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Abstract 

In this contribution, original limit analysis numerical results are presented dealing with some 

reinforced masonry arches tested at the University of Minho-UMinho, PT. Twelve in-scale circular 

masonry arches were considered, reinforced in various ways at the intrados or at the extrados. 

GFRP reinforcements were applied either on undamaged or on previously damaged elements, in 

order to assess the role of external reinforcements even in repairing interventions. The experimental 

results were critically discussed at the light of limit analysis predictions, based on a 3D FE 

heterogeneous upper bound approach. Satisfactory agreement was found between experimental 

evidences and the numerical results, in terms of failure mechanisms and peak load.  

Introduction 

During the last years, Fiber Reinforced Polymers (FRP) have being widely used not only as 

valuable strengthening to increase the in- and out-of-plane strength, but also to increase the load 

carrying capacity of arches and vaults. In fact, composite materials can be advantageously applied 

at the intrados or at the extrados surfaces of both flat and vaulted masonry structures, to prevent or 

delay collapse mechanisms and consequently increase the overall structural load bearing capacity, 

even under seismic actions. Nowadays, a relatively wide experimental literature dealing with 

masonry arches reinforced with FRP is at disposal [1]-[5], which provides interesting design 

information for all practitioners interested in an effective rehabilitation strategy of masonry curved 

structures. 

From a practical point of view, a good understanding of the interface bond is a prerequisite for 

achieving more reliable and rational design of masonry structures reinforced by FRP composites. 

Although early FRP studies available in the literature were focused on concrete elements, recent 

contributions concerned durability of the interface bond for masonry structures, see e.g. [6][7], 

deepening the knowledge of such issue also for masonry. 

In the present paper, the behavior of masonry arches strengthened with composite materials is 

investigated mainly from a numerical standpoint using limit analysis. We refer for comparison to a 

wide experimental campaign conducted at UMinho on several circular in-scale arches reinforced in 

various ways with GFRP strips. Numerically, recourse is made to a heterogeneous limit analysis FE 

approach to interpret the experimental data, similarly to what recently presented by one of the 

authors in [9]-[12]. 
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As well known, limit analysis represents a valuable alternative to expensive step-by-step nonlinear 

FE simulations, to predict the ultimate mechanical response of masonry structures at collapse. In 

particular, an upper bound approach combined with a FE discretization of the actual heterogeneous 

microstructure provides in a rather easy way failure mechanisms and the collapse loads. A typical 

drawback of this approach is however the simplifying assumption of perfectly-plastic material 

behavior for masonry and for the FRP/masonry interface, i.e. the softening effect with consequent 

strain localization and possible limited ductility are neglected [12][13]. 

Comparisons with experimental data confirm that the present limit analysis computations are 

capable of well approximate both failure mechanisms and load carrying capacity of the arches. Such 

tool, thanks to its simplicity, turns out to be especially suitable for all the practitioners interested in 

a fast evaluation of the beneficial effect induced by FRP strip retrofitting. 

Experiments on masonry arches, a review 

In-scale models of masonry elements were used for the experimental campaign at UMinho [8], 

mainly to achieve a faster construction process and an easier testing setup, without any reference to 

similarity laws. Therefore, the results outlined and carefully validated herein cannot be directly 

extrapolated to real scale elements. 
 

 
(a) 

 
(b) 

Fig. 1: Masonry arches preparation: (a) bricks assemblage near the key stone during construction 

and (b) finished specimen after 1 week of curing, during application of GFRP strips. 

 

 
(a) 

 
(b) 

Fig. 2: Testing configurations for masonry arches: (a) typical unreinforced sample (labelled as US) 

and (b) localized reinforced specimen (LS),  previously damaged as in (a). Refer to Table 1 for ID 

and GFRP width strips. 

 

All arches were constructed over a scaffold wooden frame, keeping constant intrados mortar joint 

thickness of approximately 10 mm. The construction of masonry arches was accomplished in two 

phases (see Fig. 1). At the beginning, the first layer of bricks was laid over the formwork, starting 
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from both abutments up to the quarter perimeter of the arch. Thereafter, remaining courses were 

laid simultaneously from both ends in such a way that the joint thickness could be tuned to obtain a 

full brick at the crown, see Fig. 1-a. The protocol for the reinforcement applications required a thin 

putty layer applied on a cleaned surface, to subsequently prime the arch surface using MBrace 

Primer, rollered onto the surface and left to become tacky before socking and finalize with GFRP 

strips. Fig. 1-b shows the primed area. Moreover, localized reinforcements were applied on two 

arches already damaged (loaded up to the first hinge formation and then unloaded), constituted of 

symmetric parallel GFRP strips, transversely to the mortar joints at the expected hinges location. 

