The group inverse of a product*

Xavier Mary^a, Pedro Patrício^b

^aUniversité Paris-Ouest Nanterre – La Défense, Laboratoire Modal'X, 200 avenue de la république, 92000 Nanterre, France. email: xavier.mary@u-paris10.fr

^bCMAT – Centro de Matemática and Departamento de Matemática e Aplicações , Universidade do Minho, 4710-057 Braga, Portugal. email: pedro@math.uminho.pt

Abstract

In this paper, we characterize the existence and give an expression of the group inverse of a product of two regular elements by means of a ring unit.

Keywords: Generalized inverse, group inverse, von Neumann inverse, rings

AMS classification: 15A09, 16E50

1 Introduction

In this paper, we consider elements on a general (associative) ring R with unity 1. We will follow the standard notation regarding generalized inverses. We say a is regular if $a \in aRa$. In this case, a particular solution to axa = a, called von Neumann inverse of a, is denoted by a^- . A reflexive inverse of a, denoted by a^+ , is a common solution to axa = a, x = xax. A regular element a has a reflexive a^+ , namely $a^-aa^=$, for any choice of von Neumann inverses $a^-, a^=$.

We say a is group invertible if there is a common solution to axa = a, xax = x, ax = xa. It is well known that such a solution is unique in case it exists. It is denoted by $a^{\#}$.

Our main goal is to characterize the group inverse of a product of regular elements, as well as to derive an expression of such a group inverse that does not rely on the knowledge of von Neumann regularity of the product.

^{*}This research was financed by Laboratoire Modal'X, Université Paris—Ouest, and by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the "Fundação para a Ciência e a Tecnologia", through the Project PEst-OE/MAT/UI0013/2014.

2 Main result

Let a, b be regular elements in R, with reflexive inverses a^+, b^+ , respectively. Let also

$$w = (1 - bb^{+})(1 - a^{+}a)$$

which we will assume to be regular in R.

Note that the regularity of w does not depend on the choices of a^+ and b^+ . That is to say, if w is regular for a particular choice of a^+ and of b^+ , then it must be regular for all choices of a^+ and b^+ . This can be easily proved by noting that w being regular is equivalent to the regularity of the matrix $\begin{bmatrix} a & 0 \\ 1 & b \end{bmatrix}$, using [6], which it turn is equivalent to $(1-bb^-)(1-a^-a)$ being regular, for any other choices of von Neumann inverses a^- and b^- of a and b.

Consider the matrix
$$M = \begin{bmatrix} ab & a \\ 0 & 1 \end{bmatrix} = AQ$$
 with $A = \begin{bmatrix} a & 0 \\ 1 & -b \end{bmatrix}$, $Q = \begin{bmatrix} b & 1 \\ 1 & 0 \end{bmatrix}$. It is well known that $M^\#$ exists if and only if $(ab)^\#$ exists, using [1]. Furthermore, the

It is well known that $M^{\#}$ exists if and only if $(ab)^{\#}$ exists, using [1]. Furthermore, the (1,1) entry of $M^{\#}$ equals $(ab)^{\#}$. Also, $M^{\#}$ exists if and only if $U = AQ + I - AA^{-}$ is invertible, see [7], [5], in which case $(AQ)^{\#} = U^{-2}(AQ)$.

As $AQ + I - AA^- = A(Q - A^-) + I$ then $AQ + I - AA^-$ is invertible if and only if $(Q - A^-)A + I = QA + I - A^-A$ is invertible, using Jacobson's Lemma, which in turn means $(QA)^\#$ exists. Therefore, by considering the matrix $W = QA = \begin{bmatrix} ba + 1 & -b \\ a & 0 \end{bmatrix}$, then $(ab)^\#$ exists if and only if W is group invertible.

Using [4], the matrix W is group invertible if and only if

$$z = (1+ba)(1-a^+a) + ba + (1-ww^-)(1-bb^+)(1+ba)$$
$$= 1-a^+a + ba + (1-ww^-)(1-bb^+)$$

is a unit.

We have, hence, the equivalence

$$(ab)^{\#}$$
 exists if and only if $1 - a^{+}a + ba + (1 - ww^{-})(1 - bb^{+})$ is a unit.

Using the expression presented in [4] does not give a tratable algorithm to actually compute $(ab)^{\#}$. We will, therefore, pursue a different strategy and compute the (1,1) entry of $M^{\#}$.

