in the secretions[192][202][212]. In fact, ET represents a source for the development of 

biofilms by bacteria present in nasopharyngeal secretions and it is predominantly composed of 

respiratory secretions[202] and water (90 – 95 %)[210]. The typical oral flora bacteria are generally 

present in the respiratory secretions and responsible for initial adhesion to the ET[213]. The 

Figure 1.6- Model of biofilm formation on the distal end of ET. Image reprinted, from [470]. 
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coaggregation between primary colonizers with a variety of oral bacteria enables them to start 

colonization initiating the formation of biofilms[192][213][214]. Other bacteria are attracted by the 

primary colonizers[215] and subsequently the latest colonizers attract others acting as a switch 

between early and late colonizers[213][216][217][218][219]. Finally, nosocomial pathogens adhere onto 

the biofilm formed by the oral bacteria, where the interactions between oral bacteria are 

mediated by receptors and adhesins[213]. The coaggregation of diverse microbial species 

enhances the virulent characteristics of certain bacteria as well as increases their tolerance to 

antimicrobials[203].  

Overall, biofilm formation of oral microorganisms on ET represents a favorable 

environment for the adherence of potential respiratory pathogens such as P. 

aeruginosa[203][204].  

 

1.5. Ventilator-associated pneumonia antimicrobial treatment 

 

 Selecting the appropriate antimicrobial and a therapy initiated as early as possible is 

critical to reduce VAP’s associated mortality[23][220][221]. However, this depends on the duration 

of MV, whereas late-onset VAP (> 4 days) can be treated with broad-spectrum antimicrobials; 

early-onset VAP (≤ 4 days) requires a limited spectrum antimicrobials[23].  

 The choice of empiric therapy is influenced by important factors, including institutional 

or unit-specific antibiograms and patient risk factors. Prior cultures or colonization data, 

duration of MV, prior exposure to other antimicrobials and severity of the illness are essential 

information to guide optimal dosage of initial empiric therapy[23][50]. Although, there is no 

universal regimen for VAP treatment, some recommended therapies for VAP treatment stand 

out. The most common antimicrobial treatments in early-onset VAP are[23][222][223][224]: 

 The second or third generation cephalosporin (e. g., ceftriaxone: 2 g daily; cefuroxime: 

1.5 g every 8 h; cefuroxime: 1.5 g every 8 h); 

 Fluoroquinolones (e. g., levofloxacin: 750 mg daily; moxifloxacin: 400 mg daily); 

 Aminopenicillin + beta-lactamase inhibitor (e. g. ampicillin + sulbactam: 3 g every 8 h); 

 Ertapenem (1 g daily). 

 For late-onset VAP the following are used: 

 Cephalosporin (e. g., cefepime: 1–2 g every 8 h; ceftazidime 2 g every 8 h); 

 Carbepenem (e. g., imipenem + cilastin: 500 mg every 6 h or 1 g every 8 h; 

meropenem: 1 g every 8 h); 
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 Beta-lactam/beta-lactamase inhibitor (e. g., piperacillin + tazobactam: 4.5 g every 6 h) 

+ aminoglycoside(e. g., amikacin: 20 mg/kg/day; gentamicin: 7 mg/kg/day; tobramycin: 

7 mg/kg/day); 

 Antipseudomonal fluoroquinolone (e. g., ciprofloxacin 400 mg every 8 h; levofloxacin 

750 mg daily) + coverage for MRSA (e. g., vancomycin: 15 mg/kg every 12 h); 

 Linezolid (600 mg every 12 h). 

 It is important refer that optimal dosage includes adjusting for hepatic and renal 

failure. Trough levels for vancomycin (15 – 20 mcg/ml), amikacin (< 5 mcg/ml), gentamicin (< 1 

mcg/ml) and tobramycin (< 1 mcg/ml) should be measured frequently to avoid untoward 

systemic side effects. All recommended doses are for intravenous infusion. Usual duration of 

therapy is 8 days unless treatment is for MDR microorganisms, in which case treatment will be 

for 14 days. As such, several options, which includes aminoglycosides, antipseudomonal 

carbapenems, antipseudomonal cephalosporins, fluoroquinolones, antipseudomonal 

penicillins + b-lactamase inhibitors, aztreonam, fosfomycin and also polymyxins are 

antimicrobial therapies used in pseudomonal coverage[225]. The polymyxins are being 

increasingly used as rescue therapy for infections due to the few novel antimicrobial agents[226] 

and an increasing incidence of infections caused by MDR gram-negative microorganisms such 

as P. aeruginosa[227]. These antibiotics are classified into four major groups based upon their 

intracellular target and their mechanism of action (Figure 1.7)[228]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7- Classification of antibiotics by mechanism of action: cell wall 

synthesis inhibition (e.g. penicillin and derivatives, cephalosporins, 

carbapenems and glycopeptides) [471][472][473] ; cell membrane disruption ( e.g. 

the family of polycationic peptide antibiotics called polymyxins) [474][475][476]; 

nucleic acid synthesis inhibition (e.g. quinolones, rifampicin and 

sulphonamides) [477][478][479][480]; protein synthesis inhibition by targeting the 

ribosomal-RNA (rRNA) rich surfaces of ribosomes (e.g. tetracycline, 

aminoglycosides, chloramphenicol and macrolides) [481][482][483]. Image 

reprinted, from [228].  
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 The treatment of fungi in VAP, comprises several antifungals classes including azoles 

(such as fluconazole and voriconazole) and equinocandines (such as caspofungin)[229]. However 

in C. albicans infections associated to VAP, the antifungal therapy is not considered as a 

therapeutic option, since this pathogen is frequently found only in pulmonary secretions of 

critically ill patients. In this respect the C. albicans colonization may not play an important 

pathogenic role in the context of VAP[134][211]. Additionally, the European Society for Clinical 

Microbiology and Infectious Diseases (ESCMID) corroborates this idea, recommending that 

isolation of C. albicans and other Candida species from pulmonary secretions rarely requires 

treatment with antifungal therapy, once the presence of these pathogens represents usually 

the colonization of the airways, rather than pneumonia in immunocompetent 

patients[134][211][230]. 

Relatively to amphotericin B, a polyene antifungal, has been reported the gold 

standard in cases of serious and invasive Candida infections. Its potential is due to its 

remarkably low level of resistance amongst fungal species and its fungicidal mechanisms that 

account for broad-spectrum coverage[231].  These antifungal agents are classified according to 

their targets and mechanism of action in the antifungal therapy (Figure 1.8)[232].  

 

  

 

 

 

 

 

 

 

 

 

 

 

 The antimicrobial agents (antibiotics and antifungals) are also classified according to 

their pharmacokinetic/pharmacodynamic (PK/PD) index that corresponds to quantitative 

relationship between a PK parameter and a microbiological parameter. The three main PK/PD 

indexes are: the time during which the concentration of the drug was over the minimum 

inhibitory concentration (MIC) (T > MIC), the peak concentration and MIC ratio (Cmax/MIC) 

and the ratio of the 24 - h area under the concentration-time curve divided by the MIC 

Figure 1.8- Classification of antifungals by mechanism of action: fungal ergosterol synthesis inhibitors 

(e.g. azoles); ergosterol disruptors (e.g. polyenes);  nucleic acid synthesis inhibitor (e.g. flucytosine) and  

glucan synthesis inhibitors (e.g. echinocandins)[232]. Image reprinted, from [232]. 
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(AUC/MIC). PK/PD index provide information about the antimicrobial efficacy depending on 

the activity pattern of each antimicrobial[233].  

 Three major patterns of antimicrobial activity have been described:  1) Antimicrobials 

with concentration-dependent killing along with prolonged persistent effects. Cmax/MIC or the 

AUC/MIC ratios are PK/PD indexes for these antimicrobials, once the prolonged persistent 

effects protect against re-growth when active antimicrobials concentration decreases to below 

the MIC. This pattern has been described for all of the aminoglycosides, fluoroquinolones, 

polymyxins, daptomycin, metronidazole, echinocandins and polyenes[234][235][236]; 2) 

Antimicrobials with time-dependent killing and absence or very short persistent effects. The 

duration of time that active antimicrobial concentrations exceeded the MIC is the best PK/PD 

index associated with efficacy therapies. In general, it is expressed as the percentage of the 

dosing interval and it is only considered the fraction of antimicrobial not bound to proteins. 

This behavior is characteristic for a wide number of antimicrobials including b-lactam 

antimicrobials, such as penicillins, cephalosporins, carbapenems, monobactams and 

flucytosine[234][236]; 3) Antimicrobials with concentration-independent killing and prolonged 

persistent effects. The best PK/PD indexes for these drugs are Cmax/MIC or the AUC/MIC. As in 

the first case, it shows the prolonged persistent effects that protect against re-growth when 

active antimicrobial concentration decreases to below MIC. Tetracyclines, tigecycline, 

macrolides, azithromycin, clindamycin, linezolid and other oxazolidinones, chloramphenicol, 

trimethoprim, sulfonamides, vancomycin and azoles are examples for this pattern[234][235][236].  

 

1.5.1. Combination therapy 

 

 The importance of optimizing therapies for Pseudomonas species infections is a critical 

and imminent measure due their prevalent mortality rates comparatively with all of the other 

pathogens[11][237][238]. P. aeruginosa ability to simultaneously express several mechanisms of 

resistance increases the challenge of successfully treating it[239][240]. There is evidence 

supporting that the initial use of combination therapy is more effective than monotherapy for 

severe infections with gram-negative bacteria (e.g. P. aeruginosa), such VAP in the existing 

environment of MDR microorganisms. This happens because of the broad empiric coverage 

provided by two antimicrobial agents with different spectra of 

activity[241][242][243][244][245][246][247][248][249]. A multicenter, retrospective study reported that in 

cases of VAP associated to P. aeruginosa, rates of appropriate empiric therapy were higher in 

patients who were prescribed combination therapy than in those on monotherapy[250].  
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 However, many NIs, such as VAP, are associated to microbial biofilms and the 

persistence of chronic infections is attributed to the persistence of polymicrobial biofilms (e.g. 

bacterial-fungal origin)[251][252]. However, in most situations, traditional therapies are generally 

targeted at individual causative agents, not considering the polymicrobial cause or addressed 

to each members of microbial consortium. Yet, the standard treatment regimen employed for 

polymicrobial infections involves two or more antimicrobials (combination therapies) thus, 

promoting the effectiveness of antimicrobial therapies[251][253][254]. The use of antibiotics and 

antifungals simultaneously or sequentially, for prophylactic and therapeutic purposes, is a 

common clinical practice in severe infections in response to the emergence of resistance to 

the host immune system response and to antimicrobial therapy[255].  

 A combination therapy, applying anti-biofilm antimicrobials with traditional antibiotics 

to target cell growth, could be a better alternative to control biofilm-related infectious 

diseases such as VAP. In such combination therapy, the anti-biofilm drugs will promote 

planktonic growth, thus removing the additional community level resistance provided by 

biofilms and facilitating the targeting of pathogens at the cellular level by traditional 

antibiotics[256].  

 Nonetheless, it is essential to observe a synergistic effect between two antimicrobials 

in vitro against the pathogen responsible for the infection. The synergism may be associated 

with a significantly better outcome achieved with a combination, which is not synergistic for 

this pathogen. So, the synergistic activity of antimicrobials cannot be assumed and should be 

tested prior to treatment with a combination regimen[257]. The explanation which supports the 

initial use of combination therapy for infections with gram-negative bacteria is based on the 

following reasons:  (1) to broaden the empiric coverage provided by two antimicrobial agents 

with different spectra of activity (to ensure that the pathogen is adequately covered by at least 

one of the two components of the regimen), (2) to exploit the synergy observed in vitro 

between two antimicrobial agents compared to one (and hence improve clinical outcomes), or 

(3) to prevent or delay the emergence of resistance during antimicrobial therapy[258][259][260].  

Despite the intuitive appeal for use of these new approaches, strong evidences had proven 

that the use of two antimicrobials to treat infections with gram-negative bacteria is almost 

lacking, and may even be harmful for patient health. The addition of a second antimicrobial 

agent to treat a gram-negative microorganism that is susceptible to a single agent may actually 

lead to increased adverse effects including drug toxicity, costs healthcare and also 

antimicrobial resistance[261][262].  
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 Particularizing for P. aeruginosa- C. albicans infections in VAP, a combination therapy 

with antibiotics and antifungals is not considered, since Candida species colonization of 

respiratory-tract is not recognized as requiring antifungal treatment[230].  

 Although, the combination therapy is not used in clinical practice given the limitations 

associated, this has shown a high potential for treatment of VAP in future. As such, the 

optimization of this therapy, namely randomized controlled trials with robust study designs, 

are required to ensure successful treatment of these infections[263]. 

 

1.6. Antimicrobial resistance 

 

 As already mentioned, the occurrence of P. aeruginosa and C. albicans in the RTI not 

only increases the risk of developing VAP but also brings high morbidity and mortality rates in 

ill patients. According to WHO, the antimicrobial resistance of these microorganisms is one of 

the main sources associated with this phenomenon, leading to ineffective treatment which 

results in persistence and spreading of infections. These infections show as an expanding 

problem in medical field[89][264][265][266][267].  

 This antimicrobial resistance is the cause for microorganisms to fail to respond to 

standard antimicrobials, which relies on extending the duration of treatment and consequently 

increases of the health care costs[267]. Despite of administration of appropriate doses of 

antimicrobials for a specific duration of time, the high levels of resistance developed by several 

microbial strains promoted survival of the microorganisms[267]. The treatment failure occurs 

due to the antimicrobial resistance but also due to the suppressed immune function, 

poor/deprived antimicrobial bioavailability or increased rate of antimicrobial metabolism[267].  

 However, the understanding of numerous factors associated to the antimicrobial 

resistance such as: the increase of intrinsically resistant species; the accumulation of 

mutations that cause resistance; the swap of mobile resistance components and the extensive 

use of antimicrobials for treatment of VAP infections, is necessary to stand actual trends[98][268]. 

 Antimicrobial resistance can be classified as follows: 

 Primary resistance: occurs when the microorganism has never encountered the 

antimicrobial of interest in a certain host[267];  

 Secondary resistance: also known as “acquired resistance”; describes the resistance 

that only arises in a microorganism after an exposure to the antimicrobial 

agent[227][269]. It may further be classified as: 1) Intrinsic resistance; refers to the non-

sensitivity of all microorganisms of a single-species to certain common first-line 
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antimicrobials, which are used for treatment of diseases based on the clinical evidence 

of the patient. It is also known as MDR[227]; 2) Extensive resistance; defines the ability 

of microorganisms to withstand the inhibitory effects of at least one or two most 

effective antimicrobials. Also mentioned as extensively drug resistant- XDR, this 

seemed to arise in patients after they have undergone a treatment with first line 

antimicrobials[270][271].  

 Clinical Resistance, defined when the infecting microorganism is inhibited by a 

concentration of an antimicrobial agent, which associated with a high likelihood of 

therapeutic failure or reappearance of infections due to impaired host immune 

function. In other words, the pathogen is inhibited by an antimicrobial concentration 

that is higher than could be safely achieved with normal dosing[227]. 

 Generally, the antimicrobial agent acts on the microorganism by inhibiting a metabolic 

pathway like nucleotide synthesis that leads to the inhibition of deoxyribonucleic acid (DNA)/ 

ribonucleic acid (RNA) synthesis and protein synthesis, disruption of the cell membrane or by 

competing with the substrate of any enzyme involved in cell wall synthesis (e.g., chitin 

synthase)[272]. So, the microorganisms have evolved in terms of a multitude of resistance 

mechanisms in order to overcome the effectiveness of antimicrobials, surviving and persisting 

in sites of infections (Figure 1.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9- Mechanisms of MDR. Image reprinted, from [267]. 
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1.6.1. Resistance mechanisms associated to biofilms 

 

 Cells in a mature biofilm (sessile cells) are phenotypically and physiologically different 

from non-adhered (planktonic cells) cells. One of the characteristics of sessile cells relies on 

the requirement of much higher concentrations of antimicrobial agents to kill these cells in 

compared with the planktonic one[188]. Biofilms exhibit greater antimicrobial resistance in 

comparison with planktonic cells (up to 10 - 1000 fold more) and this could be the explanation 

for frequent therapeutic failure of antimicrobials against biofilm 

infections[273][183][274][275][276][277][278].   

