
RESEARCH ARTICLE

Testing Nelder-Mead Based Repulsion
Algorithms for Multiple Roots of Nonlinear
Systems via a Two-Level Factorial Design of
Experiments
Gisela C. V. Ramadas1☯*, Ana Maria A. C. Rocha2☯, Edite M. G. P. Fernandes2

1Department of Mathematics, School of Engineering, Polytechnic of Porto, 4200-072 Porto, Portugal,
2 ALGORITMI Research Centre, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal

☯ These authors contributed equally to this work.
* gcv@isep.ipp.pt

Abstract
This paper addresses the challenging task of computing multiple roots of a system of nonlin-

ear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search meth-

od and uses a penalty-type merit function based on the error function, known as ‘erf’, is

presented. In the N-M algorithm context, different strategies are proposed to enhance the

quality of the solutions and improve the overall efficiency. The main goal of this paper is to

use a two-level factorial design of experiments to analyze the statistical significance of the

observed differences in selected performance criteria produced when testing different strat-

egies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level

factorial design of experiments to analyze the statistical significance of the observed differ-

ences in selected performance criteria produced when testing different strategies in the N-

M based repulsion algorithm.

Introduction
In this paper, we aim to investigate the performance of a repulsion algorithm that is based on a
penalty function and the Nelder-Mead (N-M) [1] local search procedure to compute multiple
roots of a system of nonlinear equations of the form

f ðxÞ ¼ 0; ð1Þ
where f(x) = (f1(x), f2(x), . . ., fn(x))

T, each fi : O� R
n! R, i = 1, . . ., n is a continuous and pos-

sibly nonlinear function in the search space, and O is a closed convex set defined as [l, u] = {x:
−1< li� xi� ui <1, i = 1, . . ., n}. Since we do not assume that the functions fi(x), i = 1, . . .,
n are differentiable, neither analytical nor numerical derivatives are used. To compute a solu-
tion of a nonlinear system of equations is equivalent to compute a global minimizer of the

PLOSONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 1 / 30

a11111

OPEN ACCESS

Citation: Ramadas GCV, Rocha AMAC, Fernandes
EMGP (2015) Testing Nelder-Mead Based Repulsion
Algorithms for Multiple Roots of Nonlinear Systems
via a Two-Level Factorial Design of Experiments.
PLoS ONE 10(4): e0121844. doi:10.1371/journal.
pone.0121844

Academic Editor: Fabio Rapallo, University of East
Piedmont, ITALY

Received: October 11, 2014

Accepted: February 16, 2015

Published: April 13, 2015

Copyright: © 2015 Ramadas et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work has been supported by CIDEM
(Centre for Research & Development in Mechanical
Engineering, Portugal) and FCT (Fundação para a
Ciência e Tecnologia) within the Projects Scope:
PEst-OE/EME/UI0615/2014 and PEst-OE/EEI/
UI0319/2014. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0121844&domain=pdf
http://creativecommons.org/licenses/by/4.0/


optimization problem

min
x2O�Rn

MðxÞ �
Xn

i¼1
fiðxÞ2; ð2Þ

in the sense that they have the same solutions. Thus, a global minimizer and not just a local
one, of the functionM(x), known as merit function, in the set O, is required. Although finding
a single root of a system of nonlinear equations is a trivial task, finding all roots is one of the
most demanding problems. Multistart methods are stochastic techniques that have been used
to compute multiple solutions to problems [2, 3]. In a multistart strategy, a local search proce-
dure is applied to a set of randomly generated points of the search space to converge sequen-
tially along the iterations to the multiple solutions of the problem, in a single run. However, the
same solutions may be located over and over again along the iterations resulting in a very ex-
pensive process. Other recent approaches combine metaheuristics with techniques that modify
the merit function (2) as solutions are being found [4–8]. Mostly, the techniques rely on the as-
signment of a penalty term to each previously computed root so that a repulsion area around
each previously computed root is created. The repulsion areas force the algorithm to move to
other areas of the search space and look for other roots, avoiding repeated convergence to al-
ready located solutions. The main idea of this type of methods, designated by repulsion meth-
od, is to solve a sequence of global optimization problems aiming to minimize the modified
merit functionM that creates a repulsion area around each computed solution ξi, for i = 1, . . .,
Nr, where Nr represents the number of previously computed minimizers, as follows

min
x2O�Rn

�MðxÞ � MðxÞ þ
XNr

i¼1
Pðx; xi; � � �Þ: ð3Þ

The function P(x;ξi, � � �) is the penalty term that depends on ξi and one or more parameters [6–
8]. The goal of these parameters is to adjust the penalty for already located minimizers. They
may be used to reduce the radius of the repulsion area or to highly penalize the proximity to
located solutions.

In this study, we further explore this penalty-type approach to create repulsion areas around
previously detected roots and propose a repulsion algorithm that is capable of computing mul-
tiple roots of a system of nonlinear equations invoking the N-M local procedure with modified
merit functions. The herein proposed repulsion algorithm is of a stochastic nature in the sense
that a sequence of points are randomly generated inside the search space O aiming to increase
the exploration ability of the algorithm. The exploitation ability of the algorithm is carried out
by implementing the N-M local search starting from each of the generated points. The N-M
method is a derivative-free local search procedure that is capable of converging to a minimizer
of a merit function, provided that a good initial approximation is given, with a reduced compu-
tational effort when compared with most metaheuristics available in the literature.

Design of experiments (DoE) is a powerful statistical tool that is capable of developing an
experimentation strategy to learn and identify crucial factors that influence experimental data,
using a minimum of resources [9, 10]. Our main challenge here is to analyze the effect of im-
posing slightly different strategies on the classical N-M algorithm, namely

• randomly generating points for the initial simplex when they fall outside the search space O;

• dynamically setting the simplex parameters to generate expansion, contraction and shrinkage
vertices;

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 2 / 30

Competing Interests: The authors have declared
that no competing interests exist.



• generating renewal positions for randomly selected vertices of the simplex to overcome sim-
plex degeneracy;

• generating vertices around the best vertex according to the Lévy distribution to replace the
classical shrinkage of the simplex.

We aim to conclude if the observed differences in the performance, measured by different crite-
ria, are considered statistically significant, or are they just explained by normal variation like
noise. Usual performance criteria measure robustness and efficiency. For robustness, we con-
sider the percentage of runs that converge to all roots of the system of equations, and for effi-
ciency, we use the number of function evaluations and time required to compute each root.

The paper is organized as follows. First, we address the proposed repulsion algorithm based
on an ‘erf’ penalty merit function; second, a summary of the main steps of the classical N-M al-
gorithm, as well as the description of different strategies for testing and performance assess-
ment are presented. Afterwards, a two-level factorial DoE is introduced and the corresponding
statistical analysis is carried out. Finally, a performance comparison is reported and the conclu-
sions are presented.

Repulsion algorithm
This section aims to briefly describe a penalty-type approach to create repulsion areas around
previously computed roots of a system of nonlinear equations, so that convergence to already
located solutions is avoided. Algorithms based on repulsion merit functions have been used for
locating multiple roots of systems of equations [6, 8]. The merits of a repulsion algorithm are
that multiple roots can be located with a reduced computational effort in a single run of the al-
gorithm. The pseudo code of the repulsion algorithm is presented in Algorithm 1 in Table 1.

The algorithm solves a sequence of global optimization problems by invoking a local search
procedure that is capable of locating a local minimizer of a merit function. This function is
modified as the roots are located. See steps 1 and 1 of Algorithm 1 in Table 1. The first call to
the local search considers the original merit function (2). Thereafter the merit function is mod-
ified to avoid locating previously computed minimizers.

In the algorithm, ‘kR’ is the iteration counter, ‘X’ is the set where the roots are saved, ‘Nr’

contains the number of located roots so far, ‘r1, . . ., rNr
’ are variables that contain the number

of times each root is relocated and ‘kuns’ represents the number of consecutive unsuccessful it-
erations, i.e., consecutive iterations that are not able to find any new root. To identify a root of
the system the algorithm requires that its merit function value is under 10−10. A located root ξ
is considered to be different from the previously computed roots ξi, i = 1, . . ., Nr (saved in X) if
kξ−ξik> �, for all i = 1, . . ., Nr, where � is a small positive error tolerance.

The repulsion algorithm terminates when a maximum number of iterations, kRmax, is ex-
ceeded or when a pre-specified number of consecutive iterations (15, in this algorithm) are not
able to locate any new root. Thus, if

kR > kRmax or kuns > 15

the algorithm stops.
The algorithm explores the search space by randomly generating points in O in a sequential

manner (see steps 1 and 1 of the algorithm). Starting from the sampled point y, the algorithm
exploits the region in order to locate a minimizer of the merit/modified merit function by in-
voking a local search procedure (see steps 1 and 1 of Algorithm 1 in Table 1). Since the goal is
to produce a derivative-free effective algorithm for locating multiple roots, our proposal for

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 3 / 30



computing a minimizer of the merit function, given a sampled point y, is the N-M local proce-
dure. This is the subject of the next section.

The herein implemented penalty-type merit function is based on the error function, known
as ‘erf’, which is a mathematical function defined by the integral

erf ðxÞ ¼ 2ffiffiffi
p
p

Z x

0

e�t
2

dt;

and satisfies the following properties erf(0) = 0, erf(−1) = −1, erf(+1) = 1 and erf(−x) = −erf
(x). In a penalty function context aiming to prevent convergence to a located root ξi, thus defin-
ing a repulsion area around it, the newly developed ‘erf’ penalty term is:

Pðx; xi; d; rÞ ¼
d 1�erf ðk x � xi kÞð Þ;

if k x � xi k� r

0; otherwise

ð4Þ

8><
>:

which depends on the parameter δ> 0 to scale the penalty for approaching the already com-
puted solution ξi and on the parameter ρ to adjust the radius of the repulsion area. To better
understand the effect of the ‘erf’ penalty around 0, we plot in Fig 1 the function (4) for different
values of the parameter δ (1, 10 and 100).

Table 1. Algorithm 1.

Require: kRmax > 0, ε > 0;

1: Set Ξ = ;, kR = 0, kuns = 0, Nr = 0;

2: Randomly generate y in Ω;

3: Given y, compute ξ1 = arg minx2Ω M(x);

4: if ξ1 is a root then

5: Set Nr = 1, r1 = 1, Ξ = Ξ [ ξ1;

6: else

7: Set kuns = kuns + 1;

8: end if

9: while stopping conditions are not met do

10: Randomly generate y in Ω;

11: Given y, compute x ¼ argminx2O
�M�ðxÞ

12: if ξ is a root then

13: if ξ =2 Ξ then

14: Set Nr = Nr + 1, ξNr
= ξ, rNr

= 1, Ξ = Ξ [ ξNr
;

15: else

16: Set rl = rl + 1 (ξl 2 Ξ);

17: end if

18: kuns = 0;

19: else

20: Set kuns = kuns + 1;

21: end if

22: Set kR = kR + 1;

23: end while

Repulsion Algorithm

doi:10.1371/journal.pone.0121844.t001

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 4 / 30



We note that the penalty term tends to δ when x approaches a root ξi, meaning that δ should
be made large enough so that ξi is no longer a minimizer of the modified penalty merit func-
tion. Further, as xmoves away from ξi, the penalty P(x;ξi, δ, ρ)! 0 meaning that the modified
merit functionMðxÞ ¼ MðxÞ þ Pðx; xi; d; rÞ is not affected when x is far from a previously
located root.

