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Abstract. The Electromagnetism-like (EM) algorithm is a population-
based stochastic global optimization algorithm that uses an attraction-
repulsion mechanism to move sample points towards the optimal. In
this paper, an implementation of the EM algorithm in the Matlab en-
vironment as a useful function for practitioners and for those who want
to experiment a new global optimization solver is proposed. A set of
benchmark problems are solved in order to evaluate the performance of
the implemented method when compared with other stochastic methods
available in the Matlab environment. The results confirm that our imple-
mentation is a competitive alternative both in term of numerical results
and performance. Finally, a case study based on a parameter estimation
problem of a biology system shows that the EM implementation could
be applied with promising results in the control optimization area.

Keywords: global optimization; unconstrained minimization; Matlab
environment; Electromagnetism-like algorithm; derivative-free algorithm

1 Introduction

Many real life global optimization problems that arise in areas such as physics,
chemistry, and molecular biology, involve multimodal and non-differentiable non-
linear functions of many variables that are difficult to handle by gradient-based
algorithms. As a result, many researchers have devoted themselves in finding re-
liable stochastic global optimization methods that do not require any derivative
computation.

The Electromagnetism-like (EM) algorithm, developed by Birbil and Fang
[3,4], is a population-based stochastic search method for global optimization
that mimics the behavior of electrically charged particles. The method uses an
attraction-repulsion mechanism to move a population of points towards opti-
mality. The EM algorithm is specifically designed for solving bound constrained
problems in the form:

min f(x)
s. t. x ∈ Ω, (1)
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where f : Rn → R is a nonlinear continuous function and Ω = {x ∈ Rn : lb ≤
x ≤ ub} is a bounded feasible region. We do not assume that the objective
function f is convex and may possess many local minima in the feasible region.

The goal of global optimization is to find the globally best solution of prob-
lems, in the presence of multiple local optima. There are several stochastic search
methods that were developed to find the global minimum such as the Simulated
Annealing, Genetic Algorithm, Particle Swarm Optimization, Ant Colony Op-
timization and Evolutionary Methods [6,10,11,13]. Some of these methods may
combine the search process with local refinements like random search methods
or gradient-based methods.

Systems biology has been responsible for a revolution in the ability of un-
derstanding biologic events and organisms. It made possible to have an com-
prehensive, quantitative and temporal analysis of the interaction between the
components of a biological system. Through a mathematical model it is possible
to summarize the knowledge of a biological system allowing to make experimen-
tally verifiable predictions. In systems biology, the determination of parameters
is a central challenge, because the majority of the mathematical models present
some characteristics that make the problem difficult to solve, as the large num-
ber of parameters to be estimated as the highly non-linearity of the problems
[14,16,28,29,30]. Hence, there is a need for global optimization methods capable
of solving this kind of problems efficiently.

In the Matlab environment, the Global Optimization Toolbox [19] provides
methods that search for global solutions. It includes global search, multistart,
pattern search, genetic algorithm, and simulated annealing solvers. These meth-
ods use interactive tools for defining and solving optimization problems and
monitoring the solution progress.

The aim of this paper is to present a new implementation of the EM algorithm
in the Matlab R© environment. To accomplish this assessment, we started by port-
ing the algorithm to Matlab programming language and a set of functions were
defined in order to develop the EM with a similar syntax to the methods avail-
able in the Matlab Global Optimization Toolbox. Tests were performed against
a well known set of problems, and some benchmarks were performed to validate
this implementation. With a stable implementation in Matlab, we select a well
known problem to assess the application of this algorithm to estimate biological
parameters.

