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A B S T R A C T

Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a

potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens.

The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron

homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2

participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and

apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states,

being its expression regulated by several inducers.

In the central nervous system less is known about the processes involving LCN2, namely by which

cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and

behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis

and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in

pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others

indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and

cohesive view of the general function of LCN2, particularly in the brain, is provided.

� 2015 Elsevier Ltd. All rights reserved.
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1. An overview of lipocalin-2

The need and interest in the identification of molecules that can
serve both a physiological role in the organism and allow for the
detection of disease onset and progression has emerged over the
last decades. Among the proteins identified as key players in health
and disease, lipocalin-2 (LCN2) has became increasingly relevant in
recent years as a biomarker in several diseases, including acute
kidney injury (Kumpers et al., 2010), Alzheimer’s disease (AD)
(Choi et al., 2011), multiple sclerosis (MS) (Marques et al., 2012)
and depression (Naude et al., 2013).

The existence of the knockout mouse for the coding sequence of
LCN2 (LCN2-null mice) (Flo et al., 2004) has largely contributed to
such findings allowing for the determination of many of the
currently known functions of this 25-kDa secreted protein. LCN2-
null mice are viable and reproduce normally, but display
compromised functions at the postnatal level (Flo et al., 2004),
albeit LCN2 expression begins already in utero (Mallbris et al.,
2002). At postnatal stages, the diverse functions described for
LCN2, in physiological and in pathological conditions in different
mammalian organ systems, including the central nervous system
(CNS) (Fig. 1), called the attention for its considerable interest
within the scientific community. Among LCN2’s functions, its
antimicrobial activity is, undoubtedly, the best described. Specifi-
cally, LCN2 acts in the very first steps of antimicrobial defence, as
part of the acute-phase response, to sequester bacterial side-
rophores (bacterial molecules with higher affinity for iron than the
host iron-binding proteins) (Flo et al., 2004). Additionally, emerging
evidence in the literature associates LCN2 to the modulation of cell
physiological processes (proliferation, differentiation, apoptosis, cell
activation and migration), providing a potential important link
between physiology and pathology. The strongest evidence for its
role in physiological conditions comes from the described involve-
ment in kidney differentiation and in the regulation of epithelial
morphogenesis (Yang et al., 2002). Concerning its role in disease,
different conditions have been correlated with increased levels
of LCN2. Particularly, studies indicate its altered expression in
certain types of cancers (Rodvold et al., 2012), coronary diseases
Fig. 1. Representative diagram for the broad and distinct dimensions where LCN2

has described functions. Lipocalin-2 is a secreted protein participating in several

biological systems, by mediating processes that are crucial for cellular homeostasis.
(Iqbal et al., 2013), metabolic syndrome (Jang et al., 2012; Yoo et al.,
2014), insulin resistance and type 2 diabetes (Yan et al., 2007),
chronic kidney disease (Hashikata et al., 2014), autoimmune
diseases (Kamata et al., 2012) and in wound repair (Miao et al.,
2014). In the brain, the involvement of LCN2 in autoimmune
diseases such as MS (Berard et al., 2012; Marques et al., 2012; Nam
et al., 2014) and other neurodegenerative disorders such as AD (Choi
et al., 2011; Mesquita et al., 2014; Naude et al., 2012) is also
suggested.

Altogether, available data indicates a role for LCN2 in several
organs in physiological conditions as well as in response to stress
or injury. Furthermore, and of notice, LCN2 levels in biological
fluids are generally low, being up-regulated and detectable in
different stages of several diseases, which strongly indicates the
potential of its use as a biomarker of disease onset and
progression.

Although there is consensus on the relevance of LCN2 in the
acute-phase response, the literature is still contradictory with
respect to its role in the pathophysiology of disease. The present
review aims to provide a state of the art on the roles of LCN2 in
different biological contexts and to explore the current existing
conflicting observations. We will first describe, in a general
perspective, the well-known functions of LCN2 in the innate
immune response associated to infection, iron trafficking and in
the modulation of the inflammatory response and, later, focus in
more detail on the possible functions of LCN2 in the CNS.

2. Lipocalin-2 as a member of the lipocalin protein family

Lipocalin-2 belongs to the lipocalin family, a family of diverse
secreted proteins involved in health maintenance and effective in
disease prevention (Flower, 1994, 1996). Lipocalins are small
(160–180 amino acids in length), soluble and secreted proteins
that act as carriers and transporters predominantly of lipophilic/
hydrophobic molecules such as steroids, bilins, retinoids and lipids
(Flower, 1994, 1996). For example, apolipoprotein D, a1-micro-
globulin and purpurin are lipocalins that bind to cholesterol, heme
and retinol, respectively (Chakraborty et al., 2012; Flower, 1994).
Consequently, several functions have been described for these
members of the lipocalin family, including cell division regulation
(e.g. a1-microglobulin), cell differentiation, cell-to-cell adhesion
and survival (e.g. purpurin) (Flower, 1994). The known ability of
lipocalins to form complexes with soluble macromolecules and to
bind specific cell-surface receptors is considered to be the basis
through which lipocalins modulate their functions (Flower, 1996).
Of notice, and unlike most other protein families, members of the
lipocalin family share low primary sequence identity, in some case
as low as 20%, and membership to this family has been largely
determined based on structural similarities (Flower et al., 2000).
All members share a common secondary and tertiary structural
feature – the so-called ‘‘lipocalin fold’’, which is a cup-shaped
cavity where ligands bind (Flower et al., 2000). It is the difference
in specific amino acids within this ‘‘lipocalin fold’’ that accounts for
the diversity of ligands that lipocalins carry.

Similarly to other lipocalins, LCN2 acts as a carrier/transporter
and binds to specific cell-surface receptors, therefore modulating
several cellular functions. However, the LCN2 binding cavity is
distinct from that of most of other lipocalins, since it is atypically
polar and large enough to accommodate macromolecular ligands
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(Goetz et al., 2002). Nevertheless, LCN2 can also weakly bind to
some common ligands of lipocalins, including leukotriene B4 and
platelet-activating factor (Bratt et al., 1999). Moreover, LCN2 is
reported to have high affinity to bind and transport iron but only
when iron is complexed with low molecular mass iron-binding
ligands, the siderophores (Devireddy et al., 2005; Goetz et al.,
2002; Yang et al., 2002). These ligands are small, high-affinity iron
chelators, secreted by microorganisms for iron acquisition, but
have been recently described to be endogenously produced by
mammals (Bao et al., 2010; Devireddy et al., 2010). The capacity of
LCN2 to bind iron through siderophores is responsible for its role in
the immune response (Flo et al., 2004) and in the regulation of cell
proliferation and cell death (Devireddy et al., 2005; Yang et al.,
2002). The modulation of cell homeostasis is highly dependent on
the interaction of LCN2 with specific cell-surface receptors, namely
24p3R (also known as solute carrier family 22 member 17)
(Devireddy et al., 2005) and megalin (Hvidberg et al., 2005),
through the regulation of iron cell content (Devireddy et al., 2005).
Finally, LCN2 was just recently shown to bind to membrane
phosphatidylethanolamine and to induce lipid raft movement in a
protein kinase A-dependent manner, with impact in the modula-
tion of sperm maturation (Watanabe et al., 2014). Still unexplored
is whether this feature influences specifically sperm maturation or
may also be related with other cellular processes such as migration
and cell-to-cell interaction.

The specific interaction of LCN2 with iron and its surface
cellular receptors, as well as its regulatory expression and clinical
significance, will be described and discussed in detail in the
following sections.

3. General considerations on lipocalin-2

Lipocalin-2 was first identified as the product of an over-
expressed gene of murine kidney cells infected with simian virus
(Hraba-Renevey et al., 1989). The human protein analogue, on the
other hand, was found stored in human neutrophils in close
association with matrix metalloproteinase-9 [(MMP-9), a gelati-
nase secreted by neutrophils for extracellular matrix degradation
and remodelling] and showed a high degree of similarity with the
deduced sequence of the rat a2-microglobulin related protein
(Kjeldsen et al., 1993). At that time, no specific function was
attributed to this protein and its covalent association to MMP-9 led
to its initial designation as neutrophil gelatinase-associated
lipocalin (NGAL) (Kjeldsen et al., 1994; Kjeldsen et al., 1993).
Nowadays, while LCN2 is the formal designation (HUGO Gene
Nomenclature Committee), it is also known as 24p3, NGAL,
oncogene 24p3, human neutrophil lipocalin, a2-microglobulin
related protein, siderocalin and uterocalin. This diversity of
designations truly reflects the diverse mechanisms and pathways
in which LCN2 has been implicated, and as such, of its potential.
Lipocalin-2 is broadly expressed in several tissues and in diverse
conditions, with a modulatory induction by specific factors.

3.1. Lipocalin-2 expression regulation

In the mouse, LCN2 expression begins in utero during the foetal
stage at the level of the proximal tibia and metatarsal (Owen et al.,
2008). In 10-days-old foetal mice, LCN2 is strongly expressed in
proliferating and prehypertrophic chondrocytes, and remains as
such in prehypertrophic and hypertrophic chondrocytes in 17-
days-old foetal mice (Owen et al., 2008). In humans, the expression
of LCN2 during embryonic development, specifically in the skin,
has been described to occur in a spatio-temporal manner at 20–24
weeks of gestation in the interfollicular epidermis, with a posterior
progression towards the hair follicles (Mallbris et al., 2002). In
postnatal stages, evidence derived from mouse tissues indicates
that LCN2 is strongly expressed in normal healthy tissues such as
the bone marrow, liver, spleen, heart, lungs, kidney and thymus
(Aigner et al., 2007). However, as age advances, LCN2’s expression
progressively declines, particularly in the liver, kidney and spleen
(Garay-Rojas et al., 1996). Also, as a component of neutrophils
cytoplasmic granules, LCN2 is synthesized during the early stages
of neutrophil maturation (Kjeldsen et al., 1993).