N-M Algorithm Variants
The N-M algorithm, also known as simplex search algorithm, originally published in 1965 [1],
is probably the best known algorithm for multidimensional derivative-free optimization, and is
an improvement over the Spendley’s et al. method [11].

In R
n, the N-M algorithm uses a set of n+1 vertices, by now denoted by x1, x2, . . ., xn, xn+1,

to define a simplex, which is an n-dimensional polytope—the convex hull of its n+1 vertices.
The algorithm moves at least one vertex per iteration defining a new simplex for the next itera-
tion. The main idea is to maintain at each iteration a nondegenerate simplex, i.e., a geometric
figure in R

n of nonzero volume. In [11], either a reflection or a shrink step is performed so that
the shape of the simplex does not change along the iterative process. In general, a reflection
step is performed when the current simplex is far from the solution, while a shrink step is per-
formed when the simplex is close to the solution. In terms of computational effort, when a re-
flection step is performed only one or two function evaluations are required, while when a
shrink step is performed, n function evaluations are required.

The initial simplex could be computed by performing small perturbations around an initial
guess point. Thus, given x1, an approximation to the minimizer ofM (or, it may be a randomly
generated point in O), the other n vertices are usually generated along the unit coordinate vec-
tors ej 2 R

n with a fixed step size "e 2 (0,1] (at an equal distance relative to x1) as follows:

xj ¼ x1 þ "eej�1 ; j ¼ 2; . . . ; nþ 1:

Fig 1. The ‘erf’ penalty for different δ.

doi:10.1371/journal.pone.0121844.g001

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 5 / 30



It has been observed that using short edges in the initial simplex is a good strategy for small di-
mensional problems [12]. Although this is the most popular rule to generate the initial simplex,
when the problem contains bound constraints, some (or all) components of the other vertices
xj (j = 2, . . ., n+1) may fall outside the search space O, even if x1 is inside. Two possible ways of
restoring feasibility are: (i) project the component of the point onto the boundary of O, as
shown in Algorithm 2 in Table 2; or (ii) randomly generate the component of the point inside
O, as described in Algorithm 3 in Table 3, where τ is a uniformly distributed random number
in [0, 1] (τ* U[0, 1]).

To define a set of candidate points to be a vertex of the simplex of the next iteration, the sim-
plex is ordered so thatM(z1)�M(z2)� � � �M(zn)�M(zn+1), where z1 is termed the best ver-
tex, zn+1 the worst vertex and zn the second-worst (or next-worst) of the simplex. Note that
simplex ordering relabels the vertices according to merit function value and are now repre-
sented by z1, z2, . . ., zn, zn+1. Let the centroid of the n best vertices be defined by

�x ¼ 1

n

Xn

i¼1
zi

Table 2. Algorithm 2.

Require: n εe > 0, x1 2 [l, u]

1: Set ej to jth. column of the identify matrix, for j = 1, . . ., n

2: for all j = 2, . . ., n + 1 do

3: compute xj = x1 + εeej–1
4: for all i = 1, . . ., n do

5: if xji < li then

6: Set xji ¼ li
7: else if xji > ui then

8: Set xji ¼ ui

9: end if

10: end for

11: end for

Initialization with projection

doi:10.1371/journal.pone.0121844.t002

Table 3. Algorithm 3.

Require: n, εe > 0, x1 2 [l, u]

1: Set ej to jth. column of the identify matrix, for j = 1, . . ., n

2: for all j = 2, . . ., n + 1 do

3: compute xj = x1 + εeej–1
4: for all i = 1, . . ., n do

5: if xji < li or x
j
i > ui then

6: Compute xji ¼ li þ tðui � liÞ
7: end if

8: end for

9: end for

Initialization with random components

doi:10.1371/journal.pone.0121844.t003

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 6 / 30



then the new candidate points to a vertex are defined along the line defined by �x and zn+1. They
are constructed componentwise as follows

xr;j
xe;j
xoc;j
xic;j

9>>>>=
>>>>;
¼ �xj þ g �xj � znþ1j

� �
ð5Þ

for j = 1, . . ., n, where xr, xe, xoc and xic, usually referred to as reflection vertex, expansion ver-
tex, outer contraction vertex and inner contraction vertex, are obtained setting γ to γr, γe, γoc
and γic respectively. We remark that the algorithm checks if the component of the vector in (5)
stays inside O; otherwise, a projection onto the boundary is carried out. The rules that are used
to accept one of the above referred candidate points are directed related with their objective
function values relative to the function values of the best vertex, second-worst vertex and worst
vertex, are shown in Algorithm 4 in Table 4, and are according to [13]. There might be some
differences in the literature, for instances in [1]. When one of these vertices is accepted, the
worst vertex is discarded and the new point takes the position of a vertex of the simplex for the
next iteration.

In classical versions of the N-Mmethod [1, 13–17], when none of these vertices is accepted,
according to the rules described in Algorithm 4 in Table 4, the simplex is shrunk towards the
best vertex by using

xij ¼ z1j þ gsðzij � z1j Þ ð6Þ

for i = 2, . . ., n+1 and j = 1, . . ., n. According to [1], the simplex γ parameters that give the step
size to generate the points in (5) and (6) must satisfy 0< γr < γe, γe > 1, −1< γic < 0< γoc < 1
and 0< γs < 1. The most commonly used values for the parameters are:

gr ¼ 1; ge ¼ 2; goc ¼ 0:5; gic ¼ �goc; gs ¼ 0:5 : ð7Þ
The examples reported in [15] showing that N-Mmay converge to a non-critical point of a

strictly convex objective function are well-known in the community. N-M is one of the most
popular direct search method and has shown to behave rather well when solving small dimen-
sional problems. Although it has been used in many scientific and engineering applications,
there are just a few works on the convergence properties of the algorithm [12, 13, 15, 16]. The
performance of N-M gets worse as n increases. The authors in [12] prove that the efficiency of
the expansion and contraction steps diminishes as n increases when N-M relies on the standard
parameter values (see in (7)) to solve uniformly convex objective functions. Thus, values for
the γ parameters for expansion, contraction and shrinking, dependent on n, are proposed in
[12] to improve convergence. The golden ratio represented by the Greek letter F has been used
in many practical situation to bring balance and harmony in life. It is a real number and is the
unique positive solution of the quadratic equation F2−F−1 = 0. Here, we propose to define the

N-M γ parameters using the golden value F ¼
ffiffi
5
p þ1

2
and n in order to have balanced expanded

and reduced simplices, as follows:

gr ¼ 1; ge ¼ Fþ 1

n
; goc ¼ F� 1� 1

n
;

gic ¼ �goc; gs ¼ F� 1� 1

n
:

ð8Þ

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 7 / 30



Note that we propose to use γr = 1 in order to keep the isometric reflection since this is crucial
for good performance [12, 16]. We also remark that expansion, contraction and shrinkage ver-
tices are obtained from (5) and (6), using (8) to define the associated parameters dependent on
the problem’s dimension. The goal is to reduce the simplex in a smoother way.

Table 4. Algorithm 4.

Require: n, kmax, ε, x
1 2 Ω

1: Set k = 0

2: Generate the remaining n vertices x2, . . ., xn+1 using Algorithm 2 in Table 2 or Algorithm 3 in Table 3

3: Order the simplex: M(z1) � M(z2) � � � � M(zn) � M(zn+1)

4: Define the simplex parameters by (7) or (8)

5: while M(z1) > 10-10 and k � kmax do

6: Compute V and det(V) (see (9))

7: if simplex has collapsed then

8: ‘break’ or generate vertices using (11) with probability 0.75

9: Order the simplex: M(z1) � M(z2) � � � � M(zn) � M(zn+1)

10: end if

11: Compute xr using (5) and evaluate M(xr)

12: if M(xr) < M(z1) then

13: Compute xe using (5) and evaluate M(xe)

14: if M(xe) < M(xr) then

15: Accept xe
16: else

17: Accept xr
18: end if

19: else if M(z1) � M(xr) < M(zn) then

20: Accept xr
21: else if M(zn) � M(xr) < M(zn+1) then

22: Compute xoc using (5) and evaluate M(xoc)

23: if M(xoc) � M(xr) then

24: Accept xoc
25: else

26: x1 z1 and compute xi, i = 2, 3, . . ., n + 1 using (6) or (12)

27: end if

28: else

29: Compute xic using (5) and evaluate M(xic)

30: if M(xic) � M(zn+1) then

31: Accept xic
32: else

33: x1 z1 and compute xi, i = 2, 3, . . ., n + 1 using (6) or (12)

34: end if

35: end if

36: Order the simplex: M(z1) � M(z2) � � � � M(zn) � M(zn+1)

37: Set k = k + 1

38: end while

N-M Algorithm

doi:10.1371/journal.pone.0121844.t004

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 8 / 30



The major difficulty with the N-Mmethod is that a sequence of simplices can come arbi-
trarily close to degeneracy. Let V be the n×nmatrix with n-vector columns v1, v2, . . ., vn where

V � v1 � � � vnð Þ ¼
z21 � z11 � � � znþ11 � z11

. .
.

z2n � z1n � � � znþ1n � z1n

0
BB@

1
CCA ð9Þ

and det(V) denote the determinant of V. To keep the interior angles of the simplex bounded
away from 0, the following condition has to be maintained along the process

detðVÞj j � �v
Yn
j¼1
k vj k ð10Þ

where �v is a small positive constant. When (10) fails to be satisfied, the simplex has collapsed
and needs to be reshaped. The simplest option is to ‘break’ the iterative process and return to
the main repulsion algorithm with no solution. Here, we are interested in testing a renewal
strategy that aims to keep the best vertex and has a 75% chance of changing the remaining n
vertices (i = 2, . . ., n + 1), componentwise, as follows:

xij ¼ z1j � tFðuj � ljÞ ð11Þ

using again the golden ratio to balance the step size of the move around z1. If the generated
components fall outside O, a projection onto the boundary is carried out.

When none of the xr, xe, xoc and xic vertices is accepted, a procedure based on the randomly
generation of points according to a Lévy distribution is also proposed. This is a stable and
heavy-tailed distribution that is able to provide occasionally long movements. Similarly to the
classical shrinkage procedure (6), the best vertex is maintained, and the other n vertices are
generated around z1:

xij ¼ z1j þ LðaÞsi
j ; ð12Þ

for i = 2, . . ., n+1 and j = 1, . . ., n, where L(α) is a random number from the standard Lévy dis-
tribution, with location parameter equals to 0, a unit scale parameter, and the shape parameter
α = 0.5. Again, if the components fall outside O, a projection onto the boundary is carried out.
The vector σi in (12) represents the variation around z1

si ¼ jzi1 � z11j; . . . ; jzin � z1nj
� �T

:

Two-Level Factorial DoE
In this section, we aim to use a two-level factorial DoE to analyze the effect of imposing the
above referred strategies on the N-M algorithm, as well as to know if the observed differences
in selected performance criteria are considered statistically significant or are they just due to
random variations from normal distribution. Some notation and terminology related to facto-
rial DoE will be introduced. In the previous section, we considered different strategies that can
be implemented and manipulated within the N-M algorithm, in order to improve its perfor-
mance. We aim to analyze the effect of those strategies—hereafter denoted by ‘factor levels’ or
‘treatments’—on the performance of the algorithm. For the design of an experiment, the fol-
lowing main steps must be carried out [9, 10]:

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 9 / 30



• formulation of the statistical hypotheses;

• definition of the factors and their levels (independent variables) and the measurements (re-
sponse or dependent variables) to be recorded;

• specification of the number of experimental units;

• specification of the randomization process to assign the experimental units to the treatments;

• determination of the statistical analysis.

