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Abstract. In this paper, we propose an extension of the firefly algorithm
(FA) to multi-objective optimization. FA is a swarm intelligence opti-
mization algorithm inspired by the flashing behavior of fireflies at night
that is capable of computing global solutions to continuous optimiza-
tion problems. Our proposal relies on a fitness assignment scheme that
gives lower fitness values to the positions of fireflies that correspond to
non-dominated points with smaller aggregation of objective function dis-
tances to the minimum values. Furthermore, FA randomness is based on
the spread metric to reduce the gaps between consecutive non-dominated
solutions. The obtained results from the preliminary computational ex-
periments show that our proposal gives a dense and well distributed
approximated Pareto front with a large number of points.

Keywords: Multi-objective, firefly algorithm, fitness assignment, spread
metric

1 Introduction

This paper aims to extend a global optimization framework, known as firefly al-
gorithm (FA), to tackle nonlinear multi-objective (MO) optimization problems.
This is one of the most challenging problems since the goal is to optimize more
than one objective. FA is a population-based algorithm and therefore suitable
to solve MO problems. It is capable of finding multiple Pareto-optimal solu-
tions in a single run. Here, we consider solving nonlinear bound constrained MO
optimization problems with no > 1 objectives and n ≥ 1 decision variables:

min (f1(x), f2(x), . . . , fno(x))
subject to li ≤ xi ≤ ui, i = 1, . . . , n

(1)



where the conflicting objective functions fj : Rn → R, j = 1, 2, . . . , no, are con-
tinuous and possibly nonlinear functions and l ∈ Rn and u ∈ Rn are the vectors
of lower and upper bounds for the decision variables, respectively. We note that
the feasible region Ω = [l, u] is a nonempty compact set and differentiability
and convexity of the objectives are not assumed, although the search space of
problem (1) is convex.

MO optimization is an important research area mainly for two reasons. First,
a large number of real-world applications are formulated as MO problems; sec-
ond, many issues, such as the statistical interpretation associated with perfor-
mance comparison, still need to be addressed. For MO no single solution op-
timizes simultaneously all objectives. In practice, several conflicting objectives
arise and the goal is to identify the best compromise solution among a set of
Pareto-optimal solutions. The set of optimal solutions in the decision space is in
general denoted as the Pareto-optimal set and its image in the objective space is
denoted as Pareto-optimal front. The main task of MO algorithms is to support
a decision maker to formulate his/her preferences and to identify the best of the
Pareto-optimal solutions.

In a MO minimization problem, a solution x̄ ∈ Rn is said to dominate x̂ ∈ Rn

if and only if fj(x̄) ≤ fj(x̂) for all j ∈ {1, 2, . . . , no} where fj(x̄) < fj(x̂) for
at least one j. Further, a solution x̄ ∈ Rn is said to be Pareto-optimal if and
only if there is no solution x̂ ∈ Rn that dominates x̄. Thus, the goal with a MO
algorithm is to find a good and balanced approximation to the set of Pareto-
optimal solutions.

The most popular methods to tackle a MO problem are based on the aggrega-
tion of the objectives, on the ϵ–constraint, and on producing an approximation
to the Pareto-optimal front directly. The aggregation method transforms the
MO formulation into a uni-objective formulation problem by assigning to each
objective function fj a non-negative weight wj such that

∑no
j=1 wi = 1, and min-

imizing an aggregate function that is the weighted sum of the objectives. The
approximate Pareto-optimal front is obtained by running as many times as the
desired number of points using different weight values [22]. In the ϵ–constraint
method one objective is selected to be minimized and all the other objective
functions are converted into inequality constraints by setting an upper value to
each one [13]. Methods to compute an approximation to the Pareto front in a
single run are in general stochastic population-based search techniques. Fitness
assignment is a crucial issue in MO algorithms and depends on the entire set of
points in the population. Two categories of common strategies to assign fitness
are aggregation-based and Pareto/dominance-based. The latter may use more
than one dominance order (for example, dominance rank, dominance count or
dominance depth) [35]. Fitness assignment strategies may also depend on MO
performance metrics, for instance, the hyper-volume, the purity metric or the
spread metric [13,16,33,34].