Many factors and conditions have been described to trigger the
induction of LCN2 in various tissues and cell types. Of interest, the
expression of LCN2 is up-regulated in tissues that are more prone
to infection such as the mucosal (Kjeldsen et al., 2000) and
epithelial (Cowland and Borregaard, 1997; Friedl et al., 1999)
barriers, where it behaves as an acute-phase protein. It is also
secreted by neutrophils at sites of infection, by adipocytes
(Kjeldsen et al., 1993), activated leukocytes and peritoneal cells
(Flo et al., 2004), macrophages (Meheus et al., 1993), endothelial
(Liu and Nilsen-Hamilton, 1995; Marques et al., 2008) and choroid
plexus (CP) epithelial cells (Marques et al., 2008). The regulatory
and core elements described to be present in the Lcn2 gene explain,
at least partially, how its expression can be regulated by specific
molecules (summarized in Table 1). In the mouse, the LCN2 gene
has several cis regulatory elements in its 50-upstream region,
including a TATA box-like element (between nucleotides 28 to
23 relative to the transcription start site) and cis binding elements
for several transcription factors (Garay-Rojas et al., 1996). Inducers
of LCN2 expression include cytokines, growth factors, retinoic acid,
glucocorticoids, phorbol esters and lipopolysaccharide (LPS).
Among these, LPS has been shown to be the major inducer of
LCN2 expression (summarized in Table 1). Specifically, LCN2 is
highly expressed in cultured rat peritoneal macrophages (Sunil
et al., 2007) and macrophage cell lines (Meheus et al., 1993) after in

vitro LPS stimulation. In in vivo experiments, intraperitoneal
administration of LPS has been shown to induce LCN2 expression
in the CP (Marques et al., 2008), liver and lungs (Sunil et al., 2007).
Importantly, the induction of LCN2 expression mediated by LPS
stimulation occurs through the activation of the Toll-like receptor
(TLR)-4 (Flo et al., 2004). Also in vivo, LCN2 has been shown to act as
an acute-phase protein in the liver as a response to the injection of
turpentine (Liu and Nilsen-Hamilton, 1995).

As indicated above, LCN2 expression can also be induced by
several cytokines and growth factors, which include interleukin
(IL)-1b (Cowland et al., 2003), IL-6 (Hamzic et al., 2013), IL-10
(Vazquez et al., 2014), IL-17 (Chiricozzi et al., 2014), IL-22 (Le et al.,
2014; Raffatellu et al., 2009), tumour necrosis factor (TNF) (Bu
et al., 2006; Landro et al., 2008), insulin-like growth factor-1 (IGF-
1) and transforming growth factor-a (TGF-a) (Sorensen et al.,
2003). The induction of LCN2 expression by such inducers is known
to be dependent on the activation of NF-kB transcriptional activity,
with NF-kB being suggested as a positive regulator of LCN2
expression itself (Iannetti et al., 2008). In fact, the Lcn2 gene
promoter has an NF-kB response element and four signal
transducer and activator of transcription-1 sites (Zhao and
Stephens, 2013). Studies using IL-17 and IL-1b indicate that the
induction of LCN2 may also require multiple other transcription
factors including AP-1 and a CCAAT/enhancer-binding protein site
(Cowland et al., 2003; Shen et al., 2006). Similarly, in vitro

stimulation of mouse liver cells (Liu and Nilsen-Hamilton, 1995), L-
cells (Garay-Rojas et al., 1996) and primary thymocytes (Devireddy
et al., 2001) with dexamethasone induces an increase in LCN2
mRNA levels. This specific expression regulation by dexametha-
sone is mainly explained by the existence of two glucocorticoid
responsive core elements in the Lcn2 gene promoter (Garay-Rojas
et al., 1996).

Of interest, the expression of LCN2 is also regulated by
hormones, including progesterone [suggested to be a negative
regulator of LCN2 expression, at least in the uterus (Huang et al.,



Table 1
Summary of the molecules described to modulate the expression of LCN2 and the pathways through which such modulation is known to occur.

Inductor of

LCN2 expression

LCN2

expression

Cells/Tissue Pathways demonstrated

to be involved

References

LPS " Macrophages – Meheus et al. (1993)

" Immortalized epithelial cells – Bu et al. (2006)

" Macrophages TLR4; NF-kB Sunil et al. (2007)

Dexamethasone " L cells GRE Garay-Rojas et al. (1996)

" Liver cells Liu and Nilsen-Hamilton (1995)

" Primary thymocytes Devireddy et al. (2001)

Oestrogen Estradiol # Breast cancer cell lines ERE Seth et al. (2002)

17-b estradiol # Aortic segments Gao et al. (2006)

" Mammary glands Seth et al. (2002)

Cytokines IL-6 " Brain vascular cells – Hamzic et al. (2013)

IL-1b " Immortalized epithelial cells;

embryonic fibroblasts

NF-kB; C/EBPd(CCAAT/

enhancer-binding

protein)-binding site

Bu et al. (2006); Cowland et al. (2003);

Shen et al. (2006)

IL-22 " Primary urothelial cells;

intestinal epithelial cells

Le et al. (2014); Raffatellu et al. (2009)

IL-17 " Epidermis; intestinal epithelial

cells; embryonic fibroblasts

Chiricozzi et al. (2014); Raffatellu et al.

(2009); Shen et al. (2006)

IL-10 " Primary and J774A.1 macrophages – Vazquez et al. (2014)

TNF " Whole blood culture; immortalized

normal epithelial cells

NF-kB Bu et al. (2006); Landro et al. (2008)

Retinoic acid " L cells – Garay-Rojas et al. (1996)

Insulin " Adipose tissue explants MEK/PI-3K pathways Tan et al. (2009)

Growth factors IGF-1, TGF- a " Primary keratinocytes – Sorensen et al. (2003)

GRE, glucocorticoid response element; ERE, oestrogen response element.
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1999)], and particularly oestrogen, for which Lcn2 contains a
response element in the promoter region (Gao et al., 2006; Seth
et al., 2002). In in vitro studies, while the stimulation of aortic
segments from ovariectomized mice with 17-b estradiol induces
the down-regulation of Lcn2 mRNA levels (Gao et al., 2006), the
treatment with estradiol of breast cancer cell lines selected for
positive oestrogen receptor leads to sustainable increased
expression of LCN2 mRNA (Seth et al., 2002). Also, among other
described modulations [reviewed in (Chakraborty et al., 2012)],
LCN2 levels were found decreased in mammary glands of
ovariectomized mice, which were restored by supplementation
with oestrogen (Seth et al., 2002). Finally, other inductors
described to promote increased expression of LCN2 include
retinoic acid (vitamin A) (Garay-Rojas et al., 1996), which can
be of importance for therapeutic proposes, and even insulin, as in

vitro studies with adipose tissue explants stimulated with insulin
induced the expression of LCN2 (Tan et al., 2009). This ultimate
modulation has been associated to the described role of LCN2 in
insulin resistance.

The broad expression of LCN2 and its regulation by several
factors intimately relates to its functions. For instance, the acute
increased concentration of LCN2 in the serum following intraperi-
toneal injection of LPS is related to its function as an acute-phase
protein in the innate immune response to bacterial infection by
sequestrating iron (Flo et al., 2004). Moreover, the inducible
expression of LCN2 by pro-inflammatory molecules suggests that
LCN2 plays an important role in inflammation and inflammatory-
related diseases. These and other functions will be next further
discussed (summarized on Table 2).

4. Lipocalin-2 functions

4.1. In the innate immune response

The metabolism and division of many pathogenic microorgan-
isms depend on iron availability (Schaible and Kaufmann, 2004). In
mammals, iron is predominantly intracellular, tightly bound to
proteins such as ferritin; in the circulation, iron is mostly bound to
transferrin (Gkouvatsos et al., 2012). To acquire iron, invading
pathogens have evolved strategies to survive within such severe
iron-poor environments by secreting small iron-binding side-
rophores (Miethke and Marahiel, 2007). These molecules remove
iron from the host’s protein-iron complexes, as they have a much
higher affinity for iron than the host iron carriers (Miethke and
Marahiel, 2007). On the other hand, in order to prevent bacterial
iron acquisition, mammals have developed defence mechanisms to
‘‘withhold’’ iron (Cassat and Skaar, 2013; Ganz, 2009). One of such
strategies, and as part of the innate immune response, is the
production of LCN2 that functions as a chelator of bacterial
siderophores (Flo et al., 2004; Goetz et al., 2002). In response to
acute bacterial infection, LCN2 is released from the liver and spleen
to sequester iron-loaded bacterial siderophores and exert a
bacteriostatic effect (Berger et al., 2006). The importance of such
response became evident from the lethality that bacterial infection
causes in LCN2-null mice (Flo et al., 2004). When exposed to a sub-
lethal dose of a clinical strain of Escherichia coli, H9049, LCN2-null
animals develop bacteraemia, sepsis and showed increased
lethality, with 80% of the LCN2-null mice dying within the first
42 h post-infection (Berger et al., 2006; Flo et al., 2004). When
present, LCN2 expression is markedly induced during innate
immunity through the activation of TLR4 (Flo et al., 2004) and/or
through several pro-inflammatory cytokines (Saiga et al., 2008).
Being secreted by neutrophils at sites of infection (Kjeldsen et al.,
1994), LCN2 is essential in opposing the scavenge of host iron by
bacterial siderophores.

Interestingly, different pathogenic bacteria secrete different
types of siderophores (Henderson et al., 2009), but the capacity of
LCN2 to bind bacterial siderophores is limited to the catecholate-
type (Holmes et al., 2005). Among those are siderophores secreted
by E. coli, Salmonella spp. and Klebsiella pneumonia. In infections
triggered by these agents, LCN2 has been shown to be protective
for the host (Chan et al., 2009; Nairz et al., 2009; Wu et al., 2010).
For instance, LCN2 is up-regulated in macrophages in response to
Salmonella spp. to confer resistance to the host (Nairz et al., 2009)
and LCN2-null animals have impaired lung bacterial clearance
upon infection with K. pneumonia (Chan et al., 2009).