The simplest DoE involves randomly assigning experimental units to a factor with two or
more levels. However, when more than one factor require to be analyzed, a factorial DoE is
preferable. The simplest one involves two factors, each at two levels, denoted by two-by-two de-
sign. To analyze the two factor effects—named ‘A’ and ‘B’ –, a set of four experimental condi-
tions should be analyzed. Let us denote the two levels of each factor by ‘low’ (or ‘-1’) and ‘high’
(or ‘+1’). Then, the first experiment combines the low level of A with the low level of B, the sec-
ond combines the high level of A with the low level of B, the third combines the low level of A
with the high level of B, and the fourth combines the high levels of both A and B. Although fac-
torial experiments can involve factors with different number of levels, we are interested in a de-
sign where all factors have two levels. We plan to use a factorial DoE with four factors, each at
two levels, and overall 24 experimental conditions are to be conducted. In the statistical field,
each experimental condition represents a different ‘treatment’ protocol.

We have chosen sixteen problems with different characteristics, dimensions and different
number of roots to test the 24 ‘treatments’. The problems and the number of roots are listed in
Table 5 and are available in the literature [3, 5, 6, 8, 18, 19]. Due to the stochastic nature of the
repulsion algorithm, from which N-M is invoked, we run each ‘treatment’ 30 times with each
problem. The results are averaged over the 30 runs for each problem.

Three response variables are considered to analyze the performance of the algorithm
variants:

• the proportion of successful runs, ranging from 0 to 1, and hereafter denoted by Yp;

• the number of function evaluations to locate each root, ranging from 0 to 1500, denoted
by Ye;

• the time (in seconds) to locate each root, ranging from 0 to 1, denoted by Yt.

To compute Yp, a run is considered to be successful if all the roots are located at that run. To
take into consideration the diversity of problems, the values of the above response variables for
the statistical analysis are averaged over the sixteen problems. At the end, for each ‘treatment’
an average value of a total of 480 results is considered in this experiment.

Parameters setting
All the experiments were carried out in a PC Intel Core 2 Duo Processor E7500 with 2.9GHz
and 4Gb of memory. The algorithms were coded in Matlab Version 8.0.0.783 (R2012b). The
parameters have been set after an empirical study. For the Algorithm 1, we consider: kRmax =
50, � = 0.005, δ = 100 and ρ = min{ρ�, minikx−ξik}, where ρ� is set to 1 for the Geometry prob-
lem, to 0.1 for Trans, Parsopoulos and NonDif problems, to 0.001 for NonD2, Floudas and
Robot and to 0.01 for the remaining problems. In the N-M algorithm, we use "e = 0.1, �v = 10−8

and kmax depends on the problem’s dimension and is set to 100n2.

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 10 / 30



Table 5. Problems set.

NonD2 f1 ¼ x21 � x22
f2 = 1 − jx1 − x2j
2 roots in [−3, 3]2

Trans f1 ¼ x21 � x2 � 2

f2 = x1 + sin(πx2/2)

3 roots in [−3, 3]2

Himmelblau f1 ¼ 4x31 þ 4x1x2 þ 2x22 � 42x1 � 14

f2 ¼ 4x32 þ 4x1x2 þ 2x21 � 26x2 � 22

9 roots in [−5, 5]2

Geometry f1 = x1 x2 + (x1 − 2x3)(x2 − 2x3) − 165

f2 ¼ ðx1x32Þ=12� ðx1 � 2x3Þðx2 � 2x3Þ3=12� 9369

f3 = (2(x2 − x3)
2(x1 − x3)

2 x3)/(x1 + x2 − 2x3) − 6835

2 roots in [0, 50]3

Floudas f1 = (0.25/π)x2 + 0.5x1 − 0.5 sin(x1 x2)

f2 ¼ ðe=pÞx2 � 2ex1 þ ð1� 0:25=pÞðe2x1 � eÞ
2 roots in [0.25, 1] × [1.5, 2π]

Merlet f1 = − sin(x1) cos(x2) − 2 cos(x1) sin(x2)

f2 = − cos(x1) sin(x2) − 2 sin(x1) cos(x2)

13 roots in [0, 2π]2

Reactor f1 = (1 − R) (D/(10(1 + B1)) − x1) e
10x1/(1 + 10x1/γ)

− x1
f2 = (1 − R) (D/10 − B1 x1 − (1 + B2)x2))e

10x2/(1 + 10x2/γ) + x1 − (1 + B2)x2 with D = 22, B1 = B2 = 2, R = 0.960 and γ =
1000

7 roots in [0, 1]2

P1syst f1 = x1 + x2 − 3

f2 ¼ x21 þ x22 � 9

2 roots in [−3, 3]2

Papersys f1 = x1 − sin(2x1 + 3x2) − cos(3x1 − 5x2)

f2 = x2 − sin(x1 − 2x2) + cos(x1 + 3x2)

3 roots in [−3, 3]2

Casestudy5 f1 ¼ ex2
1 � 8x1sinðx2Þ

f2 = x1 + x2 − 1

f3 = (x3 − 1)3

2 roots in [0, 1]3

Casestudy7 f1 ¼ x31 � 3x1x
2
2 � 1

f2 ¼ 3x21x2 � x32 þ 1

3 roots in [−1, 2]2

Parsopoulos f1 = cos(x1)

f2 = sin(x2)

12 roots in [−5, 5]2

Robot f1 = −0.1238x1 + x7 − 0.001637x2 − 0.9338x4 + 0.004731x1 x3 − 0.3578x2 x3 − 0.3571

f2 = 0.2638x1 − x7 − 0.07745x2 − 0.6734x4 + 0.2238x1 x3 + 0.7623x2 x3 − 0.6022

f3 = 0.3578x1 + 0.004731x2 + x6 x8 f4 = −0.7623x1 + 0.2238x2 + 0.3461

f5 ¼ x21 þ x22 � 1 f6 ¼ x2
3 þ x24 � 1

f7 ¼ x25 þ x26 � 1 f8 ¼ x2
7 þ x28 � 1

16 roots in [−1, 1]8

NonDif f1 ¼ 3� x1x
2
3

f2 = x3 sin(π/x2) − x3 − x4
f3 ¼ �x2x3e1�x1x3 þ 0:2707

f4 ¼ 2x21x3 � x42x3 � x2
1 root in [0, 4]4

Ex5_6 f1 ¼ x21 þ x22 þ x23 � 9

f2 = x1 x2 x3 − 1

f3 ¼ x1 þ x2 � x23
2 roots in [0, 3]3

Manipulator f ¼ 3:9852� 10:039x2 þ 7:2338x4 � 1:17775x6 þ ð�8:8575x þ 20:091x3 � 11:177x5Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

6 roots in [−1, 1]

Problems set

doi:10.1371/journal.pone.0121844.t005

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 11 / 30



Factor and interaction effects
The four factors, denoted for simplicity by A, B, C and D, that are manipulated in the N-M al-
gorithm in order to analyze the effect on the performance of the repulsion algorithm are
the following.

Factor A is directly related with the initialization of the simplex. This is a factor of categori-
cal type. Either Algorithm 2 in Table 2 or Algorithm 3 in Table 3 is analyzed. The low level (-1)
of factor A represents the Algorithm 2 and the high level (+1) represents Algorithm 3.

Factor B is related with the values set to the simplex γ parameters and is a numerical type
factor. The standard values in (7) define the low level and the values herein proposed in (8) de-
fine the high level of the factor.

Factor C is related with the strategy to be used to overcome the simplex degeneracy. This is
also a categorical type factor. The low level represents the ‘break’ strategy and the high level
represents the generation of new vertices using (11) with probability 0.75.

Factor D has to do with the adopted strategy when none of the reflection, expansion and
contraction vertices is accepted. The low level represents the usual shrinkage strategy, as shown
in (6), while the high level aims to represent the generation of new vertices by the Lévy distribu-
tion using (12).

The results obtained from the combination of the four factors, each at two levels, are shown
in Table 6. The layout is a standard one, starting with all factors at low levels and ending with
all factors at high levels. Interactions occur when the effect of one factor depends on the level of
the other. They cannot be detected by an one-factor-at-a-time experimentation. This factorial
design also allows the estimation of six 2-factor interactions (AB, AC, AD, BC, BD, CD), four
3-factor interactions (ABC, ABD, ACD, BCD) and one 4-factor interaction (ABCD), a total of
15 effects. (The most we can estimate from a ‘four factors at two levels’ DoE, because 1 degree
of freedom is used to estimate the overall mean.) The ± signs for interaction effects are comput-
ed by multiplying the signs of the factors involved in the interaction. After conducting the ex-
periments, the observed averaged values of the response variables are reported in the last three
columns of Table 6.

Replication is an important principle in experimentation and is concerned with using more
than one experimental unit under the same conditions. When replication is used, error effects
can be estimated. Although we have multiple response observations taken at the same factor
levels, they cannot be considered replications since these would have been recorded in a ran-
dom order. Furthermore, the stochastic nature of the repulsion algorithm dictates that the ex-
perimental conditions would not be at all the same over the replications.

Let Yi represent the average value of all the obtained results when treatment i is conducted
(i ¼ 1; . . . ; 2Nf ). To estimate the effect of each factor or interaction on each response variable
(Yp, Ye and Yt), we analyze the difference or contrast between the average of the highs and the
average of the lows. Mathematically, the effect can be estimated using

Ee ¼
1

2Nf�1 �Y1 � Y2 � � � � � Y2
Nf

� �
ð13Þ

where Nf represents the number of factors in this two-level analysis, each ± sign corresponds to

the sign of the respective factor/interaction column in Table 6 and the Y1; . . . ;Y2
Nf
are the av-

eraged values obtained for each associated response variable, during the 2Nf conducted
‘treatments’.

The estimated effects computed by (13) are shown in the last three rows of Table 6. It looks
like factor C has a high impact on the response variable Yp, with Ee = 0.158, (which aims to
measure algorithm robustness) and factor B has a moderate effect on Yp (Ee = 0.024). Factors A

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 12 / 30



T
ab

le
6.

L
ay

o
u
tf
o
r
th
e
24

fa
ct
o
ri
al

d
es

ig
n
.