Evolutionary algorithms are widely used when solving MO optimization prob-
lems. They are designated as MO evolutionary algorithms (MOEAs) and largely
dominate the research area of approximate metaheuristics for MO [16]. From



the most classical procedure VEGA to other more recent MOEA variants, like
MOGA, MOMGA, NPGA, NSGA, PESA, PAES, SPEA, NSGA-II, SPEA2,
RPSGAe and MEGA [8,12,17,33,36], all of them have been used in a variety of
real-world applications. In [23], a hybrid multi-objective evolutionary algorithm
combining a genetic algorithm and a particle swarm optimization is presented;
in [4,11], different robust MO optimization procedures are presented; and in [14],
robustness assessment during multi-objective optimization using a MOEA is dis-
cussed. Besides MOEAs other metaheuristics have been used in MO optimization
[1,6,7,22]. Deterministic-type approaches are also available [5,10].

The contribution of this paper is the extension of the FA paradigm to the
MO optimization. FA is a recently developed bio-inspired metaheuristic algo-
rithm that is capable of computing global solutions to optimization problems
[15,27,28]. It is a swarm intelligence optimization algorithm inspired by the flash-
ing behavior of fireflies at night, and it competes with the most well-known swarm
intelligence algorithms, like ant colony optimization, particle swarm optimiza-
tion, artificial bee colony, artificial fish swarm, bat algorithm and cuckoo-search.

FA has already been adapted to the MO optimization area [2,20,29]. Recently
proposed FA extensions to MO are related with applications in operations re-
search, like fleet planning problems, circuit design problems, production schedul-
ing system, economic emission dispatch problem [31], energy optimization in grid
environments [3], hybrid flowshop scheduling problem [21], job shop scheduling
problems [18], geometric design of clamped-free beams [19] and optimal hydro-
cyclone design [25]. Most of these studies transform the MO formulation into a
uni-objective one, although others produce approximations to the Pareto front
in a single run using an aggregation-based strategy to assign fitness to points.

Our proposal for the MO optimization area uses a non-dominance/dominance
ranking combined with an objective-order process based on scaled distances
to the minimum values for the fitness assignment procedure. It also incorpo-
rates a spread metric-based randomness term into the FA paradigm to gen-
erate candidate points from the current ones. This randomness term aims to
diversify the search as well as to reduce the gaps between consecutive non-
dominated solutions in the approximated Pareto front. The herein proposed
non-dominance/dominance ranking aims to favor non-dominated points of the
populations giving them ranks that are always lower than those assigned to any
of the other dominated points. This way, non-dominated points correspond to
the positions of the brightest fireflies. Our algorithm computes candidate points
to all current ones, except to the best point of the population, representing the
position of the brightest firefly of all. Assuming that all non-dominated and dom-
inated positions in the search space are ordered, the algorithm simulates move-
ments to all fireflies, except the brightest, in direction to the more brighter ones.
Then each computed candidate/trial position is accepted just after the move-
ment except when a current non-dominated position generates a dominated trial
position. Furthermore, at the end of each iteration, the set of non-dominated so-
lutions found thus far is updated with the accepted non-dominated points, being



the dominated solutions removed from the set. Our proposal is designated by
Multi-Objective-order Firefly Algorithm (MOoFA).

The remaining part of the paper is organized as follows. In Section 2 the
FA paradigm is described and in Section 3 the proposed MOoFA is presented
and discussed. Section 4 reports on the preliminary computational experiments
carried out using a benchmark set of MO problems and we conclude the paper
with Section 5.

2 The FA paradigm

Throughout the paper, ∥ · ∥ represents the Euclidean norm of a vector and the
vector x = (x1, x2, . . . , xn)

T represents the position of a firefly in the search
space. The position of the firefly j will be represented by xj ∈ Rn. We assume
that the size of the population of fireflies is 1 < m < ∞. In the context of
an uni-objective optimization problem, firefly j is brighter than firefly i if the
objective function value at xj is lower than the objective value at xi.