 A complex and multifactorial mechanism is involved in biofilm resistance to 

antimicrobials agents (Figure 1.10). 

 

 

 

 

 

 

 

 

 

 

 

 The mechanisms of biofilm resistance to antimicrobials agents include: 

 Failure of antibiotics to penetrate ECM biofilm: the ECM function as a structure 

providing protection to the cells in the biofilm acting as a barrier, and is considered 

one of the causes associated to antimicrobial resistance, where the antimicrobial 

agents may be prevented from penetrating the biofilm. These antimicrobials can be 

prevented from penetrating if they bind to components of the biofilm matrix or to 

microorganism membranes[279][280]. Positively charged antimicrobials that bind to 

negatively charged biofilm matrix polymers delay their penetration through biofilm. 

Additionally, biofilm protect themselves from antimicrobials through meeting with 

retention places on medical devices. Furthermore, the selection of resistant 

microorganism increases due to the high density of microorganisms in biofilms under 

pressure from antimicrobials by enhancing horizontal gene transfer and the frequency 

Figure 1.10- Representation of the resistance mechanisms of  biofilms. Image reprinted, from [256]. 
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of mutation[281]. Recently studies have reported the role of biofilm polysaccharides in 

the protection of the bacterial and fungal biofilm against antimicrobials[282]. 

Retardation of the antimicrobial penetration rate can also induce expression of genes 

that mediate resistance within the biofilm[283]. 

 Slow growth rate: multiple microcolonies in the biofilm induce a metabolically 

heterogeneous microorganism population[185][284]. In certain environments, local 

diffusion gradients are created for promoting anoxic and acidic zones in the interior of 

the biofilm[285]. In general, zones that are nutrient-deficient can develop stationary 

phase-like dormant cells, which may be responsible for antimicrobials resistance of the 

biofilm[279][286]. In addition, it is thought that limited penetration of nutrients rather 

than restricted access for antimicrobials contribute to the general resistance seen in 

biofilms[252]. 

 Altered metabolism: cells with various genotypes and phenotypes coexist within the 

biofilm population. Thus, this causes expression of distinct metabolic pathways based 

on the local environmental circumstances in the biofilm. Studies have shown that 

biofilms are heterogeneous structures with three chemical patterns that correspond to 

gradient of antimicrobials with differences in concentration from outside to inside the 

biofilm. The metabolic activity of microorganisms is higher in the external part of the 

biofilm and lower in the internal part leading to a reduced susceptibility to 

antimicrobials[279][287][288]. The metabolic intermediates pattern indicates a greater 

aqueous phase concentration between the boundary of the biofilm[289]. The limited 

oxygen and nutrient penetration due to their consumption by microorganisms present 

are factors causing this difference of physiologic activity[279]. In a biofilm, the 

antimicrobial tolerance can occur through nutrient deprivation, which causes slow 

bacterial growth or starvation[290][291]. Numerous antimicrobials target mechanisms 

occurring in the growth of microorganisms (such as replication, transcription, 

translation and cell wall synthesis). The increase of the antimicrobials tolerance will 

occur in biofilm with low metabolic activity located in the internal part of biofilms and 

not in the external part, thus compromising the antimicrobial penetration[292].  

 Persister cells: after prolonged exposure (or overdose) to antimicrobials, some 

microorganisms exhibit a small percentage of the viable cell population, which are 

denoted by persister cells. This is a small subpopulation of microorganisms that has 

entered in a slow-growing or starving state, temporarily stopping the replication for 

the survival of the community[293][294]. Persister cells survive to doses of antimicrobials 

that generally kill normal cells. The reduced metabolic rates of these cells make them 
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more resistant to antimicrobials compared to the active metabolic ones- exponential 

growth-phase microorganisms. Once antimicrobials must work on growing cells to 

destroy them, the hibernating cells can outlast the antimicrobials and contribute to 

the persistent infections principally in sites where immune components are limited, 

such as in biofilms[293]. It seems that biofilms work as protective habitat for persisters 

cells[295][296][297][298] and typically these cells present the down regulation of energy-

producing and biosynthetic functions exhibiting enhanced toxin/antitoxin (TA) systems 

induced by starvation or DNA damage. In biofilms, several TA systems have been 

associated with high numbers of multidrug tolerant persister cells. However this 

tolerance is restricted to specific antimicrobials and TA. Therefore, this demonstrates 

that persister cells may be produced by multiple pathways[299]. However, persister cells 

can resuscitate and even revert to a growing state following antimicrobial therapy, 

thereby repopulating the biofilm and initiating a relapse of the infection. Additionally, 

persister cells do not produce offspring resistance to the antimicrobial agent and are 

capable of growing in the presence of the antimicrobial while maintaining the same 

MIC. The main evidences of the existence of persistent cells in biofilms are: a) 

presence of biphasic dimension in biofilms; b) expression of persistence gene; c) use of 

bacteriostatic antimicrobials inhibit the growth of sensitive cells which contribute to 

persistent cell growth and preservation of biofilm; d) when therapy is withdrawing the 

therapy of the biofilm reshapes[290][300]. 

 Oxygen gradients: the oxygen tension in the depth of the biofilm is low, such as been 

found in P. aeruginosa. Hypoxia promotes antimicrobial resistance by altering the 

composition of multidrug efflux pumps[301]. Efflux pumps are protein structures that 

are able to expel compounds such as antimicrobials. The presence of these pumps can 

be permanent (constitutive expression) or intermittent (expression can be induced) 

and these structures may be specific to a substrate or similar compounds and may be 

associated with MDR[302][303].  The oxygen limitation accounts for 70 % (depending on 

the antimicrobial) or more of all the antimicrobial tolerance in P. aeruginosa biofilms 

grown in vitro for 48 h, where most of the cells occupied an oxygen-limited stationary 

phase[304]. In addition, the anaerobic environment within biofilms will most likely affect 

aminoglycoside antimicrobial activity due to the downregulation of energy metabolism 

genes[305] and by triggering changes in gene expression[306].  

 Other mechanisms may compromise the antimicrobial treatment of biofilm-induced 

disease[307] such as: 

 Antimicrobial resistance determinants in biofilm;  
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 β-Lactamases: substances from neighboring biofilm cells may protect against 

antimicrobials; subpopulations in biofilm- cells that are metabolic active in the biofilm 

and also important for development of antimicrobials resistance but that depend on 

the involvement of different genes;  

 DNA: ECM contains large amounts of extracellular DNA (eDNA). Although, sub 

inhibitory concentrations of DNA in biofilms resulting in protection of the 

microorganisms from antimicrobials. The reduced biofilm activity to positively charged 

antimicrobials may also be related to the cation chelating properties of eDNA[308];  

 Proteins: some are preferentially expressed in biofilm. Biofilm development manly 

their growth and maturation is accompanied by a progressive increase in protein 

production related to antimicrobial resistance and virulence[309]; 

 Stress: biofilm resistance may simply reflect biofilm cells responding to stress (scarcity 

of nutrients, excess of waste products, hypoxia, and antimicrobials), which may induce 

mutations in biofilms. Oxidative compounds in the biofilm are also thought to favor 

the overexpression of some efflux proteins that are involved in the extrusion of 

antimicrobials from microorganism, thereby causing antimicrobial resistance[310];  

 Sub-MIC: it is likely that some cells in biofilm are exposed to sub-MIC levels of 

antimicrobials during therapy due to falling concentrations by dilution or diffusion 

gradients for antimicrobials in biofilm. Sub- MIC of antimicrobials can induce 

mutagenesis, which confers resistance[311]; 

 Swarming: the microorganisms with the ability to swarm reflect a social multicellular 

behavior inducing antimicrobial resistance[312];  

 Mutation: the biofilm growth mode can lead to oxidative stress, which may cause 

enhanced mutability in biofilms[313][314]. Mutations in cells include alteration of 

antimicrobial targets, increases in the expression of drug efflux pumps, and reduction 

in the permeability of the cells due to alterations in the outer membrane and in the 

action of modifying enzymes[282];  

 QS: it is a biofilm-specific mechanism, which regulates several factors that contribute 

to biofilm formation and persistence, once inhibits the penetration of some 

antimicrobials into the biofilm[292]; 

 Genetic transfer: the biofilm might be ideal for horizontal gene transfer[315] and this 

can make biofilm a reservoir for antimicrobial resistance genes. The transfer of DNA 

occurs within the biofilm community by three major mechanisms: transformation, 

transduction and conjugation[316] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAPTER II 
METHODOLOGY 

 

 

 

 

C 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methodology 

Chapter II | 31 

2.1. Microorganisms and Culture Conditions 

2.1.1.  Microorganisms  

  

 In order to create a polymicrobial environment, such as the one present in VAP, all 

assays were performed with two different reference microorganisms, a yeast strain of C. 

albicans (SC5314) and a bacterial strain of P. aeruginosa (PAO1). 

 

2.1.2. Microorganisms preservation 

 

 Sabouraud Dextrose Broth (SDB; Liofilchem®, Italy) medium was used for C. albicans 

and Tryptic Soy Broth (TSB; Liofilchem®, Italy) medium for P. aeruginosa. Both strains were 

properly stored at -80 °C ± 2 °C in criovials containing the respective growth medium 

supplemented with 20 % (v/v) glycerol.  

 Prior to each experiment, bacterial cells were thawed from the frozen stock solutions 

and subcultured on Tryptic Soy Agar (TSA; Liofilchem®,Italy) plates. On the other hand, the 

yeast cells were thawed from frozen stock solution and subcultured on Sabouraud Dextrose 

Agar (SDA; Liofilchem®,Italy) plates. Both plates were incubated aerobically at 37 °C for 18 - 24 

h in static conditions. Afterwards, both agar plates were storage at 4 °C for a maximum period 

of two weeks. 

 

2.1.3. Culture media and buffers 

 

 Pure liquid culture of P. aeruginosa was grown in TSB, while C. albicans was grown in 

SDB. In order to distinguish the different microorganisms, several media were prepared as 

following: 

 Tryptic Soy Agar (corresponding to TSB supplemented with 1.2 % wt/v  agar) was used 

as non-selective culture medium for P. aeruginosa; 

 Sabouraud Dextrose Agar (corresponding to SDB supplemented with 2 % wt/v agar) 

was used as non-selective growth medium for C. albicans; 

 Pseudomonas Isolation Agar (PIA; Sigma- Aldrich, St. Louis, MO, USA) was used as 

selective growth medium for specific isolation of P. aeruginosa from mixed cultures of 

P. aeruginosa and C. albicans; 
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 SDA supplemented with 30 mg/L gentamicin  (gent; Sigma- Aldrich, St. Louis, MO, USA) 

was used as selective culture medium for specific isolation of C. albicans from mixed 

cultures of P. aeruginosa and C. albicans. 

 

  All growth culture media were sterilized in a steam autoclave at 121 °C for 20 min, at 1 

atm, immediately after addition of all components. 

 Furthermore, RPMI 1640 medium (Gibco® by life technologies TM, Grand Island, NY, 

USA) adjusted to pH 7.0 was used to prepare antimicrobial agents working solutions, 

planktonic and biofilm assays. This culture medium was sterilized by membrane filtration 

process using a 0.22 µm and stored at 4 °C. 

 Unless otherwise stated, sterilized distilled water was used in all rinsing steps. To 

prepare the stock solutions of all antimicrobial agents it was used ultrapure (UP) sterile water. 

 

2.1.4. Preparation of microbial suspensions 

 

 In order to prepare the microbial suspensions for each assay, 3 to 4 colonies of P. 

aeruginosa and C. albicans (from TSA and SDA plates, respectively) were collected and 

inoculated in 15 mL of TSB and SDB, respectively for 12 - 18 h at 37 °C in a horizontal shaker 

with a constant agitation of 120 rpm. 

 Subsequently, both suspensions were harvested by centrifugation at 3000 g for 10 min 

at 4 °C to recover the cells. The recovered cells were washed twice with sterilized distilled 

water and re-suspended in 5 mL of RPMI 1640 medium for further analysis.  

 

2.1.5. Antimicrobials agents 

 

 Three clinically relevant antibiotics (tobramycin, meropenem and ciprofloxacin), a 

clinically important antifungal agent (amphotericin B) and two different antimicrobials 

peptides (colistin and polymyxin B), were used throughout this study as stated below:  

 Tobramycin (ToB), a narrow-spectrum antimicrobial from aminoglycosides drug 

class[317]; 

 Meropenem (Merp), an ultra-broad-spectrum antimicrobial from carbapenem 

class[317]; 

 Ciprofloxacin (CIP), a broad-spectrum antimicrobial from fluoroquinolones drug 

class[317]; 
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 Colistin (CoL) and polymyxin B (PolyB) a relatively narrow-spectrum antimicrobials 

(activity against most gram-negative aerobic bacilli), from polymyxins drug class[317]; 

 Amphotericin B (AmB), a broad-spectrum antimicrobial from polyene drug class[318]. 

 

 While antibiotics and antimicrobial peptides were employed in the current study due 

to their use in health clinics, aiming to treat infections caused by P. aeruginosa, the antifungal 

was used due to its relevance in cases of serious and invasive Candida infections. 

 All antimicrobials were purchased from Sigma-Aldrich, with exception of PolyB from 

Biochrom GmbH, Berlin, Germany and Merp from USP®, RockVille, MD. 

 Stock solutions of all antimicrobials were prepared in UP sterile water in a 

concentration of 5000 mg/L. ToB and AmB were diluted in UP sterile water preparing a 

solution of 1000 mg/L. All stock solutions were stored in the freezer (-20 °C) and used for 

preparing the adequate dilutions for further assays. For susceptibility testing, antimicrobials 

were serially two-fold diluted in RPMI 1640 medium. 

 

2.2. Planktonic assays 

 Determination of minimum inhibitory concentration (MIC) and 

minimum microbicidal concentration (MMC) 

 

 In this experiment, the MIC for both strains and the MMC for P. aeruginosa (MBC- 

minimum bacterial concentration) and C. albicans (MFC-minimum fungicidal concentration), 

were determined in accordance with the European Committee on Antimicrobial Susceptibility 

Testing (EUCAST) standards[319]. 

 The antimicrobial work concentrations (diluted antimicrobials in RPMI 1640 medium) 

ranged from: 

 

 0.031 to 16 mg/L for AmB; 

 0.031 to 512 mg/L for ToB and Merp; 

 0.031 to 1024 mg/L for CoL, PolyB and CIP.  

 

 All antimicrobial agents’ concentrations were used to determine the MIC of both 

microorganisms throughout this study, under single and in mixed planktonic cultures. 

 Briefly, the optical density (OD) at 640 nm (OD640) of bacterial suspension was 

measured and the yeast suspensions were enumerated using a neubauer counting chamber. A 
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cellular concentration of 1 × 106 cells/mL was prepared for both strains. Then, in each well of a 

sterile 96-well round-bottom polystyrene (PS) microtiter plates (Orange Scientific, Braine-

l’Alleud, Belgium), 100 μl of antimicrobials in double concentration of the final concentration 

desired were dispensed in the wells. Then, each well containing 100 μL of diluted antibiotic 

agent in RPMI 1640 medium, a volume of 100 μl of each cell suspension in RPMI 1640 medium 

(in case of mixed culture was added 50 μl of P. aeruginosa inoculum and 50 μl of C. albicans 

inoculum) was added. In one of the wells, only 200 μL of RPMI 1640 medium was added for 

the negative control and for the positive control was added 100 μL of RPMI 1640 medium and 

100 μL of each desired cell culture. Therefore, the final inoculum concentration was adjusted 

to 5 × 105 cells/mL for P. aeruginosa and 5 × 105 cells/mL for C. albicans. All 96-well round-

bottom plates were incubated at 37 °C for 24 h in static conditions. 

