
Concurrency Detection on Finish-to-Start
Activity Precedence Networks

Rui Moutinho1 and Anabela Tereso1,

1 Department of Production and Systems Engineering
Algoritmi Centre

University of Minho, 4800-058 Guimarães, Portugal
rumout@gmail.com, anabelat@dps.uminho.pt

Abstract. We explore the finish-to-start precedence relations of project
activities used in scheduling problems. From these relations, we devise a
method to identify groups of activities that could execute concurrently,
i.e. activities in the same group can all execute in parallel.
The method derives a new set of relations to describe the concurrency.
Then, it is represented by an undirected graph and the maximal cliques
problem identifies the groups.
We provide a running example with a project from our previous studies in
resource constrained project cost minimization together with an example
application on the concurrency detection method: the evaluation of the
resource stress.

Keywords: Project Scheduling; Finish-to-Start Precedence Relations;
Concurrency; Maximal Clique

1 Introduction and Literature Review

Among the project scheduling problems, the precedence relation of the project
activities is one of the most important and transversal aspects [4]. This paper
addresses the specific case of the finish-to-start precedence of activities.

With the finish-to-start precedences, any activity must start only after all of
its predecessors have finished. Often, the precedence relations are represented
with a graph, either on an activity-on-node (AoN) network or on an activity-on-
arc (AoA) network. Figure 1 shows such representations for the same relations,
shown by enumeration, where each ordered pair (a, b) means b starts after a
finishes.

Both representations are directed acyclic graphs. In the AoN network, each
node represents an activity with arcs connecting a predecessor to some succes-
sors. In the example, an arc is connecting 1 to 3 meaning 3 starts after 1 has
finished. Also, both 3 and 2 connect to 5. Hence, 5 requires 2 and 3 to finish so it
can start. On the other hand, in the AoA network, the activities are coded in the
arcs while the nodes represent a state (time instants). Any activity starting from
a node requires the finish of any other which reaches that node. For example,
activity 5 starts at node n3 and activities 2 and 3 end at n3. Therefore, activity 5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55639398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Graphical representations of a network with finish-to-start precedence relations
(represented below). On the left, the activity-on-node network and on the right, the
activity-on-arc network from the relations.

1

2

4

5

3

n1

n2

n3

n4

1

2

3

4

5

{
(1, 3), (1, 4), (2, 5), (3, 5)

}

requires both 2 and 3 to complete before it could start. On both representations
it is easy to identify the sets of initial and final activities. Initial activities do
not require the completion of any other, thus they are the initial nodes, i.e.
nodes with in-degree equal to zero (no arcs arriving at them). Analogously, in
the AoA, the initial activities are the ones starting from the initial node. The
dual reasoning applies to the final activities: in AoN, they are the nodes with
zero out-degree (final nodes) while in AoA they are the ones ending at the final
node.

We will explore the finish-to-start precedence relations of a project and pro-
vide a method to identify groups of activities that could execute in parallel by
means of another relation and its representation as an undirected graph. The
method relies on the maximal cliques of such graphs where a clique is any of its
complete subgraphs (with every pair of vertices connected). A maximal clique is
a clique that does not allow the inclusion of more graph vertices. The problem of
determining the maximal cliques is known in the literature and is NP-complete.
Despite executing in exponential time, the method provided by Bron et al. (1973)
is still the reference, in general [1]. In its basic form, the method traverses re-
cursively the graph and enumerates the maximal cliques. It can be improved by
using a pivotal vertex and its effectiveness relates to the strategy of electing such
vertex. The research in ongoing [8] and for some cases, such as sparse graphs,
there are algorithms executing in polynomial time [3].

The presented process for determining concurrent activities, as permissible
by the precedence relations, was devised in order to provide a tool to construct
additional experiments on a previous study on minimization of total cost in
projects with multimodal activities and multiple resources constrained in max-
imum availability [5]. In this problem, the activities may use any amount of
resource in a real interval ranging from minimum to maximum demands. Addi-
tionally, the total available quantity of resource is limited and renewable during
the project execution. The initial experiments suggested the behavior of our al-
gorithms might be different when applied on projects without the availability
restriction. Moreover, the effect of such constraint should be the subject of sub-
sequent work. In this regard, the concurrency detection provides both an hint



for the overall resource demand and the stress the availability constraint may
impose.

2 Concurrency Detection Method

We start by denoting the finish-to-start relation with the symbol <, where a < b
reads b must start after a. It is natural to assume such relation as transitive, i.e.:

a < b ∧ b < c⇒ a < c . (1)

However, such property tends to be addressed implicitly as the relation usually
is represented graphically.