FA is a bio-inspired metaheuristic algorithm inspired by the flashing behavior
of fireflies at night. According to [9,26,27,28,30,32], the three main rules used to
construct the standard algorithm are the following: (i) all fireflies are unisex,
meaning that any firefly can be attracted to any other brighter one; (ii) the
brightness of a firefly is determined from the encoded objective function; (iii)
attractiveness is directly proportional to brightness but decreases with distance.
In the FA paradigm, the movement of a firefly i is attracted to another more
attractive/brighter firefly j and the new candidate position, also designated by
trial position, for firefly i is given by:

ti = xi + β(xj − xi) + α
(
z + L(0, 1)σi

)
, (2)

where xi represents its current position, α ∈ [0, 1] and

β = β0 exp
(
−γ∥xi − xj∥2

)
(3)

is the attractiveness of a firefly which varies with the light intensity seen by
adjacent fireflies and the distance between themselves. The parameter β0 is the
attraction parameter when the distance is zero. L(0, 1) is a random number
from the standard Lévy distribution centered at zero with an unitary standard
deviation. The vector z = z(k) is a reference point from the set of best solutions

found so far and the vector σi =
(
|xi

1 − z1|, . . . , |xi
n − zn|

)T
gives the variation

around z. The notation z(k) means that it varies with the iteration counter, k,
of the algorithm. The second term on the right hand side of (2) is due to the
attraction while the third term gives randomness, with α being a scale parameter
that controls the randomness and aims to maintain the diversity of solutions. The
parameter γ characterizes the variation of the attractiveness, and is crucial to
speed the convergence of the algorithm. As in [9], we allow α to decrease linearly
with k, from αmax to αmin, and we use a dynamic update of γ that increases the
attractiveness with k from a lower value γmin to an upper value γmax. Contrary



to the evolutionary strategies and genetic algorithm, in FA all firefies simulate
movement in order to find a better position. Although in the oldest versions
of FA, the brightest firefly was not moved, some recent versions move it, either
randomly or in a direction in which the brightness increases [26,30]. Furthermore,
the new positions of each firefly are only accepted if they improve over the old
ones. This is particularly promising since the best position is never lost.

3 Strategies in MOoFA

Since the proposed MOoFA is of a stochastic nature, the goal is to search for the
best approximation to the Pareto-optimal front. MOoFA performs the search in
the objective space, i.e., the algorithm selects the positions to be varied (corre-
sponding to fireflies that simulate movement) based on the fitness assigned to
the fireflies in the population. This fitness assignment is a crucial issue in FA
since a firefly movement depends on brighter fireflies and the brightness is in-
versely proportional to the fitness value. In this extended FA for MO, the lower
the fitness value the brighter is the firefly (and the lower is the order of the
position). The simplest way to implement FA in a MO paradigm is to order the
positions of fireflies from lowest to highest fitness value. In this paper, we pro-
pose two fitness assignment schemes that are based on an ordering strategy of
the objective values. To order the positions of the fireflies, the following ranking
steps are required.

1. Assign ‘non-dominance rank’, rn−d, that aims to favor non-dominated points
giving them the rank value rn−d = 1, and giving to the remaining (the
dominated ones) points rn−d = 2;

2. Assign ‘f–values order’, of , that aims to give lower order to points with
lower function values. Two schemes are proposed. One depends on assigning
ranks to the objective function values; the other relies on the difference
from the function values themselves to the minimum value. The ‘f–values
order’ aggregates quantities using weights that satisfy 0 ≤ wj ≤ 1 and∑no

j=1 wj = 1. Thus,

(a) Using ranks (integer values ranging from 1 to m), rj , assigned to the
objective values fj(x

i), j = 1, . . . , no, the ‘f–values order’ of a point xi

is calculated by

of (x
i) =

1

m
(w1r1 + w2r2 + . . .+ wnorno) . (4)

(b) Using the objective function values, a factor that is a scaled distance to
the minimum value of objective fj is computed,

sj =
fj(x

i)− fj,min

fj,max − fj,min
(5)

where 0 ≤ sj ≤ 1, fj,max and fj,min are the maximum and minimum
values of fj attained by the population, respectively. Then, the ‘f–values



order’ is computed by

of (x
i) = w1s1 + w2s2 + . . .+ wnosno. (6)

3. Finally, for either case (2a) or (2b), the fitness value, Fit(xi), assigned to
each point xi is defined by

Fit(xi) = rn−d + of (x
i). (7)

This way non-dominated points have fitness values in the range [1, 2] and dom-
inated points have fitness in the range [2, 3].