‘t
re
at
m
en

t’
fa
ct
o
r
ef
fe
ct
s

in
te
ra
ct
io
n
ef
fe
ct
s

re
sp

o
n
se

A
B

C
D

A
B

A
C

A
D

B
C

B
D

C
D

A
B
C

A
B
D

A
C
D

B
C
D

A
B
C
D

Y
p

Y
e

Y
t

1
-1

-1
-1

-1
1

1
1

1
1

1
-1

-1
-1

-1
1

0.
55

20
9.
2

0.
02

8

2
1

-1
-1

-1
-1

-1
-1

1
1

1
1

1
1

-1
-1

0.
57

20
7.
9

0.
02

8

3
-1

1
-1

-1
-1

1
1

-1
-1

1
1

1
-1

1
-1

0.
56

28
6.
6

0.
03

6

4
1

1
-1

-1
1

-1
-1

-1
-1

1
-1

-1
1

1
1

0.
58

28
3.
6

0.
03

5

5
-1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

1
-1

0.
69

29
2.
3

0.
03

7

6
1

-1
1

-1
-1

1
-1

-1
1

-1
-1

1
-1

1
1

0.
68

30
5.
4

0.
03

7

7
-1

1
1

-1
-1

-1
1

1
-1

-1
-1

1
1

-1
1

0.
72

39
1.
7

0.
04

7

8
1

1
1

-1
1

1
-1

1
-1

-1
1

-1
-1

-1
-1

0.
77

40
0.
4

0.
04

8

9
-1

-1
-1

1
1

1
-1

1
-1

-1
-1

1
1

1
-1

0.
57

20
1.
0

0.
02

7

10
1

-1
-1

1
-1

-1
1

1
-1

-1
1

-1
-1

1
1

0.
56

20
3.
1

0.
02

7

11
-1

1
-1

1
-1

1
-1

-1
1

-1
1

-1
1

-1
1

0.
58

30
2.
7

0.
03

6

12
1

1
-1

1
1

-1
1

-1
1

-1
-1

1
-1

-1
-1

0.
56

29
3.
1

0.
03

6

13
-1

-1
1

1
1

-1
-1

-1
-1

1
1

1
-1

-1
1

0.
72

34
5.
7

0.
04

2

14
1

-1
1

1
-1

1
1

-1
-1

1
-1

-1
1

-1
-1

0.
73

33
4.
3

0.
04

1

15
-1

1
1

1
-1

-1
-1

1
1

1
-1

-1
-1

1
-1

0.
74

40
9.
6

0.
05

0

16
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0.
74

38
9.
9

0.
04

6

E
e
on

Y
p

0.
01

0
0.
02

4
0.
15

8
0.
01

0
0.
00

5
0.
00

5
-0
.0
12

0.
01

3
-0
.0
14

0.
00

8
0.
00

6
-0
.0
08

0.
00

7
-0
.0
11

-0
.0
06

E
e
on

Y
e

-2
.6
28

82
.3
15

11
0.
26

0
12

.7
67

-3
.2
37

0.
29

7
-7
.0
03

-3
.8
82

-4
.5
26

9.
63

7
0.
07

7
-1
.7
31

-6
.2
34

-1
4.
18

5
0.
78

3

E
e
on

Y
t

-0
.0
01

0.
00

83
0.
01

2
0.
00

1
-0
.0
00

4
-0
.0
00

2
-0
.0
01

0.
00

01
-0
.0
00

3
0.
00

2
-0
.0
00

2
-0
.0
01

-0
.0
01

-0
.0
01

-0
.0
00

3

La
yo

ut
fo
r
th
e
24

fa
ct
or
ia
ld

es
ig
n

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
21
84
4.
t0
06

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 13 / 30



and D have very little effect on Yp (with Ee = 0.010 for both factors). Further, factors B and C
have a much larger effect on the variable Ye, with Ee equal to 82.315 and 110.260 respectively,
(which gives algorithm efficiency) than factors A and D (Ee = −2.628 and Ee = 12.767). Finally,
factor C greatly affects variable Yt, with Ee = 0.012, (also measuring the efficiency), when com-
pared with factor B that affects moderately the variable Yt (Ee = 0.0083), while factors A (Ee =
−0.001) and D (Ee = 0.001) have little effect on time.

A simple analysis allows us to conclude that factor C produces the highest effect on the re-
sponse variables. It is noticed that the results obtained when factor C is at the low level are con-
sistently lower than those obtained when C is at high level. This means that when the simplex
collapses, the strategy that generates new vertices using (11) with probability 0.75, when com-
pared with the strategy that ‘breaks’ the cycle: (i) has a positive impact on Yp (with Ee = 0.158),
which is good since the percentage of successful runs increased; (ii) has a positive impact on Ye

(with Ee = 110.260), increasing the number of function evaluations which means that the strat-
egy is computationally more demanding; and (iii) also has a positive impact on Yt (with Ee =
0.012), meaning that the time has increased worsening the efficiency.

A similar reasoning can be applied to the factor B related with the choice of γ parameters re-
ported in (8), when compared with (7), although with a more moderate impact.

As far as the impact of factor A is concerned, we may conclude that Algorithm 3 in Table 3
for the initialization of a feasible simplex, when compared with Algorithm 2 in Table 2: (i) has
slightly increased the percentage of successful runs (with Ee = 0.010); (ii) has a small negative
impact on Ye (with Ee = −2.628), meaning that the number of function evaluations has slightly
decreased; and (iii) also has a small negative impact on time (with Ee = −0.001), i.e., the time
has been reduced.

Finally, factor D has little impact on the response variables. When using the Lévy distribu-
tion to generate the n worst vertices of the simplex, instead of the standard shrinkage strategy,
the percentage of successful runs has slightly increased (with Ee = 0.010), the number of func-
tion evaluations and the time have also suffered small increases (Ee = 12.767 and Ee = 0.001
respectively).

The effects of interactions between factors are estimated using formula (13) as well. Relative
to the variable Yp, the estimated (interaction) effects, Ee, in absolute value, range from 0.005 to
0.014. This seems to show that the differences are considered normal variations just due to
chance. There are some small values of interaction effect of AD, BC, BD and BCD but they are
in general smaller than the effects of each factor separately. The same is true relative to the in-
teraction effects on both Ye and Yt.

Normal variation
To better analyze the variation of the effects to check if they vary normally or if some of them
are significantly kept away from the others, we carry out the plotting of the effects, using their
absolute values and the half-normal probability plot. The horizontal axis of the half-normal
plot displays the absolute value of the estimated effects and the vertical axis displays the cumu-
lative probability of obtaining a value less or equal to a certain target. The values for the plot-
ting are displayed in Table 7.

From the half-normal probability plot, we aim to identify the important effects, i.e., the fac-
tors that significantly affect the values of the response variables, in a statistical sense. Unimpor-
tant effects tend to have a normal distribution centered near zero while important effects tend
to have a normal distribution centered at their large effect values. Fig 2 contains the half-nor-
mal probability plot of the effects for variable Yp. It is observed that factor B and in particular
factor C fall off to the right of the straight line that emanates from the origin and fits the near

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 14 / 30



zero values. Note that the majority of the effects/points are near zero and fall along the line
meaning that their variations are due to normal causes, like noise, and are considered unimpor-
tant. The effects that are likely to be important fall out and are far from the line. Fig 3 displays
the same type of plot of the effects for variable Ye. Again, factors B and C have big effects when

Table 7. Values for the half-normal probability plots.

Yp Ye Yt

source jEej source jEej source jEej cum. prob.§

1 AB 0.005 ABC 0.077 BC 0.0001 0.033

2 AC 0.005 AC 0.297 ABC 0.0002 0.100

3 ABC 0.006 ABCD 0.783 AC 0.0002 0.167

4 ABCD 0.006 ABD 1.731 ABCD 0.0003 0.233

5 ACD 0.007 A 2.628 BD 0.0003 0.300

6 CD 0.008 AB 3.237 AB 0.0004 0.367

7 ABD 0.008 BC 3.882 A 0.001 0.433

8 D 0.010 BD 4.526 ABD 0.001 0.500

9 A 0.010 ACD 6.234 AD 0.001 0.567

10 BCD 0.011 AD 7.003 ACD 0.001 0.633

11 AD 0.012 CD 9.637 D 0.001 0.700

12 BC 0.013 D 12.767 BCD 0.001 0.767

13 BD 0.014 BCD 14.185 CD 0.002 0.833

14 B 0.024 B 82.315 B 0.008 0.900

15 C 0.158 C 110.260 C 0.012 0.967

§ midpoints of 15 probability segments

Values for the half-normal probability plots

doi:10.1371/journal.pone.0121844.t007

Fig 2. Half-normal plot of effects for Yp.

doi:10.1371/journal.pone.0121844.g002

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 15 / 30



compared to the others. To confirm these conclusions in a statistical sense, an analysis of vari-
ance is carried out in the next subsection.

Fig 4 shows that factors B and C seem to be important, and it looks like that interaction CD
could be important. This matter is investigated in the next subsection.

Analysis of variance
The statistical analysis of DoE relies on the analysis of variance (ANOVA), a collection of sta-
tistical models that partition the observed variance on the response variable (variation relative

Fig 3. Half-normal plot of effects for Ye.

doi:10.1371/journal.pone.0121844.g003

Fig 4. Half-normal plot of effects for Yt.

doi:10.1371/journal.pone.0121844.g004

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 16 / 30



to the mean value) into components according to the factors that the experiment is testing. The
statistical analysis of the four factor effects, as well as their interaction effects, on the response
variables is carried out using ANOVA. Statistical hypotheses tests are needed to determine if
the factor/interaction effects are significant. Sums of squares (SoS)—sum of all the squared ef-
fects—for each factor/interaction must be computed, and are related to the estimated effects in
(13), as follows:

SoS ¼ 2Nf�2ðEeÞ2: ð14Þ

For each response variable, each effect that is likely to be significant is tested with the following
statistical hypotheses:

H0: The variable is not significantly affected by the variation in the factor/interaction, i.e., the
effect produced on the variable is not statistically significant.

H1: The variable is significantly affected by the variation in the factor/interaction (the effect
produced on the variable is statistically significant).

In ANOVA, the total variation relative to the mean value, designated by ‘Total SoS’, is parti-
tioned into two components. One is due to the model and the other to the residual

Total SoS ¼ SoSmodel þ SoSresidual

where the effects that are likely to be significant (and are to be tested for statistical significance)
are incorporated in the model and the remaining ones with near zero values are used to esti-
mate the error, or residual. The two largest effects (B and C) are the ones that fall out the
straight line in the half-normal plot for the response variable Yp and since we also aim to check
the effect of the interaction BC, the SoS components are:

SoSmodel ¼ SoSB þ SoSC þ SoSBC ð15Þ

SoSresidual ¼ SoSA þ SoSD þ SoSAB
þ � � � þ SoSBCD þ SoSABCD:

ð16Þ

The values for the ANOVA for Yp are shown in Table 8. The SoS for the components of the
model and for the residual are shown in the second column of the table. The third column con-
tains de degrees of freedom (df) associated with SoS—one df for each factor/interaction since
only two-levels are present –, the fourth column shows the mean square (MS) (the SoS divided
by df) and the ratio of MS of an effect over the MS of the residual, giving the ‘statistic’ F value

Table 8. ANOVA for Yp.

source SoS df MS Fval P. val

B 2.40E-03 1 2.40E-03 7.5 > 0.01†

C 1.00E-01 1 1.00E-01 312.7 < 0.001§

BC 6.78E-04 1 6.78E-04 2.1 > 0.01

residual 3.85E-03 12 3.21E-04

Total SoS 1.07E-01 15

† critical point of F1,12 = 9.33
§ critical point of F1,12 = 18.64

ANOVA for Yp

doi:10.1371/journal.pone.0121844.t008

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 17 / 30



(Fval), is on the fifth column. Finally, the last column of the table shows the probability of get-
ting an Fval as high as that computed, due to chance alone, known in the literature as ‘Prob.
value> F’ (P. val). The Fval is compared to the reference F-distribution with the same df. We
decided to use a 1% risk (the risk of erroneously rejecting the null hypothesis H0 when it is
true), also known as level of significance, in these hypotheses tests. This means that if the com-
puted ‘Fval’ exceeds the critical value of the reference F-distribution for the 1% risk, H0 should
be rejected, and we are 99% confident that the ‘response variable’ is significantly affected by the
effect of that factor/interaction, in the model. Based on the values of ‘P. val’ in Table 8, we con-
clude that only the ‘Fval’ of factor C exceeds the critical value 9.33 of F1,12 (1 df for the SoS in
numerator and 12 df for the SoS in the denominator) that corresponds to a 1% risk. (It even ex-
ceeds the critical value of F1,12 for a 0.1% risk.) Thus, the two strategies identified as low and
high levels of factor C are able to produce statistically significant differences on the percentage
of successful runs.

