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We theoretically investigate light propagation and Anderson localization in one-dimensional disordered su-
perlattices composed of dielectric stacks with graphene sheets in between. Disorder is introduced either on
graphene material parameters (e.g. Fermi energy) or on the widths of the dielectric stacks. We derive an an-
alytic expression for the localization length ξ, and compare it to numerical simulations using transfer matrix
technique; a very good agreement is found. We demonstrate that the presence of graphene may strongly attenu-
ate the anomalously delocalised Breswter modes, and is at the origin of a periodic dependence of ξ on frequency,
in contrast to the usual asymptotic decay, ξ ∝ ω−2. By unveiling the effects of graphene on Anderson localiza-
tion of light, we pave the way for new applications of graphene-based, disordered photonic devices in the THz
spectral range.

PACS numbers:

I. INTRODUCTION

Due to its extraordinary electronic and optical properties,
graphene has emerged as an alternative material platform for
applications in photonics and optoelectronics1–3. A partial but
by no means exhaustive list of applications of graphene in
photonics include high-speed photodetectors4, optical mod-
ulators5, plasmonic devices6–8, and ultrafast lasers9. In ad-
dition, graphene is a promising candidate to overcome one
of the major existing hurdles to bring optics and electron-
ics together, namely the efficient conversion between optical
and electronic signals. Indeed, this can be facilitated by the
fact that graphene enables strong, electric field-tunable optical
transitions, and resonantly enhances light-mater interactions
in sub-wavelength volumes. In practice this can be achieved,
for instance, by integrating a graphene layer into a photonic
crystal nanocavity10. The presence of graphene also allows
for an efficient electro-optical modulation of photonic crys-
tals nanocavities by electrostatic gating11,12. However, the in-
tegration of graphene into photonic crystals is naturally prone
to unavoidable disorder associated to the fabrication process.
This constitutes per se a motivation to investigate the effects
of disorder in photonic crystals containing graphene layers
which, as far as we know, have not been considered in the
literature so far. In addition to this technological and practical
motivation, there is a very fundamental one as well, namely to
understand the impact of graphene on Anderson localization
of light.

The concept of Anderson localization (AL) was originally
conceived in the realm of condensed matter physics as a dis-
order driven metal-insulator transition13. Being an interfer-
ence wave phenomenon, this concept has been extended to
light14, acoustic waves15, and even Bose-Einstein condensed
matter waves16. As a result, Anderson localization is today a
truly interdisciplinary topic, and important contributions have
emerged from different areas, ranging from condensed mat-

ter, photonics, acoustics, atomic physics, and seismology17.
Dimensionality is crucial to AL, and in 1D the vast majority
of states is exponentially localised on a length scale given by
the localization length ξ, regardless of the disorder strength.
In optical systems exceptions do exist, and delocalised modes
may occur in low-dimensional systems as a result of the pres-
ence of correlations18, necklace modes19, or metamaterials
with negative refraction20–22. The question of whether these
anomalies occur when graphene is integrated into disordered
optical superlattices remains an open question.

Bearing in mind both these technological and fundamental
motivations, in the present paper we undertake an analytical
and numerical investigation of Anderson localization of light
in one-dimensional disordered superlattices composed of di-
electric stacks with graphene layers in between, as depicted
in Fig. 1. We consider two possible, realistic ways to model
disorder: compositional and structural disorder. In the for-
mer case disorder is introduced in graphene’s material param-
eters, such as the Fermi energy, whereas in the latter the di-
electric components of the superlattice have random widths.
In both cases, we derive an analytic expression for the lo-
calization length ξ, and compare it to numerical simulations
using a transfer matrix technique; an overall very good agree-
ment is found. In the case where the medium impedances
match, we find that ξ exhibits an oscillatory behaviour as a
function of frequency ω, in contrast to the usual asymptotic
decay ξ ∝ ω−2. We demonstrate that graphene may strongly
suppress the anomalously delocalised Brewster modes, as it
induces additional reflexions at the superlattice interfaces. We
also investigate the effects of inter and intraband transitions of
the graphene conductivity on ξ, identifying the regimes where
Anderson localization and absorption dominates light trans-
mission.

This paper is organised as follows. In Sec. II we present the
analytical results, where we derive an expression for the local-
ization length of disordered superlattices containing graphene
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sheets. In Sec. III we present and discuss the numerical sim-
ulations, based on transfer matrix technique, which are also
compared to the analytical calculations. Finally, Sec. IV is
devoted to the concluding remarks. We also present a number
of appendices giving the details of the calculations and aim-
ing at making the the text as self-contained as possible. To
our best knowledge, there are only two published papers23,24

dealing with similar problems to the one we consider in this
paper, but in the context a metals, in which case only Drude’s
conductivity plays a role.