Further construction details can be found in [8], where the reader is referred to. 

 

Table 1. Comparison between experimental and numerical (limit analysis). 

Construct 
GFRP 

Reinforcement 

Results 

Experimental Numerical 

ID 

Strip width, 

w [mm] 

Collapsed load, 

F [kN] 

Resistance 

increase 

[%] 
III

 

Sustained 

disp 

[mm] 

UB 

limit 

analysis 

[kN] 

Error 

[%] Intrados Extrados Max Average
II
 

US-1 

US-2 

- 

- 

- 

- 

1.43 

1.92 
1.68 - 0.5 1.88 11.9 

LS-1 

LS-2 

150.0 

150.0 

3.18 

2.73 
2.96 76 0.9 3.23 9.1 

CSE-1 

CSE-2 

- 

- 

100.0 

100.0 

2.51 

3.82 
3.17 89 15.5 3.68 16.09 

CSE-3 

CSE-4 

- 

- 

160.0 

160.0 

3.62 

3.26 
3.44 105 28.8 4.01 16.57 

CSI-1 

CSI-2 

100.0 

100.0 

- 

- 

4.26 

4.63 
4.45 165 35.9 4.55 2.3 

I
CSI-3 

I
CSI-4 

100.0 

100.0 

- 

- 

5.41 

3.81 
4.61 174 32.7 4.89 6.1 

I
 Handmade FRP-based spike anchors were used in addition to the FRP strips. 

II
 (load US-1+load US-2)/2 = Av_US; 

III
 Resistance increase (%) = 100× (Av_S-Av_US)/Av_US 

 

Within the experimental campaign twelve masonry arches were built (see Fig. 2), with a 

semicircular shape and free span of 1.50 m, each one constituted of 59 brick courses. Thickness of 

each ring was equal to the brick height, equal to 50 mm (thickness/span ≈ 1/30), see Fig. 3. All 

arches required two weeks of curing before testing. Four typologies of arches were considered (see 

Fig. 3 and Table 1): 

• unreinforced, labeled as US-n (n=1 indicates the first sample, etc.); 

• localized reinforcement applied on unreinforced tested arches, labeled as LS-n; 

• continuous reinforcement at the extrados (CSE-n); 

• continuous reinforcement at the intrados (CSI-n). 

Synopsis in Table 1 visualizes GFRP width strips applied on each reinforced masonry arch, 

endowed by the experimental peak load and its limit analysis prediction. A servo-controlled testing 

machine was utilized, equipped with a 25 kN cell capacity; the jack was positioned at the middle of 

the arch width, Fig. 2. The load was applied at the quarter span, see Fig. 3. Thanks to the very small 

deflection exhibited by the arches near failure, the deformation does not change significantly the 

position of the load, which should follow the application point when the arch deforms. Therefore, 

the loading tool results in an application of a horizontal component on the arches which can be 

neglected in the limit analysis calculations. 
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Fig. 3: Geometry and typology of tested masonry arches: with localized reinforcement after 

damage (LS-n), with continuous reinforcement at the extrados (CSE-n), and with continuous 

reinforcement at the intrados in (CSI-n). 

 

The arches without reinforcement (US-n) exhibited a brittle collapse, with a typical four-hinge 

mechanism. All the tested reinforcements led to an increase of the load bearing capacity. It is worth 

noting that localized reinforcements (LS-n), which are typical of retrofitting interventions, partially 

against intuition, did not alter the original failure mechanisms observed in unreinforced elements. 

The reason is connected to the fact that the formation of the plastic hinges occurs always in the 

same position (under the load, on abutments and in an intermediate point on the opposite side of the 

load) and therefore the only effect that the reinforcement has is to spread a little bit the length of the 

plastic hinges, thus increasing the load bearing capacity.  