 After incubation, the MIC was obtained by reading the OD640 of the planktonic cell 

fraction. Alternatively, for some cultures, MICs were obtained by visual observation of the 

turbidity gradient. This turbidity shows the microorganisms capacity of growing as a planktonic 

population in the presence of antimicrobials. The minimum concentration where growth 

inhibition occurs is equivalent to the MIC value for most microorganisms[273][320].It is important 

to refer that after antimicrobials exposure and prior OD640 readings, the content of the wells 

(planktonic suspension) was transferred to new plates, in order to prevent interference by 

biofilm-cells in the bottom of the wells.  

 The enumeration of colony forming units (CFUs) was performed for determination of 

the MMC values (corresponding to the lowest concentration of an antimicrobial that had 

resulted on 99 % killing of planktonic microorganism.). Though, 10 μL of culture medium was 

collected from the wells of the microdilution trays after incubation and were plated in normal 

and selective agar plates, according to the microorganism in study (section 2.1.3). The lowest 

antimicrobial concentration that yielded no colony growth after 12 - 24 h at 37 °C in static 

conditions was documented as the MMC. 

 

Checkerboard microdilution assay 

 

 In order to determine the interaction between the antimicrobials, one of the two most 

common methods of synergy testing - the checkerboard microdilution assay - was performed. 

There has been interest in the use of synergy testing to provide to the clinicians the suitable 

antimicrobial combinations. This is extremely important in order to expand the spectrum of 

activity of individual agents. Mostly, it has been employed for patients with infections 

associated P. aeruginosa[317]. 
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 The checkerboard microdilution assay was performed with two agents combined from 

different antimicrobial classes in serial two-fold increasing concentrations. 

 In this study, the combinations of antimicrobials and their concentrations range were 

tested as follow described: 

 

 0.016 to 4 mg/L AmB and 0.016 to 1024 mg/L PolyB or CoL for C. albicans culture and 

mixed culture (P. aeruginosa + C. albicans); 

 0.016 to 128 mg/L ToB and 0.016 to 512 mg/L PolyB or CoL for P. aeruginosa culture 

and mixed culture (P. aeruginosa + C. albicans); 

 0.016 to 4 mg/L AmB and 0.016 to 128 mg/L ToB for C. albicans culture, P. aeruginosa 

culture and mixed culture (P. aeruginosa + C. albicans). 

 

  In order to evaluate the potential synergy, the fractional inhibitory concentration (FIC) 

was calculated by comparing the MIC of each agent alone (mentioned in previous section) with 

the MIC of the agent in combination as shown in Figure 2.11. The methodology used to 

determine the MIC of antimicrobial combinations described in previous section, with 

exception that in each well was dispensed 50 μL of each antimicrobials agents, make up a final 

volume of 100 μL. Each antimicrobial agent was prepared four-fold above of the desired final 

concentration. 

 The synergy was defined as a four-fold reduction in the MIC of the agents alone 

compared with the MIC in combination. The breakpoint is to be interpreted based on the 

Figure 2.11- Calculation of the FIC. For ToB and AmB combination, the FIC value of 0.25 is considered as synergistic. Image 

adapted from[317]. 
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Table 2.1. Although the interpretation of FIC may vary from study to study, however synergy 

remains the same. 

 

      Table 2.1- Comparison of interpretative criteria FIC. Table adapted from[317] 

FIC Interpretation 1 Interpretation 2 

≤0.5 Synergistic Synergistic 

>0.5 – 1.0 Non-synergistic Additive 

1 – 4  Indifferent 

>4 Antagonistic Antagonistic 

 

2.3. Biofilm assays 

2.3.1. Biofilm formation 

 

 For biofilm formation, as mentioned previously in section 2.1.4, 3 to 4 colonies of each 

strain was ressuspended in 15 mL of TSB medium (P. aeruginosa) and SDB medium (C. 

albicans) at 37 °C and 120 rpm. 

 After cell incubation (12 - 18 h) the cultures were centrifuged at 3000 g for 10 min at 4 

°C and washed twice with sterilized distilled water. 

 Then, bacteria were ressuspended and diluted in RPMI 1640 medium to achieve a final 

concentration of 1 x 107 CFU/mL measured by ELISA microtiter plate reader with a wavelength 

of 640 nm  (Sunrise-Basic Tecan, Austria).  Additionally, yeast cells were enumerated using a 

neubauer counting chamber and were ressuspended to a final concentration of 1 × 107 

cells/mL in RPMI 1640 medium.  

 Dual-species biofilms encompassing the P. aeruginosa and C. albicans were evaluated 

in order to investigate the interplay of both pathogens on VAP infections.  

 The following conditions were tested:  

 Single-species biofilm composed by C. albicans; 

 Single-species biofilm composed by P. aeruginosa; 

 Dual-species biofilm composed by P. aeruginosa and C. albicans. 

 

 The methodology used to grow the biofilms was based on the microtiter plate test 

developed by Stepanovic et al.[321]. Biofilm formation assays were performed in sterile 96-well 

PS microtiter plates (Orange Scientific, Braine-l’Alleud, Belgium). Each well was filled with 200 

μL of each cell suspension, except to develop dual-species biofilms, where 50 % of cell 
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suspension of each microorganism (P. aeruginosa and C. albicans) was transferred into the 

same well of 96-well plates. Negative controls consisted of wells filled with 200 µl of culture 

medium only (RPMI 1640 medium). All plates were incubated aerobically on a horizontal 

shaker with a constant agitation (120 rpm) at 37 °C for 24 h and 48 h for biofilm formation. To 

form and maintain 48 h biofilms, 100 μl of culture medium was removed and an equal volume 

of fresh medium was added, after 24 h. After biofilm formation, all planktonic fractions in the 

wells were removed, and the wells were washed twice with sterilized distilled water to remove 

the non-adherent cells. Then, the results were assessed using different methods (see section 

2.3.3). 

 

2.3.2. Biofilm cells susceptibility tests to antimicrobial agents 

 

 In order to assess biofilm cells susceptibility, antimicrobial agents were added after 24 

h of biofilm formation. Several concentrations of the antimicrobial agents were prepared in 

RPMI 1640 medium. 

 

2.3.2.1. Effect of single antimicrobials 

 

 Biofilms (single- and dual-species) were formed after 24 h, as previously described in 

section 2.3.1. Afterwards, 100 μl of culture medium was removed and an equal volume of the 

respective antimicrobial concentration (1x, 2x and 4x the MIC of AmB, ToB, CoL and PolyB) was 

added to wells that were incubated for further 24 h at 37 °C in static conditions. In the positive 

control, 100 μl of RPMI 1640 medium was added, without cells.  

 After each incubation time, the culture medium was aspirated and the wells were 

washed twice with sterilized distilled water. The results were assessed using the CFUs 

enumeration method as described in section 2.3.3.1 

 

 In order to evaluate the therapeutic potential (antimicrobials effect along time), the 

antimicrobials concentration and methodology used follows the same as stated above, altering 

exclusively the time of incubation. Thus, the assay was repeated every 12 h up to 48 h.  

 Every 12 h, the culture medium was aspirated and the corresponding wells were 

washed twice. Further analysis of the CFUs enumeration was performed. To the remaining 

wells, 100 μl of culture medium was removed and an equal volume of fresh RPMI 1640 

medium (in positive control) or antimicrobial agents was added. 
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2.3.2.2. Effect of the combination antimicrobials′ 

 

 After performing the checkerboard microdilution assay, the following antimicrobial 

combinations were selected to be applied to the single- and dual-species biofilms: 

 

 AmB, ToB and PolyB (0.25 + 0.016 + 1 mg/L); 

 ToB and CoL (1 + 0.016 mg/L); 

 ToB and PoLyB (1 + 0.016 mg/L), (0.016 + 256 mg/L), (0.016 + 32 mg/L), (0.016 + 16 

mg/L) and (0.016 + 8 mg/L); 

 AmB and CoL (1 + 0.063 mg/L); 

 AmB and PoLyB (1 + 2 mg/L),  (0.016 + 256 mg/L), (0.016 + 32 mg/L), (0.016 + 16 mg/L) 

and (0.016 + 8 mg/L); 

 AmB and ToB (1 + 0.063 mg/L). 

 

 These combinations were selected based on the existence of synergism between the 

antimicrobial agents against the planktonic cells. The combinations showing the lowest 

concentration were selected. 

 Furthermore, this assay was performed according to the methodology mentioned in 

section 2.3.2.1, changing solely the amount of antimicrobial agent from 100 μl to 50 μl of each 

antimicrobial agent in the respective aforementioned concentrations, except for AmB, ToB and 

PolyB combination where it was added 33,3 μl of each antimicrobial agent. 

 

Kinetic effect 

 

 This assay was performed as already described in section 2.3.2.1. However, it is 

important to note that after 24 h-old pre- established dual-species biofilms, 50 µl of each 

concentration of antimicrobials was added in the selected wells, resulting the following 

combinations: 

 

 AmB, ToB and PolyB (0.25 + 0.016 + 1 mg/L); 

 ToB and PoLyB (0.016 + 256 mg/L), (0.016 + 16 mg/L) and (0.016 + 8 mg/L); 

 AmB and PoLyB  (0.016 + 256 mg/L), (0.016 + 16 mg/L) and (0.016 + 8 mg/L). 
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 The 24 h kinetic study was performed by sampling every 2 h up to 24 h after exposure 

to different concentrations of antimicrobials agents aforementioned. The analysis of the dual-

species biofilms at different time points was performed by CFUs enumeration.  

 

Post antimicrobial effect 

  

 This assay was performed as described in Kinetic effect section. All antimicrobial 

combinations used were the same, though exception made to the AmB and CoL combination 

(1 + 0.063 mg/L) combination, which was not tested in this assay. Also, this assay was only 

applied to dual-species biofilms.  

 This assay was performed every 24 h up to 120 h. It considers two cycles of 48 h each. 

Immediately after 24 h of pre-formation of biofilms and analysis by CFUs enumeration, 50 μl of 

each concentration of the antimicrobial combinations mentioned above was added to all wells. 

The plates were incubated at 37 °C for further 24 h in static conditions. After 24 h, the culture 

medium of wells was aspirated and the wells were washed twice with sterilized distilled water. 

Further analysis of these time points was done by the CFUs enumeration. To the remaining 

wells, 200 μl of fresh RPMI 1640 medium was added. Afterwards, the plates were incubated 

aerobically on a horizontal shaker with a constant agitation (120 rpm), at 37 °C, for another 24 

h. 

 The results were analyzed once more by CFUs enumeration and this cycle was 

repeated again.  

 

2.3.3. Biofilm analysis 

 

 CFUs enumeration, crystal violet (CV) method and scanning electron microscopy (SEM) 

were used to analyze the biofilms. To quantify the number of cultivable cells present in the 

biofilms, the CFUs were estimated. CV was carried out to quantify the total biofilm biomass by 

absorbance reading at 570 nm. SEM was conducted for structure observation of the biofilm 

formation. 

 

2.3.3.1. CFUs enumeration 

 

 To determine the number of CFUs, 200 μl of sterilized distilled water was added to 

each well and the adherent cells were detached from the surface by scrapping. The triplicates 
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were pulled in the same container. The total cell suspension was vortexed (to disrupt the 

biofilm matrix on the case of the biofilm formation assays). Subsequently, it was done serial 

decimal dilutions (usually up to 10-7) of the inoculum in sterilized distilled water and plated for 

CFUs counting. CFUs enumeration was estimated using the micro drop technique, in which 

droplets of 10 μL of each dilution were placed on agar plates and allowed to dry. The 96-well 

plates were incubated at 37 °C in aerobic and static conditions. P. aeruginosa was incubated 

overnight and C. albicans for 18 - 24 h, to enable the counting of colonies. 

 The results were then expressed as the number of CFUs per unit area (Log10 CFU/cm2). 

 

2.3.3.2. CV staining 

 

 The 96-well plates containing the biofilms were left to air dry for 30 min, and then 200 

μL per well of pure methanol (Valente e Ribeira Lda, Belas)  (100 % v/v) was added to each well 

in order to fix the biofilm- cells for 15 min. Following this, the liquid phase was removed and 

plates were left to dry for 5 min at room temperature until they were completely dehydrated. 

 Afterwards, biofilms were stained with 200 μL of 1 % (wt/v) CV (Gram colour-staining 

set for microscopy; Pro-Lab Diagnostics, UK) per well, which remained in contact with the cells 

for approximately 5 min at room temperature. 

 Then, CV was aspirated and the wells were washed twice with tap water to remove 

excess of stain and dried at room temperature for approximately 20 min until complete drying. 

Then, 200 μl of acetic acid (Fisher Scientific, UK) (33 % v/v) was added to each well in order to 

solubilize the CV bound to the adherent cells. 

 The quantitative analysis of biofilm production was performed by measuring the OD at 

570 nm (OD570), in each well, using an ELISA microtiter plate reader.  

 If the OD was higher than 1.0, the sample was diluted with acetic acid (33 % v/v). 

 

2.3.3.3. SEM 

 

 Prior to SEM observations, the biofilms attached to wells were gradually dehydrated 

by immersion in ethanol  (Farlab Comércio e Representações Lda,  Fânzeres, Portugal) 

solutions with increasing concentrations (20, 40, 50, 70, 90 % v/v) for 10 min and at last 100 % 

for 20 min. Subsequently, the wells-attached biofilms were transferred to the desiccator for 

complete dying. After this step, the walls of the wells were sputter-coated with gold and 

mounted on aluminum stubs with carbon tape. The examination of the surface structural 
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conformation of the biofilms was performed with a Leo SEM (Cambridge, FEI Company, USA). 

SEM observations were documented by the acquisition of photomicrograph.  

 

2.4. PNA FISH (Peptide nucleic acid fluorescence in situ hybridization) analysis 

 

 PNA FISH enable the detection and discrimination between bacterial populations. It 

also allows observing the in situ localization, distribution and arrangement of bacterial cells 

within the consortia, without biofilm disruption. In this way, it leads to a better understanding 

of the real bacterial interactions occurring in the polymicrobial biofilms[322]. 

 A classic FISH procedure contains three main steps: fixation, hybridization and 

washing, as demonstrated in Figure 2.2.  

 

 

 

Figure 2.2- Schematic representation of FISH methodology. Image reprinted, from[323]. 

 

 Firstly, the sample is fixed using an aqueous solution of chemical fixatives, such as 

formalin, paraformaldehyde and/or ethanol. Then, the bacterial sample is hybridized with a 

fluorescently labeled probe that is complementary to the 16S rRNA in the cells. After 

incubation, the probe has to be removed by a washing step, to provide specificity to the 

detection[324][325][326]. Samples can be visualized using fluorescent or laser scanning microscopy, 

where it is possible to identify the microorganisms, reveal their precise location in a three-

dimensional community, retaining cells morphology and integrity[326][327]. 

 

 

 



Methodology 

Chapter II | 42  

Biofilm formation on PS coupons 

 

 In order to apply PNA FISH analysis to biofilms, they have to be formed in PS coupons 

(1 × 1 cm) placed in the bottom of the wells of sterile 24-well PS plates (Orange Scientific, 

Braine-l’Alleud, Belgium). 

 Prior to this step, PS surfaces were immersed in a commercial detergent (Sonasol, 

Henkel Ibérica Portugal, Bobadela, Portugal), during 3 min, washed three times in UP sterile 

water and soaked for 3 h.  

 To promote biofilm formation on coupons, biofilm inoculum of P. aeruginosa and C. 

albicans were prepared as described in section 2.1.4. Afterwards, the biofilms were dispensed 

24-well plates containing the coupons. In case of single-species biofilms, these were dispensed 

at 1 mL of each strain. In dual-species biofilms (P. aeruginosa and C. albicans) were dispensed 

500 μL of each of the two strains. These biofilms were formed on such coupons for 24 h or 48 

h at 37 °C under agitation (120 rpm). 