Next, we show the ANOVA carried out for the response variable Ye. The SoS components
for the model include factors B and C and to be able to check the importance of the effect due
to the interaction BCD, we had to incorporate factor D as well in the analysis. For a more com-
plete checking, interaction CD is also included,

SoSmodel ¼ SoSB þ SoSC þ SoSD
þ SoSCD þ SoSBCD

ð17Þ

SoSresidual ¼ SoSA þ SoSAB
þ � � � þ SoSACD þ SoSABCD:

ð18Þ

The values for the ANOVA for Ye are shown in Table 9. Based on the ‘P. val’ reported in the
table, we may conclude that from the tested factors (B, C and D) and interactions (CD and
BCD), only the interaction CD effect is not significant, since the associated ‘Fval’ does not ex-
ceed the critical value 10.04 of F1,10 (1 df for the SoS in numerator and 10 df for the SoS in the
denominator) that corresponds to the 1% risk. This means that although the levels of the fac-
tors C and D affect variable Ye significantly, the effect caused by one of the factors on Ye does
not depend on the level of the other. We note here that for both factors B and C we are 99.9%
confident that the number of function evaluations to locate each root is significantly affected
since their ‘Fval’ highly exceed the critical value of F1,10 for the 0.1% risk.

Table 9. ANOVA for Ye.

source SoS df MS Fval P. val

B 2.71E+04 1 2.71E+04 468.8 < 0.001†

C 4.86E+04 1 4.86E+04 841.1 < 0.001

D 6.52E+02 1 6.52E+02 11.3 < 0.01§

CD 3.71E+02 1 3.71E+02 6.4 > 0.01

BCD 8.05E+02 1 8.05E+02 13.9 < 0.01

residual 5.78E+02 10 5.78E+01

Total SoS 7.81E+04 15

† critical point of F1,10 = 21.04
§ critical point of F1,10 = 10.04

ANOVA for Ye

doi:10.1371/journal.pone.0121844.t009

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 18 / 30



However, when the interaction BCD is considered, the effect of one of the factors B, C or D
is significantly affected, in statistical sense, by the levels of the other two factors, as far as the av-
erage number of function evaluations is concerned. The ‘Fval’ associated with BCD exceeds the
reference critical value as reported in Table 9. We may observe how factors B, C and D interact.
We notice that when B and C are at low level, and D varies from low to high level, Ye decreases
from 208.6 (average of 209.2 and 207.9) to 202.1 (average of 201.0 and 203.1), while when B is
at high level and C remains at low level, the variation of D from low to high level makes Ye to
increase from 285.1 (average of 286.6 and 283.6) to 297.9 (average of 302.7 and 293.1).

ANOVA for the response variable Yt is the following. To be able to analyze the effect of CD
we have to include factor D in the model. Interaction BCD is also integrated in the model.
Thus, the components of the SoS for the model and SoS for the residual are:

SoSmodel ¼ SoSB þ SoSC þ SoSD
þ SoSCD þ SoSBCD

ð19Þ

SoSresidual ¼ SoSA þ SoSAB þ SoSAC
þ � � � þ SoSACD þ SoSABCD:

ð20Þ

Table 10 contains the values of the ANOVA for Yt. Note that the computed values of ‘Fval’
for factor D, and interactions CD and BCD do not exceed the critical value 10.04 of F1,10 for a
1% risk. Thus, the associated H0 could not be rejected. Only the H0 associated with factors B
and C, for Yt, should be rejected even at a 0.1% risk. The main conclusions are the following: (i)
the two strategies related with the setting of the simplex γ parameters affect significantly the re-
sponse variable (time to compute a root); and (ii) the two tested strategies related with solving
the problem when the simplex collapses also affect significantly the time to locate each root.

Comparison of results
This section aims to show some performance comparison between the proposed repulsion al-
gorithm based on a Nelder-Mead type local search and some other available techniques for lo-
cating multiple roots of a system of nonlinear equations. First, we compare our results with
those reported in [7]. The results are summarized in Table 11 that shows:

• ‘SR’ (%), the percentage of runs (out of 30) where all the roots were located;

• ‘Nr’, the average number (out of 30) of located roots per run;

Table 10. ANOVA for Yt.

source SoS df MS Fval P. val

B 2.78E-04 1 2.78E-04 300.8 < 0.001†

C 5.60E-04 1 5.60E-04 606.3 < 0.001

D 5.10E-06 1 5.10E-06 5.5 > 0.01§

CD 8.66E-06 1 8.66E-06 9.4 > 0.01

BCD 7.16E-06 1 7.16E-06 7.8 > 0.01

residual 9.24E-06 10 9.24E-07

Total SoS 8.68E-04 15

† critical point of F1,10 = 21.04
§ critical points of F1,10 = 10.04

ANOVA for Yt

doi:10.1371/journal.pone.0121844.t010

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 19 / 30



• ‘NFEr’, the average number of function evaluations required to locate a root;

• ‘Tr’, the average time required to locate a root (in seconds);

relative to twelve problems of the previous set. From the proposed variants of the N-M algo-
rithm, and according to the experimental testing of the previous section, we choose the one
that combines the high levels of factors A, B, C, and D. We note that the results reported in [7]
were obtained using a repulsion algorithm that uses the metaheuristic known as the harmony
search as the local procedure. The differences between the three tested algorithms lie in the
penalty term used to modify the merit function and to define the repulsion area as roots are
computed. The penalty terms involve an inverse ‘erf’ function [7], an ‘exp’ function [8] and the
‘coth’ function [6]. These results are shown in the last three sets of four columns of Table 11.
The first set of four columns of the table contains the results obtained by our study. We may
conclude that our method notably wins in efficiency and is comparable to the others in terms
of percentage of successful runs.

We aim to further compare the efficiency of our algorithm with the results reported in [3]
and [8], regarding five problems of the previous set. In [8], the authors propose a biased ran-
dom-key genetic algorithm to minimize the merit function coupled with a penalty approach to
modify the merit function as roots are found. The penalty term is an ‘exp’ type function and is
implemented with two parameters. One aims to create an area of repulsion around previously
found roots and the other aims to penalize points inside the repulsion area. In [3], a multistart
approach that uses a gradient-based BFGS variant as the local search procedure is imple-
mented. The statistics reported by the authors correspond to three multistart implementations
that differ in the stopping rule adopted by the algorithm. Here, we report only the second best
value. The results are shown in Table 12. Beside the statistics used in the previous table, we also
show the average number of N-M local search calls, Lcal, for our algorithm. In the table, ‘–’

Table 11. Comparison with the results reported in [7].

Problem this study (A+1B+1C+1D+1) inverse ‘erf’ penalty† ‘exp’ penalty‡ ‘coth’ penalty§

SR aNr aNFEr aTr SR aNr aNFEr aTr SR aNr aNFEr aTr SR aNr aNFEr aTr

NonD2 100 2.0 293 0.030 100 2.0 748 0.057 100 2.0 753 0.055 100 2.0 867 0.070

Trans 97 3.0 227 0.018 90 2.9 3,474 0.269 97 3.0 3,266 0.231 90 2.9 10,627 0.833

Himmelblau 83 8.8 234 0.028 60 8.6 6,539 0.504 0 5.9 6,420 0.536 0 6.2 9,456 0.788

Geometry 80 1.8 320 0.029 53 1.4 6,291 0.482 43 1.4 6,332 0.452 63 1.6 10,273 0.811

Floudas 100 2.0 201 0.016 97 2.0 3,206 0.232 100 2.0 3,145 0.213 100 2.0 8,193 0.631

Merlet 70 12.6 209 0.034 100 13 967 0.081 20 11.4 902 0.137 10 10.1 1,146 0.111

Reactor 67 6.7 303 0.030 10 5.9 28,087 2.132 7 5.7 27,451 2.243 3 6.0 77,563 6.597

P1syst 100 2.0 344 0.027 100 2.0 2,181 0.183 97 2.0 1,139 0.080 100 2.0 6,151 0.476

Papersys 50 2.2 311 0.025 7 1.7 6,897 0.498 60 2.4 6,866 0.473 60 2.4 7,301 0.545

Casestudy5 100 2.0 470 0.059 83 2.1 3,780 0.295 100 2.0 3,471 0.252 23 3.1 4,393 0.363

Casestudy7 100 3.0 228 0.020 100 3.0 3,508 0.256 90 2.9 3,520 0.246 90 2.9 3,624 0.282

Manipulator 97 5.9 389 0.037 100 6.0 3,594 0.281 0 5.0 2,501 0.178 100 6.0 17,551 1.225

† penalty function proposed in [7];
‡ penalty function proposed in [8];
§ penalty function proposed in [6]

SR is the percentage of runs that found all roots, aNr is the average number of located roots per run, aNFEr is the average number of function evaluations

required to locate a root, and aTr is the average time required to locate a root.

doi:10.1371/journal.pone.0121844.t011

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 20 / 30



means that the data is not available in the referenced paper. In these comparisons we increase
the parameters kRmax and the maximum of kuns of the repulsion algorithm to 100 and 25, re-
spectively, since the computational budget is not an important issue. Although our algorithm
did not find all roots in all runs, when solving problems Reactor and Robot, it requires less
function evaluations than the other two in comparison. While the average time needed to find
each root is significantly lower than that of the heuristic proposed in [8], it exceeds the value of
the average time reported in [3] (ranging from one to eight times), on problems Floudas, Mer-
let and Reactor (R = 0.960).

Performance on standard benchmarks
Since our proposals for the N-M variant seem promising when compared with those of the
classical N-M, we decided to extend them to solving more complex and real application sys-
tems [18, 20–22]. The benchmark set is a difficult set of problems. For these experiments,
kRmax and the maximum of kuns (to stop the Repulsion Algorithm) are set to 75 and 15 respec-
tively, the parameters ρ� and δ in the definition of the penalty term in (4) are fixed at 0.01 and
100 respectively, and the N-M algorithm is allowed to run for a maximum of 1000n iterations.
We compare our results with two deterministic global search techniques, a traditional interval
method that uses range testing and branching, designated as ‘HRB’, and a branch and prune
approach denoted by ‘Newton’ in [20]. We also use the results produced by a continuation
method designated by ‘CONT’ in [20] and those of a multiobjective evolutionary algorithm ap-
proach presented in [18], for comparison. It is mentioned that the algorithm has produced a
constant number (� 200) of nondominated solutions in each run. We now describe each
benchmark and the obtained results with some detail.