Table 1 shows the fitness assignment scheme (4), for a small example with two
objectives, ten points in the population, and w1 = w2 = 0.5. The last column in
the table shows the ordering of the points based on the Fit values. (We note that
any occurring tie is broken arbitrarily.) Table 2 depicts the fitness assignment
scheme based on (5) and (6). We note that this ordering is not the same as that
of previous table. In Table 1 two sets of ties occur in Fit: one originates x5 and
x6, the other x8 and x9. With the factor sj , the likelihood that ties will occur is
much lower than with the scheme (4).

Table 1: Fitness assignment based on ranking the objectives (4), for ten points.
i f1(x

i) f2(x
i) r1 r2 of (x

i) rn−d Fit(xi) ordering

1 6.75 3 6 7 0.65 2 2.65 x5

2 4 1 1 3 0.20 1 1.20 x1

3 7 0.5 7 1 0.40 1 1.40 x3

4 10 2.5 10 5 0.75 2 2.75 x9

5 5 4 3 10 0.65 2 2.65 x6

6 4.5 2 2 4 0.30 2 2.30 x4

7 6 0.75 4 2 0.30 1 1.30 x2

8 6.5 3.5 5 9 0.70 2 2.70 x7

9 9 2.7 9 6 0.75 2 2.75 x8

10 8 3.25 8 8 0.80 2 2.80 x10

Non-dominated points are in bold style

We now briefly describe some technical issues of MOoFA in Algorithm 1.
MOoFA starts by randomly generating m points – positions of the population
of fireflies – in the search space Ω. The objective functions are evaluated at all
points and the non-dominated points are identified. The set, denoted by ND, of
all produced non-dominated points (the corresponding no–tuple (f1, f2, . . . , fno))
is initialized. The fitness assignment strategy described in (7) is applied and the
points are ordered according to their fitness value Fit, from lowest to largest,
i.e., x1 is the point with lowest Fit value, x2 is the point with the second lowest
value of Fit, and so forth, xm is the point with largest Fit value. Now, new
candidate positions are computed for the current position x2 and all the others
that follow, i.e., x2 may be moved towards x1 (meaning that firefly 2 is attracted



Table 2: Fitness assignment based on scaled distance of objectives to mini-
mum (5) and (6), for ten points.

i f1(x
i) f2(x

i) s1 s2 of (x
i) rn−d Fit(xi) ordering

1 6.75 3 0.4583 0.7143 0.5863 2 2.5863 x6

2 4 1 0 0.1429 0.0714 1 1.0714 x1

3 7 0.5 0.5 0 0.2500 1 1.2500 x3

4 10 2.5 1 0.5714 0.7857 2 2.7857 x10

5 5 4 0.1667 1 0.5833 2 2.5833 x5

6 4.5 2 0.0833 0.4286 0.2560 2 2.2560 x4

7 6 0.75 0.3333 0.0714 0.2024 1 1.2024 x2

8 6.5 3.5 0.4167 0.8571 0.6369 2 2.6369 x7

9 9 2.7 0.8333 0.6286 0.7310 2 2.7310 x9

10 8 3.25 0.6667 0.7857 0.7262 2 2.7262 x8

Non-dominated points are in bold style

to firefly 1), x3 may be moved towards x1 (in first place) and then x2, and so
on. We use the term ‘candidate’ because, in the proposed FA extension to MO,
the new point may not be a promising position, when compared with the cur-
rent one, and will not be accepted. This is a crucial issue and arises when a
non-dominated current point generates a dominated candidate. In all the other
cases, the candidate position is accepted. Furthermore, whenever a position is
declared non-dominated, via flag=‘true’ in the algorithm, any subsequent can-
didate position will be accepted only if it is non-dominated.

When extending FA to MO, the choice of the point z to center the random-
ization contribution to the firefly movement (see equation (2)) is based on a MO
performance measure, a spread metric. Thus, z is one of the arguments of two
consecutive non-dominated points with a maximum distance (based on infinity
norm) in objective function values, i.e.,

z = arg max
j∈{1,...,no}

{
max

i∈{1,...,|ND|−1}

{
f i+1
j − f i

j

}}
(8)

where |ND| is the cardinal of ND. Our choice falls on the first of the two points.
We recall that the fj values are sorted (from lowest to largest). This choice for
the point z aims to force the movement of the firefly i towards the set of non-
dominated points, as well as to the region where the distance between consecutive
points is largest. This way the algorithm will generate an approximated Pareto
front with evenly spread points. Only after all points (except x1) have potentially
moved towards other points, is the set ND updated with the new accepted non-
dominated points, being removed the dominated solutions. Finally, at the end
of each iteration, all accepted points are ordered based on their fitness values.