 After 24 h and 48 h of biofilm formation, the PS surfaces of positive controls were 

washed twice with 1 mL UP sterile water and allowed to dry (~60 °C) for 15 min. The biofilm 

was fixed with methanol (Valente e Ribeira Lda, Belas) (100 % v/v) for 20 min. This initial step 

of fixing the biofilm (with methanol) is essential to avoid the detachment of cells during the 

hybridization procedure[328]. 

 However, this method was also applied to the assay with antimicrobial combinations in 

24 h-old pre-established biofilms described in section 2.3.2.2. only for dual-species biofilms. 

So, after 24 h-old pre- established biofilms, it was removed 500 μl of culture and added the 

combinations of antimicrobials agents in accordance with the methodology referred in the 

present section. Biofilms were maintained for further 24 h at 37 °C in order to evaluate the 

therapeutic action of the antimicrobials. The respective washes and methanol addition to dual-

species biofilms were performed. 

 Fixed biofilms were stored at 4 °C for a maximum of 48 h before the PNA FISH method. 

 

PNA FISH applied to biofilms 

 

 After performing the biofilms fixation, a PNA FISH assay was evaluated on dual-species 

biofilms encompassing P. aeruginosa and C. albicans. The yeast strain was identified by 

counterstaining the samples with 4`, 6 –diamidino–2 -phenylindole (DAPI; Sigma- Aldrich, St. 
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Louis, MO, USA) staining at the end of the hybridization procedure. The probe used in this 

assay was designated Paer565[329] in order to label P. aeruginosa. 

 After biofilms development on PS coupons, 30 μl of each solution of 4 % (wt/v) 

paraformaldehyde followed by 50 % (v/v) ethanol was dispensed in the PS coupons for 10 min 

each and allowed to air dry. This step allows the fixation of the cells and increases the 

permeabilization of the cell membrane to the subsequent hybridization allowing the labeled 

oligonucleotide probes to diffuse to their intracellular rRNA target molecules. 

 Subsequently, 20 μl of hybridization solution containing the probes mixture at 200 nM 

were dispensed on the coupons, which were finally covered with coverslips and incubated in 

the dark for 1 h at 65 °C. Soon after hybridization, PS coupons were carefully removed and 

were immersed for 30 min in 24-well plates containing 1 mL per well of a pre-warmed (65 °C) 

washing solution composed of 5 mM Tris Base, 15 mM sodium chloride (NaCl) and 1 % (v/v) 

Triton X-100 (all from Sigma- Aldrich, St. Louis, MO, USA). The PS coupons were removed from 

the 24-well plates and allowed to air dry in the dark before counterstaining with DAPI. For 

yeast cells, each coupon was covered with 20 μL of DAPI (40 μg/mL) for 5 min at room 

temperature in the dark. Immediately afterwards, it was performed the observation in the 

fluorescence microscope, where the negative controls were assessed for each experiment, 

without any probe added to the hybridization solution. 

 For microscopic visualization, it was used a fluorescence microscope (Olympus BX51, 

Perafita, Portugal), a DAPI filter (BP 365 - 370, FT 400, LP 421) with λexcitation = 365 - 370 nm and 

the signaling molecule of the PNA probe (BP 530 - 550, FT 570, LP 591, for Alexa 594).  

 

2.5. LIVE DEAD staining 

 

 The traditional colony counts or membrane procedures has come to prove methods 

with many weaknesses, rising questions about the validity of heterotrophic bacteria plates 

counts and coliform as indicators[330]. 

 The enumeration of CFUs only includes cultivable cells which are able to initiate cell 

division at a sufficient rate to form colonies and they are very sensitive to culture conditions 

(temperature, media,  incubation time[331] and responses) may require from 24 h to more than 

1 week[330]. 

 In order to evaluate the efficacy of the antimicrobial agents on cell viability, as an 

alternative method to plate counts to enumerate viable cells, the Live/Dead BacLight Bacterial 

Viability Kit (Molecular Probes, Leiden, Netherlands), was performed. 
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 After washing the biofilms formed (as described as section 2.4.) on PS coupons, they 

were placed in sterile 24-well PS plates. 

 After 24- and 48 h-old pre-established dual-species biofilms, 500 μl of culture medium 

were removed and 250 μl of each antimicrobial combination was added to the wells to assess 

the therapeutic action the following combinations of antimicrobials:  

 

 ToB and PoLyB  (0.016 + 256 mg/L), (0.016 + 16 mg/L) and (0.016 + 8 mg/L); 

 AmB and PoLyB (0.016 + 256 mg/L), (0.016 + 16 mg/L) and (0.016 + 8 mg/L). 

 

 The 24-well plates were maintained for further 24 h at 37 °C.  Both the positive control 

coupons of 24 h-old pre- established biofilm and biofilms development PS coupons allowed 

the evaluation of the therapeutic action of the antimicrobial combinations were subsequently 

removed from each well and immersed in a new plate containing 1 mL UP sterile water in 

order to remove non-adherent and weakly adherent cells.  

 Finally, PS coupons were stained with 100 μL of diluted component A (SYTO 9) (3 

μl/ml) and 100 μl of diluted component B (Propidium Iodide) (3 μl/ml) for 15 min in the dark at 

27 °C.  

 To observe the stained microorganisms, an Olympus BX51 (Perafita, Portugal) 

microscope fitted with fluorescence illumination was used. The optical filter combination 

consisted of 470 to 490 in combination with 530 to 550 excitation filters. The range of total 

cells for each field was between 20 - 200 cells/field. 

 

2.6. Statistical analysis 

 

 All quantitative assays were performed in triplicates in three independent assays. 

 The data was statistically analyzed using GraphPad Prism version 6.0. Results are 

expressed as the average ± standard error of the average (SD). One-way analysis of variance 

(ANOVA) was used for statistical significance values of the groups for biofilm quantification 

and number of cultivable biofilm-cells. Following, comparisons were performed using Turkey’s 

test. All tests were performed with a 95 % confidence level, pvalue<0.05 was considered 

statistically significant. 
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3.1. Single- and dual-species biofilms (24 and 48 h) phenotype 

 

 The comparison of 24 h- and 48 h-old biofilms formed by two strains of VAP related 

microorganisms, P. aeruginosa PAO1 and C. albicans SC5314, is shown in Figure 3.1.  

 In general, biofilm phenotypic characterization showed that both species, in single- 

and dual-species, exhibited similar values (p>0.05) of cultivable cells at both time points (24 

and 48 h) (Figure 3.1 A).  

 From the analysis of biomass assay (Figure 3.1 B), it is shown that P. aeruginosa single-

species biofilm present similar values at 24 and 48 h, whereas C. albicans biomass is 

significantly disturbed after 48 h of incubation (p<0.05). This observation is also noticed when 

both species (P. aeruginosa + C. albicans) are in the same consortia, with the overall biomass 

decreasing to half of the biomass produced at 24 h.  

 

 Concerning single-species biofilms, P. aeruginosa was the microorganism that showed 

higher number of cultivable cells (7,08 ± 0,25 log CFU/cm2 for 24 h and 7,45 ± 0,37 log CFU/cm2 

for 48 h), though producing the smallest amount of biomass. The results of CFUs enumeration 

for this species in dual-species biofilms is quite similar (6,81 ± 0,83 log CFU/cm2 for 24 h and 

6,64 ± 0,34 log CFU/cm2 for 48 h ), with P. aeruginosa as the predominant population in the 
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Figure 3.1- Comparison of 24 h- and 48 h-old single- and dual-species biofilms by P. aeruginosa PAO1 and C. albicans SC5314 in 

terms of: (A) number of cultivable cells and (B) biomass quantification. Cultivable cells are expressed as log CFU per cm2 and 

biomass quantification is proportional to OD570. Bars represent the average of three independent assays ± standard deviations 

(SDs). Symbol (*) indicates statistically different reduction values between 24 h and 48 h for each strain (* p<0.05). 
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consortia both at 24 h (97,1 %) and at 48 h (95,3 %) (data not shown). Regarding biomass 

quantification, dual-species biofilms (P. aeruginosa + C. albicans) could form greater biomass 

than the sum of the effect of both species individually at both time points (24 h and 48 h). 

 These biofilms were also examined by SEM (Figure 3.2), which allowed observing an 

increase in bacterial cell numbers and a multilayer structure in P. aeruginosa single-specie 

biofilm after 48 h (Figure 3.2 B).  

 

 Comparing the phenotypic changes between 24 h and 48 h in the single- specie biofilm 

of C. albicans (Figure 3.2 C and D, respectively), it was also observed an increase of yeast cells 

and thickness of biofilm. However, after 48 h, a yeast-hyphal cells transition was found, which 

promoted a dense and highly organized structure with long and intermingled hyphae and a 

Figure 3.2- SEM images of 24 h- and 48 h-old biofilms developed by P. aeruginosa PAO1 and C. albicans SC5314. (A;B) P. 

aeruginosa biofilms; (C;D) C. albicans biofilms and (E;F) P. aeruginosa and C. albicans dual-species biofilms. Left column 

represent 24 h-old biofilms whereas in the right column are represented 48 h-old biofilms. 
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crack in C. albicans single-specie biofilm.  Dual-species biofilms were apparently dominated by 

P. aeruginosa cells, which it was observed for both time points (24 h and 48 h). 

 

3.2. Effect of single antimicrobials 

3.2.1. Susceptibility of planktonic populations  

 

 The MIC and the MMC values obtained in this study are summarized in Table 3.1. 

 In general, most antimicrobials were effective against planktonic growth in P. 

aeruginosa at low concentrations (MIC ranged between 0.0625 and 8 mg/L), with the 

exception of AmB, even being necessary to use concentrations higher than 16 mg/L. In 

planktonic cells of C. albicans, AmB was the most effective antimicrobial at lower 

concentrations (0.25 mg/L), with all other antimicrobials able to inhibit planktonic growth C. 

albicans but at extremely higher concentrations (MIC ranged between 256 and ≥ 1024 mg/L). 

In planktonic mixed cultures of both strains (P. aeruginosa + C. albicans) concentrations equal 

to or even higher than those used to inhibit the planktonic growth of single populations (P. 

aeruginosa or C. albicans) were necessary. 

 With regard to the determination of the MMC, it was shown that for all antimicrobials 

the MMC values were significantly higher when compared to MIC. Similarly to the 

aforementioned results, all antimicrobials were able to kill planktonic cells of P. aeruginosa at 

relatively low concentrations (ranging MMC between 0.125 and 8 mg/L).Whilst higher 

concentrations were necessary to kill C. albicans planktonic cells (MMC ranging between 256 

and ≥1024 mg/L). These values were maintained when both species are in the same culture. 

However, MMC was 8 times higher in the case of AmB in C. albicans (0.25 to 2 mg/L) and for 

ToB in P. aeruginosa (4 to 32 mg/L) respectively.  

 Planktonic cells of C. albicans, both in single as in mixed cultures, were significantly 

more resistant to most antimicrobials tested, with a high number of antimicrobials (5 a total of 

six) being effective at concentrations between 256 and ≥1024 mg/L.. 

 Based on the antimicrobial activity results, MIC values of antimicrobials were chosen 

for the following single- and dual-species biofilm susceptibility assays. 
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*MIC and MMC values are expressed in mg/L

 

 AmB ToB CoL  PolyB  CIP  Merp 

MIC* MMC* MIC* MMC* MIC* MMC* MIC* MMC* MIC* MMC* MIC* MMC* 

P. aeruginosa  

PAO1 
≥ 16 ≥ 16 2 4 2 8 2 4 0.0625 0.125 1 2 

C. albicans  

SC 5314 
0.25 0.25  ≥ 512 ≥ 512 

512-

1024 
1024 256 256 ≥ 1024 ≥ 1024 ≥ 512 ≥5 12 

Mixed culture 

(PAO1+ CA) 
≥ 16 

PAO1 

≥ 16 

≥ 64 

PAO1 

32 

1024 

PAO1 

8 

512 

PAO1 

4 

≥ 1024 

PAO1 

0.125-

0.25 
≥ 512 

PAO1 

2 

CA 

2 

CA 

≥64 

CA 

1024 

CA 

512 

CA 

≥1024 

CA 

≥512 

Table 3.1- MIC and MMC of 6 clinically-relevant antimicrobial agents (AmB; ToB; CoL; PolyB; CIP; Merp) against single and mixed planktonic populations involving P. aeruginosa PAO1 and C. albicans 

SC5314 (CA) 
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3.2.2. Effect on biofilms 

 

 In order to evaluate the effect of the most interesting antimicrobial agents of the 

previous assay (section 3.2.1.):  AmB, ToB, CoL and PolyB. Biofilms were allowed to develop for 

24 h under the conditions mentioned in Chapter II (section 2.3.2.1), and were then grown, for 

additional 24 h, with increasing concentrations (1x, 2x and 4x the MIC) of each antimicrobial 

agent (Figure 3.3). For this purpose, the lowest MIC obtained for single-species populations 

was considered. For instance, AmB had the lowest MIC of 0.25 mg/L (in C. albicans) whereas 

the remaining agents presented minimum MIC of 2 mg/L in P. aeruginosa. 

 

 As it can be observed in Figure 3.3, AmB did not promote any reduction in cell number 

of single- (Figure 3.3 A) and dual-species biofilms (Figure 3.3 B) when compared with control 

biofilms (p>0.05). By contrary, ToB presented a significant reduction, which was concentration-

dependent, in P. aeruginosa cells in single- and dual-species consortia. The presence of 2 mg/L 

(MIC) of ToB only had an effect in single-species biofilm of P. aeruginosa (p<0.05), but the 

presence of 4 mg/L and 8 mg/L (2x and 4x MIC respectively) promoted a significant reduction 

in both single- and dual-species P. aeruginosa biofilms (p<0.05).  

 Concerning the CoL, at 2 mg/L (MIC), it did not cause any significant reduction in the 

number of single- and dual-species biofilms-entrapped cells for both strains (p>0.05), but the 

application of the highest CoL concentrations:  4 mg/L and 8 mg/L (2x and 4x MIC respectively) 
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Figure 3.3- Effect of increasing concentrations of AmB, ToB, CoL and PolyB in single- (A) and dual-species pre-established biofilms (B) 

formed by P. aeruginosa PAO1 and C. albicans SC5314. Values are expessed as log CFU per cm2. Bars represent the average of three 

independent assays ± standard deviations (SDs). Symbol (*) indicates statistically different reduction values between positive 

control (0 mg/L) and different antimicrobials concentrations (* p<0.05). 
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presented a reduction in the number of single- and dual-species biofilms-entrapped cells only 

for P. aeruginosa in comparison with control biofilms (p<0.05). 

 PolyB had a similar activity as ToB, with all concentrations (2 mg/L, 4 mg/L and 8 mg/L) 

reducing P. aeruginosa single-species biofilms, but only with the highest concentrations 

significantly disturbing this species in dual-species consortia (p<0.05) comparatively with 

untreated controls. 

 In summary, any antimicrobial agent was effective against C. albicans biofilms. By 

contrary, P. aeruginosa biofilms could be disturbed by the presence of ToB, CoL and PolyB and 

reductions were concentration-dependent used. Reductions in P. aeruginosa cell numbers 

were estimated between 1 and 3.5 log, with the highest reductions observed for dual-species 

biofilms. The exception was observed for AmB, which was not effective to treat these biofilms.  

 Another assay was performed for the evaluation of the therapeutic potential 

(antimicrobial’s effect along time) of AmB, ToB, CoL and PolyB in 24 h-old pre-established 

single- and dual-species biofilms (Figure 3.4.), which was determined by the same procedure 

described in the section 2.3.2.1, however following the effect (in terms of cultivable cell 

number) of each antimicrobial for each 12 h until 48 h.  

 Once again, C. albicans were resistant to most antimicrobial agents, with no significant 

changes or even punctual but small reductions occurring. For instance, AmB could only reduce 

(p<0.05) C. albicans cell number after 48 h at the highest concentration tested (1 mg/L), when 

in dual-species biofilms (Figure 3.4 B).  