Economics modeling application. This is an economic modeling problem that can be test-
ed for a variety of dimensions n:

fi ¼ xi þ
Pn�i�1

j¼1 xjxjþi
� �

xn � ci ¼ 0; i ¼ 1; . . . ; n� 1

fn ¼
Pn�1

j¼1 xj þ 1 ¼ 0
:

8<
:

We test for n = 4,5,6,7,8,9 and compare with the results available in [20] considering the set O
= [−100,100]n. The results produced by the ‘Newton’ algorithm correspond to interval widths

Table 12. Comparison with the results reported in [3] and [8].

Problem this study (A+1B+1C+1D+1) in [8] in [3]

aNr aNFEr aTr aLcal aNr aNFEr aTr aNr aNFEr aTr

Himmelblau 9.0 235 0.029 46 9.0 253,877 0.500 – – –

Floudas 2.0 233 0.019 48 2.0 211,652 0.304 2.0 2,137 0.015

Merlet 13.0 200 0.031 76 13.0 401,021 3.486 13.0 354 0.004

Reactor† 6.7 343 0.037 42 7.0 – 0.693 7.0 795 0.007

Reactor‡ 2.6 275 0.023 51 3.0 933,515 12.853 3.0 3,156 0.027

Robot 15.7 1,219 0.275 64 16.0 – 63.516 – – –

† R = 0.960;
‡ R = 0.945.

aNr is the average number of located roots per run, aNFEr is the average number of function evaluations required to locate a root, aTr is the average time

required to locate a root, and aLcal represents the average number of N-M local search calls.

doi:10.1371/journal.pone.0121844.t012

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 21 / 30



smaller than 1.0E-08. See Table 13. Our algorithm is able to identify several roots. We note
here that a located root ξ is considered to be different from any other computed root if they dif-
fer in norm more than � = 0.05. We observe that as n increases, the number of located roots de-
creases. This means that the difficulty in converging to a root is higher when n is larger and this
is related with the performance of the N-M search procedure that deteriorates as n increases.
While the computational effort (function evaluations and time) in ‘Newton’ greatly increases
with n, the number of function evaluations in our algorithm grows at most by a factor of two, if
the number of local search calls is the same (see, for example, the instances with n = 4,5,6,7).
However, the total time essentially depends on the time required by the N-M procedure to lo-
cate each root.

Neurophysiology application. This is an application from neurophysiology with n = 6 and
is defined by:

f1 ¼ x21 þ x23 � 1 ¼ 0

f2 ¼ x22 þ x24 � 1 ¼ 0

f3 ¼ x5x
3
3 þ x6x

3
4 � c1 ¼ 0

f4 ¼ x5x
3
1 þ x6x

3
2 � c2 ¼ 0

f5 ¼ x5x1x
2
3 þ x6x2x

2
4 � c3 ¼ 0

f6 ¼ x5x3x
2
1 þ x6x4x

2
2 � c4 ¼ 0

8>>>>>>>>><
>>>>>>>>>:

where ci can be chosen at random. We test this application with ci = 0, i = 1, . . ., 4 and consider
three intervals [−10,10]6, [−100,100]6 and [−1000,1000]6, as proposed in [20]. See Table 14. In
[18] (with 300 initial points and after 200 generations), the multiobjective algorithm produces
a set of about 200 nondominated solutions after 28.90 seconds. (The time reported in [18] is
based on a 2.4-GHz Intel Duo Core CPU with 2-GB RAM.) The results show that the larger
the interval the smaller is the number of located roots. Once again we observe that as the num-
ber of located roots increases the larger is the time required to converge to a root (see the aTr
values). This is an important characteristic of the Repulsion Algorithm since the minimization
of the modified penalty merit function gets harder as the number of penalty terms increases.

Table 13. Comparison results using the economicmodeling application.

A+1B+1C+1D+1 ‘Newton’ in [20] ‘CONT’†

Instance aNr aNFEr aTr aLcal aNFEtot aTtot NFEtot Ttot
‡ Ttot

§

n = 4 71.5 806 2.65 75 90,414 548.1 3,513 0.21 	 1

n = 5 58.1 1,192 2.34 75 245,332 466.7 17,932 1.22 	 6

n = 6 48.4 1,942 2.68 75 424,651 579.3 129,819 8.20 	 50

n = 7 28.1 3,794 1.93 75 780,006 435.9 650,178 46.59 	 990

n = 8 8.0 5,363 0.97 57 843,728 165.2 4689,636 352.80 –

n = 9 0.2 3,374 0.53 17 318,780 47.5 39901,284 3,311.42 –

† information available in [20];
‡ time on a Sun Sparc 10 workstation;
§ time on a DEC 5000/200

NFEtot gives the total number of function evaluations, Ttot is the total time in seconds, aNFEtot and aTtot are the averaged values of the total number of

function evaluations and total time in seconds, respectively (out of the 30 runs), and aLcal represents the average number of N-M local search calls.

doi:10.1371/journal.pone.0121844.t013

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 22 / 30



Interval arithmetic benchmarks. The following two sets of functions are benchmarks from
the interval arithmetic area. They are designated as instances i1 and i5 and are defined as

f1 ¼ x1 � 0:25428722� 0:18324757x3x4x9
f2 ¼ x2 � 0:37842197� 0:16275449x1x6x10
f3 ¼ x3 � 0:27162577� 0:16955071x1x2x10
f4 ¼ x4 � 0:19807914� 0:15585316x1x6x7
f5 ¼ x5 � 0:44166728� 0:19950920x3x6x7
f6 ¼ x6 � 0:14654113� 0:18922793x5x8x10
f7 ¼ x7 � 0:42937161� 0:21180486x2x5x8
f8 ¼ x8 � 0:07056438� 0:17081208x1x6x7
f9 ¼ x9 � 0:34504906� 0:19612740x6x8x10
f10 ¼ x10 � 0:42651102� 0:21466544x1x4x8

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

and

f1 ¼ x1 � 0:25428722� 0:18324757x33x
3
4x

3
9 þ x43x

7
9

f2 ¼ x2 � 0:37842197� 0:16275449x31x
3
6x

3
10 þ x76x

4
10

f3 ¼ x3 � 0:27162577� 0:16955071x31x
3
2x

3
10 þ x42x

7
10

f4 ¼ x4 � 0:19807914� 0:15585316x31x
3
6x

3
7 þ x41x

7
6

f5 ¼ x5 � 0:44166728� 0:19950920x33x
3
6x

3
7 þ x73x

4
6

f6 ¼ x6 � 0:14654113� 0:18922793x35x
3
8x

3
10 þ x45x

7
10

f7 ¼ x7 � 0:42937161� 0:21180486x32x
3
5x

3
8 þ x45x

7
8

f8 ¼ x8 � 0:07056438� 0:17081208x31x
3
6x

3
7 þ x76x

4
7

f9 ¼ x9 � 0:34504906� 0:19612740x36x
3
8x

3
10 þ x46x

7
8

f10 ¼ x10 � 0:42651102� 0:21466544x31x
3
4x

3
8 þ x71x

4
8

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

respectively [20]. The set O for instance i1 is [−2,2]10 and for i5 is [−1,1]10. Both have n = 10
and one root in O. Our results as well as those available in [20] are reported in Table 15. We
note that in [18] a set of nondominated solutions are obtained after 300 generations and 39.08
seconds when solving the benchmark i1 (using an initial population of 500 points), and

Table 14. Comparison results using a neurophysiology application.

A+1B+1C+1D+1 ‘Newton’ in [20] ‘HRB’† ‘CONT’†

Interval aNr aNFEr aTr aLcal aNFEtot aTtot NFEtot Ttot
‡ Ttot Ttot

§

[−10, 10]6 55.1 2,370 4.33 75 357,417 621.2 15,116 0.91 28.84 5.02

[−102, 102]6 11.4 4,528 0.72 64 624,163 116.8 193,647 11.69 – –

[−103, 103]6 0.2 5,760 0.51 15 186,658 17.7 2389,594 172.71 – 5.02

† information available in [20];
‡ time on a Sun Sparc 10 workstation;
§ time on a DEC 5000/200

NFEtot gives the total number of function evaluations, Ttot is the total time in seconds, aNFEtot and aTtot are the averaged values of the total number of

function evaluations and total time in seconds, respectively (of the 30 runs), and aLcal represents the average number of N-M local search calls.

doi:10.1371/journal.pone.0121844.t014

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 23 / 30



366.40 seconds when solving i5. We are able to accelerate our iterative process by setting the
maximum of kuns to 5 since the root is computed during the first iterations of the Repulsion Al-
gorithm. From the results shown in the Table 15 we may conclude that the number of function
evaluations and time required to converge to a root are comparable to that of ‘Newton’. Since
the repulsion algorithm’s paradigm requires restarting again and again, searching the search
space and looking for other roots, the corresponding total values may become large, depending
on the number of restarts. Nevertheless, those totals are comparable to the totals of ‘HRB’.

Chemical equilibrium application. This problem addresses the equilibrium of the products
of a hydrocarbon combustion process which, reformulated in the variable space, is [21]:

f1 ¼ x1x2 þ x1 � 3x5 ¼ 0

f2 ¼ 2x1x2 þ x1 þ x2x
2
3 þ R5x2 � R1x5 þ 2R7x

2
2 þ R4x2x3 þ R6x2x4 ¼ 0

f3 ¼ 2x2x
2
3 þ 2R2x

2
3 � 8x5 þ R3x3 þ R4x2x3 ¼ 0

f4 ¼ R6x2x4 þ 2x24 � 4R1x5 ¼ 0

f5 ¼ x1x2 þ x1 þ R7x
2
2 þ x2x

2
3 þ R5x2 þ R2x

2
3 þ x24 � 1þ R3x3 þ R4x2x3 þ R6x2x4 ¼ 0

8>>>>>><
>>>>>>:

where R1 ¼ 10;R2 ¼ 0:193;R3 ¼ 0:002597=
ffiffiffiffiffi
40
p

;R4 ¼ 0:003448=
ffiffiffiffiffi
40
p

, R5 = 0.00001799/40,

R6 ¼ 0:0002155=
ffiffiffiffiffi
40
p

;R7 ¼ 0:00003846=40. The problem has one root and we tested it for
three different sets: [10−4,102]5, [10−4,103]5 and [10−4,108]5. The statistics computed from the
results of our algorithm are shown in Table 16, where we report the results available in [20, 21]
as well. In [18], 500 generations and an initial population of 500 points are considered to obtain
a set of about 200 nondominated solutions in 32.71 seconds. Since we look for just one root, we
first set the maximum of kuns to 10. Although the root was located in only 10% of the runs,
when the set O = [10−4,108]5 is used, our iterative process takes on average 2,482 function eval-
uations (and 0.19 seconds) to converge to the solution. While the branch and prune technique
‘Newton’ requires a total of 52,236 function evaluations (and 6.32 seconds) to converge to the
required solution, our iterative process computes 179,951 function values when the limit of un-
successful iterations is set to 10, but it computes 55,913 function values when the limit of un-
successful iterations is 5.

