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Abstract. In previous work we have presented a model capable of generating human-like movements for a dual
arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-
to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this
paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously
moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has
been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the
implementation of the IPOPT solver embedded in our MATLAB simulator.
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INTRODUCTION

In order to implement human-like synchronous movements in a bimanual anthropomorphic robot, it is
necessary to understand the basis of bimanual coordination in humans and the functional models (based
on neuro-physiological evidences) that have been proposed.

Recent data acquired address three conceptual areas [1]: the generalized motor program (GMP), in-
termanual crosstalk, dynamic system models. Although controversial studies exist on each one of these
approaches, the proposed motion planner takes inspiration by those models that represent synergies of
muscles easily controlled jointly as a singular functional unit and explain the strong tendency for syn-

Task 1

Task 2

Figure 1. ARoS is an anthropomorphic robot equipped with two 7 degrees of freedom (DOFs) arms and two 4 DOFs
hands. Panels A-D and panels E-H show screenshots obtained in our MATLAB simulator related to the execution of
Task 1 and Task 2 respectively. In Task 1 the robot has to reach and grasp the two columns (B) starting from its initial
posture (A). Next, ARoS has to insert the columns in the right holes into the base (C) and, finally, it goes back to its
initial posture (D). In Task 2 the robot has to reach and grasp the two columns by crossing its arms (F), starting from
its initial posture (E). Then, ARoS has to swap the columns to insert them in the right hole into the base (G). Finally,
the robot return to its initial posture (H).
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chronous timing of bimanual movements (e.g. [2, 3, 4]). Specifically, we designed a planner for generating
complex sequences of synchronous bimanual movements that are performed in scenario cluttered with
obstacles (e. g. the body of the robot, the table and others objects as shown in Figure 1). Even though in the
last decade several synchronous bimanual motion planning techniques have been presented (e.g. [5, 6]),
poor attention has been paid to the human-likeness and to cognitive effects in motion planning. Strongly
inspired on the Posture-Based Motion Planning Model ([7, 8]) of humans upper-limbs movements, our
motion planner [9] has been extended to generate human-like bimanual synchronous movements which
explicitly reveal their underlying intention to obtain a natural and efficient human-robot interaction in
cooperative tasks.

BIMANUAL SYNCHRONOUS MOVEMENT PLANNING AS A NONLINEAR
CONSTRAINED OPTIMIZATION PROBLEM

The formalization of the motion planner is presented in this section (for further details see [9]). The
configuration of the arms-hands in the joint space is represented by the 22-dimensional vector θ =

(θ1,θ2, . . . ,θ22)
T . θR = (θ1, . . . ,θ11)

T refers to the right arm-hand, while θL = (θ12, . . . ,θ22)
T refers to the

left arm-hand. The trajectory of the joints is formulated as follows:

θ
(

t,θ f ,θb

)
= θ0 +

(
θ f − θ0

)(
10τ3 − 15τ4 + 6τ5)

+ ω0T
(
τ − 6τ3 + 8τ4 − 3τ5)+ ω f T

(
−4τ3 + 7τ4 − 3τ5)

+ 1
2 α0T2 (τ2 − 3τ3 + 3τ4 − τ5)+ 1

2 α f T2 (τ3 − 2τ4 + τ5)
+(θb − θ0)sin2 (πτϑ

) (1)

where the parameters θ0, ω0, α0 ∈Rnj are constant vectors that represent initial joints position, velocity and
acceleration of the two arms-hands, respectively. While parameters, θ f , ω f , α f ∈ Rnj represent position,
velocity and final joints acceleration of the two arms-hands, respectively. T ∈R+ represents the movement
duration, t ∈ [0, T], τ = t

T ∈ [0,1] is the normalized movement duration and ϑ = − ln2
lntb

, where tb ∈ ]0,1[

that is the parameter to control when the bounce posture is reached. Therefore, t ∈ [0, T] is divided
in NT equally spaced steps ti = i∆, where ∆ = T

NT
is the step size and i = 0,1, . . . , NT . Consequently,

θ
(

ti,θ f ,θb

)
represents the composite trajectory at time ti. The number of joints, nj, depends on the type

of the movement to plan (see Tables 2 and 3). The calculus of a composite trajectory is posterior to the
selection of a goal posture, θ f , and of the bounce posture, θb. This selection process is divided into two
sub-problems: goal posture selection (Pa) and a bounce posture selection (Pb). These two sub-problems
are modeled as nonlinear constrained optimization problems:

(Pa) min
θ f∈R14

14

∑
k=1

λk

(
θ0,k − θ f ,k

)2
,λk ≥ 0 (2)

s.t. c1A

(
θ f A

)
= 0 (3)

c2A

(
θ f A

)
= 0 (4)

h f A

(
θ f A, ζtar

)
≥ 0 (5)

h f A

(
θ f A, ζobs

)
≥ 0 (6)

q f

(
θ f L,θ f R, γ

)
≥ 0 (7)

θmA ≤ θ f A ≤ θMA (8)

(Pb) min
θ f∈R

nj

nj

∑
k=1

λk
(
θ0,k − θb,k

)2,λk ≥ 0 (9)

s.t. θmA ≤ θA

(
ti,θ f A,θbA

)
≤ θMA (10)

hbA

(
θA

(
ti,θ f A,θbA

)
, εtar (ti)

)
≥ 0 (11)

hbA

(
θA

(
ti,θ f A,θbA

)
, εobs (ti)

)
≥ 0 (12)

qb

(
θL

(
ti,θ f L,θbL

)
,θR

(
ti,θ f R,θbR

)
,ψ (ti)