 The therapeutic potential of ToB is supposedly time-dependent for P. aeruginosa, 

leading to increasing and statistically significant reductions over time. However, these 

antimicrobials only promoted the reduction in number of cultivable biofilm-entrapped cells in 

P. aeruginosa strain in comparison with untreated biofilms (p<0.05) (Figure 3.4 C and D). 

 Even so, the greatest therapeutic potential was demonstrated for all concentrations of  

ToB: 2 mg/L, 4 mg/L and 8 mg/L (1x, 2x, 4x MIC respectively) mainly after 36 h and 48 h of the 

ToB exposure for P. aeruginosa strain in single- and dual-species biofilms (Figure 3.4 C and D). 

 Regarding CoL, significant but punctual reductions in P. aeruginosa cell number was 

observed, in particular for single-species biofilms (Figure 3.4 E). Conversely, a gradual 

disturbance in the P. aeruginosa community in dual-species biofilms is visible after 36 h of 

exposure to CoL, becoming apparently time-dependent after this time point (Figure 3.4 F). 

Once again, the CoL agent only demonstrated therapeutic potential in P. aeruginosa strain 

biofilms in comparison with biofilm’s controls (p<0.05). 
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Figure 3.4- Therapeutic potential of increasing concentrations of AmB (A,B), ToB (C,D), CoL (E,F) and PolyB (G,H) in single-  and dual-species  pre-established biofilms encompassing P. aeruginosa PAO1 and C. albicans SC5314. On top row, single-

species biofilms are represented and dual-species consortia are shown at the bottom row. Values are expessed as log CFU per cm2. Bars represent the average of three independent assays ± standard deviations (SDs). Symbol (*) indicates 

statistically different reduction values between positive control (0 mg/L) and different concentrations for each antimicrobial (* p<0.05). 
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 Concentrations of 4 mg/L and 8 mg/L of CoL (2x and 4x MIC respectively) were the 

concentrations strongly reducing the number of cultivable cells for P. aeruginosa in single- and 

dual-species biofilms. However this therapeutic potential shows a nonlinear behavior for the 

aforementioned concentrations, since for the same concentration of CoL is possible to observe 

different reduction degrees. 

 The presence of PolyB promoted a therapeutic potential dependent of the time factor 

for P. aeruginosa strain in single- and dual-species biofilms, in comparison with biofilm’s 

controls (p<0.05) (Figure 3.4 G and H). This was particularly observed for dual-species biofilms, 

in which P. aeruginosa suffered a gradual reduction in cell number even from 12 h of 

antimicrobial exposure. In relation to C. albicans strain it was only found a therapeutic 

potential in the presence of 4 mg/L of PolyB (2x MIC) in single-species biofilms after 12 h of the 

exposure (p<0.05) when compared with biofilms developed in the absence of PolyB (Figure 3.4 

G). Therefore, it is not possible to establish a relationship of dependency with the time. 

 In general, mostly antimicrobial agents’ therapeutic potantial strongly depends of 

concentration and time factor.  

 

3.3. Effect of the combination antimicrobials′ 

 

 Based on these previous results and since these demonstrated that the effect of the 

single antimicrobials was not in accordance to the expected,  the next step was to combine the 

different antimicrobial agents and evaluate the effect in single- and dual-species biofilms 

involving P. aeruginosa and C. albicans. 

 

3.3.1. Susceptibility of planktonic populations  

 

 In order to evaluate the predictive effects in single and mixed cultures of both species 

the MIC value was initially determined for two of the antimicrobials agents combined and 

subsequently FIC value was calculated, according with the methodology from Saiman L.[317] 

(see section 2.2). 

 The range of concentrations of the different antimicrobial combinations used in this 

study, which allowed the inhibition of both planktonic strains (MIC), is summarized in Table 

3.2. The colors indicated in Table 3.2 allow an indication of the predictive potential synergy of 

the range of concentrations of antimicrobial agents’ combinations used. 
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*MIC value are expressed in mg/L 

 

 

 

MIC* of combinations 

AmB CoL AmB PolyB ToB CoL ToB PolyB AmB ToB 

C. albicans 

SC 5314 
2 -  4 1 - 4 1 - 2 1- 4     1 - 2 0.5 - 1 

P. aeruginosa 

PAO1 
    0.016 - 2 0.016 – 2 0.016 - 2 0.016 - 2 0.016 1 

Mixed culture 

(PAO1+ CA) 
1 - 4 0.063 - 4 0.016 - 4 1 – 256 1 - 4 0.063 – 2 

≥ 512 

(FIC> 8,5) 
0.016 - 0.031 256 

Table 3.2- Range of MIC and interpretation of the FIC of antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB)  against single and planktonic mixed populations involving P. aeruginosa PAO1 and 

C. albicans SC5314 (CA) 
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 First, C. albicans susceptibility towards combinations of AmB with all other 

antimicrobial agents (ToB, CoL and PolyB) was determined. In fact it was verified that the 

range of concentrations achieved against C. albicans was relatively low (MIC range between 

0.5 and 4 mg/L). In all tested combinations the value of FIC, determined theoretically, 

demonstrated antagonistic effect on the C. albicans strain. For P. aeruginosa, ToB was 

combined with all other antimicrobial agents (AmB, CoL and PolyB). Also for the P. aeruginosa 

strain, the range of concentrations achieved was relatively low (MIC range between 0.016 and 

2 mg/L). However, the value of FIC showed a synergistic effect against P. aeruginosa strain.   

 In relation to the planktonic mixed cultures of both strains (P. aeruginosa + C. albicans) 

all possible combinations involving all antimicrobial agents in use in the present study were 

tested. As observed, the range of concentrations also presented low values for most 

antimicrobial combinations (MIC range between 0.016 and 4 mg/L). Some exceptions were 

noticed, namely for AmB/PolyB and AmB/ToB combinations, wherein the range of 

concentrations of PolyB and ToB had reached a value of 256 mg/L. In addition, it was not 

possible to determine the value of MIC for the antimicrobial combination ToB/PolyB, even 

using concentrations of 512 mg/L for each antimicrobial agent. This antimicrobial combination 

showed antagonistic effect against planktonic mixed culture (P. aeruginosa + C. albicans). For 

the remaining antimicrobial combinations tested, a synergistic effect was found against 

planktonic mixed cultures according to the FIC value determined theoretically.  

 In general, the combination of antimicrobial agents presented a synergistic effect in P. 

aeruginosa single planktonic cells and planktonic mixed cultures. The opposite was found for 

C. albicans single planktonic cells were an antagonistic effect was observed. 

 Based on the FIC values of the combinations of antimicrobial agents, where the 

combinations at lower concentrations and the ones presenting synergistic effect were chosen, 

the best combinations were selected in order to perform the susceptibility assays on single- 

and dual-species biofilms for both strains. 

 

3.3.2. Effect on biofilms 

 

 The susceptibility of the 24 h-old pre-established single- and dual-species biofilms, 

concerning number of cultivable cells can be observed in Figures 3.5 and 3.7, respectively. 

Biomass quantification is presented in Figures 3.6 and 3.8, for single- and dual-species biofilm, 

respectively.  

 In general, none of the antimicrobial combinations agents demonstrated any reduction 

in C. albicans in single-species biofilms (Figure 3.5) for cultivable cells. The only exception was 
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for ToB/CoL (1 mg/L and 0.016 mg/L, respectively), which provided a small reduction in 

cultivable cells for C. albicans in single-species biofilms when compared with no-treated 

biofilms (p<0.05).  Nonetheless, it was found a reduction of cultivable cells in P. aeruginosa in 

single-species biofilm only for  ToB/PolyB (1 mg/L and 0.016 mg/L, respectively), ToB/CoL  (1 

mg/L and 0.016 mg/L, respectively), ToB/PolyB (0.016 mg/L and ratios of  256, 32 or 16 mg/L, 

respectively) and AmB/PolyB  (0.016 mg/L and ratios of 256, 32 or 16 mg/L, respectively) 

combinations when compared with biofilms in absence of antimicrobials (p<0.05) (Figure 3.5).  

 For all combinations mentioned, the reduction of cultivable cells in biofilms of P. 

aeruginosa is due to the action of ToB (1mg/L) or PolyB (256 mg/L, 32 mg/L or 16 mg/L). 

Moreover the combinations with PolyB at 256 mg/L (AmB/PolyB (0.016 mg/L and 256 mg/L, 

respectively) and ToB/Poly B (0.016 mg/L and 256 mg/L, respectively)), are the best 

formulations promoting a total reduction in the number of cultivable cells of P. aeruginosa in 

single-specie biofilm. 

 Concerning the biomass quantification in single-species biofilms (Figure 3.6), the 

ToB/CoL (1 mg/L and 0.016 mg/L, respectively) and ToB/PolyB (1 mg/L and 0.016 mg/L, 

respectively) combinations showed a reduction in biomass for C. albicans strain in comparison 

with the controls (p<0.05). Nevertheless, for P. aeruginosa strain it was found that all 

combinations of antimicrobial agents demonstrated a reduction in the biomass values in 

comparison with control biofilms (p<0.05). The biomass reduction is mainly due to the action 

of the antimicrobial agent used at higher concentrations.  

 Regarding dual-species biofilms, the reduction of the number of cultivable cells of C. 

albicans occurs in the presence of combinations of antimicrobials agents: AmB/ToB (1 mg/L 

and 0.063 mg/L, respectively), AmB/CoL (1 mg/L and 0.063 mg/L, respectively), AmB/ PolyB (1 

mg/L and 2 mg/L, respectively),  AmB/PolyB (0.016 mg/L and 256 mg/L, respectively) and 

ToB/Poly B (0.016 mg/L and 256 mg/L, respectively) (p<0.05) (Figure 3.7). The combinations of 

AmB/PolyB (0.016 mg/L and 256 mg/L, respectively) and ToB/Poly B (0.016 mg/L and 256 

mg/L, respectively) are the best formulations, since they promote a total reduction in the 

number of cultivable C. albicans cells entrapped in dual-species biofilms in comparison with 

control biofilms (p<0.05). P. aeruginosa cells in dual-species biofilms (Figure 3.7) have shown a 

reduction in the number of cultivable cells for  
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Figure 3.5- Number of cultivable cells per cm2 present in single-species biofilms in 24 h- old pre-established biofilms for addition 24 h in the 

presence of antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB) against P. aeruginosa PAO1 and C. albicans SC5314. Bars 

represent the average of three independent assays ± standard deviations (SDs). Symbol indicate statistically different reduction values 

between positive control (0 mg/L) and different antimicrobials concentrations combined for each strain (* p<0.05). 
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Figure 3.6- Biomass quantification (OD570) present in single-species biofilms in 24 h- old pre-established biofilms for addition 24 h in the 

presence of antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB) against P. aeruginosa PAO1 and C. albicans SC5314. Bars 

represent the average of three independent assays ± standard deviations (SDs). Symbol indicate statistically different reduction values 

between positive control (0 mg/L) and different antimicrobials concentrations combined for each strain (* p<0.05). 
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Figure 3.7- Number of cultivable cells per cm2 present in dual-species biofilms in 24 h- old pre-established biofilms for addition 24 h in the 

presence of antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB) against P. aeruginosa PAO1 and C. albicans SC5314. Bars 

represent the average of three independent assays ± standard deviations (SDs). Symbol indicate statistically different reduction values 

between positive control (0 mg/L) and different antimicrobials concentrations combined for each strain (* p<0.05). 
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combinations ToB/ PolyB (0.016 mg/L and ratios of  256 mg/L, 32 mg/L, 16 mg/L or 8 mg/L, 

respectively) and AmB/PolyB (0.016 mg/L and ratios of 256 mg/L, 32 mg/L, 16 mg/L or 8 mg/L, 

respectively) in comparison with controls (p<0.05).Also again, the combinations of AmB/PolyB 

(0.016 mg/L and 256 mg/L respectively) and ToB/PolyB (0.016 mg/L and 256 mg/L, 

respectively) are the best formulations leading to a total reduction in the number of cultivable 

cells of P. aeruginosa in dual-species biofilms. 

 Concerning biomass quantification of dual-species biofilms, combination of AmB/PolyB 

and ToB/PolyB at different concentrations (0.016 mg/L and ratios of 256 mg/L, 32 mg/L, 16 

mg/L or 8 mg/L, respectively) and AmB/PolyB (1 mg/L and 2 mg/L respectively), exhibited a 

reduction of biomass values when compared with biofilms without the presence of 

antimicrobials (p < 0.05) (Figure 3.8). This reduction is mainly due to the action of the 

antimicrobial agent present at a higher concentration. 

 In general, the better therapeutic efficacy was seen in dual-species biofilms (P. 

aeruginosa + C. albicans) when compared with single-species biofilms. 
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Figure 3.8- Biomass quantification (OD570) present in dual-species biofilms in 24 h- old pre-established biofilms for addition 24 h in the 

presence of antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB) against P. aeruginosa PAO1 and C. albicans SC5314. Bars 

represent the average of three independent assays ± standard deviations (SDs). Symbol indicate statistically different reduction values 

between positive control (0 mg/L) and different antimicrobials concentrations combined for each strain (* p<0.05). 
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PNA FISH analysis 

 

 PNA FISH assay was performed to confirm the results previously obtained in section 

3.1 and previous section Moreover, PNA FISH analysis allowed visualizing the location and 

distribution of these microorganisms within the dual-species biofilms. PNA FISH methodology 

involved the use of a previously designed red-labeled probe to detect P. aeruginosa and the 

blue stain DAPI to discriminate C. albicans within the biofilms.  

 In Figure 3.9, it is possible to observe the distribution and composition of single- and 

dual-species biofilms of P. aeruginosa and C. albicans after growth for 24 h and 48 h without 

the effect of antimicrobial agents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9- PNA-FISH applied to single- and dual-species biofilms involving P. aeruginosa PAO1 (red 

bacterial cells) and C. albicans SC5314 (blue yeast cells) grown for 24 h and 48 h. On top and middle 

rows, the different channels enable to visualize the species involved in the biofilms, according with 

the fluorochromes used (Alexa fluor 594, red: P. aeruginosa and DAPI, blue: C. albicans, 

respectively).  The bands superposition discriminating both strains involving in dual-species biofilm 

is represented on the bottom row. 
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 Then, these biofilms were allowed to grow for additional 24 h in the presence of the 

same combination of antimicrobial agents used in previous section-Figure 3.10. Exception 

made for combinations AmB or ToB with PolyB at 0.016 mg/L and 32 mg/L respectively, which 

was not tested in this assay. 

  

 Regarding C. albicans biofilms, an increase of the yeast-hyphal transition was shown 

from 24 h to 48 h (Figure 3.9), whereas P. aeruginosa cells tended to agglomerate over time , 

when in both single- and dual-species biofilms (Figure 3.9). 

Figure 3.10- PNA-FISH applied to 24 h-old pre-established dual-species P. aeruginosa PAO1 (red bacterial cells) and C. albicans 

SC5314 (blue yeast cells) biofilms after treatment with antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB).  

Images resulted from the bands superposition of the two channels used to visualize the fluorochromes used (Alexa fluor 594, 

red: P. aeruginosa and DAPI, blue: C. albicans). 
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 In dual-species biofilms, an increase of structural complexity of biofilm composed of a 

larger number of bacterial cells and hyphae yeasts was shown predominantly between both 

periods (24 h and 48 h). However, in 24 h and 48 h, P. aeruginosa cells were found in 

abundance and predominately located around the hyphae, such as a protection mode (Figure 

3.9).  

 A similar behavior was shown for all tested antimicrobial combinations applied in dual-

species biofilms (Figure 3.10), with C. albicans cells being surrounded by P. aeruginosa and 

without any treatment causing a significant disturbance in cell numbers. This observation 

suggests, therefore, that no effective therapy was achieved with the used antimicrobial 

combinations.  

  

 

 

 As previously observed, AmB/PolyB and ToB/PolyB combinations were the best 

formulations for treatment, mainly of the dual-species biofilms involving P. aeruginosa and C. 

albicans, leading to the total reduction in cultivable cells of both strains for certain 

concentrations.  