Take the example of a project with seven activities where the finish-to-start
relation is represented in Fig. 2 using an AoA network accompanied by its matrix
form M<. The rows and columns of the matrix correspond to the activities and
its entries, addressed by (row × column), are evaluated as:

M<(r, c) =

{
1 r < c

0 ¬(r < c)
. (2)

n1

n2

n3

n4

n5

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1 0 0 1 1 0 0 0

2 0 0 0 0 1 1 0

3 0 0 0 0 1 1 0

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

M< =

Fig. 2. Example AoA network (on the left) representing the finish-to-start precedence
relations of seven activities described in the matrix (on the right).

It is easy to realize that activity 5 has to start only after activity 1 finishes,
despite 1 < 5 not being explicit. In fact, 1 < 3 and 3 < 5 from which 1 < 5 is
inferred.

In order to clarify the transitivity, we define the following relation.

Definition 1 (Transitive Finish-to-Start Relation).

a� b⇔ a < b ∨ ∃c : (a < c ∧ c� b) . (3)

When a� b then activity a must occur (and finish) before activity b starts,
either this being an immediate successor or not. Naturally, if there are two
activities with neither taking precedence over the other, then they may execute
concurrently, as far as the precedence relation applies.



Definition 2 (Parallel Relation). Given the transitive finish-to-start relation
�, we define a parallel relation, denoted by q such:

a q b⇔ (a 6= b ∧ ¬(a� b) ∧ ¬(b� a)) . (4)

Continuing with the example in Fig. 2, we evaluate the two matrices shown in
Fig. 3: the transitive version M� and the parallel relation M q. These matrices
are obtained similarly to the M<:

M�(r, c) =

{
1 r � c

0 ¬(r � c)
M q(r, c) =

{
1 r q c
0 ¬(r q c)

. (5)

M� =
1 2 3 4 5 6 7

1 0 0 1 1 1 1 1

2 0 0 0 0 1 1 1

3 0 0 0 0 1 1 1

4 0 0 0 0 0 0 1

5 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

M q =
1 2 3 4 5 6 7

1 0 1 0 0 0 0 0

2 1 0 1 1 0 0 0

3 0 1 0 1 0 0 0

4 0 1 1 0 1 1 0

5 0 0 0 1 0 1 0

6 0 0 0 1 1 0 1

7 0 0 0 0 0 1 0

Fig. 3. Matrices for relations � (on the left) and q (on the right) from the network
represented in Fig. 2.

The parallel relation is not transitive, in general. For example, from M q at
Fig. 3, 1 q 2 and 2 q 3 but ¬(1 q 3) because 1 < 3. Still, we want to find sets of
activities that can be concurrent with each other.

Definition 3 (Parallel Set). Any non-empty set of project activities, say P ,
respecting the conditions:

1. ∀ a, b ∈ P, a = b ∨ a q b ;
2. ∀x 6∈ P, ∃y ∈ P, ¬(x q y) .

The first condition for a parallel set states that every two activities from the
same set are concurrent with each other; or are the same (a = b). In particular,
the parallel relation applied only to such set would be transitive. The second
condition enforces each parallel set as the largest set possible, satisfying the
first. It is easy to realize that:

1. a set with a single activity means it is impossible for any other activity to
be concurrent with it;

2. if a project has n activities all in sequence (one preceding the other), then
there will be exactly n parallel sets, each with a single activity;

3. the dual of the previous observation means a parallel set will contain all the
project activities if none precedes any other;



4. the set of the initial activities is a parallel set;
5. the set of the final activities is a parallel set.

All the observations, other than items 4 and 5, are straightforward. Still, the
demonstration of these last ones is easy. Before providing the proof, it is useful
to formalize the definitions of initial and final activity.

Definition 4 (Initial Activity). Let A be the set of all project activities. a ∈ A
is an initial activity when

@x ∈ A, x� a . (6)

Definition 5 (Final Activity). Let A be the set of all project activities. a ∈ A
is a final activity when

@x ∈ A, a� x . (7)

Proof (Observations 4 and 5). If the set of initial activities has only one activity,
then it trivially satisfies the first condition in the definition of parallel set.

Now, consider the case when there are more than one initial activity. Suppose
a, b any two of those activities. We want to prove a q b, i.e.:

¬(a� b) ∧ ¬(b� a)

If a� b then, by (6), b would not be initial. This is absurd, thus ¬(a� b). With
similar reasoning, also ¬(b� a). Hence, the first condition on the parallel set is
satisfied.