Although LCN2 is described to only bind a certain type of
siderophores to modulate its bacteriostatic effects, this does not
preclude a major role for LCN2 in bacterial infectious that do not
produce catecholate-type siderophores. In fact, a role for LCN2 in



Table 2
Concise description of the functions attributed to LCN2.

LCN2 functions

Innate immune response (Flo et al., 2004)

Role Strain Outcome References

Chelator of bacterial

siderophores

E. coli LCN2-null animals develop bacteraemia, sepsis and showed

increased lethality (80% of the null mice die within the first

42 h)

Berger et al. (2006);

Flo et al. (2004)

Salmonella spp. LCN2 up-regulated in macrophages to confer resistance to

the host

Nairz et al. (2009)

K. pneumonia LCN2-null animals present impaired lung bacterial

clearance

Chan et al. (2009)

Bacterial control by a

siderophore -independent

mechanism

S. pneumoniae LCN2 limits proliferation of strains that require

enterobactin-like siderophores

Nelson et al. (2005)

H. influenzae

C. albicans LCN2 is induced in an IL-17-dependent manner, but not

essential for host defence

Ferreira et al. (2014)

Antiplasmodial regulator Plasmodium LCN2 secretion for the control of iron redistribution during

blood-stage malaria

Zhao et al. (2012)

Iron homeostasis (Devireddy et al., 2005; Yang et al., 2002)

Model Outcome

Inductor of cell proliferation/

cell differentiation

Renal tubular cells Lcn2 silencing inhibits proliferation Viau et al. (2010)

Metanephric mesenchymes Cellular uptake of the LCN2-iron complex induces epithelial

cell differentiation

Yang et al. (2002)

Mouse spermatozoa Holo-LCN2 is internalized for ferric ion exchange Elangovan et al. (2004)

Inductor of cell death Haematopoietic/erythroid cells LCN2 promotes apoptosisa and inhibits cell survival and

differentiation

Liu et al. (2011);

Miharada et al. (2005)

Neonatal myocytes LCN2 regulates cardiomyocyte apoptosis by intracellular

iron accumulationb

Xu et al. (2012)

Others iron metabolism-

related

Anaemia/hypoxia LCN2 expression is increased to promote iron utilization/

mobilization from stores

Jiang et al. (2008)

Thalassemia intermedia Increased expression of LCN2 for survival facilitation of the

less damaged thalassemic erythroid precursors

Patsaoura et al. (2014)

Mouse uterus Oestrogen-induced LCN2 expression for iron utilization

during uterine cell growth

Stuckey et al. (2006)

Breast, liver and pancreatic

cancers

LCN2 expression for cellular iron trafficking Li and Chan (2011);

Torti and Torti (2013)

Modulation of the inflammatory response

Model Outcome

Anti-inflammatory

modulator

Obesity-related inflammation Antagonist of the effects of inflammatory molecules (TNF

and IL-6)

Zhang et al. (2008)

Anti-inflammatory regulator in macrophage activation Guo et al. (2014)

Nephrotoxic nephritis Expression in innate immune cells confers protection by

inducing apoptosis

Eller et al. (2013)

Pro-inflammatory

modulatorc

Psoriasis Sustained increased levels of LCN2 during pathogenesis,

decreased once the lesions are healed

Ataseven et al. (2014)

Autoimmune myocarditis LCN2 levels increment according with disease progression,

decreasing upon recovery

Ding et al. (2010)

HIV-infected patients Decreased serum LCN2 levels, increased upon anti-

retroviral therapy due to decreased neutrophil function

Landro et al. (2008)

Polymorphonuclear

neutrophils

Paracrine chemoattractant indispensable for neutrophil

function during inflammation

Schroll et al. (2012)

Heart transplantation LCN2 required for the initiation of the inflammatory

response

Aigner et al. (2007)

Mycobacterial pulmonary

infection

Promoter of neutrophil recruitment and regulator of

chemokine production

Guglani et al. (2012)

Lupus/arthritis Increased LCN2 to boost immune cells recruitment for the

inflammatory process initiation

Shashidharamurthy

et al. (2013)

Osteoblasts IL-17-induction of LCN2 to amplify inflammation Shen et al. (2005)

Metabolism regulatord Obesity Increased LCN2 expression correlates with expression

profile of pro-inflammatory cytokines

Auguet et al. (2011)

LCN2 increased expression in relation to body mass index

and increased activities of MMP-2/9

Catalan et al. (2009);

Yoo et al. (2014)

a Not directly connected to iron delivery, but shown to be important during acute anaemia.
b As a consequence of the generation of reactive oxygen species.
c In some cases intimately connected to its bacteriostatic role.
d By the control of inflammatory responses.
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determining the establishment or maintenance of mucosal
colonization by Streptococcus pneumoniae and Haemophilus influ-

enzae has been described (Nelson et al., 2005). An outstanding
feature of these bacteria that contrasts with enteric organisms is
their independence from siderophore-mediated iron acquisition
(Nelson et al., 2005). As so, the increased expression of LCN2 upon
such colonization is suggested to occur to limit the proliferation of
competitor species that can colonize the host and that require
enterobactin-like siderophores (Nelson et al., 2005). Similarly,
LCN2 mediates immunity to fungi such as Candida albicans, as it is
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strongly induced in an IL-17-dependent manner, but surprisingly
does not seems to be required for the host overall defence (Ferreira
et al., 2014).

The recent discovery of the existence of a mammalian
endogenous siderophore, to which LCN2 binds (Bao et al., 2010;
Devireddy et al., 2010), was a major breakthrough, providing novel
cues on possible functions for LCN2, particularly as an iron-
trafficking protein in physiological conditions. The described
mammalian siderophore is a small metabolic product called
catechol (Bao et al., 2010) and, while alone it binds poorly to LCN2,
the addition of ferric iron significantly improves its affinity to LCN2
(Bao et al., 2010). In addition, the iron-binding moiety of catechol
was described to be 2,5-dihydroxybenzoic acid, which is similar to
the bacterial component (2,3-dihydroxybenzoic acid) and even the
enzyme responsible for its synthesis, the 3-OH butyrate dehydro-
genase-2, is homologue of the bacterial EntA (Devireddy et al.,
2010). This finding revealed a feature of intracellular iron
homeostasis that is conserved from bacteria to humans, in which
LCN2 is involved. Of notice, supplementation with the mammalian
siderophore was shown to enhance bacterial growth in vitro, and
mice lacking the mammalian siderophore resist to E. coli infection
(Liu et al., 2014), bringing into light the concept that bacteria are
also able to use the mammalian siderophore to scavenge iron from
the host (Liu et al., 2014). Nevertheless, and to counteract this use
by bacteria, the mammalian host is capable of suppressing 3-OH
butyrate dehydrogenase-2 expression (decreasing the production
of the mammalian siderophore), while up-regulating LCN2
expression via TLR4 signalling (Liu et al., 2014). This reciprocal
regulation of both LCN2 and the mammalian siderophore is
considered to be a protective mechanism to limit microbial access
to iron.

In addition to antibacterial and anti-fungal roles, LCN2 was also
shown to act as an antiplasmodial defence molecule (Zhao et al.,
2012). Described to be up-regulated during malaria infection in
mice (Coban et al., 2007), LCN2 was reported to have a pivotal role
in controlling parasite levels as well as host innate and adaptive
responses during Plasmodium blood-stage malaria infections (Zhao
et al., 2012). Importantly, such modulation seems to involve the
host iron status, with LCN2 controlling iron redistribution during
the infection (Zhao et al., 2012).

Moreover, the existence of a NF-kB-dependent expression of
LCN2 (Bu et al., 2006; Matsuo et al., 2007), in line with its
involvement in innate and adaptive immune systems, points to an
immunomodulatory role of LCN2. In accordance, La Manna and
colleagues (2014) observed that the in vitro stimulation of
peripheral blood mononuclear cells with LCN2 (both iron-loaded
and iron-free forms) potentiated the expression of the human
leucocyte antigen G, known to be a tolerogenic molecule (La
Manna et al., 2014). The treatment also affected the stimulation of
regulatory T-cells, suggesting the putative involvement of LCN2 in
the regulation of specific immune pathways (La Manna et al.,
2014).

Altogether, new and varied evidence have emerged that point to
other roles for LCN2 than those directly related with the acute-
phase response and control of bacterial growth. For instance, the
evidence that LCN2-null mice also present multiple apoptotic
defects in haematopoiesis (Liu et al., 2011), impairments in
neuronal excitability (Mucha et al., 2011) and in emotional
behaviours (Ferreira et al., 2013) opens perspectives for additional
roles of LCN2.

4.2. In iron-homeostasis: impact on cell proliferation, differentiation

and death

The acquisition of iron by cells is critical for cell survival,
proliferation and differentiation (Andrews, 2008). Almost all
mammalian cells are described to acquire iron by receptor-
mediated endocytosis of iron-loaded transferrin (Garrick and
Garrick, 2009). However, the capacity of LCN2 to interact with iron,
through a catechol complex, in physiological conditions (Bao et al.,
2010; Yang et al., 2002), has paved the way to propose the
existence of an LCN2-mediated iron-delivery pathway, with
potential impact on cell homeostasis. Interestingly, some observa-
tions reinforce LCN2 as an alternative to transferrin in iron
trafficking. For instance, hypotransferrinemic mice (Trenor et al.,
2000) and atransferrinemic humans (Hamill et al., 1991; Hayashi
et al., 1993) have severe defects in haematopoiesis and in CNS
development, but display normal development of most epithelial
organs, and even mice lacking the transferrin receptor-1 initiate
organogenesis (Levy et al., 1999). In addition, transferrin expres-
sion only begins at embryonic day 12, when organogenesis is
already advanced (Gustine and Zimmerman, 1973). This suggests
that other proteins, such as LCN2, may provide iron to the cells.