The output of the algorithm is the set ND that contains an approximation to
the Pareto front.

Data: kmax, m
Set k = 1;
Randomly generate xi ∈ Ω, i = 1, . . . ,m and evaluate fj(x

i), i = 1, . . . ,m,
j = 1, . . . ,m;
Define the set ND with the non-dominated points;
Assign flag=‘true’ to all non-dominated points of the population;
Assign fitness to all m points, using (7), and order them;
while k ≤ kmax do

forall xi such that i = 2, . . . ,m do
forall xj such that j = 1, . . . , i− 1 do

Compute randomization term and attractiveness β;
Move firefly i towards j using (2) and evaluate
fj(t

i), j = 1, . . . , no;
if xi has flag=‘true’ then

if ti is a non-dominated point then
Set xi = ti and assign flag=‘true’ to xi;

end

else
Set xi = ti;
if xi is a non-dominated point then

Assign flag=‘true’ to xi;
end

end

end

end
Set k = k + 1;
Update the set ND with the accepted non-dominated points (remove
the dominated ones);
Assign flag=‘true’ to all non-dominated points of the population;
Assign fitness to all m points, using (7), and order them;

end
Output: set ND

Algorithm 1: MOoFA

The algorithm MOoFA stops when a target number of iterations, kmax, is
exceeded, although other criteria may be used. We may require that the number
of function evaluations reaches a target value, or the largest gap between two
consecutive points of the approximated Pareto front falls below a tolerance.

4 Numerical Comparisons

MOoFA is coded in MATLAB programming language (Matlab Version 8.1.0.604
(R2013a)) and the numerical experiments were carried out on a PC Intel Core



2 Duo Processor E7500 with 2.9GHz and 4Gb of memory. To analyze the per-
formance of two variants of MOoFA, a set of nine benchmark problems with
different properties in terms of Pareto-optimal front is used (see [12,29,34]). The
known acronyms are: FON with non-convex Pareto front, n = 3 and no = 2;
KUR with discontinuous Pareto front, n = 3 and no = 2; POL with discontin-
uous Pareto front, n = 2 and no = 2; SCH with convex Pareto front, n = 1
and no = 2; ZDT1 with convex Pareto front, n = 30 and no = 2; ZDT2 with
non-convex Pareto front, n = 30 and no = 2; ZDT3 with discontinuous Pareto
front, n = 30 and no = 2; ZDT4 with convex Pareto front, n = 10 and no = 2;
ZDT6 with non-convex Pareto front and n = 10 and no = 2. We use the fol-
lowing acronyms to identify the two variants of MOoFA: (i) ‘MOoFA-rank’, for
Algorithm 1 based on the objective ranking (4), with fitness (7); (ii) ‘MOoFA’,
for Algorithm 1 based on the scaled objective distance to the minimum (5) and
(6), with fitness (7). Each tested variant was run 10 times with each problem. In
Algorithm 1, we set m = 50, as suggested in [29], and kmax = 100 when solving
FON, KUR, POL, SCH, ZDT1, ZDT2, ZDT3 and ZDT6, and m = 100 and
kmax = 500 when solving ZDT4. Some preliminary experiments were carried out
to analyze the performance of the algorithms using previously proposed param-
eter values [9,15]. The results showed that higher quality solutions are obtained
with β0 = 1, αmin = 0.01, αmax = 0.5, γmin = 0.1 and γmax = 10 as presented in
[9].

4.1 MO performance measures

Three aspects could be considered when comparing the performance of multi-
objective optimization algorithms: (i) the closeness to the true Pareto front; (If
the true Pareto front for a given problem is known then the closeness can be
measured using, for instance, the distance between the true Pareto front and the
produced approximation to the Pareto front.) (ii) the spread along the Pareto
front; (iii) the number of solutions in the non-dominated set. Here, we aim to
compare closeness to the true Pareto front and select two performance metrics
known as generational distance, GDp, and inverted generational distance, IGD,
which are defined by

GDp =
1

|ND|

|ND|∑
j=1

dpj

1/p

and IGD =
1

N

 N∑
j=1

Dj

 (9)

respectively, where p ≥ 1, dj is the Euclidean distance from the j-th point of the
approximated frontND to its nearest point of the true Pareto front [12,13,22,29],
Dj is the minimum Euclidean distance between the point j in the true Pareto
front and the points in ND and N is the number of uniformly distributed points
along the true Pareto front. Smaller values of GDp and IGD indicate better
approximations to the Pareto-optimal front.