FIG. 1. Color on-line. Schematic representation of the system.

II. ANALYTICAL CALCULATION OF THE
LOCALIZATION LENGTH

Light propagation in a 1D superlattice containing graphene
layers (Fig. 1) is modelled by the transfer matrix formalism25.
The Mn = {mn

ij} transfer matrix connects the fields at the
right of the n−th unit cell to those at left according to:

ψn+1 = Mnψn, (1)

where ψn =
[
ψnR ψnL

]T
, and ψnR (ψnL) refers to the right

(left) propagating field in the n−th cell. For transverse elec-
tric (TE) and transvere magnetic (TM) modes, ψ refers to the
electric and magnetic field, respectively. We consider the par-
ticular case where detMn = 1, which occurs for systems
with preserved time reversal symmetry25. In this case, one
can show that Mn may be written as

Mn =

(
coshφn1 e

iφn
2 sinhφn1 e

iφn
3

sinhφn1 e
−iφn

3 coshφn1 e
−iφn

2

)
, (2)

where φni are parameters that depend on the composition of
the n−th cell. (from here on we omit the n dependence in φi,
except when strictly necessary to avoid any confusion.) For
periodic systems with preserved time-reversed symmetry, φi
are real numbers and all the Mn’s are equal. We thus write
Mn = M0. One can write the photonic dispersion relation25

as cos γ = (m0
11 +m0

22)/2, where

cos γ = coshφ01 cosφ02 . (3)

Disorder is introduced in the parameters φi:

φi = φ0i + δφi (4)

where δφi describes random fluctuations around the average
value, and which may have different origins, as it will be de-
tailed later in the paper. For a periodic system, a transforma-
tion Mtransf = McircleMreal (see appendix A) exists that maps
the variables ψnR,L into a new set of variables, denoted by
Qn and Pn, such that XT = [Qn Pn]T = Mtransf[ψ

n
R ψnL]T .

These new variables describe a circle in phase space26, with
radius

√
Q2
n + P 2

n proportional to the electric field amplitude.
Applying this transformation to Eq. (1), the transformed ma-
trix M ′ = MtransfM

nM−1transf reads

M ′ =

(
En Fn
Gn Hn

)
, (5)

where:

En = coshφ1 cosφ2 − sinhφ1 sin δφ3, (6)
Fn = −v2 (coshφ1 sinφ2 + sinhφ1 cos δφ3) , (7)
Gn = v−2 (coshφ1 sinφ2 − sinhφ1 cos δφ3) , (8)
Hn = coshφ1 cosφ2 + sinhφ1 sin δφ3. (9)

with v and τ defined in appendix A. When φi = φ0i , we
have δφ3 = 0 and Eqs. (6)-(9) lead to En = Hn = cos γ
and Fn = −Gn = sin γ. When weak disorder is intro-
duced, the trajectory of the points (Qn, Pn) results in a per-
turbation of the circle. The recurrence equations defined by
Xn+1 = M ′Xn are similar to a Hamiltonian map of the clas-
sical harmonic oscillator subjected to a parametric impulsive
force27, where Qn and Pn are the coordinate and conjugated
moments, respectively, and γ is the phase between successive
kicks.

The presence of disorder introduces a key length scale, the
localization length ξ. In 1D electronic systems all eigenmodes
are exponentially localised, although some exceptions do ex-
ist in the realm of optical systems19–22 (see Introduction). The
length ξ characterises the exponential decay of the eigenfunc-
tions and is defined in terms of the reciprocal of the Lyapunov
exponent λ. In 1D λ can be written as25,26:

λ =
1

2

〈
ln

∣∣∣∣ψn+1
R

ψnR

∣∣∣∣2
〉
. (10)

In Eq. (10) the brackets denote averaging over both ensem-
bles and the system unit cells, while the usual definition of the
localization length considers only averages over ensembles25.
The two definitions are equivalent. The relation between λ
and ξ is:

Reλ =
d

ξ
, (11)

where d is the mean length of the unit cell. The advantage of
the approach based on the parameters Pn and Qn is that we
can use polar (or action-angles) coordinates:

Pn = Rn sin Θn,

Qn = Rn cos Θn . (12)
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Without disorder, Rn is a constant and Θn increases by mi-
nus the Bloch phase, −γ, as we move from unit cell to unit
cell. With disorder, the radius Rn changes in every step, with
Rn+1 a function of Rn, Θn, and of the matrix elements of
Mn. The angle Θn+1 only depends on Θn and Mn. For
weak disorder a recurrence equation (B9) exists that, in the
continuum limit, becomes a stochastic Îto equation which has
a corresponding Fokker-Planck equation28 . In this case, the
first approximation for the density probability function of Θn

is uniform in the interval [0, 2π] for γ 6= 0, π/2, π.
Writing Eq. (10) in terms of R and Θ, and averaging over

Θ with uniform density probability, we obtain, up to second
order in δφi:

λ =
1

2

〈
Y1 + Y2 cos 2Θn + Y3 sin 2Θn −

1

4
Y 2
2 −

1

4
Y 2
3

〉
,

(13)
where Yi, with i = 1, 2, 3 are defined in Appendix B and
depend on the matrix elements Mn.

In the following sections we will study the propagation of
light through a disordered structure of alternating graphene
sheets and dielectric layers. In this case each propagation ma-
trixMn is determined by the widths zi, the incidence angle θi,
the dielectric material parameters µi and εi, and the graphene
conductivity σ. In the present work we focus on the cases
where disorder is present in the widths of the stacks (struc-
tural disorder) and on graphene conductivities (compositional
disorder) . Both are realistic situations that may occur in the
fabrication of these structures.

For the type of structural disorder studied here the width of
each layer i of the nth. cell is a random variable

zi(n) = z0i + ζi(n), (14)

where ζi are uncorrelated random variables with zero mean
and mean standard deviation σi: 〈[ζi(n)]

2〉 = σ2
i ; z0i is the

mean width of the i slab (the standard deviation σi should not
be confused with graphene’s conductivity σ).

In the case of compositional disorder, the Fermi energy EF
is a random variable in each layer n

EF (n)/~ = ωF (n) = ω0
F + ζF (n), (15)

with ζF a random variable with zero mean and 〈ζ2F 〉 = σ2
F .

This determines how the graphene conductivity, given in Ap-
pendix D, is affected by disorder.

In the next section we derive analytical expressions for λ
(Eq. 13) in different regimes. To this end, we need to map φi
in the system variables, calculate the differentials δi, and use
the results given in Appendix B.

A. Unit cell made of two different dielectric materials and a
graphene sheet at the interface

We consider a disordered superlattice composed of dielec-
tric bilayers with a graphene sheet in between. The transfer
matrix for the n unit cell is given by Mn = {mn

jl} and is
explicitly derived in Appendix C1.

To proceed with the calculation of the Lyapunov exponent
it is necessary to map the system parameters of the transfer
matrix (C1) into the parametric matrix (2). There is not a
unique way of doing this, but in what follows we make the
simplest choice.

1. Disordered photonic super lattice without graphene

To model a disordered photonic super-lattice without the
graphene layer we put f = 0 in Eq. (C1) and map φi into the
system parameters α1, α2, χ,∆ (defined in Appendix C):

sinhφ1 = ∆x sinα2,

φ2 = α1 + arctan (χx tanα2) ,

φ3 = α1 + π/2, (16)

where x =TE,TM. According to this mapping we can replace
φi in the expressions for Yi in Appendix B and calculate the
differentials δφi using Eq. (14) with ζi � z0i . This will enable
us to compute the Lyapunov exponent, given by Eq. (13); the
final result is

λ =
∆2

2 sin2 γ

(
sin2 α2 k

2
1 σ

2
1 + sin2 α1 k

2
2 σ

2
2

)
, (17)

which agrees with the result of Ref. [26] for uncorrelated dis-
order. The described procedure is repeated to calculate the
Lyapunov exponents in the next sections.

2. Disordered superlattice containing graphene layers

The presence of graphene at the interface between the di-
electrics results in a discontinuity in the tangential compo-
nent of the magnetic field. The role of graphene on the op-
tical properties of the superlattice increases as the value of the
dimensionless parameter βxi f increases, with f = σcµ0/2
and βxi given in Appendix C. We are interested in the loss-
less regime in which the Bloch phase γ, given by Eq. (C3), is
real. This regime sets up when (i) σ (and therefore f ) is a pure
complex number and θi, with i = 1, 2, is a pure real number;
or (ii) σ is a pure real number so that evanescent propagation
occurs in one of the layers.