Moreover, the participation of LCN2 in iron-delivery related
processes were strengthen upon its identification as an inducer of
rat metanephric mesenchyma conversion into epithelia (Yang
et al., 2002). Specifically, LCN2 containg iron was identified in the
developing mammalian kidney and shown to deliver iron into cells,
thus inducing epithelial cell differentiation (Yang et al., 2002). Of
interest, LCN2-mediated iron delivery occurred preferentially in
the epithelial progenitors at an early stage, while transferrin-
mediated iron delivery occurs in late epithelial progenitors (Yang
et al., 2002). In fact, down-regulation of Lcn2 in mouse renal
tubular cells lead to a significant decrease in epidermal growth
factor-induced cell proliferation in vitro, and the silencing of LCN2
gene in mice inhibited tubular proliferation (Viau et al., 2010).

The role of LCN2 in iron delivery to cells, via the cellular uptake
of the LCN2-iron complex (Yang et al., 2002), requires the existence
of cellular receptors that mediate LCN2 uptake with affinity.
Hvidberg and colleagues (2005) were the first to demonstrate
megalin as one of the cellular receptors for LCN2, since it mediated
the endocytosis of LCN2 in polarized epithelia (Hvidberg et al.,
2005). In the same year, the isolation and identification of 24p3R
revealed the existence of a fine-tuning mediation of iron content in
the cell by LCN2 (Devireddy et al., 2005). Such mediation,
irrespectively from the cell type, is largely dependent upon the
state of the ligand: iron-containing (holo-) and iron-free (apo-)
LCN2 (Devireddy et al., 2005). Specifically, holo-LCN2 binds to
24p3R, is internalized, traffics to endosomes and releases iron from
the complex, thereby increasing intracellular iron concentration
(Devireddy et al., 2005). By contrast, when apo-LCN2 is internal-
ized upon binding to 24p3R, it chelates iron and transfers it to the
extracellular medium, reducing intracellular iron concentration
(Devireddy et al., 2005). Importantly, this LCN2-mediated modu-
lation of cell iron content has been shown to impact on cell
proliferation and apoptosis, respectively, the later occurring
through the pro-apoptotic Bcl-2-interacting mediator of cell death
(BIM) (Devireddy et al., 2005; Richardson, 2005).

With the exception of a report questioning the role of LCN2 in
the modulation of iron metabolism (Correnti et al., 2012), which
suggested that LCN2 does not induce cellular iron efflux, many
others studies support the participation of LCN2 in cellular iron
homeostasis. For instance, the delivery of iron to spermatozoa, at
the caudal epididymis, was demonstrated to occur through the
internalization of holo-LCN2, disclosing a physiological role for
LCN2 in spermatozoa in the context of protein-ligand complex
internalization (Elangovan et al., 2004). Also, LCN2 has been shown
to induce apoptosis of haematopoietic cells (Devireddy et al., 2001;
Lin et al., 2005; Liu et al., 2011; Miharada et al., 2005) and to inhibit
the survival and differentiation of erythroid cells in vitro (Miharada
et al., 2005). Although a direct relation to iron levels was not
described, this regulation was demonstrated to be important
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during acute anaemia (Miharada et al., 2005). In addition, the
observation that LCN2-null mice develop a progressive accumula-
tion of lymphoid, myeloid and erythroid cells strengths the notion
that LCN2 is an important regulator of the haematopoietic
compartment (Liu et al., 2011).

Similarly, recombinant LCN2 induces cardiomyocyte apoptosis
(Xu et al., 2012), an important mechanism of cardiac remodelling
leading to heart failure, by promoting intracellular iron accumula-
tion (Xu et al., 2012). Interestingly, this induction of apoptosis
triggered by increased intracellular iron content by LCN2 is the
opposite of what has been described to occur in other organs
(Richardson, 2005). However, in this case, this is considered to
occur as a consequence of the generation of reactive oxygen
species. In fact, the chemical chelation of free intracellular iron
attenuated LCN2-induced caspase-3 activity (Xu et al., 2012). On
the other hand, the sustained expression of LCN2 in situations of
increased iron utilization, as is the case of anaemia and hypoxia, is
suggested to occur as a physiological response to cope with the
reduction of iron and to promote iron utilization and mobilization
from stores (Jiang et al., 2008). Also, the sustained expression of
LCN2, in both mouse models and patients with thalassemia
intermedia (an inherited blood disorder), is considered to
represent a survival response mechanism in the sense that it
can facilitate the maintenance of the few but still functional
erythroid precursors, or as a consequence of the abnormal iron
regulation in the disease. However, no correlation has been found
between LCN2 levels and either the parameters of erythropoiesis
(haemoglobin, foetal haemoglobin, reticulocytes and soluble
transferrin receptor), or of iron storage (ferritin and non-
transferrin-bound iron) (Patsaoura et al., 2014). Likewise, the
temporally coordinated induction of LCN2 expression, among
other iron homeostasis genes, was observed to occur by oestrogen
in the mouse uterus, evidencing an important role of iron
metabolism during sex steroid hormone-induced uterine cell
growth and differentiation (Stuckey et al., 2006).

The additional reported expression of LCN2 in a number of
cancers (Li and Chan, 2011), including breast, liver and pancreatic
cancer, has been considered to occur as a source of iron for cells to
proliferate (Torti and Torti, 2013). With descriptions ranging from
a pro- to an anti-cancer role, LCN2 is engaged in key events known
to contribute to malignancy (apoptosis, proliferation and inva-
sion). For instance, transfection of MCF7 human breast cancer cells
with human LCN2 expression constructs increases cell prolifera-
tion (Fernandez et al., 2005) and potentiates angiogenesis (Yang
et al., 2013). In accordance, inhibition of LCN2 reduces breast
tumorigenesis (Sun et al., 2011), whereas in the case of the
colorectal cancer, LCN2 expression has been either correlated with
a decreased overall survival of patients (Sun et al., 2011) but also
with reduced metastasis (Lee et al., 2006). Nevertheless, it is
important to highlight that in the majority of the above-described
reports, it is not clear whether the observed effects for LCN2 are
directly related with alterations in the intracellular iron levels.

4.3. As a modulator of the inflammatory response

Several studies highlight the increased production of LCN2
upon diverse pro-inflammatory stimuli. In fact, the acute up-
regulation of LCN2 suggests its involvement in inflammatory
diseases, either by contributing to the progression of the
inflammatory state or, on the contrary, to the development of
an anti-inflammatory state.

In addition, in some cases, the increased expression of LCN2
closely accompanies the disease process, which lead to the
suggestion of its potential usefulness to monitor disease progres-
sion (further discussed in section 6). For instance, the described
increased levels of LCN2 in the skin of patients with psoriasis,
where chronic inflammation plays a role in disease pathogenesis, is
followed by a decrease in LCN2 levels, once the lesions are healed
(Ataseven et al., 2014). In addition, serum LCN2 levels are increased
in animal models of autoimmune myocarditis at an early stage of
the disease, and remain high during the inflammatory stage, but
decreased upon recovery (Ding et al., 2010). In the case of
lymphopenic HIV-infected patients, serum LCN2 levels are low and
increase upon anti-retroviral therapy (Landro et al., 2008). In the
case of HIV, the low levels of serum LCN2 are considered to reflect a
decrease in neutrophil number and function, since a positive
correlation between neutrophil counts and LCN2 levels was
observed (Landro et al., 2008).

Consistent with its role in anti-inflammatory responses, LCN2
has been shown to antagonize the effects of TNF on adipocytes and
macrophages, and to attenuate the stimulatory effects of LPS on the
gene expression of IL-6 and monocyte chemoattractant protein-1
in adipocytes (Zhang et al., 2008). Moreover, LCN2-null mice were
described to display an up-regulated expression of the M1
macrophage marker (Cd11c) and a down-regulation of the M2
marker (arginase 1) in adipose tissue and liver after a high-fat diet
feeding (Guo et al., 2014). Also, LCN2-null bone marrow-derived
macrophages were more sensitive to LPS stimulation and
presented an up-regulation of pro-inflammatory markers expres-
sion, which was attenuated upon treatment with recombinant
LCN2 (Guo et al., 2014). Altogether, this suggests that LCN2 plays a
role as an anti-inflammatory regulator in macrophage activation.
In addition, in murine nephrotoxic serum nephritis, an inflamma-
tory kidney disease characterized by increased infiltration of
leukocytes, LCN2 is considered to be an endogenous inhibitor of
inflammation, since its expression in innate immune cells is
protective by inducing apoptosis of macrophages and by limiting
cytokine production via TLR2 signalling (Eller et al., 2013).