Recall that for M=AQ and Q invertible, the group inverse of M exists if and only if $U=AQ+I-AA^-$ is invertible. For $A=\begin{bmatrix} a & 0 \\ 1 & -b \end{bmatrix}$, there exists A^- for which

$$AA^{-} = \begin{bmatrix} aa^{+} & 0 \\ -(1 - ww^{-})(1 - bb^{+})a^{+} & bb^{+} + ww^{-}(1 - bb^{+}) \end{bmatrix},$$

using [6].

The matrix U then becomes

$$U = \begin{bmatrix} ab + 1 - aa^{+} & a \\ (1 - ww^{-})(1 - bb^{+})a^{+} & 2 - bb^{+} - ww^{-}(1 - bb^{+}) \end{bmatrix}.$$

Multiplication on the right by $K = \begin{bmatrix} 1 & 0 \\ a^+ - b & 1 \end{bmatrix}$ gives

$$G = \begin{bmatrix} 1 & a \\ \alpha & 2 - bb^{+} - ww^{-}(1 - bb^{+}) \end{bmatrix},$$

where

$$\alpha = (1 - ww^{-})(1 - bb^{+})a^{+} + (2 - bb^{+} - ww^{-}(1 - bb^{+}))(a^{+} - b)$$
$$= a^{+} - b + 2(1 - ww^{-})(1 - bb^{+})a^{+},$$

as
$$(1 - bb^+)b = 0$$
.

We are left with showing when is G invertible. We do so using the Schur complement on the (1,1) entry. This Schur complement equals

$$G/I = (2 - bb^{+} - ww^{-}(1 - bb^{+})) - ((1 - ww^{-})(1 - bb^{+})a^{+} + (2 - bb^{+} - ww^{-}(1 - bb^{+}))(a^{+} - b))a$$

$$= (2 - bb^{+} - ww^{-}(1 - bb^{+}))(1 - a^{+}a + ba) - (1 - ww^{-})(1 - bb^{+})a^{+}a$$

$$= (1 + (1 - ww^{-})(1 - bb^{+}))(1 - a^{+}a + ba) - (1 - ww^{-})(1 - bb^{+})a^{+}a$$

$$= 1 - a^{+}a + ba + (1 - ww^{-})(1 - bb^{+})(1 - 2a^{+}a)$$

$$= 1 - a^{+}a + ba + (1 - ww^{-})(1 - bb^{+})(1 - a^{+}a) + (1 - ww^{-})(1 - bb^{+})a^{+}a$$

$$= 1 - a^{+}a + ba + (1 - ww^{-})(1 - bb^{+})$$

This gives, and as previously shown,

$$(ab)^{\#}$$
 exists if and only if $z = 1 - a^{+}a + ba + (1 - ww^{-})(1 - bb^{+})$ is a unit.

As a side note, we construct another unit associated with z, namely we may show that $z = 1 - a^+a + ba + (1 - ww^-)(1 - bb^+)$ is a unit if and only if $z' = 1 - aa^+ + ab - a(1 - ww^-)(1 - bb^+)a^+$ is a unit. This follows by the sequence of identities $(1 - ww^-)(1 - bb^+) = (1 - ww^-)(1 - bb^+)(1 - a^+a + a^+a) = (1 - ww^-)(1 - bb^+)a^+a$ together with Jacobson's Lemma.

We remark that given a reflexive inverse w^+ of w, the element $\tilde{w} = (1-a^+a)w^+(1-bb^+)$ is an idempotent reflexive inverse of w. As such z and z' simplify to $1-a^+a+ba+1-bb^+-w\tilde{w}$ and $1+ab-abb^+a^+-aw\tilde{w}a^+$, respectively.

We know, using [5, Corollary 3.3(4)], that $(AQ)^{\#}$ exists if and only if U is invertible, in which case $(AQ)^{\#} = U^{-2}(AQ)$. The matrices U and G are equivalent, and we are able to relate their inverses by means of the matrix K. Indeed, since G = UK, then $U^{-1} = KG^{-1}$. Firstly, we need to compute the inverse of G, for which we will use the following known result:

Lemma 2.1.

$$\begin{bmatrix} 1 & y \\ x & z \end{bmatrix}^{-1} = \begin{bmatrix} 1 + y\zeta^{-1}x & -y\zeta^{-1} \\ -\zeta^{-1}x & \zeta^{-1} \end{bmatrix},$$

where $\zeta = z - yx$ is the Schur complement.