This paper is organized as follows. Section 2 gives a general overview of the
EM algorithm. The implementation details, functionalities and how to use EM in
the Matlab environment are described in Section 3. Section 4 reports the results
of the numerical experiments carried out with a benchmark set of unconstrained
problems, as well as a comparison with other stochastic based methods. The
parameter estimation problem, called α-pinene, is briefly described and solved
by EM in Section 4.2. It is compared against other stochastic methods. Finally,
the paper is concluded in Section 5 and some remarks for future developments
are presented.
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2 Electromagnetism-like Algorithm

The EM algorithm simulates the electromagnetism theory of physics by con-
sidering each point in the population as an electrical charge that is released to
the space. The charge of each point is related to the objective function value
and determines the magnitude of attraction of the point over the others in the
population. The better the objective function value, the higher the magnitude
of attraction. The charges are used to find a direction for each point to move in
subsequent iterations. The regions that have higher attraction will signal other
points to move towards them. In addition, a repulsion mechanism is also intro-
duced to explore new regions for even better solutions [3,4].

The EM algorithm is described in Algorithm 1 and comprises four main pro-
cedures: initialization of the algorithm, computation of the total force, movement
along the direction of the force and a simple random line search algorithm [22,23].

Algorithm 1 EM algorithm

1: Initialization;
2: while stopping criteria are not met do
3: Compute Force
4: Move Points
5: Local Search
6: end while

The “Initialization” procedure starts by randomly generating a sample of m
points. Each point is uniformly distributed between the lower and upper bounds.
Then, for each point of the population the objective function value is calculated.
Finally the point which yields the least objective function value, denoted by
the best point of the population, xbest, is identified as well as its corresponding
objective function value f best.

In the “Compute Force” procedure, each particle charge is calculated by

qi = exp

(
−n f(xi)− f(xbest)∑m

k=1(f(xk)− f(xbest))

)
, i = 1, . . . ,m. (2)

that determines the power of attraction or repulsion for the point xi. In this
way the points that have better objective function values possess higher charges.
After the charge calculation, the total force exerted on each point xi is calcu-
lated by adding the individual component forces, F i

j , between any pair of points

xi and xj . According to the electromagnetism theory, the total force, F i, is in-
versely proportional to the square of the distance between the points and directly
proportional to the product of their charges:

F i =

m∑
j 6=i

F i
j =

{
(xj − xi) qiqj

‖xj−xi‖2 if f(xj) < f(xi) (attraction)

(xi − xj) qiqj

‖xj−xi‖2 if f(xj) ≥ f(xi) (repulsion)
, i = 1, . . . ,m.

(3)
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The “Move Points” procedure uses the total force vector, F i, to move the
point xi in the direction of the force by a random step length λ. The best
point, xbest, is not moved. To maintain feasibility, the force exerted on each
point is normalized and scaled by the allowed range of movement towards the
lower bound or the upper bound of the set Ω, for each coordinate. Thus, for
i = 1, . . . ,m and i 6= best

xi =

{
xi + λ F i

‖F i‖ (ub− x
i) if F i > 0

xi + λ F i

‖F i‖ (x
i − lb) otherwise

. (4)

The random step length λ is assumed to be uniformly distributed in [0, 1].
Finally, the “Local search” procedure performs a local refinement around a

point or around each point of the population [3,4]. In this implementation, this
procedure is only applied to the best point of the population, since previous
works showed it was sufficient and efficient in the improvement of the accu-
racy of EM [22,23,24]. This procedure implements a simple random line search
algorithm, using the maximum feasible step length

∆ = δlocal(max[ub− lb]) (5)

with δlocal > 0, to guarantee that the local search always generates feasible
points [1,3,22,23,24]. A random movement of length ∆ is carried out and if a
better position is obtained within a maximum number of local iterations, xbest

is updated.

3 MATLAB Implementation

Matlab R© is a technical computing environment that integrates numerical and
matrix analysis which has a simplistic environment to the user. Nowadays, Mat-
lab is the standard tool that supports introductory and advanced mathematical
based courses which is the choice tool used in industrial research.

3.1 Implementation Details

The original version of the Electromagnetism-like algorithm discussed on Sec-
tion 2, was implemented as a Matlab global optimization solver. The implemen-
tation respects the structure of other optimization solvers where each module
defines a specific routine of the algorithm.

The user can see the details of the emalgorithm using the following com-
mand.