In order to prove the second condition, we must prove that there is no non-
initial activity x that could belong to the parallel set. If x is non-initial, then
∃y ∈ A, y � x. Since the relation� is transitive, there exists at least one initial
activity that precedes x. Thus, x is not parallel to all of the initial activities.

Therefore, the set of initial activities is a parallel set.
The above proof can be easily adapted to the set of final activities. Suppose

any two final activities (the singular case is again, trivial) a, b. We prove that
neither a� b nor b� a as their assumption falls in absurd from the hypothesis
of both being final, referring (7). The second condition is also proved similarly
to the initial activities case. In this case, any non-final activity would have at
least one final being its successor. Thus, not able to belong to the same parallel
set as all the final activities.

As a final remark, note the case where there are only initial activities. This
is a degenerated case where all the activities are also final. Thus, the second
condition in the definition is immediately satisfied. ut

The set of all the parallel sets provides a complete profile on the possible
concurrencies among project activities. The relation is symmetric, so finding
any set with two activities is trivial. However, finding the largest possible set is
more difficult as more activities are involved.

By representing the relation with an undirected graph, using the parallel
relation matrix as its adjacency, the problem of detecting parallel sets translates
as finding the maximal graph cliques. Given the set of project activities and the



M q, we take the activities as the graph vertices and whenever M q(a, b) = 1 an
arc connecting a to b is established. The graph is made undirected because M q
is symmetric.

Again, with our running example, the graph for the parallel relation is shown
in Fig. 4. The two maximum cliques are marked, thus the finish-to-start relation
from Fig. 2 allows the two largest parallel sets {2, 3, 4} and {4, 5, 6}.

1 2

3

4

5

6 7

Fig. 4. Graph using M q from Fig. 3 as adjacency matrix. With solid thick, the arcs
joining the vertices 2,3,4 representing the parallel set {2, 3, 4}. And the dashed thick
arcs refer to the parallel set {4, 5, 6}.

3 Example of Application – Project Resource Availability
Stress

In this section, we extend the running example to encompass one possible appli-
cation for the concurrency detection. Consider a project whose activities follow
the finish-to-start precedence relations from Fig. 2 and use a single resource con-
strained in its total availability to 8 units. Also, each activity accepts a range of
resource requirements as presented in Tab. 1.

Table 1. Minimum and maximum resource demands in an example project with seven
activities.

activity 1 2 3 4 5 6 7

minimum 2 1 1 1 2 2 2
maximum 7 5 4 4 3 5 3

An implicit rule is that all the activity demands should be lower or equal
to the resource total availability. In such resource quantity constrained projects,
some activities may have to compete for some resource amount with another
when they execute concurrently because the total demand accumulates. Since the
parallel sets can be identified, it is possible to evaluate minimum and maximum
requirements per set.

Definition 6 (Parallel Set Requirements). Let A be the set of project activ-
ities, IP ⊂ P(A) the set of all the supported parallel sets, `a and ua the minimum



and maximum demands of activity a ∈ A, respectively. The minimum and max-
imum requirements for each p ∈ IP, denoted by `∗p and u∗p, respectively, are:

`∗p =
∑
a∈p

`a u∗p =
∑
a∈p

ua . (8)

Using the maximum requirements of all the parallel sets, it is possible to
negate the resource maximum availability constraint by, simply, setting a new
maximum greater enough to encompass the worst scenario.

In our project example, from Fig. 4, it is easy to identify all the parallel sets:
{1, 2}, {2, 3, 4}, {4, 5, 6} and {6, 7}. Their requirements are shown in Tab. 2.

Table 2. Minimum and maximum requirements per parallel set.

set {1, 2} {2, 3, 4} {4, 5, 6} {6, 7}
minimum 3 3 5 4
maximum 12 13 12 8

In this case, by resetting the resource maximum to, at least, 13 would create a
new project derived from the original but without the interference of the resource
maximum availability constraint in the concurrency of activities. Incidently, only
the {6, 7} is able to execute (concurrently) within the resource maximum of 8
units.

In practice, however, one must consider the imposed constraint. In the exam-
ple, for {1, 2}, if activity 1 uses 7 units, then activity 2 cannot use more than 1
unit without being forced to execute after activity 1. Such extreme cases may be
easy to find. But, if activity 1 used slightly less, say 6 units, then activity 2 could
choose to claim up to 2 units. Therefore, there is a compromise of one activity
towards another when executing. In some cases, the concurrency is negated and
in the others, there are several possibilities for the parallel execution within a
confined range.

To consider all the cases, for each parallel set may become cumbersome in
the generality of projects, particularly in those with many activities. So, instead
of a deterministic analysis, we can evaluate the probability of each parallel set
to disrupt the concurrency they describe due to their activities resource usage.
We named it as resource stress (of a parallel set).