Our purpose is to derive an expression for $(ab)^{\#}$, which equals the (1,1) entry of $M^{\#}$.

The (1,1) entry of $M^{\#}$ is obtained by multiplying the first row of U^{-2} by the first column of AQ, which is $\begin{bmatrix} ab \\ 0 \end{bmatrix}$. So, in fact we just need the (1,1) entry of U^{-2} , which is then multiplied on the right by ab to give $(ab)^{\#}$.

We recall that G = UK, where $K = \begin{bmatrix} 1 & 0 \\ a^+ - b & 1 \end{bmatrix}$, which gives $U^{-1} = KG^{-1}$ and $U^{-2} = KG^{-1}KG^{-1}$. Pre-multiplication with K does not affect the first row, and so we just need the (1,1) element of $G^{-1}KG^{-1}$. Calculations show that

$$U^{-2} = (KG^{-1})^{-2} = \begin{bmatrix} (1 + az^{-1}\alpha)^2 - az^{-1}(a^+ - b)(1 + az^{-1}\alpha) + az^{-2}\alpha & ? \\ ? & ? \end{bmatrix}$$

We will need the simplification

$$b - zb = a^{\dagger}ab - bab, \tag{1}$$

from where we obtain

$$\alpha ab = (a^+ - b)ab = b - zb$$
$$(1 + az^{-1}\alpha)ab = az^{-1}b.$$

Indeed, $\alpha ab = aa^+ab - bab + 2(1 - ww^-)(1 - bb^+)a^+ab$ whose last summand can be expressed as $2(1 - ww^-)(1 - bb^+)a^+ab = -2(1 - ww^-)(1 - bb^+)(1 - a^+a - 1)b = -2(1 - ww^-)w + 2(1 - ww^-)(1 - bb^+)b = 0$, and therefore $\alpha ab = a^+ab - bab$.

Therefore.

$$(AQ)^{\#} = \begin{bmatrix} (ab)^{\#} & ? \\ 0 & ? \end{bmatrix} = \begin{bmatrix} ((1+az^{-1}\alpha)^2 - az^{-1}(a^+ - b)(1+az^{-1}\alpha) + az^{-2}\alpha) ab & ? \\ 0 & ? \end{bmatrix}$$

from which we obtain the general formula

$$(ab)^{\#} = ((1+az^{-1}\alpha)^2 - az^{-1}(a^+ - b)(1+az^{-1}\alpha) + az^{-2}\alpha) ab$$

$$= ab + 2(az^{-1}b - ab) + az^{-1}\alpha(az^{-1}b - ab) -$$

$$az^{-1}(a^+ - b)az^{-1}b + az^{-1}(z^{-1}b - b)$$

$$= (az^{-1}\alpha az^{-1}b - az^{-1}(a^+ - b)az^{-1}b) + az^{-2}b$$

$$= 2az^{-1}(1 - ww^-)(1 - bb^+)z^{-1}b + az^{-2}b$$

$$= 2az^{-1}b - 2(az^{-1}b)^2 + az^{-2}b.$$

From $1 - a^{\dagger}a = z^{-1} - z^{-1}a^{\dagger}a$ we obtain, by post-multiplying by b,

$$b - a^{+}ab = z^{-1}b - z^{-1}a^{+}ab \tag{2}$$

which implies

$$az^{-1}b = az^{-1}a^{+}ab. (3)$$

Now, from (1) we have $z^{-1}b = b + z^{-1}a^{+}ab - z^{-1}bab$ which implies, using (2), that

$$z^{-1}bab = a^+ab \tag{4}$$

which in turns delivers

$$ab = az^{-1}bab. (5)$$

Using (4) and (5), together with $(ab)^{\#} = 2az^{-1}b - 2(az^{-1}b)^2 + az^{-2}b$, we write the idempotent $(ab)^{\#}(ab)$ as

$$(ab)^{\#}ab = 2az^{-1}b - 2(az^{-1}b)^{2} + az^{-2}b$$
$$= 2az^{-1}bab - 2az^{-1}bab + az^{-1}z^{-1}bab$$
$$= az^{-1}a^{+}ab$$

Using (3), this equals $az^{-1}b$ and therefore $az^{-1}b$ is an idempotent, the unit of the group generated by ab. This simplifies the expression of $(ab)^{\#}$ to

$$(ab)^{\#} = az^{-2}b.$$

It comes with no surprise that the expression of $(ab)^{\#}$ is of the form aXb, for a suitable X.