On the contrary, the role of LCN2 as a pro-inflammatory
modulator has also been described and is mainly related to its
already described role as a bacteriostatic protein. The inflamma-
tory status that underlies a defence response against pathogens is
considered protective and necessary to remove, control and/or
neutralize injurious microorganisms. Indeed, the acute inflamma-
tion triggered initially represents the first line of defence in
response to invading pathogens or to tissue damage. Under this
circumstance, and at low bacterial density, it is well established
that LCN2 exerts its iron-depletion strategies for bacterial
proliferation. As bacterial density increases, LCN2 becomes a
pro-inflammatory molecule, serving as a signal of uncontrolled
bacterial replication to induce chemokines’ expression that, in
turn, potentiates the influx of neutrophils into the site of infection
(Bachman et al., 2009). As such, LCN2 was considered a paracrine
chemoattractant indispensable for neutrophil function in inflam-
mation (Schroll et al., 2012). The addition of recombinant LCN2 to
primary cultures of human and murine polymorphonuclear
neutrophils significantly stimulated neutrophil migration, while
a significantly reduced neutrophil chemotactic activity and
impaired cellular adhesion is observed in cells obtained from
LCN2-null mice (Schroll et al., 2012). In the same line of evidence,
the number of infiltrating granulocytes, after reperfusion, in
murine heart transplantation, was described to be reduced in
LCN2-null grafts, suggesting a role for LCN2 in the initiation of the
inflammatory response (Aigner et al., 2007). Similarly, during
mycobacterial pulmonary infection, LCN2 was shown to restrain
inflammation by inhibiting inflammatory chemokines production
but at the same time to promote neutrophil recruitment (Guglani
et al., 2012). In addition, the increased levels of LCN2 in
autoimmune disorders, such as the case of lupus and arthritis,
boost the recruitment of immune cells to the site of inflammation,
a process essential for the initiation, perpetuation, and resolution
of the inflammatory processes (Shashidharamurthy et al., 2013).
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Additionally, it is hypothesized that LCN2 is released by
granulocytes at sites of inflammation and, therefore, mediates
local tissue injury (Li and Chan, 2011). This specific contribution
derives from the description of LCN2 secretion in tissue damage
also following ischaemia, namely to recruit and chemoattract other
immune cells that participate in the inflammatory response
(Aigner et al., 2007). Also the description that LCN2 produced at
the sites of inflammation can act as an inducer of apoptosis may
also be contributing for local tissue injury. In cultured osteoblasts,
LCN2 induction by IL-17 was observed to promote cell apoptosis
and to modulate subsequent inflammatory events (Shen et al.,
2005). Both are considered to work synergistically to amplify
inflammation.

In parallel, more modulatory effects have been described for
LCN2 under inflammatory conditions, some through mechanisms
that are still to be disclosed. Among these, exercise-induced
inflammation modulates bone marrow homeostasis leading to an
increase in leucocyte turnover and a decrease in erythroid
compartment (Spiropoulos et al., 2010). Of interest, it seems that
LCN2 is the main factor that regulates the production and
mobilization of erythroid progenitor cells (Spiropoulos et al.,
2010). In a different context, the sustained expression of LCN2
upon liver damage is considered to be a reliable indicator of
damage and has significant hepatoprotective effects (Borkham-
Kamphorst et al., 2013). Despite the absence of correlation
between human LCN2 serum levels and the degree of liver fibrosis,
a positive correlation with the inflammatory status was observed
(Borkham-Kamphorst et al., 2013). The proteomic profiling of
LCN2-null mice under normal conditions and after exposure to
inflammatory stimuli (LPS) reveals several altered proteins that are
described to have functions in detoxification, metabolism of
nutrients and in cell adhesion, thus suggesting an essential
function for LCN2 in liver homeostasis and in the onset of
inflammatory responses (Labbus et al., 2013).

Remarkably, LCN2 is also involved in the regulation of
metabolism, through the control of the inflammatory response.
The increased production of LCN2 in the adipose tissue and in the
liver as a response to metabolic stress and to cytokines, points for
the involvement of LCN2 in adipocyte metabolism and inflamma-
tion (Zhang et al., 2014). In fact, a function for LCN2 in insulin
resistance and glucose metabolism has already been described.
Suggested by some authors as a potential adipokine (Yoo et al.,
2014; Zhang et al., 2008), LCN2 was found increased in serum of
obese patients and in adipose tissue and liver of obese mice (Zhang
et al., 2008) as well as in a metabolic syndrome rat model (Yoo
et al., 2014). Importantly, such levels are strongly correlated with
the expression profile of pro-inflammatory cytokines (Auguet
et al., 2011) and of other circulating markers of inflammation (Yoo
et al., 2014). Also, the increased adipose tissue expression of LCN2
in obesity was correlated to body mass index (Yoo et al., 2014) and
to increased activities of both MMP-2 and MMP-9, reinforcing its
potential participation in the low-grade chronic inflammation
associated with obesity (Catalan et al., 2009). Moreover, LCN2 was
also shown to impact in the energy metabolism, even in the
absence of increased inflammation, since exogenous recombinant
LCN2 is able to increase glucose production in hepatocytes (Yan
et al., 2007). The precise function and relevance of LCN2 in obesity
and in energy metabolism is, nonetheless, quite controversial since
studies with LCN2-null mice were inconclusive. In one study,
LCN2-null mice were shown to be protected from diet-induced
obesity, insulin resistance and inflammation by modulating 12-
lipoxygenase and TNF levels in adipose tissue (Law et al., 2010). In
another one, LCN2 absence significantly potentiated diet-induced
obesity, dyslipidemia, fatty liver disease, and insulin resistance
(Guo et al., 2010). Also, LCN2 expression is differentially regulated
in diabetes, since its levels were found to be increased in human
subjects in response to insulin infusion (Tan et al., 2009); still,
whether this increase reflects a protective response or contributes
to disease progression is not yet known.

In summary, there is still some inconsistency regarding the
effects of LCN2 in the inflammatory response. Such contradictions
are even more marked with respect to brain diseases, which will be
next discussed in detail.

5. Lipocalin-2 in the central nervous system

In the CNS, as in the immune/inflammatory response, the
functions of LCN2 are similarly controversial. A first report
described its up-regulation in whole brain homogenates in
response to peripheral turpentine-induced inflammation (Liu
and Nilsen-Hamilton, 1995). Later descriptions demonstrated
LCN2 up-regulation in the brain upon a peripheral inflammatory
stimulus (with LPS) (Marques et al., 2008) and in animal models of
CNS diseases such as experimental autoimmune encephalomyeli-
tis (EAE) (Marques et al., 2012), AD (Naude et al., 2012) and in
spinal cord injury (Poh et al., 2012; Rathore et al., 2011). In this
context, LCN2 is likely to be engaged in identical mechanisms as
those described in the periphery such as in the modulation of the
innate immune response (through siderophore binding and iron
homeostasis), in the balance between pro- and anti-inflammatory
responses, in cellular activation and cellular migration, and,
eventually, also in mechanisms still undetermined or not clearly
identified (Lee et al., 2011; Lee et al., 2009).

5.1. Where in the brain?

In the brain, LCN2 expression is described to occur mainly in
response to an injury or inflammatory status (Ip et al., 2011;
Marques et al., 2008; Thouvenot et al., 2006), but the basal and
physiological expression of LCN2 was also described to occur in
specific regions of the adult rat brain (Chia et al., 2011).
Particularly, Chia and colleagues (2011) showed that low levels
of LCN2 mRNA and protein expression are detected in most regions
of the normal adult brain, except for the olfactory bulb, brainstem
and cerebellum, where the expression levels are higher (Chia et al.,
2011). Single and double immunostaining revealed the presence of
LCN2 in astrocytes in these regions in the normal brain (Chia et al.,
2011). However, the presence of LCN2 in the brain, under
physiological conditions, is quite controversial since other authors
have reported the absence of labelling or expression (Ip et al., 2011;
Marques et al., 2012; Mesquita et al., 2014). Still, LCN2 sustained
expression is accepted to occur when an injury is imposed to the
CNS or when a CNS disease is installed. In such cases, LCN2
expression is restricted to the affected brain region, although
controversy exists on the type of cells producing it (Table 3). In
initial reports, LCN2 was shown to be induced after an acute
peripheral injection of LPS at the barriers of the brain, both in the
CP epithelial cells and in the endothelial cells of the capillaries that
irrigate the brain parenchyma (Marques et al., 2008). Of interest,
not all CP epithelial cells produce LCN2 simultaneously and this
secretion is not observed when the peripheral stimulus is repeated
(Marques and Sousa, 2015) or become chronic, such as in the EAE
mouse model of MS (Marques et al., 2012). In the later cases, LCN2
expression in the CP derives from infiltrating neutrophils (Marques
et al., 2012) (Fig. 2). Yet, it is now know that LCN2 expression in the
brain at inflammatory conditions is not restricted to the barriers,
but extends to the brain parenchyma. For instance, in the EAE mice
model, LCN2 was found in activated astrocytes particularly in brain
regions typically affected in MS patients (Marques et al., 2012)
(Fig. 2). Notably, the production of LCN2 by astrocytes and
infiltrating neutrophils in the EAE mice likely contributes to its
presence in the cerebrospinal fluid (CSF) during the active phases



Table 3
Summarized description of the diverse reports demonstrating the differential cellular expression of LCN2 in the brain, in various disease models, and the discrepancy in the outcomes when LCN2-null mice are used.

Model LCN2 expression 24p3R expression LCN2-null mice

phenotype

Proposed role for LCN2 References

Brain region Brain cells Brain cells

Ischaemia Transient focal cerebral ischaemia Peri-infarct cortex Neuronsa – – Help-me signal for glial activation Xing et al. (2014)

Transient middle cerebral artery

occlusion; Hypoxic-ischaemic

brain injury

Ipsilateral

hemispheres

Astrocytes, microglia Neurons, astrocytes,

endothelial cells

Decreased inflammatory

phenotype

Glial activation Jin et al. (2014b)

Neuroinflammation LPS-induced neuroinflammation Whole brain Endothelial cells, astrocytes,

microglia

– Reduced glial activation

and neurotoxicity

Promoter of neurotoxic glial

activation, neuroinflammation

Jin et al. (2014a)

Brain barriers,

brain parenchyma

CP epithelial cells, endothelial

cells

– – Part of the innate immune response Marques et al.

(2008)

In vitro CP epithelial cells

stimulated with LPS

– CP epithelial cells – – Neuronal growth, differentiation

and function

Thouvenot et al.