>> help emalgorithm

The basic call of EM algorithm is:

>> [x,fval,exitflag,output]=emalgorithm(Fun,lb,ub,options)

The input and output arguments are described next.
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Output arguments The output variables are x, as the minimizer, fval is the
value of the objective function at the solution x, exitflag is a flag describing
the exit condition and output is a structure that shows some values about the
iterative process and other information. The possible values of exitflag and
the corresponding exit conditions are detailed in Table 1.

Table 1. Exitflag conditions.

Flag Condition

1 Average change in value of the objective function over options.StallIterLimit

iterations less than options.TolFun

5 options.ObjectiveLimit limit reached
0 Maximum number of function evaluations or iteration exceeded
-1 Optimization terminated by the output or plot function
-2 No feasible point found
-5 Time limit exceeded

The description of the items about the iterative process concerning the
output argument are presented in Table 2.

Table 2. Output structure.

Item Description

problemtype Type of problem: bound constrained
iterations Total number of iterations
funccount Total number of function evaluations
message Termination message of the solver
totaltime Time taken by the solver

Input arguments The input variables are Fun, which is the objective function,
lb and ub are the lower and upper bounds on the variables, respectively, and
options (optional) define parameters used to control the algorithm.

To know the list of the fields in the options structure as well as the valid
parameters and the default parameters use:

>> help emoptimset

The available options are presented in Table 3 and can be defined with:

>> emoptimset(option, value)

where option should be a valid term and value is the assigned value of the
option. To check the default option values of the EM algorithm, use:

>> emoptimset
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3.2 Example Usage

Suppose we want to run the EM to solve the Branin function [12]:

min

(
x2 −

5.1

4π2
x21 + 5

x1
π
− 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

s. t. −5 ≤ x1 ≤ 0,

10 ≤ x2 ≤ 15

Firstly, the function to be optimized should be created:

function y = branin(x)

% Branin function

y = (x(2)-(5.1/(4*pi^2))*x(1)^2+5*x(1)/pi-6)^2+...

10*(1-1/(8*pi))*cos(x(1))+10;

end

Then, the following commands should be done in order to define the lower
and upper bounds of the problem, define some options to control the algorithm,
if desired, and finally call the EM algorithm:

lb = [-5 0];

ub = [10 15];

options=emoptimset(’Display’,’iter’);

[x,f,exitflag,output]=emalgorithm(’branin’,lb,ub,options)

The obtained solution is:

Iteration f-count f(x)

10 256 0.397899

20 469 0.397887

30 679 0.397887

40 889 0.397887

...

270 5720 0.397887

280 5930 0.397887

Maximum number of function evaluations exceeded: increase

options.MaxFunEvals.

x = 3.1415 2.2750

f = 0.3979

exitflag = 0

output =

iterations: 284

funccount: 6014

message: ’Maximum number of function evaluations exceeded’

totaltime: 1.3600

problemtype: ’boundconstraints’
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4 Numerical Results

Computational tests were performed on a PC with a 2.94GHz Pentium IV micro-
processor and 4Gb of memory. At first, we compare the performance of EM algo-
rithm with Genetic Algorithm (GA) and Simulated Annealing (SA) when applied
to a benchmark set of nine functions. They are all stochastic and derivative-free
methods available in the Global optimization Toolbox of Matlab. The GA is a
method based on natural selection, selecting, at each step, individuals at random
from the current population to be parents and uses them to produce the children
for the next generation [10]. The SA mimics the physical process of heating a
material and then slowly lowering the temperature to decrease defects in order
to minimize the energy optimization problem [11]. GA and EM are population-
based methods, while SA is a single point method. Secondly, we compare the
EM method with other stochastic methods when solving a parameter estimation
problem, the isomerization of α-pinene problem.

4.1 Application to a Test Set of Problems

In order to evaluate the efficiency of the implemented algorithm we considered
nine test functions [12], summarized in Table 4, as benchmarks for compar-
ing global search methods. The columns of the table refer to the name of the
problem, ‘Prob.’; information about the abbreviation usually used, ‘Abbr.’; the
dimension of the problem, ‘n’; the known global minimum available in the liter-
ature, ‘f∗’; the default box constraints, ‘Box constraints’; the number of known
local minimizers, ‘loc’, and the number of known global minimizers, ‘glob’.