For the masonry arches reinforced at the extrados (CSE-n), the first hinge was formed beneath the 

applied load, whereas the other two hinges appeared afterwards at the supports. Relative sliding 

along a mortar joint close to arch support was observed for this arch typology, indicating an 

insufficient shear resistance. Reinforcement applied at the extrados (CSE-n) provided the higher 

deformation capacity prior to failure. 

In the masonry arches reinforced at the intrados (CSI-n) detachment of the FRP strips from the 

masonry substrate involved ripping of a thin layer of brick and mortar. Two of the hinges were 

77°

154°

L=1,50m

F

1/4.L

LVDT1

LVDT2

LVDT3

LVDT4LVDT5

0,45m

R R

LS-n

8
 c

m
8

 c
m

4
5
 c

m

GFRP strips (e=2x7 cm)

intrados

R

R

R

R

R R

8
 c

m
8

 c
m

4
5
 c

m

GFRP strips (e=2x7 cm)

Intradox

1
4
 span of th

e arch

1
4  span of the arch

1
8 span of the arch

span 150 cm

Experimental position

of the plastic hinge

1
2

 c
m

1
2

 c
m

4
5

 c
m

GFRP strip

GFRP strips (e=2x5 cm)

Intrados

1
2

 c
m

1
2

 c
m

4
5

 c
m

GFRP

brick

2 GFRP strips

Extrados

CSI-n

CSE-n

Key Engineering Materials Vol. 624 505



 

formed at the lateral supports and the third hinge appeared at the extrados closely to the opposite 

loading side. At failure, detachment of GFRP strips from the support occurred. 

Limit analysis by Finite Elements 

Arches were modelled by means of the FE approach firstly proposed in [9]-[12]. Here, for the sake 

of conciseness, only the basic assumptions of the mathematical model are recalled, whereas the 

reader interested in details is referred to [10]. 

Basically, the model relies on a distinct representation of blocks and mortar joints. In particular, 

bricks are modelled by means of eight-noded elements, interacting each other through rigid-plastic 

interfaces. The possible presence of external reinforcement is taken into consideration by four-

noded plate elements, connected to the support by a rigid plastic interface. The peak strength of 

such interface is assumed equal to peak delamination provided by Italian Guidelines CNR DT200 

[13]. A more rigorous assessment of the delamination strength in the presence of curved substrates 

was presented in [14], which however provides, globally, results very near to those obtained using 

standard delamination formulae. A possible rupture of the strip for axial load is also allowed for at 

the interface between contiguous FRP elements. Strips do not contribute under compression, since a 

very low compression strength is assumed at the same interfaces. Under the aforementioned 

hypotheses, to determine failure loads and mechanisms a linear programming problem has to be 

solved. The linear programming problem involves very few variables, thanks to assumption of 

infinitely resistant brick elements. By formulae one has:  

{ }, ,

0

,

min

such that : 

in ass I assT T

I

eq eq

I ass

 −

 =
 

≥ 

P λ P w

A U b

λ 0

 

( 1 ) 

The objective function to minimize is represented by the total internal power dissipated minus the 

power dissipated by external loads. In Eq. ( 1 ) symbols possess the following meaning:  

- U  denotes the vector of global unknowns and collects the velocities at element centroids, 

endowed by rotations of both FRP and bricks and plastic multiplier rates at the interface (
assI ,

λ ). 

Such multipliers govern the rigid perfectly-plastic response of mortar interfaces, brick-brick 

interfaces, FRP-FRP interfaces and masonry-FRP interfaces; 

- 
eq

A  indicates the matrix of constraints and collects normalization conditions, velocity boundary 

conditions and constraints for plastic flow in velocity discontinuities (on FRP, mortar interfaces, 

brick-brick interfaces and FRP-masonry interfaces); 

- assin

I

,
P  gathers different contributions to the internal dissipation of mortar, resulting from the 

interaction between brick and brick, FRP and FRP, FRP interfaces and the support. 

The reader is referred to [9]-[12] for a critical discussion of linear programming tools apt to 

effectively solve Eq. ( 1 ). 