In the first case, we define Bx = iB̃x (see Appendix C),
where B̃ is real, and we map the parameters φi in:

sinhφ1 = −B̃x cosα2 + (∆−Dx) sinα2,

φ2 = α1 + arg
[
Ax+ cosα2 + i(χ+ Cx+) sinα2

]
,

φ3 = α1 + π/2 . (18)

Following the procedure of Sec. II A 1, the Lyapunov expo-
nent is given by:

λ =
1

2 sin2 γ

(
K2

2k
2
1σ

2
1 +K2

1k
2
2σ

2
2

)
, (19)

where:

K1 = −2f̃λxβx2 cosα1+
[
−∆ + 2f̃2λxβx1β

x
2

]
sinα1, (20)
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and f = if̃ , K2 is obtained by interchanging 1 ↔ 2 and
∆ → −∆. Notice that if one plugs Eq. (20) with f = 0 into
Eq. (19), Eq. (17) is obtained, as it should be.

B. Unit cell made of one dielectric material and a graphene
sheet at the interface

For systems composed of bilayers of the same dielectric
material with a graphene sheet in between, it is much easier
to calculate the transfer matrix, which is given in Eq. (C6). In
this case, the φi parameters read

sinhφ1 = −λxβxf̃ ,
φ2 = α,

φ3 = α+ π/2, (21)

Using Eq. (13) and the results of the Appendix B we calculate
the Lyapunov exponent for structures containing both random
graphene conductivities (compositional disorder) and random
widths (structural disorder), as detailed in the following.

1. Compositional disorder

Using the same procedure of subsection II A 1, we obtain
the Lyapunov exponent:

λ =
1

2

(
sin 2α

sin 2γ
βx
παc

2
σg

)2

, (22)

where αc is the fine structure constant and σg is the mean
standard deviation of the normalized graphene conductivity

σ2
g =
〈σ2〉 − 〈σ〉2

σ2
0

. (23)

2. Structural disorder

For structural disorder where the stacks’ widths are given
by Eq. (14), the Lyapunov exponent reads

λ =
f̃2βx2k2σ2

2 sin2 γ
. (24)

This concludes the analytical part of our work, which shall
be compared to numerical simulations in the following sec-
tion.

III. NUMERICAL SIMULATIONS: RESULTS AND
DISCUSSIONS

A. Simulation procedure

The numerical calculations are based on the transfer matrix
method; the total transfer matrix for light propagating in a N -
layered system is

M = ΠN
n=1M

n. (25)

where the elements of Mn are given by Eq. (C1). Transmis-
sion is calculated by applying the boundary condition related
to the fact that there is no incoming wave from the left:

T =
1

|m22|2
, (26)

and the localization length ξ is calculated by:

L

ξ
= −1

2
〈lnT 〉, (27)

where L = Nd and N is the total number of unit cells with
mean width d. The length L is chosen to be large enough
to ensure the numerical calculation of the localization length
converges. In the numerical procedure we first generate ran-
dom variables ζi (or ζF ) [see Eqs. (14) and (15)] from a uni-
form distribution, and then calculate the transfer matrix using
Eq. (25). With the help of the results introduced in Appendix
C, we obtain the localization length using Eq. (27). The pro-
cedure is repeated over nsamples and the mean value of the lo-
calization length is calculated. We have verified that, for a
sufficiently large N , the value of ξ calculated for a single dis-
order realisation coincides with its average over many disor-
der realisations for smaller systems; in other words, we have
verified that ξ is a self-averaging quantity. Further details of
the transfer matrix method are given in Appendix C.

B. Results

Light transmission depends on the graphene conductivity σ
and on the medium impedances, defined as ( see Appendix C):

ZTE
i =

√
µiεi

µi
cos θi, Z

TM
i =

√
µiεi

εi
cos θi. (28)

We shall focus in the lossless regime with =m cos γ = 0
and <e cos γ ≤ 1. From Eq. (C3), this regime occurs when-
ever f (and consequently σ) is a pure complex number or for
=σ = 0, in which case one of the slabs supports a evanescent
mode. When the Drude term dominates, the imaginary part of
the conductivity is positive (see Appendix D). For frequencies
slightly below 2ωF , the inter-band term dominates and the
imaginary part of the conductivity is negative (see Appendix
D). When the frequency becomes larger than 2ωF , the imagi-
nary part goes to zero and the real part tends to σ0 = e2/4h.

In the following numerical calculations, random variables
have a uniform distribution with ζx ∈ [−Υx/2,Υx/2], with
x = 1, 2 for structural disorder and x = F for compositional
disorder.