Table 4. Test functions.

Prob. Abbr. f∗ n Box constraints loc glob

Branin BR 0.3978874 2 [−5, 0] × [10, 15] 3 3
Golstein-Price GP 3.0000000 2 [−2, 2]2 4 1
Hartman 3 H3 -3.8627821 3 [0, 1]3 4 1
Hartman 6 H6 -3.3223680 6 [0, 1]6 4 1
Six-hump camel C6 -1.0316285 2 [−3, 3] × [−2, 2] 6 2
Shekel 5 S5 -10.1531997 4 [0, 10]4 5 1
Shekel 7 S7 -10.4029406 4 [0, 10]4 7 1
Shekel 10 S10 -10.5364098 4 [0, 10]4 10 1
Shubert SHU -186.7309088 2 [−10, 10]2 760 18

In order to assess the performance of the implemented EM, it is compared
with the GA and SA packages available in the Matlab Global Optimization
Toolbox. For more details on the methods, see [19]. The justification for the
choice of these solvers is due to the fact that they are implemented in Matlab
and are derivative-free methods, such as EM. Besides, other global stochastic
methods in Matlab environment, like the implemented in functions GloabSearch
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and Multistart, they are not used for comparison since they use gradient-based
methods in the local search phase.

The EM algorithm used the default parameters, set by PopulationSize = 20,
δlocal = 1e-3 and MaxLocalIterations = 5. For a fair comparison, GA and SA
also used the default parameter values. The value of f∗ was set to the parameter
ObjectiveLimit = f∗. If the optimal solution is not reached within an absolute
tolerance of 1e-5, the algorithm stops for a maximum of 10000 function evalua-
tions, MaxFunEvals = 10000. In order to obtain statistically significant results,
we run each method 30 times.

Table 5 reports the name of the problem, ‘Prob.’; the best function value
obtained by each algorithm, ‘fbest’; the standard deviation between the best
function values obtained by the algorithm, ‘StdDev’; the average number of
function evaluations, ‘Navg’. Generally, EM reaches the global optimal solutions

Table 5. Comparison of EM results with GA and SA.

Prob. EM GA SA
fbest StdDev Navg fbest StdDev Navg fbest StdDev Navg

BR 0.39789 7.77e-07 1086 0.39789 8.96e-07 825 0.39789 3.03e-06 6077
GP 3.00000 2.89e-06 1187 3.00000 2.09e+01 2048 3.00000 3.02e-06 485
H3 -3.86278 2.99e-06 1662 -3.86278 1.41e-01 1875 -3.86278 1.76e-04 9815
H6 -3.32237 3.66e-02 2682 -3.32237 5.84e-02 5584 -3.32075 1.49e-02 10001
C6 -1.03163 2.22e-06 491 -1.03163 2.28e-06 579 -1.03163 1.93e-06 1794
S5 -10.15320 3.30e+00 6175 -5.05520 5.93e-09 10020 -10.15308 3.50e-01 10001
S7 -10.40294 3.16e-06 3010 -5.08767 7.20e-09 10020 -10.40288 1.54e-01 10001
S10 -10.53641 5.16e-06 2728 -5.12848 5.22e-09 10020 -10.53638 1.36e+00 10001
SHU -186.73091 1.30e-05 6155 -186.73091 5.83e+01 7599 -186.73091 5.11e-06 492

with less function evaluations than GA and SA. From StdDev column we can
conclude EM obtained more consistent and effective solutions except for problem
S5, where EM converged to attractive locals, for some runs (see Fig. 1). For
problems S5, S7 and S10, GA didn’t reach the global optimum (always converged
to local solutions), and EM has more accurate solutions than SA.