Definition 7 (Resource Stress). Let p be a parallel set. The resource stress
of p is the probability of the accumulated quantity x used by its activities being
greater than the resource maximum availability K:

P(x > K), x ∼ U
(
`∗p, u

∗
p

)
. (9)

The resource stress gives an hint about the impact of the resource maximum
availability to the concurrency in a given parallel set. We assume the accumulated



usage as uniformly distributed due to its simplicity. Also, it is continuous which
is required to our case studies where the activities can use any real amount of
resource within a feasible interval (⊂ IR).

Finalizing our example, Tab. 3 shows the resource stress evaluated per par-
allel set. From Tab. 2, `∗{1,2} = 3 and u∗{1,2} = 12 which evaluates the resource

stress for {1, 2} as:

P(x > 8) =
12− 8

12− 3
=

4

9
≈ 0.444 . (10)

Table 3. Resource stress per parallel set.

set {1, 2} {2, 3, 4} {4, 5, 6} {6, 7}
stress 0.444 0.5 0.571 0

We assess about 57% of maximum resource stress for the example project.

4 Conclusions and Future Research

Starting with the finish-to-start precedence relations on project activities, usu-
ally represented in AoN or AoA networks, we devise a method to identify groups
of those activities which can execute concurrently – the parallel sets. All of these
contain information about the concurrency potential induced by the precedence
relations and can be a tool to further assess properties useful to the context
of project management. In particular, we show how to evaluate the maximum
resource stress a project could incur under resource maximum availability with
multimodal activities. The resource stress definition assumes the accumulated
activity usages to be uniformly distributed, however. This is simpler to calculate
but may be too simplistic. A formal statistical analysis could establish a better
distribution in order to provide greater quality of the evaluated stress values.

The concurrency detection method relies in the maximal cliques of the graph
whose adjacency is the matrix of the parallel relations. The enumeration of all
the maximal cliques of an undirected graph may be exponential in output size
[2]. And this in independent of the efficiency of the algorithm that may be used.
Therefore, one should accept that there can be cases where our concurrency
detection method may produce a very large amount of parallel sets. One pos-
sibility is to filter some of the output by picking only the larger parallel sets.
Alternatively, on much larger projects, one could take an approach based on
just the maximum cliques, representing the largest parallel sets. However, and
despite several research, the problem of finding the maximum clique is also NP-
complete [6, 7]. Moreover, the usefulness of taking only the largest parallel set
may not be enough to assess the intended properties.



Since the maximal clique problem is NP, future iterations on the presented
method should exploit the fact that the sets of initial activities and of final ac-
tivities are always two of the possible parallel sets. This may reduce the overall
problem to a more treatable level for arbitrarily large projects. This is of particu-
lar interest if one could find similar relationships among other activities without
difficulty.

References

1. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of
an undirected graph. Commun. ACM 16(9), 575–577 (Sep 1973),
http://doi.acm.org/10.1145/362342.362367

2. Cazals, F., Karande, C.: A note on the problem of reporting max-
imal cliques. Theoretical Computer Science 407(13), 564 – 568 (2008),
http://www.sciencedirect.com/science/article/pii/S0304397508003903

3. Chang, L., Yu, J., Qin, L.: Fast maximal cliques enumeration in sparse graphs.
Algorithmica 66(1), 173–186 (2013), http://dx.doi.org/10.1007/s00453-012-9632-8

4. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling - A Research Handbook,
International Series in Operations Research & Management Science, vol. 49. Kluwer
Academic Publishers (2002)

5. Moutinho, R., Tereso, A.: Scheduling of multimodal activities with multiple renew-
able and availability constrained resources under stochastic conditions. Procedia
Technology 16(0), 1106 – 1115 (2014)

6. Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.k., Choudhary, A.: Fast
algorithms for the maximum clique problem on massive sparse graphs. In: Bonato,
A., Mitzenmacher, M., Praat, P. (eds.) Algorithms and Models for the Web Graph,
Lecture Notes in Computer Science, vol. 8305, pp. 156–169. Springer International
Publishing (2013)

7. Prosser, P.: Exact algorithms for maximum clique: A computational study. Algo-
rithms 5(4), 545–587 (2012)

8. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time com-
plexity for generating all maximal cliques and computational ex-
periments. Theoretical Computer Science 363(1), 28 – 42 (2006),
http://www.sciencedirect.com/science/article/pii/S0304397506003586, com-
puting and Combinatorics 10th Annual International Conference on Computing
and Combinatorics (COCOON 2004)