C. Drude regime when: <eσ ≈ 0, =mσ > 0

When ωFΓ � ω2 � ω2
F (where Γ is the broadening en-

tering in the conductivity), graphene conductivity can be ap-
proximated by (see Appendix D1):

σ = iσ0
4

π

ωF
ω
. (29)
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For EF ≈ 0.3 eV (a typical value for the graphene Fermi
energy), the range of frequencies corresponds to the infrared
spectral regime. In the following we focus in three regimes:
impedance matching in the double layered system [Z1 = Z2,
in Eq. (28)] with structural disorder, compositional disorder
in one layered system, and the attenuated field regime (ATR)
with structural disorder.

1. Impedance matching in two-layered system with structural
disorder

Using the Snell-Descartes law, Eq. (C2), and the
impedances in Appendix C, one can verify that for materi-
als without magnetic response (µ1 = µ2 = 1), there is no TE
mode that allows the impedance matching. In the TM mode
the impedance matching occurs when the angle of incidence in
layer 1 obeys the relation sin2 θ1 = ε2/(ε1 +ε2), for ε1 6= ε2.

When Zi = Z, βi = β, it follows from Eqs. (19) and Eq.
(20) that:

λ = 2

(
4f̃βxωF
πc sin γ

)2 2∑
i=1

εiµi cos2 αi cos2 θiσ
2
i , (30)

where we neglected the term f̃2 in comparison to f̃ (which
in the Drude regime is always valid for a sufficient large ω).
In this case, in Fig. 2b the localization length ξ is calculated,
both analytically and numerically, as a function of frequency.
The dispersion relation is also shown in Fig. 2a. It is impor-
tant to point out that the agreement between the analytical and
numerical calculations is very good, except when γ approach
0 or π. This is due to the fact that, in the analytical deriva-
tion of the Lyapunov exponent, the recurrence equation (B9)
is ill defined at these points, so that the distribution of random
variables is not uniform. Remarkably, Fig. 2b reveals that in
the impedance matching regime, ξ does not follow the well-
known asymptotic power law ω−2 behaviour for low frequen-
cies. Rather, ξ exhibits a periodic dependence on ω for low
frequencies, a result that is intrinsically related to the graphene
conductivity properties. Indeed, it can be explained by the fact
that the linear increase of the wavenumber with frequency is
cancelled by the simultaneous decrease of graphene’s conduc-
tivity (Drude term, see Eq. 29), which scales with 1/ω. The
periodicity in ξ follows from the periodicity in the dispersion
relation, shown in Fig. 2a. For the lossy and Drude regimes, ξ
approaches the same value as the frequency increases, and the
real part of the Drude conductivity goes to zero.

Figure 3 shows ξ as a function of frequency for two differ-
ent values of the incidence angle θ. It reveals that the presence
of graphene layers has also an important effect in the so-called
Brewster modes in disordered systems. In 1D disordered op-
tical systems, the so-called Brewster modes occur at some
specific frequencies and incident angles for which ξ reaches
anomalously high values, larger than the system size20,29. For
non-magnetic (µ1 = µ2 = 1) superlattices made of positive
refractive-index media, these anomalously delocalised modes
arise from the suppression of reflexion at the interfaces of a 1D
disordered system illuminated by a TM incident wave20,29. As

a result, the system becomes fully transparent. The presence
of graphene induces additional reflections at each interface of
the superlattice, resulting in an attenuation of this Brewster
mode, as it can be seen from fig. 4.

FIG. 2. Color on-line. (a) Dispersion relation in the impedance
matching regime and TM mode. (b) Localization length as a func-
tion of frequency with Υi = 5µm, z0i = 1.2mm, EF = 0.2 eV,
Γ = 260.µeV, N = 5000, nsamples = 100, ε1 = µ1 = µ2 = 1,
ε2 = 3, θ = π/3.The solid line in (b) is the analytical result, whereas
the dots correspond to two different numerical simulations for differ-
ent regimes of the optical conductivity of graphene: (i) σ = =mσD

(red points) and (ii) σ = σD + σI (blue points).

2. ATR regime in one-layered system

The plasmon-polariton mode in graphene can be excited for
example, by a prism in the Otto configuration [30]. This is the
regime we will explore in this section. We consider a periodic
array of graphene/air unit cells (medium 2) in between a di-
electric (medium 1). In this case the total transfer matrix M
is obtained considering the boundaries between the prism and
the superlattice:

M = M1→2

∏
j

(Mj)M2→1, (31)

where M1→2 refers to the transfer matrix describing light
propagation from the medium 1 (dielectric) to medium 2 (air);
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FIG. 3. Color on-line. Localization length as a function of frequency
in the impedance matched regime for two values of incidence angle:
θ = 60◦ (blue line), θ = 45◦ (red circles). Υi = 0.5µm, z0i =
120µm, EF = 0.2 eV, Γ = 0.µeV, N = 5000, nsamples = 100.

