-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Universidade do Minho: RepositoriUM

The group inverse of a product*

Xavier Mary?, Pedro Patricio®

“Université Paris-Ouest Nanterre — La Défense, Laboratoire Modal’X, 200 avenue de la république, 92000
Nanterre, France. email: xavier.mary@u-parisi0.fr
PCMAT - Centro de Matemética and Departamento de Matemética e Aplicacdes , Universidade do Minho,

4710-057 Braga, Portugal. email: pedro@math.uminho.pt

Abstract

In this paper, we characterize the existence and give an expression of the group inverse

of a product of two regular elements by means of a ring unit.
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1 Introduction

In this paper, we consider elements on a general (associative) ring R with unity 1. We will
follow the standard notation regarding generalized inverses. We say a is regular if a € aRa.
In this case, a particular solution to axa = a, called von Neumann inverse of a, is denoted by
a~. A reflexive inverse of a, denoted by a™, is a common solution to ara = a,z = zazx. A
regular element a has a reflexive a™, namely a~aa™, for any choice of von Neumann inverses
a ,a-

We say a is group invertible if there is a common solution to axa = a,xrax = x,ax = xa.
It is well known that such a solution is unique in case it exists. It is denoted by a*.

Our main goal is to characterize the group inverse of a product of regular elements, as
well as to derive an expression of such a group inverse that does not rely on the knowledge

of von Neumann regularity of the product.

*This research was financed by Laboratoire Modal’X, Université Paris—Ouest, and by the Research Centre
of Mathematics of the University of Minho with the Portuguese Funds from the “Fundagdo para a Ciéncia e
a Tecnologia”, through the Project PEst-OE/MAT/UI0013/2014.
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2 Main result
Let a,b be regular elements in R, with reflexive inverses a™, b, respectively. Let also
w=(1-bb")(1—-a"a)

which we will assume to be regular in R.
Note that the regularity of w does not depend on the choices of a™ and b*. That is to say,
if w is regular for a particular choice of a™ and of b™, then it must be regular for all choices

of a* and b™. This can be easily proved by noting that w being regular is equivalent to the

regularity of the matrix Clb . using [6], which it turn is equivalent to (1 —bb=)(1 —a~a)

being regular, for any other choices of von Neumann inverses a= and b~ of a and b.
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It is well known that M7 exists if and only if (ab)? exists, using [1]. Furthermore, the
(1,1) entry of M7# equals (ab)?. Also, M7 exists if and only if U = AQ+I—AA™ is invertible,
see [7], [5], in which case (AQ)* = U~2(AQ).
As AQ+ 1 — AA~ = A(Q — A7) + I then AQ + I — AA™ is invertible if and only if
(Q—A")A+1=QA+1— A Aisinvertible, using Jacobson’s Lemma, which in turn means

b 1 —b
ot 0 ], then (ab)?

Consider the matrix M = !

(QA)# exists. Therefore, by considering the matrix W = QA = .

exists if and only if W is group invertible.

Using [4], the matrix W is group invertible if and only if

z = (14ba)(1—-a"a)+ba+ (1 —ww )(1—>bb")(1+ ba)
= l-aTa+ba+ (1 —ww )(1—bb")

is a unit.

We have, hence, the equivalence
(ab)¥ exists if and only if 1 — aTa + ba + (1 — ww™)(1 — bb") is a unit.

Using the expression presented in [4] does not give a tratable algorithm to actually compute
(ab)#. We will, therefore, pursue a different strategy and compute the (1,1) entry of M7#.

Recall that for M = AQ and @Q invertible, the group inverse of M exists if and only if

U=AQ+ 1 — AA™ is invertible. For A = [ (1L Ob ] , there exists A~ for which

aat 0

AA™ =
—(1—ww )1 —=bbT)a™ bbT +ww™ (1 —bbT)

)

using [6].



