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Abstract

The theory of orthogonal polynomials of one real or complex variable is well estab-
lished as well as its generalization for the multidimensional case. Hypercomplex function
theory (or Clifford analysis) provides an alternative approach to deal with higher dimen-
sions. In this context, we study systems of orthogonal polynomials of a hypercomplex
variable with values in a Clifford algebra and prove some of their properties.
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1 Introduction

Hypercomplex function theory (or Clifford analysis) generalize to higher dimensions the
theory of holomorphic functions of one complex variable by using Clifford algebras. In this
framework the analogue of holomorphic functions is obtained as null-solutions to a gener-
alized Cauchy-Riemann system and are called monogenic (or hyperholomorphic) functions.
During the last decade, several authors considered the problem of constructing Clifford
algebra-valued orthogonal polynomials (cf. [3–5, 13, 14]). In particular, the paper [14]
constructs orthogonal bases of polynomials in the space of square integrable monogenic
functions in the unit ball of Rn+1. The resulting polynomial systems are obtained via the
algebraic approach of Gelfand-Tsetlin bases and generalize the results already obtained in
[13] for the case n = 2. The construction process relies on building blocks that are non-
monogenic Clifford algebra-valued polynomials. By using the matrix approach followed in
[7] we establish recurrence relations for those building blocks and we show that they can be
obtained as well from the Appell sequence constructed in [10, 15] by a simple shift of their
coefficients.
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2 Basic notions

Let {e1, e2, . . . , en} be an orthonormal basis of the Euclidean vector space R
n with a non-

commutative product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The associative 2n-dimensional Clifford algebra Cℓ0,n
over R is the set of numbers of the form

a =
∑

A

aAeA, aA ∈ R,

with A ⊆ {1, · · · , n}, eA = el1el2 · · · elr , where 1 ≤ l1 < · · · < lr ≤ n and e∅ =: e0 =: 1.

The conjugate of a is given by ā =
∑

A

aAēA, where ēA = ēlr ēlr−1
· · · ēl1 , with ēj = −ej ,

j = l1, . . . , lr.

Let Rn+1 be embedded in Cℓ0,n by identifying (x0, x1, . . . , xn) ∈ R
n+1 with

x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ Cℓ0,n,

where x = x1e1 + . . .+ xnen is called a vector and the elements of An are the paravectors.

The generalized Cauchy-Riemann operator and its conjugate are given, respectively, by

∂ :=
1

2
(∂0 + ∂x) and ∂ :=

1

2
(∂0 − ∂x),

where

∂0 :=
∂

∂x0
and ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

The analogue of the class of holomorphic functions is now formed by C1-functions f

that satisfy the equation ∂f = 0 (resp. f∂ = 0) and they are called (left) monogenic (resp.
right monogenic) (also called hyperholomorphic or Clifford holomorphic). For more details,
see [2, 11].

Let f be a monogenic function that is hypercomplex-differentiable in some domain
Ω ⊂ R

n+1 in the sense of [12]. Then f is real-differentiable and its (hypercomplex) derivative
is given by f ′ = ∂f in Ω. Moreover, let f be in the Hilbert module of monogenic square
integrable Clifford algebra-valued functions with the following Clifford algebra-valued inner
product

(f, g)Cℓ0,n =

∫

Bn+1

f̄ g dλn+1, (1)

where λn+1 is the Lebesgue measure and Bn+1 is the unit ball in R
n+1.
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3 Clifford algebra-valued orthogonal polynomials

The importance of homogeneous monogenic polynomials and their applications is already
visible in [2]. However, in its sequel [9] the authors devoted a entire chapter to the con-
struction of monogenic homogeneous polynomials that are orthogonal with respect to the
inner product (1).

We follow that construction considering different normalization constants in order to
obtain some simplification and better accordance between formulae. More explicitly, for each
k ∈ N0 and for arbitrarily fixed Cℓ0,n-valued monogenic polynomials Pj(x) (j = 0, . . . , k),
we apply the Cauchy-Kovalevskaya extension to the polynomials ck,j(n)

(
k
j

)
xk−j Pj(x). The

normalized constants ck,j(n) are defined by

ck,j(n) =





(k − j)!!(n+ 2j − 2)!!

(n+ k + j − 1)!!
, if k, j have different parities

ck−1,j(n), if k, j have the same parity

, (2)

for k ≥ 1, j = 0, . . . , k and c0,0(n) = 1.