4.2 Experimental results

First, using a visual presentation of our results, we show the approximated Pareto
front produced by ‘MOoFA-rank’ and ‘MOoFA’. We plot the ND set that cor-
responds to the run that gave the lowest GD2 (corresponding to p = 2) value.
Figure 1 contains the six plots that are produced by Algorithm 1 and objectives
ranking (4), when solving SCH, ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6.
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Fig. 1: Approximated Pareto front produced by Algorithm 1 and objective rank-
ing (4).

Figure 2 contains the plots for the six previously referred problems using
Algorithm 1 and objective distances to the minimum values (5) and (6). We
may conclude that the produced approximated Pareto fronts are dense and have
a sufficient large number of uniformly distributed points. The differences between
the two variants are not significant, although we observe a slight improvement
on closeness and density of MOoFA front, for the problems ZDT4 and ZDT6.

The large number of non-dominated solutions produced by Algorithm 1 re-
quires a moderate computational effort specially when m = 100 and the algo-
rithm runs for 500 iterations. We then decided to test another variant that
computes candidate solutions only to fireflies that correspond to dominated
positions. This means that only the dominated fireflies are attracted to non-
dominated and dominated brighter fireflies. Hence, if mnd ≤ m represents the
number of non-dominated positions in the current population, the outer ‘for’
loop in Algorithm 1 starts with xmnd+1 and finishes with xm. This variant is
denoted by ‘MOoFA-dom’. We observed that this variant produced a very small
number of non-dominated solutions. However, increasing the size of the popu-
lation and the maximum number of iterations allow the variant to find a larger



number of points while improving GDp and IGD. Thus, we have used m = 100
and kmax = 500 for all tested problems. Figure 3 displays the plots that cor-
respond to the previously referred six problems. Nevertheless, these results are
not as good as those produced by the variants ‘MOoFA-rank’ and ‘MOoFA’ of
Algorithm 1.
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Fig. 2: Approximated Pareto front produced by Algorithm 1 and objective dis-
tance to the minimum (5) and (6).

Now, we report on Tables 3 and 4 the numerical results produced by ‘MOoFA-
rank’ and ‘MOoFA’. For these comparisons we use both the generational distance
GD2 (based on p = 2), GD1 (based on p = 1) and the inverted generational
distance IGD (see (9)).

Table 3 contains the corresponding averaged GD2 values over the runs. In
parentheses, we show the average number of non-dominated solutions |ND|. The
other results for comparison are from MOFA and three popular MOEAs known
as SPEA, NSGA-II and DEMO, that are available from [29]. The author in [29]
reports the use of m = 50, kmax = 500, and in FA several values for α0 (ranging
from 0.1 to 0.5) and β0 (ranging from 0.7 to 1) were tested, with α = α0(0.9)

k.
Our results (based on N = 500) show that the variant ‘MOoFA’ gives slightly
better values of GD2 on problems ZDT1, ZDT2, ZDT3 and ZDT6 and variant
‘MOoFA-rank’ is better on SCH and ZDT4. Furthermore, when compared with
MOFA [29], SPEA, NSGA-II and DEMO, our proposed variants of MOoFA give
lower averaged GD2 values when solving problems ZDT1, ZDT2 and ZDT3, but
larger values when solving SCH and compared with MOFA and DEMO.