)
≥ 0 (13)

θmA ≤ θbA ≤ θMA (14)

, ti = 0, . . . , T

where the constant vectors θmA and θMA represent the lower and upper joint limits of each arm A ∈ {R, L}
respectively . γ > 0 is the clearance distance between the arms-hands at the final posture, while ζtar > 0

and ζobs > 0 represent the clearance distance between one arm-hand and the target of the other hand and



between one arm-hand and obstacles, respectively at the final posture. Equations (3), (4) are nonlinear
constraints of the target position and orientation the position and the orientation of the arm and hand,
respectively obtained using direct kinematics (for details see [9]). ψ (ti) > 0 is the clearance distance
between the arms-hands at time ti, while εtar (ti) > 0 and εobs (ti) > 0 are functions of time representing
the clearance distance between one arm-hand and the target of the other arm-hand and between one
arm-hand and obstacles at time ti, respectively. Inequalities (5) and (11) are nonlinear constraints of one
arm-hand in relation with the target position of the other arm-hand. Similarly, inequalities (6) and (12) are
nonlinear constraints of one arm-hand and the obstacles. For further details on constraints formulation
see [9]. Finally, inequalities (7) and (13) are non-linear constraints for avoiding collisions between the
arms-hands .

RESULTS

We focus on the sequence of movements in the two different tasks and presented in Figure 1 and described
in Table 1. The numerical results were obtained using an Intel(R) Core(TM) i7-4770 CPU@ 3.40GHz
running Windows 8 64-bits with a AMD Radeon HD 6570 video card and 8GB of RAM Memory. All
the optimization problems in Table 1 (P#a and P#b) were coded in AMPL modeling language and solved
using IPOPT 3.11 [10] . The solver is provided by OPTI Toolbox [11]. During the movements, all joints
move synchronously and they start and end each movement in static conditions, i.e. in (1) ω0 = 0, ω f = 0,
α0 = 0 and α f = 0. In practice all equality constraints were transformed into inequalities considering its
squared euclidean norm and using constants β > 0, in (3) and δ > 0 in (4).

The number of P#a problems for each movement is arbitrary and it is usually chosen according the
difficulty of the motion. For example, swapping the columns in Task 2 is a highly risky movement,
therefore we preferred to execute it in three steps. The dimension of the P#a problems depends on the
number of constraints in (5) and in (6). In Task 1 the constraints (7) and (13) were not considered because
the arms-hands do not share the same workspace during the movements.

Table 1. Tasks formulation

Task Movement β δ ζtar ζobs γ λk T tb
Final Posture
Selection

Bounce Posture
Selection

1

Reach to
grasp 1 10−5 10 5 1 1 1 0.5 P1a1 + P1a2 P1b

Transport
to insert 1 10−5 10 5 1 1 1 0.5 P2a1 + P2a2 P2b

Return
to home 1 10−5 10 5 1 1 1 0.5 P3a1 P3b

2

Reach to
grasp 1 10−4 10 5 1 1 1 0.5 P1a1 + P1a2 P1b

Swap to
insert 1 10−5 10 5 1 1 1 0.5 P2a1 + P2a2 + P2a3 P2b

Return
to home 1 10−3 10 5 1 1 1 0.5 P3a1 P3b

Tables 2 and 3 provide results regarding the optimal solution found by the solver for the final posture
and the bounce posture selection problems for all movements in Task 1 and Task 2. Here N is the number
of variables and it corresponds to nj in P#b problems. Moreover, M is the number of inequality constraints,
Obj is the objective function value and CPU is the computational time in seconds.

For all P#a problems, IPOPT was able to find an optimal solution in less then 0.9 seconds. The dimension
of the P#b problems was dependent on the number of constraints in (11) and in (12) . For all P#b problems,
IPOPT was able to find a solution in less than 2.5 seconds. P2b was the most risky movement and IPOPT
could find a solution only after 2.34 seconds. However, P1a1 for both tasks were featured by the highest
direct component as the value of the objective function shows. This result is due to the fact that both arms
need to perform large movements (very distant from their initial posture) to reach and grasp their targets.



Table 2. Task 1: numerical results for P#a and P#b problems

P1a1 P1a2 P1b P2a1 P2a2 P2b P3a1 P3b

N 14 14 18 14 14 14 14 18
Nt - - 15 - - 20 - 10
M 226 226 2406 226 226 1984 272 1531

Obj 17.997 0.61 0.085 4.106 3.362 0.021 0.077 0.034
CPU 0.87 0.43 1.01 0.63 0.41 1.14 0.62 1.53

Table 3. Task 2: numerical results for P#a and P#b problems

P1a1 P1a2 P1b P2a1 P2a2 P2a3 P2b P3a1 P3b

N 14 14 18 14 14 14 14 14 18
Nt - - 20 - - - 10 - 10
M 151 151 1597 151 151 116 1792 116 566

Obj 15.886 0.102 0.137 0.102 1.40 0.124 0.033 0.421 0.196
CPU 0.33 0.40 2.17 0.56 0.31 0.22 2.34 0.56 0.67

CONCLUSIONS AND FUTURE WORK

In this paper we have presented a formulation of a motion planner capable of generating bimanual
synchronous movements for an anthropomorphic robot system. These movements are smooth and exhibit
features (e.g. hand velocity profile, synchrony in timing) observed in human upper-limb movements in
performing similar tasks. The results suggest that the planning process is sufficiently fast to guarantee
human-robot interaction and for performing an eventual re-planning of the trajectories in case of changes
in the scenario during the execution of the movement. In the short term an integration of an efficient
technique to cope with changes in the scenario is a priority in our work.
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