The matrix U then becomes

- ab+1—aa™ a
| A= ww)(1=bbM)at 2 —bbt — ww (1 — bbT)

1

Multiplication on the right by K =
at —b

01 .
ives
1 g

G =

1 a
a 2—bbt —ww (1 —bbt) |’
where

a = 1-—ww )1-0bb")a® + (2—bb" —ww (1 —bb")) (a™ —b)
= a" —b+2(1 —ww )1 —bb)a"
as (1 —bbt)b = 0.
We are left with showing when is G invertible. We do so using the Schur complement on

the (1,1) entry. This Schur complement equals

G/I = (2—-bb" —ww (1 -00")) — (1 —ww™)(1—bb")a™
+(2=bb" —ww (1 -0bb")) (a* —b))a
= (2-0" —ww (1-bb")) (1 —aTa+ba)— (1 —ww )(1-bb")a"a
= 14+ 1 —-ww )1 -bb"))(1—-ata+ba)— (1 —ww )(1-bbT)aTa
= l—ata+ba+ (1 —ww )1 —-0bb")(1~-2ata)
= 1l-aTa+ba+(1—ww )(1—-b")(1—ata)+
+(1 —ww™)(1—-bb")aTa
= l-ata+ba+ (1—ww)(1-0bb")
This gives, and as previously shown,
(ab)# exists if and only if 2 = 1 — a*a + ba + (1 — ww™)(1 — bb*) is a unit.

As a side note, we construct another unit associated with z, namely we may show that
z=1-a"a+ba+ (1 —ww )(1—>0bb") is a unit if and only if 2/ =1 — aat + ab — a(1 —
ww™)(1 —bb*)a™ is a unit. This follows by the sequence of identities (1 — ww™)(1 — bbT) =
(1—ww™)(1-bb*)(1—ata+a™a) = (1—ww™)(1—bb")aTa together with Jacobson’s Lemma.

We remark that given a reflexive inverse w of w, the element w = (1—a®a)w™ (1-bb") is
an idempotent reflexive inverse of w. As such z and 2’ simplify to 1 —a*a+ba+1—bb™ —ww
and 1+ ab — abb™a™ — awwa™, respectively.

We know, using [5, Corollary 3.3(4)], that (AQ)¥ exists if and only if U is invertible, in
which case (AQ)# = U~2(AQ). The matrices U and G are equivalent, and we are able to
relate their inverses by means of the matrix K. Indeed, since G = UK, then U~! = KG~L.

Firstly, we need to compute the inverse of G, for which we will use the following known result:



Lemma 2.1.
L+y¢ e —y¢t
—( ¢t

L] -

where ( = z — yx is the Schur complement.

Our purpose is to derive an expression for (ab)”, which equals the (1,1) entry of M7,
The (1,1) entry of M7 is obtained by multiplying the first row of U~2 by the first column

b
of AQ, which is cg ] So, in fact we just need the (1,1) entry of U~2, which is then

multiplied on the right by ab to give (ab)?.

1

at —

0
We recall that G = UK, where K = [ ) ], which gives U™! = KG~! and

U2 = KG7'KG~'. Pre-multiplication with K does not afect the first row, and so we just
need the (1,1) element of G"'KG~!. Calculations show that

(14 azta)? —az7t(at = b)(1 +az7la) + az2a ?

-2 —1\—-2 __
U2 = (KG™Y)2 = , .

We will need the simplification
b— zb=atab — bab, (1)
from where we obtain

aab = (a™ —b)ab=b — zb
(1+az'a)ab = az™'b.
Indeed, cab = aa™ab—bab+2(1 —ww™)(1 —bb")aTab whose last summand can be expressed

as 2(1 —ww™)(1—=bb )aTab = —2(1 —ww™)(1=bb")(1—ata—1)b = —2(1 —ww ™ )w+2(1—
ww™)(1—bb")b = 0, and therefore cab = atab — bab.

Therefore,
A0V — (ab)? ? | (M4 az)? —az Hat —b)(1+az 7 a) + az ) ab 7
WOm=1 "y o= 0 ?
from which we obtain the general formula
(ab)* = (1+az ') —az"HaT = b)(1+az"'a) +az2a) ab

= ab+2(az'b—ab) + az a(az"'b — ab) —
az t(at —b)az b+ az" (27— b)

= (az_laaz_lb —az Y(at - b)az_lb) +az"?b

= 2az ' —ww )1 —bbT)z7 b +az7%

= 2az7'h—2 (a,z_lb)2 + az"?b.
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From 1 —ata =271

— z7'a*a we obtain, by post-multiplying by b,
b—atab=z2"'b—2"taTab (2)
which implies
az b =az"taTab. (3)
Now, from (1) we have z~1b = b+ 2~ !'atab — 2~ 'bab which implies, using (2), that
27 tbab = aTab (4)
which in turns delivers
ab = az"1bab. (5)

Using (4) and (5), together with (ab)” = 2az~1b—2 (azflb)2+az*2b, we write the idempotent
(ab)? (ab) as
(ab)¥ab = 2az71b—2 (az_lb)2 +az"2b
= 2az 'bab — 2az"'bab + az" 2" 1bab
= az tatab

Using (3), this equals az~'b and therefore az~'b is an idempotent, the unit of the group

generated by ab. This simplifies the expression of (ab)¥ to
(ab)? = az"2b.