Table 4 contains average values of GD1 and IGD computed from our results.
We now compare with the GD1 results reported in [12] for SPEA, PAES and
NSGA-II, where m = 100, kmax = 250 are used. The results obtained with the
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Fig. 3: Approximated Pareto front produced by ‘MOoFA-dom’, and objective
distance to the minimum (5) and (6).

problems FON, KUR and POL are also shown for comparison. We remark that
the reference Pareto fronts of problems FON, KUR and POL were obtained
from the literature and they are not uniformly distributed. We also note that
the IGD values produced by our variants of the Algorithm 1, when solving POL,
are large since the set ND has just a few points with f1 > 15 and f2 < 0.1. When
comparing GD1, NSGA-II has slightly lower values on problems FON, KUR and
ZDT4, PAES has a lower value on SCH, while the variant ‘MOoFA’ produces
lower values than any of the other four in comparison, when solving problems
POL, ZDT1, ZDT2, ZDT3 and ZDT6.

Our final conclusions are that MOoFA (based on Algorithm 1) is able to pro-
duce competitive results and provides dense and well distributed approximated
Pareto front with a large number of points.

Table 3: Comparison based on GD2 with |ND| in parentheses.

‘MOoFA-rank’ ‘MOoFA’ MOFA† SPEA† NSGA-II† DEMO†

Prob. GD2 GD2 GD2 GD2 GD2 GD2

SCH 2.37e-04 (3314) 2.57e-04 (2977) 4.55e-06 5.17e-03 5.73e-03 1.79e-04
ZDT1 3.35e-05 (2644) 2.09e-05 (3325) 1.90e-04 1.78e-03 3.33e-02 1.08e-03
ZDT2 1.96e-05 (3360) 1.35e-05 (3517) 1.52e-04 1.34e-03 7.24e-02 7.55e-04
ZDT3 2.12e-05 (3110) 1.98e-05 (2639) 1.97e-04 4.75e-02 1.14e-01 1.18e-03
ZDT4 3.63e-01 (1201) 6.59e-01 (1033) – – – –
ZDT6 4.68e-03 (2033) 1.59e-04 (4402) – – – –
† results available in [29] with m = 50 and kmax = 500; – not available



Table 4: Comparison based on GD1 and IGD.

‘MOoFA-rank’ ‘MOoFA’ SPEA‡ PAES‡ NSGA-II‡

Prob. GD1 IGD GD1 IGD GD1 GD1 GD1

FON 9.50e-03 3.57e-03 8.57e-03 3.47e-03 1.26e-01 1.51e-01 1.93e-03
KUR 3.37e-02 4.15e-02 3.51e-02 3.78e-02 4.56e-02 5.73e-02 2.90e-02
POL 1.13e-02 1.57e+04 1.12e-02 1.57e+04 3.78e-02 3.09e-02 1.56e-02
SCH 5.05e-03 1.10e-03 5.40e-03 1.24e-03 3.40e-03 1.31e-03 3.39e-03
ZDT1 1.11e-03 5.29e-04 8.42e-04 3.57e-04 1.80e-03 8.21e-02 3.35e-02
ZDT2 9.63e-04 4.09e-04 7.11e-04 6.12e-02 1.34e-03 1.26e-01 7.24e-02
ZDT3 8.95e-04 3.13e-04 8.22e-04 1.06e-01 4.75e-02 2.39e-02 1.15e-01
ZDT4 3.91e+00 2.27e+00 1.02e+01 8.23e+00 7.34e+00 8.55e-01 5.13e-01
ZDT6 1.13e-02 5.16e-03 9.03e-04 5.81e-04 2.21e-01 8.55e-02 2.97e-01
‡ results available in [12] with m = 100 and kmax = 250

5 Conclusions

We have presented a new methodology to solve nonlinear bound constrained MO
optimization problems based on the FA paradigm, on non-dominance/dominance
ranking and aggregation of objective function distances to the minimum values,
for fitness assignment, and on the spread metric to reduce the gaps between
consecutive non-dominated solutions. MO benchmark problems of the literature
were selected to test our proposal. From the obtained results we have found out
that the algorithm is effective and worthy of further research. The obtained val-
ues for the generational distance to the true Pareto front were rather competitive
although distance alone is not sufficient for performance assessment. Thus, this
study will be complemented with other performance guided metrics.

Future work will focus on incorporating a clustering technique into MOoFA
to reduce the number of archived non-dominated solutions while maintaining the
good density-based characteristics, so that computational time can be reduced.
Furthermore, experimental tests will be extended to MO problems with three
and more objectives and larger number of variables. The effect of increasing the
number of objectives on the convergence of the algorithm will be investigated.
Results available in the literature from other MOEAs will be used for comparison
purposes.
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