4.2 Parameter Estimation Problem

Most biological processes are nonlinear dynamic systems, which are usually mod-
eled as a nonlinear programming problem subject to dynamic (usually differential-
algebraic) constraints that describe the evolution over time of certain quantities
of interest. In the context of bioprocess engineering optimization, the parameter
estimation problem goal is to find the set of parameters of a mathematical model
to obtain the best possible fit to the existing experimental data [17,26,30]. Since
these problems can be non-convex, some of the main optimization methods based
on the gradient, such as, Levenberg-Marquardt or Gauss-Newton [21], may not
work well, because if there is a local minimum very close to the global minimum,
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Fig. 1. Example of a run of EM algorithm with Shekel 5 problem.

the method may fail, failing to reach the optimal solution. Thus, there is a need
for using global optimization methods to ensure convergence to a global optimal
solution. The literature presents some advances in global optimization for prob-
lems of parameter estimation in dynamic systems in deterministic methods [8,18]
and in stochastic methods [15,20,25].

In this paper, we are interested in solving the isomerization of α-pinene prob-
lem, that is a parameter estimation problem that arises from the modeling of
the chemical phenomena of an isomerization reaction. The α-pinene estimation
problem was firstly discussed by Box et al. [5] in 1973 and by Bates and Watts [2]
in 1988 and by Seber and Wild [27] in 1989. Fuguitt and Hawkins [9] in 1947
studied the reaction of α-pinene where (y1) is thermally isomerized to dipen-
tene (y2) and allo-ocimene (y3). Allo-ocimene in turn yields pyronene (y4) and a
dimer (y5). The converting of allo-ocimene (y3) to the dimer (y5) is a reversible
reaction while the other conversions are irreversible. The goal of α-pinene esti-
mation problem is to estimate the five rate constants (p1, . . . , p5). Fig. 2 shows
the proposed reaction scheme for this homogeneous chemical reaction describing
the thermal isomerization of α-pinene.
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Fig. 2. Mechanism for thermal isomerization of α-pinene.

The model is defined by the following system of five ordinary differential
equations:

d[y1]

dt
= −(p1 + p2)y1 (6)

d[y2]

dt
= p1y1 (7)

d[y3]

dt
= p2y1 − (p3 + p4)y3 + p5y5 (8)

d[y4]

dt
= p3y3 (9)

d[y5]

dt
= p4y3 − p5y5 (10)

considering the given set of time intervals:

t = {1230.0, 3060.0, 4920.0, 7800.0, 10680.0, 15030.0, 22620.0, 36420.0} (11)

It is assumed that the initial values (i.e. at time t ≈ 0) of one reactant and four
products are y1(0) = 100, y2(0) = 0, y3(0) = 0, y4(0) = 0, y5(0) = 0.

The goal of the α-pinene estimation problem is to estimate (predict) the un-
known coefficients, p1, ..., p5, minimizing the objective function that corresponds
to a weighted distance measure between the experimental values, corresponding
to the measured variables, and the predicted values for those same variables,
formulated as:

f(p) =

5∑
j=1

8∑
i=1

(yj(p, ti)− ỹji)2 (12)
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The experimental values for each of the five responses (y1, . . . , y5) in the eight
interval times are given in the following matrix,

ỹji =



88.35 7.3 2.3 0.4 1.75
76.4 15.6 4.5 0.7 2.8
65.1 23.1 5.3 1.1 5.8
50.4 32.9 6.0 1.5 9.3
37.5 42.7 6.0 1.9 12.0
25.9 49.1 5.9 2.2 17.0
14.0 57.4 5.1 2.6 21.0
4.5 63.1 3.8 2.9 25.7


The best known solution is p∗1 = 5.9256e-5, p∗2 = 2.9632e-5, p∗3 = 2.0450e-5,

p∗4 = 2.7473e-4, p∗5 = 4.0073e-5 with optimal value f∗(p) = 19.872.

Hereafter, the performance of EM algorithm will be tested when solving the
hard optimization problem from the chemical and bio-process engineering area
- the isomerization of α-pinene problem.