FIG. 4. Color on-line. Localization length as a function of incidence
angle in the impedance matched regime at the vicinities of a Brewster
mode. Υi = 50µm, z0i = 120µm, N = 5000, nsamples = 100.
The black solid line corresponds to the grapheneless case; red circles
correspond to the case where graphene is present in the superlattice
(EF = 0.2 eV and Γ = 0 eV.)

M2→1 refers to the reverse propagation. Mj is the trans-
fer matrix of the unit cell air/graphene with random widths
(medium 2).

From Eq. (C7) one can see that for the evanescent mode α
is a pure complex number and the first term in the right hand
side becomes a hyperbolic cosine, which is greater than 1 for

any α. As a result, the Bloch phase is real only if the second
term in the right hand side of C7 is negative. This situation
occurs for pure positive complex f ; in this case β is also a
pure positive complex number, which is only possible in the
TM mode [see Eqs. (32) and (C4)].

For an incidence angle θ1 above the critical angle for total
reflection at the interface 1/2, a plasmon-polariton can be ex-
cited, allowing for frustrated total internal reflection. In this
case light propagation occurs due to the presence of periodic
graphene sheets. The effective impedance in the medium 2
depends on the properties of the layer 1 as:

ZTE
2 = i

κ

µ2
, ZTM

2 = i
κ

ε2
, (32)

where

κ =

√
ε1µ1 sin2 θ1 − ε2µ2. (33)

In Fig. 5 the localization length is calculated in the ATR
regime using both numerical and analytical methods; the
agreement is excellent. In the Drude regime ξ is inversely pro-
portional to the Fermi energy. Also shown is the localization
length when the dielectric necessary to excite the ATR field
is removed; we call this situation the normal field. The ATR
field is characterized by exponentials with argument±ωκz/c.
When the frequency increases and the length c/κω becomes
smaller than the width z of the dielectric slab (air in this case)
light propagation comes to a halt, as the plasmon-polariton
localized in a graphene layer cannot excite the adjacent layer.
We can see that the ATR for the parameters of Fig. 5 fills the
band gap of the normal field. Also the increase of disorder
implies in the decrease of ξ, as expected.

Notice that ignoring the interband term and makingEF = 0
is equivalent to remove the graphene sheets, therefore making
disorder in random widths of air meaningless. Hence the lo-
calization length diverges, as can be seen in Eq. (24), where
σ → 0 implies in a vanishing Lyapunov exponent.

3. One layer system with compositional disorder

In the compositional disorder regime and for the one lay-
ered system, ξ decreases as β increases. For the TE mode,
β can only be greater than 1 for materials with magnetic re-
sponse, µ > 1. For the TM mode, β is proportional to the
dielectric constant and to cos θ, thus for grazing incidence,
the system becomes fully opaque.

In the Drude regime the asymptotic behaviour of the lo-
calization length goes as ω2. This can be understood as fol-
lows: as the frequency increases the graphene conductivity
decreases as ω−1 and thus the influence of the graphene layer
disappears.

The effect of compositional disorder is shown in Fig. 6,
where the Fermi energy is randomly distributed around the
mean value E0

F = 0.6 eV. ξ is inversely proportional to the
mean standard deviation of the Fermi energy. We study the
effect of increasing absorption in graphene layers, which de-
pends on the real part of the conductivity and is proportional
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FIG. 5. Color on-line. (a) Dispersion relation for the ATR regime
(red) and for normal field (blue). (b) Localization length as a function
of frequency for z0 = 12µm, EF = 0.1 eV, θ1 = π/3, ε1 =
2,µ1 = µ2 = ε1 = 1, N = 50000, nsamples = 1. The yellow
circles (green squares) and orange diamonds (blue triangles) refer to
the ATR (normal) field with Υ = 0.5µm and Υ = 5µm, respectively.
The cyan and purple lines refer to the analytical approximation.

to the relaxation rate Γ. The length ξ decays rapidly when
the frequency reaches 2ωF , and interband transitions start to
occur, an effect that may be related either to absorption or
to Anderson localization. The numerical calculation is per-
formed with the full graphene conductivity (Drude plus inter-
band) and then compared to the case where only the Drude
term is present. The analytical approximation is calculated
with the Drude term only, and agrees very well with the nu-
merical simulation except at the band edges γ = 0, π/2, π. As
already discussed, this disagreement is related to the fact that
the probability distribution of Θn is not uniform for these val-
ues of γ. The analytical approximation has a peak at γ = π/2
(see denominator of Eq. 22). The numerical calculations show
that near the band gap (γ = 0, π see Eq. 22) ξ goes to zero,
and the peak at γ = π/2 does not occur.