We have, from the above, our main result:

Theorem 2.2. Let a, b be regular elements in R with reflexive inverses a^+ and b^+ , respectively. Assume, also, that $w = (1 - bb^+)(1 - a^+a)$ is regular. Then $(ab)^\#$ exists if and only if $z = 1 - a^+a + ba + (1 - ww^-)(1 - bb^+)$ is a unit. In this case,

$$(ab)^{\#} = az^{-2}b.$$

3 Special cases

On aq where q is a unit

We consider a special instance of a product, where one element is a unit. Precisely, let $a, g \in R$ with g a unit. In [5, Corollary 3.2], the existence of the group inverse of ag was related to the existence of a unit, and an expression of $(ag)^{\#}$ was given. By Theorem 2.2, we know that

 $(ag)^{\#}$ exists if and only if $z = 1 - a^{+}a + ga + (1 - ww^{-})(1 - gg^{+})$ is a unit. But $g^{+} = g^{-1}$ so that $(ag)^{\#}$ exists if and only if $z = 1 - a^{+}a + ga$ is a unit, which is equivalent to the criterion of [5, Corollary 3.2] by Jacobson's Lemma. However, Theorem 2.2 gives us

$$(ag)^{\#} = a(1 - a^{+}a + ga)^{-2}g$$

which is different from [5, Corollary 3.2]. On the other hand, we can also consider the case of a group inverse of ga. In this case the w in the previous theorems is 0. $(ga)^{\#}$ exists if and only if $ag - 1 + aa^{+}$ is a unit, and

$$(ga)^{\#} = g(ag - 1 + aa^{+})^{-2}a.$$

As the existence of $(ag)^{\#}$ is equivalent with the existence of $(ga)^{\#}$ (and using -g instead of g in the second case), we get:

Corollary 3.1. The following conditions are equivalent:

- 1. ag is group invertible;
- 2. ga is group invertible;
- 3. $z = 1 a^{+}a + qa$ is a unit;
- 4. $\eta = 1 aa^+ + ag$ is a unit;

In which case:

$$(ag)^{\#} = az^{-2}g$$
 and $(ga)^{\#} = g\eta^{-2}a$.

The units in the previous corollary are strongly related to the existence of the inverse of q along a, see [3].

As a special case, when g = 1, we recover the classical result ([5, Corollary 3.3.]):

Corollary 3.2. The following conditions are equivalent:

- 1. a is group invertible;
- 2. $z = 1 a^{+}a + a$ is a unit;
- 3. $\eta = 1 aa^+ + a$ is a unit;

In which case:

$$(a)^{\#} = az^{-2} \text{ and } (a)^{\#} = \eta^{-2}a.$$

On the sum

We now apply the results of the previous section to the sum of ring elements to obtain a known characterization of the group inverse of a sum.

Let a, b be ring elements such that a + b is regular. Consider $A = \begin{bmatrix} a & 1 \\ 0 & 0 \end{bmatrix}$ and

 $B = \begin{bmatrix} 1 & 0 \\ b & 0 \end{bmatrix}$, for which $AB = \begin{bmatrix} a+b & 0 \\ 0 & 0 \end{bmatrix}$. This is a key factorization that allows us to characterize the group inverse of a + b by the group inverse of AB.

Using the results on the previous section, $(AB)^{\#}$ exists if and only if $H = I - A^{+}A +$ $BA - (I - WW^{-})(I - BB^{+})$ is invertible. We will now undertake the computation of this matrix, for particular choices of inner and reflexive inverses.

We will take
$$A^+ = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $B^+ = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, which will deliver $A^+A = \begin{bmatrix} 0 & 0 \\ a & 1 \end{bmatrix}$ and $BB^+ = \begin{bmatrix} 1 & 0 \\ b & 0 \end{bmatrix}$.