We now use the following five examples together with the ‘Neurophysiology application’
(with O = [−10,10]6) and ‘Interval arithmetic’ benchmark i1 (with O = [−10,10]10) to analyze
and confirm the performance behavior of our choices for the N-M variant, with a set of prob-
lems different from the one used during the DoE analysis.

Table 15. Comparison results using interval arithmetic benchmarks.

A+1B+1C+1D+1 ‘Newton’ in [20] ‘HRB’†

Instance aNr aNFEr aTr aLcal aNFEtot aTtot NFEtot Ttot
‡ NFEtot Ttot

i1 (a) 1 1,194 0.14 15 701,994 102.8 1,760 0.06 77,380 14.28
(b) 1 1,237 0.15 5 242,597 18.5

i5 (a) 1 1,167 0.15 15 284,258 31.8 1,132 0.08 154,948 33.58
(b) 1 1,179 0.16 5 95,394 11.3

† information available in [20];
‡ time on a Sun Sparc 10 workstation
(a) results produced with the maximum of kuns set to 15; (b) results produced with the maximum of kuns set to 5.

doi:10.1371/journal.pone.0121844.t015

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 24 / 30



Bratu system. This is a polynomial system about x1, . . ., xn that arises from the discretiza-
tion (with a mesh size of h) of the differential equation model for nonlinear diffusion phenom-
ena taking place in combustion and semiconductors—a two-point boundary value problem—

[3, 23]:

fi ¼ xi�1 � 2xi þ xiþ1 þ h2exi ¼ 0; i ¼ 1; . . . ; n
�

where x0 = xn+1 = 0 and h ¼ 1
nþ1. In the set [0, 5]n, there are two roots for all n. We tested this

problem with n = 5.
Brown almost-linear system. This is a system with n variables

fi ¼ xi þ
Pn

j¼1 xj � ðnþ 1Þ ¼ 0; i ¼ 1; . . . ; n� 1

fn ¼
Qn

j¼1 xj � 1 ¼ 0

(

which has two real roots if n is even and three roots if n is odd. It is a ill-conditioned and diffi-
cult to solve for some standard methods [21, 22]. In the interval [−1,1]n there is one root when
n = 10.

Broyden tridiagonal system. This is a sparse polynomial system that has at least two real
roots [24],

fi ¼ ð3� 2xiÞxi � xi�1 � 2xiþ1 þ 1 ¼ 0; i ¼ 1; . . . ; n
�

where x0 = xn+1 = 0. We set n = 5 and O = [−1,2]5.
Resistive circuit problem This system of n nonlinear equations

fi ¼ 2:5x3i � 10:5x2i þ 11:8xi þ
Pn

j¼1 xj � i ¼ 0; i ¼ 1; . . . ; n
�

describes a nonlinear resistive circuit containing n tunnel diodes [25]. The set O is defined by
[−10,10]n and we test this circuit problem with n = 5 and n = 7.

Table 16. Comparison results using the chemical equilibrium application.

A+1B+1C+1D+1 results in [21] ‘Newton’ in [20]

Interval aNr aNFEr aTr aLcal aNFEtot aTtot Nittot Ttot
† NFEtot Ttot

‡

[10−4, 102]5 (a) 0.52 1,167 0.10 13 144,785 12.0 631 31.7 – –

(b) 0.1 1,090 0.10 5 56,093 4.6

[10−4, 103]5 (a) 0.13 2,031 0.16 10 160,096 11.5 – – – –

(b) 0.03 1,124 0.11 5 56,307 4.6

[10−4, 108]5 (a) 0.1 2,482 0.19 10 179,951 12.5 – – 52,236 6.32
(b) 0.07 1,424 0.13 5 55,913 4.6

† time on a HP-730 workstation;
‡ time on a Sun Sparc 10 workstation

Nittot is the total number of iterations; (a) results produced with the maximum of kuns set to 10; (b) results produced with the maximum of kuns set to 5.

doi:10.1371/journal.pone.0121844.t016

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 25 / 30



Yamamura problem. Another polynomial system tested for n = 10 [3, 23, 25]

fi ¼ xi �
1

2n

Xn

j¼1 x
3
j þ i

� �
¼ 0 i ¼ 1; . . . ; n

�

which has three roots in the interval [−5,5]10.
All the experiments were run 30 times with each problem and the reported results are aver-

age values over the 30 runs. First, we aim to show that the herein proposed parameter values,
defined in (8), make the N-M algorithm to work better. Overall, the number of located roots
has in general increased and the number of function evaluations and time have not increased,
except when solving problem Brown. See the first two sets of three columns (identified with
A+1B+C+1D+1 and A+1B−1C+1D+1) in Table 17. We note that the problems now used are in gen-
eral of larger dimension than those used during the DoE analysis. The last set of three columns
of the table shows the results obtained when the shrinking strategy is selected, A+1B−1C+1D−1

(as opposed to the strategy defined in (12)). Improvements are obtained only on the problems
Brown and Broyden, when compared to A+1B+C+1D+1. Here, we consider an improvement
when the number of located roots has increased, or the number of function evaluations has de-
creased provided that a tie in the number of roots is reported.

Second, we show that the strategy defined in (12), in the context of our proposals, is able to
locate in general more roots than the classic shrinking methodology, using now this new set of
problems. These two variants are identified by A+1B+C+1D+1 and A+1B+C+1D−1 respectively in
the Table 18. We also include the results of another variant that uses a uniformly distributed
random number instead of a number drawn from the Lévy distribution. We observe that the
variant A+1B+C+1D+1 wins on four problems. It is able to locate more roots than the other two
in comparison on problems Broyden, Circuit_5 and Circuit_7 and is more efficient than the
other two on the problem Interval (for the same number of located roots). The variant
A+1B+C+1D−1 wins on problem Neurophysiology and is more efficient on the problems Brown
and Yamamura. The variant A+1B+C+1D+1(Uniform) wins only on the problem Bratu.

Table 17. Comparing simplex N-M parameters.

A+1B+1C+1D+1 A+1B−1C+1D+1 A+1B−1C+1D−1

Problem aNr aNFEr aTr aNr aNFEr aTr aNr aNFEr aTr

Neurophys. 30.7 2,181 1.345 28.9 2,239 1.111 30.1 2,007 1.120

Interval 1.0 1,611 0.199 1.0 2,125 0.220 1.0 4,167 0.368

Bratu 1.8 2,618 0.203 1.7 2,634 0.202 1.7 1,825 0.141

Brown 1.0 109 0.013 1.0 94 0.011 1.0 105 0.014

Broyden 1.5 1,355 0.120 1.4 1,083 0.097 1.6 747 0.068

Circuit_5 3.5 1,786 0.175 3.0 2,079 0.189 2.5 767 0.072

Circuit_7 1.6 1,643 0.174 0.8 2,160 0.217 0.6 2,232 0.219

Yamamura 3.0 1,910 0.232 3.0 2,195 0.258 3.0 2,093 0.247

A+1B+1C+1D+1 uses the values defined in (8) and A+1B−1C+1D+1 (as well as A+1B−1C+1D−1) use the

standard values in (7).

doi:10.1371/journal.pone.0121844.t017

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 26 / 30



The results reported in Table 19 are used to show that the variant A+1B+C+1D+1 that uses
the golden ratio F to define the step size in order to generate points around the best vertex of
the simplex (see (11)) outperforms the other two variants A+1B+C+1(random)D+1 and
A+1B+C−1D+1 in comparison. C+1(random) means that in Eq (11) the step size is a multiple of a
random number uniformly distributed in [0, 1], and C−1 represents the strategy that breaks the
N-M iterative process when the simplex has collapsed.

Finally, we aim to show that the maximum target value, ρ�, for the radius of the repulsion
area ρ (see the definition in (4) and in Subsection ‘Parameters Setting’) slightly affects the per-
formance of the algorithm. In this section and until now we have set the fixed value ρ� = 0.01
when solving the eight problems. We test two other different values: 0.1 and 0.001. Table 20
contains the results produced by the variant A+1B+C+1D+1. We may conclude that the values
0.01 and 0.1 give better results than 0.001. Between the two best values, 50% of the results are
better with ρ� = 0.01 and the remaining are better with ρ� = 0.1.

Table 18. Comparing Lévy and Uniform distributions with classical shrinkage.

A+1B+1C+1D+1 A+1B+1C+1D+1(Uniform) A+1B+1C+1D−1

Problem aNr aNFEr aTr aNr aNFEr aTr aNr aNFEr aTr

Neurophys. 30.7 2,181 1.345 30.6 1,996 1.092 30.9 2,086 1.197

Interval 1.0 1,611 0.199 1.0 2,596 0.256 1.0 3,471 0.323

Bratu 1.8 2,847 0.222 2.0 2,521 0.192 1.9 2,978 0.241

Brown 1.0 109 0.013 1.0 115 0.013 1.0 108 0.014

Broyden 1.5 1,355 0.120 1.1 463 0.043 1.3 947 0.088

Circuit_5 3.5 1,786 0.175 2.1 736 0.069 2.6 1,259 0.129

Circuit_7 1.6 1,643 0.174 0.9 1,511 0.150 0.7 1,430 0.146

Yamamura 3.0 1,900 0.230 3.0 1,806 0.225 3.0 1,755 0.219

D+1(Uniform) means that in Eq (12) the Lévy distribution term LðaÞsi
j is replaced by a multiple of a random

number uniformly distributed in [−1, 1], i.e., by 0.1 U([−1, 1]).

doi:10.1371/journal.pone.0121844.t018

Table 19. Comparing step sizes for random point generation and ‘break’ strategy.

A+1B+1C+1D+1 A+1B+1C+1(random)D+1 A+1B+1C−1D+1

Problem aNr aNFEr aTr aNr aNFEr aTr aNr aNFEr aTr

Neurophys. 30.7 2,181 1.345 30.4 2,072 1.241 2.9 561 0.060

Interval 1.0 1,611 0.199 1.0 1,346 0.157 1.0 1,213 0.145

Bratu 1.8 2,847 0.222 2.0 597 0.059 1.2 486 0.046

Brown 1.0 109 0.013 1.0 621 0.047 0.0 n.a. n.a.

Broyden 1.5 1,355 0.120 1.1 427 0.041 1.0 423 0.041

Circuit_5 3.5 1,786 0.175 2.9 737 0.072 2.2 688 0.067

Circuit_7 1.6 1,643 0.174 0.5 1,449 0.155 0.3 1,286 0.128

Yamamura 3.0 1,900 0.230 3.0 2,311 0.263 1.8 1,845 0.220

C+1(random) means that in Eq (11) the step size is a multiple of a random number uniformly distributed in

[0, 1] (i.e., 0.01 U([0, 1])); n.a. means not applicable.

doi:10.1371/journal.pone.0121844.t019

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 27 / 30



Conclusions
A repulsion algorithm is presented for locating multiple roots of a system of nonlinear equa-
tions. The proposed algorithm relies on a penalty merit function that depends on two parame-
ters. One aims to scale the penalty and the other adjusts the radius of the repulsion area, so that
convergence to previously located minimizers of the merit function is avoided. For each ran-
domly generated point in the search space, the algorithm invokes the N-M algorithm to exploit
the region for a new minimizer. In the N-M local search context, several alternative strategies
have been incorporated in the algorithm aiming to enhance the quality of the solutions and im-
prove efficiency. To analyze the effect of these strategies on the overall performance of the re-
pulsion algorithm, measured by three criteria—the percentage of successful runs, the number
of function evaluations and the time required to compute each root -, a two-level factorial de-
sign of experiments is carried out. Four factors at two levels each are manipulated and tested to
analyze their statistical significance. During these computational experiments, a set of sixteen
benchmark problems is used. The values of the response variables used in the factorial design
of experiments correspond to the averaged values after 30 independent runs produced by solv-
ing the sixteen problems.