It comes with no surprise that the expression of (ab)* is of the form aXb, for a suitable
X.

We have, from the above, our main result:

Theorem 2.2. Let a,b be reqular elements in R with reflexive inverses a™ and b™, respec-
tively. Assume, also, that w = (1 —bb*)(1 —ata) is regular. Then (ab)™ exists if and only if
z=1—a%ta+ba+ (1 —ww )(1—0bb") is a unit. In this case,

(ab)? = az"?b.

3 Special cases

On ag where g is a unit

We consider a special instance of a product, where one element is a unit. Precisely, let a,g € R
with g a unit. In [5, Corollary 3.2], the existence of the group inverse of ag was related to

the existence of a unit, and an expression of (ag)?” was given. By Theorem 2.2, we know that



(ag)* exists if and only if z =1 —a%*a+ga+ (1 —ww™)(1 —ggT) is a unit. But g* = g~! so
that (ag)™ exists if and only if z = 1 —aTa + ga is a unit, which is equivalent to the criterion

of [5, Corollary 3.2] by Jacobson’s Lemma. However, Theorem 2.2 gives us
(ag)” = a(l —a*a+ga)~g

which is different from [5, Corollary 3.2]. On the other hand, we can also consider the case
of a group inverse of ga. In this case the w in the previous theorems is 0. (ga)? exists if and

only if ag — 1 + aa™ is a unit, and
(ga)* = glag — 1+ aa™) 2a.

As the existence of (ag)¥ is equivalent with the existence of (ga)# (and using —g instead

of g in the second case), we get:
Corollary 3.1. The following conditions are equivalent:
1. ag is group invertible;
2. ga s group invertible;
3. z=1—a%a+ ga is a unit;
4. n=1—aa™ +ag is a unit;

In which case:

(ag)* = az"2g and (ga)* = gn~2a.

The units in the previous corollary are strongly related to the existence of the inverse of
g along a, see [3].

As a special case, when g = 1, we recover the classical result ([5, Corollary 3.3.]):
Corollary 3.2. The following conditions are equivalent:

1. a is group invertible;

2. z=1—a"a+a is a unit;

3. n=1—aa" +a is a unit;

In which case:
(a)* = az"2 and (a)” = n 2.



On the sum

We now apply the results of the previous section to the sum of ring elements to obtain a

known characterization of the group inverse of a sum.

1
Let a,b be ring elements such that a + b is regular. Consider A = [ g 0 ] and

10 a+b 0

= by ool for which AB = 0 . This is a key factorization that allows us

to characterize the group inverse of a + b by the group inverse of AB.
Using the results on the previous section, (AB)# exists if and only if H = [ — ATA +
BA — (I — WW™)(I — BB™") is invertible. We will now undertake the computation of this

matrix, for particular choices of inner and reflexive inverses.
0 0
a 1

We will take AT =

0 0 10
and BT = , which will deliver ATA =
1 0 0 0

1
and BBt = 0 )
b 0

1 0 0
Also,BA=| and W = (I-BB1)(I-ATA) = . Since a+b is regu-
ba b —a—b 0
) _ 0 (—a—0b)" . .
lar, then W is regular and we may take W~ = . The associated idempotents
1
take the form WW~— = 0 0 and I —WW~ = 0
0 (a+b)(a+b)” 0 1-(a+Db)(a+b)~
We therefore obtain
0 0

(I-WW™)(I - BBY) = [

—(1=(a+0b)(a+b)")b 1—(a+b)(a+b)T
The invertible matrix takes the form

1+a 1
—a+ba+1(1—(a+b)(a+b)T)b b—1+(a+0b)(a+b)T

)

whose Schur complement equals (a + b) + 1 — (a +b)"(a + b) and which has to be a ring unit.

This is coherent with the known result.