(2006)

Transgenic rats expressing mutant

human TDP-43

Forebrain,

spinal cord

Astrocytes Reactive astrocytes,

neurons

– Neuronal death Bi et al. (2013)

Intracerebral haemorrhage Ipsilateral basal

ganglia, cortex

Astrocytes, some neurons – – Modulation of iron homeostasis Dong et al. (2013)

LPS-induced endotoxemia Whole brain,

parenchyma,

brain barriers

Endothelium, microglia,

CP epithelial cells

Neurons, CP Similar inflammatory

response to controls

Not an essential modulator of

gliosis in response to LPS in vivo

Ip et al. (2011)

Kainate-induced excitotoxic model Hippocampus Astrocytes – – Iron transport Chia et al. (2011)

Spinal contusion injury Spinal cord,

brain barriers

Astrocytes, neurons,

endothelial cells

Astrocytes, neurons Improved recovery

from contusion

Inflammatory regulator Rathore et al.

(2011)

Infection West Nile virus encephalitis Whole brain Ependymal cells, astrocytes,

CP epithelial cells, neurons,

parenchymal cells

– Tissue viral load

and survival

similar to controls

Dispensable as an

immunoregulatory factor

Nocon et al. (2014)

Pain Complete Freund’s adjuvant

injection

Hindpaw Microglia Microglia Mechanical allodynia

diminished

Central sensitization and

nociceptive behaviour

Jha et al. (2014)

Formalin injection; peripheral

nerve injury

– – – Nociceptive behaviour

attenuated

Jha et al. (2013)

Spared nerve injury Spinal cord Neurons Neurons, microglia Less pain sensitivity Mediator of neuropathic pain Jeon et al. (2013)

MS Chronic model Spinal cord Astrocytes Astrocytes, microglia Disease phenotype

attenuated

Modulator of autoimmune

inflammation

Nam et al. (2014)

Relapsing-remitting EAE model Brain barriersb,

cerebellum,

brain stem

CP stromal cells, astrocytes – – Putative molecule for MS diagnosis Marques et al.

(2012)

Relapsing-remitting EAE model Spinal corda,c Astrocytes Astrocytes, microglia Disease severity

increased

Modulator of EAE pathogenesis Berard et al.

(2012)

AD In vitro TNF stimulation a,b Primary culture neurons,

astrocytes, and microglia

– – Sensitization of nerve cells to b-

amyloid toxicity

Naude et al.

(2012)

In vitro Ab cellular stimulation CP epithelial cells, astrocytes CP epithelial cells,

astrocytes, neurons

Increased cellular

viability

Required to mediate Ab toxicity Mesquita et al.

(2014)

Behaviour Behavioural characterization of

LCN2-null mice

– – Emotionally altered,

cognitive impaired;

decreased LTP

Modulator of synaptic activity and

behaviour

Ferreira et al.

(2013)

Acute restraint stress Neurons, astrocytes – Stress-induced anxiety Regulator of neuronal excitability Mucha et al.

(2011); Skrzypiec

et al. (2013)

CP, choroid plexus; CSF, cerebrospinal fluid; LPS, lipopolysaccharide; MS, multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; LTP, long-term potentiation; AD, Alzheimer’s disease.
a Also in post-mortem human brain tissue.
b Also detected in CSF of patients.
c In serum and CSF of patients.
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Fig. 2. Schematic overview of which CNS cells produce LCN2 and in which cells/processes LCN2 acts. Although controversy exists on which cells produce LCN2, it is largely

described that its expression occurs when an injury is imposed or a disease state is installed. Lipocalin-2 is produced by the endothelial cells and the astrocytes at the

neurovascular unit, and by activated astrocytes, where it is considered an autocrine regulator of reactive astrocytosis. Lipocalin-2 is also expressed by some (but not all) CP

epithelial cells but only in response to acute stimulus. In the CSF, LCN2 presence has been postulated as a potential biomarker of disease, such as in the active phases of MS.

When produced, LCN2 is described to act on microglia to amplify M1-polarized phenotypes over M2 and on astrocytes through the promotion of the classical pro-

inflammatory activation. By acting in neurons, LCN2 is considered to have a role in neurodegeneration and even possibly in synaptic transmission. CSF, cerebrospinal fluid; CP,

choroid plexus; MS, multiple sclerosis.
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of disease (Marques et al., 2012). In addition, other authors have
shown that in the ischaemic brain and after transient middle
cerebral artery occlusion, LCN2 is predominantly produced by the
brain endothelium and by astrocytes, whereas its receptor (24p3R)
is expressed in neurons, astrocytes and endothelial cells (Jin et al.,
2014b) (Table 3). Similarly, increased levels of LCN2 mRNA and
protein were found in the CP, vascular endothelium, macrophage/
microglia and astrocytes in an animal model of West Nile virus
encephalitis (Nocon et al., 2014). Interestingly, in this study, the
authors also evidenced that some neuronal subsets contained
LCN2 protein, but no detectable mRNA expression (Nocon et al.,
2014). Again, in a rat animal model of brain injury after
intracerebral haemorrhage, LCN2 expression was found markedly
increased in the ipsilateral basal ganglia and cortex, with most
LCN2 positive cells being astrocytes (Dong et al., 2013) (Table 3).
The precise identification of the brain cells that express, secrete
and take up LCN2 are yet to be clearly defined, since contradictory
reports exist. Most authors, as mentioned until now and including
our group, were unable to detect LCN2 expression by neurons or
microglial cells in the brain parenchyma (Marques et al., 2009);
however, few studies suggest that indeed both cell types are able to
produce it. Specifically, when assessing the role of LCN2 in the
pathogenesis of neuropathic pain using a mouse model of spared
nerve injury, LCN2 was detected in neurons of the spinal cord,
simultaneously with the expression of the 24p3R in spinal neurons
and microglia (Jeon et al., 2013). Additionally, LCN2 was described
as one of the most highly up-regulated transcripts detected by
microarray analysis in the mouse hippocampus (Mucha et al.,
2011) and in the amygdala (Skrzypiec et al., 2013), after an acute
restraint protocol of stress. In these studies, LCN2 expression was
found in the pyramidal cell layers of CA1–CA3 and in the granule
cell layers of the dentate gyrus of the hippocampus, co-localizing
with the neuronal marker NeuN (Mucha et al., 2011). At the
nucleus of the basolateral amygdala, LCN2 was shown to co-
localize mostly with neurons and, to a lesser extent, with the glial
fibrillary acidic protein astrocyte marker (Skrzypiec et al., 2013).
Furthermore, the presence of LCN2, and its release by neurons, was
described in post-mortem human brain samples of stroke patients,
compared to the contralateral cortex, and in the rat animal model
of focal cerebral ischaemia (Xing et al., 2014).

Of relevance, the controversy of whether LCN2 is produced by
neuronal cells also persists even in in vitro studies. Experiments
have demonstrated the expression of LCN2 by neurons in response
to TNF (Naude et al., 2012) and after oxygen–glucose deprivation
(Xing et al., 2014), while others showed no expression by these
cells in response to amyloid beta (Ab) or LPS (Mesquita et al.,
2014). This inconsistency may be related to the different stimuli or
type of insult applied or possibly due to neuron-enriched culture
contamination by astrocytes that can easily occur (Mesquita et al.,
2014). Interestingly, in vitro studies showed that LCN2 expression
by astrocytes occurs only when they are reactive (Bi et al., 2013),
corroborating the described in vivo expression of LCN2 by
astrocytes only in diseased brain regions, as we will further
discuss.

5.2. How? From the innate immune response to iron trafficking

When the levels of LCN2 were reported to be increased at the
brain barriers in response to peripheral administration of LPS, a
role in protecting the brain from invading microorganisms,
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through sequestration of iron, was suggested (Marques et al.,
2008). This argued in favour of a LCN2 bacteriostatic action in the
CNS, similarly to that described for the periphery (Flo et al., 2004).
Still, the relevance of LCN2 production by the brain barriers will
depend on the pathogen that is invading the CNS since, for
instance, the function of LCN2 in the host response to West Nile
virus encephalitis infection was shown to be dispensable as the
infected brains of LCN2-null and WT mice contained similar
numbers of infiltrating cells and no differences in tissue viral loads
or survival was observed (Nocon et al., 2014).

As mentioned before, in addition to CP epithelial cells and to
endothelial cells (Marques et al., 2008), some have described the
production of LCN2, at the brain parenchyma, by neurons (Mucha
et al., 2011; Naude et al., 2012) and by microglia (Ip et al., 2011;
Naude et al., 2012) although this is controversial. Nevertheless,
consensus exists on the synthesis of LCN2 by astrocytes, which are
considered the major producers of LCN2 in the brain (Bi et al.,
2013; Chia et al., 2011; Marques et al., 2012). As such, its secretion
is assumed to be one of the mechanisms through which astrocytes
interact with neurons and regulate neuronal homeostasis. This
possible role in neuronal homeostasis pertains to iron transport by
LCN2. This is conceivable because neurons constitutively express
24p3R even in physiological conditions (Ip et al., 2011; Rathore
et al., 2011). Indeed, the iron-binding capability of LCN2 has been
shown to be a key element in the regulation of dendritic spine
density and morphology (Mucha et al., 2011). Specifically, this type
of regulation was demonstrated to occur in an iron-dependent
manner, since in vitro treatment of hippocampal neurons with
holo-LCN2 caused a decrease in spine density but treatments with
apo-LCN2 further potentiate those processes (Mucha et al., 2011).
Moreover, both apo- and holo-LCN2 affected spines shape, by
increasing the proportion of the thin type and decreasing the
density of mushroom spines, being again the effects with apo-LCN2
more pronounced (Mucha et al., 2011). In this work, Mucha et al.
(2011) also showed that this effect on spine plasticity is due to a
decrease in actin’s mobile fraction, which is a component of the
spine cytoskeleton and that regulates its shape (Mucha et al.,
2011). It is generally accepted that mushroom spines are mature
spines and that are implicated in the maintenance of established
neuronal networks and long-term memory (‘‘memory spines’’)
and, although LCN2 is certainly not the only modulator of dendritic
spine shape, this peculiar modulation of actin mobility may have
an impact on structural plasticity and behaviour. In fact, disruption
of Lcn2 expression in mice promotes increased anxiety, depressive-
like behaviour and mild spatial reference memory impairments
(Ferreira et al., 2013). Importantly, these behavioural alterations
are concomitant with significant alterations in the morphology of
hippocampal neurons and spine density, along the dorsal-ventral
axis (Ferreira et al., 2013). Regarding this, the absence of LCN2
promotes neuronal hypertrophy at the ventral hippocampus, with
a significant atrophy in neurons at the dorsal division and a
decrease in the proportion of mushroom type spines (Ferreira et al.,
2013). Similarly, in response to stress, the ablation of LCN2
revealed to be deleterious by promoting stress-induced increase in
spine density, which correlated with a higher excitability of CA1
neurons and stress-induced anxiety (Mucha et al., 2011).
Nonetheless, since the brain responds differently depending on
the presence of an acute or chronic stressful stimulus, the strategy
of LCN2-null mice to cope with different stress paradigms requires
further detailed studies.