We used EM as described in Section 3 with the default parameters: popula-
tion size of 20 points, m = 20, δlocal = 1e − 3 and MaxLocalIterations=5. The
lower bounds considered for the five parameters arise from physical considera-
tions, pi ≥ 0, and we took the upper bounds to be pi ≤ 5e-4, for i = 1, . . . , 5.

Table 6 shows the average results obtained with EM, among 10 independent
runs, when running the code with a time limit of 50 seconds.

Table 6. EM solutions after 50 seconds.

fbest fmedian fworst Nfeavg Itavg
EM 19.874010 20.325178 21.805897 4070 147

The best solution found by EM gives p1 =5.9260e-05, p2 =2.9632e-05,
p3 =2.0470e-05, p4 = 2.7425e-04, p5 =3.9906e-05 and was found after 3824
function evaluations and 147 EM iterations. The variable values of the best so-
lution obtained are represented in Fig. 3. Fig. 4 depicts the convergence curve
of the objective function value along the iterations and the stopping criterion
levels of the optimization process. The relation between experimental data and
the predicted values of the α-pinene using the EM best solution is illustrated in
Fig. 5.

In the following, we intend to compare the results obtained with the imple-
mented EM algorithm when solving the problem of isomerization of α-pinene,
with the ones obtained with GA and SA packages available in the Matlab Global
Optimization Toolbox, using the default parameter values. Table 7 reports the
best, fbest, the average, favg, the worst, fworst, solution values and the average
number of function evaluations, Navg, of the 10 runs. Each run was limited to
50 seconds, as the stopping condition for all the stochastic solvers.
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Fig. 3. Best solution found by EM for thermal isomerization of α-pinene.
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Fig. 4. Convergence curves for the α-pinene case study.

From Table 7 we may conclude that EM algorithm achieved more accurate
solutions with less computational effort, when compared with GA and SA algo-
rithms.
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Fig. 5. Experimental data versus model prediction for the α-pinene case study.

Table 7. Comparison results for the isomerization of α-pinene problem.

Solver fbest favg fworst Navg

EM 19.874010 20.549177 21.805897 4070
GA 20.414430 167.137782 817.643129 4350
SA 24.718882 54.241137 108.635052 3982

In [7], we can find the solution obtained with the SSm method, a Scatter
Search procedure with an improvement method, when solving the α-pinene:
fbest = 19.872000, favg = 24.747000, fworst = 68.613000 and Navg = 1144.
In fact, SSm reached the known global minimum but we remark that the im-
provement method used a gradient-based method implemented in the fmincon
command of Matlab. However, the average results obtained with EM are more
closer to the global optimal solution, with a standard deviation of 0.73279 of the
ten best solutions found. Moreover, the relative error of the best solution found
by EM algorithm was 1e-4 .Thus, EM gives competitive results when comparing
with the SSm method, and was able to get good solution to the isomerization of
α-pinene problem.

5 Conclusions and Future Work

In this paper, we implemented the EM algorithm in the Matlab R© environment
as a useful function for the scientific community with similar syntax to other op-
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timization functions there already available. The implementation was considered
successfully when tested under a set of benchmark problems that were solved
and compared with other stochastic and derivative-free methods available in the
Global Optimization Toolbox of Matlab. The implementation is freely available
at http://www.norg.uminho.pt/arocha/code.htm.

The application of the EM algorithm for solving the hard isomerization of
α-pinene problem showed good and competitive results when comparing with
the other solvers in the Global Optimization Toolbox. This example shows how
important it is to optimize mathematical models. The optimization plays a key
role on systems biology. This parameter estimation problem was taken form the
real world, and it could bring many advantages, to reduce costs of experimental
measurements, for example.

In the future, we intend to integrate EM in the Matlab Optimization Graph-
ical Interface, creating a user-friendly interface. As other global optimization
functions available in the global optimization toolbox, we want to include hy-
brid functions to improve the quality of the solutions. The final purpose is to
include the EM code as a Matlab built-in function in the Global Optimization
Toolbox for unconstrained optimization problems.
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