For each j (j = 0, . . . , k), the resulting homogeneous monogenic polynomial

X̃
(k)
n+1,j(x) := X

(k−j)
n+1,j (x)Pj(x), x ∈ An (3)

is a product of a non-monogenic (in general) homogeneous polynomialX
(k−j)
n+1,j of degree k−j,

by the original fixed monogenic polynomial Pj . The polynomials X
(k−j)
n+1,j (j = 0, . . . , k) can

be represented by

X
(k−j)
n+1,j (x) = F

(k−j)
n+1,j (x) +

j + 1

n+ 2j
F

(k−j−1)
n+1,j−1 (x)x, (4)

where

F
(k−j)
n+1,j (x) =

(j + 1)k−j

(n− 1 + 2j)k−j

|x|k−jC
n−1

2
+j

k−j

(
x0

|x|

)
,

with F
(−1)
n+1,k+1 ≡ 0, x = (x0, . . . , xn) ∈ R

n+1, | . | is the usual Euclidean norm in R
n+1,

(µ)m = µ(µ+ 1)(µ+ 2) . . . (µ+m− 1), and Cν
m is the Gegenbauer polynomial of degree m

and parameter ν 6= 0.

These polynomials were used as building blocks of orthogonal bases for the space of
homogeneous monogenic polynomials of degree k (cf. [14]). Indeed, based on the algebraic
concept of Gelfand-Tsetlin bases, the construction is recursive and starts with an orthogonal
basis in R

2 with values in the Clifford algebra Cℓ0,2. The resulting basis is formed by the
polynomials

fk,µ = X
(k−kn)
n+1,kn

X
(kn−kn−1)
n,kn−1

· · ·X
(k3−k2)
3,k2

ζk2 ,

where ζ := x1 − x2 e1e2 and µ is an arbitrary sequence of integers (kn+1, kn,

. . . , k3, k2) such that k = kn+1 ≥ kn ≥ . . . ≥ k3 ≥ k2 ≥ 0.
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4 The structural Appell sequence and recurrence relations

The classical concept of Appell sequences [1] was generalized in [10,15] to the hypercomplex
case as sequences of homogeneous monogenic polynomials (Fk)k≥0 of exact degree k such
that ∂Fk = kFk−1, k = 1, 2, . . .. In those papers, the authors constructed the generalized
Appell sequence (Pn

k )k∈N0
, where the polynomials are given by

Pn
k (x) =

k∑

s=0

(
k

s

)
cs,0(n)x

k−s
0 xs,

with cs,0(n) (s = 0, . . . , k) the coefficients (2).

It is worth to notice that Pn
k ≡ X

(k)
n+1,0 for all k ∈ N0. For j = 1, . . . , k the sequence of

non-monogenic polynomials
(
Xn+1,j

(k−j)
)

k∈N
can be generated from the monogenic Appell

sequence (Pn
k )k∈N by a simply shift of their coefficients. Indeed (see [8]),

Theorem 4.1 For all k ∈ N0 and each fixed j (j = 0, . . . , k), it holds

X
(k−j)
n+1,j (x) =

(
k

j

)
Pn+2j
k−j (x), x ∈ An.

As a consequence of this result, the polynomials X
(k−j)
n+1,j (j = 0, . . . , k), explicitly given

by (4), admit the simple representation

X
(k−j)
n+1,j (x) =

(
k

j

) k−j∑

s=0

(
k − j

s

)
cs,0(n+ 2j)xk−j−s

0 xs, x ∈ An.

From the general theory of orthogonal polynomials it is well-known that orthogonal
polynomials satisfy a three-term recurrence. It is then natural to ask if we have a similar

result for the orthogonal monogenic sequence
(
X̃

(k)
n+1,j : j = 0, . . . , k

)

k∈N0

. The matrix ap-

proach followed in [6] was advantageously used to obtain matrix recurrences for the sequence(
Xn+1,j

(k−j)
)

k∈N
for each j = 0, . . . , k (see [7]). Combining this results with Theorem 4.1,

a three-term type recurrence can be derived (see [8]):

Theorem 4.2 For all k ∈ N0 and each fixed j (j = 0, . . . , k), the monogenic polynomials

X̃
(k−j)
n+1,j (x), x ∈ An satisfy the three-term type recurrence

(n+ k + 1 + j)(k + 2− j)X̃
(k+2)
n+1,j − [(n+ 2k + 2)x0 + x] (k + 2)X̃

(k+1)
n+1,j

+ (k + 2)(k + 1) |x|2 X̃
(k)
n+1,j = 0,

X̃
(j)
n+1,j = Pj(x), X̃

(j+1)
n+1,j = (j + 1)(x0 +

1

n+ 2j
x)Pj(x).
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