FIG. 6. Color on-line. (a) Real and imaginary parts of the graphene
optical conductivity in the compositional disordered case, σ = σD +
σI , and the Drude conductivity σD when Γ = 0. (b) Localization
length as a function of frequency with z0 = 1.2µm, θ = π/4, ε =
µ = 1, E0

F = 0.6 eV, ΥF = 0.12 eV, N = 5000 and increasing
relaxation rate Γ. ωF ≈ 3 × 1014 Hz. The blue triangles (and solid
blue line) refer to a calculation where only the Drude conductivity
with Γ = 0 is used. The other data sets refer to the use of the full
optical conductivity of graphene with different Γ values.

D. Complex interband regime when: <eσ ≈ 0, =mσ < 0

When ω . 2ωF , the imaginary part of the optical conduc-
tivity of graphene becomes negative and can be approximated
by

σ = iσ′′I + iσ0
4

π

ωF
ω
, (34)

where σ′′I is given by Eq. (D4). In this case the imaginary part
of σ becomes negative, and the ratio between the imaginary
and real parts of σ becomes lower than in the Drude regime
for typical values of Γ and EF . Therefore, in this case the ex-
ponential decay of transmission is essentially due to absorp-
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tion rather than to Anderson localization. Therefore, in this
case, our approach for studying Anderson localization using
the localization length is inadequate. It is worth commenting
that experimentally it is possible to distinguish between ab-
sorption and Anderson localization by investigating the vari-
ance of the normalized total transmission, as proposed in Ref.
[31]. For a one-layered system in the ATR regime with trans-
fer matrix given by Eq. (C6), the change in the sign of f has
qualitatively the same effect in the dispersion relation (C7) of
interchanging TE and TM modes, which changes the sign of
β.

When the frequency becomes larger than 2ωF , the real
part of the conductivity approachs σ0 while the imaginary
part vanishs. In this regime, the role of the graphene sheets
consists, essentially, in absorbing light leading to a vanishing
transmission after few stacks.

IV. CONCLUSIONS

In conclusion, we have investigated light propagation in
1D disordered superlattices composed of dielectric stacks and
graphene sheets in between. We introduced disorder either
in the graphene material parameters (compositional disorder),
such as the Fermi energy, or in the widths of the dielectric
stacks (structural disorder). For both cases we derived an an-
alytical expression for the localization length ξ and compared
the results with numerical calculations based on the transfer
matrix method. A very good agreement between numerics and
the analytical expression was found. We demonstrated that,
for structural disorder and when the impedances of the layers
are equal, the localization length does not follow the well-
known asymptotic behaviour ξ ∝ ω−2. Rather, it exhibits an
oscillatory dependence on frequency, as a result of the pres-
ence of the Drude term in the graphene conductivity. Also in
the impedance matching regime, we show that graphene has
an important impact on the Brewster modes, anomalously de-
localised modes at given frequencies and incident angles at
which ξ diverges. Indeed, the presence of graphene induces
additional reflections inside the disordered medium, leading
to a strong attenuation of the Brewster modes. We investi-
gated how intra and interband transitions in the graphene con-
ductivity impact on ξ, identifying the regimes where Ander-
son localization and absorption dominates light transmission.
Altogether, our findings unveil the role of graphene on An-
derson localization of light, paving the way for the design of
graphene-based, disordered photonic devices in the THz spec-
tral range.
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Appendix A: Matrix transformation

The relation ψn+1 = Mnψn can be interpreted as a dis-
crete set of points in the phase space ψR, ψL. With the trans-
formation Mreal:

Mreal =
1

2

(
1− i 1 + i
−1 + i 1 + i

)
, (A1)

the matrix MrealM
nM−1real is now real, and defining ψ′

n
=

Mrealψ
n, we have in the phase space ψ′R, ψ

′
L that in the system

without disorder the trajectory is given by a ellipse. From this
we can find a transformation Mcircle to a circle:

Mcircle =

(
v−1 cos τ v sin τ
−v−1 sin τ v cos τ

)
, (A2)

where:

v2 = − sin γ

coshφ01 sinφ02 + sinhφ01
,

τ =
π

4
− φ03

2
, (A3)

and making [Q P ]T = Mcircleψ
′,

(
Qn
Pn

)
=

(
v−1 cos τ v sin τ
−v−1 sin τ v cos τ

)(
xn
yn

)
, (A4)