From the statistical analysis, we may conclude with 99% confidence that:

• the number of function evaluations to locate each root and the time to locate each root have
significantly increased when the simplex parameters are changed from the classical values to
those based on the golden ratio and dimension;

• the percentage of successful runs, the number of function evaluations to locate each root and
the time to locate each root have significantly been affected when the two approaches to over-
come the simplex degeneracy are tested, in particular, they have increased when the new
strategy of generating n vertices around the best vertex with probability 0.75 is used, instead
of just ‘breaking’ the cycle;

• the number of function evaluations to locate each root has significantly increased when the
Lévy distribution is used to generate n vertices around the best vertex instead of using the
classical shrinking procedure;

• the number of function evaluations to locate each root has significantly decreased by the in-
teraction that occurs when the simplex parameters change from the classical values to those

Table 20. Effect of ρϵ on the Repulsion Algorithm.

ρϵ = 0.001 ρϵ = 0.01 ρϵ = 0.1

Problem aNr aNFEr aTr aNr aNFEr aTr aNr aNFEr aTr

Neurophys. 29.3 2,277 1.350 30.7 2,181 1.345 32.1 2,038 5.067

Interval 1.0 2,131 0.234 1.0 1,611 0.199 1.0 1,210 0.150

Bratu 1.8 2,618 0.203 1.8 2,847 0.222 1.9 2,892 0.246

Brown 1.0 119 0.019 1.0 109 0.013 1.0 99 0.014

Broyden 1.3 1,761 0.180 1.5 1,355 0.120 1.5 1,774 0.155

Circuit_5 3.4 2,152 0.273 3.5 1,786 0.175 3.8 1,727 0.167

Circuit_7 1.2 1,731 0.201 1.6 1,643 0.174 0.9 1,534 0.158

Yamamura 3.0 1,910 0.232 3.0 1,900 0.230 3.0 2,523 0.312

Effect of ρ� on the Repulsion Algorithm, using the N-M variant A+1B+1C+1D+1.

doi:10.1371/journal.pone.0121844.t020

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 28 / 30



based on the golden ratio and n, when the generation of n vertices around the best vertex
with probability 0.75 is used, instead of the ‘break’ strategy, and when the Lévy distribution is
used to generate n vertices around the best one as opposed to the shrinking strategy.

We have also tested our method with other more complex and realistic problems. The re-
sults show that our method is capable of converging to the multiple solutions of those problems
with a moderate computational effort. To undergo a variety of other modifications to the N-M
algorithm using a limited number of experimental units, a fractional factorial experimental de-
sign as opposed to the herein operated full factorial design will be used. The techniques for in-
vestigating the variation in experiments brought by the Taguchi methods will be explored.

Acknowledgments
The authors would like to thank the academic editor and the two anonymous referees for their
valuable comments and suggestions to improve the paper.

Author Contributions
Conceived and designed the experiments: GCVR AMACR EMGPF. Performed the experi-
ments: AMACR EMGPF. Analyzed the data: GCVR AMACR. Wrote the paper: GCVR
AMACR EMGPF. Conceived and developed the algorithms: GCVR EMGPF.

References
1. Nelder JA and Mead R (1965) A simplex method for function minimization, The Computer Journal 7

(4):308–313. doi: 10.1093/comjnl/7.4.308

2. Voglis C and Lagaris IE (2009) Towards ‘Ideal Multistart’. A stochastic approach for locating the minima
of a continuous function inside a bounded domain, Applied Mathematics and Computation 213(2):
216–229.

3. Tsoulos IG and Stavrakoudis A (2010) On locating all roots of systems of nonlinear equations inside
bounded domain using global optimization methods, Nonlinear Analysis: Real World Applications 11
(4): 2465–2471. doi: 10.1016/j.nonrwa.2009.08.003

4. Hirsch ML, Pardalos PM, and Resende MGC (2009) Solving systems of nonlinear equations with con-
tinuous GRASP, Nonlinear Analysis: Real World Applications 10(4): 2000–2006. doi: 10.1016/j.
nonrwa.2008.03.006

5. Parsopoulos KE and Vrahatis MN (2004) On the computation of all global minimizers through particle
swarm optimization, IEEE Transactions on Evolutionary Computation 8(3): 211–224. doi: 10.1109/
TEVC.2004.826076

6. Pourjafari E and Mojallali H (2012) Solving nonlinear equations systems with a new approach based on
invasive weed optimization algorithm and clustering, Swarm and Evolutionary Computation 4: 33–43.
doi: 10.1016/j.swevo.2011.12.001

7. Ramadas GCV, Fernandes EMGP, and Rocha AMAC (2014) Multiple roots of systems of equations by
repulsion merit functions, Lecture Notes in Computer Science, ICCSA 2014, Murgante B, Misra S,
Rocha AM, Torre C, Rocha JG, Falcão MI, Taniar D, Apduhan BO, Gervasi O (Eds.) vol. 8580, Part II:
126–139.

8. Silva RMA, ResendeMGC, and Pardalos PM (2014) Finding multiple roots of a box-constrained system
of nonlinear equations with a biased random-key genetic algorithm, Journal of Global Optimization 60
(2): 289–306. doi: 10.1007/s10898-013-0105-7

9. Montgomery DC (2012) Design and Analysis of Experiments, JohnWiley & Sons Inc.

10. Anderson MJ andWhitcomb PJ (2007) DOE Simplified: Practical Tools for Effective Experimentation,
Productivity Press.

11. SpendleyW, Hext GR, and Himsworth FR (1962) Sequential application of simplex designs in optimisa-
tion and evolutionary operation, Technometrics 4(4): 441–461. doi: 10.1080/00401706.1962.
10490033

12. Gao F and Han L (2012) Implementing the Nelder–Mead simplex algorithm with adaptive parameters,
Computational Optimization and Applications 51(1): 259–277. doi: 10.1007/s10589-010-9329-3

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 29 / 30

http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1016/j.nonrwa.2009.08.003
http://dx.doi.org/10.1016/j.nonrwa.2008.03.006
http://dx.doi.org/10.1016/j.nonrwa.2008.03.006
http://dx.doi.org/10.1109/TEVC.2004.826076
http://dx.doi.org/10.1109/TEVC.2004.826076
http://dx.doi.org/10.1016/j.swevo.2011.12.001
http://dx.doi.org/10.1007/s10898-013-0105-7
http://dx.doi.org/10.1080/00401706.1962.10490033
http://dx.doi.org/10.1080/00401706.1962.10490033
http://dx.doi.org/10.1007/s10589-010-9329-3


13. Lagarias JC, Reeds JA, Wright MH, andWright PE (1998) Convergence properties of the Nelder–Mead
simplex algorithm in low dimensions, SIAM Journal on Optimization 9(1): 112–147. doi: 10.1137/
S1052623496303470

14. Kelley CT (1999) Detection and remediation of stagnation in the Nelder–Mead algorithm using a suffi-
cient decrease condition, SIAM Journal on Optimization 10(1): 43–55. doi: 10.1137/
S1052623497315203

15. McKinnon KIM (1998) Convergence of the Nelder–Mead simplex method to a nonstationary point,
SIAM Journal on Optimization 9(1): 148–158. doi: 10.1137/S1052623496303482

16. Nazareth LJ and Tseng P (2002) Gilding the lily: A variant of the Nelder–Mead algorithm based on gold-
en section search, Computational Optimization and Applications 22(1): 133–144. doi: 10.1023/
A:1014842520519

17. Price CJ, Coope ID, and Byatt D (2002) A convergent variant of the Nelder–Mead algorithm, Journal of
Optimization Theory and Applications 113(1): 5–19. doi: 10.1023/A:1014849028575

18. Grosan C and Abraham A (2008) A new approach for solving nonlinear equations systems, IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 38(3): 698–714.

19. Jaberipour M, Khorram E, and Karimi B (2011) Particle swarm algorithm for solving systems of nonline-
ar equations, Computers & Mathematics with Applications 62(2): 566–576. doi: 10.1016/j.camwa.
2011.05.031

20. Hentenryck PV, Mcallester D, and Kapur D (1997) Solving polynomial systems using a branch and
prune approach, SIAM Journal on Numerical Analysis 34(2): 797–827. doi: 10.1137/
S0036142995281504

21. Maranas CD and Floudas CA (1995) Finding all solutions of nonlinearly constrained systems of equa-
tions, Journal of Global Optimization 7(2): 143–182. doi: 10.1007/BF01097059

22. Morgan AP (1983) A method for computing all solutions to systems of polynomial equations, ACM
Transactions on Mathematical Software 9(1): 1–17. doi: 10.1145/356022.356023

23. Nie J and Demmel J (2008) Sparse SOS relaxations for minimizing functions that are summations of
small polynomials, SIAM Journal on Optimization 19(4): 1534–1558. doi: 10.1137/060668791

24. Yamamura K, Suda K, and Tamura N (2009) LP narrowing: A new strategy for finding all solutions of
nonlinear equations, Applied Mathematics and Computation 215(1): 405–413. doi: 10.1016/j.amc.
2009.05.017

25. Yamamura K and Fujioka T (2003) Finding all solutions of nonlinear equations using the dual simplex
method, Journal of Computational and Applied Mathematics 152: 587–595. doi: 10.1016/S0377-0427
(02)00731-8

Testing Nelder-Mead Variants via a Factorial Design of Experiments

PLOS ONE | DOI:10.1371/journal.pone.0121844 April 13, 2015 30 / 30

http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623497315203
http://dx.doi.org/10.1137/S1052623497315203
http://dx.doi.org/10.1137/S1052623496303482
http://dx.doi.org/10.1023/A:1014842520519
http://dx.doi.org/10.1023/A:1014842520519
http://dx.doi.org/10.1023/A:1014849028575
http://dx.doi.org/10.1016/j.camwa.2011.05.031
http://dx.doi.org/10.1016/j.camwa.2011.05.031
http://dx.doi.org/10.1137/S0036142995281504
http://dx.doi.org/10.1137/S0036142995281504
http://dx.doi.org/10.1007/BF01097059
http://dx.doi.org/10.1145/356022.356023
http://dx.doi.org/10.1137/060668791
http://dx.doi.org/10.1016/j.amc.2009.05.017
http://dx.doi.org/10.1016/j.amc.2009.05.017
http://dx.doi.org/10.1016/S0377-0427(02)00731-8
http://dx.doi.org/10.1016/S0377-0427(02)00731-8