 In order to assess the viability of 24 h-old pre-established dual-species biofilms and to 

know when this will actually totally reduce and whether it will be reversible or not, more 

assays (LIVE DEAD staining, kinetic effect and post antimicrobial effect) using the AmB/PolyB 

(0.016 mg/L and ratios of 8 or 16 or 256 mg/L, of PolyB, respectively) and ToB/PolyB (0.016 

mg/L and ratios of 8 or 16 or 256 mg/L, of PolyB, respectively) combinations were performed.  

 

 

  LIVE DEAD staining 

 

 To assess the viability of 24 h-old pre-established dual-species biofilms, these were 

allowed to grow for additional 24 h in the presence of the antimicrobial combinations: 

AmB/PolyB (0.016 mg/L and ratios of 8 or 16 or 256 mg/L, of PolyB, respectively) and 

ToB/PolyB (0.016 mg/L and ratios of 8 or 16 or 256 mg/L of Poly B, respectively). The 

Live/Dead BacLight Bacterial Viability Kit was employed to assess bacterial viability after 

antimicrobial treatment, as shown in Figure 3.11. No treated biofilms were used as control. 

 Figure 3.11 shows that the bacterial cells were in abundance comparatively to C. 

albicans and presented a green color, meaning that they are viable, after antimicrobial 
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treatment and independently to the AmB/PolyB and ToB/PolyB concentrations employed to 

treat the dual-species biofilms. Once again, it was observed that P. aeruginosa was the 

predominant microorganism within the biofilm and it is located preferably around the hyphae 

yeasts. 

 

  Kinetic effect 

 

 To assess the time-kill curves of dual-species biofilms (P. aeruginosa + C. albicans), 24 

h-old pre-established biofilms were allowed to grow for additional 24 h in the presence of 

AmB/PolyB (0.016 mg/L and ratios of 8 or 16 or 256 mg/L, of PolyB, respectively) and 

ToB/PolyB (0.016 mg/L and ratios of 8 or 16 or 256 mg/L, of PolyB, respectively) combinations 

(Figure 3.12). 

Figure 3.11- Live/Dead BacLight Bacterial Viability Kit applied to 24 h- old pre-established dual-species P. aeruginosa 

PAO1 (green bacterial cells) and C. albicans SC5314 (orange yeast cell) biofilms after treatment with some 

antimicrobial agent combinations (involving AmB, ToB, CoL and PolyB). 
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 Through the analysis of Figure 3.12 A and B, it is possible to identify the combinations 

with PolyB at a concentration of 256 mg/L as those with better efficacy in reducing the number 

of cultivable cells for both strains. In P. aeruginosa strain, a total reduction in the number of 

cultivable cells was found immediately after adding the combinations AmB/PolyB (0.016 mg/L 

and 256 mg/L, respectively) and ToB/PolyB (0.016 mg/L and 256 mg/L, respectively). For C. 

albicans, cell number reduction occurred gradually over 24 h. For the ToB/PolyB (0.06 mg/L 

Figure 3.12- Time kill curves obtained for 24h-old pre-established dual-species biofilms (blue line: P. aeruginosa PAO1 and red 

line: C. albicans SC5314) after treatment with ToB/PolyB (A,C,E) and AmB/PolyB (B,D,F) combinations involving PolyB at 256 

mg/L (A,B), 16mg/L (C,D) and 8mg/L (E,F) assessed in number of cultivable cells. Bars represent the average of three 

independent assays ± standard deviations (SDs). 
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and 256 mg/L, respectively) combination (Figure 3.12 A), in the first 2h it was possible to 

identify a reduction of the number of cultivable C. albicans cells in a 2 log order. After 2 h, the 

number of cultivable cells remained constant, with insignificant variations, up to 20 h. After 20 

h, a complete inhibition in the number of C. albicans cells was observed. For the combination 

AmB/PolyB (0.06 mg/L and 256 mg/L, respectively) (Figure 3.12 B), a reduction of the number 

of cultivable cells in the order of 2 log was found for the first 4 h in C. albicans cells. After 4 h, a 

constant number of cultivable cells were observed up to 12 h. However, after 12 h the number 

of cultivable cells decreased dramatically, leading to the total reduction in the number of 

cultivable cells for the C. albicans strain. 

 For concentrations of PolyB at 16 and 8 mg/L in both combinations (ToB/PolyB (Figure 

3.12 C and E, respectively) and AmB/PolyB (Figure 3.12 D and F, respectively)), no significant 

disturbances were observed over time, with CFUs presenting constant values  (~ 6 log 

CFU/cm2) for C. albicans strain. For P. aeruginosa strain, for the first 2 h, there was a decrease 

of the number of cultivable cells in the order of 3 log. Yet, after 2 h, the CFUs enumeration (~ 5 

log CFU/cm2) presented a linear and constant behavior over 24 h. 

 

  Post antimicrobial effect 

 

 To evaluate the recovery of the cultivable capacity of cells entrapped in the 24 h-old 

pre-established dual-species biofilms, bacterial and yeast cells were grown in interleaved 

cycles in absence and presence of combinations of AmB/PolyB (0.016 mg/L and ratios of 8 or 

16 or 256 mg/L, of PolyB, respectively) and ToB/PolyB (0.016 mg/L and ratios of 8 or 16 or 256 

mg/L, of PolyB, respectively) over time as shown in Figure 3.13. 

 In Figure 3.13, it is possible to observe that ToB/PolyB and AmB/PolyB combinations 

with PolyB at a concentration of 16 (Figure 3.13 C and D) and 8 mg/L (Figure 3.13 E and F) did 

not show any effect in reducing the number of cultivable cells for both strains. Regardless of 

the absence or presence of these antimicrobial agent combinations, the number of cultivable 

cells (~ 6 log CFU/cm2 for C. albicans strain and ~ 7 log CFU/cm2 for P. aeruginosa strain) in 

dual-species biofilms presented a linear and constant behavior over 120 h for both strains.  

 However, for the combinations with PolyB at 256 mg/L, both strains exhibit a non-

linear behavior over time (Figure 3.13 A and B). These values are in accordance with the 

interleaved cycle (presence or absence of combination ToB/PolyB (0.016 mg/L and 256 mg/L,
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(A) (B) 

(C) (D) 

(E) (F) 

C .a lb ic a n s  S C 5 3 1 4 P .a e ru g in o s a  P A O 1

Figure 3.13- Post antimicrobial effects obtained for 24 h-old pre-established dual-species biofilms (blue line: P. aeruginosa PAO1 and red 

line: C. albicans SC5314)  assessed in number of cultivable cells. Biofilms were evaluated in two cycles : presence and absence of 

ToB/PolyB (A,C,E) and AmB/PolyB (B,D,F) combinations  involving PolyB at 256 mg/L (A,B), 16mg/L (C,D) and 8mg/L (E,F). Bars represent 

the average of three independent assays ± standard deviations (SDs). 
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respectively) (Figure 3.13 A) and AmB/ PolyB (0.016 mg/L and 256 mg/L, respectively) (Figure 

3.13 B). 

 P. aeruginosa strain, after 24 h of biofilm development, showed a high number of 

cultivable cells (~ 7 log CFU/cm2). However, after the first contact cycle with the antimicrobial 

combinations there was an overall reduction in the number of cultivable P. aeruginosa cells 

entrapped in dual-species biofilms. Then, it was found that regardless the interleaved cycle 

and period of time P. aeruginosa cells did not achieve any recovery. Thus, the number of 

cultivable P. aeruginosa cells remained null up to 120 h.  

 For the C. albicans strain, a high number of cultivable cells (~ 6 log CFU/cm2) was also 

observed after 24 h biofilm development. However, the dual-species biofilms grown for 24 h 

under antimicrobial combinations was characterized by a total reduction in the number of 

cultivable C. albicans cells. After a recovery period of 24 h, where the growth occurred in the 

absence of antimicrobials combinations, C. albicans cells entrapped in dual-species biofilms 

had recovered the initials levels of cultivable cells. Biofilm recovery post ToB/PolyB (0.016 

mg/L and 256 mg/L, respectively) combination (Figure 3.13 A) did not reach a number of 

cultivable C. albicans cells as high as the recorded immediately after 24 h biofilm development 

(~ 4 log CFU/cm2).  

 Regarding the treatment with AmB/PolyB (0.016 mg/L and 256 mg/L, respectively) 

combination (Figure 3.13 B) the number of cultivable C. albicans cells led to biofilms with 

higher numbers of cultivable cells (~ 6 log CFU/cm2). This trend was similar to that observed in 

the 24 h pre-established dual-species biofilms without any stress factor. The second cycle of 

biofilm growth under the pressure of antimicrobial combinations clearly reduced the number 

of cultivable C. albicans cells entrapped in biofilms, for both combinations. However, despite 

the total reduction of the number of cultivable cells for ToB/PolyB (0.016 mg/L and 256 mg/L, 

respectively) it was similar to that obtained after the first cycle of antimicrobial combination 

treatment (Figure 3.13 A). For AmB/ PolyB (0.016 mg/L and 256 mg/L, respectively) 

combination, these reductions were lower than those obtained after the first cycle of 

antimicrobial combination (~2 log CFU/cm2) (Figure 3.13 B). Nevertheless, this reduction was 

not total, allowing biofilm re-growth during the second interleaved period. In fact, the 

resulting 120 h-old biofilms had recovered its levels of cultivable C. albicans cells, reaching 

values in the same order of magnitude as those determined in the 24 h pre-established dual-

species biofilms without any stress factor.   

 In general, the post-antimicrobial effects observed after the second interleaved cycle 

of antimicrobial combinations treatment is similar to that observed after the first biofilm 

growth under the pressure of antimicrobial combinations. The exception was the second 
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interleaved cycle of AmB/ToB with concentrations at 0.016 mg/L and 256 mg/L, respectively. 

In fact, the number of cultivable cells of the 96 h-old biofilms was lower but not totally 

reduced as observed in the first cycle of antimicrobial combinations treatment. 
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4.1. Single- and dual-species biofilms (24 and 48 h) phenotype 

 

 Numerous reports have recently demonstrated complex interactions occurring 

between the bacterial species P. aeruginosa, and the dimorphic fungal species C. albicans, two 

important microorganisms frequently involved in device-related NIs, such as the case of  

VAP[151][167][332][333][334][335][336][337][338][339]. However, the interactions occurring among these 

species are not fully understood[340]. Results obtained in this study did not show significant 

differences in single-species biofilms, between 24 h and 48 h of growing, which is in 

accordance with several previous studies (Figure 3.1)[340][341]. Unlike reported in 

literature[342][343][344][345], in our study the simultaneously presence of both bacterial and fungal 

species did not result in significant changes in the overall consortia (Figure 3.1). Such 

studies[342][343][344][345] have even suggested that these perturbations were caused by the 

interference of P. aeruginosa with C. albicans, affecting the whole biofilm. However, our 

findings are in accordance with the study conducted by El- Azizi et al.[334], suggesting that 

development of dual-species biofilm (involving both bacterial and fungal species) may be 

dependent on factors other than inter-species variations such as the composition of the 

culture medium used to grow the biofilms[346]. In fact, a few studies[151][334] have established 

that the possibility of P. aeruginosa to affect the growth of C. albicans is higher in nutrient-rich 

environments and under normoxic conditions.  

 According to the clinical laboratory standards, an optimal nutrient medium should 

provide good or at least an adequate growth of the microorganisms[347]. In this study, biofilms 

were developed in the RPMI 1640 culture medium, at pH 7.0. This is considered a poorer 

medium compared to glucose-rich culture media (e.g. yeast extract peptone dextrose (YPD)), 

since fungal species can grow slower[348]. This statement proves the low cell concentration 

found in RPMI 1640 (for 24 and 48 h biofilms of both strains) and corroborates the results 

show that the presence of P. aeruginosa having no effect on C. albicans when both strains are 

present in a biofilm.  

 SEM images (Figure 3.2) showed an increase of cell number for both strains between 

24 h and 48 h. C. albicans presented, at both single- and dual-species biofilms, a combination 

of yeast, pseudohyphae and hyphae in a multilayered structure[349][350][351][352][353][354]. The 

increase in C. albicans filamentation observed in SEM could be explained by various 

environmental signals, namely media culture, the strain of the study and the time 

incubation[355]. 

 C. albicans strain of this study (SC5314) is highly filamentous in vitro when compared 

with other strains of C. albicans[356]. The fungal genes associated with hyphal morphogenesis 
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likely contribute to differences virulence and differences severities of disease between strains 

of C. albicans[356][357]. On the other hand,  the use of RPMI 1640 culture medium,  and 

particularly its compounds (such as L-glutamine) are known as one of the factors that induce 

germ tube production and, consequently, the hyphae growth in C. albicans yeast 

cells[358][359][360][361][362][363]. The yeast-to-hyphae transition, associated to the composition of the 

culture media, has been considered one of the crucial factors of development stages and C. 

albicans surface attachment[354]. In addition, neutral pH promotes a denser biofilm structure 

composed of a basal layer of yeast cells followed by hyphae and contributes to better adhesion 

of C. albicans in RPMI 1640[361].  

 In addition, a further extension of the incubation time promotes a gradual increase of 

the amount of hyphae corroborating our findings, which showed an increase of C. albicans 

filamentation between 24 h and 48 h of biofilm development[364]. However, there was a 

decrease in the biomass, which can be explained by the detachment of biofilm-entrapped cells 

at 48 h leading to the crack that can be visualized in the SEM images (Figure 3.2). Sellam et 

al.[365] reported that cohesive (cell to cell) and relatively strong adhesive bonds are formed in 

an early stage of C. albicans biofilm when inoculated from the yeast form and grown in rich 

medium under flow. Through cells germination and hyphae growth by linear extension, the 

adhesive bonds are progressively weakened over an 8 h period. This loss of adhesion is 

accompanied by a structural reorganization of hyphae along the perimeter of the biofilm such 

that they become aligned in a direction perpendicular to the interfaces delineated by the 

biofilm-medium and biofilm-substratum boundaries. The most pronounced transition in both 

adhesion and structural reorganization occurs within the first 2 h of biofilm development and 

promotes the crack in the biofilm.  

 As expected, it is not possible to establish a correlation between quantitative and 

qualitative methods, since SEM images captured in a single plane, only allowing a qualitative 

analysis. Moreover, while CFUs enumeration shows the number of cultivable cells, the SEM 

analysis allows the observation of the presence or absence of viable, non-viable cells and 

matrix composition. 

 

4.2. Effect of single antimicrobials 

4.2.1. Susceptibility of planktonic populations  

 

 Several studies[366][367][368][369][370][371] have demonstrated that delaying the effective 

administration of antimicrobial therapy against VAP may lead to an increase of morbidity, 
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costs of care, and mortality, since it may adversely impact the ability of the antimicrobial 

agents to eradicate the infective pathogen.  

 The most recent recommendations from the American Thoracic Society (ATS) for the 

management of VAP by antimicrobial therapy rely on evidence-guidelines based on patient 

suffering from several pathologies and the MV duration[23]. For late onset VAP (occurring after 

4 days of MV) or patients with comorbidities or risk factors for MDR pathogens, the ATS has 

recommended the use of broad spectrum antimicrobials. For critical ill without comorbidities 

or patients with early-onset VAP (occurring before 4 days of MV), ATS has suggested the 

treatment with limited spectrum antimicrobials[23].  

 From the analysis of the results obtained in this study (Table 3.1), and according to 

epidemiological cut-off values (ECOOFs) that represent epidemiological breakpoints set by 

EUCAST[372][373][374], C. albicans was susceptible to AmB and P. aeruginosa presented 

susceptibility to all antibiotics in study: ToB, CoL, PolyB, Merp and CIP. 

 However, the higher MIC values of AmB against P. aeruginosa and higher MIC values 

for all antibiotics for C. albicans obtained show that the antifungal agents have reduced 

activity on bacterial species and antibacterial agents do not promote effect on fungi. This 

observation could be explained by the comparison between the mechanisms of action of 

antifungals and antibiotics. The antimicrobial action is limited by several factors such as the 

structures of fungi and bacteria which diverge in very significant ways (such as the diploid 

nature of most fungi and the longer generation time of fungi in comparison to bacteria). Thus, 

the available antibacterial and antifungal agents target structures and functions that are most 

important to the microorganisms to be inhibited[375]. Many antibacterial agents inhibit steps 

essential on peptidoglycan formation, which is the vital constituent of the bacterial cell wall. In 

opposition, most antifungal compounds target either the formation or the function of 

ergosterol, an essential constituent of the fungal cell membrane[375].  