Also,
$$BA = \begin{bmatrix} a & 1 \\ ba & b \end{bmatrix}$$
 and $W = (I - BB^+)(I - A^+A) = \begin{bmatrix} 0 & 0 \\ -a - b & 0 \end{bmatrix}$. Since $a + b$ is regu-

lar, then
$$W$$
 is regular and we may take $W^- = \begin{bmatrix} 0 & (-a-b)^- \\ 0 & 0 \end{bmatrix}$. The associated idempotents take the form $WW^- = \begin{bmatrix} 0 & 0 \\ 0 & (a+b)(a+b)^- \end{bmatrix}$ and $I - WW^- = \begin{bmatrix} 1 & 0 \\ 0 & 1 - (a+b)(a+b)^- \end{bmatrix}$.

$$(I - WW^{-})(I - BB^{+}) = \begin{bmatrix} 0 & 0 \\ -(1 - (a+b)(a+b)^{-})b & 1 - (a+b)(a+b)^{+} \end{bmatrix}.$$

The invertible matrix takes the form

$$\begin{bmatrix} 1+a & 1 \\ -a+ba+1(1-(a+b)(a+b)^{+})b & b-1+(a+b)(a+b)^{+} \end{bmatrix},$$

whose Schur complement equals $(a+b)+1-(a+b)^+(a+b)$ and which has to be a ring unit. This is coherent with the known result.

The example of a trace product

Let a, b be two elements of the ring R such that Rab = Rb and abR = aR (one says that ab is a trace product). Then it is known, by a theorem of Clifford ([2, Proposition 2.3.7]), that this is equivalent with the existence of an idempotent $e \in R$ such that Ra = Re and bR = eR. In particular, a and b are von Neumann regular and we can find a^+ and b^+ such that $a^+a = bb^+ = e$. For this particular choice, $w = (1-bb^+)(1-a^+a) = (1-e)$ is idempotent, and the element $z = 1 - a^+a + ba + (1 - ww^-)(1 - bb^+)$ reduces to $z = 1 - a^+a + ba$. As the invertibility of z implies the invertibility of all the elements of the form $1 - a^+a + ba$, we get by Theorem 2.2:

Corollary 3.3. Let ab be a trace product. Then a and b are regular, and for any choice of a^+ , ab is group invertible if and only if $z = 1 - a^+a + ba$ is a unit. In this case,

$$(ab)^{\#} = a(1 - a^{+}a + ba)^{-2}b.$$

Once again, we recognize the criterion of invertibility of b along a.

4 Final remarks

1. In this paper, we are primarly interested in the group invertibility (on the group inverse) of the product ab. Since the group inverse of ab equals $az^{-2}b$, what can be said about ba?

If z^{-1} is an inner inverse, and since ab is group invertible, then $1 + ab - (ab)(ab)^{\#}$ is a unit, that is $1 + ab - az^{-1}b$ is a unit. By Jacobson lemma, $1 + ba - baz^{-1}$ is a unit, and if z^{-1} is an inner inverse of ba, then ba is actually group invertible.

Let us compute $z(baz^{-1}ba - ba)$.

$$z(baz^{-1}ba - ba) = (1 - a^{+}a + ba + (1 - ww^{-})(1 - bb^{+})) (baz^{-1}ba - ba)$$

$$= (1 - a^{+}a + ba) (baz^{-1}ba - ba) \text{ as } (1 - bb^{+})b = 0$$

$$= (baz^{-1}ba - ba) + (-a^{+} + b) (abaz^{-1}ba - aba)$$

But equation (5) gives $ab = az^{-1}bab$ and since we have shown that $az^{-1}b = ab(ab)^{\#}$, then it commutes with ab and $ab = abaz^{-1}b$. This gives that the second term in the above sum is 0, and $z(baz^{-1}ba - ba) = (baz^{-1}ba - ba)$, or equivalently, $(1-z)(baz^{-1}ba - ba) = 0$. Multiplying by z^{-1} on the left gives $(baz^{-1}ba - ba) = z^{-1}baz^{-1}ba - z^{-1}ba$ or

$$(z^{-1} - 1)(baz^{-1}ba - ba) = 0. (6)$$

Note that $1-z^{-1}$ is a unit if and only if 1-z is a unit. Indeed, setting $\chi=1-z$ then $1=z^{-1}-z^{-1}\chi=z^{-1}-\chi z^{-1}$ which imply $z^{-1}-1=z^{-1}\chi=\chi z^{-1}$ and $\chi=1-z$ is a unit. Conversely, if $\chi=1-z$ is a unit then $z^{-1}-1=z^{-1}\chi$ we obtain the desired conclusion.