Still to be unravelled is whether, similar to what occurs in
kidney development (Yang et al., 2002), LCN2 is able to modulate
cell proliferation in the brain through iron trafficking. This possible
modulation can be crucial for brain homeostasis maintenance,
with further impact in the neurogenic niches in response to injury.
Interestingly, the involvement of LCN2 in neurodegenerative
disorders, such as AD, where iron is a key player, has been shown
(Mesquita et al., 2014; Naude et al., 2012). Indeed, iron
homeostasis deregulation may lead to iron accumulation, which
is a common feature of such neurodegenerative diseases (Crichton
et al., 2011). In fact, the presence of LCN2 in the brain regions
associated with AD pathology in human post-mortem brain tissue
(Naude et al., 2012) and in the mediation of Ab cytotoxicity
(Mesquita et al., 2014) may relate to the modulation of iron
homeostasis. The function of LCN2 as an iron-chelator in the brain
has also been suggested after intracerebral haemorrhage, as part of
the response to clear iron released from the haematoma during clot
resolution (Dong et al., 2013).

5.3. In neuroinflammation: neuroprotective or neurodetrimental?

Inflammation in the CNS (termed neuroinflammation) is
common to all neurodegenerative conditions and whenever an
injury is imposed in the CNS. The cellular expression of LCN2 under
such conditions is known to occur so it can engage critical roles in
inflammatory progression. For instance, the secretion of LCN2 by
activated astrocytes mediates neuronal toxicity, which can have
implications in disease progression (Bi et al., 2013).

Upon stimulation, LCN2 is secreted by astrocytes to act as an
autocrine mediator and to stimulate surrounding astrocytes and
microglia to become reactive, thus amplifying the inflammatory
response (Lee et al., 2007; Lee et al., 2009) and impacting on
neurons. Whether this modulation by LCN2 can be considered
deleterious or protective is largely controversial presently. Several
reports point to LCN2 as a deleterious modulator since, for
instance, in the injured brain after ischaemia, LCN2 was shown to
contribute to neuronal cell death by potentiating, among others,
ischaemic-induced glial activation, neutrophil infiltration and pro-
inflammatory cytokine/chemokine levels (Jin et al., 2014b).
Similarly, Lcn2-expression ablation attenuates LPS-induced glial
activation in the brain (Jin et al., 2014a) and promotes better
locomotor recovery after spinal cord injury (Rathore et al., 2011),
reinforcing the view that, when present, LCN2 might contribute to
the uncontrolled neurotoxic glial activation under conditions of
excessive and chronic inflammation. These results are in accor-
dance with the findings that LCN2 secreted by glial cells in
inflammatory conditions up-regulates the expression of C-X-C
motif chemokine-10 (Lee et al., 2011), participating in the
recruitment of leukocytes to the CNS. This role as an immune
cell attractant, through the modulation of chemokines, has
implications, for instance, in central sensitization at the site of
inflammation and in nociceptive behaviour in chronic inflamma-
tory pain (Jha et al., 2014). Mechanical allodynia (Jha et al., 2014),
nociceptive behaviour (Jha et al., 2013) and pain sensitivity (Jeon
et al., 2013) are all features of pain processing that were decreased
or attenuated in LCN2-null mice (Table 3). However, the
observation that LCN2-null mice present a similar inflammatory
response to LPS, as controls, suggests a non-essential modulation
of gliosis in response to LPS in vivo (Ip et al., 2011).

Opposing to these neurodetrimental effects under inflamma-
tion, LCN2 has also been attributed a neuroprotective role. At least
in one report concerning MS, LCN2-null mice presented an
increased severity of disease manifestation and progression
(Berard et al., 2012), accompanied by an increased pro-inflamma-
tory response. It is, therefore, plausible to assume that LCN2
mediates differential effects depending on the type of CNS
inflammatory response.

5.3.1. Lipocalin-2 in multiple sclerosis

The presence and relevance of LCN2 in different brain diseases
is well accepted, but its precise role in disease onset and
progression is still debateable. In the particular case of MS, the
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presence of LCN2 and its increased expression has been reported
by many (Berard et al., 2012; Marques et al., 2012; Nam et al.,
2014), but while some studies point to its neurodeleterious effects
(Nam et al., 2014), others suggest that it may be neuroprotective
(Berard et al., 2012). Berard and colleagues (2012) demonstrated
that the induction of EAE in LCN2-null mice leads to increased
disease severity and pro-inflammatory responses, indicating that
LCN2 is protective (Berard et al., 2012). Specifically, such increased
disease severity was associated with increased lesion burden and
IFN-g and TNF expression, both pro-inflammatory cytokines with
well-known implication in EAE pathogenesis (Berard et al., 2012).
The absence of alterations in IL-4 mRNA levels in LCN2-null mice
suggests that the protective function of LCN2 in EAE involves the
control of the Th1 immune response, rather than the promotion of
an Th2 immune response (Berard et al., 2012). The described
protective effects are considered to occur towards macrophages/
microglia and reactive astrocytes, but not neurons, as those are the
cell populations shown to express 24p3R during the course of the
disease (Berard et al., 2012; Nam et al., 2014). On the other hand,
Nam and colleagues (2014) showed that LCN2-null mice present a
less severe disease phenotype, demonstrated by the lower mean of
EAE scores and demyelination, reduced inflammatory infiltration,
glial activation and inflammatory cytokine/chemokine expression,
when compared to wild-type animals (Nam et al., 2014). Of
interest, these authors also showed that upon the adoptive transfer
of T cells from EAE-induced wild-type mice to a LCN2-null mice,
the animals developed a normal EAE disease profile, while the
transfer of T cells from EAE-induced LCN2-null mice to wild-type
mice reduced disease severity, reinforcing the view that LCN2 is
detrimental in EAE (Nam et al., 2014). In accordance with this
deleterious effect is the observation that increased levels of LCN2
in the CSF coincide with the active phases of the disease and are
reverted by natalizumab treatment (an antibody that blocks
leucocyte entry into the CNS, currently used as therapeutics)
(Marques et al., 2012). The specific engagement of LCN2 in the MS
context can, indeed, be related to its previously described
involvement in the amplification of M1-polarized phenotypes of
microglia, over M2, which is curiously associated with the
initiation and perpetuation of inflammation rather than with its
resolution (Jang et al., 2013b) (Fig. 2). In addition, astrocyte-
derived LCN2 promotes classical activation of astrocytes (Jang
et al., 2013a), which also supports that rather than being involved
in the resolution of the inflammatory response, LCN2 contributes
to the initiation and installation of the disease. Of interest, LCN2
was also shown to have detrimental effects in a spinal cord injury
model (Rathore et al., 2011). Particularly, LCN2-null mice showed
better locomotor recovery after spinal cord contusion injury than
wild-type mice, and this was accompanied by decreased neutro-
phil and monocyte influx to the injured spinal cords, as well as by a
reduction in the expression of several pro-inflammatory chemo-
kines, cytokines and inducible nitric oxide synthase (Rathore et al.,
2011).

The attempt of the described studies to disclose if LCN2 is either
protective or deleterious relies on the use of the LCN2-null mouse
model, which as a full knockout system has its limitations.
Additional studies are, therefore, necessary to further understand
whether LCN2 acts in a context-depend manner, and which are the
up- and/or down-stream mediators of such responses.

5.3.2. Lipocalin-2 in Alzheimer’s disease

The engagement of LCN2 in the initiation of an inflammatory
response is suggested to promote secondary tissue damage.
Indeed, in in vitro studies LCN2 was shown to modulate cell death
after inflammatory stimulation of cultured astrocytes: LCN2
increased expression and secretion induced cell death sensitiza-
tion, stimulation of cell migration and morphological changes of
reactive astrocytes (Lee et al., 2009). These observations point to
LCN2 as an autocrine mediator of reactive astrocytosis (Lee et al.,
2009). Of relevance, this LCN2-induced cytotoxic sensitization was
demonstrated to involve iron metabolism and the pro-apoptotic
BIM protein, not only in astrocytes but also in activated microglia
and neurons (Lee et al., 2007; Lee et al., 2012). Furthermore, it was
proposed that degenerating neurons activate quiescent astrocytes
and these, in turn, secrete LCN2 to induce neuronal migration,
morphological changes and neuronal cell death (Bi et al., 2013; Lee
et al., 2012). The mediation of neuronal toxicity by LCN2 is of
particular relevance for disease progression. For instance, the
strong up-regulation of LCN2 in cortical brain regions of an AD
mouse model which overexpresses mutated, but not wild-type
forms, of the human amyloid precursor protein and presenilin-1, is
suggestive of LCN2 involvement in the establishment of the initial
inflammatory response and sensitization of nerve cells to Ab
toxicity (Wu et al., 2006). More recently, the stimulation of
neuronal and glial (astrocytes and microglia) cultures with TNF
was shown to lead to an increase in LCN2 levels (Naude et al.,
2012). In addition, in RNA samples extracted from cortical neurons
of mice lacking TNF type 1 receptor (TNFR1) or type 2 (TNFR2) and
treated with TNF, LCN2 was specifically induced by the activation
of TNFR1 (Naude et al., 2012). Remarkably, binding to this receptor
generally leads to pro-inflammatory and pro-apoptotic responses,
whereas binding to TNFR2 has been seen associated with
neuroprotection. These observations are relevant in the context
of AD, since it is known that TNF, through a TNFR2 signalling
pathway, can be protective against Ab-induced neuronal cell death
(Patel and Brewer, 2008). However, when present, LCN2 can
silence neuroprotection against the AD-associated excitotoxic
factors via TNFR1-specific signalling (Naude et al., 2012). Of
interest, in this same study, LCN2 levels were found to be
decreased in CSF of patients with mild cognitive impairment and
AD, but increased in brain regions associated with AD pathology in
human post-mortem brain tissue, with no changes in the serum
levels (Naude et al., 2012). However, other authors described, in a
distinct cohort of patients, significantly higher LCN2 serum levels
in mild cognitive impaired patients, when compared to healthy
controls and AD patients (Choi et al., 2011).