 Mixed planktonic cultures require stronger antimicrobial dosing treatments because 

the microorganisms involved in mixed cultures are more unmanageable (eventually by 

protection to each other) to antimicrobials in comparison to the same microorganisms in 

single cultures[376]. Li et al.[377], demonstrated that any antimicrobial agent used alone 

promoted obvious effects against mixed planktonic cultures, since it was observed that in 

mixed planktonic cultures concentrations equal to or even higher than those used to inhibit 

planktonic growth of single populations were required. According to Tato et al.[378], the MMC 

values were consistently equal or 1- to 2-fold higher than the equivalent MIC results 

(MMC/MIC ratios ≤ 4), showing that the antimicrobial behavior of all drugs was kept equal in 

spite of the increase or decrease of their activity subjected to different environments. Data 
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suggest that the MMC effect of the drugs implies the use of higher concentrations of 

antimicrobials than the concentrations used when only want to inhibit planktonic cells (MIC).  

 In this study, the 8-fold increase obtained for MMC of AmB and ToB in C. albicans and 

in P. aeruginosa, respectively, in mixed planktonic consortium is corroborated by Mohan et 

al.[379]). The increase of antimicrobial tolerance observed for both strains in mixed cultures can 

be associated to well-known mechanisms associated to microbial species: the difficulty of the 

interactions between the antimicrobial agents and target sites; the efflux of the antimicrobial 

agent from the bacterial cells before reaching target sites of attack, and/or the destruction or 

modification of the antimicrobial molecule; and also other resistance mechanisms provided by 

the mixed culture: protection by one of the species, cell rearrangement, interactions among 

the resident species that confer this antimicrobial resistance[380].  

 In the first mechanism, the antimicrobial resistance generally occur in situations where 

the metabolic activity of bacteria is lower in mixed cultures in comparison when their growth 

alone, which in turn leads to lower activity of the antimicrobial target sites[381]. Furthermore, 

the low metabolic activity may be the consequence for the need to conserve energy due to the 

competition for available nutrients in mixed cultures. In fact, bacteria growing in nutrient-

limited conditions (e.g. RPMI 1640 medium) can initiate a mechanism known as stringent 

response, which leads to growth arrest and subsequent inactivity of the antimicrobial target 

sites (e.g., binding elements such as rRNA), thereby resulting in increased antimicrobial 

tolerance[381]. Regarding the second mechanism, the interspecies communication in bacteria is 

known to change gene expression patterns, which may cause efflux of antimicrobial molecules, 

leading to increased antimicrobial resistance. For example, the efflux pump genes in P. 

aeruginosa can be up-regulated in mixed planktonic cultures[382]. Antimicrobial resistance 

involving the destruction or modification of antimicrobial molecules may be different in single 

and mixed cultures due to differences in the production of molecules that can modify 

antimicrobials. For example, P. aeruginosa secretes various enzymes and small molecules, 

including PlcH, phenazines, the QS molecule 3OC12HSL and PYO which influence the biology 

and survival of C. albicans[160][161][162][163]. C. albicans also produces a QS molecule, FOH, which 

regulates its own morphology[170]. Like PYO, FOH is also associated with changes in C. albicans 

metabolic pathways, and these changes in fungal metabolism may indirectly effect other 

microorganisms such as P. aeruginosa in the consortium[159]. 

 The production of small molecules by both microorganisms observed in mixed cultures 

can exert effects on microbial behavior with increased virulence, dissemination, survival and 

increased resistance to antimicrobial agents[159][383][384]. 
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4.2.2. Effect on biofilms 

 

 In most natural environments, microorganisms exist mainly as biofilms rather than as 

planktonic cells and they are significantly less susceptible to antimicrobial agents, including 

antimicrobials, antiseptics and industrial biocides[183][385][386]. Resistance is reportedly up to 10- 

1000 fold greater in bacterial or fungi cells in biofilms than antibiotic or antifungal 

susceptibilities of planktonic cells, which could be the explanation of frequent therapeutic 

failure of antimicrobials against biofilm infections[183][273][274][275][276][277][278]. Cells in a biofilm 

(sessile cells) are phenotypical and physiologically different from non-adhered (planktonic 

cells) and one of the typical properties of cells in a mature biofilm concerns to the higher 

concentrations of antimicrobial drugs requirement to kill sessile cells compared to planktonic 

cells[188].   

 In this study, AmB did not promoted any effect in pre-established C. albicans biofilms 

(Figure 3.3).  In a previous report (Uppuluri et al.[387]), it was verified that in single-biofilms of C. 

albicans the reductions in the number of cultivable cells have occurred after employment of 

AmB at 1 mg/L, whereas AmB at 0.25 mg/L resulted in only minimal effects on biofilm 

dispersion. In part, our results are in a concordance with this previous study[387], although the 

authors have evaluated the activity of AmB under flow conditions. Also, our results are in 

agreement with other studies[388][389][390], who have reported that C. albicans biofilms are 

relatively resistant to a wide spectrum of clinical antifungal agents, including to AmB. The 

increase of the structure complexity of Candida species biofilms could be the explanation for 

the antifungal resistance[391]. The development of complex architectures resulting in the 

production of hyphae or pseudohyphae in C. albicans cells in RPMI medium (as shown in 

Figure 3.2) limits the penetration of drugs through the ECM, also creating a barrier to the 

access of these antimicrobials to the biofilm-entrapped cells[274][386][392]. Moreover, several 

mechanisms detected in C. albicans biofilms may also justify these results, such as the 

overexpression of drug targets. Ramage et al.[393] demonstrated that C. albicans biofilms 

exposed to fluconazole induces an upregulation of genes involved in ergosterol biosynthesis, 

which caused the production of several sterols and, consequently, the antifungal resistance. 

Additionally, persister cells, described as being “highly tolerant to antibiotics”, have been 

involved in the biofilms resistance as well[394].  Some studies[393][395] demonstrated the presence 

of these cells in Candida species biofilms including C. albicans biofilms when exposed to 

antifungal agents. The physiological stress that causes mutations in proteins affects biofilm 

formation and, consequently, the resistance to antifungal agents[393]. Another factor involved 

in the antifungal resistance of biofilms is the efflux pumps, which are differentially expressed 
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only in the early phase of biofilm development[388]. The decrease of metabolic activity and the 

high anti-oxidative capacities are other mechanisms of antifungal resistance that have been 

indicated for Candida species biofilms[396]. ECM has been referred as an important mechanism 

in the antifungal resistance of biofilms because it acts as a protective barrier of cells embedded 

in it, by hampering the diffusion of antimicrobials agents[388][393]. 

 The effect of antibiotics such as ToB, CoL and PolyB, often used for treatment of P. 

aeruginosa[317], in single- and dual-species biofilms can be observed in Figure 3.3. The 

reduction of the number of cultivable cells entrapped in biofilms was more evident in 

concentrations 2x and 4x above the respective MIC value. According to the 

literature[273][397][398], a growing number of assays and techniques have been developed to 

enumerate the susceptibility of cells entrapped in biofilms, however without supplying a 

rational comparison with the standard MIC assay for planktonic cells. This occurs because 

EUCAST standards determinates the practice with a low inoculum of the planktonic cells (0.5 - 

2.5 x 105 CFU/mL)[319]. Even if many clinical practices still depend on MIC determinations with 

microbial suspensions[399][400][401]; it is important to evaluate biofilm cells’ susceptibility to 

antimicrobials rather than testing the susceptibility of planktonic cells, once they are not 

similar. So, for the application of the susceptibility assays to bacterial cells entrapped in a 

biofilm, it becomes advantageous to determine the minimum biofilm inhibitory concentration 

(MBIC) and the minimum biofilm eradication concentration (MBEC), instead to compare with 

the traditional susceptibility test based on planktonic cells[277].  

 In addition, many antimicrobials in clinical use present adverse effects (e.g., 

nephrotoxicity, ototoxicity, and neuromuscular blockade) caused by an extension of the 

antimicrobial´s normal pharmacology and complications of high serum levels[402][403][404]. 

Therefore, maximizing the effectiveness and minimizing the toxicity of different antimicrobials 

are critical settings for clinical implications. Thus, these parameters are of extremely 

importance to better screen the therapeutic decisions in the treatment of VAP 

infections[235][405]. In this way, the PK and PD profiles of an antimicrobial delivery agent is an 

important evidence to help establishing an efficient dosing regimen[278].  

 In general, mostly antimicrobials used in this study (ToB, CoL and PolyB) showed 

activity against single- and dual-species pre-established biofilms, in particular for P. aeruginosa 

to higher concentrations than the respective MIC (2x and/or 4x MIC value) (Figure 3.4). 

However, most of them only presented significant effect over time, being more noticed in 

dual-species biofilms. It is believed, therefore, that the antimicrobial dosages at certain 

defined time interval may even lead to a suitable therapeutic efficacy to treat polymicrobial 

biofilm-associated infections. Our findings have corroborated several authors 
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[234][235][236][278][405][406][407][408], showing that all antimicrobials (AmB, ToB, CoL and PolyB) 

presented concentration-dependent killing along with prolonged persistent effects. Cmax/MIC 

(AmB and ToB) or the AUC/MIC ratios (CoL and PolyB) are PK/PD indexes for antimicrobials in 

our study. The prolonged persistent effects protect against re-growth when active 

antimicrobials concentration decreases to below the MIC[234][235][236]. Moreover, in  previous 

studies developed by Hengzhuang et al.[277], it was reported that to reach the clinical target for 

biofilm infections compared with planktonic cell infections, higher-dose and longer-term 

treatments are required in the presence of CoL. Such as for CoL, the initial  killing of  P. 

aeruginosa by PolyB was quicker and in higher dosage than the standard dose (2.5 

mg/kg/day)[409]. Thus it may be necessary to suppress P. aeruginosa resistance in 

immunocompromised hosts[409]. In relation to ToB, the efficacy of high-dose extended-interval 

aminoglycoside therapy has been recommended by current guidelines of the Cystic Fibrosis 

Foundation (CFF). The reason behind is that is proven by the increase of pulmonary function 

assays and reduction of the incidence of side effects[410][411][412][413]. The killing effects of AmB 

on C. albicans biofilms were quicker in a linear concentration-dependent. This antifungal agent 

generally requires higher concentrations, even above its therapeutic margin, to start the 

therapeutic potential[405]. 

 

4.3. Effect of the combination antimicrobials′ 

4.3.1. Susceptibility of planktonic populations  

 

 ICU have been reporting, in the past decade, increased rates of P. aeruginosa strains 

resistant to monotherapy (eg: fluoroquinolones 46 %, piperacillin–tazobactam 40 %, and 

carbapenems 43 %) leading to infections where VAP management shows a demanding task 

itself[69][414][415][416]. In general, VAP treatment involving drug combination is recommended for 

patients with prolonged MV (> 3 – 5 days), risk factors for MDR pathogens or with a history of 

previous MDR infection, empiric broad-spectrum[50][417][418]. To ensure that the infective 

pathogens are susceptible to at least one of the antimicrobials, combination therapy should 

provide a greater spectrum of activity against these microorganisms, including in P. aeruginosa 

- C. albicans infections[50][418]. 

 It is expected that using combination therapy will decrease the probability of wrong 

initial treatment, which has been associated with significantly increased mortality, and the use 

of reduced doses of each antimicrobial will cause a reduced toxicity[250][419].  
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 Certain combinations of antimicrobials exhibit synergistic effect against several 

pathogens. It was defined as a significantly greater activity, the effect provided by two 

antimicrobials agents combined in comparison with the effect provided by the sum of each 

antimicrobial agent alone[420][421]. Among the synergy assays, the checkerboard assay is the 

most common technique that allows to obtain the best therapeutic clinical outcomes based in 

the evaluation of the potentially of two antimicrobials in patients with VAP mainly by 

Pseudomonas species[257][422]. The checkerboard method employs a methodology similar to 

that performed for determination of MIC, where the results of the checkerboard assay are 

interpreted by calculating the FIC index for the two antimicrobials agents[423][424].A FIC index of 

0.5 or less shows a synergistic effect; between 0.5 and 1 is assumed to be an additive effect; 

between 1 and 4 shows indifference; and a FIC index greater than 4 symbolizes an antagonistic 

effect[317]. It is important to refer that most studies only report susceptibility assays regarding 

only one species rather than mixed cultures. The results obtained in this section (Table 3.2) 

revealed a similarity with the susceptibility of both strains (P. aeruginosa and C. albicans) to 

antimicrobials agents alone (Table 3.1). Thus, most of the antimicrobials tested against single 

planktonic cultures demonstrated to inhibit the growth of both strains (P. aeruginosa and C. 

albicans) at low concentrations. However concentrations equal to or even higher than those 

used to inhibit single planktonic cultures were necessary for mixed cultures. These results 

demonstrate that P. aeruginosa and C. albicans were susceptible to most antimicrobials 

combinations, particularly when these strains are in single planktonic cultures (Table 3.2).  

 Furthermore, it was found that most tested antimicrobial combinations demonstrated 

a synergistic effect against P. aeruginosa planktonic cultures and in mixed planktonic cultures, 

with the exception of the combination ToB/PolyB which had shown an antagonistic effect 

against mixed planktonic cultures. An antagonist effect was also observed for all tested 

antimicrobial combinations against C. albicans cultures (Table 3.2). 

 Bozkurt-Guzel et al.[425] had shown results similar to the obtained in this study, 

reporting a percentage of 38 % of synergistic effect between CoL and ToB against P. 

aeruginosa strains. Most studies concerning antimicrobial combinations generally use CoL 

rather than PolyB[263]. This is most likely due to the wider geographical use of CoL. In addition it 

is important to refer that these therapies are often applied for P. aeruginosa strains, being the 

microorganism most commonly presented in a wide number of studies[263].  

 The antagonistic effect observed for most antimicrobial combinations (AmB/CoL and 

AmB/PolyB) in C. albicans populations (Table 3.2) was not consistent with previously 

studies[426][427][428]. These authors[426][427][428] demonstrated that AmB/CoL FIC value (0.27) shows 

a synergistic effect against C. albicans. According to previous literature[426][429][430][431], not all 
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membrane-targeting drugs are synergistic with echinocandins, for instance, azoles and 

polyenes are not generally regarded as synergistic with echinocandins in Candida species, 

although some examples of synergy have been reported. However, the use of different 

antimicrobial combinations may be one possible explanation for the aforementioned 

contradictory results. 

 

4.3.2. Effect on biofilms 

 

 According to the results obtained, the antimicrobial combinations did not promoted a 

strongly reduction in the number of cultivable cells in single- and dual-species pre-established 

biofilms (Figure 3.5 and 3.7, respectively). Exceptions were observed for AmB/PolyB and 

ToB/PolyB, particularly with PolyB at high concentration (256 mg/L).  These results can be 

explained by mechanisms of resistance commonly reported in bacterial-fungal biofilms to 

antimicrobials: slow penetration of the antimicrobial agent through the ECM biofilm, changes 

in the chemical microenvironment within the biofilm (leading to zones of slow growth rate), 

adaptive stress responses such as oxygen gradients leading to protection against antimicrobial, 

changes in cell metabolism, presence of a small population of extremely tolerant ‘persister’ 

cells (i.e. they can tolerate certain antimicrobial agents and they are not killed) and efflux of 

the antimicrobial agent before reaching target sites of attack[188][307][310][432]. Other resistance 

mechanisms include horizontal gene transfer[433], being typically higher in biofilms than in 

planktonic cultures and the increased transfer of antimicrobial resistance determinants on 

mobile genetic elements in biofilms of various microorganisms[434].  