The example of a trace product

Let a,b be two elements of the ring R such that Rab = Rb and abR = aR (one says that
ab is a trace product). Then it is known, by a theorem of Clifford ([2, Proposition 2.3.7]),
that this is equivalent with the existence of an idempotent e € R such that Ra = Re and
bR = eR. In particular, a and b are von Neumann regular and we can find a® and b* such
that ata = bb™ = e. For this particular choice, w = (1—-bb")(1—ata) = (1—e) is idempotent,
and the element z =1 —a%a + ba + (1 —ww™)(1 —bb") reduces to z =1 —ata + ba. As the



invertibility of z implies the invertibility of all the elements of the form 1 — a™a + ba, we get
by Theorem 2.2:

Corollary 3.3. Let ab be a trace product. Then a and b are reqular, and for any choice of

a™, ab is group invertible if and only if z =1 — a*a + ba is a unit. In this case,
(ab)* = a(1 — aTa + ba) 2.

Once again, we recognize the criterion of invertibility of b along a.

4 Final remarks

1. In this paper, we are primarly interested in the group invertibility (on the group inverse)
of the product ab. Since the group inverse of ab equals az~2b, what can be said about
ba?

If z~! is an inner inverse, and since ab is group invertible, then 1 4 ab — (ab)(ab)? is a
unit, that is 1 + ab — az~'b is a unit. By Jacobson lemma, 1 + ba — baz~! is a unit, and

if z=1 is an inner inverse of ba, then ba is actually group invertible.

Let us compute z(baz~'ba — ba).

z(baz"'ba —ba) = (1—aTa+ba+ (1 —ww )(1—0bb")) (baz 'ba — ba)
= (1—a%a+ba) (baz"'ba —ba) as (1 —bb")b=0
= (baz"'ba — ba) + (—a™ +b) (abaz"'ba — aba)

But equation (5) gives ab = az~'bab and since we have shown that az~'b = ab(ab)¥,
then it commutes with ab and ab = abaz~'b. This gives that the second term in the
above sum is 0, and z(baz~tba —ba) = (baz~'ba—ba), or equivalently, (1 — z)(baz~1ba —

1

ba) = 0. Multiplying by 2~! on the left gives (baz~'ba — ba) = 2~ 'baz"1ba — z~1ba or

(z7' = 1)(baz"'ba — ba) = 0. (6)

Note that 1 — 27! is a unit if and only if 1 — 2z is a unit. Indeed, setting y = 1 — z then

Land y =1 -z is

1=z1—21 =21~ xz7! which imply 27! —1 = 271y = x2~
a unit. Conversely, if Yy = 1 — z is a unit then 27! — 1 = 2!y we obtain the desired
conclusion.

lis a inner inverse of ba (and 2z~ 'ba is idempotent). Of

Suppose 1 — z is a unit. Then 2z~
course, if 2~ 'ba is idempotent then z~! is always an inner inverse of ba (ba = 2z~ 'ba =

22" baz"'ba = baz"'ba.)



2. Consider (G, .) the group generated by z, and (G, .) the group generated by ab. Then

we can prove that ¢ : (G.,.) — (Gap,.) defined by ¢(2F) = azF~'b is an isomorphism,

or put in an other form: az"b = (ab)"*! for all n € Z.

This can be proved by induction on Z. First, we have proved in our paper that z(b —
atab) = b—ataband z~'bab = atab. By induction on Z, this imply that 2" (b—atab) =
b—atab for all n € Z hence az™b = az"atab = az"'bab for all n € Z. Now our equation

is true for n = 0. Assume it is true for n € N. Then az""'b = az"bab = (ab)" .

1-—n

Suppose now it is true for —n € N, that is az="b = (ab) Then we prove that
az~""1b is the group inverse of (ab)”. We have az~""1b(ab)" = az~""tb(ab)(ab)" ! =
az"b(ab)" ' = (ab)?. As symmetrically, (ab)"az"""'b = (ab)’, then az~""'b is the

group inverse of (ab)™.

We can compute other units by duality, using the opposite ring (R, X), © X y = yz.
Precisely, ab is group invertible in (R, .) if and only if b X a is group invertible in (R, x),
and by our theorem this happens if and only if 1 —b* xb+axb+(1—wxw™)x(1—axa™)
(if at and bt are inverses in (R,.) then they are also inverses in (R, X)), with w =
(1—axa™)x(1—b"xb), or equivalently if and only if t = 1—bbT +ba+(1—ata)(1—w~ w)
is a unit with w = (1 —bb*)(1 — a™a) (classical one). Note that this unit is a priori
different from the other ones in the paper. If we continue the duality principle, we end
with b x t72 x a is the group inverse of b x a, that is at~2b is the group inverse of ab, so

that this unit works equivalently as our z.
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