In addition to these findings, LCN2 was recently showed to
modulate the cellular response to Ab (Mesquita et al., 2014). In this
work, LCN2 production was up-regulated in both CP epithelial cells
and astrocytes, but not in microglia or neurons, in response to Ab
(Mesquita et al., 2014). Moreover, LCN2 was shown to be required
for Ab toxicity to astrocytes, as the survival of wild-type astrocytes
was decreased upon Ab stimulation, while astrocytes from LCN2-
null mice were not affected (Mesquita et al., 2014). This protection
was found to result from both a lower expression of the pro-
apoptotic gene Bim and a decreased pro-inflammatory response
(Mesquita et al., 2014), which is in accordance with a role for LCN2
in promoting pro-inflammatory response and degeneration.

In all of the described cases, LCN2 production by reactive
astrocytes seems a critical step for the course of the disease,
whether by potentiating or attenuating the inflammatory re-
sponse. Further understanding on whether LCN2 is a marker of
activated astrocytes by itself, or represents a key mediator in the
involvement of astrocytes on CNS pathogenesis, might have
important implications for the development of neuroprotective
therapeutic strategies.

6. The promising diagnostic and prognostic value of lipocalin-2

In the recent years, the increased number of reports demon-
strating the nature of secreted LCN2, in several diseases conditions,
has suggested its potential value as a biomarker in clinical
monitoring. In fact, it is becoming increasingly clear the
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pathophysiologic role of LCN2 in diverse diseases, as described in
the present review. In line with this, LCN2 has been proposed as a
biomarker for various conditions and has also emerged as an
attractive molecular tool with distinct clinical applications. Indeed,
its small size, associated with the existence of commercially
available immunoassays that quantify LCN2 levels, reinforces such
emerging view. However, and although showing high sensitivity,
the available immunoassays have low specificity, which is
something that has to be improved in the future (Haase et al.,
2009).

In the particular case of the kidney, the sustained expression of
LCN2 in response to either acute or chronic kidney damage, has
gained considerable importance and has led several authors to
propose LCN2 as a serum and urinary biomarker for functional,
toxic and ischaemic renal damage (An et al., 2013). In fact, several
interesting findings have emerged from pre-clinical and clinical
studies. For instance, urinary LCN2 levels have become a standard
biomarker for both the early diagnosis and the prediction of
prognosis of patients with renal injury (Schmidt-Ott et al., 2007). In
acute kidney injury, a significant increase in the expression of LCN2
in the kidney is observed (Hirsch et al., 2007). Aligned with a poor
sensitivity of creatinine in the early diagnosis of this disease
(Kumpers et al., 2010), the positive correlation of LCN2 levels with
disease severity (Kumpers et al., 2010) has strengthen the
suggestion of LCN2 as an early diagnostic and prognostic marker
for these patients. Similarly, in chronic kidney disease, the
increased levels of LCN2 in tissue, blood and urine (Viau et al.,
2010) correlate with the extent of renal damage. Importantly, in
polycystic kidney disease, the levels of LCN2 in patients with rapid
disease progression are significantly higher than those with slower
progression (Viau et al., 2010). Also, in the cases of patients with
stable angina, undergoing percutaneous coronary intervention, the
increased level of urinary LCN2 is a strong predictor of mortality
(Borkham-Kamphorst et al., 2013).

In addition, several authors are currently pursuing studies on
the effectiveness of LCN2 as a marker and predictor of other
diseases. The diversity of reports describing LCN2 expression, in
animal models of disease and in humans, and under several
conditions, strongly suggests for its predictive value. Examples of
this are the proposals of LCN2 as a marker of disease progression in
post-liver resection (Kienzl-Wagner et al., 2014), asphyxiated
newborns (Surmiak et al., 2014), breast cancer (Wang and Zeng,
2013), chronic obstructive pulmonary disease (Wang et al., 2014),
systemic lupus erythematosus (Li et al., 2014), heart failure (van
Deursen et al., 2014) and nephrolithiasis (Zhu et al., 2014).
Nevertheless, in most reports, the suggestion for the need of
additional and further studies to dissect the precise reliability of
LCN2 as a biomarker is noted. Still, the proposed role of LCN2 in
such diseases paves the way for possible therapeutic targeting.

Whether detrimental or protective, also in the CNS context,
LCN2 has been profoundly associated to alterations in brain
homeostasis and in specific regions that are affected in neurode-
generative disorders, including AD and MS. Due to its peculiar
mechanisms of induction and involvement in accelerating neuro-
nal cell death, many authors are also proposing the use of LCN2 as a
marker for the diagnosis and prognosis of several neurological
diseases. The particular description of increased LCN2 plasma and
CSF levels in patients with mild cognitive impairment (Choi et al.,
2011), of plasma levels in depression (Naude et al., 2013), but also
in the CSF of MS patients (Marques et al., 2012), is suggestive of
LCN2’s involvement in these pathologies. Specifically, the presence
of high LCN2 levels in patients with mild cognitive impairment,
considered to be a transitional state between normal and mild
dementia, was considered not only to reflect overall CNS
inflammation, but also an important marker of progression from
one form of dementia to the other (Choi et al., 2011). In this sense,
as much as it is risky to say, it is plausible to speculate that higher
levels of LCN2 could be associated with a higher risk to develop AD
(Choi et al., 2011). However, some cautious should be taken into
consideration since in the study by Naude et al. (2012), no changes
in the plasma levels for LCN2 in AD and in mild cognitive
impairment was observed (Naude et al., 2012). In parallel, the
increased plasma levels of LCN2 in subjects with a recurrent
depression episode, compared to those in the first episode, points
for its potential use as a marker of disease (Naude et al., 2013). This
finding further suggests that LCN2 may be an indicator for
symptoms of depression, which should be further investigated in
detail.

Furthermore, the identification of increased LCN2 CSF levels in
MS patients, which also occurs in the EAE animal model, suggests
for its putative relevance and possible inclusion in the already
existent panel of inflammatory MS markers (Marques et al., 2012).
The major drawback at this point concerns the period in the course
of the disease that the analyses are performed and, currently, it is
not known whether LCN2 levels emerge earlier than current
diagnostic markers of the disease (Marques et al., 2012). This can
be of clinical relevance so to identify patients that would benefit
from early treatment.

Irrespective of the great value of LCN2 from the clinical point of
view, we believe that a single marker will be insufficient to track
disease progression, particularly when its altered expression is
common to such myriad of diseases. For instance, the levels of
LCN2 overlap between depressed and non-depressed patients,
which certainly limits its use as a single diagnostic marker, in this
particular case. Ultimately, the best approach will always be the
use of LCN2 in combination with other validated biomarkers. This
is certainly a great challenge for the near future and for
personalized medicine.

7. Final remarks

We performed here a comprehensive revision of the multiface-
ted LCN2, ranging from its known and postulated functions in the
periphery to the latest findings of its involvement in diseases of the
CNS. Lipocalin-2 has gained great interest in multidisciplinary
fields since its discovery. With a denotable broad expression and
rapidly induction upon stimulation, particularly in tissues more
prone to infection, the relevance of LCN2 in the acute inflammation
and innate immune response is nowadays well accepted.
Lipocalin-2 is part of an efficient mechanism of sensing microbial
metabolism to modulate the proper host immune response, with
iron assuming an important role in such regulation. The existence
of specific cell surface receptors for LCN2, and of an endogenous
mammalian siderophore, strengthens the role of LCN2 in iron
trafficking within cells and as a player on iron homeostasis. The
impact of such modulation, whether under physiological or
pathological conditions, has been demonstrated to be crucial for
cellular equilibrium and homeostasis. Indeed, although iron is the
best-known ligand for LCN2, which may explain the impact of
LCN2 in innate immunity and in cellular processes such as cell
proliferation and death, the role of LCN2 in the modulation of pro-
and anti-inflammatory responses still warrants further research.
Also unclear is the mechanism through which LCN2 modulates
cellular processes such as cell migration. Is it possible that LCN2
can also bind to other ligands? Has the demonstrated LCN2 binding
to phosphatidylethanolamine a role in cellular processes such as
dendritic arborisation and cell-to-cell connections, known to be
affected in LCN2-null mice?

The precise impact of LCN2 in the CNS is far from being
completely unravelled and is considered to be multifaceted. The
production of LCN2 by reactive astrocytes is likely to play
significant roles in neurodegeneration. From a clinical perspective,
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LCN2 could be targeted therapeutically to dampen pro-inflamma-
tory astrocytic activation. Nonetheless, at this point, the absence of
a specific antagonist for LCN2, aligned with a less elucidated
mediation of astrocytic neurotoxicity by LCN2 through the binding
to specific receptors, makes the task of counteracting LCN2 effects
in the progression of CNS diseases very challenging. Filling these
and other gaps of knowledge is crucial to assert the already
described roles for LCN2 and, possibly, to uncover new ones.
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