 

Table 2. Mechanical properties adopted for the constituent materials 

 tf  c  Φ  cf  
2Φ  

 tensile strength cohesion 
friction 

angle 

compressive 

strength 

shape of the 

linearized cap 

 [MPa] [MPa] [Deg] [MPa] [Deg] 

mortar 0.18 0.3 36 7.8 45 

FRP-substrate 

interface 
0.44 0.44 10 0.1 90 
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Discussion 

In the proposed limit analysis approach bricks are discretized by eight-noded elements and joints 

are reduced to interfaces obeying a Mohr-Coulomb failure criterion with tensile cutoff and 

linearized cap in compression, see [11] for details. The methodology is quite general and valid also 

for double curvature elements. Mechanical properties adopted for the constituent materials are 

summarized in Table 2.  

 

  

(a) (b) 

Fig. 4: Unreinforced arches (US): (a) deformed shape at collapse, limit analysis; (b) synoptic 

view of experimental force-displacement curves (thin curves marked by circle), overall plot 

provided by nonlinear FE analyses (thick curves, commercial code DIANA) and limit analysis 

prediction (dashed line). 

 

 

 

(a) (b) 

Fig. 5: CSE arch (100 mm wide reinforcement): (a) deformed shape at collapse, limit analysis; 

(b) synoptic view of experimental force-displacement curves (thin curve marked by circle), 

overall plot provided by nonlinear FE analyses (thick vurve, commercial code DIANA) and limit 

analysis prediction (dashed line). 

 

In Fig. 4-a, the failure mechanism reconstructed by the present approach is represented in absence 

of reinforcement at the extrados. The four hinges are clearly located between contiguous bricks, 

forming a classic four-hinge mechanism. A comparison among the overall experimental response in 

UBLA 

UBLA 
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terms of force and displacement, the numerical predictions obtained by a step-by-step FE procedure 

with a commercial code (DIANA) and the limit analysis results is provided in Fig. 4-b. 

In Fig. 5 and Fig. 6 the same results are visualized in case of extrados (CSE specimens, width of the 

strips equal to 100 mm) and intrados (CSI specimens, width of the strips equal to 100 mm) 

continuous reinforcements. Further data concerning LS specimens and strips width equal to 160 mm 

are not represented herein, for the sake of brevity. However, the numerical response resulted in 

agreement with the experimental data, in terms of both failure mechanisms and collapse loads. 

According to the results reported in Fig. 5 and Fig. 6, it is worth emphasizing that the presence of 

FRP reinforcements leads to markedly different failure mechanisms. In particular, the CSE samples 

exhibit a clear sliding on abutments (corroborated by experimental observations) and some shear 

sliding closely to the intermediate hinges, with localized detachment of the FRP elements under 

normal force. Also, the formation of the plastic hinges in masonry is not anymore clear as in the 

unreinforced case: this circumstance confirms the presence of complex interactions at the interface 

between masonry support and the FRP strips.  

 

 

 
 

(a) (b) 

Fig. 6: CSI arch (100 mm wide reinforcement): (a) deformed shape at collapse, limit analysis; (b) 

synoptic view of experimental force-displacement curves (thin line marked by circle), overall plot 

provided by nonlinear FE analyses (thick line, commercial code DIANA) and limit analysis 

prediction (dashed line). 

Conclusions 

In this contribution, some numerical results based on a heterogeneous limit analysis code fitting 

results of a wide experimental campaign developed at the University of Minho [8] were presented. 

The main objective of the work was to have an insight into the beneficial effect induced by the 

introduction of GFRP strips on masonry arches, undamaged or previously damaged without 

reinforcement. 

The numerical limit analysis tool proposed results particularly suitable for an utilization at 

professional level, because it requires exclusively few mechanical properties at failure (for bricks, 

mortar, FRP and FRP/masonry interface) and provides very quickly collapse loads and failure 

mechanisms. 

The validation of the heterogeneous limit analysis against experimental evidences and alternative 

step by step FE software with softening materials addressed a good predictivity exhibited by limit 

analysis, with extremely reduced processing time needed. 

Further developments of the present study concern the application of no-contact, full-field 

measurements by Digital Image Correlation (see e.g. [14]) to accurately monitor deformation fields 

UBLA 
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over the masonry arch surface at different loading phases in newly conceived experiments. In fact 

surface measurements based on digital images, which are intrinsically multi-scale, are expected to 

provide more information to correlate the local mechanisms at the micro-scale with the overall 

response. 
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