Appendix B: Lyapunov Exponent

The Lyapunov exponent is given by:

λ =
1

2

〈
Y1 + Y2 cos 2Θn + Y3 sin 2Θn −

1

4
Y 2
2 −

1

4
Y 2
3

〉
,

(B1)
where

Y1 =
1

sin2 γ

[
U1δφ

2
1 + U2δφ

2
2 + U3δφ

2
3 + U4δφ1δφ2

]
,

(B2)
with:

U1 = 2 sin2 φ02, (B3)
U2 = 2 sinh2 φ01 cos2 γ, (B4)
U3 = 2 sinh2 φ01 sin2 γ, (B5)
U4 = − sinh 2φ01 sin 2φ02, (B6)

Y2 =
[
−2 sinφ02δφ1 + cosφ02 sinh 2φ01 (δφ2 − δφ3)

]
, (B7)
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Y3 = 2
sinhφ01

(
cos2 γδφ2 + sin2 γδφ3

)
− cos γ sinφ02δφ1

− sin γ
.

(B8)
the angle Θ obeys the recurrence equation:

Θn+1 = Θn − γ + εn csc γ, (B9)

with:

εn =
[
cos γ sinhφ01δφ2 − sinφ02δφ1

]
cos (2Θn − γ) +

sinhφ01 cos γ sin(2Θn − γ)δφ3, (B10)

Appendix C: Photonic Crystal

1. Unit cell made of two different dielectrics and a graphene
sheet at the interfaces

The transfer matrix whose elements are332

mj
11 =

[
Ax− cosα2 + i(χ+ Cx+) sinα2

]
e−iα1 ,

mj
12 = [Bx cosα2 + i (∆ +Dx) sinα2] eiα1 ,

mj
21 = [−Bx cosα2 − i (∆ +Dx) sinα2] e−iα1 ,

mj
22 =

[
Ax+ cosα2 − i

(
χ+ Cx−

)
sinα2

]
eiα1 , (C1)

where x = TE,TM and the diverse parameters are given in
appendix C.

The Snell-Decartes law hold:
√
ε1µ1 sin θ1 =

√
ε2µ2 sin θ2, (C2)

and the dispersion relation is given by:

cos γ = cosα1 cosα2 −
(
χ+ 2f2βx1β

x
2

)
sinα1 sinα2

+2if (βx1 cosα1 sinα2 + βx2 cosα2 sinα1) .(C3)

βTMi = ZTMi , βTEi =
1

ZTEi
, (C4)

where:

ki =
√
εiµiω/c cos θi,

αi = kizi,

Ax± = (1± 2fβx1 ),

Bx = 2fλxβx1 ,

Cx± = ±2fβx2 + 2f2βx1β
x
2 ,

Dx = 2f2λxβx1β
x
2 ,

ηx =
Zx1
Zx2

,

∆x =
1

2

(
ηx − ηx−1

)
,

χx =
1

2

(
ηx + ηx−1

)
,

f =
σcµ0

2
,

ZTE
i =

√
µiεi

µi
cos θi,

ZTM
i =

√
µiεi

εi
cos θi, (C5)

with λTM = +1, λTE = −1.

2. Unit cell made of one dielectric and a graphene sheet at the
interface

When there is only one dielectric, with width z and ε, µ per-
missivity and permeability, intercalated by graphene sheets,
the transfer matrix is given by:

M =

(
(1− βxf)eiα −λxβxfeiα
λxβxfe−iα (1 + βxf)e−iα

)
, (C6)

where α =
√
µεz cos θ with the dispersion relation:

cos γ = cosα− iβxf sinα. (C7)

Appendix D: Graphene Optical Conductivity

For completeness we give here the expressions for the op-
tical conductivity of graphene, whose derivation can be found
elsewhere33,34. The graphene optical conductivity of graphene
is a sum of a Drude term, σD, and an inter-band contribution,
σI , reading:

σ = σD + σI , (D1)

where the Drude term is given by:

σD
σ0

=
4ωF
π

1

Γ− iω
, (D2)

and the interband term σI = σ′I + iσ′′I have the real part

σ′I
σ0

=

(
1 +

1

π
arctan

ω − 2ωF
Γ

− 1

π
arctan

ω + 2ωF
Γ

)
,

(D3)
and the imaginary part

σ′′I
σ0

= − 1

2π
ln

(2ωF + ω)2 + Γ2

(2ωF − ω)2 + Γ2
, (D4)

with the Fermi frequency given by

ωF =
|EF |
~

. (D5)
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