 It was also found that only the combinations involving PolyB at high concentration (at 

256 mg/L), in particular AmB/PolyB and ToB/PolyB, could disturb P. aeruginosa biofilm cells 

and leading to the total inhibition of these cells in dual-species biofilms. Therefore, this 

antimicrobial resistance was lower when both strains were presented in dual-species biofilms 

in comparison with single-species biofilm for each strain. Thus it exhibited a greater reduction 

in the number of cultivable cells for both strains in dual-species biofilms. In the present study, 

these findings strongly suggest that both strains may even mediate by different fungal- 

bacterial interactions. The antagonistic interaction in fungal-bacterial interactions contributes 

to the pathogenicity and subsequent failure of antimicrobial treatment comparatively when 

they were alone in biofilms[159]. It can alter the overall community structure[435], fungal cellular 

morphology[165][436][437], bacterial motility[438] and the survival[151] of the interacting between P. 

aeruginosa and  C. albicans.  It is believed that the fungal- bacterial interactions interplaying in 

those biofilms are mediated by QS, a phenomenum by which microorganisms monitor and 
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regulate their population density through chemical signaling[160][161][162][163][439][440]. An example 

of the QS in P. aeruginosa- C. albicans biofilm is the production of enzymes and small 

molecules by both microorganisms (such as hemolytic PlcH, phenazines, PYO and  3OC12HSL  

by P. aeruginosa and FOH  by C. albicans), facilitating host invasion[159][441]. Thus, their 

competitive mechanism observed leads to more susceptibility of the consortium, facilitating 

the subsequent eradication by antimicrobials which induces great implications by modifying 

the actually clinical therapy of the VAP[442][443][444]. This conclusion implies that antimicrobial 

strategies more effective can be developed and validated in order to better control the overall 

consortium[445]. Although, more exhaustive studies are required to understand the fully 

mechanism behind the microbial consortium 

 It should be noted, however, that the strong reduction in the number of cultivable 

cells, mainly in dual-species biofilms, may be linked only to the action of PolyB at 256 mg/L 

concentration. However this concentration is higher than permissible in clinical use. According 

to the literature[446] at this concentration of PolyB (256 mg/L) is revealed a strong toxicity for 

humans. Based on this, concentrations of PolyB below to permissible in clinical use (6.25 – 50 

mg/L concentration range acceptable[446]) were tested in AmB/PolyB and ToB/PolyB 

combinations, in particular 8 and 16 mg/L of PolyB. It has been found that only combinations 

with 16 mg/L PolyB showed reduction in the number of cultivable cells in single-species 

biofilms of P. aeruginosa whereas combinations with 8 and 16 mg/L PolyB concentrations had 

reduction in the number of cultivable cells in dual-species biofilms. 

 These results are corroborated by those found by Furtado et al.[447], where reported 

that PolyB combinations did not provide additional benefit over PolyB monotherapy for 

pneumonia.  

 Although the potential benefits of PolyB combinations therapy over monotherapy, 

some studies[448][449] have demonstrated that PolyB combinations suggested are generally 

limited to retrospective analyses and small, low-powered, prospective studies using traditional 

dosage regimens that achieve low plasma concentrations. So, given the associated limitations 

with existing clinical data, well-designed clinical trials that include higher-dose PolyB regimens 

are urgently required to provide an optimization of PolyB combination therapies compared 

with monotherapy[263]. It is also important to take into account the ethical and logistical 

challenges of conducting such investigations[263].  

 The results mentioned above were evaluated by CFUs enumeration (Figure 3.5 and 

3.7) and biomass quantification (Figure 3.7 and 3.8). Despite having different results obtained 

with both methods, it is essential to mention that the CFUs enumeration and CV staining are 

complementary techniques used to assess biofilm ability formation and effectively measure 



Discussion 

Chapter IV | 85 

distinct data. CFUs enumeration assesses the number of cultivable cells and CV method 

determines the total biomass values (viable, non-viable cells and the matrix present in 

biofilm)[450].  

 In order to confirm those results, PNA-FISH methodology counterstained with DAPI 

was performed to examine cell enumeration and distribution within the biofilms (Figure 3.9 

and 3.10). Nonetheless, contradictory results between the quantitative (CFUs enumeration 

and biomass quantification) and qualitative methods (PNA-FISH analysis) regarding the 

antimicrobial effect in single- and dual-species biofilm were observed mainly in the AmB/PolyB 

and ToB/PolyB combinations. 

 In AmB/PolyB and ToB/PolyB combinations with PolyB at 256 mg/L, it was observed an 

overall reduction in the number of cultivable cells in dual-species biofilms for both strains by 

CFUs enumeration. In the evaluation by PNA FISH analysis showed that both strains (P. 

aeruginosa and C. albicans) are present in abundance, in particular for P. aeruginosa. Hence, 

bacterial cells are predominately located around the hyphae. Lopes et al.[451] reported the 

predominance of P. aeruginosa within the consortium as the higher contribution of P. 

aeruginosa to the antimicrobial resistances presented by dual-species biofilms. The dual-

species biofilms alter the metabolic activity of the consortium and hence may alter the 

susceptibility patterns of the population. This can reflect itself as an alteration in the overall 

biofilm structure and ECM by both microorganisms impairing access of antimicrobials into the 

consortium, or by decreasing the antimicrobial uptake rate through the cell membrane[451]. 

 Furthermore, an in vitro study[151] indicates that P. aeruginosa preferentially attaches 

to the filamentous form of the C. albicans. Subsequently, the bacterial cells are able to form a 

biofilm along with C. albicans filaments increasing nutrient acquisition from the fungi.  

 Applying the Live/Dead BacLight Bacterial Viability Kit, it was demonstrated that 

bacterial cells in dual-species biofilms, were still viable even after treatment with PolyB 

combinations at 256 mg/L (Figure 3.11). Therefore, these results allow us to conclude that 

those are viable but not cultivable (VBNC) cells on solid media. It is important to note that the 

kit used in this assay is specific for bacterial specie; hence the orange color of the hyphae could 

not match the reality of the yeast cells state. Nonetheless, the assay was addressed primarily 

to bacteria since this had shown the most contradictory results in previous assays. 

 The VBNC state is an unique survival strategy adopted by many bacteria, including P. 

aeruginosa in response to adverse environmental conditions such as antimicrobial pressure, 

high/low temperature, starvation, chlorination, change in the pH, and oxygen 

stress[452][453][454][455][456][457]. Yeasts are also capable to undergo a VBNC state by the same 

reasons mentioned for bacteria[458][459]. In the presence of VBNC cells, the total number of 
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viable cells in a sample will be underestimated by the CFUs enumeration methodology due to 

the inherent non-cultivability and subsequently non-detection of these cells[460]. This situation 

has been explained by the contradictory results obtained by different methods of evaluation 

(CFUs enumeration and PNA FISH analysis). Additionally, the ability of microorganism to enter 

the VBNC state may be advantageous for cells, but the underestimation or non-detection of 

viable cells in clinical samples induces a serious risk to human health. In this way, several 

human infections, such as VAP can be developed. The risks appear from the fact that 

pathogenic microorganism can be a virulent in the VBNC state or regain virulence after 

resuscitation in to cultivable cells under suitable conditions[460]. Moreover, the inherent 

characteristic of cells being VBNC cells may lead to latency and consequently, to the 

recurrence of disease in patients who were already submitted to treatment[461][462]. Hence, it is 

important to understand what species of human pathogens can enter the VBNC state and also 

apply reliable detection methodologies to quantify the accurate population of viable cells, 

including both cultivable and VBNC cells[463]. 

 In order to know when this will actually total reduce and whether it will be reversible 

or not, it was performed the kinetic effect and post antimicrobial effect for certain 

concentrations of AmB/PolyB and ToB/PolyB to dual-species pre-established biofilms. 

 So, it was shown that the total reduction in the number of cultivable cells of P. 

aeruginosa entrapped in dual-species biofilms occur immediately after the contact with 

AmB/PolyB (0.016mg/L and 256mg/L, respectively) and Tob/PolyB (0.016mg/L and 256mg/L, 

respectively) combinations (Figure 3.12). Furthermore, in the presence of both combinations, 

P. aeruginosa cells entrapped in dual-species biofilms did not recover their ability for 

cultivability, noting a lack of the cultivable P. aeruginosa remaining inexistent until to 120 h 

(Figure 3.13). Whereas for C. albicans strain the total reduction in the number of cultivable 

cells occur after 20h of the presence of ToB/PolyB (0.016mg/L and 256mg/L, respectively) and 

Amb/PolyB (0.016mg/L and 256mg/L, respectively) combinations. The number of cultivable C. 

albicans cells entrapped in dual-species biofilms decreased dramatically, even leading to the 

total reduction after 12 h (Figure 3.12). However for both combinations, C. albicans strain 

recovered its ability for cultivability even after removal of the antimicrobial combination 

(stress factor) (Figure 3.13). In fact, it has been described by Weckwerth et al. [464], which 

demonstrated that in presence of stress factor (such as high temperatures in their study) C. 

albicans cells can enter the VBNC state. Furthermore, according to the literature[465][466][467], 

many species have the ability to rehabilitate from the VBNC state back to the cultivable state 

when the stress is removed.  

 Lastly, it was necessary to understand whether any antimicrobial combination could be 
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used in clinical treatment below its permissible concentration but also if it was able to 

promote better effects in single- and dual-species biofilms of both strains. So, it was decided to 

evaluate the effect of the PolyB at a 32 mg/L concentration when combined with AmB and ToB 

at a 0.016 mg/L concentration by quantitative methods (CFUs enumeration and biomass 

quantification) (Figure 3.5 and 3.6). However it was shown that AmB/PolyB (0.016mg/L and 

32mg/L, respectively) and ToB/PolyB (0.016mg/L and 32mg/L, respectively) combinations 

present a more similar behavior to PolyB at 8mg/L and 16 mg/L concentrations when 

combined to AmB and ToB.  As such, a non-significant reduction of cultivable cells for both 

strains in single- and dual-species biofilms was seen.  

 Thus, a prolonged administration of antimicrobial therapy involving AmB/PolyB 

(0.016mg/L and 256mg/L, respectively) combination is the best therapeutic which presents 

potential to treatment of both species in dual-species biofilms. However, further studies 

involving antimicrobial combinations with PolyB at high concentrations (256 mg/L) are needed 

to better clarify the concentrations for clinical usage for treatment of polymicrobial infections 

in VAP, such as bacterial-yeast infections, avoiding concentrations toxic for humans. 
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5.1. Conclusions 

 

 This work aimed to give new insights concerning polymicrobial infections in VAP. The 

interaction between P. aeruginosa and C. albicans, emphasizing their biofilm formation ability 

and their antimicrobial resistance profiles were features evaluated throughout this work. 

Although the particular interaction of P. aeruginosa and C. albicans in VAP infections is 

frequently exhibited and despite of their importance in the development of health disorders, 

the mechanism is not completely understood.  Therefore, more research is needed in order to 

complete the comprehensive information regarding the role of this polymicrobial infection in 

VAP. 

 Considering the first results of this work it was possible to conclude that the presence 

of different incubation times (24 h and 48 h) did not result in significant changes to biofilm 

formation in the overall consortia by both pathogens.  

 Concerning to single antimicrobials, the planktonic populations involving P. aeruginosa 

and C. albicans are susceptible to most of the antimicrobials tested at low concentrations in 

single planktonic cultures and at higher concentrations in presence of mixed planktonic 

cultures. Given these preliminary findings and knowing the susceptibility to different single 

antimicrobials of both strains in planktonic cultures, P. aeruginosa and C. albicans were 

evaluated for biofilm-forming ability and for antimicrobial resistance profiles under different 

single antimicrobials. Thus, P. aeruginosa, both in single- and dual-species, was apparently the 

pathogen more sensitive to the most tested single antimicrobial agents and these reductions 

were concentration-dependent used and time factor mainly in dual-species biofilms.  

 Based on these previous results and since the effect of the single antimicrobials was 

not in accordance to the expected one, it was decided to study the behavior of P. aeruginosa 

and C. albicans under the effect of different antimicrobial combinations. Initially, it was shown 

that the synergistic effect of most tested antimicrobial combinations was found mostly for P. 

aeruginosa planktonic single cultures and in mixed planktonic cultures.  Subsequently, it was 

applied the concentrations of the most interesting antimicrobial combinations to single- and 

dual-species biofilms of P. aeruginosa and C. albicans. Thus, only AmB/PolyB and ToB/PolyB 

combinations promoted a significant reduction in the number of cultivable cells in single- or 

even in dual-species biofilms of both strains, particularly in combinations with PolyB at high 

concentration (256 mg/L) which could strongly disturb in P. aeruginosa biofilm cells leading to 

the total inhibition of these cells in dual-species biofilms. So, a greater reduction in the number 

of cultivable cells was exhibited and consequently, a lower antimicrobial resistance in dual-

species biofilms. These findings evidenced an interaction between both strains when 
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simultaneously present promoting a higher sensitivity to antimicrobial therapies. Therefore 

such antimicrobial therapies seem to be novel methodologies for VAP therapy.  

 However, the evaluation by PNA FISH showed that both strains are present in 

abundance, in particular P. aeruginosa strain. The application of the Live/Dead BacLight 

Bacterial Viability Kit demonstrated that bacterial cells in dual-species biofilms still viable even 

after treatment with PolyB combinations at 256 mg/L. Therefore, these results allow the 

conclusion that those are VBNC on solid media. The ability P. aeruginosa to enter the VBNC 

state may induce the underestimation or non-detection of viable cells in clinical samples 

promoting a serious risk to human health.  

 In conclusion, the different antimicrobials therapies used in this work did not display 

any effectiveness in the treatment of dual-species biofilms involving P. aeruginosa and C. 

albicans. The antimicrobial combinations with PolyB at 256 mg/L present a strong potential to 

treat both strains, mainly in dual-species biofilms. However, the aforementioned 

concentration shows to be higher than the permissible for clinical use with strong toxicity for 

humans.  

 In order to disclose the suitable concentrations for clinical usage, further studies with 

these antimicrobial combinations have to be performed. Thus, they can be used as novel 

methodologies for VAP therapy in polymicrobial infections, particularly in P. aeruginosa- C. 

albicans infections.  

 

5.2. Work perspectives 

 

 The work presented in this thesis provides the first findings about several aspects of P. 

aeruginosa and C. albicans interactions, namely, the importance of their polymicrobial biofilms 

characteristics for worsening VAP infection. 

 Evidently, this work raised interesting new questions for further research in regards to 

optimization and brings new breakthroughs in this field. Some of the suggestions that should 

be considered for future investigation are given below: 

 

 Apply the PNA-FISH methodology while quantitative method once in the present work 

the methodology was only used in qualitative terms (presence or absence of cells of 

both strains), and therefore it is not known whether the antimicrobial combinations 

actually used in biofilms had some effect with respect to reducing the number of cells 

of both strains; 



Conclusion and Work Perspectives 

Chapter V | 93  

 

 Apply the LIVE/DEAD staining for yeasts in order to evaluate the state of C. albicans, 

once this method was only applied for bacterial cells and so there was no information 

about the real state of C. albicans; 

 

 Bacteria-yeast polymicrobial infections are often primarily induced by bacterial 

infection and further fungi infections are exhibited alongside due to the 

immunocompromised patient state. Therefore, we would aim to study the 

antimicrobial effect in the final consortia by applying a different methodology for the 

VAP treatment. Future studies would rely on the investigation of the antimicrobial 

agents effect on biofilm formation by induction of co-infection by both species (P. 

aeruginosa and C. albicans). The adopted methodology would concern a dual-phase 

infection whereas the development of bacterial biofilms would be promoted prior to 

induction of C. albicans infection; 

 

 Since it has been suggested that the both strains involved in this work presented 

antimicrobial resistance profiles, it is important to study virulence genes involved in 

the interaction between both strains; 

 

 In order to simulate the real environment found in VAP infections, it is suggested the 

use of different conditions, such as the culture medium, the use of artificial sputum 

medium (ASM) instead of RPMI 1640 medium; carry out the biofilms assays adhering 

the endotracheal tube segments instead PS microtiter plates; and use clinical isolates 

instead of references strains. 
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