Suppose 1-z is a unit. Then z^{-1} is a inner inverse of ba (and $z^{-1}ba$ is idempotent). Of course, if $z^{-1}ba$ is idempotent then z^{-1} is always an inner inverse of ba ($ba = zz^{-1}ba = zz^{-1}ba = baz^{-1}ba$.)

- 2. Consider $(G_z, .)$ the group generated by z, and $(G_{ab}, .)$ the group generated by ab. Then we can prove that $\phi: (G_z, .) \to (G_{ab}, .)$ defined by $\phi(z^k) = az^{k-1}b$ is an isomorphism, or put in an other form: $az^nb = (ab)^{n+1}$ for all $n \in \mathbb{Z}$.
 - This can be proved by induction on \mathbb{Z} . First, we have proved in our paper that $z(b-a^+ab)=b-a^+ab$ and $z^{-1}bab=a^+ab$. By induction on \mathbb{Z} , this imply that $z^n(b-a^+ab)=b-a^+ab$ for all $n\in\mathbb{Z}$ hence $az^nb=az^na^+ab=az^{n-1}bab$ for all $n\in\mathbb{Z}$. Now our equation is true for n=0. Assume it is true for $n\in\mathbb{N}$. Then $az^{n+1}b=az^nbab=(ab)^{n+1}$. Suppose now it is true for $-n\in\mathbb{N}$, that is $az^{-n}b=(ab)^{1-n}$. Then we prove that $az^{-n-1}b$ is the group inverse of $(ab)^n$. We have $az^{-n-1}b(ab)^n=az^{-n-1}b(ab)(ab)^{n-1}=az^nb(ab)^{n-1}=(ab)^0$. As symmetrically, $(ab)^naz^{-n-1}b=(ab)^0$, then $az^{-n-1}b$ is the group inverse of $(ab)^n$.
- 3. We can compute other units by duality, using the opposite ring (R, \times) , $x \times y = yx$. Precisely, ab is group invertible in (R, \cdot) if and only if $b \times a$ is group invertible in (R, \times) , and by our theorem this happens if and only if $1-b^+ \times b + a \times b + (1-w \times w^-) \times (1-a \times a^+)$ (if a^+ and b^+ are inverses in (R, \cdot) then they are also inverses in (R, \times)), with $w = (1-a\times a^+)\times(1-b^+\times b)$, or equivalently if and only if $t=1-bb^++ba+(1-a^+a)(1-w^-w)$ is a unit with $w=(1-bb^+)(1-a^+a)$ (classical one). Note that this unit is a priori different from the other ones in the paper. If we continue the duality principle, we end with $b \times t^{-2} \times a$ is the group inverse of $b \times a$, that is $at^{-2}b$ is the group inverse of ab, so that this unit works equivalently as our z.

Acknowledgment

This research was developed when the second author visited Laboratoire Modal'X, at Université Paris-Ouest. The authors gratefully acknowledge the support of Laboratoire Modal'X.

References

- [1] Hartwig, R. E.; Shoaf, J.; Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices. J. Austral. Math. Soc. Ser. A, 24 (1977), no. 1, 10–34.
- [2] Howie J.M.; Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New Series, 12. Oxford Science Publications, 1995.
- [3] Mary, X., Patrício, P., Generalized inverses modulo \mathcal{H} in semigroups and rings, *Linear and Multilinear Algebra*, 61 (2013), no. 8, 1130–1135.
- [4] Patrício, P.; Hartwig, R.E; The (2,2,0) Group Inverse Problem, Applied Mathematics and Computation, 217(2) (2010), 516–520.

- [5] Patrício, P.; Hartwig, R.E.; Some regular sums. Linear and Multilinear Algebra, 63(1) (2015), 185–200.
- [6] Patrício, P.; Puystjens, R.; About the von Neumann regularity of triangular block matrices. *Linear Algebra Appl.* 332/334 (2001), 485–502.
- [7] Puystjens, R.; Hartwig, R. E.; The group inverse of a companion matrix. *Linear and Multilinear Algebra*, 43 (1997), no. 1-3, 137–150,